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ABSTRACT

Topological systems are not a recent development in physics, but the study of them has

rapidly expanded in recent years due to advances in technology allowing for more accurate

experimentation. This in return, has also led to more work for theoretical physicists to

explore new possible applications of topological properties. Gaped graphene and transition

metal dichalcogenides(TMDCs) are two examples of materials with topological properties

due to symmetry points called valleys, where the dipole-transitions are most probable. This

document contains two novel examples of those topological properties and their effects of

surface plasmons. Firstly, we examine Chiral Berry Plasmons (CBP). CBP Modes have been

shown to exist in 2D Dirac materials. These modes exist because of the role Berry Flux

(net Berry curvature) plays in the materials themselves and are confined to the boundary

in the absence of topological edge states. We show that in an optically pumped gaped

graphene model, these CBP modes have an inherent tunability given by the temperature of

the electrons in the system, the band gap of the material, and the relative populations created

by the optical pumping of the system. Our calculations consider a quasi-equilibrium regime

after thermalization but before relaxation, which occurs picoseconds later. In the other, we

theoretically examine a TMDC Based Spaser Type II that has been optically pumped using

an ultra-fast circularly-polarized pulse. The spasing system consists of a silver nanospheroid

and a circular TMDC monolayer flake. The silver nanospheroid screens the incoming pulse

and creates a nonuniform distribution of excitations in the TMDC valleys. As expected,

these excitations still decay into localized surface plasmons (LSP) along the nanospheroid.

However, valley polarization is only preserved in our system for small K-valley populations,

as the required excited populations to contribute to the spasing ”avalanche” are sometimes

more significant than those that maintain valley polarization. The spaser also emits far-field

radiation, shifting the polarization and magnifying the incoming pulse, showing promise in



that area of research.

INDEX WORDS: Near-field optics, Spaser, Optical pumping, Plasmonics, Sym-
metry protected topological states, Topological materials, Val-
leytronics, Chiral Berry Plasmons



Copyright by
Dalton Hunley

2023



Plasmons in Topological Systems

by

Dalton Hunley

Committee Chair:

Committee:

Vadym Apalkov

Brian Thoms

Mukesh Dhamala

Sidong Lei

Electronic Version Approved:

Office of Graduate Studies

College of Arts and Sciences

Georgia State University

May 2023



iv

CHAPTER 0

DEDICATION

To the one or two graduate students who will read this: I hope it helps.



v

CHAPTER 0

TABLE OF CONTENTS

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Why Are We Doing This? . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 THEORETICAL BACKGROUND . . . . . . . . . . . . . . . . . . . . . . . 5

2.1 Plasmons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Maxwell’s Equations . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1.2 Bulk Plasmons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.3 Surface Plasmons . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Berry Phase and Anomalous Phenomena Introduction . . . . . . . . 11

2.2.1 Berry Effects from Adiabatic Evolution . . . . . . . . . . . . . 12

2.3 Transition metal dichalcogenide monolayers . . . . . . . . . . . . . . . 19

3 CHIRAL BERRY PLASMONS . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.2 Mathematical Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.2.1 Kubo Formula and Conductivity . . . . . . . . . . . . . . . . . . 24

3.2.2 Two-Band Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4 SPASERS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.2 Qualitative Explanation of a SPASER . . . . . . . . . . . . . . . . . . 37

4.3 Theoretical Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38



4.4 Three Level SPASER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.4.1 SPASER Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.4.2 Continuous Wave Regime . . . . . . . . . . . . . . . . . . . . . . 44

5 ULTRA-FAST PULSE PUMPING OF A TOPOLOGICAL SPASER . . 47

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.2 Theoretical Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.2.1 Equations of the Incident Pulse . . . . . . . . . . . . . . . . . . 50

5.2.2 Equations of the Spasing System . . . . . . . . . . . . . . . . . 54

5.2.3 Parameters and Initial Conditions . . . . . . . . . . . . . . . . 56

5.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.3.1 Far-Field Radiation . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.3.2 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

6 CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70



vii

CHAPTER 0

LIST OF FIGURES

Figure 2.1 This figure is taken from Ref(1) and shows an artistic representation
of Bulk plasmons (a), surface plasmons (b), and localized surface plasmons (c). 5

Figure 2.2 This figure is taken from Ref(2) and shows an interface between a
metal and dielectric. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

Figure 2.3 This image is taken from Ref(3) and shows the energy bands (2.2.a)
and Berry curvature (2.2.b) of a 2D crystalline structure. The dashed lines are
the K and K ′ valley’s respectively and the solid red line shows the magnitude
of Berry curvature inside each valley. . . . . . . . . . . . . . . . . . . . . . . 17

Figure 2.4 This image is taken from Ref(4) and is the crystalline structure of
MoS2. A TMDC with a hexagonal structure made up of Mo atoms (blue)
and S atoms (yellow). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

Figure 2.5 This image is also from Ref(4). It shows the 3-dimensional energy
band structure of MoS2. The purple layer is the conduction band and the
blue layer represents the valence band.The central layer is color coordinated
to show the difference in polarization from the K and K ′ valleys. . . . . . . 21

Figure 3.1 Here, ωedge
+ = ω1 and ωedge

− = ω2. We can observe ωbulk and ωedge
+

becoming indistinguishable as q increases. The next figures are results from
our analysis of different values of Temperature(T ), Fermi Level(µ), and Band
Gap(∆g) of the material to find the largest values of ωbulk − ωedge

+ . over the
largest range of q values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

Figure 3.2 shows ωbulk − ωedge
+ for five different temperatures where the system is

held in quasi-equilibrium. Showing for low values of q higher temperatures
lead to higher separations of the bulk mode from the first edge mode. With
µ = .1eV and ∆g = 1eV .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

Figure 3.3 is a similar plot but with different quasi-Fermi levels. This shows that
for large Fermi levels, large separations do exist at small q, however they
quickly join the bulk frequency unlike smaller Fermi levels which maintain a
larger separation for a larger range of q values.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32



Figure 3.4 shows four different values of Band Gap in the material. Opposite of
larger Fermi values, larger values of Band Gap lead to larger separations for
a larger range of q values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

Figure 4.1 is from Ref(5) and shows a simple diagram of the working mechanism
of the SPASER. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

Figure 5.1 Figure 4.1.A shows a circularly polarized pulse incident onto a metal
nanospheroid and TMDC monolayer. Below is a diagram of the K-Valleys
in the TMDC, with the outermost valleys being populated more than the
innermost valleys. Figure 4.1.B shows the system a few picoseconds later as
surface plasmons are generated along the metal nanospheroid, and the system
emits linearly-polarized radiation. . . . . . . . . . . . . . . . . . . . . . . . . 47

Figure 5.2 The Rabi Frequency of both plasmons modes . . . . . . . . . . . . . 48

Figure 5.3 We simulated the spasing system with varying initial conditions to
maximize plasmon generation. Here, the Nm(max) is the total number of
plasmons at the peak of the spaser pulse, and Nm(int) is the initial number of
plasmons injected into the system. The incoming pulse in this situation was
coupled to the m = 1 mode, so the injected plasmons and maximum plasmons
are all from the same mode. The nonlinear dependence for lower numbers
of plasmons arises from the two parts of Eqn (17). For a higher number
of injected plasmons, the first part of the equation is linear and dominant;
however, for lower numbers of plasmons, the second nonlinear part of the
equation becomes dominant. . . . . . . . . . . . . . . . . . . . . . . . . . . 57

Figure 5.4 Density plot comparing the concentration of populated regions inside
for the K (left) and K ′ (right) valleys inside the TMDC monolayer flake for
an incident pulse of strength F = 0.25V Å−1. In this plot you can see how
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CHAPTER 1

INTRODUCTION

1.1 Why Are We Doing This?

”Why is this important?” is a simple yet critical question we must answer as scientists. This

is not necessarily a question posed to us by fellow researchers or the graduate students that

continue our work when we are gone but by the general population of humanity to whom

our research serves to benefit. The following dissertation consists of two critical projects

composed over the past few years that may seem unrelated. However, both projects explore

the theoretical possibilities of plasmons in topological systems. Why this is important is

directly related to the nanoscale properties of plasmons, how topological properties give

rise to non-reciprocity, and technology’s constant journey towards the miniaturization of

electronics.

A simple definition of plasmons is that they are the collective oscillations of electrons in

metals.(6)(2) More importantly, a plasmon is a quasi-particle representative of the quanti-

zation of these oscillations. Plasmons are stimulated by external electromagnetic fields and

interact strongly with them. Plasmons also act as bosons and obey Bose-Einstein statics,

even though they consist of the oscillations of fermions. Since a minimum size does not re-

strict plasmons, they can exist at much smaller scales than photons. Why is this important?

The size restriction of photons limits the possible applications of probing and sensing to ob-

jects above half a wavelength. However, a significant portion of the universe lies below this

limit, such as subcellar structures and biological macromolecules below 10nm in size.(7)(8)



Recently, a new type of plasmon has been discovered that exhibits chiral properties,

known as Chiral Berry Plasmons (CBPs). CBPs are collective oscillations of electrons in a

metal characterized by a helical motion of the electron density. This helical motion results

in the chiral nature of the CBPs, meaning that they exhibit different properties for left and

right circularly polarized light. CBPs have unique properties, including a long propagation

length, high confinement, and high sensitivity to changes in the surrounding environment.(9)

CBPs have potential applications in various fields, including sensing, optical communi-

cation, and quantum information processing. In sensing applications, CBPs can be used to

detect changes in the refractive index of a material, making them useful for chemical and bio-

logical sensing. CBPs have also been shown to enhance the sensitivity of chiral spectroscopy

techniques, which have potential applications in detecting chiral molecules and materials.

In optical communication, CBPs can generate and manipulate light on the nanoscale, which

has potential applications in developing nanoscale optical components such as couplers, fil-

ters, and switches. CBPs can also enhance the sensitivity of optical communication systems,

making them useful for long-distance communication. CBPs have potential applications in

quantum information processing in developing quantum communication systems. CBPs have

been shown to exhibit strong coupling with quantum emitters such as quantum dots and

single molecules, making them useful for the generation of entangled photons and quantum

communication.(10)

Surface Plasmons can also be utilized to produce coherent radiation. When excited, sur-

face plasmons can decay through various channels, including radiative decay, non-radiative



decay, and stimulated emission.(11) In a SPASER, a gain medium is placed near a metallic

nanocavity, which supports surface plasmons. The gain medium is excited by an external

light source, which causes the emission of surface plasmons. When the surface plasmons

reach the metallic nanocavity, they undergo stimulated emission, resulting in the production

of coherent radiation.(11)

SPASERs can revolutionize various fields, such as sensing, data storage and communica-

tion, and imaging. One of the most promising applications of SPASERs is sensing. SPASERs

can detect small changes in a material’s refractive index, making them attractive for appli-

cations in chemical and biological sensing. For example, SPASER-based biosensors have

been demonstrated to detect single molecules, making them useful for the early detection of

diseases and monitoring of biomolecules.(12)

Ref(8) goes explicitly into further detail on the applications of SPASERs as biological

probes for the detection of cancerous cells. The importance of safely and accurately detecting

potential cancers in biological systems should be evident to the reader. These properties

will be crucial to Chapter 4, where plasmons are interchanged for photons in a potential

nanoscale laser called a SPASER (Surface Plasmon Amplification by Stimulated Emission

of Radiation).

