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ABSTRACT 

Coffee production systems have resulted in simplified landscapes with fragments of natural 

and semi-natural vegetation characterised by loss of biodiversity, high pests and disease 

incidences and excessive pesticide input. Consequently, the resilience of coffee landscapes 

against climate change impacts such as high diurnal temperature range, erratic rains, and 

prolonged droughts is weakened. Equally, controlling pests and diseases using natural enemies 

is no longer effective due to the unselective use of harmful chemicals. The present study aimed 

to understand the role of landscape ecology in a typical smallholder coffee-based landscape in 

creating suitable ecological conditions for the proliferation of coffee pests, specifically, coffee 

berry borer (CBB), Hypothenemus hampei, and the Antestia bugs Antestiopsis thunbergii 

(ABT) and A. facetoides (ABF) in an important coffee growing zone in central Kenya. The 

study also examined the impact of limiting temperature rise to below 2oC on habitat suitability 

for growing Arabica coffee to guide the implementation of the Paris agreement, which requires 

countries to stabilize the global mean surface temperature rise to below 1.5oC and in the worst-

case scenario, well below 2.0oC above the pre-industrial levels. Firstly, the study explored 

Sentinel 2, Landsat 8 and PlanetScope datasets to characterise the smallholder coffee-based 

landscape and the level of fragmentation in each agro-ecological sub-zones of the upper 

midland (UM) agro-ecological zone. Sentinel 2 provides a robust dataset for land use and land 

cover (LULC) classification, with shortwave near-infrared and green bands being critical for 

classifying coffee bushes. Coffee was the dominant cover type in the higher agro-ecological 

sub-zones of Kenya, whereas annual crops dominated the lower sub-zones. Secondly, the study 

sought to identify the significant spatial scale and landscape structure that influenced the 

abundance of the three coffee pests, given that CBB had a low dispersal capacity and vice versa 

for the antestia bugs. The results showed that the pests foraged within a radius of 300m, with 

CBB having the shortest optimum foraging distance of 100m. The CBB abundance was 

strongly influenced by contiguous coffee patches, especially at higher elevations, whereas 

adjacent patches were more suitable for antestia bugs, especially cropland in the lower agro-

ecological sub-zones. Thirdly, the shade and edge effect on microclimate and coffee pest 

abundance were examined. Generally, CBB preferred shaded coffee in the lower sub-zones and 

full-sun coffee in the higher sub-zones. For Antestia bugs, ABT preferred shaded coffee in all 

the agro-ecological sub-zones, whereas ABF preferred full-sun coffee, especially in the low 

sub-zones. Notable also was the influence of the edge effect of agroforest in lowering the mean 

temperature of full-sun coffee plots. Finally, the study looked at the impact of limiting 
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temperature rise to below 2oC under the Representative Concentration Pathways (RCP) 2.6 

scenario on habitat suitability for growing Arabica coffee. The results showed that the area 

under coffee will increase, especially in 2070, and the coffee suitable range will shift to lower 

sub-zones. Overall, the study revealed that the existing landscape structure in smallholder 

coffee agrosystems favours coffee pests proliferation. Pest pressure at the lower sub-zones is 

high, especially in coffee plots without shade. However, implementing climate-friendly 

policies will reverse the current trend, making the lower sub-zones more suitable for growing 

Arabica coffee. An increase in acreage for planting coffee will translate to more yields, which 

could alleviate poverty and grow Kenya’s gross domestic product. The study underscores the 

urgency for smallholder farmers to shift their coffee production systems to climate-smart 

options such as increasing shade in their plots. This will increase their landscape resilience 

against climate change and pest control. Additionally, policy makers need to implement climate 

policies and promote clean energy development to limit temperature rise by the end of the 

century. 
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CHAPTER 1: INTRODUCTION 

1.1 A warming world 

The sixth assessment report (AR6) of the Intergovernmental Panel on Climate Change (IPCC) 

affirmed that anthropogenic activities primarily drive the current state of the climate. In the last 

two decades, the global mean surface temperature has risen by 0.99oC compared to the pre-

industrial period. Human-induced emissions of greenhouse gases (GHG) have contributed to 

global warming of 1 – 2oC, with agriculture, forestry and other land use (AFOLU) accounting 

for 23% of the total anthropogenic emissions. Specifically, the emissions from AFOLU consist 

largely of 13% of carbon dioxide, 44% of methane and 81% of nitrous oxide (IPCC, 2021). As 

the world warms, extreme weather patterns such as flooding, prolonged droughts, heatwaves, 

dust storms and tropical cyclones are becoming more frequent, threatening human life and the 

environment. For instance, the Australian bush fire in 2019 – 2020 that burnt over 17 million 

hectares of land was propelled by prolonged drought with intense heatwaves and winds, 

resulting in the loss of human lives, wildlife, livelihoods and internal displacements of families 

(du Parc and Yasukawa, 2020). Climate change is also curtailing the efforts to achieve food 

security, particularly in developing countries, by negatively impacting crop yields and food 

systems value chain (Vermeulen et al., 2012). 

 

Despite the expanding area under agricultural production, especially in the commercial crops, 

high yielding monocultures with intensive pesticides and fertiliser applications are becoming 

vulnerable to increased pest and disease pressures (Tscharntke et al., 2005). The resistant 

cultivars and chemical controls eventually become ineffective as the pathogens develop 

resistance (Robinson, 1977). Equally, many crops are grown in environments different from 

their native regions, where they are susceptible to new pathogens with limited self-defense 
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mechanisms or natural enemies. Furthermore, the loss of biodiversity and fragmentation of 

natural and semi-natural vegetation in agricultural landscapes has led to the population decline 

of natural enemies (Plantegenest et al., 2007; Veres et al., 2013). Thus, Integrated Pest 

Management (IPM) strategies and climate-smart agriculture are being developed globally to 

reduce pest pressure and to adapt and mitigate against climate change impacts (Ribeyre and 

Avelino, 2012). For example, cocoa and coffee farmers are currently adopting agroforestry as 

a nature-based solution against climate change while improving the ecosystem services in their 

production system (Hajian-Forooshani et al., 2014; Suárez et al., 2021). 

 

1.2 Coffee production 

Coffee is one of the major crops with global socio-economic value. It is the largest traded 

beverage globally, with a global market share of  90 Billion USD  (DaMatta et al., 2007). It 

belongs to the family Rubiaceae of the genus Coffea L. with over 100 species, but only three 

major species have economic importance; Coffea arabica (Arabica coffee), Coffea canephora 

(Robusta coffee) and Coffea liberica (Liberica coffee), which contribute to 70%, 29% and <1% 

of total global production, respectively (Anthony et al., 2002; Davis et al., 2006). Arabica 

coffee originated from Ethiopian highlands, the Boma plateau of Sudan and Mt. Marsabit in 

Kenya (Anthony et al., 2002), whereas, Robusta and Liberica coffee are native to Equatorial 

forests in the Congo Basin, Equatorial Guinea and the Lake Victoria region (Waller et al., 

2007). Over 500 years ago, Arabica coffee was first domesticated away from its native region 

in the mountains of Yemen. Since then, it is grown in over 60 countries and islands on the five 

continents (Clarence-Smith and Topik, 2003).  

 

Globally, the largest coffee producers are smallholder farmers with an average farm size of 1 

hectare, creating employment for over 25 million farmers and over 75 million people across 
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the production chain (DaMatta et al., 2007; Ovalle-Rivera et al., 2015; Talhinhas et al., 2017). 

Brazil, Colombia, Vietnam and Indonesia are the largest producers, contributing up to 65% of 

the total market share, while in several countries in the developing world, such as Kenya, 

Ethiopia, Burundi and Uganda, it is a key foreign exchange earner contributing significantly to 

their gross domestic production (Ovalle-Rivera et al., 2015). Despite increased acreage under 

cultivation, global coffee production has declined with fluctuating market prices (ICO, 2016). 

The cost of production has increased, forcing smallholder farmers to uproot their coffee bushes 

for other viable economic activities (Waller et al., 2007). Coffee pests and diseases contribute 

largely to this decline, which is further aggravated by the impacts of climate change 

(Chakraborty and Newton, 2011; Davis et al., 2012). 

 

1.3 Coffee pests and climate change 

The coffee tree hosts approximately 3,000 species of pests and pathogens worldwide (Ribeyre 

& Avelino, 2012; Waller et al., 2007). This wide range of hosts is due to the widespread 

cultivation of coffee from its native origin in Africa and predominantly in simplified 

landscapes. Furthermore, the perennial nature of coffee can support the lifecycles of pests and 

diseases for more than 30 years (Waller et al., 2007). Due to the high cost of chemical control, 

smallholder farmers primarily rely on cultural methods to control coffee pests and diseases. 

Moreover, the upsurge of coffee pests and diseases is now frequent due to global warming, 

even in previously unsuitable regions (Ovalle-Rivera et al., 2015). Notably, the habitat range 

for coffee berry borer is expanding to higher elevations (Atallah et al., 2018), and the humid 

areas are becoming more favourable for the coffee berry disease (Kebati et al., 2016; Ribeyre 

& Avelino, 2012). By the end of the 21st century, IPCC projects that temperature will have 

risen by 2 oC – 5.8 oC across all the emission scenarios if the current activities continues 

(Magrach and Ghazoul, 2015) 
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If current global emissions continue unmitigated, global warming will render 30 - 50% of 

current global coffee cropland unsuitable, leading to geographic shifts to higher altitudes (Bunn 

et al., 2015). Ideally, Arabica and Robusta coffee grow within an optimum temperature range 

of 18 to 23o C and 23 to 26o C, respectively, with a mean annual rainfall of 1000mm in well-

drained volcanic soils (pH range of 4 – 6) at an altitude of 1400 to 2000 masl (Camargo, 2010). 

Beyond the optimum temperature range leads to accelerated ripening of coffee beans with low 

cup quality, depressed growth and yellowing of leaves (Davis et al., 2012; Lott et al., 2009). 

Additionally, a short dry spell that lasts for two to four months is required to stimulate 

flowering, otherwise, continuous rainfall year-round leads to scattered harvest, hence low 

production (DaMatta et al., 2007). The coffee tree physiology is currently under threat due to 

the rising temperature and extreme weather patterns, making it more susceptible to pest and 

disease infestation and low yields (DaMatta et al., 2007). Coffee berry borer and Antestia bug 

species are among the most devastating coffee pests contributing to 90% and 45% of crop loss, 

respectively (Mosomtai et al., 2021). Recent studies on their thermobiology indicate that 

increasing temperature will increase the number of eggs produced by females and shorter life 

cycles, increasing the number of generations per year (Azrag et al., 2017).  

 

1.4 Coffee agroforest system 

Coffee cultivation is increasingly adopting the agroforest system, also known as shade coffee, 

as a climate change adaptation strategy (Vaast et al., 2016). Shade coffee mimics the natural 

habitat, which grows as an understorey crop in its native land in East and Central Africa 

(Anthony et al., 2002). However, many smallholder farmers in East Africa still plant their 

coffee either as a mono-crop, also known as full-sun coffee, or intercropped with subsistence 

crops in plots less than two hectares (Clarence-Smith and Topik, 2003). Shade coffee has 
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several advantages over full sun coffee; these include microclimate modification that buffers 

coffee trees from extreme weather (Ehrenbergerová et al. 2017), protection of soils from 

evapotranspiration during extended dry periods (Cannavo et al., 2011), increased biodiversity 

(Caudill et al., 2015) and reduction of pests and disease infestation (Bukomeko et al., 2018). 

Furthermore, shade coffee has a higher market value than full sun coffee, hence a better selling 

price (Albertin and Nair, 2004). However, these advantages are not universal in all coffee 

systems but site and cultivar specific. Shade, especially in higher elevation has been to shown 

to reduced bevarage quality such as body, fragrance, sweetness and acidity and the advantages 

being age specific (Bosselmann et al., 2009). For the case of Robusta coffee, older trees (>16 

years) have been shown to benefit from shade while younger trees are negatively impacted 

(Piato et al., 2020).  

 

Over the years, intensive coffee cultivation and expansion have modified the natural landscape 

in the tropics (Magrach and Ghazoul, 2015). Furthermore, cultivars, chemical controls, and 

landscape fragmentation have made coffee trees more susceptible to continually evolving 

pathogen strains (Meehan et al., 2011). Recent studies have shown concerted efforts to quantify 

the influence of landscape structure on coffee pests and diseases, especially at the plot level. 

The general approach by most studies, such as Samnegård et al. (2014), involves the general 

classification of coffee plots based on agronomic practices, topographic features, soil profiles, 

shade characteristics, climate data, and pest infestation and making inferences to the larger 

landscape scale. Despite these efforts, accurately describing landscape structure at plot scale in 

view of local to regional scale is an uphill task due to the cost and time needed to collect in-

situ data (Cunniffe et al., 2015). Landscape ecology provides an opportunity to address this 

challenge by using remote sensing data to characterize and analyze landscapes, seamlessly 
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covering large areas (Turner et al., 2001). This study adopted a multi-data approach linking 

coffee pest population dynamics to landscape characteristics from plot to regional scale. 

 

1.5 Justification of the study 

The impact of climate change on crop production is globally recognised (IPCC, 2019). 

Unpredicted weather patterns, the insurgence of pests and diseases, and the high cost of input 

disadvantage smallholder farmers who cannot meet the cost incurred. Expansion of croplands 

with single monocultures has resulted in simplified landscapes with pests and diseases 

becoming more aggressive due to resistance to cultivars and chemical controls. Furthermore, 

the croplands have limited biological control from their natural enemies due to the loss of 

biodiversity in the simplified landscapes. In Europe, frameworks such as Agri-environmental 

schemes have been implemented to restore biodiversity and ecosystem service provision in 

agricultural landscapes (Alison et al., 2017). Landscape management efforts still face critical 

challenges in Africa, especially in smallholding. For example, farming systems are complex in 

coffee landscapes, and plots are less than two hectares. Consequently, mapping efforts to 

provide baseline data that inform policy and planning are limited and not up to date.  

 

For the coffee landscape in Kenya, significant progress has been made in developing cultivars 

resistant to diseases such as Ruiru 11 and Batian or with high yields such as SL28 and 

understanding the epidemiology of coffee pests and diseases (Hindorf and Omondi, 2011). On 

the other hand, few studies have been done to characterise smallholder farming systems and 

their contribution to defining local landscape ecology for supporting coffee and its pest 

populations, unlike in South America. The largest coffee-producing countries have studied the 

influence of landscape management on coffee pests broadly (Avelino et al., 2012; Bebber et 
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al., 2016; Borkhataria et al., 2012; Messing, 2012; Ortega-Huerta et al., 2012). Unfortunately, 

the context of smallholder coffee farmers in the two continents varies, making it difficult to 

make a blanket conclusion on the best practices to be adopted. Therefore, to recommend 

spatially explicit best practices, there is a need to define the landscape context of African 

smallholder coffee farmers and their agronomic practices in relation to coffee pests and climate 

change. 

1.6 Aim and objectives 

This study aims to understand the landscape ecology of smallholder coffee landscapes and its 

influence on the proliferation of coffee pests. To achieve this aim, the study pursued the 

following objectives; 

i. To explore the use 10-20-meter Sentinel 2, 30-meter Landsat 8 and 3-meter 

PlanetScope for characterising landscape structure in coffee agro-ecological sub-zones  

ii. To determine the influence of multiscale spatial arrangement of land use and land cover 

(LULC) types on pests and their respective dispersal ability  

iii. To evaluate the role of shade and edge effect on microclimate modification and pest 

abundance across the agro-ecological sub-zones 

iv. To establish impacts of climate change on range shifts of coffee growing zones in 

Kenya under current and future climate scenarios  

1.7 Scope of the study 

This study focuses on coffee pests, specifically, coffee berry borer (Hypothenemus hampei) 

and antestia bugs (Antestiopsis thunbergii and A. facetoides). The species were chosen due to 

their varying dispersal ability, dominance in the study area, and economic importance. Coffee 

berry borer has a limited dispersal ability of less than 100m, whereas the antestia bugs have a 

higher dispersal capacity of up to 300m (Mosomtai et al., 2020). The species are representative 
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of the general dispersal capacity of many coffee pests, allowing inferences to be made 

regarding the landscape contribution to population dynamics of coffee pests. A hierarchical 

multi-data approach was used to address the ecological scales of the coffee agrosystem where 

bioclimatic variables addressed the regional scale, remote sensing data for the landscape scale 

and microclimate data for the plot scale. Shade management is the only agronomic practice 

included in this study. Other practices such as the use of pesticides, fertilisers, pruning and 

weeding, which influence the pest population, are out of the scope of the study. 

 

1.8 Outline of the dissertation 

This thesis is structured into six chapters. Chapters 1 and 6 consists of the general introduction 

and the synthesis of the study. The remaining chapters adopt manuscript format, with chapters 

2 and 3 already published, while Chapters 4 and 5 are currently under preparation for 

publication. Chapter 2 explores the utility of remotely sensed datasets from different satellite 

systems and random forest classifier in classifying LULC in the heterogeneous coffee 

landscape of smallholder farming in central Kenya. Using the generated LULC map, Chapter 

3 looks at the influence of landscape structure on the population dynamics of two important 

coffee pests, coffee berry borer and two antestia bugs, which have varying flight capacity and 

feeding preferences. Chapter 4 identifies the spatial scale to which the surrounding landscape 

modifies the microclimate of coffee plots and its implication on coffee berry borer and antestia 

bug abundance. Finally, chapter 5 presents plausible scenarios of shifts in coffee-growing areas 

if global warming is kept under 2oC and its implication on the studied coffee pests. It further 

identifies which environmental variables are vital in predicting habitat suitability for growing 

coffee. 
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CHAPTER 2: LANDSCAPE FRAGMENTATION IN COFFEE AGRO-

ECOLOGICAL SUB-ZONES IN CENTRAL KENYA: A MULTI-SCALE REMOTE 

SENSING APPROACH 

 

This chapter is based on: Mosomtai, G., Odindi, J., Abdel-Rahman, E.M., Babin, R., Fabrice, P., 

Mutanga, O., 2020. Landscape fragmentation in coffee agro-ecological sub-zones in central 

Kenya : a multiscale remote sensing approach. J. Appl. Remote Sens. 14. 

https://doi.org/10.1117/1.JRS.14.044513  

 

2.1 Abstract  

Smallholder agro-ecological sub-zones produce an array of crops, occupying large areas 

throughout Africa but remain largely unmapped. This study explored multisource satellite 

datasets to produce a seamless land use land cover (LULC) and fragmentation dataset for upper 

midland (UM1-4) agro-ecological sub-zones in central Kenya. Specifically, the utility of 

PlanetScope, Sentinel 2, and Landsat 8 images for mapping coffee-based landscape were tested 

using a random forest (RF) classifier. Vegetation indices (VI), texture variables, and 

wavelength bands from each satellite data were used as inputs in generating four RF models. 

