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Importance of Numerical Implementation and Clustering Analysis in Force-Directed Algorithms
for Accurate Community Detection
Alessandra M. M. M. Gouvêa,Nicolás Rubido,Elbert E. N. Macau,Marcos G. Quiles

• Force-Directed Algorithms can outperform classical community detection methods;
• FDAs accuracy depends on the force model, its implementation, and the cluster analysis.
• FDAs accuracy is improved when choosing large spatial dimensions (D > 4) for the layout.
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ABSTRACT
Real-world networks show community structures – groups of nodes that are densely intra-connected
and sparsely inter-connected to other groups. Nevertheless, Community Detection (CD) is non-trivial,
since identifying these groups of nodes according to their local connectivity can hold many plausible
solutions, leading to the creation of different methods. In particular, CD has recently been achieved by
Force-Directed Algorithms (FDAs), which originally were designed as a way to visualize networks.
FDAs map the network nodes as particles in a D-dimensional space that are affected by forces acting
in accordance to the connectivity. However, the literature on FDA-based methods for CD has grown
in parallel from the classical methods, leaving several open questions, such as how accurately FDAs
can recover communities compared to classical methods. In this work, we start to fill these gaps by
evaluating different numerical implementations of 5 FDAmethods and different clustering analyses on
state-of-the-art network benchmarks – including networks with or without weights and networks with
a hierarchical organisation. We also compare these results with 8, well-known, classical CD methods.
Our findings show that FDA methods can achieve higher accuracy than classical methods, albeit their
effectiveness depends on the chosen setting – with optimisation techniques leading over numerical
integration and distance-based clustering algorithms leading over density-based ones. Overall, our
work provides detailed information for any researcher aiming to apply FDAs for community detection.

1. Introduction
Many disciplines have been successfully representing

real-world data sets as networks. A network is a topological
model of the inter-relationships between the elements in
a data-set (Boccaletti et al., 2006), i.e., links and nodes,
respectively. However, with growing and evolving data-sets
(Gupta et al., 2011), network analysis is becoming rapidly
intractable. A possible solution to this problem is to group
nodes into subsets that share some common properties, such
as into communities (Girvan and Newman, 2002).

The concept of a community (or a module) is intuitive:
a subset of densely connected nodes but sparsely inter-
connected to other nodes (or communities). However, a
universally accepted definition is still missing. For example,
the initial notions started from cliques (Luce and Perry,
1949) and k-plexes (Seidman and Foster, 1978) and evolved
to the notion of strong and weak communities (Radicchi
et al., 2004). These concepts require discriminating links
for any set of nodes in terms of internal – intra-community
– and external – inter-community – links. The resultant
communities are dense sub-graphs that can be separated
from each other. Recently, the classical approach has been
challenged by more realistic concepts (Fortunato and Hric,
2016; Javed et al., 2018; Rossetti and Cazabet, 2018; Rosvall
et al., 2019; Jiang et al., 2021), like overlapping communities
– where a node can belong to more than one community –
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and hierarchy – where nodes can be arranged in different
groups at different levels. These modern concepts define
communities through probabilities, which implies finding
the proportion of shared links within different sets such
that nodes have different participation probabilities across
the resultant communities (Fortunato and Hric, 2016; Javed
et al., 2018; Rosvall et al., 2019; Li et al., 2020). As a result of
these broad definitions, there are various methods to tackle
Community Detection (CD).

Classically, CD has been accomplished by using edge
betweenness (Girvan and Newman, 2002), spectral parti-
tions (Newman, 2006a), modularity optimisation (Clauset
et al., 2004), finding random-walks trapped locations (Pons
and Latapy, 2005), seeking to maximise information com-
pression in the network (Rosvall and Bergstrom, 2008), via
synchronization Maia et al. (2017), or by random relabelling
of the nodes (Raghavan et al., 2007), to name a few of the
most popular methods. In particular, maximising modularity
is similar to solving the graph partitioning problem, i.e.,
cutting the least amount of links to partition the network into
disconnected components.

In the early 2000s, Force-Directed Algorithms (FDAs)
started to be successfully used for CD. FDAs are a class of
methodologies initially developed to visualise networks with
unknown structural properties, providing a solution to the
graph drawing problem employing particle-like simulations
(Brandes, 2001; Kaufmann and Wagner, 2003; Cheong and
Si, 2020). Namely, by setting a force model, where nodes are
set as particles on aD-dimensional space that evolve accord-
ing to the forces, the resultant layout delivers a visualisation
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of the network. The choice of forces for network visualisa-
tion may seek to minimise the number of crossing edges,
maximise the distance between non-adjacent nodes, and
maximise the symmetries in the drawing (Quigley, 2001),
with the goal of producing an insightful visual aesthetic.
Importantly, with the right force model, FDAs can organise
nodes into communities (Noack, 2004, 2005, 2007b; Rosvall
and Bergstrom, 2008; Palmer and Sinnen, 2008; Zabiniako,
2009; Crippa et al., 2011; Liu et al., 2013; Lim et al., 2016;
Quiles et al., 2016; Quiles, 2016; Cai et al., 2018; Udrescu
and Udrescu, 2019), holding intuitive layouts and having
simple algorithmic implementations.

The development of FDAs for CD has grown rapidly but
in parallel to the classical CDmethods and literature – which
scarcely mentions FDAs (Gouvêa et al., 2020). This rapid
growth and decoupled development left several open ques-
tions. For example, we are unaware of how accurately FDAs
can recover communities compared to the classical methods,
whether one can increase the FDA’s accuracy by changing
their numerical implementation, the space dimension (D),
or clustering algorithm, and how robust this accuracy is to
varying degrees of community mixing.

Here, we fill this gap by testing 5 different FDAs under
two state-of-the-art network benchmarks and comparing
their accuracy with that of 8 classical CD methods. In these
tests, we analyse different numerical implementations for
the FDAs, spatial dimensions, and clustering algorithms.
We also extend these analyses to weighted networks with
communities and networks with a hierarchical organization.

In summary, to the best of our knowledge, our work is
the first one to detail FDA’s accuracy dependence on the
force model, its numerical implementation, choice of dimen-
sionality, and clustering technique. Importantly, we show
that FDAs can outperform classical methods. For example,
we find that the Edge Linear-Logarithmic Model (Noack,
2007a) implemented by the conjugate gradient method in
a 3-dimensional space (with the optimal result if D >
4) and a distance-based clustering technique is enough to
rival or outperform the 8 classical methods. Thus, our work
shows that FDA methods are powerful tools for community
detection and network analysis.

2. Methods
2.1. Validation Process

The search for an optimal community detection method
happens on two fronts: (i) decreasing computational com-
plexity and (ii) getting the greatest possible accuracy. Vali-
dating a new method in terms of computational complexity
is a well-defined problem that can be derived analytically or
from simulations. In contrast, validating accuracy is more
challenging since it means dealing with the weak concept of
community (Lancichinetti et al., 2008). It implies analysing
the community structures recovered by the proposed algo-
rithm from a network where such structures are known a
priori.

2.1.1. Benchmark Networks
There is a large amount of real-world data with known

community structures and artificial networks generated with
desired community structures that can be used as bench-
marks (Girvan and Newman, 2002; Ravasz and Barabási,
2003; Lancichinetti et al., 2008; Lancichinetti and Fortunato,
2009; Fortunato, 2010; Granell et al., 2015; Yang et al.,
2017).