In addition to medical applications, the nanoscale properties of plasmons allow for their

use in data storage and communication with potential ”on-chip” electronics. This is the uni-

fying application to both projects in this dissertation. This area of nanoplasmonics requires

us to dive into the topological properties of materials as well. Chapter 3 and Chapter 5



examine two different theoretical applications of plasmons to achieve the possible transfer

of information on a nanoscale. Chapter 3 focuses on Chiral Berry Plasmons(CBPs), which

act similarly to magnetoplasmons but without needing a magnetic field due to the nature

of Berry Flux. This sidesteps the current complications in ”on-chip” electronics that arise

from the need for large magnetic fields at small scales.(9)(13) Why is this important? CBPs

are topologically protected one-way transport systems with two possible directions. This

allows nonmagnetic materials where CBPs exist to behave with non-reciprocity, similarly

to the Integer Quantum Hall Effect and Topological Insulators.(? ) This gives rise to the

potential applications of CBPs in future Quantum Computers.(10) SPASERs, in Chapter 5,

also have applications in ”on-chip” electronics and future transistors below 10nm in size.(7)

In this chapter, the spaser we examined was a Type II Topological spaser where a topo-

logical material acted as the gain medium for the system. The plasmons, in this case, do

not directly arise on the topological material but are on the silver nanospheroid that is the

active medium. The topological properties of the gain medium give rise to the stimulation

of two distinct plasmonic modes. These modes could be potentially utilized for ”on-chip”

electronics.

This introduction has been brief and qualitative, but it should give the reader a decent

background knowledge going into the theoretical summaries and new research in the remain-

ing chapters about why we are doing this research. Nanoplasmonics is a field of research that

has exploded in popularity since the turn of the millennium and promises to bring about

radical technological advances that directly affect the common populace.
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CHAPTER 2

THEORETICAL BACKGROUND

2.1 Plasmons

Plasmons are collective oscillations of the electrons present at the bulk and surface of conduct-

ing materials and in the neighborhood of conducting particles.(14) They are quasi-particles

similar to Phonons in mechanical vibrations. They follow Bose-Statistics as they are a col-

lective motion of electron-hole pairs, leading to spin-1 quasi-particles.(6) Plasmons are the

critical fundamental phenomena at the core of all research projects in this dissertation. Two

distinct types of plasmons are studied here, bulk plasmons and surface plasmons. When

exposed to an electromagnetic field, bulk plasmons are collective oscillations within a metal.

Figure 2.1 This figure is taken from Ref(1) and shows an artistic representation of Bulk
plasmons (a), surface plasmons (b), and localized surface plasmons (c).



Surface plasmons are strongly confined to the surfaces of materials at an interface where

one material has a positive dielectric constant, and another has a negative dielectric con-

stant. They are well known and have already been extensively studied, but this paper will

contain an essential derivation for completeness. The best place to start would be with

Maxwell’s Equations, as most textbooks begin with the macroscopic Maxwell equations to

model electromagnetic response in materials.

2.1.1 Maxwell’s Equations

∇ ·D = ρext (2.1)

∇ ·B = 0 (2.2)

∇× E = −∂B
∂t

(2.3)

∇×H = Jext +
∂D

∂t
(2.4)

These well-known equations connect the four macroscopic fields of electrodynamics. D is

the dielectric displacement, E is the electric field, H is the magnetic field, and finally B is

the magnetic induction. In addition, we have material-dependent relations in the limit of

linear, isotropic, and non-magnetic media.(15)

D = ϵ0ϵE (2.5)

B = µ0H (2.6)



Next we have the dielectric susceptibility χ and a linear relationship between P and E.(15)

P = ϵ0χE (2.7)

And finally, the current density:

J = σE (2.8)

2.1.2 Bulk Plasmons

Conceptually we can think of bulk plasmons through a ”jello” model.(10) Imagine you have

two sub-layers that make up your metal, one is a gelatinous structure of negative charge

that is free to oscillate slightly, and the other is a solid fixed, solid, positively charged

structure. The gelatinous structure is fixed atop the solid one and is electrically attracted to

it. However, when exposed to an external electric field, the ”jello” begins to ”rock” back and

forth. The ”rocking” or the collective oscillations are known as bulk plasmons. We use the

”plasma model” to derive bulk plasmons .(16) Effectively; we assume that an electron gas

freely propagates near a background of positively charged ions. These free electrics oscillate

around the ions when exposed to an external electromagnetic field. Suppose we imagine the

electrons are harmonic oscillators in this situation. In that case, we can describe them as

displaced from their equilibrium point relative to the positively charged ions, generating a



net polarization. The electric field, in this case, is:

D = ϵ0E+P (2.9)

= ϵ0ϵE (2.10)

Where ϵ is equal to:

ϵ(ω) = 1−
ω2
p

ω2 + iγω
(2.11)

We can analyze equation 2.10 in two regimes. At low frequencies, metals become highly

absorbing, and in this case, we can derive what is known as ”skin depth,” or the penetration

depth of electromagnetic fields into the metal. At large frequencies, we can ignore any

damping in the plasma, and then ϵ(ω) is approximately real.

ϵ(ω) = 1−
ω2
p

ω2
(2.12)

Next, to characterize the propagation of the waves with this electric field, we need the

dispersion relation:

ω(k) =

√
ω2
p +

k2

c2
(2.13)

When ω = ωp and we are within the low-damping regime, a collective longitudinal oscillation

mode exists parallel to the electric field. This mode is the jello rocking or, more scientifically,



Figure 2.2 This figure is taken from Ref(2) and shows an interface between a metal and
dielectric.

the collective oscillation of the electron plasma above the fixed positive ion background.

These are bulk plasmons.

2.1.3 Surface Plasmons

Surface Plasmons are conceptually similar to bulk plasmons, except they only exist along

interfaces. Specifically interfaces between a metal and a dielectric medium. As stated above,

the derivation for surface plasmons begins with Maxwell’s equations. However, we introduce

a boundary between two infinite planes at x = 0. One is metal, and the other is a dielectric.

The transversal electric field components along the interface are(16):



Ddz = Dmz (2.14)

Edx = Emx (2.15)

Edy = Emy (2.16)

Bdz = Bmz (2.17)

Hdx = Hmx (2.18)

Hdy = Hmy (2.19)

Where d is the dielectric, and m is the metal. The resulting transverse-magnetic wave

propagates along the x-axis as:

Ei = (Eix, 0, Eiy) exp i(ki · r − iωt) (2.20)

Hi = (0, Hiy, 0) exp i(k · r − iωt) (2.21)

Di = ϵ0ϵiEi (2.22)

Bi = µ0Hi (2.23)

In this case, i is either, m or d. The wave vector k is (kx, 0, kiz). When we plug these

waves back into Maxwell’s equations with zero charge and current densities, we can derive

a relationship between the kz components of the metal and dielectric. To ensure the modes

are bound to the surface, we determine that kz components must have opposites signs and



decay exponentially away from the surface.

kdz
ϵd

=
kmz

ϵm
(2.24)

Looking at the derived relationship, though, the only way to achieve this is if the dielectrics

themselves are of opposites signs, which is why surface plasmons can only exist at a boundary

between a metal with a negative relative permittivity constant and a dielectric with a positive

relative permittivity. This is because the penetration depth between the two materials is not

equal. For example, in the dielectric, an electromagnetic wave penetrates to a distance of

half a wavelength. However, in the metal, the oscillating electron plasma only exists down

to the skin depth of the metal.

2.2 Berry Phase and Anomalous Phenomena Introduction

In addition to plasmons, another fundamental property of the projects in this dissertation

is how they exploit the Berry phase of materials. The Berry phase arises in materials when

eigenenergy states evolve adiabatically around a loop in parameter space.(17) The result of

this loop is a phase gained by the eigenstate. Three fundamental properties of the Berry

phase are important to our work.(18) The Berry phase is gauge invariant, unchanged up

to a multiple of 2π, and is single-valued over the loop. Next, it is geometrical and can be

expressed as a line integral over the loop. It can also be represented as an integral over a

field or a surface on the loop. Finally, the Berry phase is analogous to other gauge field

theories and differential geometries.(3)(19) helps us use it as a magnetic field in Chapter 3.



The field which the Berry phase is the integral over is known as the Berry curvature. So

the Berry phase is analogous to the Aharonov-Bohm phase of a charged particle traversing

a loop with a magnetic flux, and the Berry curvature is analogous to the magnetic field.(3)

Conceptually, we consider electrons as Bloch waves traveling through periodic potentials

of a material’s lattice structure. Where electrons behave as nearly free particles in response

to external electromagnetic fields; however, this simple view does not explain all the effects

of the electrons’ response to the external field. In Chapter 3, we will explore an application

of the ”anomalous velocity” that arises from the incomplete view of electrons as nearly free

particles. The anomalous velocity is an effect arising from the Berry curvature of the Bloch

states of the material. Even in the absence of external fields, anomalous velocity exists.

Because of its importance to our research, this dissertation will contain a derivation of

Berry phase and Berry curvature that follows the work of Xiao, Chang, and Niu (3) and will

use the same notation.

2.2.1 Berry Effects from Adiabatic Evolution

We begin with a generic system described by a time-dependent Hamiltonian, which depends

on a generic set of parameters, R = (R1, R2, ..)

H = H(R) (2.25)

R = R(t) (2.26)



R(t) evolves slowly along a path, as mentioned in the previous section. This path is labeled

as C and exists inside the parameter space. Next, we can introduce a set of eigenstates for

the Hamiltonian for each value of R(t) to form an orthonormal basis. This will allow us to

apply the quantum adiabatic theorem as well.

H(R)|n(R)⟩ = En(R)|n(R)⟩ (2.27)

We have yet to fully define |n(R)⟩ here as an arbitrary phase can be applied to it with-

out changing its physical definition. We can apply a gauge to the equation to remove the

”arbitrary-ness” from the eigenstates. Xiao further details this in the appendix of Ref(3).