A LULC baseline map was produced that was further analyzed using FRAGSTAT to generate 

landscape metrics for each agro-ecological sub-zones. The wavelength bands model from 

Sentinel 2 had the highest overall accuracy with shortwave near-infrared and green bands as 

the most important variables. In UM1 and UM2, coffee was the dominant cover type, while 

annual and other perennial crops dominated the landscape in UM3 and UM4. The patch density 

for coffee was five times higher in UM4 than in UM1. Since Sentinel 2 is freely available, the 

approach used in the present study can be adopted to support land use planning in smallholder 

agroecosystems.  
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2.2 Introduction 

The fast-paced conversion of global terrestrial land into croplands, mainly attributed to the 

growing human population, continuously exerts pressure on flora and fauna and results in 

habitat loss and disturbance of species communities and their interactions (Tscharntke et al., 

2012). In Africa, agricultural landscapes typically vary from extensive mono-crops with 

fragments of isolated natural vegetation to mixed crops interspersed with semi-natural 

vegetation remnants that form a matrix that can impede or facilitate species interactions (Martel 

et al., 2019). Unlike in Europe, where land-use policies have been developed and implemented, 

Africa’s agricultural landscapes remain largely unplanned with limited baseline data that can 

guide sustainable development (Saah et al., 2019).  

 

Smallholder farmers in Africa practice approximately 13 general farming systems types.  

According to Garrity et al. (2012), these systems are maize mixed farming systems, agro-

pastoral farming systems, cereal-root crop mixed farming systems, root and tuber crop farming 

systems, highland perennial farming systems, highland mixed farming systems, humid lowland 

tree crop farming systems, pastoral farming systems, fish-based farming systems, forest-based 

farming systems, irrigated farming systems, sparse arid pastoralism and oases farming systems, 

urban and peri-urban farming systems. Typically these farms form complex and heterogeneous 

landscapes, with farms commonly small and intercropped, particularly in populated regions 

(Garrity et al., 2012). Capturing these landscapes' structures for ecological applications requires 

accurate land use and land cover (LULC) classifications generated from high-resolution 

satellite imagery with sufficient reference data. Ecological processes such as spillover edge 
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effects of biodiversity across adjacent LULC types (Duflot et al., 2016), landscape connectivity 

effects on species flow (Diekötter and Crist, 2013), or the effects of fragmentation on patch 

size (Smith et al., 2011) in sustaining a viable species population can be estimated using LULC 

information (Avelino et al., 2012). Thus, accurate and up-to-date LULC maps are needed to 

capture the dynamics and better represent the heterogeneities that characterise specific agro-

ecological setups. 

 

Whereas global initiatives like the 300m GlobCover 2009 and 1km Global Land Cover 2000 

have generated LULC baseline datasets, they remain insufficient in providing accurate maps 

at regional to sub-national scales (Vancutsem et al., 2013). LULC legends in these global 

datasets are generated to estimate global biogeochemical processes such as carbon 

sequestration, which have limited application to local scale dynamics (Reis et al., 2018). Data 

gaps, inconsistent acquisition periods, cloud cover, and insufficient validation data, especially 

in the context of Africa, increase the error margins in using the existing global maps (Hansen 

et al., 2016). According to  Saah et al. (2019), policy makers in developing countries often use 

outdated maps or opt for global datasets that do not meet their specific needs. Furthermore, 

their unwillingness to share the existing data across government agencies, creating maps in 

silos that cannot be harmonized, low budget allocation, and inadequate human resources slow 

the creation of useful baseline datasets. 

 

Remotely sensed data are the major source of LULC information, and the existing satellite 

datasets have different spatial, spectral, and temporal characteristics with differing cost 

implications that require users to make trade-offs in their utilization as per their objectives (Li 

and Roy, 2017). In the tropics, continuous cloud cover most of the year limits the use of optical 

satellite datasets; conversely, the cost of using below cloud options such as drones or flight 
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campaigns are too expensive for extensive and wide-area mapping. A critical agro-ecological 

zone in the tropical regions is the coffee-based landscapes. Coffee is grown by 25 million 

smallholders in over 60 countries in the tropics and a significant source of gross domestic 

product in many developing countries. In Kenya, for instance, coffee is produced by 700,000 

smallholder farmers and 3000 large estates, contributing approximately $230 Million of the 

GDP  annually (ICO, 2019). Smallholder farmers grow coffee on less than 2-hectare farms, 

either as agroforestry systems (i.e., shade coffee), intercropped with mainly subsistence crops, 

or mono-cropping systems (i.e., full-sun coffee) (Anthony et al., 2002). Currently, there is no 

spatially explicit map for these coffee systems because it is often generalized either as 

croplands (intercropped coffee), shrublands (full-sun), or forest land (agroforest) in many 

tropical countries.  

 

Existing coffee maps at the global scale are probability distributions generated from ecological 

niche models generated from climate variables, environmental layers, and presence-only data 

(Bunn et al., 2015). These maps limit further analysis of landscape composition and 

configuration. LULC maps from satellite imageries are mainly the primary baseline data for 

analysis in landscape ecology. Furthermore, LULC types and their spatial patterns vary 

according to different landscapes such as agro-ecological zones (AEZ) and landforms (e.g., 

rivers, mountains, cliffs, coasts, plateaus, etc.). They are often generalized in probability 

distribution maps, yet the subtle dynamics in LULC types influence ecological processes at 

varying scales (Ketema et al., 2020). 

 

Herein, the hypothesis is that the landscape structure varies across the agro-ecological sub-

zones in the coffee-based landscape. Using a random forest (RF) classifier and FRAGSTAT, 

this study aims to characterize the landscape setup in agro-ecological sub-zones of a coffee-
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based landscape in central Kenya using an optimal satellite dataset. Both tools provide a unique 

opportunity to determine landscape patterns in smallholder farming areas. RF classifier 

(Breiman, 2001) can handle non-linear effects in complex datasets with high accuracy and 

speed, while FRAGSTAT is an efficient tool that has become a reference in landscape 

ecological studies that involve highly complex agro-ecological systems (Ochungo et al., 2019). 

 

2.2 Study location 

The present study was conducted in Murang’a County, a major coffee and tea growing region 

in central Kenya. The County borders Nyeri and Kirinyaga Counties in the north, Machakos 

and Embu Counties in the east, and Kiambu County in the south (inset of Figure 2.1). The mean 

annual temperature and rainfall range from 18oC – 21oC and 1000 – 1500 mm within the coffee 

growing zone. The rainfall pattern is bimodal, where long rains occur from March to May, 

while short rains occur from October to December (Jaetzold et al., 2007). Consequently, this 

coincides with the coffee planting, management schedules (e.g., pruning, fertilizer and 

pesticide application) and harvesting season of the first and the main crop, respectively (ICO, 

2019). Due to climate change, however, erratic rains and prolonged droughts have resulted in 

inconsistent planting seasons and interference with coffee tree phenology, making it more 

susceptible to pest and disease infestations and low yields (DaMatta et al., 2007).  

 

A transect of 20240 ha at latitude -0.8295o and -0.7538o and longitude 36.9472o and 37.1647o 

was selected to represent the entire coffee belt (Figure 2.1). The study was conducted in the 

context of a bigger project that aimed to improve the coffee value chain for smallholder 

farmers. This informed the choice of the study transect, which covered all the coffee agro-

ecological sub-zones (i.e., upper midland; UM1 - UM4). Specifically, coffee grows in four sub-

zones that cut across an elevation gradient of 1300 – 2000 m a.s.l. (above sea level)  (Jaetzold 
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et al., 2007). UM1 is the transition zone for growing tea and coffee. UM2 and UM3 are the 

primary and marginal coffee-growing zones, respectively. Unlike UM1 – 3, where coffee is 

rainfed, at UM4, coffee is grown under irrigation (Jaetzold et al., 2007). Coffee is grown either 

as full-sun, intercrop, or under shade in the study area. Common shade trees include macadamia 

(Macadamia integrifolia), avocado (Persea americana), mango (Mangifera indica), and 

hedgerow trees like grevillea (Grevillea robusta), while intercrops include banana, maize, bean 

and sweet potato on an average farm size of 0.5 ha (GoK, 2018).  

 

Figure 2.1: Map of agro-ecological zones of Murang’a County, Kenya, and position of the 

study transect 

 

The topography of the region is undulating, with dissected hills sloping from northwest to 

southeast (GoK, 2018). Soils on the hills and minor escarpments are cambisols and rigosols 

formed on the homogenous basement system of gneiss rocks. In contrast, soils on the plateaus 

and foot-ridges such as nitisols developed on tertiary igneous rocks. Nitisols contain high 
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nutrients from their primary minerals and montmorillonite clay, which make them suitable for 

coffee and tea plantation.  

 

2.3 Methodology 

Figure 2.2 presents the datasets and summarizes the methods used in the study. The initial stage 

involved pre-processing the satellite images and deriving vegetation indices and texture 

variables. The second stage involved running the RF model to generate LULC maps, and the 

final step was the analysis of the LULC map to generate landscape fragmentation metrics for 

each agro-ecological sub-zones. 

 

Figure 2.1: Flowchart of the datasets and methods used in the study 

 

2.3.1 Datasets  

2.3.1.1 Satellite imagery used 

 PlanetScope (PS) is a high-resolution satellite dataset from Planet labs that is available 

commercially (Table 2.1). In contrast, Sentinel 2 - S2 (high to medium resolution) and L8 

(medium-resolution dataset) are freely available from the European Space Agency (ESA), and 

the United States Geological Survey (USGS), respectively. PS is a constellation of 130 CubeSat 

satellites with daily revisit time of the entire land surface, which measures the reflected energy 

within the blue (B), green (G), red (R), and near-infrared (NIR) wavelengths at 3 m spectral 

resolution (Planet Labs, 2016). S2 measures a broader range of the electromagnetic spectrum 
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ranging from visible, near-infrared, and shortwave using the MultiSpectral Instrument (MSI) 

sensor at 10 m, 20 m, and 60 m spatial resolution, with a five day revisit time (Zhang et al., 

2018). L8 measures similar wavelengths as S2 at 30 m spatial resolution (Table 2.1), however, 

S2 has additional red-edge bands, which have proven useful in various vegetation, agriculture, 

and LULC monitoring studies (Tawona et al., 2020). Due to the cost implications of high 

resolution images, PS was used in this study to test the utility of commercial satellites over 

freely available satellites and the expected trade-offs in the overall accuracy.  

Table 2.11: Summary of spatial and spectral characteristics of Sentinel-2, Landsat 8, and 

PlanetScope satellite imagery 

Band Description Wavelength range (μm) Spatial resolution (m) 

Sentinel 2 

B2  Blue 0.439 - 0.535 10 

B3  Green 0.537 - 0.582 10 

B4  Red 0.646 - 0.685 10 

B5  Red edge1 0.694 - 0.714 20 

B6  Red edge2 0.731 - 0.749 20 

B7  Red edge3 0.768 - 0.796 20 

B8  NIR 0.767 - 0.908 10 

B8a   Narrow NIR 0.848 - 0.881 20 

B11  SWIR1 1.539 - 1.681 20 

B12  SWIR2 2.072 - 2.312 20 

Landsat 8 

B2  Blue 0.452 - 0.512 30 

B3  Green 0.532 - 0.590 30 

B4  Red 0.639 - 0.673 30 

B5  NIR 0.851 - 0.879 30 

B6   SWIR1 1.567 - 1.6511 30 

                                                           
1 Refer to Supplementary Table 2.1 for details on the scene description for each satellite dataset 
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B7   SWIR2 2.107 - 2.294 30 

PlanetScope 

B1  Blue 0.455 - 0.515 3 

B2  Green 0.500 - 0.590 3 

B3  Red 0.590 - 0.670 3 

B4  NIR 0.780 - 0.860 3 

 

Good-quality images with less than 2% cloud cover were selected for this study. These images 

were found in August, October, and December 2017 for S2, PS, and L8, respectively. 

Supplementary Table 2.1 provides a detailed description of the image scenes used in this study. 

The images were already orthorectified to remove the topographic effects. Due to the bimodal 

rainfall patterns, the study area has two growing seasons annually that overlap (Ovuka and 

Lindqvist, 2000). Hence, the landscape has continuous cover crops all year round. In the pre-

processing stage, the images were converted into surface reflectance values for further analysis. 

L8 bands were pan-sharpened to 15 m resolution using the Brovey transform method in QGIS 

(Vivone et al., 2015), while S2 bands of 20 m were resampled to 10 m spatial resolution (Figure 

2.2). Out of 43 vegetation indices (VIs), variance inflation factor was used to select 11 

uncorrelated VIs and five biophysical variables presented in Table 2.1. For texture analysis, 

ten indices were generated that represent contrast, statistic, and orderliness features from the 

NDVI band of each satellite dataset, as outlined in Table 2.2. VIs have been shown to be 

sensitive to chemical and morphological aspects of the leaf organs, which are used to estimate 

water content, plant types, nutrients content and pigmentation, among others.   

Table 2.2: Summary of vegetation indices (VI),  biophysical and texture variables used in the 

study 

Variable Description References 

Vegetation index 
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RI Redness Index (Mathieu et al., 1998) 

NDPI Normalized Difference Pond Index  (Lacaux et al., 2007) 

MSAVI Modified Soil Adjusted Vegetation Index   (Qi et al., 1994) 

GEMI Global Environmental Monitoring Index   (Xue and Su, 2017) 

BI2 Second Brightness Index   (R. Escadafal, 1993) 

BI Brightness Index  (R. Escadafal, 1993) 

MTCI Modified Chlorophyll Absorption Ratio Index   (Delegido et al., 2013) 

S2REP Sentinel-2 Red-Edge Position Index   (Chemura et al., 2018) 

GNDVI Green Normalized Difference Vegetation Index   (Xue and Su, 2017) 

REIP Red-Edge Inflection Point Index  (Raper and Varco, 2014) 

MCARI Meris Terrestrial Chlorophyll Index   (Xue and Su, 2017) 

Biophysical variables 

LAI Leaf Area Index (Fang et al., 2019) 

LAI_CW Canopy Water Content (Weiss and Baret, 2016) 

LAI_CAB Chlorophyll content in the leaf (Weiss and Baret, 2016) 

FCOVER Fraction of vegetation cover (Weiss and Baret, 2016) 

FAPAR Fraction of Absorbed Photosynthetically Active 

Radiation 

(Weiss and Baret, 2016) 

Texture analysis 

Contrast 

features 

Contrast (Haralick et al., 1973)  

Dissimilarity (Haralick et al., 1973)  

Homogeneity (Haralick et al., 1973)  

Statistics 

features 

Gray Level Co-occurrence Matrix (GLCM) variance (Haralick et al., 1973)  

GLCM mean (Haralick et al., 1973)  

GLCM correlation (Haralick et al., 1973)  

Orderliness 

features  

Maximum Probability (MAX) (Haralick et al., 1973)  

Entropy (Haralick et al., 1973) 

Energy (Haralick et al., 1973) 

Angular Second Moment (ASM) (Haralick et al., 1973) 

 

2.3.1.2 Classification reference data 

Very high-resolution images from Google Earth Pro acquired in July 2017 was used to obtain 

reference data for training and testing the classification models. These are high spatial 

resolution images (< 1 m) obtained from different platforms with acquisition dates indicated, 

and studies have shown that they can be used to obtain reference data (Redzwan and Ramli, 

2007). For the period of this study, only July had available images closer to the dates of the 

selected satellite images. Although there was no field reference data to distinguish crop types, 
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especially annual crops, prior knowledge of the study area, interpretation of Google Earth Pro 

image texture, shape, canopy size, and literature on the crop types in the study area were used 

to generate the LULC classes. The following LULC classes were considered, coffee, tea, other 

perennial crops (herein referred to as perennials), banana, annual crops, grassland, agroforestry, 

bareland, settlements, and waterbody. The perennial crops comprised of avocado, mango, and 

macadamia, which are plantations in the lower sub-zones, but they also exist in the other sub-

zones, often as shade trees, while coffee and tea were treated as independent perennial classes. 

The annual crops are mainly for subsistence and include maize, beans, arrowroots (majorly 

grown along the rivers), and sweet potatoes. On the other hand, bareland comprised of exposed 

soils from quarries and unfallowed land, whereas agroforest constituted mainly of shade coffee 

cropping system and clusters of woodlots. The coffee class consisted of full-sun coffee plots 

visible in the Google Earth Pro image with no shade.  

  

2.3.2 Data analysis  

2.3.2.1 Random forest classification algorithm 

A random forest (RF) classifier by Breiman (2001) was used to assess the robustness of the 

satellite datasets for classifying the coffee-based landscape in the study transect (Figure 1). RF 

is a collection of decision trees, i.e., classification and regression trees (CART), that learn the 

characteristics of the training samples and predict similar characteristics in an unclassified 

dataset (Belgiu and Drăgu, 2016). Compared to other machine learning algorithms such as 

support vector machine (SVM), artificial neural network (ANN), and boosted regression trees 

(BRT), RF was found to produce robust results in fragmented smallholder farming areas in 

Zimbabwe than other methods (Tawona et al., 2020). RF can handle non-linear effects in 

complex datasets or few and imbalanced training samples with high accuracy and speed better 

than most other algorithms. Furthermore, the algorithm ranks the essential predictor variables 
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negating users’ selection errors and subjectivity (Belgiu and Drăgu, 2016; Boulesteix et al., 

2012). The algorithm splits the training samples into two folds, approximately two-thirds for 

training the model, also known as in-bag samples, and one-third for testing the accuracy of the 

model, also known as out-of-bag samples (Breiman, 2001). The algorithm internally assesses 

the accuracy of the model based on the out-of-bag (OOB) error, which averages the error 

frequency of the decision trees built using in-bag samples. The OOB error is also used in 

ranking variable importance based on mean decrease accuracy (MDA) (Htitiou et al., 2019). 

Apart from MDA, RF also uses mean decrease gini (MDG) to assign variable importance based 

on decrease in node impurity of a variable at split node (Han et al., 2016). 

 

This study used 70% of the classification reference data to train the RF model. Four sets of 

variables for each satellite dataset was used to build the models: (i) wavelength bands only, (ii) 

vegetation indices only, (iii) texture variables only, and (iv) combined wavelength bands with 

VI and texture variables (Figure 2). Both mean decrease accuracy and mean decrease gini were 

used to determine the important variables for LULC classification. The R software 

implemented the model using the ‘randomForest’ package (Liaw and Wiener, 2002) (R Core 

Team, 2020). The default RF settings, which have been proven optimal for building accurate 

models, were used (Tawona et al., 2020). The remaining 30% of the reference data were used 

for model evaluation. The following accuracy assessment metrics from the confusion matrices 

were generated, overall accuracy (OA), user’s (UA) and producer’s (PA) accuracies, F1 score, 

and Kappa coefficient (K) (Tawona et al., 2020). F1 score is the mean metric of precision (PA) 

and recall (UA), where a value of 100% indicates that the model achieved perfect precision 

and recall of all the test data, and the inverse is true (Hurskainen et al., 2019). The equations 

for calculating the accuracy metrics are as follows; 

Overall accuracy (𝑂𝐴)  = (1
𝑁⁄ ) ∑ 𝑛𝑗

𝑟
𝑗=1  
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Producer’s accuracy (𝑃𝐴) =  
𝑛𝑗

𝑛𝑖𝑐𝑜𝑙
 

 

User’s accuracy (𝑈𝐴) =  
𝑛𝑗

𝑛𝑖𝑟𝑜𝑤
 

 

F1 score = 2 × 
𝑃𝐴 ×𝑈𝐴

𝑃𝐴+𝑈𝐴
 

 

Where N is the total number of pixels in the image, r is the number of rows, 𝑛𝑗  are pixels 

correctly classified, and 𝑛𝑖𝑐𝑜𝑙 and 𝑛𝑖𝑟𝑜𝑤 are the total number of columns and rows, 

respectively (Verma et al., 2020). 