The first and most famous network benchmark was in-
troduced by Girvan and Newman (2002) (GN), which we
use in this work. The GN benchmark describes undirected
and unweighted random networks with N = 128 nodes
organized into 4 groups of 32 nodes whose average degree
is 16. Mixing of communities in GN networks (Girvan and
Newman, 2002) is carried by reshuffling edges, controlled
by a mixing parameter � that indicates the expected ratio
of edges connecting nodes from different communities with
respect to the total number of edges. That is, if � = 0,
nodes from different communities do not share edges; hence,
communities are completely isolated. If � = 0.5, half of
the edges connect intra-community nodes and the other half
inter-community nodes, which is typically when community
detection methods start to lose accuracy (Fortunato, 2010).

Lacichinetti, Fortunato, and Radichi (LFR) networks
(Lancichinetti et al., 2008) have broad degree and com-
munity distributions, following power laws with exponents
 and �, respectively. For example, typical real-world net-
works show values within a range of 2 ≤  ≤ 3 and 1 ≤ � ≤
2 Lancichinetti et al. (2008). In this work, we generate LFR
networks with N = 1000 nodes,  = 2, � = 1, ⟨k⟩ = 20,
and max(k) = 50, but under 2 different scenarios: i) small
communities, where minC = 10 and maxC = 50 nodes,
and ii) big communities, where minC = 20 and maxC =
100 nodes. Parameters are chosen so that we can compare
our results with previous reports (Lancichinetti et al., 2008;
Lancichinetti and Fortunato, 2009; Quiles et al., 2016).
Moreover, we generate weighted LFR (LFRw) networks
(Lancichinetti and Fortunato, 2009) by setting a power-law
distribution of edge weights with exponent 2 (the same as
the degree distribution). Edgeweights represent the intensity
of the relationship between two nodes, which in real-world
network analysis, is of paramount importance.

Noack (2003) defined a hierarchical network with 16
cliques (all-to-all connected) of 50 nodes, i.e., N = 16 ×
50 = 800 nodes, which we also use to test the community
detection algorithms’ accuracy. Hierarchy is set by arranging
these cliques such that they hold 4 communities with 4
cliques each. We do this by fixing the probability of connect-
ing two nodes from different communities to p = 0.16, and
if the two nodes are within the same community to p = 0.32.

Among the real-world networks used in the CD liter-
ature, Zachary’s Karate Club is one of the most popular.
This networkmodels friendship data constructed by Zachary
(1977) from a variety of measures to estimate the bond
of friendship between individuals (Girvan and Newman,
2002). The network comprises 34 nodes whose IDs represent
the karate club members, whereas the edges among them
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describe their social interactions outside the club. Here, we
use the standard unweighted version described by Girvan
and Newman (2002) to illustrate some FDA results.
2.1.2. Accuracy Quantification

The accuracy of an algorithm is estimated by a quantita-
tive measure of similarity between the algorithm’s outcome
and the ground truth. A list of measures can be found in
Fortunato (2010). Here, we use the Normalised Mutual In-
formation (NMI) (Danon et al., 2005), 0 ≤ NMI ≤ 1, where
NMI = 1 means 100% accuracy – the recovered community
structure matches perfectly the benchmark’s communities –
and NMI = 0 means there is complete mismatch.
2.2. Force-Directed Algorithms

Let a network, , be an ordered pair of sets,  = { , },
where  is a set with N nodes and  is a set withM edges
connecting the nodes. Force-Directed Algorithms (FDA)
treat nodes as physical particles (masses or bodies) in a D-
dimensional space, ℝD, and edges as forces (interactions)
between nodes. Consequently, FDAs require choosing a
force model, setting D, and finding the stable steady-state,
which gives a particle layout that can be used for community
detection by applying clustering analysis.

Figure 1: Force model where nodes are represented as positive
charges that magnetically repel each other and edges are
represented as springs that attract adjacent nodes.

Natural analogies can be drawnwhen a force model has a
physical meaning. For example, Fig. 1 shows a model where
nodes are described as magnetic particles that repulse each
other (regardless of whether they share an edge). Edges are
replaced with springs that attract the particles. FDAs can
also be defined by non-physical laws, without any physical
analogy (Quigley, 2001).
2.2.1. General (a, r)-Energy Models

Most force models (Noack, 2004; Gouvêa et al., 2020)
are defined from defining an attractive function f (rij) and
a repulsive function g(rij), where rij = ‖

‖

‖

x⃗i − x⃗j
‖

‖

‖

is the
Euclidean distance between the particles (nodes) i and j
located at positions x⃗i ∈ ℝD and x⃗j ∈ ℝD, respectively.
The (instantaneous) potential energy of the system, U (t), at

any given time t is given by

U (t) =
N
∑

i>j=1
f (rij(t)) +

N
∑

i>j=1
g(rij(t)), (1)

where the symmetric terms are unaccounted because gener-
ally f (rij(t)) = f (rji(t)) and g(rij(t)) = g(rji(t)). Impor-
tantly, U is at a minimum in the steady-state.

The models where f (rij) and g(rij) can be written as

f (rij) = C1

‖

‖

‖

x⃗i − x⃗j
‖

‖

‖

(a+1)

a + 1
= C1

r(a+1)ij

a + 1
,

g(rij) = −C2

‖

‖

‖

x⃗i − x⃗j
‖

‖

‖

(r+1)

r + 1
= −C2

r(r+1)ij

r + 1
,

are known as (a, r)-energy models (Noack, 2004); C1, C2 >
0 being constants possibly having some information about
the edge (i, j) or the nodes degrees of particles i and j. These
models define conservative forces from the negative gradient
of U . Namely, the attractive, F⃗A, and repulsive, F⃗R, forcesacting on particle i due to the other particles are given by

F⃗A(i) = −∇i
N
∑

j=1
f (rij) = −

N
∑

j=1
C1

‖

‖

‖

x⃗i − x⃗j
‖

‖

‖

a
r̂ij , (2)

F⃗R(i) = −∇i
N
∑

j=1
g(rij) =

N
∑

j=1
C2

‖

‖

‖

x⃗i − x⃗j
‖

‖

‖

r
r̂ij , (3)

where∇i =
(

)∕)xi, )∕)yi, )∕)zi,…
) is theD-dimensional

gradient acting on the i-th particle’s position and r̂ij =
(

x⃗i − x⃗j
)

∕ ‖‖
‖

x⃗i − x⃗j
‖

‖

‖

defines a unit vector going from par-
ticle j to particle i (force direction).
2.2.2. Fruchterman-Reingold Model

The Frucherman-Reingold (FR)model (Tunkelang et al.,
1999) is a (2,−1)-energy model that considers nodes as
magnetic particles usually in aD = 2 spacewith forces given
by

F⃗A(i) = −
N
∑

j=1

Aij
�
r2ij r̂ij and F⃗R(i) =

N
∑

j=1
�2r−1ij r̂ij , (4)

where � = C
√

area∕N is defined as the optimal distance
between the nodes, which is typically found experimentally,
C being the experimental constant and area being the size of
the two-dimensional space available to place the particles.

An example of the resultant drawing from this model on
a 500 node network with 4 communities is shown in Fig. 2.
We note that attraction happens solely on adjacent nodes.
However, repulsion acts on all nodes – most works using
drawing graph techniques to detect communities in vanilla
are based on this model (Gouvêa et al., 2020).
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Figure 2: Network drawing by Frucherman-Reingold model.
This network has 500 nodes and 4 modules. A central module
with 200 nodes and a probability of inter-connection P (i, j) =
0.064 (black), and other 3 with 100 nodes each, where P (i, j) =
0.016 (green), 0.008 (blue), and 0.004 (red) when i belongs to
the central module and j to the peripheral ones.