Following the quantum adiabatic theorem, we can take the eigenstate of the system at

|n(R(0))⟩ initially. As soon as the time evolution starts, the system will be in the instan-

taneous eigenstate |n(R(t))⟩.(20) This leaves us with one degree of freedom: the quantum

state’s phase.

|ψn(t)⟩ = exp [iγn(t)] exp [−
i

ℏ

∫ t

0

EnR
′(t′)dt′]|n(R(t))⟩ (2.28)

Equation 2.28 may seem complicated, but it is the original time-dependent state with

two-phase factors applied. Each exponent is a different phase factor, with the first exponent

being the Berry phase we seek to derive and the second being the dynamical phase factor.(21)

The dynamical phase factor is also well known, and it depends upon the energy of the system

as it evolves and the time it takes the system to evolve. So, it is essential for the Adiabatic



Theorem of Quantum Mechanics. The Berry phase can also be expressed as the geometrical

phase, and it is independent of R and is not single-valued around the path.(22) So the total

phase an eigenstate gains as it evolves in time depends upon its energy and time and another

on the path it evolves through. Since equation 2.28 is just a time-dependent wave function,

we can use it within the time-dependent Schrodinger equation.

iℏ
∂

∂t
|ψn(t)⟩ = H(R(t))|ψn(t)⟩ (2.29)

Next, we multiply both sides of the equation by ⟨n(R(t))|.

⟨n(R(t))|iℏ ∂
∂t

|ψn(t)⟩ = ⟨n(R(t))|H(R(t))|ψn(t)⟩ (2.30)

⟨n(R(t))|iℏ ∂
∂t

(exp [iγn(t)] exp [−
i

ℏ

∫ t

0

EnR
′(t′)dt′])|n(R(t))⟩ = (2.31)

⟨n(R(t))|H(R(t)) exp [iγn(t)] exp [−
i

ℏ

∫ t

0

EnR
′(t′)dt′]|n(R(t))⟩

The dynamical phase cancels out, but the geometrical phase does not.

∂

∂t
γn(t) = i⟨n(R(t))| ∂

∂R
n(R(t))⟩ · ∂

∂t
R(t) (2.32)

This γn(t) expression can also be expressed as a path integral in the parameter space.(3)

When the system completes its evolution through the whole path C in R its phase change



is:

|ψn(t)⟩ = exp [iγn(C)] exp [−
i

ℏ

∫ t

0

EnR
′(t′)dt′]|ψn(0)⟩ (2.33)

Thus giving us the result for the geometric phase:

γn(C) = i

∫
C

⟨n(R)| ∂
∂R

n(R)⟩ · dR (2.34)

The normalization factor on ⟨n(R)| ∂
∂R
n(R)⟩ is imaginary, which gives us a real result for

the geometric phase as well.(22) Now that we have the geometric phase or Berry’s phase, we

have this interesting vector-valued function that it depends on:

An(R) = i⟨n(R)| ∂
∂R

n(R)⟩ (2.35)

We have defined this asAn(R), which is the Berry connection or the Berry vector potential.(17)

So, a more general form for the Berry phase is:

γn(C) =

∫
C

An(R) · dR (2.36)

Michael Berry also proved that even though this vector potential was gauge-dependent if

taken around a closed path, the gauge transformation is single-valued.(22) With the trans-

formation from R(0) to R(C) being 2π× some integer. It also cannot be removed from

the equation. Therefore, after the effects of all of the above, γn becomes gauge-invariant.(3)



Solving for γn can be awkward because of the single-valued basis requirements on our basis

of the parameter space. However, we know from Stokes’s Theorem that an integral over a

closed loop or path can be expressed as an integral over a surface, with the path defining

the boundaries of the surface.

γn =

∫
C

An(R) · dR =

∫ ∫
C

∇× An(R) · dS (2.37)

Next we define ∇× An(R) as Ωn(R).

γn =

∫
S

Ωn(R) · dS (2.38)

Ωn(R) is known as the Berry curvature. Since the adiabatic approximation is a projection

operation, we can view the Berry curvature as the ”residual” interaction of the projected-

out energy levels.(3) There is also a local conservation law for Berry curvature that states

that when all energy levels are considered, the total Berry curvature vanishes for each value

of the parameter space along the loop. This is a general theoretical description of Berry

curvature; however, in this dissertation, we are specifically interested in how Berry curvature

manifests itself in physical systems. The Berry curvature is an intrinsic property in Bloch

bands because it only depends on the wave function. The band structure of some specific

materials also has nonzero Berry curvature and breaks the local conservation law mentioned

above. Specially, these materials are crystalline solids with broken T symmetry or inversion

symmetry. When these materials have an external electric field applied, a linear variation in



Figure 2.3 This image is taken from Ref(3) and shows the energy bands (2.2.a) and Berry
curvature (2.2.b) of a 2D crystalline structure. The dashed lines are the K and K ′ valley’s
respectively and the solid red line shows the magnitude of Berry curvature inside each valley.

the crystal momentum q is initiated. q then covers the entire Brillouin zone of the crystal,

which creates a closed path loop. The topology of this structure is that of a torus where

two different points, q and q +G, are overlapping and the same. Here, G is the reciprocal

lattice vector.(3)

To derive these effects, we must start with Bloch’s Theorem. Bloch’s Theorem describes

solids as periodic potentials. Using the independent electron approximation, the appropriate



Hamiltonian for an electron in this system is:

H =
p̂2

2m
+ V (r) (2.39)

V (r) represents the periodic potential of the crystalline solid, V (r) = V (r + a). The eigen-

states of this Hamiltonian have the following form:

ψnq(r+ a) = eiq·aψnq(r) (2.40)

To make sure we have a q-dependent Hamiltonian to match our q-dependent, we just apply

a unitary transformation:

H(q) = e−iq·rHeiq·r =
( ˆp+ ℏq)2

2m
+ V (r) (2.41)

Now, if q varies in momentum space, then our new Bloch states will acquire a Berry phase:

γn =

∫
C

⟨un(q)|i∇q|un(q)⟩dq (2.42)

Where un(q) is the momentum space variant of the transformed eigenstate unq(r) = eiq·aψnq(r).

Following the theoretical approach outlined earlier in this subsection, we arrive at an equa-

tion for the Berry curvature:

Ωn(q) = ∇q × ⟨un(q)|i∇q|un(q)⟩ (2.43)



Figure 2.4 This image is taken from Ref(4) and is the crystalline structure of MoS2. A
TMDC with a hexagonal structure made up of Mo atoms (blue) and S atoms (yellow).

We will apply this formalism to gaped graphene and transition metal dichalcogenide (TMDC)

monolayers in our projects.

2.3 Transition metal dichalcogenide monolayers

Transition metal dichalcogenide (TMDC) monolayers have emerged as a promising class

of two-dimensional materials with unique electronic and optical properties. These materi-

als are composed of transition metal atoms, such as molybdenum (Mo) or tungsten (W),

which are sandwiched between two layers of chalcogen atoms, such as sulfur (S) or selenium



(Se).(23)(24) The resulting structure is a flat, atomically thin layer that can be as thin as a

single atomic layer.

TMDC monolayers have attracted significant attention due to their exciting properties,

such as high electron mobility, strong light-matter interactions, and considerable excitonic

binding energies, making them potential candidates for applications in electronics, optoelec-

tronics, and photonics. For example, TMDC monolayers have been demonstrated to exhibit

high photoresponsivity and photoconductivity, making them promising materials for pho-

todetectors and solar cells. Additionally, TMDC monolayers have been shown to have strong

non-linear optical properties, which make them attractive for applications in ultrafast optical

switching and frequency conversion.(23)(24)

The unique properties of TMDC monolayers can be attributed to their two-dimensional

structure, which leads to quantum confinement effects and strong interatomic interactions

within the layer. The properties of TMDC monolayers can also be tuned by varying the com-

position and structure of the material, making it possible to design materials with tailored

properties.(23)(24)

The study of TMDC monolayers is an active area of research, with numerous studies fo-

cusing on these materials’ synthesis, characterization, and applications. Researchers continue

exploring the potential of TMDC monolayers in various applications, including electronic and

optoelectronic devices, energy storage and conversion, and sensing.(23)(24)



Figure 2.5 This image is also from Ref(4). It shows the 3-dimensional energy band structure
of MoS2. The purple layer is the conduction band and the blue layer represents the valence
band.The central layer is color coordinated to show the difference in polarization from the
K and K ′ valleys.
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CHAPTER 3

CHIRAL BERRY PLASMONS

3.1 Introduction

Recently chiral Berry plasmons without magnetic fields have been theoretically proposed.(13)(9)

These plasmonic systems are analogous to well established research in magnetoplasmons that

has been conducted for nearly forty years now.(25)(26) The key relation between the two

arises from the properties of Bloch band Berry curvature.(27) Berry curvature is a topologi-

cal property of materials that acts as a magnetic field in momentum space. This property of

the system creates an environment that could produce on-chip technological systems without

the need for strong external fields.

Magnetoplasmons have edge modes arise in the presence of a magnetic field.(26) Their

frequency is proportional to B−1 To summarize, the applied magnetic field introduces a

transverse component on the electrons via the Lorentz Force. The trajectory of free electrons

becomes elliptical in the plane of the metal perpendicular to B. This motion is nearly

circular.(28) Along the boundary of the material these modes lead to one-way propagation.

Previous work has shown that nonmagnetic materials are capable of supporting chiral

Berry plasmons. These materials include gaped graphene and monolayer transition dichalco-

genides (TMDC). In equilibrium, these materials have two valleys at the K and K ′ points

with opposite Berry curvature and protected by time reversal symmetry, or T -symmetry.(29)

This leads to a net Berry flux(F ) of 0 in the system. However, out of equilibrium it is possible

to create an imbalance in the populations of the K and K ′ valleys and break T -symmetry.



One way to achieve an imbalance in the K and K ′ valley populations is through optical

pumping leading to valley polarization. Valley polarization generated by a circularly polar-

ized applied electric field has been extensively explored prior to this paper.(29) Including how

it generates chiral Berry plasmons.(13)(9) In summary, the nonzero Berry flux gives rise to

an anomalous velocity transverse to the applied electric field. The mathematical derivation

of the anomalous velocity effects are shown in Ref(13), Ref(3), and summarized later in this

paper. This leads to a net nonzero Berry flux and to anomalous Hall-like effects.(13)(9)

However, in previous work, only one of the chiral Berry plasmon edge modes was protected

for large values of q. This is because the edge mode splitting was determined by the wave

vector q and the Berry Flux, ℏ∆ω ≈ Const. × qF .(13) Therefore, as the wave vector

increases, the splitting increases until the positive edge mode uncouples from the edge of the

material and merges with the bulk frequency.(13) Fascinatingly, this is not unique to chiral

plasmons without a magnetic field but is also analogous to 2D edge magneotoplasmons.