 

2.3.2.2 Landscape metrics 

LULC map with the highest accuracy was further analyzed using the FRAGSTAT tool 

(McGarigal et al., 2002) to quantify the composition of LULC types and landscape 

fragmentation across the four agro-ecological sub-zones (AEsZ) in the study transect (i.e., 

UM1, UM2, UM3, & UM4). FRAGSTAT computes several metrics measured at patch, class, 

and landscape levels that describe, among others, area, edge, shape, contagion, contrast, and 

aggregation from LULC maps. The present study assessed the mean patch, largest patch index, 

patch density, splitting index, contagion, and landscape percentage occupied by each LULC 

type across the four AEsZ at class and landscape levels. A patch defines a homogenous area 

that is different from its surroundings, herein referred to as the LULC type. Patches are 

computed based on the pixel size of the satellite image used to map the LULC; hence they are 

subjective to scale variability or specification of minimum patch size (McGarigal et al., 2002). 

Furthermore, patch size holds ecological significance compared to all metrics. It is shown that 

Patch sizes can influence species richness in semi forested coffee systems (Kumsa et al., 2016), 
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bird species abundance in naturally heterogeneous landscapes (Crozier and Niemi, 2003), and 

insect pollinators in forest fragments in shaded coffee agrosystems (Krishnan et al., 2012). 

Table 3 summarizes the description of the FRAGSTAT metrics used in the present study.   

Table 2.3: A description of class and landscape metrics used in the present study as defined by 

the FRAGSTAT user manual (McGarigal et al., 2002) 

Level Metric Description Unit 

 

 

 

 

 

Class 

Mean patch area 

(MPA)  

The average-weighted mean of the 

number of patches in the class and 

total class area 

ha 

Largest patch 

index (LPI) 

The largest patch of the 

corresponding patch type divided by 

total landscape area 

Percent 

Percentange of 

landscape 

(PLAND) 

Proportional abundance of each 

patch type in the landscape 

Percent 

Patch density 

(PD) 

Number of patches in the landscape, 

divided by total landscape area 

Number of 

patches /100 ha 

 

 

 

 

Landscape 

Splitting index 

(SPLIT) 

Number of patches with a constant 

patch size when the landscape is 

subdivided into equal sizes 

None 

Contagion 

(CONTAG) 

A measure of both intermixing of 

patch types and spatial distribution of 

a patch type 

Percent 

Euclidean nearest 

neighbor distance 

(ENN) 

Shortest straight-line distance 

between the focal patch and its 

nearest neighbor of the same class 

Meter 

 

2.4 Results 

2.4.1 RF model accuracy assessments 

Table 2.4 shows the overall accuracies (OA) obtained using the RF classifier and the various 

satellite image datasets. Wavelength bands were better predictors of LULC in all the satellite 

datasets than VI or texture variables. For the bands only model, S2 had the highest OA (95%) 

compared to L8 (90%) and PS (83%). Combined with VI and texture variables, the OA for PS 
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increased significantly compared to using only wavelength bands (by 3%) or texture variables 

(by 26%). For S2, there was no significant change when using combined variables in 

comparison to wavelength bands only (OA increased by 1%). For L8, the OA dropped by 4% 

when using combined variables compared to the wavelength bands only. VIs were the second 

ranked predictors in all the satellite datasets, while texture variables were the least. VIs from 

S2 had the highest OA (91%), while VIs from PS had the least (81%). Similar to the OA, the 

OOB error estimate showed that the texture variables from PS had the highest error rate (39%) 

in all the models, indicating its poor predictive ability of the internal out-of-bag samples. 

Table 2.4: The overall accuracy (OA), out-of-bag error (OOB), and Kappa coefficient (K) for 

land use and land cover (LULC) maps of coffee-based landscape in Murang’a, Kenya using 

different satellite datasets and the random forest (RF) classification algorithm 

Model Overall 

accuracy (%) 

OOB error 

(%) 

Kappa (K) 

(%) 

PS bands  83 19 80 

PS vegetation indices 81 20 77 

PS texture  variables 60 39 51 

PS bands, VI and texture 86 13 83 

S2 bands  95 5 93 

S2 vegetation indices 91 9 89 

S2  texture variables 79 23 75 

S2 bands, VI and texture 96 4 95 

L8 bands  90 9 88 

L8 vegetation indices 88 12 86 

L8 texture variables 79 25 74 

L8 bands, VI and texture 86 17 84 

 

S2 variables showed better mapping results for all the classes with more than 90% PA, UA, 

and F1 scores than L8 and PS datasets (Table 2.5). The banana class was generally poorly 

mapped in all the satellite datasets (the least PA = 41% using PS, highest PA = 83% using S2) 
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while the waterbody had the highest accuracies except in L8, which had the least PA of 38%. 

Coffee and agroforest classes had the highest accuracies (F1 score = 94% and 97% 

respectively) when mapped using S2 datasets. However, there was an increase in efficiency for 

PS (by 6% for coffee and 4% for agroforest) when the wavelength bands were combined with 

VI and texture variables.  

 

2.4.2 Variable importance 

In the wavelength bands model, SWIR1, SWIR2, and green bands from S2 and L8 were the 

most important variables contributing to a total of 36% and 53% MDA and 44% and 57% 

MDG, respectively (Figure 2.3). Additionally, the NIR bands from S2 and L8 contributed 10% 

and 18% MDA to the model accuracy, respectively. The red-edge band from S2 and the red 

band from L8 contributed 13% and 16% MDG in decreasing node impurity, respectively. For 

VI and texture variable models, BI, NDPI, RI, GNDVI, and additional LAI_CW and CAB from 

S2 were the most important variables. At the same time, contrast, GLCM mean, variance, and 

correlation were the most important texture variables in all the satellite datasets 

(Supplementary Table 2.2) for mapping the landscape classes.  When all the variables were 

combined, the same important variables identified in the individual models contributed more 

to the model (Supplementary Table 2.3). 
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Figure 2.2: Variable importance of wavelength bands for Sentinel 2, Landsat 8 and 

PlanetScope datasets converted into percentage
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Table 2.5: Producers’ accuracy (PA), users’ accuracy (UA), and F1 score for all the classification models used in the study to map the land use 

and land cover (LULC) classes of the study transect. 

Model (%) Annuals Banana Bareland Coffee Agroforest Grassland Perennials Settlement Tea Waterbody 

PS bands  UA  76 69 91 80 85 97 74 90 95 100 

PA  89 41 91 81 85 96 53 92 91 100 

F1  82 52 91 80 85 97 62 91 93 100 

PS bands, VI 

and texture 

UA  79 76 90 84 88 97 75 95 95 100 

PA  89 46 90 87 91 97 47 90 91 100 

F1  84 57 90 86 89 97 57 93 93 100 

S2 bands  UA  91 92 92 91 99 98 97 97 99 100 

PA  96 83 95 95 94 100 92 92 94 100 

F1  93 87 94 93 96 99 94 94 96 100 

S2 bands, VI 

and texture 

UA 95 94 95 93 97 99 97 97 100 100 

PA 99 74 95 96 96 99 95 96 92 100 

F1 97 83 95 94 97 99 96 96 96 100 

L8 bands  UA 91 88 92 87 92 92 90 91 93 100 

PA 96 75 89 91 93 84 68 100 95 38 

F1 94 81 91 89 93 88 78 95 94 55 

L8 bands, VI 

and texture 

UA 88 89 73 86 90 91 93 71 95 90 

PA 98 56 81 94 78 87 98 74 92 94 

F1 93 69 77 90 83 89 95 72 94 92 

PS = PlanetScope, S2 = Sentinel 2, and L8 = Landsat 8



 

27 
 

2.4.3 Landscape fragmentation in each agro-ecological sub-zone 

Figure 2.4 shows the LULC maps from the PS wavelength bands (map A), S2 (map C), and L8 

(map B). Visually, PS and S2, unlike L8, mapped similar landscape structures, but with varying 

levels of accuracy. L8 overestimated annual crops and grassland at the expense of coffee, while 

agroforest appeared in larger patches than in PS and S2. Across the AEsZ, the primary coffee-

growing zone is at UM2 and the lower region of UM1. At UM3, coffee is interspersed with 

annual crops, which form the landscape matrix, while grasslands and other perennials dominate 

UM4. Pockets of agroforests were evenly distributed in UM1 and UM2, but in UM3, patches 

took a more linear shape. In UM2, annual crops are grown along the riverine, while settlements 

appeared in linear patches with one major town situated at UM4. The settlement class was 

generally classified poorly in L8 compared to S2 and PS. A cloud shadow in L8 was 

misclassified as a waterbody. The S2 map was adopted for further analysis of the landscape 

structure. Its high accuracy captured the landscape physiognomy at 10m spatial resolution 

better than PS, which had the highest spatial resolution than all the datasets used at 3m. 
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Figure 2.43: Land use and land cover (LULC) maps of coffee growing transect in Murang’a 

County produced using PlanetScope (A), Landsat 8 (B), and Sentinel 2 (C) datasets, and the 

random forest classifier. The black lines show the boundaries of the UM zones 

 

2.4.3.1 Class level metrics 

According to the S2 LULC map (Figure 2.4C), coffee covers 64% and 60% of the total 

landscape in UM1 and UM2, respectively, while the annual crops occupy 43% in UM3 

(PLAND in Table 2.6). Other perennials and annual crops occupy 29% and 22% of UM4, 

respectively. All the dominant patch types that formed the matrix in each AEsZ, had the largest 

patch index (LPI), as shown in Table 2.6. Coffee patches in UM2 were more fragmented than 

in UM1. The most dominant patch (given by LPI) in UM1 is almost twice the size of the 

dominant patch in UM2 (UM1 = 63, UM2 = 33). Similarly, the mean patch area (MPA) for 

coffee in UM1 is more than three times the size in UM2 to UM4 (UM1 = 2.65ha, UM2 = 

0.74ha, UM2 = 0.16ha, UM4 = 0.14ha). Agroforest patches occupy 14% of UM1 and 17% of 

UM2 and UM3, with the least cover in UM4, occupying approximately 5% of the landscape. 

Coffee intercropped with banana is more prevalent in UM2 and UM3, where banana patches 

have less than 0.06% of LPI. UM4 is the marginal coffee growing area characterized by more 

settlements, grassland, and bareland than all the other sub-zones. Coffee is highly fragmented 

in UM3 and UM4 as compared to UM1, with patch density (PD) of 157 and 120, respectively 

(Table 2.6). Additionally, forest cover and bananas have a high patch density in UM2 and UM3, 

while for annuals, shrubs, grassland, and settlements, the patch density is high in UM4. 
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Figure 2.6: Percentage of landscape (PLAND (%)), largest patch index (LPI (%)), patch density (PD (number of patches/100 ha)) and mean patch 

area (MPA (ha)) for each land use and land cover (LULC) class across the four agro-ecological sub-zones of the study 

  Metric Annuals Banana Bareland Coffee Agroforest Grassland Perennials Settlement  Tea  Waterbody 

UM1 PLAND (%) 3.77 2.40 0.03 64.25 14.31 0.10 4.62 2.98 7.54 0.01 

LPI (%) 0.87 0.02 0.01 62.97 0.20 0.01 0.22 0.23 0.33 0.00 

PD 34.24 81.84 0.46 24.27 68.81 2.98 32.71 32.90 56.12 0.19 

MPA (ha) 0.11 0.03 0.07 2.65 0.21 0.03 0.14 0.09 0.13 0.03 

UM2 PLAND (%) 18.83 5.65 0.05 50.99 17.35 0.17 3.64 2.95 0.35 0.01 

LPI (%) 5.36 0.04 0.02 33.20 0.17 0.01 0.08 0.11 0.01 0.00 

PD 53.41 145.22 0.36 69.05 114.08 5.51 27.09 36.81 10.10 0.24 

MPA (ha) 0.35 0.04 0.15 0.74 0.15 0.03 0.13 0.08 0.03 0.04 

UM3 PLAND (%) 43.02 5.83 0.39 25.30 17.86 1.78 3.36 2.37 0.04 0.04 

LPI (%) 23.32 0.03 0.09 3.06 0.20 0.12 0.51 0.09 0.00 0.02 

PD 63.22 118.81 1.27 157.37 132.84 24.18 24.55 30.28 1.95 0.53 

MPA (ha) 0.68 0.05 0.31 0.16 0.13 0.07 0.14 0.08 0.02 0.08 

UM4 PLAND (%) 22.84 1.37 5.17 17.26 5.35 10.75 29.30 7.76 0.18 0.02 

LPI (%) 5.07 0.05 0.89 1.42 0.17 1.56 10.10 2.00 0.02 0.01 

PD 93.06 26.45 13.86 120.62 67.11 44.71 73.42 58.83 6.89 0.10 

MPA (ha) 0.25 0.05 0.37 0.14 0.08 0.24 0.4 0.13 0.03 0.16 
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2.5 Discussion 

This study explored three multisource satellite images from 3 m PlanetScope (PS), 10 m 

Sentinel 2 (S2), and 30 m Landsat 8 (L8) to identify the optimum dataset for mapping LULC 

of a coffee-based landscape in the highlands of East Africa, dominated by smallhold farms. 

Furthermore, landscape composition and the level of fragmentation on each agro-ecological 

sub-zones (AEsZ) was examined. The results showed that the spectral resolution of a sensor is 

a critical factor in delineating vegetation types in a heterogeneous agricultural landscape and 

that each AEsZ has a unique landscape physiognomy. This study fills a gap on the scarcity of 

detailed LULC maps, especially in Africa, since the available maps in public databases often 

generalize agricultural landscapes and are not up-to-date. LULC types that govern ecological 

processes in each AEsZ were delineated in detail and outlined its potential in improving 

production in agricultural landscapes (e.g., coffee production) while conserving biodiversity 

and providing ecosystem services. 

 

2.5.1 Model accuracy assessment 

The results showed that S2 datasets had the highest overall accuracy (OA) in all the models, 

followed by L8, while PS had the least OA, despite having the highest spatial resolution. 

Htitiou et al., (2019) and Shoko and Mutanga, (2017) reported similar findings when the S2 

dataset outperformed other multispectral datasets in mapping crops and grasslands. The 

different accuracies in the mapping results could be associated with the differences in the 

spectral resolution (bandwidth and number of bands) among the sensor images (Levin, 1999). 

S2 measures a broader region of the electromagnetic spectrum ranging from the RGB to the 

SWIR region with additional red-edge bands, in contrast with PS, which covers only the visible 

and NIR regions with lower waveband data bits. Furthermore, the pixel depth (radiometric 



 

32 
 

resolution) of S2 allows the bands to capture more details per pixel. This could explain the 

observed high accuracy of the wavelength bands with minor improvement when VI bands were 

added. Due to advancement of S2 sensor specifications, subtle differences in cover types can 

now be captured with the added advantage of shorter revisit time compared to L8. Additionally, 

the higher resolution in PS captures more features, which increases spectral confusion between 

classes with the narrow spectral bands.  

 

The commission and omission errors of LULC types described by UA and PA, respectively, 

were relatively lower when using S2 wavelengths bands. This reinforces the finding that S2 

imagery is more suitable for discriminating LULC types in heterogeneous and complex 

landscapes. In the study area, where coffee and agroforest are important cover types and often 

difficult to differentiate, coffee and agroforest were mapped with a higher PA using S2 when 

compared to L8 and PS. Previous studies, however, attempted to map coffee from other LULC 

types using Landsat datasets; their results were comparable to what was obtained using L8. For 

example, Ortega-Huerta et al. (Ortega-Huerta et al., 2012) differentiated between the open 

canopy and closed canopy coffee in South-west El-Salvador with an OA of 85.7% using 

Landsat Thematic Mapper while Cordero-Sancho and Sader (Cordero-Sancho and Sader, 

2007) attempted to classify shade coffee and sun coffee in Costa Rica with a PA of 91.8% and 

86.2%, respectively, using Landsat Enhanced Thematic Mapper. Both S2 and L8 are freely 

available datasets, but the results showed a more accurate mapping from S2 than L8. This 

study, therefore, elucidates the potential of using S2 with limited resources to generate detailed 

LULC maps, especially for Africa, which often is missing in global LULC datasets. 

Furthermore, the temporal resolution of the S2 sensor of five days means that researchers and 

other stakeholders can have access to up-to-date maps to inform their policies. 
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 2.5.2 Variable importance  

Surprisingly, SWIR 1 and 2 bands were the most important variables in S2 and L8 as opposed 

to NIR, red edge, red or green bands, which are known to be the most important bands in LULC 

classification of vegetation types. In coffee-based landscapes, SWIR bands have been shown 

to be particularly important due to the soil background that is mixed with the spectral signal of 

coffee leaves (de Oliveira Pires et al., 2020). Often, coffee trees are planted with spacing in 

between the rows. Though these rows were not visible in the study due to smallholdings with 

low coffee density and possible defoliation of coffee leaves due to leaf rust disease, they still 

influenced the pixel purity. Notably also from the study was the significance of the red edge 

band in increasing class separation (MDG = 13%). Red edge bands measure the abrupt rise in 

the reflectance within the transition zone of the red and near-infrared region, this region of the 

EMS detects subtle variability in vegetation types, which would otherwise be generalized when 

using broadband widths such as the case of L8 (Delegido et al., 2013). 

 

The VIs (including biophysical variables from S2) models had a lower OA compared to the 

only wavelength bands, while the texture variables had the least OA in all the satellite datasets. 

The most significant VIs included BI, RI, NDPI, and LAI_CW. On the other hand, contrast, 

correlation, mean, variance, and to a lesser extent, homogeneity were the most essential texture 

variables. When VIs and texture variables were combined with the wavelength bands, there 

was no considerable change in OA for S2, but for PS, there was an increase in OA; this was 

associated with the unique information that RI contributed to the model. RI and BI are soil-

based indices that measure the colour properties of soil (Escadafal, 1993). These two indices 

further explain the particular soil background characteristics that were captured by the SWIR 

band in the wavelength bands model. Given the limited spectrum and data depth of PS, RI 

captured similar information in the SWIR band; hence, the utility of VIs, especially in sensors 



 

34 
 

with limited spectral bands, is vital. Despite the significance of VIs, the low OA observed in 

the VIs models is associated with the oversimplification of VIs, especially in heterogeneous 

landscapes, where there is more than one vegetation type and species that could co-occur and 

occupy the same pixel (Xue and Su, 2017). 