2.2.3. Linear-Logarithmic Energy Model
The Linear-Logarithmic (LinLog) energy model was

proposed by Noack (2003) to draw clustered small-world
networks, where (a, r) = (0,−1). It was subsequently im-
proved (Noack, 2004, 2005, 2007a), to the point of being
the first method to reveal clusters in undirected networks
(Gouvêa et al., 2020). Like Fruchterman-Reingold Model, it
uses magnetic-like particles as nodes and links as spring-like
forces. The following energy equation gives the motion

U =
∑

{i,j}∈

‖

‖

‖

x⃗i − x⃗j
‖

‖

‖

−
∑

{i,j}∈2

log ‖‖
‖

x⃗i − x⃗j
‖

‖

‖

, (5)

where 2 =  ×  means that the addition is over all
unordered pairs of nodes and  is the edges set, meaning
the addition only happens for adjacent nodes.

The LinLog model has 2 extensions. One is called Node
LinLog energy model and includes information of the net-
work’s weights, which is done by multiplying each attractive
(first) term in Eq. (5) by the link weight, Wij . Another iscalled Edge LinLog energy model and includes information
of the node’s neighbourhood, which is done by multiplying
each repulsive (second) term in Eq. (5) by the node degree
products, ki × kj . In this work, we test both extensions.In contrast to other models, the LinLog energy model
draws distances with a topological interpretation (Noack,
2004). The particle positions inℝD are such that the distance
between any 2 disjoint sets of nodes, 1 and 2, is inverselyproportional to their coupling, c(1,2), which is defined as
c(1,2) =

E[1,2]
|1|×|2|

= M12
N1N2

, whereM12 is the number of
links between the sets andN1N2 is the number of node pairs
between the sets (and maximum possible links).

When comparing the resultant planar drawing from the
Frucherman-Reingold model in Fig. 2 with that from the
Edge LinLog model in Fig. 3, we note that the 4 modules
are better separated by the Edge LinLog model. Although,
in both cases, we can see 3 modules of 100 nodes (green,
blue, and red) around a central module of 200 nodes (black).
2.2.4. Black-Hole Model

Lim et al. (2016) put forward a modification to Eq. (5):
distance dependent attraction forces, making the resultant
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Figure 3: Drawing of the network in Fig. 2 by the Edge
Linear-Logarithmic energy model. Here the probability of inter-
connection P (i, j) is better represented by the distance of the
groups of nodes on the plane.

model an (a, r) = (−0.95,−1) energy model known as
Black-Hole model. This modification leas to

F⃗A(i) = −
N
∑

j=1
Wij

‖

‖

‖

x⃗i − x⃗j
‖

‖

‖

−0.95
r̂ij , (6)

where Wij is the link weight between nodes i and j (as in
the Node LinLog energy model). The relationship between
the force strength and the distance between nodes for both
models is shown in Fig. 4. In practice, this aims to place
nodes from a community as closely as possible, which allows
clustering them by density-based clustering techniques.

Figure 4: Attractive forces defined by Lim et. al. Lim et al.
(2016) and Noack Noack (2003, 2004, 2005, 2007a) in the
Black-Hole and LinLog energy models, respectively.

2.2.5. QMR Model
The QMR model was proposed by Quiles et al. (2016),

with forces given by

F⃗A(i) = −
N
∑

j=1

(Aij
ki

)

r̂ij , (7)

F⃗R(i) = �
N
∑

j=1

(1 − �ij − Aij
ki

)

e−‖x⃗i−x⃗j‖r̂ij , (8)

where � > 0 is a constant, ki is the i-th node degree, �ij is theKronecker delta function, and Aij is the adjacency matrix.
Here, we use � = 0.36 as set by Quiles et al. (2016). The
attraction in Eq. (7) is similar to the LinLog model (a = 0),
acting only when node i and j share a link (as in most force
models). Contrary to other models, Eq. (8) only repels non-
adjacent nodes (1− �ij −Aij) and cannot be expressed as anenergy model because of the repulsive force.
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Table 1
Different Force-Directed Algorithm (FDA) implementations, classified into 9 settings (bottom row) according to the parameters
and method used in this work. FDA models: Black-Hole (BH), Edge Linear-Logarithmic (ELL), Node Linear-Logarithmic (NLL),
Fruchterman-Reingold (FR), and QMR. When the model can be adapted to a given setting, the table shows a tick, otherwise, a
dashed line. Below each setting, we list lines and symbols used for plotting the corresponding results.

Euler Method Fruchterman-Reingold Heuristic Conjugate Gradient
Step 0.1
It.: 10000

Step 1.0
It.: 100

Step 1.0
It.: 1000

Temp.: 1.0
It.: 100

Temp.: 1.0
It.: 1000

Temp.: 1.0
It.: 10000 It.: 100 It.: 1000 It.: 10000

BH — — — — — — ✓ ✓ ✓

ELL ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

NLL ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

FR — — — ✓ ✓ ✓ ✓ ✓ ✓

QMR ✓ ✓ ✓ ✓ ✓ ✓ — — —
Set. 1 Set. 2 Set. 3 Set. 4 Set. 5 Set. 6 Set. 7 Set. 8 Set. 9
—△— —□— —○— – – □ – – – – ○ – – – –△ – – - - -□- - - - - -○- - - - - -△- - -

Settings

2.3. Searching for the stable steady-state
A general goal in the implementation of force models

is to reach a stable state as fast as possible, ensuring that
the node distances in the final layout allow detecting the
communities correctly (Gouvêa et al., 2020) – or to meet
the visual aesthetic in a graph drawing (Davidson and Harel,
1996; Tunkelang, 1998). Specifically, once the force model
is defined, all nodes (particles) are mapped to some initial
position, which is usually set at random; that is x⃗i(t = 0) =
{xi(0), yi(0), zi(0), …} ∈ ℝD with i = 1,… , N . The
forces start acting on the particles from this initial position,
causing them to change their positions until a stable steady-
state is reached. In this state, all forces cancel each other
out, and the particles have reached a final position that
constitutes a graphical drawing of the network (Tunkelang,
1998), which we refer to as the D-dimensional layout (or
simply, the layout).

There are two well-established approaches to find stable
states: Numerical Solutions (NS) and Optimisation Tech-
niques (OT). In NS, the forces define a set of coupled
differential equations on the particles’ positions, such as
(Quiles et al., 2016), ̇⃗xi = dx⃗i∕d t = F⃗A(i) + F⃗R(i),where the positions x⃗i(t) evolve with time, t, from their
initial positions, x⃗i(0), for i = 1,… , N . Therefore, NS
require discretisation methods like Euler – used by Quiles
et al. (2016) – or Runge-Kutta. On the other hand, OT use the
energy formulation as an objective function to beminimised,
such as the potential energy from Eq. (1). Possible OT are
the Fruchterman and Reingold (1991) heuristic or conjugate
gradients (Tunkelang, 1998; Tunkelang et al., 1999) – used
by Noack (2007a) and Lim et al. (2016).

Because most implementations are not easily adapted to
solve other force models, we lack comparative studies on
algorithmic implementations. In this work, we present the
first set of exhaustive tests on Euler, Fruchterman-Reingold
heuristic, and conjugate gradient approach implementations
for 5 force models, which are summarised in Table 1 and
grouped according to 9 settings, including changes to the
number of iterations used to set the numerical convergence.