As for certain values of magnetic field the positive edge mode is indistinguishable from the

bulk.(26)

The goal of this chapter is to theoretically examine possible ways to modify the plasmon

edge modes that arise due to the presence of nonzero Berry flux in order to find what exter-

nal conditions lead to the largest range of q values that two edge modes exist and are both

distinguishable from the bulk mode. Magnetoplasmon edge mode splittings are determined

by the cyclotron frequency which depends on the incoming magnetic field strength. How-

ever, Berry plasmons are determined by the plasmon wavelength and Berry flux. Selecting



appropriate plasmon wave lengths was discussed in Ref(9), therefore here we will discuss

controlling the Berry plasmon edge mode splittings by modifying the Berry flux. We show

that modifications to: the material’s band gap, the Fermi level at which the valleys are pop-

ulated, and the temperature the material is held at all have profound effects on the existence

of the edge modes.

3.2 Mathematical Methods

3.2.1 Kubo Formula and Conductivity

The Plasmon modes for this project were found in a similar method to Song et al, in Ref(13)

as they proposed an alternative method involving the conductivity matrix. This allows us

to better explore the effects of Berry Flux on the system. We use the Euler equations

for electron density while working in terms of Fourier modes (ρ(r, t) = ρω(r)e
iωt, j(r, t) =

jω(r)e
iωt, and ϕ(r, t) = ϕω(r)e

iωt)

iωρω(r) +∇ · jω(r) = 0 (3.1)

jω(r) = σij(ω)∇ϕω(r) (3.2)

Here, ϕω(r) is the electric potential, jω(r) is the current density, ρω(r) is the charge density,

and σij(ω) is the conductivity matrix. For calculating σij(ω) we used the Kubo formula. The

conductivity from the Kubo Formula is:



σij(q, ω) =
iℏg
4π2

∫
dk
∑
m,n

fn(k)− fm(k+ q)

Em(k+ q)− En(k)
(3.3)

×⟨n,k|ĵi|m,k+ q⟩⟨m,k+ q|ĵj |n,k⟩
ℏω + i0+ − Em(k+ q) + En(k)

Where fn(k) is the Fermi-Dirac distribution and g is the degeneracy of the electrons. For

example, in the case of graphene, g = gsgv gs is the spin degeneracy and gv is the valley degeneracy.

The current operators are defined by ĵ = ev̂ and v̂ = i
ℏ [r, H].The summation is over the band indices

m and n. We summarize Eq.(3) as:

σij(q, ω) =
iℏg
4π2

∫
dk
∑
m,n

∆fnm
∆Emn

× M ij
mn

ℏω + i0+ −∆Emn
(3.4)

∆fnm = fn(k)− fm(k+ q) (3.5)

∆Emn = Em(k+ q)− En(k) (3.6)

M ij
mn = ⟨n,k|ĵi|m,k+ q⟩⟨m,k+ q|ĵj |n,k⟩ (3.7)

From here we are able to examine the intra-band and inter-band conductivity using a small q

and ω approximation. The intraband-conductivity is given by setting m = n = α

σintra,αij (q, ω) =
iℏg
4π2

∫
dk

∆fαα
∆Eαα

× M ij
αα

ℏω + i0+ −∆Eαα
(3.8)

=
iℏg
4π2

{∫
dk

∆fαα
∆Eαα

× M ij
αα

ℏω −∆Eαα
+

∫
dk

∆fαα
∆Eαα

×M ij
αα × [−iπδ(ℏω −∆Eαα)]

}
(3.9)

or



Im[σintra,αij (q, ω)] =
iℏg
4π2

{∫
dk

∆fαα
∆Eαα

× M ij
αα

ℏω −∆Eαα

}
(3.10)

Re[σintra,αij (q, ω)] =
iℏg
4π2

{∫
dk

∆fαα
∆Eαα

×M ij
αα × [−iπδ(ℏω −∆Eαα)]

}

The matrix element Mαα is:

M ij
αα = e2⟨α,k| ∂H

ℏ∂ki
|α,k+ q⟩⟨α,k+ q| ∂H

ℏ∂kj
|α,k⟩, (3.11)

In the case of the inter-band conductivity, we assume ∆Emn ≫ ℏω ≫ ℏvF q and obtain a

description of the topological properties of the system. Eq.(4.4) becomes:

σinterij (q, ω) ≃ iℏg
8π2

∫
dk
∑
n

∑
m ̸=n

∆fnm

(
M ij

mn −M ij∗
mn

)
−∆E2

mn

(3.12)

σinterij (q, ω) ≃


0, i = j

−e2g
4π2ℏ

∫
dk
∑

n, f(En(k))Ω
ij
n (k), i ̸= j

(3.13)

Ωij
n (k) = i

∑
m ̸=n

⟨n,k|ĵi|m,k⟩⟨m,k|ĵj |n,k⟩ − h.c.

∆E2
mn

(3.14)

Eq.(4.14) is the Berry Curvature of the system written as a summation of eigenstates that arises

naturally within the Kubo formula.(3)



Here is a quick derivation of Eq. 4.12-14:

σinterij (q, ω) =
iℏg
4π2

∫
dk
∑
n

∑
m ̸=n

∆fnm
∆Emn

M ij
mn

ℏω + i0+ −∆Emn
(3.15)

∑
n

∑
m̸=n

Anm =
∑
n

∑
m ̸=n

Amn = 1/2
∑
n

∑
m ̸=n

(Amn +Anm)

=
iℏg
4π2

∫
dk
∑
n

∑
m̸=n

1

2

{
∆fnm
∆Emn

M ij
mn

ℏω + i0+ −∆Emn
+

∆fmn

∆Enm

M ij
nm

ℏω + i0+ −∆Enm

}
(3.16)

∆Emn = −∆Enm,∆fmn = −∆fnm

=
iℏg
8π2

∫
dk
∑
n

∑
m̸=n

∆fnm
∆Emn

{
M ij

mn

ℏω + i0+ −∆Emn
+

M ij
nm

ℏω + i0+ −∆Enm

}
(3.17)

M ij
mn =M ij∗

nm

=
iℏg
8π2

∫
dk
∑
n

∑
m̸=n

∆fnm
∆Emn

{
M ij

mn

ℏω + i0+ −∆Emn
+

M ij∗
mn

ℏω + i0+ +∆Emn

}
(3.18)

=
iℏg
8π2

∫
dk
∑
n

∑
m̸=n

∆fnm
∆Emnℏω

(
M ij

mn +M ij∗
mn

)
+∆Emn

(
M ij

mn −M ij∗
mn

)
ℏ2ω2 −∆E2

mn

− iπ
[
δ(ℏω −∆Emn)M

ij
mn + δ(ℏω +∆Emn)M

ij∗
mn

]
(3.19)

=
iℏg
8π2

∫
dk
∑
n

∑
m̸=n

∆fnm
∆Emn

ℏω
(
M ij

mn +M ij∗
mn

)
+∆Emn

(
M ij

mn −M ij∗
mn

)
ℏ2ω2 −∆E2

mn

− 2iπδ(ℏω −∆Emn)M
ij
mn


(3.20)



σinterij (q, ω) ≃ iℏg
8π2

∫
dk
∑
n

∑
m ̸=n

∆fnm

(
M ij

mn −M ij∗
mn

)
−∆E2

mn

(3.21)

=
−iℏg
4π2

∫
dk
∑
n

∑
m̸=n

∆fnm

(
M ij

mn −M ij∗
mn

)
2∆E2

mn

(3.22)

=
−iℏg
4π2

∫
dk
∑
n

∑
m̸=n

f(En(k))
(
M ij

mn −M ij∗
mn

)
2∆E2

mn

−
f(Em(k))

(
M ij

mn −M ij∗
mn

)
2∆E2

mn

 (3.23)

=
−iℏg
4π2

∫
dk
∑
n

∑
m̸=n

f(En(k))
(
M ij

mn −M ij∗
mn

)
∆E2

mn

 (3.24)

=
−iℏg
4π2

∫
dk
∑
n

f(En(k))
∑
m ̸=n

(
M ij

mn −M ij∗
mn

)
∆E2

mn

(3.25)

=


0, i = j

−e2g
4π2ℏ

∫
dk
∑

n, f(En(k))Ω
ij
n (k), i ̸= j,

(3.26)

where Ωij
n (k) = i

∑
m ̸=n

⟨n,k|∂H∂ki |m,k⟩⟨m,k|
∂H
∂kj

|n,k⟩ − h.c.

∆E2
mn

(3.27)

3.2.2 Two-Band Model

To better understand how this Berry Curvature effects the plasmon modes, we employ a Two-Band

Model representing a gaped graphene system:

H = ℏv(kxσx + kyσy) +mσz, (3.28)

ĵx = evσx (3.29)

ĵy = evσy (3.30)



The eigenenergy and eigenstates of the wave vector k are:

Eα(k) = α
√
ℏ2v2k2 +∆2

g, (3.31)

|c,k⟩ =


e−iϕ
√
2

√
1 +

∆g√
(ℏν)2k2+∆2

g

1√
2

√
1− ∆g√

(ℏν)2k2+∆2
g

 , (3.32)

|v,k⟩ =


e−iϕ
√
2

√
1− ∆g√

(ℏν)2k2+∆2
g

−1√
2

√
1 +

∆g√
(ℏν)2k2+∆2

g

 (3.33)

α = c, v denote the conduction band and valence band, respectively and ∆g is the band gap of

the material. Applying the two band model we find the bulk plasmon frequency from the dielectric

function in 2-dimensions:

ϵ(q, ω) = 1 +
2πiqσii(q, ω)

ω
(3.34)

Giving:

ωbulk =
e

ℏ

√
gqβ

2
(3.35)

β =

∫ ∞

∆g

E2
n +∆2

g

E2
n(fc(k))

+

∫ −∆g

−∞

E2
n +∆2

g

E2
n(fv(k))

(3.36)

The edge modes are the same as those found by Song 2016.(13)

ωedge
± =

√
2

3
ωbulk
q ±

√
2

9
| q | F + O(q2F 2) (3.37)



Figure 3.1 Here, ωedge
+ = ω1 and ωedge

− = ω2. We can observe ωbulk and ωedge
+ becoming

indistinguishable as q increases. The next figures are results from our analysis of different
values of Temperature(T ), Fermi Level(µ), and Band Gap(∆g) of the material to find the

largest values of ωbulk − ωedge
+ . over the largest range of q values.

F is the Berry flux given by the solution for the interband solution of the Kubo formula in

Eqn(9)

F =
−e2g
4π2ℏ

(∫ ∞

∆g

dE
∆g

E2(fc(k))
+

∫ −∆g

−∞
dE

∆g

E2(fv(k))
(3.38)

3.3 Results

It is from these frequencies that we test under different theoretical states of quasi-equilibrium to

determine which conditions allow for the largest separation of ωbulk and ωedge
+ .