 

2.5.3 Landscape fragmentation in each AEsZ 

The results further revealed that landscape composition varied according to agro-ecological 

sub-zones, which correspond to various elevation zones (Figure 4). Coffee is the dominant 

cover in UM1 and UM2 (elevation ranging 1900 m – 1600 m), while in UM3 and UM4 

(elevation ranging 1500 m – 1300 m), the dominant cover types are annual crops and other 

perennials, respectively. The agroforest system in the study area is highly fragmented in UM3 

(patch density = 157), with the least cover in UM4. Visual interpretation of the LULC map 

showed that the landscape physiognomy of agroforest cover in UM3 and UM4 is mostly 

hedgerows, however, in UM1 and UM2, it is an intersperse cluster in a matrix of full-sun 

coffee. Notably, bananas occupied a significant percentage of the landscape in UM2 and UM3 

(5% of the landscape). Many smallholder farmers practice intercropping coffee with bananas 

to complement their food crop and income generation in many coffee-based landscapes in East 

Africa (Liebig et al., 2018).  

 

The study showed that landscape connectivity is higher in UM1 than in UM4 (CONTAG index 

in Figure 2.5). LULC of UM1 can facilitate the flow of species from one patch to the other, 

which increases their survival capacity, unlike in UM4, which has more fragmented patches, 

as shown by the SPLIT index (Kindlmann and Burel, 2008). For instance, the contiguous 

patches of coffee farms that form the matrix of UM1 and UM2 can facilitate the flow of coffee 

pests that solely depend on coffee trees as their primary hosts (Delegido et al., 2013). For 
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example, movements of the coffee berry borer, Hypothenemus hampei Ferrari, may be limited 

where coffee farms are pockets of fragmented patches, like in UM3 and UM4 (Avelino et al., 

2012). Among other factors, such as higher temperatures in UM3 and UM4 (Jaramillo et al., 

2009), fragmentation could potentially result in overutilization of the available patches by such 

coffee pests, leading to increased severity in infestation levels. With similar consequences, 

fragmentation may strengthen pest life-history traits involved in adaptation to changing 

environments,  leading to a greater chance of survival (Ziv and Davidowitz, 2019). More 

pockets of agroforest cover, as observed in UM1 and UM2 when compared to UM3 and UM4 

can benefit biodiversity conservation and ecosystem services, such as providing habitats to 

birds, other pest natural enemies, and pollinators. Ecosystem services benefit coffee production 

by improving yields through microclimate and soil quality improvement and pest and disease 

natural regulation (Lescourret et al., 2015).  

 

2.5.4 Study implications and limitations 

This study showed the robustness of RF and S2 in capturing subtle changes within such 

landscapes. This methodology can be adopted in other coffee growing regions in East Africa, 

Asia, and South America. The generated LULC maps can be used as baseline data to guide the 

restoration of degraded landscapes, development of land use policies such as the agri-

environment scheme adopted in Europe, and model ecosystem services, especially from shade 

coffee generating integrated land management systems. Also, the LULC maps developed in 

this study could be integrated with crop phenological and climatic variables to understand the 

occurrence, abundance and spread of coffee pests and diseases.  

 

A potential limitation to this study was the use of reference datasets obtained from very high-

resolution Google Earth Pro (GE) images in lieu of field reference data. This limitation is also 
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a growing opportunity for using GE alongside crowdsourced data from mobile apps 

(Landmann et al., 2015), Global Biodiversity Information Facility (GBIF, 

https://www.gbif.org/) and Open Street Map (OSM, https://www.openstreetmap.org/) to 

provide reference data for classification, especially in the era of big data (Hurskainen et al., 

2019). Landmann et al. (2019) mapped rain-fed and irrigated lands in Zimbabwe using 

reference data obtained from GE, which shows the effectiveness of these new data sources for 

validation of LULC classification in data scares environments. Furthermore, this study area 

(i.e., the transect) was somewhat small, but as previously mentioned the transect was chosen 

as part of a bigger project to essentially cover the four coffee agro-ecological sub-zones. In 

future, the methods employed in this study could be applied in larger geographical areas to test 

its up-scalability. Also, since the study transect covers a gradient of 1300 – 2000 m a.s.l, this 

could have influenced the LULC mapping results. Further studies should include topographic 

variables such as elevation and slope to reduce their expected confounding effect in coffee 

mapping experiments in areas of varying topography (Hurskainen et al., 2019).  

 

2.6 Conclusions 

This study shows that S2 is reliable satellite data for mapping LULC types with a high level of 

accuracy in heterogeneous landscapes, such as coffee growing areas dominated by smallholder 

farms. This is due to a high number of spectral bands that delineate vegetation-based and other 

LULC types better than other satellites. The SWIR bands were the most important in the LULC 

classification. Since S2 is freely available, the approach used in this present study can be 

replicated in a resource-constrained context. The coffee growing area was studied to highlight 

the complex landscape dynamics in agrosystems that varied within an AEZ. Land-use policies 

on agricultural landscape management should recommend landscape-specific practices instead 

of blanket recommendations to improve landscape resilience and connectivity. For future 
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studies, detailed studies should be conducted to quantify the ecological significance of unique 

landscape structures in each AEsZ. 
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CHAPTER 3: FUNCTIONAL LAND COVER SCALE FOR THREE INSECT 

PESTS WITH CONTRASTING DISPERSAL STRATEGIES IN A 

FRAGMENTED COFFEE-BASED LANDSCAPE IN CENTRAL KENYA 

 

This chapter is based on: Mosomtai, G., Azrag, A.G.A., Babin, R., Abdel-Rahman, E.M., 

Odindi, J., Mutanga, O., Tonnang, H.E.Z., Landmann, T., David, G., 2021. Functional land 

cover scale for three insect pests with contrasting dispersal strategies in a fragmented coffee-

based landscape in Central Kenya. Agric. Ecosyst. Environ. 319, 107558. 

 

3.1 Abstract 

In the Eastern Africa highlands, the gradual transformation of natural ecosystems to 

smallholding coffee-based agrosystems has resulted in more fragmented landscapes. Major 

pests of coffee find appropriate living conditions leading to high infestation rates and the need 

for smallholder farmers to implement pest control measures. This study aims to understand the 

influence of landscapes on the ecology of three major coffee pests: the coffee berry borer CBB, 

(Hypothenemus hampei), and the Antestia bugs ABT, (Antestiopsis thunbergii) and ABF (A. 

facetoides). The study was conducted on a typical smallholder coffee-based landscape in 

central Kenya. The pest abundance was assessed monthly for two years in a network of 30 

coffee plots spread across the coffee agro-ecological sub-zones (AEsZ), namely upper midland 

UM1 and UM2, and the transition zones between UM1 and UM2 and between UM2 and UM3, 

herein referred to as TZ1 and TZ2, respectively. Landscape metrics, viz. patch density, 

Euclidean nearest neighbour distance, proximity index, contagion index, interspersion and 

juxtaposition index were derived from a spatially explicit land cover map, based on 10 m 

Sentinel 2 data for nine buffer zones of radius ranging from 50 m to 1000 m around each 

sampled plot. Redundancy analysis (RDA) was used to establish the relationships between the 



 

39 
 

observed pest abundances and landscape metrics, elevation, and AEsZ. Landscape indicators 

achieved the highest correlation with the pest abundances within a 300 m radius (Adjusted R2 

> 0.5). Whereas beyond 300 m landscape scale, the predictor variables resulted in weak 

relationships (Adjusted R2 < 0.5) between the pests abundance and landscape metrics. A strong 

influence of elevation and adjacency to cropland on Antestia bug populations was observed. 

Specifically, ABF populations were negatively correlated with low elevation, whereas ABT’s 

were positively correlated with high elevation zone. On the other hand, CBB was strongly 

influenced by contiguous coffee patches, especially in UM1 and UM2. Therefore, reducing 

connectivity between coffee patches is recommended for the management of CBB, whereas 

further studies should be conducted to identify secondary hosts of Antestia bugs that should 

not be adjacent or within coffee stands.   

 

Keywords: Landscape ecology, Redundancy analysis, Hypothenemus hampei, Antestiopsis 

thunbergii, Antestiopsis facetoides, landscape scale 
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3.2 Introduction  

Agriculture is one of the most significant drivers of landscape simplification and fragmentation  

(Donald, 2004). The destruction of natural ecosystems for agriculture has resulted in 

homogenized landscapes, with remains of natural vegetation juxtaposed in large tracks of 

croplands. As a consequence of unbalanced agrosystems, pest and disease pressure on crops 

has increased, exacerbated in developing countries by smallholder farmers’ inability to mitigate 

their proliferation due to limited resources and information (Meehan et al., 2011). Thus, some 

pests multiply and spread in landscapes dominated by a single crop due to resource abundance 

and adequate connectivity between patches with little pressure from their natural enemies that 

often prefer more diversified habitats (Rusch et al., 2016). Generally, agrosystems with 

remnants of natural vegetation and semi-natural vegetation such as hedgerows, woodlots, 

grasslands, and field margins have shown a reduction in pest infestations to manageable 

thresholds (Rusch et al., 2016).  

 

Arabica coffee (Coffea arabica L.) is one of the main cash crops in the tropics that has resulted 

in the subdivision of natural vegetation. It is grown by over 25 million smallholder farmers, 

with over 100 million people depending on the crop across the value chain (Anthony et al., 

2002). In its native habitat in East Africa, Arabica coffee is an understorey crop; however, with 

increased demand and widespread cultivation across tropical regions, non-shade coffee system 

has been widely adopted due to its higher productivity (Cerda et al., 2017). Furthermore, the 

mechanization of coffee production has become more efficient in the non-shade system, 

especially in the Americas, which include the largest coffee producing countries in the world 

(Jha et al., 2014). As a consequence of coffee system simplification, increasing pest and disease 

pressures have been recorded globally (Kebati et al., 2016). 
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However, in East Africa, smallholder coffee landscapes are more complex, with various coffee 

production systems. In Uganda and Rwanda, the coffee-banana intercrop system is dominant 

(van Asten et al., 2011), while in Ethiopia, about 70% of coffee is produced under the garden 

coffee system, which consists of low input crops grown in home gardens, intercropped with 

fruit, roots, and cereal crops (Fekadu et al., 2016). In Tanzania, the Chagga system, 

characterized by multi-layered vegetation of shade trees, bananas, coffee, and vegetables, each 

grown under the other, is predominantly practised by smallholder farmers (Hemp, 2006). In 

Kenya, smallholder farmers produce 75% of the coffee in plots less than 2 ha, mostly grown 

without shade and intercropped with subsistence crops and fruit trees.  

 

Pest and disease pressure amplified by susceptible coffee cultivars and low use of agricultural 

inputs contributes to low coffee yields in smallholding farming in eastern Africa (Monroy et 

al., 2013). Despite progress in breeding research and developing resistant cultivars, pest 

management still faces knowledge gaps, especially in the interaction between the pests and their 

surrounding environment (Hindorf and Omondi, 2011). Specifically, the interplay between 

landscape structure and pest ecology remains largely unknown, especially in Kenya. The 

functional traits of mosaic landscapes, such as its composition and spatial arrangement, as 

experienced by pests at different spatial scales, are generally understudied (Barbaro and van 

Halder, 2009). Therefore, this study seeks to fill these knowledge gaps by understanding the 

contribution of the existing landscape setup in supporting coffee pest abundance.  

 

This study adopts a multi-pest and comparative approach in looking at coffee pest distribution 

within an environmental gradient over a coffee agro-ecological zone. The multi-pest approach 

provides a better inference on environmental factors that contribute to habitat integrity 
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supporting several species (Schowalter, 2006). Thus, a holistic understanding of landscape 

ecology that accounts for multiple pests will benefit farmers through more efficient 

recommendations (Avelino et al., 2012). This study focused on three main destructive coffee 

pests in the smallholder farming systems of East Africa: the coffee berry borer CBB, 

(Hypothenemus hampei Ferrari) and two Antestia bug species ABT (Antestiopsis thunbergii 

Gmelin) and ABF (A. facetoides Greathead). The CBB is the most destructive coffee pest 

worldwide with a global spread that causes yield loss of up to 90% (Jaramillo et al., 2006). In 

comparison, Antestia bugs are major Arabica coffee pests in Africa that cause a yield loss of 

~45% with an economic threshold of one to two bugs per tree (Azrag et al., 2017).  

 

These pests have contrasted dispersion ability that may be influenced by landscape structure, 

especially patch fragmentation. Coffee berry borer is known to have a reduced dispersal 

capacity (Gil et al., 2015). Thus, a contiguous coffee landscape has been shown to facilitate its 

movement (Avelino et al., 2012). On the other hand, Antestia bugs have high dispersal abilities, 

especially during warmer hours of the day, which allows them to colonize new plantations, even 

isolated patches (Babin et al., 2018). Therefore, it was hypothesized that these pests may have 

different responses to landscape functional traits. Specifically, the spatial arrangement of land 

cover types at different buffer scale was highlighted to determine how it influences these pests 

regarding spatial scale. A multivariate redundancy analysis (RDA) approach was adopted to 

establish the relationship between landscape structure and coffee pest distribution. 
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3.3 Material and methods 

3.3.1 Study area 

The study was conducted in a transect located between longitude 36.9226o and 37.1176o and 

latitude -0.7262o and -0.6948o in Murang’a County, which is one of the primary coffee-growing 

areas in central Kenya, located on the slopes of the Aberdare mountain range (Figure 3.1). The 

agro-climatic zones in Murang’a extend from humid at the highest elevation to semi-arid at the 

lowest elevation (Figure 3.1). The area receives bimodal rainfall with a long rainy season from 

mid-March to the end of May and a short rain from mid-October to December. This rainfall 

regime offers two growing seasons from March to May and October to December, which 

coincides with the first and second coffee crop harvesting seasons. Coffee grows in the upper 

midland (UM) agro-ecological zone at an elevation gradient of 1300 to 2000 m above sea level, 

within four sub-zones (from UM1 to UM4), herein referred to as AEsZ (agro-ecological sub-

zones). Due to high population density and limited land, many smallholder farmers grow 

Arabica coffee in plots less than 2 ha, mixed with food crops such as maize (Zea mays L.) and 

banana (Musa spp.), and trees such as Grevillea robusta (A. Cunn. ex R. Br.) and Macadamia 

spp., which provide coffee trees with shade (ICO, 2019). 
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Figure 3.1: Location of the study area in Murang’a County in central Kenya. The sampling plots 

were located in the upper midland (UM) agro-ecological sub-zones UM1 and UM2 and in the 

transition zones between UM1 and UM2 (TZ1) and between UM2 and UM3 (TZ2) 

 

3.3.2 Pest abundance 

The abundance of the CBB, ABT and ABF were assessed monthly in a network of 30 plots 

of approximately 1 ha from June 2016 to May 2018. The plots were located in UM1, UM2, 

and the transition zones between UM1 and UM2 and between UM2 and UM3 herein referred 

to as TZ1 and TZ2, respectively (Figure 3.1). The selected plots contained approximately 

100-500 coffee trees each, and the most common coffee variety in these plots was SL28. 

Figure 3.2 shows the sampling scheme adopted in this study. The abundance of CBB was 

sampled using the BROCAP® traps (Dufour & Frérot, 2008).  
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Figure 3.2: Field sampling scheme adopted in the present study. Fifteen coffee trees were 

sampled diagonally starting from a corner of the plot (either A or B) for Antestiopsis thunbergii 

and Antestiopsis facetoides, whereas BROCAP® traps were used to sample Hypothenemus 

hampei by hanging them on coffee trees at 1.5 m above ground and 20 m between traps forming 

either a triangle or rectangle shape depending on the size of the plot (C and D)  

 

The abundances of ABT and ABF were assessed monthly using visual inspection of coffee trees 

(Azrag et al., 2018). A systematic random sampling of fifteen trees along a diagonal line in each 

experimental plot was adopted (starting from a corner of the plot - Figures 3.2A and B), and the 

number of bugs on these trees was recorded, irrespective of their life stages. For CBB, three to 

four traps were deployed in each experimental plot 20 m apart, forming a triangle or square 

depending on the plot size (Figure 3.2C). The traps were placed on tree branches at 

approximately 1.5 m above the ground (Figure 3.2D), containing a mixture of methanol and 

ethanol in a ratio of 1:1 to attract the CBB females (Dufour and Frerot, 2008). The number of 

CBB caught by each trap were counted and recorded monthly.  
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3.3.3 Land use/ cover characterization of the AEsZ 

A contemporary 10-m land use/ land cover (LULC) map with an overall accuracy of 95%, 

produced using Sentinel-2 satellite imagery and random forest machine learning classifier, was 

utilized to estimate the spatial coverage of coffee and other LULC classes within each AEsZ. 

A detailed description of the scene ID, source of the training dataset, the method used for LULC 

classification and accuracy assessment is provided by Mosomtai et al. (2020). The following 

vegetation cover classes were considered for analysis: agroforestry, coffee, cropland, 

shrubland, banana and grassland. The coffee class represented monoculture of coffee grown in 

full sun, whereas the agroforestry class comprised of mosaics of woodlots, mostly Grevillea 

robusta and shade trees such as Macadamia spp. and avocado (Persea americana). Cropland 

consisted of annual crops (Jaetzold et al., 2007). In UM1 and UM2, coffee is the main crop 

covering >50% of the landscape, while in UM3 and UM4, coffee is a marginal crop in a 

landscape matrix dominated by crops like maize, bean, arrowroot and potato (Mosomtai et al., 

2020).  

 

3.3.4 Generation of landscape fragmentation metrics 

Fragstat software (McGarigal et al., 2002) was used to generate the following landscape metrics 

from the LULC map: patch density (PD), Euclidean nearest neighbour distance (ENN), 

proximity index (PROX), contagion index (CONTAG), and interspersion and juxtaposition 

index (IJI), which describe the level of landscape connectivity. These landscape metrics were 

generated from nine different buffer radii, herein referred to as landscape scales of 50 m, 100 

m, 150 m, 200 m, 250 m, 300 m, 500 m, 750 m, and 1000 m from each sampling site (Figure 

3). It was hypothesized that landscape influences the pest ability to disperse and reach coffee 

plantations for establishment. Therefore, the question arising was how much the landscape 

influences the pest abundance in a given plantation? The landscape surrounding coffee 



 

47 
 

plantations should be considered as much an obstacle as a living environment. The pest 

abundance should be different when moving away from the sampled coffee plantation. But 

much attention was given to the pest abundance in a given plantation as a consequence of their 

surrounding landscape and scale.  

 

The landscape metrics were selected based on prior knowledge of the foraging behaviours and 

flight capacity of the pests. For instance, patch density informed the level of fragmentation 

across the sub-zones. At the same time, proximity and contagion indices alluded to the level of 

connectedness of patches giving a better idea of the overall patch composition and patterning, 

which was important, especially for the CBB due to low flight capacity. The Euclidean distance 

was essential for understanding the distance between patches, especially for Antestia bugs that 

display a higher flight capacity. Interspersion and juxtaposition index alluded to the 

neighbouring cover types that could potentially be alternative hosts for the pests or 

hinder/facilitate their movements across the landscape. 
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Figure 3.3: Land use/ land cover map of a portion of the study area (a zoom of the rectangle 

box with an arrow showing sites sampled in UM2) and illustration of landscape scales of 300 

m and 1000 m buffer zones (in pink and blue) used to generate landscape metrics for each plot. 