2.4. Methods for Clustering Analysis
Communities can be extracted from the steady-state

solutions of the Force-Directed Algorithm (FDA) by ap-
plying Clustering Analysis (CA). CA is a generic term for
the process of organising data into groups based solely on
data-driven information (Everitt et al., 2011). The resultant
groups are defined in terms of internal cohesion (homo-
geneity) and external isolation (separation), meaning that
similar objects are grouped together. However, CA has the
same problem as community detection: having a clear cluster
definition. Moreover, given a data-set, different clustering
techniques – or even the same technique applied with differ-
ent input parameters – usually result in different groupings,
as can be seen from Fig. 5. Consequently, although there
are well-established methods to perform CA (Han et al.,
2011; Aggarwal and Reddy, 2014; Tan et al., 2016; Everitt
et al., 2011), choosing one to detect communities requires
knowledge of CA methodologies.

We note that community detection has been achieved
by using 2 classes of CA (Gouvêa et al., 2020): Distance-
based or Density-based. Distance-based methods are the
simplest and most fundamental; they are generally divided
into Partitioning Methods (PM) and Hierarchical Methods
(HM). PM organise a data-set withN objects (particles) into
K partitions (clusters), requiring background knowledge or
a strategy to specify K a priori. Such methods are typically
inefficient in finding clusters when the data has complex
shapes (Han et al., 2011). HM organise the objects as a
tree with varying granularity levels, which do not require
background knowledge but are usually limited to small or
medium-sized data-sets.

Density-based methods assume that areas of low data
density should be treated as noise (not belonging to any
cluster). These methods, in principle, can be applied to
find clusters of any shape – even when data has irregular
or intertwined layouts – and without assumptions about
cluster number (Tan et al., 2016). However, their use requires
answering key design questions: a) how is the density esti-
mated? b) how is the connectivity defined? The answers can
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Figure 5: Resultant clustering of data points (colours) accord-
ing to distance-based (K-means or Partition Around Medoids)
and density-based (Density-Based Spatial Clustering of Ap-
plications with Noise) algorithms. The initial two-dimensional
layouts are shown in the left column panels. This Figure is
inspired by scikit-learn 1.0.2 developed by Pedregosa et al.
(2011)

directly influence the results. Here, we test both CA classes
using the methods shown in Fig. 5.
2.5. Classical Methods

Classical methods for community detection are found in
many software packages, such as igraph. We use these meth-
ods as a reference to compare with FDA’s accuracy. How-
ever, it is well-documented that there is no gold algorithm
that presents accurate results for all networks (Fortunato,
2010; Fortunato and Hric, 2016; Rossetti and Cazabet, 2018;
Mohamed et al., 2019). In this work, we compared the force-
directed algorithms with the following classical methods.
Edge betweenness was proposed by Girvan and Newman

(2002), being the first modern method for community
detection (Lancichinetti and Fortunato, 2009), with a
computational complexity of order (N3), N being
the number of nodes. It iteratively removes edges
according to their edge betweenness, which quantifies
the number of shortest paths going through each edge.
The edge with the highest betweenness likely rep-
resents a bridge between communities, hence, com-
munities are revealed once all bridges are removed.
Iterations stop when any other edge deletion ceases to

increase modularity – a quality function that estimates
the goodness of the network partition.

Fast Greedy was proposed by Clauset et al. (2004). It is
a greedy approach to optimise modularity globally,
whose fast version is of order (N log2N). The
method starts from the network’s isolated nodes and
iteratively adds its edges, only accepting edge addi-
tions that produce an increase in modularity.

Blondel method (Blondel et al., 2008) (also called the Lou-
vain method or fast modularity optimization) is a
greedy approach to optimise modularity locally. Ini-
tially, it assigns a community to each node of the
network. Nodes then aggregate to the community of
their neighbours, producing an increase in modularity.
All nodes within a community are replaced by a
super-node, reducing the network’s size. Aggregation
continues until the modularity stops increasing (like
Edge Betweenness), resulting in a complexity of order
(Nlog(N)).

Leading Eigen value was proposed by Newman (2006a). It
is a spectral method looking to optimise modularity
through the eigenvalues and eigenvectors of the adja-
cency matrix. It is of order(N2) on sparse networks.

InfoMap was proposed by Rosvall and Bergstrom (2008),
taking community detection as a problem of com-
pressing information on a network’s structure. The
best compression is achieved by optimising a quality
function that measures the code length describing
random walks in the network (contrary to optimising
modularity). The algorithm is of order (M), M
being the number of edges in the network.

Label Propagation was proposed byRaghavan et al. (2007).
Inspired by message passing paradigms, it assumes
that nodes likely share the community of their neigh-
bors. It starts by labeling each node, and then a
random order is created to determine the sequence of
relabelling nodes. According to this sequence, each
node has its label updated by the label of the majority
of its neighbors. The sequential relabelling is repeated
until nodes have the same label as the majority of their
neighbors. The algorithm is of order (M).

WalkTrap is a hierarchical clustering algorithm proposed
by Pons and Latapy (2005). It is based on the fact that
random walks stay longer within a community. It is of
order (N2 logN) in sparse networks.

Spin Glass method was proposed by Reichardt and Born-
holdt (2006). It is based on finding the ground state
of a spin glass model on the network (Dao et al.,
2020), which reveals communities by spin clusters.
A resolution parameter enables the method to find
communities in several scales (Lancichinetti and For-
tunato, 2009). The algorithm is of order (N3).
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3. Results
Community detection from unsupervised FDA (i.e.,

without the presence of decision-makers) requires two phases:
(i) a layout phase, where one chooses a force model and
an algorithmic implementation (numerical simulation or
optimisation technique) to achieve the steady-state – where
attractive and repulsive forces cancel each other – and (ii) a
clustering phase, where the community structure is extracted
from the positions of the nodes in theD-dimensional layout.

Here, we quantify the accuracy of FDAs (from Sect. 2.2)
and classical methods (from Sect. 2.5) on benchmark net-
works using unweighted, weighted, and hierarchical syn-
thetic networks. In order to test different FDA implemen-
tations in the layout phase, we follow the 9 settings from
Table 1 and change the space dimensions from D = 3 to
D = 10. For the clustering phase, we useK-Means, Partition
around Medoids (PAM), and Density-Based Spatial Cluster-
ing of Applications with Noise (DBSCAN) on the resultant
force model layout. Our numerical experiments consist of
quantifying the similarity between the built-in structure of
the benchmarks and the structure recovered after we make
changes to both phases – implementation setting, dimen-
sions, and clustering method – by means of the NMI (Danon
et al., 2005). As a result, we have a total of 54 accuracy tests
per force model and benchmark network, which stem from
having 2 × 9 options with regards to the implementations
(dimension × settings) and 3 possible clustering methods.
3.1. Force Models depend on implementation

In order to illustrate how force models depend on the set-
ting from Table 1 and clustering analysis, we focus here on
the Node Linear-Logarithmic (NLL) model (Noack, 2005)
applied to Girvan and Newman (2002) (GN) and Lanci-
chinetti et al. (2008) (LFR) networks (with small commu-
nities), when using a D = 3 dimensional space.

Figure 6 shows the resultant NMI values of the NLL
model for all settings from Table 1 as the mixing parameter,
�, is increased. NMI results come from applying PAM to the
layouts of GN networks (top panel) and the layouts of LFR
networks (bottom panel). These clustering methods achieve
the best NMI in their respective benchmark. We note that in
GN networks (top panel in Fig. 6), the choice of the setting
only affects the algorithm accuracy when � > 0.4, reaching
the highest NMI (dotted line with squares) when using
setting 7 (conjugate gradient approachTunkelang (1998);
Tunkelang et al. (1999) with 100 iterations). On the other
hand, we note that accuracy is almost insensitive to the
settings in LFR networks (bottom panel in Fig. 6), except for
setting 4 (Fruchterman-Reingold Heuristic Fruchterman and
Reingold (1991) with 100 iterations), which significantly
decreases the resultant NMI.