Figure 3.2 shows ωbulk − ωedge
+ for five different temperatures where the system is held

in quasi-equilibrium. Showing for low values of q higher temperatures lead to higher
separations of the bulk mode from the first edge mode. With µ = .1eV and ∆g = 1eV .

over the largest range of q values. Figure 1 shows the plasmon dispersion for the bulk and the edge

modes.

In Figure 3.1, we have plotted the plasmon dispersion for T = 100K, µ = .1eV , and ∆g =

1eV . This plot shows a plasmons dispersion that aligns with Ref(13) and Ref(9). Which shows

for increasing values of q, only one mode continues to exist. The next theoretical trials we ran

hold two of the external variables constant in equations 19 and 21 and varies only one. Either

temperature(T ), Fermi Level(µ), or band gap(∆g).

In Figure 3.2, we assumed the system was stimulated to a higher temperature, but decayed to a

certain value where the system was held in a state of quasi-equilibrium. This could be represent the



Figure 3.3 is a similar plot but with different quasi-Fermi levels. This shows that for large
Fermi levels, large separations do exist at small q, however they quickly join the bulk
frequency unlike smaller Fermi levels which maintain a larger separation for a larger range
of q values.

material ”heating up” during optical pumping to achieve valley polarization and not returning to a

low Kelvin value. Figure 2 shows that while higher temperatures creating larger initial separations

of ωbulk and ωedge
+ , they also lead to the modes combining at lower q values. Therefore, lower

temperatures produced a wider range of q values for two chiral modes to exist.

Figure 3.3 shows the next case where temperature and band gap where held constant while

the Fermi level at which the valleys in the gaped graphene system were populated to varied. This

case is achieved by applying different strengths of circularly polarized light at the system, resulting

in different levels of valley polarization. Higher applied field amplitudes correspond with higher

levels of valley polarization.(29). We also see that, unsurprisingly, the Fermi level acts similarly to



Figure 3.4 shows four different values of Band Gap in the material. Opposite of larger Fermi
values, larger values of Band Gap lead to larger separations for a larger range of q values.

varying the temperature in Figure 2. As higher Fermi levels create short-lived large separations of

ωbulk and ωedge
+ . The value of ωbulk −ωedge

+ diverges after reaching zero as well. This phenomena is

due to the modes becoming indistinguishable. A key feature of our system aligns with how valley

polarization acts as shown in Ref(29). Valley polarization decreases with larger incoming field

amplitudes meaning that higher Fermi levels would also have lower levels of valley polarization.

Therefore the Berry flux would eventually fall to zero and both modes would cease to exist.

Finally, Figure 3.4 shows the final theoretical case where the varying variable was the system’s

band gap. We continued to simulate this with a gaped graphene system, however this could be

achieved by using different materials like different transition metal dichalcogenides (TMDCs) with

varying natural band gaps. It is here we find the opposite of the other cases where larger band



gaps are preferred for a wider range of q values with two chiral Berry plasmon edge modes. Larger

band gaps also lead to larger separations of ωbulk and ωedge
+ even though it still peaks at 60meV .

3.4 Conclusion

In this chapter we have shown multiple ways to vary the Berry flux of a gaped graphene system

to alter the chiral Berry plasmon edge modes that arise without magnetic field. These methods

would vary the splitting between the two edge modes analogously to altering the magnetic field in

magnetoplasmons. More importantly though, we have shown a possible way to ensure that both

chiral edge modes exist for a larger range of values by ensuring the system has a large band gap,

low equilibrium temperature and low level of valley polarization.
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CHAPTER 4

SPASERS

4.1 Introduction

For nearly two decades now, SPASER (Surface Plasmon Amplification by Stimulated Emission of

Radiation) research has bloomed into a well-defined field in physics. Spaser research originated

in 2003 and has similar goals of pushing forward infrared spectroscopy, sensing, probing, and

biomedical treatment as the laser before it.(30) SPASERs are a continuation of lasers in that they

achieve miniaturization below the half wavelength limit of a laser. This implies that a spasing system

is much better suited to probing biological systems below 10nm and for use in technological marvels

such as 10nm transistors.(7) The SPASER is our best attempt at gaining a coherent, intense,

ultrafast (with pulse duration down to a few femtoseconds), source of optical energy concentrated

down to the nanoscale.(31) The use of plasmonic nanoparticles to concentrate optical energy due to

plasmonic resonance and geometric concentration in nanoscopy, nanospectroscopy, and nanoscale

detection is also experimentally proven.(32)(33)(12)(34)

The SPASER and LASER share a similar theoretical philosophy. Both systems require an

externally pumped active medium and take advantage of stimulated emission. However, instead of

a resonant cavity like in a LASER, a SPASER uses a single nanoparticle that supports plasmonic

modes. This leads to the vital difference between the two: A SPASER ”ideally” operates without

any photons. Surface plasmons replace photons entirely in the working operation of the SPASER,

and theoretically, an ideal nanoscale source would also generate. ’dark’ optical modes that do not

couple to far-field zones.(31)

Even though SPASERs are similar to LASERs, the need for SPASERs to exist arises from their



ability to deliver a source of intense optical energy and much smaller scales than the LASER. A

LASER is limited in size because photons can only exist above the diffraction limit, but surface

plasmons are not subjected to this limit. This is because nano-optical fields are purely electric

oscillations at optical frequencies. When electromagnetic waves are contained at sizes much smaller

than a wavelength, the magnetic field component does not significantly contribute. At this scale,

optical modes are localized on smaller dimensions than the optical wavelength. These modes are

what we classify as surface plasmons. Essentially, surface plasmons are the eigenmodes of a material

system that correspond to oscillations of the electron liquid at optical frequencies.

Surface plasmons also act mathematically similarly to photons. First, surface plasmons are

bosons: they are vector excitations and have spin 1, similar to photons. Second, surface plasmons

are electrically neutral excitations. Furthermore, third, surface plasmons are the most collective

material oscillations known in nature, which implies they are the most harmonic, meaning they

interact very weakly with one another. As such, surface plasmons can undergo stimulated emission,

accumulating in a single mode in large numbers, which is the physical foundation of both the LASER

and the SPASER.(31)

As mentioned in Chapter 2, a system must contain both positive and negative permittivity

for surface plasmons to exist. Even though negative permittivity materials do not allow electro-

magnetic waves to propagate entirely, they do exist for at least a skin depth length within the

material. This skin depth length is the characteristic scale for a SPASER. The nanoparticles acting

as the SPASER’s resonant cavity are smaller than most metals’ skin depth lengths. This allows

electromagnetic waves to penetrate their entire volume before the wave decays and drives surface

plasmon oscillations.



Figure 4.1 is from Ref(5) and shows a simple diagram of the working mechanism of the
SPASER.

4.2 Qualitative Explanation of a SPASER

Once the nanoparticle is properly within the skin depth length of the metal and an electromagnetic

wave has penetrated its entire volume, the electric oscillations between the gain medium and the

generation of plasmons along the nanoparticle surface begin to couple.(35)

This is shown in Fig 4.1. The external field stimulates excitons from the ground state in the gain

medium to an excited state. When these decay back to the ground state, the energy is transferred

to the nanoparticle, creating a surface plasmon. A fundamental process within this transition is

that the plasmonic oscillations generate an electric field that re-stimulates the gain medium. This

feedback mechanism inherent to the SPASER is responsible for causing the stimulated emission



process necessary for the laser-like functioning of the SPASER. The feedback mechanism of the

SPASER cannot be removed as well. This leads to the SPASER always developing generation and

accumulating the macroscopic number of coherent surface plasmons in the spasing mode.(5)

4.3 Theoretical Methods

The first step of deriving a SPASER theoretically is by determining the eigenmodes described in

the previous section:

∇θ(r)∇ψn(r) = sn∇2ψn(r) (4.1)

sn is the eigenvalue of the nth modes contained within the range 1 ≥ sn ≥ 0, while θ is simply a

characteristic function equal to 1 inside and 0 outside the metal. The eigenmodes are normalized

by an integral over the volume V of the system:

∫
V |∇ϕn(r)|

2d3r = 1 (4.2)

Determining the dynamics of a SPASER requires using the Quantum Density Matrix or the

Optical Bloch Equations. This is a similar procedure for determining the theoretical dynamics of a

LASER and is also applicable here because of the similarities between LASERs and SPASERs. Most

research treats this system semi-classically, where the active medium is viewed entirely through

quantum mechanics; however, the surface plasmons are considered classical quantities.



The Hamiltonian of the Spasing system is:

H = Hsp +Hgain +Hint (4.3)

Hsp is the Hamiltonian of the surface plasmons themselves:

Hsp = ℏωsp

∑
n

â∗nân (4.4)

â∗m and âm are the creation and annihilation operators. This is where the surface plasmons (SPs),

including the creation and annihilation operators, can be treated as quasi-classical quantities an =

a0ne
−iωt With a0n as a slowly varying amplitude. This allows us to classify the number of plasmons

per mode at a given time as Np = |a0n|2. Hgain is the Hamiltonian of the gain medium in the system

and Hint is the Hamiltonian of the electric field operator’s interaction with the plasmons’ dipole

moment operator.

Hint =

∫ ∑
n

En(r)d̂n(r)d
2r (4.5)

En =−
∑
n

An∇ψn(r)(ân + ân) (4.6)

An =(
4πℏsn
ϵds′n

)
1
2 (4.7)

These are the most general equations for SPASER systems. In 2009, Dr. Stockman derived this

method for a two-level gain medium.(5) Realistically, the gain medium would have three or four

states active during optical transitions. The two-level approximation works because the relaxation

rate between the highest and highest levels is incredibly fast, as is the relaxation rate between



the bottom working and bottommost levels of the system. Because of this, we can consider these

rates nearly infinite, as if the system only pumps electrons from the lower working level to the top.

However, in 2018 Dr. Stockman and Dr. Apalkov instructed Dr. Ghimire and me to consider these

transitions in deriving a more in-depth theoretical analysis of the density matrix approach to the

SPASER, and that is where this Chapter will focus.

4.4 Three Level SPASER

The three-level SPASER’s gain medium contains three quantum levels: |0⟩,|1⟩, and |2⟩. The system

is pumped by external radiation, which causes electrons to jump from |0⟩ to |2⟩ with the transition

(gain) rate g. The excited states of the system are also characterized by relaxation rates γ21 and γ10,

which represent the transitions |2⟩ → |1⟩ and |1⟩→ |0⟩ respectively. The gain medium is coupled to

the plasmonic system through the field-dipole interaction, and it is at the almost resonant condition

with the frequency ω12 is close to the surface plasmon frequency, ωsp.