The insert map shows the elevation gradient where the green and brown colours represent the 

high and low elevation zones, respectively.    

 

Patch density measures the level of fragmentation based on the number of patches per 100 ha. 

Highly fragmented landscapes have a high patch density with smaller mean patch size and vice 

versa. The contagion index describes the ‘clumpiness’ of patches based on their cell adjacency 

(Li and Reynolds, 1993), which are calculated as the sum of two probabilities: (1) a probability 

of a pixel that belongs to patch type i in the map and (2) the conditional probability that the 

neighbouring cell belongs to a patch type j (Hargis et al., 1998). On the other hand, a high 

contagion index describes a landscape with contiguous patches, whereas a low index describes 

a fragmented landscape. Moreover, the interspersion and juxtaposition index measures the 

magnitude of intermixing of patches based on patch adjacency instead of cell adjacency. High 
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IJI describes a landscape where all the patches are well distributed and intermixed, but a low 

index represents a landscape with a disproportionate distribution of patches (McGarigal et al., 

2002). Proximity index (PROX) and Euclidean nearest neighbour distance (ENN) measure the 

distance between similar patches in a landscape. ENN measures the Euclidean distance from 

the centroid of two similar patches, with the highest value representing isolated patches.  The 

proximity index, however, combines the size and proximity of patches within a specified radius. 

Patch type within proximity with either large patches or well distributed in the landscape will 

have a higher proximity index than a patch type sparsely distributed and fragmented into small 

patches (Hargis et al., 1998).  

 

3.3.5 Relationships between landscape predictor variables and pest abundance 

Firstly, the seasonal variation of pest abundance for each of the studied species is presented. 

Secondly, a boxplot was used to show the abundance distribution of each pest across the AEsZ. 

Thirdly, the relationships between landscape characteristics and pest abundance through a 

redundancy analysis (RDA) was explored. RDA is a widely used multivariate analysis tool that 

elucidates how much of the explanatory variables (here the fragmentation variables) explain the 

observed response variables (here the species abundance) using multiple regression analysis 

(Legendre et al., 2011). The explained variance is represented by the constrained proportion, 

while the unconstrained proportion represents the unexplained variance (residuals). To test for 

compositional difference and variability along the environmental gradient, the monthly count 

of CBB, ABF and ABT were analyzed using Bray-Curtis dissimilarity index (Anderson et al., 

2006; Ricotta and Podani, 2017). The results were further analyzed using Tukey’s post hoc test 

to identify where the difference in the pest composition existed before using it as the response 

variable. 
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A preliminary RDA analysis was conducted to test how much variability in the pest abundance 

was explained by the landscape variables alone and when combined with elevation and AEsZ. 

Based on the stronger predictors, another RDA analysis was conducted to test which landscape 

scale from the nine buffer radii achieved the highest correlation with the observed pests 

abundance. The adjusted R2 metric from analysis of variance (ANOVA) was used to estimate 

the variability explained and to identify the significant landscape scale. Likewise, the same  

RDA steps were repeated to determine which LULC type had a significant role in explaining 

the pests abundance based on the identified landscape scale with the highest correlation. The 

RDA analysis was conducted using the vegan package (Oksanen et al., 2019) in R programming 

software (R Core Team, 2020).  

 

3.4 Results 

3.4.1 Spatial and temporal variation of pest abundance 

Temporal variation of ABF, ABT and CBB abundance presented cyclic patterns with a minor 

and a major peak occurring in February and June for CBB (Figure 3.4C) and April and July for 

ABF and ABT (Figure 3.4A&B). Moreover, the monthly sum of the pest abundance for the 2-

year period ranged between 263 and 36 for ABF, 82 and 24 for ABT and 5130 and 500 for 

CBB. Furthermore, the abundance of ABF was five times higher than ABT throughout the two-

year observation period. 
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Figure 3.4: Monthly variation of A) A. facetoides (ABF), B) A. thunbergii (ABT), and C) H. 

hampei (CBB) abundance (monthly sums for a 2-year survey, from June 2016 to May 2018) in 

the sampled smallholder coffee plots.  

 

The distribution of the pest abundance in the sampled plots varied across the altitudinal 

gradient, as shown in the boxplots in Figure 3.5. Bray-Curtis dissimilarity index revealed 

distinct pest abundance in plots located in TZ2, which are located in the lower elevation, 

whereas the rest of the AEsZ share common pest abundance (Tukey honest test P < 0.05). TZ2 

predominantly consisted of the ABF population, while UM1 and TZ1 consisted of ABT. In 

comparison, CBB was dominant in UM1 and UM2 and low in both transition zones. Notably, 

there was a high data dispersion between maximum and minimum pest abundance within the 

same AEsZ, especially in UM1 (CBB) and TZ1 (ABT), indicating high variability in pest 

abundance even within the same locality. 
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Figure 3.5: Boxplots showing the distribution of standardized pest abundance across the agro-

ecological sub-zones (AEsZ). Sampled plots located in TZ2 (transition zone of UM2 to UM3) 

predominantly consisted of A. facetoides (ABF), whereas UM1 and TZ1 consisted of high H. 

hampei (CBB) and A. thunbergii (ABT) variability, respectively. 

 

3.4.2 The influence of the landscape fragmentation and land use/ cover variables on the 

pest abundance  

Figure 3.6 shows the variability in pests abundance explained (adjusted R2) by the landscape 

fragmentation metrics, elevation and AEsZ predictors tested at different landscape scales. There 

were no common trends in the adjusted R2 values of the different pests across the landscape 

scale; however, CBB achieved the highest adjusted R2 values, especially at 100m as opposed 

to the other pests. The ABF and ABT ANOVA models showed reasonably moderate adjusted 

R2 values (> 0.05) with landscape scales of 200 m and 300 m, respectively. When the pests 

abundance was combined in a multi-pests approach (multivariate response), there was a strong 

correlation at 300 m, when landscape metrics were used only and when combined with 

elevation and AEsZ (Figure 3.6; Table 3.1). However, the proportion of the explained variance 

in the multi-pest model improved considerably (i.e., the constrained variance increased from 
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0.36 to 0.70) when elevation and AEsZ variables were added to the RDA model compared to 

when the landscape metrics were used alone (Table 3.1). Thus, the multi-pest model, with 

landscape fragmentation metrics, elevation and AEsZ as predictor variables, was adopted for 

further analysis in this study.  

 

Figure 3.6: Correlation (Adjusted R2) of pests abundance with landscape fragmentation metrics, 

elevation, and agro-ecological sub-zones (AEsZ) within increasing landscape scales for CBB 

(H. hampei), ABF (A. facetoides), ABT (A. thunbergii) and Multi.pest (combined pests data) 

ANOVA models. 

 

Table 3.1 shows the influence of each of the predictor variables on the RDA model when 

landscape fragmentation metrics are used alone and when combined with elevation and AEsZ 

for the combined pests’ abundance at 300 m landscape scale. Specifically, PD and CONTAG 

predictor variables did not show any significant (p ≥ 0.1) influence on the variability of the 
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combined pest abundance, while other variables significantly (p ≤ 0.1) associated with the 

combined pest abundance (Table 3.1). 

 

Table 3.1: Significant predictor variables (p value < 0.1) from redundancy analysis at 300 m 

landscape scale for the three-pests combined abundance, when landscape fragmentation metrics 

are used alone and when combined with elevation and agro-ecological sub-zones.  

Landscape metrics Landscape fragmentation 

metrics, elevation, and 

AesZ 

Landscape 

fragmentation 

metrics only 

Patch density (PD) 0.989 0.992 

Proximity (PROX) 0.107 0.098 

Euclidean neighbour (ENN) 0.002 0.002 

Contagion (CONTAG) 0.885 0.910 

Intespersion juxtaposition index (IJI) 0.042 0.034 

Elevation (elev) 0.007 *NA 

Agro-ecological sub-zones (AEsZ) 0.046 *NA 

Constrained variance 0.7098 0.3657 

Unconstrained variance 0.2903 0.6343 

*NA = not available  

 

The RDA biplot in Figure 3.7 shows the distribution of sampling sites grouped by elevation and 

the relationships between the observed pest abundance and landscape fragmentation variables, 

including elevation and AEsZs. ABF abundance correlated with low elevation points (in green) 

clustered in TZ2, while ABT positively correlated with high elevation sites (red points) spread 

out in UM1. The correlation between CBB abundance and elevation was not clear. CBB 

abundance was strongly influenced by the proximity of similar patch types (PROX), while ABT 
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abundance by elevation and patch isolation (ENN). On the other hand, ABF abundance was 

correlated with inter-patch adjacency (IJI), especially in UM2 (Figure 3.7).  

  

Figure 3.7: Redundancy analysis biplot showing the correlation between pest abundance (in red 

arrows) and landscape fragmentation variables (in grey arrows), i.e., IJI, ENN, PROX, CONT, 

and PD, elevation (elev) and AEsZ (zoneUM1, zoneUM2, and zoneTZ2) within 300 m 

landscape scale. Variables with arrows facing the same direction are positively correlated, while 

the arrows of negatively correlated variables face the opposite directions. The length of the 

arrows represents the proportion of influence while the red, green, and blue coloured points 

represent sampled plots based on high, low, and medium elevation respectively. 
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Further analysis of the significant landscape fragmentation metrics (i.e., ENN, IJI, and PROX 

indices) within the 300 m radius revealed which LULC types influence the observed pest 

abundance (Table 3.2). Contiguous cover of coffee and cropland patches in the landscape 

influenced the PROX metric, while the distance between grassland patches and adjacency to 

cropland patches influenced the ENN and IJI metrics, respectively. RDA plots in Figure 3.8 

shows the relationships between the observed pest abundance and LULC types based on IJI and 

ENN metrics. CBB abundance correlated positively with adjacency (IJI) of coffee patches while 

correlated negatively with grasslands and shrublands. For Antestia bugs, intermixing of coffee 

with cropland patches positively correlated with ABF abundance, but negatively correlated with 

the ABT abundance (Figure 3.8A). For ENN, the distance between coffee and agroforest 

patches influenced the ABF abundance at the lower elevation, specifically at TZ2, whereas 

CBB and ABT abundances were equally influenced with patch distance between coffee and 

grassland and, to a lesser extent, shrubland, especially at a higher elevation in UM1 (Figure 

3.8B). Additionally, ABT abundance was also influenced by the patch distance within the 

cropland at TZ1. 

 

Table 3.2: Significance of the land use/ cover types in proximity (PROX), isolation (ENN), and 

interspersion and juxtaposition (IJI) metrics in Redundancy analysis of the multi-pest 

abundance at 300 m landscape scale. The significant (p-value ≤ 0.1) variables are highlighted 

in bold. 

Cover types PROX ENN IJI 

Agroforest 0.233 0.199 0.624 

Banana 0.221 0.317 0.236 

Coffee 0.077 0.105 0.486 

Cropland 0.068 0.111 0.049 

Grassland 0.202 0.002 0.759 
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Shrubland 0.544 0.694 0.687 

Elevation 0.002 0.003 0.001 

Agro-ecological sub-zones 0.008 0.007 0.008 

 

 

Figure 3.8: RDA biplots showing the relationship between pest abundance and land use/ cover 

types based on interspersion juxtaposition index (IJI) and Euclidean nearest neighbour distance 

(ENN) at 300 m radius. Variables facing the same direction are positively correlated, and the 

length of the arrow represents the proportion of the explained variance. The red, green, and blue 

coloured points represent sampled plots based on high, low, and medium elevation. The red 

arrows represent the studied pest, while the LULC types in grey arrows.   

  

3.5 Discussion and conclusions  

The composition and abundance of species are influenced by ecological processes within a 

specific landscape scale, patch composition and configuration pattern (Schweiger et al., 2005). 

In this study, the abundance of CBB and Antestia bugs showed a regular pattern, with low and 

high abundance occurring during the fly (secondary) and the main coffee crop seasons (Damon, 

2000). The cyclic pest pattern was associated with the coffee fruiting cycle, which varies 
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depending on the pest’s preference for food and reproduction. For instance, the Antestia bugs 

are known to prefer fully developed green berries because it contains optimal substrate for 

feeding and reproduction of the bugs (Gesmalla Ahmed et al., 2016). Furthermore, green berries 

are more attractive to Antestia bugs than ripe berries, which emit volatiles that repel the bugs 

(Njihia et al., 2018). In contrast, CBB is attracted to the red berries, which are dominant during 

harvest seasons (November – December (main crop) and March – April (fly crop)) (Jaramillo 

et al., 2006). In this study however, low count of CBB was observed during the harvesting 

periods because the Brocap traps became less attractive in the presence of red berries available 

on trees but when the berries were green (from May - August), the Brocap traps become more 

attractive to flying female CBB, resulting in higher catches. Thus, the observed monthly CBB 

count in the study is not the true seasonal variation of the pest 

 

Pest abundance varied across the AEsZ, with notable differences in plots sampled in TZ2 from 

those sampled in UM1 and UM2. TZ2 plots predominantly consisted of ABF populations, 

unlike UM1, TZ1, and UM2, which had high ABT and CBB populations. ABF’s preference for 

higher temperatures limits its distribution to coffee of lower elevations (Babin et al., 2018). In 

contrast, ABT’s preference for cooler environment is due to its limited thermal requirements 

for population growth, ranging from 19 – 26°C (Azrag et al., 2018, 2017). The results, therefore, 

confirm those of previous studies that showed ABT prefers the highest elevations (1500-2100 

m asl), where temperatures are appropriate for its development, survival, and reproduction 

(Azrag et al., 2017, 2018; Babin et al., 2018). On the other hand, CBB seems to support a larger 

range of temperatures that leads to a wider distribution over the study area (Jaramillo et al., 

2009). 
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Furthermore, the high variation in pest abundance within the same AEsZ (especially CBB in 

UM1 and ABT in TZ1) indicates that other factors apart from elevation, such as agronomic 

practices, shade management, or natural enemies, influence the variability of the pest. For 

example, ABT populations are abundant in bushy coffee trees and shaded coffee plantations 

(Kirkpatrick, 1937; Mugo et la., 2013). As one of the agronomic practices, farmers use pruning 

to improve coffee yield and manage the pest. Good pruning of coffee trees exposes Antestia 

bugs to extreme temperatures that can be lethal, especially for the immature stages (Azrag et 

al., 2018). These could be one of the reasons that explain the variations in ABT population for 

plots located in the same zone. Equally, Jaramillo et al., (2006) recorded a higher CBB 

population in full-sun coffee than those under the shade, yet sampling was done in the same 

coffee estate. Often, the microclimate in shaded coffee varies from that in non-shade coffee. 

For instance, Siles et al. (2010) noted that Inga densiflora, a commonly used shade tree in Costa 

Rica, reduced the maximum coffee leaf temperature by 5oC and increased the minimum 

temperature at night by 0.5oC when compared to the non-shade system. Consequently, pest 

infestation levels, even in plots located within the same elevation, can vary due to variation in 

microclimatic conditions. 

 

The study also sought to understand which spatial patterning of LULC types and landscape 

scale significantly influenced the observed pest populations. Similar studies have been 

conducted on bee pollinators (Saturni et al., 2016), bird species (Tscharntke et al., 2008), and 

parasitoids (Liu et al., 2016) due to the recognition of the importance of landscape ecology in 

supporting or limiting viable species communities. The results showed that the functional 

landscape scale for the observed pests was up to 300 m and this spatial limit was related to their 

dispersal capacity, which is influenced by their body size and their foraging preferences 

(Barbaro and van Halder, 2009). Individually, CBB was significant at 100 m, while Antestia 
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bugs were significant at 200 m (ABF) and 300 m (ABT). CBB are small-bodied insects with 

limited dispersal capacity unlike Antestia bugs, which are about four times bigger in body size 

than CBB with long flight ranges (Waller et al., 2007). Consequently, a connected landscape 

with coffee as the main cover is vital for survival of CBB (Gil et al., 2015). The significance of 

the PROX index from the results reinforces the importance of landscape connectivity for CBB, 

especially in UM1 and UM2, which are the central coffee growing sub-zones in the study area.  

 

Interestingly, the results also noted that ABT correlated to a larger landscape scale than ABF. 

It is thought that the body size between the two species differ with ABF having a smaller body 

size than ABT, which limits its dispersal capacity (R. Babin, Personal Communication). The 

ease of mobility allows the ABF population in the study area to thrive in TZ2 where coffee is 

more interspersed in a matrix of cropland, allowing the pest to move from one patch to the other 

for forage (Babin et al., 2018). Additionally, Antestia bugs have been shown to feed on 

secondary wild host plants (Babin et al., 2018). This underscores the significance of IJI metric 

to Antestia bugs populations, which could suggest that grasslands and croplands could be 

providing alternative host plants. 

 

This study concludes that the landscape ecology of the study area influences the population 

dynamics of the two species of Antestia bugs and CBB.  Thus, land use planning at landscape 

scale should be considered when establishing coffee plots with the awareness of the 

neighbouring patch types, especially within a radius of 300 m (Karungi et al., 2015). For CBB, 

homogenized landscapes should be disrupted by introducing new patches of natural vegetation 

such as edge trees, which will also limit the dispersal of Antestia bugs (Avelino et al., 2012). 

In the lower AEsZ, where croplands form the matrix, further studies should be conducted to 
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evaluate which cover types host the preferred secondary host plant of Antestia bugs, to be 

discouraged from neighbouring coffee patches. Finally, policy frameworks such as the agri-

environment schemes in Europe should be formulated to guide farmers on landscape 

management that preserve biodiversity, while reducing the negative impacts of excessive use 

of pesticides to control pests (Kleijn and Sutherland, 2003). This can be achieved by 

compensating farmers for conservation by promoting speciality markets that have better coffee 

prices.  
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CHAPTER 4: LINKING SHADE AND EDGE EFFECT ON MICROCLIMATE 

AND PEST ABUNDANCE IN SMALLHOLDER COFFEE LANDSCAPES IN 

CENTRAL KENYA 

 

This chapter is based on: Mosomtai, G., Azrag, A.G.A., Babin, R., Abdel-Rahman, E.M., 

Odindi, J., Mutanga, O., Tonnang, H.E.Z., Landmann, T., David, G., (in preparation). Linking 

shade and edge effect on microclimate and pest abundance in smallholder coffee landscape in 

central Kenya 

 

4.1 Abstract 

Landscape structure in an agricultural system plays a crucial role in modifying local 

microclimate that influences biological processes such as population dynamics of pests. This 

study examined the contribution of shade and edge effects in smallholder coffee landscape in 

modifying the microclimate of coffee plots and, consequently, its implication on coffee pest 

abundance. We conducted a monthly assessment of coffee berry borer, Hypothenemus hampei 

(CBB) using BROCAP® traps, and two antestia bugs, Antestiopsis thunbergii (ABT) and A. 

facetoides (ABF) systematically sampled from fifteen coffee trees using visual inspection in 

central Kenya from June 2016 to May 2018. Simultaneously, hourly temperature data was 

collected from 10 data loggers installed randomly across the elevation gradient of sampled 

plots. Finally, a land cover predicted from 10-20-meter Sentinel 2 satellite data was used to 

generate landscape metrics within buffer zones of radii 50 - 300 m. The proportion of full-sun 

coffee and agroforest, edge density (ED) and total edge contrast index (TECI) for each sampling 

site with a data logger was calculated using FRAGSTAT software. The results showed that 

CBB preferred shaded coffee in the lower elevation and full-sun coffee in the higher elevation. 