These results show that different settings can affect ac-
curacy. The NMI results in Fig. 6 also point to a limit on the
gain in accuracy that a given FDA can reach by changing its
settings. Consequently, in what follows, we only show the
highestNMI curve obtained from testing all the settings in
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Figure 6: Normalised Mutual Information (NMI) for 9 set-
tings (i.e., algorithmic implementations) of the Node Linear-
Logarithmic (NLL) (Noack, 2005) force model in D = 3 dimen-
sions applied to 2 benchmark networks as their communities
are mixed by �. Top [Bottom] panel shows NMI values for
Girvan-Newman (Girvan and Newman, 2002) [Lancichinetti-
Fortunato-Radichi (Lancichinetti et al., 2008)] networks with
N = 124 nodes and 4 equal-sized communities [with N = 1000
nodes,  = 2, � = 1, ⟨k⟩ = 20, max(k) = 50, minC = 10
and maxC = 50] when using Partition Around Medoids (PAM)
to the resultant force layouts. Clustering partitions are set
according to the number of communities known from the
benchmark and legends signal the settings from Table 1.

Table 1 for each force model; in the case of a tie, we choose
the setting with the least number of iterations.
3.2. Benchmark Tests and Clustering Analysis:

Force Models and Classical Methods
3.2.1. Unweighted Networks

In unweighted networks, edges represent relationships
between nodes without poundage, i.e., without weight. Most
community detection algorithms were developed for un-
weighted networks, which is by itself a challenging task
(Lancichinetti and Fortunato, 2009). Here, we present results
on unweighted networks.

The best NMI curves for each FDA (lines with symbols)
in comparison to the classical community detection methods
NMI (thin continuous lines) on GN networks (Girvan and
Newman, 2002) are shown in Fig. 7. The best NMI value
for any FDA at a given � is found from the maximum NMI
obtained for the different implementation settings of Table 1.
The best setting is abbreviated next to the force model in
Fig. 7 as a legend on the right of each panel. Top panels
show NMI results usingK-means clustering on the resultant
layout, where on the left, the layout has 3 dimensions, and on
the right, the layout has 10 dimensions. The bottom panels
show similar NMI results but using PAM clustering on the
resultant layout. Both clustering methods belong to the class
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Figure 7: Best NMI curves from 5 force models (lines with symbols as in Table 1) and 8 classical community detection methods
(thin continuous lines) on Girvan-Newman networks (Girvan and Newman, 2002) as communities are mixed. Force models include
the Black-Hole (Lim et al., 2016) (BH), Edge Linear-Logarithmic (Noack, 2007a) (ELL), Node Linear-Logarithmic (Noack, 2005)
(NLL), Fruchterman-Reingold (Fruchterman and Reingold, 1991) (FR), and QMR (Quiles et al., 2016). The best curve for each
force model is found from the NMI results obtained after testing all settings in Table 1, using K-means (top panels) or PAM
(bottom panels) as a clustering method with 4 partitions (K = 4), and using a 3 (left panels) or a 10 (right panels) dimensional
space. Each point is an average over 10 network realisations.

of partitioning methods that require setting the expected
number of communities, which we set to 4.

NMI values for the classical detection methods are the
same for all panels in Fig. 7, where the Spin Glass (Reichardt
and Bornholdt, 2006; Dao et al., 2020) is consistently the
most accurate. We also note from Fig. 7, that even the oldest
FDA – FR (Fruchterman and Reingold, 1991) – achieves
equivalent NMI values to the best classical detection meth-
ods whenD = 10 (right panels) andK-means (top panels) is
used. Overall, we find an increase in accuracy for all FDAs
whenD = 10, and we useK-means to find the communities
from the layout. However, the QMR model (Quiles et al.,
2016) in the 5-th setting of Table 1 outperforms all FDAs
and classical detection methods (top right panel in Fig. 7).

We lack prior knowledge about the ideal number of
partitions in most real-world applications. It means that real-
world networks require estimations. Here, we test a naive
strategy for estimating the communities using the Hartigan
index (Hartigan, 1975) on the D = 10-dimensional layouts.
Results from this strategy are shown in Fig. 8, where we see
a slight loss in the FDA’s accuracy. Despite this loss, our
naive approach achieves higher NMI values for FDAs than
most classical methods; except for the Spin Glass method
(Reichardt and Bornholdt, 2006), which requires previous
knowledge of the expected number of communities when
setting its parameters.

Figures 9 and 10 show the best NMI-curves achieved for
LFR networks with small (minC = 10 and maxC = 50
nodes) and big (minC = 20 and maxC = 100 nodes)
communities, respectively (details in Sect. 2.1.1). Similarly
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Figure 8: NMI of classical community detection methods (thin
continuous lines) and best NMI values obtained for 5 force
models (lines with symbols as in Table 1) from the top right
panel in Fig. 7. Here, K is estimated from applying K-means
on each force-model resultant layout of the GN network, using
the Hartigan index (Hartigan, 1975) to estimate K.

to the results from Fig. 7 on GN networks, increasing D
improves the accuracy of all force models – right panels in
Figs. 9 and 10. But the choice of clustering barely impacts
on the resultant accuracy (comparing top panels with bottom
panels in Figs. 9 and 10), with a slight advantage of PAM
overK-means (contrary to the GN results from Fig. 7). Here,
the ELL model (Noack, 2007a) in its best setting (Set. 8,
conjugate gradient) outperforms all other methods, closely
followed by the QMR model (Quiles et al., 2016), and then
the BH (Lim et al., 2016) and Spin Glass models (Reichardt
and Bornholdt, 2006; Dao et al., 2020).

Next, we estimate the expected number of communities
to use in PAM clustering for the LFR networks. We follow
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Figure 9: NMI curves from 5 force models and 8 classical community detection methods (thin continuous lines) on Lancichinetti-
Fortunato-Radichi networks (Lancichinetti et al., 2008) with small communities (minC = 10 and maxC = 50 nodes, with N = 1000
nodes) as communities are mixed. Panels’ layout and parameters are as in Fig. 7.
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Figure 10: NMI curves from the community detection methods from Fig. 9 on LFR networks with big communities (minC = 20
and maxC = 100 nodes).

the same naive approach as with GN networks (Fig. 8);
namely, we use the Hartigan index (Hartigan, 1975). Fig-
ure 11 shows the resultant NMI-curves for LFR networks
with small (top panel) and big (bottom panel) communities,
which correspond to the estimation ofK for the bottom right
panels in Figs. 9 and 10, respectively. This experiment notes
that all force models lose accuracy – particularly around
� ≃ 0.5 – but the ELL is only lightly affected, remaining
the best FDA even when � > 0.6.

In order to finish the unweighted network analysis, we
test whether we can improve FDA’s accuracy in community

detection by using DBSCAN (Ester et al., 1996), a density-
based clustering that has been previously recommended for
the BH force model (Lim et al., 2016). We set the minimum
number of points per cluster to min{P ts} = 2 × D (D
being the spatial dimension of the layout) and the threshold
� (defining the minimum distance at which two points can be
classified as neighbours) by the K-distance graph heuristic
proposed by Ester et al. (1996). From our tests, we can see
that the accuracy from the force models decreases when
using DBSCAN instead of K-means or PAM – even if we
change min{P ts} and � to improve results.
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Figure 11: NMI results from estimating the number of K
partitions to use in PAM clustering of the LFR networks
(Lancichinetti et al., 2008) and force models from the bottom
right panels in Figs. 9 and 10. Estimation is carried as in Fig. 8.