This project aimed to have theoretical calculations more closely represent the experimental

results found in Ref(8). Because of this, we needed to change the SPASER Laplace equation better

to represent the presence of three mediums in the system to calculate the field of the Localized

Surface Plasmons. In the spherical system, we consider the electric potential of the dipole mode to

be of the form:

ϕi(r) = (
ai
r2

+ bir)Y10(r) (4.8)

where i labels the medium (i = 1, 2, 3), ai and bi are coefficients corresponding to medium i,

and Y10(r) is a spherical harmonics (l = 1 and m = 0). The following expressions give Maxwell’s



continuity equations across the interfaces of the layers:

ϕi(ri) =ϕi+1(ri) (4.9)

ϵi
∂

∂r
ϕi(ri) =ϵi+1

∂

∂r
ϕi+1(ri) (4.10)

where ϵi is the permittivity of medium i. For our system, which consists of 3 layers, silver sphere,

dye, and water, we solve Eqs. (4.9) and (4.10) to obtain permittivity of silver 3 ϵs as a function of

the permittivity of dye ϵd and water ϵH2O. The frequency of Localized Surface plasmons is then

obtained by equating ϵs to the experimental value ϵAg(ω). (? )

ϵs(ϵd, ϵH2O) = Re[ϵAg(ωsp)] (4.11)

The specific SPASER Hamiltonian to this configuration is similar to equations 4.5, 4.6, and 4.7.

However, the electric field operator is:

En =−
∑
n

Asp∇ψn(r)(ân + ân) (4.12)

Asp =(
4πℏ
d

dϵAg
s1

)
1
2 (4.13)

Here, the geometrical parameter s1 is given by the following expression:

s1 =

∫
Vmetal

|∇ϕi(r)|2d3r∫∞
−∞|∇ϕi(r)|2d3r

(4.14)



4.4.1 SPASER Dynamics

Deriving the dynamical SPASER equations for the three-level system is similar to the two-level

system, just surprisingly, with one additional quantum state. First, we begin with the Heisenberg

representation of quantum mechanics, where the quantum operators vary in time, and the state

vectors are time-independent. This method is also easy to grasp because you can think of the electric

field and dipole moments varying while the energy levels within the gain are always constant. The

Heisenberg Equation of Motion is:

iℏ ˙̂ρ(r, t) = [ρ̂(r, t), Ĥ] (4.15)

We can see from this equation that the time dependence of an operator is determined by its

commutator with the specific Hamiltonian of the system, H = Hsp +Hgain +Hint. Therefore, to

determine all the necessary relations for the dynamical spasing equations, we need to find and solve

the Heisenberg Equation of Motion for all necessary operators: ρ̂, n̂, and â.

iℏ ˙̂ρ(r, t) = [ρ̂(r, t), Ĥ] (4.16)

iℏ ˙̂n(r, t) = [n̂(r, t), Ĥ] (4.17)

iℏ ˙̂a(r, t) = [â(r, t), Ĥ] (4.18)

The operator ρ̂ describes the transition between energy levels within the gain medium, and we

must solve equation 4.16 for each likely transition between the three levels. n̂ is the operator that,



when applied to the quantum states, gives us the population of that state as an eigenvalue. â is the

creation and annihilation operator, which we can use later to determine the number of plasmons

in the system.

Before we continue, we will also apply the Rotating Wave Approximation. This way we can

ignore the rapidly oscillating terms and only focus on the necessary terms.

It is a simple procedure, and it gives us our necessary equations:

˙ρ10(r) =[i(ω − ω10 − Γ10]ρ10(r) + in1Ω
∗
10(r)a

∗
0 (4.19)

ṅ2 =gn0 − γ21n2 (4.20)

ṅ1 =− γ10n1 + γ21n2 − 2

∫
V
Im[ρ10(r)Ω10(r)a0] (4.21)

ṅ0 =− gn0 + γ10n1 + 2

∫
V
Im[ρ10(r)Ω10(r)a0] (4.22)

where ω10 is the transition frequency between |1 > and |0 > levels of the gain medium, and g is the

excitation rate from the |0 > level to the |2 > level by an external pulse. In the above equations, we

also introduced the relaxation rates: polarization relaxation rate Γ10 and the spontaneous relaxation

rates γ10 and γ21 between the corresponding states as indicated by the indices.

Using the creation and annihilation operators, we derive the system’s equation of motion for

surface plasmons.

ȧ = a0γsp(ω) + i(ω − ωsp)a0 + i

∫
V
(ρ∗10(r)Ω

∗
10(r))d

3r (4.23)



γsp is the plasmon relaxation rate:

γsp =
Im[ϵAg(ω)]

Re[
∂ϵAg(ω)

∂ω ]
(4.24)

This relaxation rate is tied to the transition between levels |1 > and |0 > because the surface

plasmons are generated by the decay of exictons in the gain medium. This can also be seen in the

expression for γ10:

γ10 = |Ω10|2
2(γsp + Γ10)

(ωsp − ω10)2 + (γsp + Γ10)2
(4.25)

These are all the necessary equations for determining the dynamics of the three-level SPASER.

4.4.2 Continuous Wave Regime

Analytically we can derive the spasing equations for the continuous wave regime where the time

derivatives of the operators are equal to zero. We can introduce a simple term for the population

inversions within the system as well:

n10 =n1 − n0 (4.26)

n21 =n2 − n1 (4.27)



The populations are also normalized so that n0 + n1 + n2 = 1, so we can use these relations to

express the stationary terms for the populations in terms of the working transition n10.

n0 =
γ21n10 − γ21
2γ21 + g

(4.28)

n1 =− −γ21 − gn10 − γ21n10
2γ21 + g

(4.29)

n2 =− gn10 − g

2γ21 + g
(4.30)

Substituting these new relations into the static versions of equations 4.19-4.23 we obtain:

ρ10(r) =− a∗0n10Ω
∗
10(r)

iΓ10 − ωs + ω10
(4.31)

n10 =
(ωs − ωsp)(ω10 − ωs) + γspΓ10

V ρ10Ω2
10

(4.32)

Nn = |a0|2 =
Γ2
10 + (ωs − ω10)

2

2n10Γ10
(4.33)

× γ21(g − γ10 − n10(γ10 + g))− γ10gn10
(2γ21 + g)Ω2

10

Equations 4.25 and 4.33 will also let us derive an expression for the spasing frequency:

ωs =
ω10γsp + Γ10ωsp

Γ10 + γsp
(4.34)

The key take away from the above expressions is that they are analytic expressions for the effect

of γ21 on the spasing equations. γ21 was ignored in Ref(5) and separates this chapter from that

work. We can see from equations 4.31 to 4.34 that the relaxation rate from the third level to the

second has no effect on population inversion or the spasing frequency but it does have an effect in

equation 4.33, the number of plasmons generated.



If we take γ21 to approach 1
∞ , then equation 4.33 becomes identical to the two-level system.

Nn = |a0|2 =
Γ2
10 + (ωs − ω10)

2

2n10Γ10
(4.35)

× −γ10n10
Ω2
10
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CHAPTER 5

ULTRA-FAST PULSE PUMPING OF A TOPOLOGICAL SPASER

5.1 Introduction

A recent focus has been on a new sub-field of spasers, topological spasers.(36)(37)(38) Here, we

thoroughly examine a type II topological spaser. Only the gain medium has topological properties,

and the plasmonic material is a silver nanospheroid. We build upon the foundation of previous

works by investigating the screening effects of the silver spheroid on the incoming optical pumping

and the nonuniform excitation of the transition metal dichalcogenide (TMDC) layer. Our system’s

topological gain medium is a circular TMDC monolayer flake. TMDC layers contain band gaps

at its K and K ′ points in reciprocal space.(29) The valleys from these band-gaps are degenerate,

protected by time reversal symmetry, and have chiral electron states with opposite topological

charges. Previous work has shown that populations in the TMDC’sK andK ′ valleys can be selected

explicitly by circularly polarized optical pumping in a process called valley polarization.(29)

A type II topological spaser has two spasing modes denoted by the azimuthal quantum numbers,

Figure 5.1 Figure 4.1.A shows a circularly polarized pulse incident onto a metal nanospheroid
and TMDC monolayer. Below is a diagram of the K-Valleys in the TMDC, with the outer-
most valleys being populated more than the innermost valleys. Figure 4.1.B shows the system
a few picoseconds later as surface plasmons are generated along the metal nanospheroid, and
the system emits linearly-polarized radiation.



Figure 5.2 The Rabi Frequency of both plasmons modes

m = 1 and m = 1. When the TMDC flake radius is small relative to the spheroid, each mode is

strongly coupled to one of the TMDC valleys, K for m = 1 and K ′ for m = 1, therefore applying

either a right or left handed circularly polarized pulse to the TMDC should determine the resultant

spasing mode. These modes are topologically protected, as shown in Ref(36). Another interesting

phenomenon associated with type II spasers is the dependence of the mode on the size of the TMDC

flake.(37) If the TMDC flake has a larger radius than the primary axis of the nanosphere, then we

should see two spasing regimes. One where the spaser acts as described above and another where

both spasing modes exist. This should allow us to generate either one singular plasmon mode, only

m = 1 or m = 1, or two plasmon modes, m = 1 and m = 1. This is due to the modes coupling to

the Rabi frequency of the spasing transition and the behavior of the Rabi frequency.

A plot of the Rabi frequency is given in Fig 5.2.



To describe its behavior, two regimes within it are responsible for the TMDC radius dependence

of the modes. Directly underneath the nanospheroid, the Rabi frequency is significant for Ω1,K and

Ω1,K′ and nearly zero for the opposite couplings. Along the edges of the nanospheroid, the Rabi

frequency shows a strong coupling to both modes because of the dipole nature of the plasmonic

field in the area close, but not in, the nanospheroid. We discovered during our initial simulations

that the silver nanospheroid screened the area underneath it from the incoming pulse to pump it.

This forced us to choose a radius of TMDC larger than the spheroid so that the peaks in the field

around the edges could potentially correctly populate the TMDC valleys. The spasing system also

experiences loss in the form of emitted radiation.

Far-field radiation is not the goal of the spaser, but recent work has also shown its promise

in creating nanolasers.(37) Nanolasers have potential applications in biomedical research for the

diagnosis and therapeutics of cancer.(8) In our specific system, though, we see the spaser as creating

a solid source of amplification of the incoming pulse. In addition, far-field radiation also shifts

polarization after contributing to the spasing system. This is more supporting evidence that the

topological spaser has potential as an excellent far-field radiation source and is explored in detail

as the last step of this research.

5.2 Theoretical Methods

Our methods can be summarized qualitatively as simulating a fast pulse impacting the system,

determining the electric field due to the silver nanospheroid in the presence of the external field,

calculating the resultant conduction band populations in the TMDC monolayer, and finally using

those populations as a basis for population inversion required in the spasing system.