For Antestia bugs, ABT preferred shaded coffee in all the elevations, whereas ABF preferred 

full-sun coffee, especially in the low elevation. Within agro-forested stands, there was a notable 
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influence of the edge effect in lowering the mean temperature. It was concluded that the 

proportion of shade and edge surrounding coffee plots in smallholder landscapes play a crucial 

role in modifying the microclimate, especially in the full-sun system.  

 

Keywords: Edge effects, Agroforest, coffee landscapes, Coffee berry borer, Antestia bugs 

4.2 Introduction 

In agricultural agro-ecological landscapes, the role of edges has widely been studied to 

understand insect-herbivore interactions such as pests and their natural enemies (Plećaš et al., 

2014; Rand et al., 2006; Bianchi et al., 2006), pollinators  (Zou et al., 2017; Saturni et al., 2016) 

and life cycle development (Duflot et al., 2016). The studies show that in contrasting edges 

between cropland and semi-natural vegetation, natural enemies are in high abundance, 

providing effective biological control of the pests in the cropland. Equally, the diversity of 

pollinators increases in the non-crop habitat more than in the simplified landscape, benefiting 

the adjacent crops. The degree of contrast between adjacent patches alters population dynamics, 

community structure, and abiotic conditions at the boundary; an ecological phenomenon known 

as the edge effect (Baez and Balslev, 2007). Edges are proxies to the level of fragmentation in 

the landscape, such that highly fragmented patches have more edges and less of the core/interior 

area. This threatens the existence of some species, especially low dispersal species due to the 

reduced amount of habitable area (Zurita et al., 2012). Thus, management of edge effects has 

become an integral part of land use planning and policy development, such as the Europe’s 

Common Agriculture Policy that established the Agri-environment scheme that aims to protect 

biodiversity in the agricultural landscape (European Commission, 2017) 
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In the coffee landscape, intercropping coffee with shade trees has become a widespread practice 

to mitigate against the climate change impacts (Albertin and Nair, 2004). These trees provide 

an appropriate microclimate for coffee, thus increasing the quality of beans even in extreme 

climatic conditions (Nesper et al., 2017). Studies have shown that coffee fields grown under 

uniform shade trees reduce mean air temperature by 0.4oC and increase humidity by 3.9%  

(Ehrenbergerová et al. 2017). It protects the soil moisture from evapotranspiration, especially 

during prolonged dry spells, while the leaf fall provide manure on decomposition (Cannavo et 

al., 2011). However, the density of shade on coffee farms differ depending on the type, and 

density of shade trees on the farm (Teodoro et al., 2009). These disparities lead to variations in 

microclimate, especially temperature and relative humidity, which affect the population 

densities and dynamics of coffee insect pests (Azrag et al., 2018). The heterogeneity in 

smallholder coffee landscapes, unlike large homogenous coffee estates, increases the 

complexity of the shade effect. 

 

In Kenya, many smallholder farmers grow their coffee interspersed in mosaics of natural 

vegetation or intermixed with semi-natural vegetation or subsistent crops in plots less than 2 ha 

(Mosomtai et al., 2020). The highly fragmented landscape plays a vital role in impeding or 

facilitating the movement of coffee pests and pathogens or modifying the microclimate, 

underscoring the significance of the shade and the neighbouring patches (Alignier et al., 2014; 

Báldi, 1999). The results in chapter three showed that coffee berry borer, Hypothenemus hampei 

(CBB) preferred contiguous coffee patches to facilitate their movements due to their limited 

dispersal ability. In contrast, the Antestia bug, Antestiopsis facetoides (ABF) thrived in 

interspersed coffee patches in a matrix of cropland. Their high dispersal ability facilitates their 

movement while the cropland act as secondary hosts (Mosomtai et al., 2021). These findings 

alluded to the importance of patch adjacency for the survival of the two pests. However, studies 
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on shade and edge effects are limited in Kenya, and the existing literature mainly focused on 

large coffee plantations (>20 ha) (e.g. Smith et al., 2015), unlike smallholder coffee farms (<2 

ha), which this study seeks to explore. 

 

Antestia bugs and CBB were chosen due to their economic significance in the coffee industry. 

CBB is the most important coffee pest globally. It feeds on beans inside the berries, and its 

proliferation leads to significant crop loss estimated at 90% of the yield, with an annual revenue 

loss of US$500 million globally (Pardey, 2015). Antestia bugs feed on coffee leaves, shoots 

and berries, leading to a yield loss of up to 45%, with an economic threshold of two pests per 

tree (Mosomtai et al., 2021). Additionally, they are responsible for other indirect yield losses. 

Their feeding punctures allow the stigmatomycosis fungi Nematospora sp. to colonize the 

berries, resulting in endosperm rotting and damage known as zebra beans (Le Pelley, 1942). 

ABT also transmit a bacteria that causes the potato taste defect (PTD), an undesirable raw potato 

like-smell found in green and roasted coffee beans and in brewed cups of coffee (Jackels et al., 

2014; Gueule et al., 2015). These pests also have different dispersal capacities and therefore 

utilize the landscape differently (Mosomtai et al., 2021). Thus, they represent other pests by 

providing meaningful insights that inform landscape management strategies that can be adopted 

to reduce pest pressure in smallholder coffee landscapes. 

 

Decisions at the farm level (whether to plant coffee under shade or full sun) contribute to local 

and regional landscape management that is crucial in coffee pest management and creating 

resilient landscapes against climate change impacts (Jha et al., 2014). Farmers’ decisions are 

often influenced by various factors such as advice from cooperative societies, government 

incentives, mechanization, yields, and access to the speciality market. Given that the landscape 





 

67 
 

Figure 4.1: Study location in Murang’a county, Kenya, with sampling plots (yellow) and data 

loggers (red) located in a transect that cuts across upper midland (UM) agro-ecological sub-

zones UM1 to UM3. 

 

The study area receives bimodal rainfall with long rains from March to May (MAM) and short 

rains from October to December (OND). On the other hand, the dry seasons are experienced in 

January and February (JF) and from June to September (JJUS); however, the coldest season 

occurs in July, before the temperature increases in August and September (Jaetzold et al., 2007). 

This bimodal rainfall pattern results in two coffee harvests of the first crop (secondary harvest) 

and the second crop (primary harvest), which occur during the long and short rains, respectively 

(ICO, 2019). Overall, the coffee-growing zone receives an annual rainfall of 1000mm to 

1500mm, with a mean annual temperature range of 18oC to 21oC (Jaetzold et al., 2007). Many 

smallholder farmers grow Arabica coffee (Coffea arabica) either as Ruiru 11, SL 28, SL 34, or 

Batian varieties on less than 2 ha plots. 

 

4.3.2 Data collection 

A network of 30 plots located in the study transect (Figure 4.1) was assessed monthly for the 

abundance of coffee berry borer, Hypothenemus hampei (CBB), and Antestia bugs, Antestiopsis 

thunbergii (ABT) and A. facetoides (ABF), from June 2016 to May 2018. The plots consisted 

of 10 high shade, 10 low shade and 10 open sun well spread across the sub-zones to minimize 

variation in data collection. Field sampling was done from 10:00 to 15:00 and in each visit, the 

population abundances of ABT and ABF were visually inspected in each coffee plot by 

randomly sampling 15 coffee trees (Azrag et al., 2018). The number of ABT and ABF on these 

trees were counted and recorded, irrespective of their life stages. On the other hand, the CBB 

population was assessed by deploying three to four traps in each coffee plot with a 20 m distance 

between the traps. The traps contained a lure (mixture of methanol and ethanol in a ratio of 1:1) 
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in a dispenser to attract CBB females (Dufour and Frerot, 2008), and placed on tree branches 

at approximately 1.5 m above the ground. The dispensers were re-filled on monthly bases and 

the number of CBB females caught by each trap in each month were counted and recorded. In 

addition, 10 data loggers (iButtons Hygrochron, Maxim Integrated, San Jose, USA) were 

installed randomly in 10 of the sampled plots spread out from UM1 to UM3 (high to low 

elevation). The hourly temperature and humidity data collected by the loggers were used to 

determine the microclimatic conditions in the sampled plots. For this study, only the 

temperature data collected for the same period was used as the sampling period; however, some 

data loggers failed and created data gaps, which was interpolated to create seamless data for 

further analysis. Given that the pests were sampled monthly, the temperature data was 

aggregated to monthly mean (Tmean), minimum (Tmin) and maximum (Tmax). 

 

4.3.3 Landscape configuration and composition in nested scales 

Figure 4.2 shows the land cover map of coffee and agroforest of the study transect generated 

by Mosomtai et al. (2020) from 10-20-meter Sentinel 2 data with other classes masked out. 

Full-sun coffee was classified as coffee, whereas both woodlots and coffee planted under shade 

as agroforest. Many smallholder farmers in the study area grow coffee under the full-sun system 

within fragments of woodlots, often made up of Grevillea robusta, while others have adopted 

planting coffee under the shade system due to its ecosystem benefits and as an adaptation to 

climate change impacts (ICO, 2019). Common shade trees include macadamia (Macadamia 

integrifolia), avocado (Persea americana), mango (Mangifera indica), and Grevillea robusta 

which is also predominantly used as hedgerow trees like. This study focused on these two land 

cover types due to their dominance in the primary coffee growing sub-zones, and their effect 

on microclimate has been shown to vary (Gosme et al., 2020). Buffer zones of radii 50 m to 

300 m (with an interval of 50 m) were used to calculate the percentage of landscape composition 
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the edge length of coffee class per unit area, where edge density = 0 means that the same patch 

dominates the landscape, but a high value translates to fragmented patches. For the total edge 

contrast index (TECI), weight was applied to measure the degree of contrast in each edge 

segment where a value of zero translates to no difference between the patch and its neighbouring 

patches in influencing ecological phenomena such as microclimate modification, whereas a 

value of one translates to a maximum difference. Fragstat then converts the degree of contrast 

to a percentage of the total perimeter. Given the ecological significance of the edge effect of 

agroforest in modifying the surrounding microclimate, a maximum contrast between full-sun 

coffee and agroforest edges was applied.     

Table 4.1: Class metrics adopted in this study to quantify the shade and edge effect on pest 

abundance in nested scales (McGarigal et al., 2002) 

Metric Description Unit 

Percentage of landscape 

composition (PLAND) 

The sum of the total area occupied by coffee/ 

agroforest, divided by the total area of the 

buffer divided by 100 

Percent 

Edge density (ED) The sum of the total length of edges of coffee 

patches in each buffer, divided by the total area 

of the buffer and multiplied by 10,000 to 

convert it to hectares 

metres/hectare 

Total edge contrast 

index (TECI) 

The sum of the total length of coffee patches in 

each buffer multiplied by the weighted 

contrast, divided by the sum of the total length 

of coffee edges in the buffer and multiplied by 

100  

Percent 
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Shade index (SI)* The percentage of agroforest divided by the 

percentage of coffee in each buffer zone 

None  

*In house generated index: Shade index (SI) = % of
PLAND(AF)

PLAND(FS)
 

 

4.3.4 Data analysis 

First the effect of landscape structure and scale on microclimate modification was tested. Using 

a linear model for each buffer zone, the influence of shade and edge effect on the temperature 

measured by the data loggers was evaluated. Mean (Tmean), minimum (Tmin) and maximum 

(Tmax) temperature of the observation period was used as the dependant variables, while TECI, 

ED and percentage of agroforest (PLANDAF) and full-sun coffee (PLANDFS) for each buffer 

zone as explanatory variables. The linear models were further evaluated using the analysis of 

variance (ANOVA) to compare how well the explanatory variables explain the observed 

microclimate in each buffer zone.  

 

Secondly, a generalized additive mixed model from the gamm4 package in R (Pedersen et al., 

2019) was used to test the influence of micro-climate, shade and edge effect on the observed 

pest abundance. Given that the pest data were sampled monthly in the same plots, this presented 

the challenge of pseudo-replication effects, which violate the assumption of independent errors 

(Crawley, 2007). Therefore, a mixed-effect model was used, which accounts for the fixed and 

random effects that influenced the observed pest's mean and variance (Zuur et al., 2009). The 

fixed effects were the temperature variables (Tmean, Tmax, Tmin), seasonality (i.e. dry seasons 

(JF & JJUS), long rains (MAM), short rains (OND)), shade (full-sun coffee or shaded) and edge 

variables (ED and TECI), while the random effects were the date of observation and the 

sampled plots.  
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4.4 Results 

4.4.1 Distribution of pest abundance and microclimate across elevation and shade 

The temporal distribution of the pest abundance and temperature varied across the elevation 

gradient and shade (Figures 4.3 and 4.4). Without shade, CBB abundance was high in the first 

quarter of the year in high elevation plots, whereas the population peaked during the last quarter 

in coffee plots at low elevation (Figure 4.3a). Similarly, CBB abundance varied at mid and low 

elevation based on shade level. In mid-elevation, full-sun coffee plots recorded a high 

abundance from January to August (Figure 4.3b), while shaded coffee plots in low elevation 

recorded a high abundance from September to December (Figure 4.3c). For Antestia bugs, ABF 

predominantly occupied the low elevation with a preference for full sun coffee plots (Figure 

4.3g-i), contrary to its counterpart ABT, which preferred shaded plots across the elevations 

(Figure 4.3d-f).   
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Figure 4.3: Sum of monthly abundance of three coffee insect pests, H. hampei (CBB), A. thunbergii (ABT) and A. facetoides (ABF) collected in 2 years  at high 

(2000 meters above sea level) and low (1400 masl) elevation zones, shade and full-sun coffee plantations. 
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Figure 4.4: Monthly mean (Tmean), minimum (Tmax) and maximum (Tmin) temperature variations within shaded and full-sun coffee plot located at different 

elevation zone across the year.  

c) 

a) 

b) 

d) 

e) 

f) 

g) 

h) 

i) 
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Temperature variation was also notable across the elevation gradient and shade. Overall, the 

mean temperature (Tmean) ranged from 16 - 23oC, while the minimum (Tmin) and maximum 

(Tmax) temperatures ranged from 9 – 14oC and 28 – 40oC, with high elevation plots recording 

low Tmean temperature and vice versa in low elevation plots. January and February were the 

hottest months, whereas July and August were the coldest. However, shade influence was 

particularly noteworthy at mid and low elevation. Shaded coffee plots recorded lower mean 

and maximum temperatures throughout the year than the full sun coffee plots (Figure 

4.4b,c,e,f). Similarly, at mid-elevation, shade increased the minimum temperature by 2oC 

during the hottest months in January and February compared to full sun coffee plots (Figure 

4.4h). The amount of shade surrounding the sampled plots was of interest to this study. Based 

on the nested scales measured, the 100m buffer zone had the highest variability of shade index, 

but as the distance increased, the amount of shade stabilized, but generally, the mean shade 

index was constant across the scales, as shown in Figure 4.5. 

 

Figure 4.5: Shade index (SI) across the nested landscape scales of plots (p2 – p29) with data 

loggers. High elevation plots (p2 – p5) had the highest shade index than low elevation plots 

(p20 – p29) with 100 m buffer (SI100) recording the most variability in the shade index 
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4.4.2 Influence of edge contrast and shade on microclimate across landscape scales 

Table 2 and Figure 6 show the influence of the shade and edge effect in every landscape scale. 

The influence of edge effect and shade level was only significant on the mean temperature of 

the selected coffee plots as the landscape scale increased. The amount of full-sun coffee (FS) 

was only significant at 50 m buffer, with mean temperature decreasing significantly with the 

increasing proportion of full-sun coffee (Figure 6b). However, as the landscape scale increased, 

the amount of agroforest (AF) became more significant (from 150 – 300 m). The mean 

temperature increased with the increasing proportion of agroforest in the landscape (Figure 6a). 

The edge effect was also important in modifying the microclimate of the selected plots. 

Specifically, the total edge contrast index (TECI) was more significant than the edge density 

(ED). The mean temperature decreased with increasing edge contrast between adjacent full-

sun coffee and agroforest (Figure 6d). 

Table 4.2: Influence of edge effect and amount of shade on mean monthly temperature across 

landscape scales. Values highlighted in bold represent p values < 0.05 

Landscape-scale 

(Metres)   

Agroforest 

(AF) 

Full sun 

coffee (FS) 

Edge density 

(ED) 

Total edge contrast 

index (TECI) 

50 0.70 0.00 0.71 0.27 

100 0.30 0.51 0.23 0.04 

150 0.03 0.79 0.67 0.04 

200 0.01 0.91 0.79 0.05 

250 0.01 0.59 0.74 0.03 

300 0.02 0.52 0.85 0.05 
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Figure 4.6: Relationship of mean temperature (Tmean) with total edge contrast index 

(TECI100), edge density (ED100) and the percentage of agroforest (AF100) and full-sun coffee 

(FS100) at 100 m buffer.  

 

4.4.3 Influence of microclimate, edge effect and amount of shade on pest abundance 

Temperature variables were only significant to CBB abundance, whereas ABT and ABF were 

influenced by seasonality, edge effect and shade (Table 4.3). On seasonality, JJAS (dry) and 

MAM (long rains) seasons influenced the abundance of ABF and CBB but not ABT. Instead, 

shade and edge density were vital for ABT abundance (Table 4.3). It is important to note that 

a) b) 

c) d) 
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the edge effect was only significant at using the100 m landscape buffer, and as shown in Figure 

4.5, it was the only landscape scale with the highest variability.  

Table 4.3: Significance of edge effect, shade, temperature and seasonality on coffee berry borer 

(CBB), antestia bugs (A. facetoides (ABF) and A. thunbergii (ABT)) abundance. Values 

highlighted in bold represent p values < 0.05 

Variables CBB ABF ABT 

(Intercept) 0.00 0.21 0.19 

Season JJAS* 0.01 0.04 0.77 

Season MAM** 0.05 0.02 0.34 

Season OND*** 0.92 - 0.11 

Shaded coffee - 0.13 0.00 

Tmean 0.00 0.45 0.37 

Tmin 0.00 0.28 0.07 

Tmax 0.00 0.74 0.69 

ED100 0.75 0.02 0.01 

TECI100 0.00 0.03 0.10 

*June, July, August, September,  **March, April, May,   ***October, November, December 

 

4.5 Discussion 

Landscape management in the agricultural system plays a crucial role in modifying 

microclimate at the local level, influencing biological processes such as population dynamics 

of pests (Ismangil et al., 2016). This study explored the interplay of landscape management of 

smallholder coffee farms and its role in modifying microclimate in coffee plots and, 

consequently, its implication on coffee pest abundance. The results showed that the proportion 
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of shade trees and the contrast of edges surrounding coffee plots play a crucial role in modifying 

the microclimate and influencing pest abundance.  