DBSCAN PAM & Hartigan
ELL Set. 8 0.98 1.0
BH Set. 7 0.83 0.99

Table 2
NMI values for the ELL (Noack, 2007a) and BH (Lim et al.,
2016) force models applied to an LFR network (Lancichinetti
et al., 2008) with small and unmixed communities (� = 0.0)
in a D = 3-dimensional layout.

For example, Table 2 shows the NMI values we obtain
for the ELL (Noack, 2007a) and BH (Lim et al., 2016)
force models in an LFR network realisation with small
(minC = 10 and maxC = 50 nodes) and unmixed (� = 0)
communities. Because the communities are unmixed, any
force model should be perfectly accurate, i.e., NMI = 1,
or close to perfection. According to our results from Figs. 9
(bottom right panel) and 11 (top panel), ELL is the best
algorithm for LFR networks with small communities when
using PAM. However, from Table 2 we see that the resultant
NMI values for both forcemodels with DBSCAN are lower
than those obtained from PAM. This happens even when
having to estimate the number of partitions by the Hartigan
index or increasing the layout dimensions toD = 10 (where
NMI = 0.99 for DBSCAN in both models, but cannot
surpass PAM with Hartigan index).
3.2.2. Weighted Networks

Here we present the accuracy tests for LFR weighted
(LFRw) networks (Lancichinetti and Fortunato, 2009) using
the 8 classical community detection methods and 4 of the
force models – FR (Fruchterman and Reingold, 1991), NLL
(Noack, 2005), ELL (Noack, 2007a), and BH (Lim et al.,

2016). We exclude the QMR(Quiles et al., 2016) because it
lacks an extension to deal with weighted networks.

Our results on unweighted LFR networks show that PAM
clustering achieves the highest community-detection accu-
racy for all force models. We corroborate that this is also the
case for LFRw networks, obtaining better results with PAM
than with K-means. Moreover, we find that force models
with Euler or Fruchterman-Reingold Heuristic settings (de-
tailed in Table 1) perform poorly in LFRw networks, where
our results show that the Conjugate Gradient Approach is
the only setting that provides accurate community detection
results.

Figure 12 shows the best NMI achieved in our exper-
iments of LFRw networks with small (minC = 10 and
maxC = 50 nodes; top panels) and big (minC = 20 and
maxC = 100 nodes; bottom panels) communities, using a
D = 3 (left panels) or 10 (right panels) dimensional layout.
We note that the ELL and BH models have similar NMI
values for all D and LFRw networks, but are higher than
the NLL force model – particularly for � > 0.5. We also
note that the effect of increasing D is significant for the
NLL and FR methods, although, as expected, the FR is the
least accurate force model. Similarly to our findings on LFR
unweighted networks (Figs. 9 and 10), here, we show that
WalkTrap (Pons and Latapy, 2005), InfoMap (Rosvall and
Bergstrom, 2008), and Spin Glass (Reichardt and Bornholdt,
2006) are the most accurate classical methods for small (top
panels) and big (bottom panels) communities, and that the
Leading Eigenvalue (Newman, 2006a) is themost inaccurate
method. Importantly, we find that when D = 10, the ELL
and BH force models are the most accurate methods.

Now, we estimate the number of partitions to use for the
PAM clustering analysis, following the same approach as in
Figs. 8 and 11 for the GN and LFR unweighted networks,
respectively. Figure 13 shows the resultant NMI values of
doing this estimation. We note that the accuracy of the
force models rivals that of the best classical methods. Con-
sequently, we can expect accurate results under real-world
networks where the number of communities is unknown.
3.2.3. Hierarchical Organization

Real-world networks are far from being random graphs.
In particular, they show a high degree of clustering and
scale-free behaviour in node degrees and community sizes.
The coexistence of these characteristics is left aside in most
network models, typically being explained only when nodes
can be organised hierarchically (Ravasz and Barabási, 2003).
In general, detecting communities in hierarchical networks
plays a central role in understanding complex systems (Yang
et al., 2017). However, community detection in hierarchical
networks is virtually unexplored. Here, we use FDA to show
that they can also be used to detect communities in hier-
archical networks. In particular, we use a network example
described by Noack (2003), aiming to demonstrate the appli-
cability of the FDA in revealing the network communities
and hierarchies. Our results also highlight the weaknesses
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Figure 12: NMI results from 4 force models (lines with symbols as in Table 1) with PAM clustering in D = 3-dimensional
layouts [top] and D = 10-dimensional layouts [bottom] and 8 classical community detection methods (thin continuous lines)
on LFR weighted-networks (Lancichinetti and Fortunato, 2009). Top [Bottom] panels show results for networks with small [big]
communities as they are increasingly mixed.
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Figure 13: NMI values obtained after estimating the number
of partitions for PAM clustering by the Hartigan index applied
to the force models in the right panels of Fig. 12.

appearing in some classical methods when dealing with
hierarchies.

We note from Fig. 14 that the hierarchical structure of
the communities is lost when using the FR (Fruchterman and
Reingold, 1991) model (left panel), but is directly appreci-
ated from the ELL (Noack, 2007a) model (right panel). Both
force models place nodes at different locations, avoiding
having nodes at the same locations, contrary to the BH (Lim
et al., 2016) and QMR(Quiles et al., 2016) models. We
highlight that overlapping nodes from the same community

may improve community detection since it aids the detection
of groups in the clustering phase.

Here, we implement a hierarchical clustering method to
organise the layout data into a tree with varying levels of
granularity. We perform this clustering by agglomeration
(implementing the hclust function from R), merging groups
according to their centroid. The tree is then pruned to reveal
the communities hierarchically, which for Noack’s network
(Noack, 2003), it implies detecting 16 communities at the
microscopic level (micro) and 4 communities at the macro-
scopic level (macro).
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Figure 14: Graph layout for a hierarchical network (Noack,
2003) when using Frucherman-Reingold (left layout) or the
Edge Linear-Logarithmic (right layout) force model. The net-
work contains 16 cliques of 50 nodes each, distributed equally
among 4 communities.

Our findings for the 5 force models in this hierarchical
network are shown in Table 3, which also includes NMI
values for 2 classical methods: Blondel (Blondel et al., 2008)
and Spin Glass (Reichardt and Bornholdt, 2006), which
have been previously used to reveal hierarchical community
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Macro Micro
BH Set. 7 1 1
ELL Set. 7 1 1
NLL Set. 7 1 1

QMR Set. 5 1 1
FR Set. 7 1 0.54

Blondel 1 0.61
Spinglass 0.07 0.16

Table 3
NMI values for the Hierarchical graph in Fig. 14.

structures (Yang et al., 2017). Except for the FR model, we
note that all force models perfectly detect the community
structure at both levels. On the other hand, these results
show that classical community detection methods struggle
to detect hierarchies accurately.

For example, Fig. 15 illustrates the NMI results in Ta-
ble 3 for Blondel’s method, where the ELL model is used to
draw the graph layout as in Fig. 14. The different colours sig-
nal the communities that Blondel’s method detects globally
(macro), but cannot reveal the substructures (micro).
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Figure 15: Communities found by Blondel’s method Blondel
et al. (2008), in a graphical layout obtained by the Edge Linear-
Logarithmic model Noack (2007a), as in Fig. 14.