5.2.1 Equations of the Incident Pulse

The external field in our case is an incoming pulse characterized as a strong circularly-polarized

optical field with a duration of a few fs and amplitude F < 1V Å−1. As shown in Figure 4.1, the

TMDC monolayer lies in the x-y plane along with the nanospheroid. The incident pulse approaches

the system parallel along the x axis. We assumed the pulse could be approximated by a uniform

field initially as after the pulse ends the resultant electric is due to the eigenmodes of the surface

plasmons along the spheroid. Where the elliptical coordinates used were:

x = a
√
1 + ζ2

√
1− η2 cosϕ (5.1)

y = a
√
1 + ζ2

√
1− η2 sinϕ (5.2)

z = aζη (5.3)

The limits being: 0 ≤ ζ <∞,−1 ≤ η ≤ 1, and 0 ≤ ϕ ≤ 2π

We went about this in the usual way with separation of variables. With the Laplacian in our

coordinate system being:

∇2Φ =
1

a(ζ2 − η2)
[
√
ζ2 − 1

∂Φ

∂ζ
(
√
ζ2 − 1

∂Φ

∂η
) (5.4)

+
√
1− η2

∂Φ

∂η
(
√

1− η2
∂Φ

∂η
)

+ζ
∂Φ

∂ζ
− η

∂Φ

∂η
] +

1

a2(ζ2 − 1)(1− η2)

∂2Φ

∂ϕ2

Following Ref(39) for an ellipsoid in a uniform electric field, we have a potential with two parts:

Φ = Φ0 +Φ1 (5.5)



Φ0 is representative of the uniform field and Φ1 contains the specific contribution of the spheroid.

Φ0 = −EoZ(ζ)H(η) cosϕ (5.6)

Φ1 =


Φ0 + C1aZ1(ζ)H(η) cosϕ, ζ < ζ0

Φ0 + C2aZ2(ζ)H(η) cosϕ, ζ > ζ0

(5.7)

Z1(ζ) is simply
√
ζ2 − 1 and Z2(ζ) is

√
ζ2 − 1( 2ζ

ζ2−1
+ln ζ−1

ζ+1). C1 and C2 are the constants we need to

solve for using the appropriate boundary conditions: Φin = Φout, when ζ = ζ0 and ϵ1
∂Φin
∂ζ = ϵ2

∂Φout
∂ζ

on the surface of the spheroid.

C1 = C2
Z2(ζ0)
Z1(ζ0)

(5.8)

C2 =
(ϵ2−ϵ1)E0

dZ1(ζ0)
dζ

Z1(ζ0)

ϵ2
dZ2(ζ0)

dζ
Z1(ζ0)−ϵ1

dZ1(ζ0)
dζ

Z2(ζ0)
(5.9)

This is the solution for the initial pulse incident onto the spheroid. The electric field due to the

eigenmodes of the surface plasmons is found using Ref(30).

∇[θ(r)∇ϕm] = ssp∇2ϕm (5.10)

θ(r) is the characteristic function equal to 1 in the spheroid and 0 everywhere else. l = 1 is multipole



quantum number and m is the angular momentum projection. The solution for the eigenmodes is:

ϕm = CNP
m
1 (η)eimϕ


Pm
1 (iζ)

Pm
1 (iζ0)

, ζ < ζ0

Qm
1 (iζ)

Qm
1 (iζ0)

, ζ0 < ζ

(5.11)

Pm
l (x) and Qm

l (x) are the Legendre functions of the first and second kind. The constant CN is

determined by the normalization condition of the eigenmodes:

∫∞
−∞|∇ϕm(r)|2d3r = 1 (5.12)

We follow methods previously defined by Motlagh for determining the conduction populations in

TMDC. We use a three-band tight binding model Hamiltonian and describe the electron dynamics

as coherent by the time-dependent Schrodinger equation (TDSE) with an interaction representation

in an adiabatic basis of the Houston functions Ψ
(H)
q (r, t). (29)

Ψq(r, t) =
∑

α=c1,c2,ν

βαq(t)Φ
(H)
αq (r, t) (5.13)

Here, v, c1, c2 denote the highest valence band and the two lowest conduction bands, respectively

while βαq(t) are the expansion coefficients satisfying the following equations:

dβαq(t)

dt
=

−i
ℏ
∑
α1 ̸=α

F(t)Qαα1(q, t)βα1q(t) (5.14)



where,

Qαα1(q, t) = Dαα1 [(k(q, t)]e
iϕ

(d)
αα1

(q,t) (5.15)

ϕ(d)αα1
(q, t) =

−i
ℏ

∫ t

−∞

(
Eα[(k(q, t

′)]− Eα1[(k(q, t
′)]
)
dt′ (5.16)

Dαα1 = eAαα1 (5.17)

Aαα1(q) = ⟨Ψα
q| i

∂

∂q
|Ψα1

q ⟩ (5.18)

The total population of the conduction bands are defined as Nc(q, t) = |βc1q(t)|2 + |βc2q(t)|2.

Nc(q, t) can be then interpreted as the total population inversion to be used in the spasing system

of the nanosphere. Equations 1 through 6 employ a Three-Band Model; however, when applying

these equations to the spasing system, we approximate the result with a Two-Band Model. The

Two-Band non-Abelian Berry connection in reciprocal space and the transition dipole element is:

Dcv = eAcv (5.19)

Acv(k) = ⟨Ψc
k| i

∂

∂k
|Ψv

k⟩ (5.20)

In the Two-Band Model for the spaser, the approximated population is:

Nc(q, t) = |βcq(t)|2 (5.21)



5.2.2 Equations of the Spasing System

As first derived by Bergman and Stockman 2003, the plasmonic eigenmodes of a nanospheroid are

described quasi-statically as:

∇θ(r)∇ψn(r) = sn∇2ψn(r) (5.22)

sn is the eigenvalue of the nth modes contained within the range 1 ≥ sn ≥ 0, while θ is simply

a characteristic function equal to 1 inside and 0 outside the metal. Our oblate nanospheroid inher-

ently has azimuthal symmetry. Therefore, the eigenmodes are described by two spheroidal quantum

numbers: multipolarity l and azimuthal quantum number m. l = 1, 2, ... and m = 0,±1, ... The

only relevant modes for our calculation, though, are l = 1,m = ±1

The Hamiltonian of the Spasing system is:

H = Hsp +Hgain +Hint (5.23)

Hsp is the Hamiltonian of the surface plasmons themselves:

Hsp = ℏωsp

∑
m=±1

â∗mâm (5.24)

â∗m and âm are the creation and annihilation operators. In this case, the surface plasmons (SPs),

including the creation and annihilation operators, can be treated as quasi-classical quantities an =

a0ne
−iωt With a0n as a slowly varying amplitude. This allows us to classify the number of plasmons

per mode at a given time as Np = |a0n|2.



Hgain is the Hamiltonian of the TMDC monolayer defined with our semi-classical, two-band

model. Hint is the Hamiltonian of the TMDC monolayer interacting with the Electric field of the

silver nanospheroid created by the incident pulse:

Hint = −νK
∑

K =K,K′

∫ ∑
m=±1

Fm(r)d̂K (r)d2r (5.25)

d̂K is the inter-band dipole matrix element from Equation 7, but for the K and K ′ valleys.

Dcv(K ) = e⟨Ψc
K | i ∂

∂K |Ψv
K ⟩. The electric field operator is:

Fm(r, t) = −Asp∇ϕm(r)(âme
−iωspt + â∗me

iωspt) (5.26)

Where:

Asp =

√
4πℏsn
ϵds′n

(5.27)

s′n =
dRe[s(ω)]

dω
|ω=ωsp (5.28)

The primary equations of the spasing system describe its dynamics quasi-classically using the

approximation mentioned earlier for treating the spasers classically, yet also treating the TMDC

quantum mechanically within the density matrix approach. These equations were derived by Stock-

man in 2010 using the Heisenberg equation of motion and the Rotating Wave Approximation.(5)

ȧm = [i(ω − ωsp)− γsp]am (5.29)

+iνK

∫ ∑
K

ρ∗K (r)Ω̃∗
m,K (r)d2r



ṅK (r) = −4
∑

m=±1

Im[ρK Ω̃m,K (r)am] (5.30)

−γ2K (r)[1 + nK (r)]

ρ̇K (r) = [−i(ω − ω21)− Γ12]ρK (r) (5.31)

+inK (r)
∑
K

Ω̃∗
m,K (r)â∗m

Ω̃m,K (r) is the Rabi frequency defined as:

Ω̃m,K (r) = −1

ℏ
Asp∇ϕm(r)d̂K (r) (5.32)

And γ2K (r) is the spontaneous emission rate of SPs:

γ2K (r) =
2(γsp + Γ12)

(ωsp − ω21)2 + (γsp + Γ12)2

∑
m=±1

|Ω̃m,K (r)|2 (5.33)

The population inversion, nK (r) is the main connection between the Stockman equations and

conduction band populations derived by Motlagh. We define n(r) ≡ Nc(q, t) = |βcq(t)|2.

5.2.3 Parameters and Initial Conditions

The silver nanospheroid has a semimajor axis of 12nm and a semiminor axis of 1nm in height,

while the TMDC flake is circular with a 14nm radius. Both materials are suspended in a uniform

dielectric medium with a constant ϵd = 1.6. The band-gap of the TMDC flake, ∆g, is 1.6 eV . The

semiminor axis of the nanospheroid and the dielectric constant of the system’s medium has been

chosen to ensure the SP frequency ωsp matches the dipole transition frequency ω21 =
∆g

ℏ of the



Figure 5.3 We simulated the spasing system with varying initial conditions to maximize
plasmon generation. Here, the Nm(max) is the total number of plasmons at the peak of the
spaser pulse, and Nm(int) is the initial number of plasmons injected into the system. The
incoming pulse in this situation was coupled to the m = 1 mode, so the injected plasmons
and maximum plasmons are all from the same mode. The nonlinear dependence for lower
numbers of plasmons arises from the two parts of Eqn (17). For a higher number of injected
plasmons, the first part of the equation is linear and dominant; however, for lower numbers
of plasmons, the second nonlinear part of the equation becomes dominant.



TMDC material. This ensures a proper transfer of energy into the spasing modes. The coherent

relaxation rate for the TMDC layer is Γ12 = 1.51ps−1, and the plasmon relaxation rate for the

spheroid is γsp = 15ps−1.