 

Pest distribution varied with shade across the elevation gradient. For CBB, the abundance was 

higher at mid elevations between January and May, and in low elevations between June and 

December. This might be linked to the harvesting periods of the fly crop (February - April) and 

the main crop (October - December), which suggests that the mid elevation had a better harvest 

of the second crop than the lower elevation. Another explanation could be higher temperatures 

recorded between January and May at lower elevation might have influenced alcohol 

evaporation from the disperser, hence affecting trap catches. Similarly, high abundance of CBB 

was noted in full-sun coffee at mid-elevation and shaded coffee at low elevation. Shade play a 

vital role in modifying microclimate in low elevation by lowering the mean and maximum 

temperatures and increasing the minimum temperature. This could explain why the CBB 

preferred shaded coffee at low elevations. 

 

Thermal tolerance of immature stages of CBB requires a temperature range of 20 – 28oC, with 

an optimum of 23oC to develop, therefore, high temperature at low elevation was less suitable 

for the pest, possibly contributing to the low abundance observed in the full-sun coffee (Azrag 

et al., 2020). There is no unanimous agreement on the influence of shade on CBB. The results 

of this study suggest that the conflicting influence of shade can be resolved by considering 

shade alongside the elevation gradient of the plot. At an altitude of 1722 m.a.s.l, Jaramillo et 

al., (2013) recorded high CBB infestation in full-sun coffee in Kiambu county, Kenya, whereas 

Mariño et al. (2016) observed high CBB infestation in shaded coffee plots located at an altitude 

of ~550 m.a.s.l in Puerto Rico, corroborating the findings. 
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On the other hand, the antestia bugs had contrasting preferences to the shade. ABT preferred 

shaded plantations at low and mid-elevations, whereas ABF preferred full-sun coffee 

predominantly at low elevations. This suggests that the two pests have different thermal 

tolerance, though they share the same habitat and host plant. Generally, the population 

abundance of ABT is usually higher at high-elevation coffee farms where the temperature is 

cooler (Azrag et al., 2018). The preference for high elevations is due to the  ABT narrow 

thermal tolerance for population growth (between 19 and 25°C) and to avoid high temperatures 

(above 25°C), which leads to a high mortality rate of immature stages (Azrag et al., 2017). 

Therefore, the high ABT population on shaded coffee plantations at low and mid-elevations 

could be explained by the fact that shade reduces the extreme temperatures at these elevations, 

hence it offers a habitable environment for the pest to develop (Azrag et al., 2017). These 

findings agree with those reported by Mugo et al. (2013), who recorded a high ABT population 

on shaded coffee plantations in Kenya, compared to full-sun plantations. In fact, during the 

hottest hours of the day, ABT adults and nymphs avoid direct sunlight by hiding in coffee 

bushes, which could also explain the preference of this pest to shaded plantations given that 

the field sampling was done between 10 am to 3 pm, which is generally hot in the study region 

 

Unlike ABT and CBB, whose bioecology is well studied, there is limited information on ABF, 

other than its preference for low elevations (Babin et al., 2018). Perhaps, the exclusive 

distribution of ABF to Kenya and Tanzania might have undermined its importance, thus it was 

neglected compared to other coffee pests. Nevertheless, ABF was dominant in the study area, 

compared to ABT and the number of the bugs observed in the plots exceeded the economic 

threshold, especially in sunny plantations (Azrag et al., 2018). The preference of ABF to full-



 

81 
 

sun coffee suggests that this pest has a wide thermal tolerance for development. In this regard, 

ABF needs considerable attention as it can spread to new areas, especially in light of global 

warming. Hence, further studies should be conducted to understand the bioecology of ABF and 

develop appropriate management strategies to minimize its risk in coffee plantations. 

 

Also notable was the influence of seasonality on pest abundance. At low elevation, CBB 

abundance peaked in November, unlike the mid-elevation, which recorded two peak 

populations in February and July, making the March-May and June-August seasons significant. 

CBB completes its life cycle development inside the berry, and this cryptic nature means that 

coffee tree phenology underpins the observed population (Damon, 2000). The study area has 

two harvesting seasons, the first crop in March-May and the main harvest in October-

December. Colonizing CBB females are more attracted to red berries ripe for harvesting 

(Aristizábal et al., 2015). Therefore, flight activities are highest in March-May and October-

December when mature berries are available on coffee trees. Only CBB at low elevation 

recorded this expected trend. However, at the mid-elevation, the peak periods lagged to when 

coffee berries are green, making the ethanol bait on the trap more attractive to the pest, which 

explains the high number recorded (Mosomtai et al., 2021).  

 

For the antestia bugs, the June-September period recorded the highest abundance, especially at 

the low elevation. During this period, mature green berries, which are the preferred food source 

for the bugs, are available on the trees, and this could explain the high abundance of the pest 

during this period. The results also support the findings of Njihia et al. (2018), which showed 

that the second nymph instar of ABF was more attractive to the volatiles of mature green berries 

compared to the red ones. Interestingly, ABF recorded a high abundance from March-June at 
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mid-elevation, followed by no observation during the cold month until October. Apart from 

green berries, antestia bugs also feed on green shoots and flower buds, which could explain the 

high abundance during the coffee tree flowering period (Waller et al., 2007) in the mid-

elevation. Additionally, they have a high flight capacity, and when temperatures became 

unfavourable in the cold month, they could have migrated to the lower elevation with warmer 

temperatures (Mosomtai et al., 2021). 

 

Unlike large coffee plantations with homogenous coffee systems, the microclimate in 

smallholder coffee plots is regulated by the configuration of the surrounding cover types. In 

particular, the edge effect of the adjacent patches is vital in modifying the microclimate and 

influencing the population dynamics of pests (McGarigal et al., 2002). In this study, edge 

contrast (i.e. full-sun coffee surrounded by agroforest) significantly lowered the mean 

temperature across landscape scales. Contrary to the expected temperature increase in full-sun 

coffee, a significant decrease in mean temperature was noted in full-sun coffee at the plot scale 

(50 m buffer). The edge effect (from contrasting edges) of agroforest on the full-sun coffee 

plots could be a plausible explanation. Hence, this finding suggests that the microclimate 

dynamics of a full-sun coffee system in large coffee plantations differ from smallholder coffee 

plots. Notably, the influence of the surrounding landscape on microclimate was significant 

within a 100 m buffer zone. Consequently, it underscores the importance of landscape 

management in smallholdings. Edge contrast was also significant to the observed pests. Given 

their dispersal abilities, edge contrast can impede or facilitate the movement of the pests across 

the landscape. CBB has a low dispersal capacity and requires a contiguous coffee landscape, 

therefore, contrasting edges inhibit their movement. In contrast, Antestia bugs are not limited 

due to their high dispersal capacity (Mosomtai et al., 2021).   
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4.6 Conclusions  

Climate change continues to significantly impact sources of livelihood like coffee production. 

Planting coffee under shade is one of the adaptation strategies for building resilient livelihoods 

that mitigate the negative impacts of a warming world. The study evaluated the influence of 

shade and edge contrast in regulating microclimate and pest abundance in smallholding 

landscapes and concluded that pest distribution varied with shade across the elevation gradient. 

Therefore, control strategies should be pests specific, i.e. factor in the thermal tolerance of the 

pest, exposing it to the extreme conditions that inhibit its proliferation. Also, the edge effect of 

the adjacent patches is vital. The edge effect of agroforest regulates the microclimate of full-

sun coffee 
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CHAPTER 5: MULTI-SCALE HABITAT SUITABILITY MODELLING OF 

ARABICA COFFEE (Coffea arabica L) IN A STEEP AGRO-ECOLOGICAL 

GRADIENT: THE INFLUENCE OF UNDER 2oC GLOBAL WARMING 

 

This chapter is based on: Mosomtai, G., Babin, R., Abdel-Rahman, E.M., Odindi, J., Mutanga, 

O., Tonnang, H.E.Z., Landmann, T., David, G., (in preparation). Multi-scale habitat suitability 

modelling of Arabica coffee (Coffea arabica L) in a steep agro-ecological gradient: the 

influence of under 2oC global warming 

 

5.1 Abstract 

 

Limiting temperature rise to below 2oC has become a priority to mitigate the adverse 

consequences of global warming on food and nutrition systems. For instance, if the current 

anthropogenic activities continue, the livelihoods of smallholder coffee farmers are at stake 

due to the anticipated loss of suitable coffee growing areas and proliferation of the crop pests 

and diseases. The Representative Concentration Pathways (RCP) 2.6 presents an alternative 

future climate scenario that suggests limiting temperature rise to below 2oC by adopting climate 

policies and clean energy technologies. This study explores the impact of the RCP 2.6 scenario 

on the range shift of Arabica coffee (Coffea arabica L) and its implication on coffee pests to 

guide policies and designing of possible adaptation strategies. Present and future bioclimatic 

variables (at moderate to coarse resolutions) for 2050 and 2070 from WorldClim and vegetation 

indices from 30-meter Landsat 8 and 30-meter digital elevation model (DEM) data were used 

as predictor variables. A network of 50 Arabica coffee plots in Murang’a county, Kenya, were 

surveyed and utilised as occurrence data for predicting habitat suitability using the maximum 

entropy (MaxEnt) algorithm. Furthermore, the influence of different pixel resolutions (30 m 

and 1000 m) and landscape scales (100 m, 200 m, 300 m, 500 m, and 1000 m) was explored in 

predicting the distribution of Arabica coffee. Seven models were generated from landscape 
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scales and pixel resolution and a final model that combined the most significant variable from 

each landscape scale. The results showed an increase in area under Arabic coffee, especially in 

2070. A shift in the coffee range was towards the lower zone, with rainfall in the wettest quarter 

(> 500 mm) and mean elevation (1700 m) significantly influencing the model predictions. 

Additionally, the landscape scale of 100 m and resampled variables at 30 m had the highest 

modelling accuracy, whereas a larger landscape scale of 1000 m and resampled pixel resolution 

at 1000 m were the least suitable predictors. The study demonstrated the importance of pixel 

size and landscape scale in improving model prediction accuracies suggesting that localized 

predictions tailored to species-specific scales should be used to inform policy. Furthermore,  

the increase in the extent of growing coffee areas under the RCP 2.6 scenario can improve the 

livelihoods of smallholder farmers, especially in the lower elevation areas. This should 

accelerate the implementation of climate policies and the development of clean technologies 

to achieve the scenario envisioned by RCP2.6 to limit temperature rise to below 2oC. 

 

Keywords: RCP2.6 scenario, landscape scale, habitat modelling, Arabica coffee, coffee pests 

 

5.2 Introduction  

 

The sixth assessment report (AR6) of the Intergovernmental Panel on Climate Change (IPCC) 

conveyed that greenhouse gas emissions are currently at unprecedented levels, mainly due to 

eco-unfriendly anthropogenic activities (IPCC, 2021). In the last decade (2011 – 2020), the 

global mean surface temperature (GMST) has risen by 1.09 oC compared to the 1850 – 1900 

period. The IPCC special report on global warming of 1.5 oC estimates that temperature will 

increase by 1.4 – 5.8 oC by 2100 if the current anthropogenic activities continue (IPCC, 2018). 

At 1.5 oC, mid-latitudes will experience warmer days by 3.0 oC and even exacerbate to 4.0oC 
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if the globe warms by 2.0oC. This will translate to continued shifts in climatic zones of crops 

like coffee and pests distribution, their abundance and seasonal activities. Extreme events such 

as flooding, droughts and crop pest and disease outbreaks will be frequent with increased 

invasion and severity; threatening the food and nutrition security, and human health (IPCC, 

2019).  

 

Crops in the tropics such as coffee will be adversely affected by the changing climate, 

impacting the livelihoods of over 25 million smallholder farmers in over 60 countries (Waller 

et al., 2007). Arabica coffee (Coffea arabica L.), which accounts for 70% of the global coffee 

production, will be negatively impacted by the rising temperature due to the limited optimum 

temperature range of 18 - 23°C for the crop growth and development. It is reported that beyond 

23°C, substantial coffee losses will occur due to reduced crop growth, yellowing of leaves and 

accelerated ripening of beans that causes low cup quality (Damatta et al., 2006). Equally, coffee 

pests are already thriving due to favourable temperatures that shorten their life cycle, as a result 

of temperature rising by 1.09oC compared to the pre-industrial era (Azrag et al., 2018). For 

instance, the habitat range of coffee berry borer (Hypothenemus hampei) is expanding to higher 

elevations (Atallah et al., 2018), while coffee leaf rust (Hemileia vastatrix) occurrences are 

increasing due to frequent extreme weather patterns that favour establishment and build-up 

(Talhinhas et al., 2017). Hence, the legally binding global treaty under the UNFCC from the 

21st conference of parties (COP21), commonly known as the Paris agreement, set out the 

ambitious goals for countries to stabilize the GMST to below 1.5oC and in the worst-case 

scenario, well below 2.0oC above the pre-industrial levels (IPCC, 2018).  

 

Species distribution models (SDM) have become a powerful tool for making informed 

decisions regarding the impact of climate change on species distribution and their habitat 
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suitability, guiding conservation planning, biodiversity assessment, habitat restoration and 

management of invasive species (Franklin, 2010). Essentially, SDMs combine the occurrence 

of species, often presence-only, with environmental layers that define the species’ niche and 

extrapolate it to unsampled regions based on conventional statistical or machine learning 

approaches (Múrria et al., 2019). For instance, SDMs have been used to identify the potential 

breeding sites for desert locusts (Kimathi et al., 2020), map the impact of climate change on 

coffee pests (Kutywayo et al., 2013), identify barriers for gene flows (Razgour et al., 2014), 

guide conservation planning (Khosravi et al., 2019; Tôrres et al., 2012) and map potential 

impact of climate change on the distribution of key forest plant species (Hsu et al., 2012). These 

studies used bioclimatic variables from the WorldClim database as one of the key explanatory 

variables elucidating the most important climatic variables that influence habitat suitability of 

the studied species under different current or future climatic scenarios. Other explanatory 

variables used in SDMs include edaphic, topographic, land cover, vegetation indices and other 

variables such as roads and rivers (Makori et al., 2017; Sun et al., 2021; Kimathi et al., 2020; 

Rather et al., 2020).  

 

In recent decades, bioclimatic variables have become the basis for substantiating the impacts 

of climate change based on four future climatic scenarios generated from several greenhouse 

gases (GHG), air pollutants and land-use emission pathways adopted during the IPCC fifth 

assessment report (AR5) (i.e., representative concentration pathways: RCP 2.6, 4.5, 6.0 and 

8.5) (van Vuuren et al., 2011a). RCP2.6, which is the focus of this study, envisions a world 

with the least GHG emissions, where climate policies are implemented, limiting the rise of 

GMST to under 2oC by the end of the 21st century inline with the 2015 Paris agreement on 

limiting temperature to well below 2 oC. RCP4.5 and 6.0 represent intermediate 

implementations of climate policies, while RCP8.5 represent the extreme scenario with 
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possibly no climate policy implementation (Lyon et al., 2021). In these scenarios, the 

temperature will rise beyond 2oC by the end of the current century, which is detrimental to 

human, plant, animal and the environmental health.  

 

Therefore, to guide the implementation of the Paris agreement, this study aims to quantify the 

implication of RCP2.6 on the geographic distribution of suitable areas for growing Arabica 

coffee, the primary host of important coffee pests in Kenya, including coffee berry borer 

(Hypothenemus hampei) and two Antestia bug species (Antestiopsis thunbergii and A. 

facetoides). Furthermore, this study explores the role of the pixel resolution (i.e. pixel 

resolutions of 30 and 1000 m) and landscape scales (i.e. 100 m, 200 m, 300 m, 500 m, and 

1000 m) of the environmental variables in predicting the habitat suitability and range shift of 

Arabica coffee under current and future climatic scenarios and its implication on the coffee 

pests. Coffee pests interact with their environment within a limited landscape scale as shown 

by Mosomtai et al. (2021). Also, studies like Sun et al. (2021) and Rather et al. (2020) have 

shown that multi-scale variables are better predictors of species than single scale variables. 

 

5.3 Material and methods 

The study was conducted in Murang’a county, Kenya, which lies on the slopes of Aberdare 

ranges with an elevation gradient of 1000 to 3900 m asl (above sea level). The core coffee 

growing zone in Murang’a is in the upper midland (UM) agro-ecological zone with four sub-

zones; UM1, UM2, UM3 and UM4 (Figure 5.1). UM1 is the highest point for growing coffee, 

with an elevation ranging from 1800 - 2000 m asl. UM2 and UM3 are the primary and marginal 

coffee sub-zones, while UM4 lies at the lowest elevation ranging from 1300 to 1400 m asl. The 

study area receives 1000 - 1500 mm of bimodal rainfall with long and short rains occurring 

from March to May and October to December, respectively, and a temperature range of 18 – 
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21oC. The dominant Arabica coffee varieties in the study area are SL28 and Ruiru 11, which 

are grown under agroforestry, full-sun system or intercropped with subsistent crops such as 

maize, beans and bananas (ICO, 2019). 

 

5.3.1 Study area 

   

Figure 5.1: Map of Murang’a county, Kenya showing the agro-ecological zones with the upper 

midland (UM) sub-zones, where coffee is grown, highlighted in black. The black spots 

represent the sampled Arabica coffee plots 

 

5.3.2 Datasets 

5.3.2.1 Occurrence data 

Locations of 50 Arabica coffee plots were sampled from 18th to 31st of January 2018 using a 

Garmin GPS (Global Positioning System) with an accuracy of ±3 m. The sampled plots were 

well distributed across the four coffee agro-ecological sub-zones of the study area and were 

used as the occurrence data for the species distribution modelling framework (Figure 5.1). 

Specifically, a stratified random sampling approach was followed  based on the four agro-
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ecological sub-zones. On average, each plot had 200 - 400 coffee bushes, with SL28 being the 

dominant variety of more than 20 years old. Other prominent variety included Ruiru 11 and 

Batian, which are known to be resistant to coffee berry diseases and coffee leaf rust. The 

occurrence data were specifically used to predict the distribution of Arabica coffee  

5.3.2.2 Environmental layers 

Topographic, bioclimatic and remotely sensed vegetation indices were used as explanatory 

variables (Table 5.1). In addition, bioclimatic variables (1 km spatial resolution) obtained from 

the Worldclim database (https://www.worldclim.org/data/bioclim.html) were used to simulate 

the present and future climatic scenario under the RCP2.6 concentration pathway for 2050 

(2041-2060 average) and 2070 (2061-2080 average). The RCP2.6 is a mitigation scenario with 

a substantial reduction in emissions to about 70% expected by the end of the 21st century if all 

countries implement their climate policies (van Vuuren et al., 2011b). Specifically, RCP2.6 

trajectory predicts a peak in radiative forcing of 3W/m2 by mid-century, then a decline to 

2.6W/m2 at the end of the century (van Vuuren et al., 2011a). The nineteen bioclimatic 

variables of Worldclim database were used to select uncorrelated variables based on variance 

inflation factor (VIF) as recommended by Naimi and Araújo, (2016). The few selected 

variables included Isothermality (bio3),  temperature seasonality (bio4), annual temperature 

range (bio7) and precipitation of the warmest quarter (bio18). Additionally, three remotely 

sensed vegetation indices from the 30 m Landsat 8 surface reflactance (Level-2 Science 

Products) collected in the same month of the field sampling. The indices  were extracted to 

capture information on soil (Modified Soil-Adjusted Vegetation Index - MSAVI), water 

(Normalized Difference Water Index - NDWI) and vegetation cover (Green Normalized 

Difference Vegetation Index - GNDVI) of the study area. Moreover, a tasselled cap 

transformation of the seven bands of Landsat 8 (except thermal and aerosol bands) was done 
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to mimic the greenness, wetness and brightness for further landscape characterization. Finally, 

a 30 m digital elevation model (DEM) was used to estimate the elevation of the study area.  