3.2.4. Zachary’s Karate Club
Zachary’s Karate Club has become a popular network for

validating community detection algorithms; firstly used with
this purpose by Girvan and Newman (2002). Such a network
is known for catching the disagreement between the admin-
istrator and instructor of the club from the rupture of its
members when the instructor left and started its own karate
club. Here, we use the member declarations – described by
Zachary (1977) – about which club they attended after the
instructor created a new club as ground truth to evaluate the
communities detected by the FDAs.

The ELL (in Set. 7), NLL (in Set. 7), and QMR (in Set. 2)
forcemodels hold an NMI≅ 0.8 for the Karate club network,
where only node 3 is classified incorrectly – this result has
also been observed by Girvan and Newman (2002). We note
that the NMI is unchanged when using K-Means or PAM
with the number of communities set to K = 2, or when
changing the dimensional space fromD = 3 toD = 10. The
FR (in Set. 7) force model also presents an NMI≅ 0.8 due to
an incorrect classification of one node. However, in contrast

to the former models, FR classifies wrongly node 20 when
using K-Means but classifies wrongly node 3 with PAM. On
the other hand, the BH force model (in Set. 7) has an NMI
≅ 0.7, classifying incorrectly nodes 3 and 10 by all analysed
clustering techniques (i.e., K-means, PAM, and DBSCAN).
As noted in the previous network analyses, DBSCAN does
not present advantages over K-Means or PAM.
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Figure 16: Layout of Zachary’s Karate Club network according
to the ELL (top panel) and FR (bottom panel) models.
Colors illustrate the communities detected from each model,
where node 1 and 34 (highlighted) are club’s instructor and
administrator, respectively. The third community is formed by
nodes 5, 7, 6, 11, and 17, and it was already observed by
other community detection techniques. We are unaware of the
detection of 5 communities, likely an untrustworthy structure.

Gouvêa, Rubido, Macau, & Quiles: Preprint submitted to Elsevier Page 12 of 17



Community Detection by FDA and CA

When estimating the number of communities by the
Hartigan index, we noted that the layout of force models
indicates: k = 3 for models ELL, NLL, and QMR, k = 5
for the FR model, and k = 15 for the BH model. Figure 16
shows the Zachary’s Karate Club layout of ELL [FR] in
the top [bottom]. The layout of the force model BH was
omitted due to the fact that it is unlikely the existence of 15
communities in such a network.

4. Discussion and Future Works
Gouvêa et al. (2020) shows that up-to-date, there are at

least 27 published works that tackle community detection
problems employing a Force-Directed Algorithm (FDA).
10 (37%) of these works lack Clustering Analysis (CA),
using instead visual inspection to decide which structures
are communities. The remainder 17 works replace human
beings with CA methods, achieving automation. Moreover,
most are unconnected. There are 11 articles that cite one of
Noack’s works (Noack, 2003, 2007a, 2009), but barely cite
each other; plus, another 10 which have no citation to any of
the 27 works. Overall, this shows significant fragmentation
in FDA literature, leading to a lack in comparative analyses,
which we summarise in Table 4. Our present work is the first
to quantitatively compare 5 different FDAs under different
network benchmarks, clustering analyses, and algorithmic
implementations, as well as compare these results with clas-
sical community detection methods.

Besides the 5 force models taken into account here,
at least 6 other force models are proposed for community
detection. Among them, the (1,−1)-energy (Udrescu and
Udrescu, 2019), (1,−2)-energy (Crippa et al., 2011), and
(2,−2)-energy (Cai et al., 2018) models do not provide the
topological characteristics recommended by Noack (2009),
but they showed good results in their authors applications.
Hence, their use should be restricted to cases where specific
visual aesthetics are sought (Gouvêa et al., 2020). The re-
maining 3 models cannot be described by an (a, r)-energy
model, so they also lack a topological interpretation of the
resultant distances between nodes (Gouvêa et al., 2020).
4.1. Force-Directed Algorithm implementation

The main drawback in using FDAs to detect commu-
nities in networks is the significant number of options that
compose the decision process to obtain the layout: selecting
a force model and then finding the force model’s stable
steady-state. It may lead to different algorithmic implemen-
tations (and their settings), changing the resultant layouts
(due to local minima). These limitations and implementation
effects have been virtually unexplored up to now.

We start bridging this gap by testing different settings
(Table 1) on 5 force models (Sect. 2.2): Fruchterman-
Reingold (FR) (Fruchterman and Reingold, 1991), Node
(Noack, 2005) and Edge (Noack, 2007a) Linear-Logarithmic
(NLL and ELL), Black-Hole (BH) (Lim et al., 2016), and
QMR (Quiles et al., 2016). In particular, we analyse the
Euler method (numerical solution to the force model’s evo-
lution towards its steady-state), the Fruchterman-Reingold

Heuristic (FRH), and aConjugateGradient Approach (GDA)
(optimisation techniques to minimise the energy landscape
of the force model).

Our findings show that different implementations affect
the resultant accuracy of FDA community detection in net-
work benchmarks (see Sect. 3). However, throughout our
experiments, it was evident that by tuning the settings, we
can improve the FDA’s accuracy independently of each im-
plementation technique (i.e., Euler method, FRH, or GDA)
and, in some cases, surpass the best classical community
detection methods, such as the WalkTrap (Pons and Latapy,
2005), Blondel (Blondel et al., 2008), InfoMap (Rosvall and
Bergstrom, 2008), or Spin Glass (Reichardt and Bornholdt,
2006)methods. At first, our experiments suggest that the best
implementation (i.e., the choice of a numerical solution or
the selection of an optimization technique) should be defined
by the user knowledge domain.
4.2. Force-Directed Algorithm layout

Force models are responsible for highlighting topologi-
cal characteristics of interest through the graph layout aes-
thetics (Tunkelang, 1998). A layout is the spatial distribution
of nodes (particles) into the D-dimensional space set by
the model; that is, the stable steady-state. In the context of
community detection, force models should result in layouts
where all nodes from a given community are close to each
other and far from other nodes and communities. We note
that seeking such a layout is different from maximising
the distance between non-adjacent nodes since non-adjacent
nodes can belong to the same community – even adjacent
nodes can belong to different communities.

To the best of our knowledge, Noack’s works on com-
munity detection (Noack, 2003, 2007b) were the first to
set formal requirements on the layout’s spatial distribution
of nodes. These works qualify good layouts as those that
place densely intra-connected subsets of nodes at a distance
proportional to the number of edges inter-connecting the
subsets. This is achieved by Noack’s NLL and ELL models
(Noack, 2004, 2005, 2007a), which are related to modularity
optimisation methods (Noack, 2009). However, these mod-
els – as the FR (Tunkelang et al., 1999) model – also place
nodes in different spatial locations even within a community,
as depicted in the 3 top panels in Fig. 17.

Having a layout where nodes must be placed at differ-
ent locations is an unnecessary restriction for community
detection since communities can be detected by Clustering
Analysis even when nodes are placed in the same position –
as long as different subsets of nodes are clearly separated –
as it can be seen from the bottom panels in Fig. 17 for the
BH (Lim et al., 2016) and QMR(Quiles et al., 2016) models.