We set the initial number of plasmons in the system to 0. Figure 2 shows an interesting

nonlinear dependence the maximum number of plasmons in a mode has on the initial number of

plasmons ”injected” into that mode. This is a product of the Stockman equations for Nint > 1,

and the relationship is linear. The initial exciton populations also are related to the time at

which the initial avalanche occurs. Such an effect was documented by Stockman in Ref(5)when we

investigated the effect of initial plasmons in the system. Stockman discovered that systems with

a higher amount of initial plasmons experienced a decay into the spasing mode a few picoseconds

sooner than those with lower populations. This effect can be seen in Fig. 4 (A-C) in the case of

larger exciton populations. This happens earlier with a larger population due to the probabilistic

nature of stimulated emission and higher populations occupying higher energy levels.

5.3 Results

For simulating the pulse generating excited populations in TMDC, we tested five different strengths

of fields: F = 0.1− 0.7V Å−1. The field strengths could be relatively low for this purpose because

of how few plasmons are needed to achieve spasing, N ≤ 100. Once enough excitons are gener-

ated, a stimulated emission effect occurs, and the excitons quickly decay and generate plasmons

in the metal. The needed population to achieve stimulated emission is 0.6 or sixty percent popu-

lated. However, the silver nanospheroid hinders this by screening the incoming field and creating

a nonuniform distribution of K or K ′ valley populations in the TMDC layer. The valleys closer to

the nanospheroid’s center are significantly less populated than those near the edges. In addition,



Figure 5.4 Density plot comparing the concentration of populated regions inside for the
K (left) and K ′ (right) valleys inside the TMDC monolayer flake for an incident pulse of
strength F = 0.25V Å−1. In this plot you can see how population inversion is maintained,
as only one valley type is populated.

Figure 5.5 Density plot comparing the concentration of populated regions inside for the
K (left) and K ′ (right) valleys inside the TMDC monolayer flake for an incident pulse of
strength F = 0.70V Å−1. In this plot you can see how population inversion is not maintained,
as both valley types are populated.



Figure 5.6 The avalanche effect of stimulated emission is shown in both Fig. 4.3(A) and
Fig. 4.3(B), the x-axis is time in seconds, and the y-axis is conduction band population
nc(r). Each line represents the population in a K valley located at a different position
in the TMDC layer. The pulse strength was F = 0.7V Å−1 and coupled to the m = 1
mode. A) is the dynamics of the population in the K valleys located around the edge of the
nanospheroid. These positions achieve higher populations and experience the avalanche effect
simultaneously; however, not every position experiences the inherent feedback of the spaser
similarly. B) shows the same simulated event but for positions closer to the nanospheroid’s
center. These populations experience few nonlinear effects and quickly decay. After the
initial avalanche, the plasmons in A behave similarly to the plasmons in B.

the plasmon modes are coupled to the TMDC layer as a whole; therefore, if only a few areas of

the TMDC layer are above sixty percent populated, then there still is not enough to generate a

significant stimulated emission effect the plasmons slowly decay.

We used larger field strengths to overcome this effect; however, as shown in Ref(29) valley

polarization decreases as the total population generated in the K and K ′ valleys increases. Field

strengths of F = 0.25 − 0.7V Å−1 did achieve enough populations to reach stimulated emission.

Stimulated emission in spasers manifests as a sudden transfer of energy from the exciton state of

the gain medium to the plasmon state of the metal, as shown in Ref(5). Stockman referred to this

as an ”avalanche,” In our nonuniform gain medium, this appears as multiple different locations



Figure 5.7 Here the number of plasmons are plotted with respect to time. The incident
pulse strength is F = 0.25V Å−1 and populates only the K valleys in the TMDC. We can see
in this plot that this effect causes only one plasmon mode to be stimulated as the competing
mode stays nearly 0.



Figure 5.8 Here the number of plasmons are plotted with respect to time. The incident pulse
strength is F = 0.30V Å−1 and populates both the K and K ′ valleys in the TMDC. We can
see in this plot that this effect causes both plasmon modes to be stimulated.



decaying at once. Fig. 5.6 (A) shows this avalanche. Fig. 5.6 (A) also shows some excitons

returning to their excited states a few picoseconds after the avalanche. This is due to an inherent

feedback mechanism in the spaser where excitons stimulating plasmons are just as likely as plasmons

restimulating excitons. The feedback mechanism is not strong enough to create a second avalanche

effect, as most plasmon energy is lost through radiation.

For a field strength of F = 0.25V Å−1, our initial goal of a stimulated only one plasmon mode

was achieved. This was the only field strength were this occurred, however. In Fig. 5.4, we can see

that only the K valleys were populated and in Fig 5.7, we can see that only one plasmon mode was

stimulated even though it quickly decayed. Therefore, for our specific parameters, F = 0.25V Å−1

exists as a ”sweet spot” in which a circularly polarized pulse can stimulate a select plasmon mode

and become amplified as an elliptically polarized pulse as shown in Fig 5.9.

Fig. 5.8 shows the generation of plasmons with high field strengths. Most notably, both modes

are generated nearly equally in all higher cases as well as valley polarization decreases. The feedback

mechanism is very selective even when valley polarization decreases. When we run the calculation

with a hypothetical uniform population in one mode, we find that both plasmon modes are still

generated initially. For example, if the K valley conduction band is pumped from a single pulse to

sixty percent and the K ′ conduction band population remains zero, both the m = 1 and m = −1

modes will accumulate plasmons as exciton decay in the K valley stimulates plasmon creation in

both. A uniform, hypothetical K valley conduction band populates both valleys because of the

Rabi frequency’s dipole nature at our given radius of TMDC flake which determines the feedback

mechanism’s behavior. The feedback mechanism is the most critical aspect of the topological

spaser. Since the initial avalanche into the plasmon modes is unselective in our case, it is a poor

method to generate controllable modes for purposes in ultra-fast information processing. After



this, however, the Rabi frequencies are strongly coupled to the K or K ′ valley, and each plasmon

mode only transfers its energy into its coupled valley. A mathematical description of the valley to

mode coupling can be found in Ref(36).

The critical challenge for the type II topological spaser is how to better control the stimulation

of one mode over the other. This might be achieved by manipulating system parameters even when

the initial valley polarization is low, and the Rabi frequency is coupled to both modes. As shown

above, in this chapter, the peak number of plasmons in a mode depends on several initial conditions.

For example, more initial plasmons in a specific mode or initial exciton populations in a particular

valley. These conditions will create two unequal peaks of plasmons, with one mode containing a

higher number than the other. The larger the separation between the initial conditions of both

modes, the greater the separation in the resultant plasmon peaks. This critical feature defines

whether the topological spaser is selective or not. Suppose one plasmon mode reaches a higher

peak amount of plasmons than the other after the initial exciton-plasmon cycle. In that case, it

is more likely that those plasmons, coupled to a specific valley in the TMDC, generate a large

enough electric field to stimulate exciton generation in one valley instead of the other. This causes

only one valley to reach the threshold value for the avalanche effect and creates a second situation

that mirrors the initial conditions where one exciton valley is more populated than the other. One

mode has more initial plasmons than the other for the second cycle. The second cycle has a lower

number of plasmons than the first because the plasmons that populated the opposite valley failed

to create enough excitons to reach the necessary threshold for stimulated emission. Thus, the

excitons slowly decayed individually. So, the second mode acts as a loss for the other mode. This

is the ”competition” between modes as described in previous literature. For the selective nature

of the topological spaser to appear, the separation between the number of plasmons generated in



each mode would have to increase until the energy loss generated by one mode not reaching the

threshold for the avalanche effect causes one mode to decay to zero before the other. This means

that the last exciton-plasmon cycles are selective and generate only one resultant plasmon mode.

5.3.1 Far-Field Radiation

The derivation for the dipole moment of the far field radiation follows Ref(37). The spasing system

is an oscillating electric dipole with two significant contributions: the silver nanospheroid and the

TMDC layer.

dtotal = dTMDC + dMetal (5.34)

The TMDC layer’s contribution is described by the non-diagonal part of the density matrix of

TMDC:

dTMDC =
∑

K =K,K′

ρK dK eiωt + ρ∗K d∗
K e−iωt (5.35)

While the contribution of the silver nanospheroid is determined by calculating the electric field

inside the metal.

dMetal =

∫
V

Re[ϵmetal − ϵd]

4π
Fm(r, t)dr (5.36)

The nanospheroid’s contribution is directly proportional to the number of plasmons in each

mode. Here we find that the Far-Field Radiation emitted by the Type II topological spaser is also

affected by the lack of valley polarization in the TMDC monolayer. Our results are similar to when



the second regime of a spasing is when both modes are generated, and the expected polarization of

the radiation is elliptical; however, the similar peaks of plasmon generation in Fig. 4, the radiation

in each case in linearly polarized.

5.3.2 Conclusion

This chapter has more accurately described type II topological spasers’ potential behavior and

limitations. As a result, we can be confident that the system has two topologically protected modes

equally capable of spasing. However, choosing which mode is stimulated is the key and the most

difficult one to achieve. Future research could focus on pulse pumping different topological materials

with properties that favor more oscillations between the plasmon modes and the excitons or a

continuation of research into continuous pumping to ensure the feedback mechanism is permanently

active.



Figure 5.9 Here the Electric Field components of the resultant far field radiation are plotted
with respect to time. The incident pulse strength is F = 0.25V Å−1 and populates only the
K valleys in the TMDC. We can see in this plot that this effect causes only one plasmon
mode to be stimulated as the competing mode stays nearly 0 in Fig 5.7. This results in the
incoming circularly polarized pulse being transformed into an elliptically polarized one.



Figure 5.10 Here the Electric Field components of the resultant far field radiation are plotted
with respect to time. The incident pulse strength is F = 0.30V Å−1 and populates both the
K and K ′ valleys in the TMDC. We can see in this plot that this effect causes both plasmon
modes to be stimulated in Fig 5.8. This results in the incoming circularly polarized pulse
being transformed into a linear polarized one.
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CHAPTER 6

CONCLUSION

In conclusion, we have demonstrated that Chiral Berry Plasmons can be effectively tuned by changes

in their environment and the Fermi level and bandgap of the material. This suggests the potential

for new and exciting applications in plasmonics and photonics. The topological nanospaser is

an emerging area of research with great potential for practical applications, and our work has

contributed to the understanding of the underlying physics of these systems. Future directions for

topological nanospaser research include investigating alternative materials to MoS2 as potential

gain media and exploring new ways to generate enough excitons for plasmons to form a spaser,

which is currently a challenge in the field. One possible solution could be to apply the three-

level spaser equations derived in Chapter 4 to the topological spaser in Chapter 5. Additionally,

further research could address higher pumping pulse strengths and the lack of valley polarization

in the topological spaser. Our findings pave the way for future investigations and advancements in

topological nanospasers and Chiral Berry Plasmons. The ability to tune these plasmons effectively

is a significant step forward in the field, and we are excited to see where this research will lead.
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