Nevertheless, we find that Noack’s ELL (Noack, 2007a)
model achieves the best accuracy from all force models and
classical methods when applied to Lancichinetti-Fortunato-
Radichi (LFR) (Lancichinetti and Fortunato, 2009) un-
weighted networks with small and big communities (Figs. 9
and 10), closely followed by the QMR(Quiles et al., 2016)
and BH (Lim et al., 2016) models. Moreover, the ELL
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Figure 17: Force models applied to a network with N = 17
nodes and 2 communities (with 5 and 12 nodes inter-connected
by a single edge). Panels show two-dimensional layouts resul-
tant from applying Frucherman-Reingold (Fruchterman and
Reingold, 1991) (top), Edge LinLog (middle left) (Noack,
2007a), Node LinLog (middle right) (Noack, 2005), Black-Hole
(bottom left) (Lim et al., 2016), or QMR (Quiles et al., 2016)
(bottom right) models.

model remains the most accurate in weighted LFR networks
(Fig. 12). Furthermore, we have also tested (not shown)
whether we can improve the ELL accuracy even further
by making the repulsive forces act only over non-adjacent
nodes, but our results remain unchanged.
4.3. Computational Complexity

Regardless of the chosen technique (i.e., whether a nu-
merical integration or an optimization scheme) to implement
the force models, the process to reach a stable steady-state is
of order(c×N2), c being the number of iterations (cycles)
needed to move the particles until a stable steady-state is
reached. The order (c ×N2) stems from the computation
of the repulsion term. Force models like FR, ELL, NLL, and
BH require computing the repulsion between all node pairs
(N2). The QMR model performs this calculation only in
non-adjacent nodes, but as the networks are usually sparse,
the computation of the repulsion term tends to be computed
for almost all nodes.

Fortunately, the computation of the repulsion term can
be approximated because of the presence of round-off errors,
truncation, and discretization effects. Hence, the process
to reach a stable steady-state is reduced to (c × (M +
N log(N)) Tunkelang et al. (1999); Quigley (2001); Noack
(2007b). The idea of approximating the repulsion terms was
proposed by Barnes and Hut (1986) to solve N-body prob-
lems, and it is widely used in Graph Visualization Literature
(Lim et al., 2016).

Although our work tested force models on networks of
size (N) ∼ 103, Lim et al. (2016) describe experiments
with the BH force model on real-world networks with mil-
lions of nodes and edges. Furthermore, other works, such
as those by Yang and Liu (2006) or Coleman and Parker
(1996), claim that a layout can be achieved from quick
algorithms whose computational complexity is(N). Here,
we highlight that morework is needed in order to verify if ap-
proximations that provide layouts with complexity(c×N)
are adequate to detect communities. Furthermore, to date, no
studies estimate the value of c in the context of community
detection. In Graph Visualization, it is expected that c grows
linearly with N (Tunkelang et al., 1999; Noack, 2007a).
Future work could be focused on analysing the growth rate of
c as a function ofN in the community detection framework.

It is worth noting that FDAs can also be used as an
embedding Lim et al. (2016). Graph embedding algorithms
usually require multiple free parameter settings, which are
known for their high computational cost Tandon et al.
(2021). Here, we show that ELL, NLL, and BH require
the parameters involved with implementing the force model,
which are summarized by the number of cycles (i.e., c) when
the gradient conjugate approach is used. So, by verifying
if a layout may be achieved in (c × N) and concluding
that c may be seen as a constant of the growth rate N ,
it means introducing an efficient graph embedding tech-
nique. However, it should be highlighted that in detecting
communities without visual human inspection, the final
computational cost will always depend on the clustering
technique chosen by the user. This potential drawback has
been recently discussed by Tandon et al. (2021).
4.4. Clustering Analysis

We evaluate the accuracy in detecting communities by
force models using 2 distance-based methods – K-means
and Partition Around Medoids (PAM) – and 1 density-based
method – Density-Based Spatial Clustering of Applications
with Noise (DBSCAN). Our work is the first comparative
study on clustering analysis effects on community detection
to the best of our knowledge. Our results show that differ-
ent clustering methods can improve the detection accuracy
depending on the benchmark.

K-means and PAM are partitioning methods for clus-
tering analysis, which are known to work well when points
are located in spherically-shaped clusters. However, these
methods are inefficient when clusters have complex shapes,
such as “S” shapes or oval clusters (Han et al., 2011) (Fig. 5).
We find that K-means is the best clustering method to
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partition the resultant layouts from applying force models to
unweighted Girvan-Newman (Girvan and Newman, 2002)
(GN) networks (Fig. 7), and PAM is the best when it comes
to partitioning layouts obtained from unweighted LFR (Lan-
cichinetti and Fortunato, 2009) networks (Figs. 9, 10, and
12).

In contrast to partitioning methods, density-based meth-
ods can find clusters of arbitrary shapes, such as DBSCAN;
but they are sensitive to input parameters. Our findings show
that DBSCAN gets less accurate results than PAM (even
when estimating the number of partitions by means of the
Hartigan index) in LFR unweighted networks (Table 2)1.
This result is somehow unexpected for the BH model (Lim
et al., 2016) since the model was proposed using DBSCAN.

Overall, our results indicate that GN (Girvan and New-
man, 2002) and LFR (Lancichinetti and Fortunato, 2009)
networks have community structures that appear to organise
themselves into layouts with spherically-shaped clusters.
Possibly, these spherical clusters have different densities and
sizes, which would explain why DBSCAN produces less
accurate results than the partitioning methods. However,
research on the possible shapes that network communities
can take in a force-model layout is missing – such research
could clarify our results and help to improve the choice of
clustering analysis.

5. Conclusion
Community detection has been intensively pursued in

the 21st century (Fortunato, 2010), where a community is
broadly defined as a set of nodes that share a higher link
density (inter-connections) than the network’s link density
and that have a lower link density (intra-connections) with
nodes outside their set. Thus, finding a community is a
complex (NP) combinatorial problem with many possible
solutions. The task becomes even more challenging if the
search must take into account that real-world communities
can have weights, exhibit a hierarchical structure, overlap
(with nodes participating in different communities), and
change in time.

Force models – under certain parameters and conditions
– produce graphical layouts that are consistent with modu-
larity (Noack, 2009). Hence, force models are expected to
be as efficient in detecting network communities as meth-
ods based on modularity. Also, force-based models may be
seen as complementary to the classical community-detection
approach since force models aid in network visualisation,
which can be used to visually evaluate the quality of the
detected communities by any method.

In the context of methods based on modularity optimisa-
tion, the force-directed approach has the advantage of being
insensitive to the resolution limit. The resolution limit is an
inherent characteristic of all methods based on modularity
optimisation, stemming from its mathematical formulation.
Namely, methods based on modularity optimisation cannot

1We omitted it to avoid redundancy, but the same results were observed
in LFR weighted networks.

detect communities smaller than a given scale – estimated
from the total size of the network and the degree of inter-
connectedness of the modules – even when the community
structure is unambiguous (Fortunato and Barthelemy, 2007).

In summary, we show that Force-Directed Algorithms
(FDA) can accurately detect communities and compete with
the best classical community detection methods. Our find-
ings are supported by testing 5 force models, changing their
algorithmic implementations – we follow the 9 settings from
Table 1 and use D = 3 to D = 10 for the layout dimensions
– and clustering analysis of the resultant layout – where
we use K-Means, Partition around Medoids, and Density-
Based Spatial Clustering of Applications with Noise. Our
numerical experiments consist of quantifying the similarity
between the built-in structure of a benchmark network and
the structure recovered by the FDA and comparing it with
that of 8 classical community detection methods. We report
a total of 54 tests per FDA and benchmark network, helping
us to conclude that: 1) FDAs can be more accurate than clas-
sical community detection methods, 2) FDAs depend on the
algorithmic implementation, where typically optimisation
techniques achieve better results than numerical integration,
3) higher-dimensional layouts improve accuracy, and 4)
distance-based clustering improves results.
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