 

5.3.2.3 Generating multi-scale environmental layers 

The variables were initially resampled to 30 m  (res30) and later to 1km (res1000) pixel 

resolution to evaluate the effectiveness of cell size in predicting coffee habitats. Additionally, 

five landscape scales (i.e. 100 m, 200 m, 300 m, 500 m, and 1000 m)  generated from the mean 

focal statistic of 30 m spatial resolution using the Multiscale Maxent Toolbox v2 in ArcMap 

10.3.1 were evaluated (Bellamy et al., 2013).  

Table 5.1: List of the environmental variables used in modelling species distribution 

Variable Name Resolution Source 

Climatic Bio3 - Isothermality  1km WorldClim database 

Bio4 - Temperature Seasonality  1km WorldClim database 

Bio7 - Temperature Annual 

Range  

1km WorldClim database 

Bio18 - Precipitation of Warmest 

Quarter 

1km WorldClim database 

Remotely 

sensed  

(from Landsat 

8 mosaic) 

GNDVI - Green Normalized 

Difference Vegetation Index 

30m Earth Explorer 

MSAVI - Modified Soil-Adjusted 

Vegetation Index 

30m Earth Explorer 
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 NDWI - Normalized Difference 

Water Index 

30m Earth Explorer 

Greeness_tasseled_cap  30m Earth Explorer 

Topographic DEM -  Digital Elevation Model 30m Earth Explorer 

 

5.3.3 Maximum entropy (MaxEnt) model 

Figure 5.2 summarises the general methodological framework of the MaxEnt experiment 

adopted in this study. MaxEnt machine learning algorithm was preferred due to its robustness 

in handling presence-only occurrence data, especially when the sampled data are few (Phillips 

et al., 2006). The principle behind MaxEnt is that the best probability of unknown distribution 

is one where the most spread out are towards known constraints (Franklin, 2010). In the case 

of SDM, MaxEnt generates background data to mimic the absence of observations in the study 

area, known as pseudo points, while the occurrence data define the known constraints of where 

the species is most likely to be present (Hijmans and Elith, 2016). MaxEnt model has several 

features and parameters that can be set at default, but the default settings might not always be 

suitable for every modelling scenario. Therefore, optimizing the MaxEnt settings and 

parameter is vital to achieving accurate predictions (Merow et al., 2013). In this study, the 

MaxEnt regularization parameter was optimized to avoid overfitting. Preliminary analysis of 

regularization multiplier of 3 resulted in overprediction compared to the default value of 1. 

Also, the feature selection was optimized, which is the basic function that uses explanatory 

variables to constrain the probability distribution of the species of interest. This study opted for 

the auto features that use the general empirical derived rules to select the appropriate features 

as suggested by Phillips et al., (2006)  
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Figure 5.2: The flowchart of the methodological frame for the Maximum Entropy (MaxEnt) 

model adopted in this study 

 

In total, eight MaxEnt models derived were generated from eight sets of the explanotory 

variables, two from resampled environmental layers at 30 and 1000 spatial resolutions, five 

from single landscape scales of 100 m - 1000 m and a final model from the most important 

variables in the single landscape scale, herein referred as a multi-scale model. A cross-
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validation method with K - folds = 5 was employed to assess the models performance in 

predicting Arabica coffee. In specific, k-1 folds (k is number of species occurrence 

observations) were used to train the model, whereas the left-out fold was retained to evaluate 

the model accuracy (Fletcher and Fortin, 2018). The area under curve (AUC) of the receiver 

operating characteristics (ROC) was used to assess the accuracy of the models. It is suggested 

that an AUC of 0.5 or less represents a model that is as good as random with poor 

discrimination of presence from the absence, whereas the inverse is true for models with an 

AUC greater than 0.75 (Jiménez-Valverde, 2012). Since AUC is a threshold independent, 

binary maps were generated by applying a threshold of 10 percentile of the training presence 

observations, which allowed for the detection of species range shifts in the future 

 

5.4 Results 

5.4.1 Single landscape scale verse multi-scale 

The average AUCs of the eight MaxEnt models are presented in Figure 5.3. Overall, the multi-

scale and 100 m landscape scale models had the highest AUCs of 0.83. Equally, variables 

resampled to 30 m spatial resolution had the same predictive ability as the multi-scale and the 

100 m landscape scale variables (AUC = 0.82). On the other hand, variables resampled to 1000 

m and landscape scale of 1000 m had the least AUCs of 0.80. As the landscape scale increased, 

a notable predictive ability decreased.  
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Figure 5.3: Average test area under curve (AUC) of single and multi-scale environmental 

variables. res30 and res1000 represent resampling f environmental variables to 30 m and 1000 

m pixel resolution. 

 

Visual interpretation of the final graphical model outputs showed that all the models were able 

to predict similar suitable habitats for Arabica coffee in the study area. Pixelation was dominant 

in maps generated from resampled variables at 1000 m spatial resolution, whereas predictive 

maps generated from landscape scales of 300 - 1000 m were smoother but generalized than 

those from 30 m spatial resolution, multi-scale and 100 m landscape scale, which predicted 

almost the same suitable areas. All the models predicted the UM1 and UM2 as the most suitable 

habitats for growing coffee, whereas the UM3 and UM4 were predicted as the marginal suitable 

sub-zones. Also, the models predicted areas of relatively higher elevations to be unfavourable 

for Arabica coffee, which are currently a tea growing areas and the protected Aberdare forest.  
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Figure 5.4:  Habitat suitability maps for Arabica coffee in Murang’a, Kenya generated  using 

explanatory variables from landscape scales of 100 m to 1000 m (a - e), resampling at 30 m (f) 

and 1000 m (g) pixel resolution, and multi-scale (h) 

 

5.4.2 Variable importance  

The results illustrated that the most important variable for predicting the habitat suitability of 

Arabica coffee in all the developed models was Bio18 (precipitation of the warmest quarter), 

while the elevation was the second most important variable (Table 5.2). Notably, there was a 

clear difference in the contribution of GNDVI when different landscape scales were 

considered. The GNDVI became more important for predicting the habitat suitability of 

Arabica coffee as the landscape scale increased, with the highest contribution noted at the 1000 

m landscape scale. Interestingly, in the multi-scale model, which used the 1000 m scale GNDVI 

as the input variable, GNDV was the second most important variable after the Bio18 with a 

difference of only 1% contribution (Table 5.2). Likewise, the importance of NDWI increase 
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with an increasing landscape scale. For instance, NDWI contributed less than 3.5% in the 

model performance when used at 30 m spatial resolution, however its contribution substantially 

increased to 16% (Table 5.2) when used at landscape scale of 100 m in the multi-scale model. 

On the other hand, the results showed that temperature derivatives (Bio3, Bio4 and Bio7) were 

the least contributing predictor  in all the models, with less than 4% contribution.  

Table 5.2: Contribution of each explanatory variable in the maximum entropy (MaxEnt) model 

for predicting habitat suitability of Arabica coffee across different pixel resolution and 

landscape scales. Values highlighted in bold represent the most important variables. res30 and 

res1000 are resampled variables at 30 m and 1000 m, respectively 

 Variable contribution (%) 

Scale Bio18 Bio3 Bio4 Bio7 GNDVI Greeness MSAVI NDWI DEM 

res30 50.2 3.8 1.4 0.5 4.3 11.7 3.9 3.3 20.8 

res1000 58.3 1.8 1.5 1.3 0.6 2.1 8.6 1.8 24 

100m 40 2.3 0 3.2 20.6 6.5 1.8 7.9 17.8 

200m 36.3 1.3 0.2 2.5 21 13.1 5 3.4 17.1 

300m 36.4 2.7 0.2 3.7 28.9 4.6 3.3 3.5 16.7 

500m 42.1 1.3 0.1 2.9 30.3 0 5 1 17.3 

1000m 34.4 0.3 0 2.1 35.9 0.2 4.8 5.5 16.7 

Multiscale 28.2 2.7 0 1.9 27.3 0.7 5.5 15.9 17.7 

 

5.4.3 Range shifts in 2050 and 2070 

Given that the multiscale and resampling to 30 m resolution produced similarly accurate 

Arabica coffee and pest distribution predictions, 30 m model output was used to evaluate the 

changes in range shifts in Arabica coffee habitat under the changing climate scenario of 
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RCP2.6. Table 5.3 presents the current total area (km2) suitable for growing Arabica coffee as 

compared to the suitable area in 2050 and 2070 in each agro-ecological sub-zones. Overall, 

there is an increment in suitable areas for Arabica coffee cultivation when the temperature rise 

is kept under 2oC. However, the suitable areas in the sub-zones are different. In specific, in 

UM1 and UM2, there was an increase and decrease in Arabic coffee suitable areas in 2050 and 

2070, respectively. Whereas in UM3 and UM4 the suitable Arabica coffee growing area will 

increase in both epochs. Figure 5.5 shows the shifts in Arabica coffee suitable habitats from 

current to 2050 and 2070, and changes expected between 2050 and 2070. The figure shows a 

downward shift in area of Arabica coffee in 2070, with an increased suitable area in the UM3 

and UM4 sub-zones. Notably, this shift will occur between 2050 and 2070 

Table 5.3: Area in km2 of suitable habitat for Arabica coffee under the emission pathways of 

RCP2.6 in 2050 and 2070 across the agro-ecological sub-zones 

AEsZ Current (km2) In 2050 (km2) In 2070 (km2) 

UM1 183.17 206.15 185.05 

UM2 358.76 393.90 377.89 

UM3 133.06 151.53 206.51 

UM4 11.60 13.15 62.61 

Total 686.59 764.74 832.07 
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Figure 5.5: Range shifts expected in habitat distribution for Arabica coffee, H. hampei and 

Antestiopsis spp., in 2050 and 2070 under the RCP2.6 emission pathway 

 

5.5 Discussion 

Understanding the future impact of climate change is vital for planning and implementing 

climate policies that regulate anthropogenic activities. This study predicts the implication of 

implementing adaptation and mitigation measures against climate change as envisioned in the 

RCP2.6 trajectory that limits temperature rise to below 2oC on Arabica coffee distribution. The 

study focused on the smallholder coffee agrosystem, a valuable cash crop in many developing 

economies that will be negatively impacted by climate change if the current anthropogenic 

activities that induce temperature rise continue (Bunn et al., 2015). The evidence provided in 

this study will help the policymakers accelerate the implementation of climate policies to avert 

the consequences of adopting the business-as-usual model by the end of the current century. 
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The study also explored the importance of landscape scale and and varying pixel sizes in 

predicting the habitat suitability of the Arabica coffee. 

 

The study underscored the need for using appropriate spatial resolutions based on the 

geographic scale under consideration. Resampling variables to a coarse spatial resolution 

predicted poorly accurate Arabica coffee habitat suitability than a finer resolution. Gottschalk 

et al. (2011) noted similar findings on the influence of pixel size on predicting the distribution 

of birds using SDM. Variables with finer pixel size were better predictors than the coarse pixel 

ones. The study also noted the significance of the landscape scale on the environmental 

variables. Given that species perceive their landscape based on the scale that meets their 

biological needs, tailoring the environmental variables according to the landscape scale of their 

habitat has shown significant improvement in predicting their habitats (Bellamy et al., 2013; 

Grand et al., 2004). The habitat predictive models achieved the highest accuracy at 100 m 

landscape and the accuracy gradually declined as the landscape scale increased.  

 

Furthermore, the greenness of vegetation extracted from satellite-based data played a major 

role in predicting Arabica coffee habitats when landscape scale was considered. Studies have 

shown that coffee was distinguishable from other vegetation using satellite-based vegetation 

variables (Chemura et al., 2018). This could partly interpret the high importance of GNDV and 

NDWI in predicting the distribution of Arabica coffee. Also, the scale of landscape could have 

been influenced by the fact that smallholder farmers usually grow their coffee in plots less than 

2 hectares. This corroborated Mosomtai et al. (2021) findings that showed the importance of 

landscape scale to coffee pests such as coffee berry borer and antestia bugs. Pest with limited 

dispersal capacity such as coffee berry borer responds to their landscape within 100m and 
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prefers contiguous coffee patches to facilitate their movement, unlike the antestia bugs, which 

have a higher dispersal capacity and can forage within 300m landscape scale. 

 

In general, the MaxEnt models showed that there will be an increase in acreage under Arabica 

coffee by the end of the century. The results agree with Bunn et al. (2015), who mapped habitat 

suitability for Arabica and Robusta coffee globally. The notable shift in the coffee range will 

occur between 2050 – 2070. This is attributed to the decline in temperature rise after peaking 

in 2050 due to technological advancement and environmental awareness envisioned in RCP2.6. 

Fossil fuels will be abated by adopting bioenergy, renewable and nuclear energy, achieving 

net-zero emissions at the end of 2100 (van Vuuren et al., 2011b). Even beyond 2100, the 

advantages of keeping temperature rise below 2oC will be significant. Lyon et al. (2021) 

modelled the impact of climate change in 2500 on agriculture and noted that under RCP2.6 

there would still be an increase in suitable land for tropical crops. Range shifts of Arabica 

coffee will also affect primary insect pests such as coffee berry borer and the antestia bugs. 

Geographic shifts of Arabica coffee imply that their habitats will also shift following their host. 

Differences will only exist on which sub-zones would be more preferred. Previous studies show 

that coffee berry borer prefer a wider distribution, unlike  antestia bugs, which are confined to 

low (A. facetoides) and high (A. thunbergii) elevations (Mosomtai et al., 2020).  

 

Precipitation of the wettest quarter was the most significant variable in predicting the habitat 

suitability for Arabica coffee. The wettest quarter coincides with the long rains of March to 

May in Kenya, which is also the flowering period of coffee in the study area, eventually 

influencing the yield harvested in December. Furthermore, Arabica coffee requires a short dry 

spell to stimulate flowering for a guaranteed good harvest, which occurs in January and 
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February in Kenya (DaMatta et al., 2007). However, with erratic rainfall patterns due to climate 

change, continuous rainfall will lead to low yields (Damatta et al., 2006). Assessment of rainfall 

patterns under RCP scenarios by USAID (2017) in the East Africa region noted that there 

would be an increase in rainfall patterns during the short rains than the long rains (October - 

December), especially under RCP8.5 than RCP2.6. Possible threat to harvest loss will exist due 

to too much rainfall in December and the possible confounding effect of pests and diseases 

such as leaf rust and coffee berry borer infestation. Consequently, smallholder farmers will 

have to incur more costs in managing these pests and diseases. 

 

Elevation was also a key variable in mapping habitat suitability for Arabica coffee. Studies 

such as Ovalle-Rivera et al. (2015) and Magrach and Ghazoul (2015) noted a shift in Arabica 

coffee range to higher elevations at a global scale, with little or no change when considering 

the East African region. In contrast, this study noted a downward shift to lower elevation, 

specifically in UM3 and UM4. The differences could be attributed to the scale of study, 

resolution and type of variables used (i.e., RCP scenario and other explanatory variables) and 

the source of occurrence data for making the prediction. Global studies often use variables with 

coarser spatial resolution and occurrence data obtained from repositories such as Global 

Biodiversity Information Facility (GBIF) that require data cleaning to remove duplicates, 

missing coordinates or oversampling before making predictions (Soberón and Peterson, 2004). 

This study was at a landscape scale with occurrence data collected at coffee plot level. 

Furthermore, additional variables from vegetation indices and topography apart from 

bioclimatic variables substantially contributed on the characterization of the habitat suitability 

of Arabica coffee. Initial preliminary results that used only bioclimatic variables noted a shift 

in Arabica coffee suitable habitats to a higher elevation in 2050 and a downward shift in 2070. 

However, when remotely sensed biophysical variables were added, the shift in Arabica coffee 
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habitat happened in specific regions. This shows the potential bias that commonly exists when 

only bioclimatic variables are used to make predictions in SDM experiments (Makori et al., 

2017).  

 

5.6 Conclusion 

The study underscore the need for countries to act now, formulating and implementing climate 

policies that will limit temperature rise to well below 2oC. RCP2.6 scenario presents a hopeful 

future if climate policies are implemented and technological advancements in managing GHG 

emissions are adopted globally. Despite an increase in area under coffee, pests and diseases 

pressure will continue to be a challenge for smallholder farmers, but the severity under RCP2.6, 

especially in 2070, will be less compared to all the other scenarios.  
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CHAPTER 6: CONCLUSIONS AND RECOMMENDATIONS 

FOR FURTHER RESEARCH 

6.1 Introduction 

Mapping farming systems in an agricultural landscape is essential for informing land use 

policies, quantifying ecosystem services such as pests and pathogens management, conserving 

beneficial arthropods, and improving crop pollination and yields (Kuemmerle et al., 2013). 

Agricultural landscapes are characterized by spatial arrangement (configuration) of land cover 

types (composition), which influence ecological processes and biodiversity at varying scales. 

Agricultural activities have modified the natural environment, resulting in habitat loss and 

disturbance of species communities and their biotic interaction. This thesis focused on the 

landscape ecology of smallholder coffee farms that largely drive the landscape structure and 

habitat integrity for supporting coffee and pest populations. In view of the changing climate, 

developing integrated pest management strategies relevant to each farming system and agro-

ecological zone requires understanding pests, farming systems, and landscape structure to 

equip farmers and policymakers with the necessary mitigation, adaptation, and resilience 

knowledge.  

 

This study provides essential insights into the role of landscape management of smallholdings 

in creating conducive ecological environments allowing for improved management of coffee 

pest populations. The following research questions were answered in the present study;  

1. Which remote sensing dataset accurately delineates the cover types in a heterogenous 

coffee landscape?  

2. Which critical landscape configuration and compositions influence the population 

dynamics of coffee berry borer and antestia bugs? 
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3. Does the shade and edge effects of shade and full sun coffee influence microclimate 

and pest abundance in coffee plots?  

4. What is the impact of global warming of 1.5 oC and 2.0 oC on Arabica coffee growing 

zones and the species distribution range of the Antestia bug?  

The novelty of this thesis is the longitudinal approach used to understand the factors that 

influence coffee pests across ecological scales. At mesoscale, the study explored the impact of 

a warming world under 2 oC on habitat suitability of Arabica coffee and possible geographic 

shifts. This builds upon the recent findings of the IPCC special report on the impact of half a 

degree temperature increase on man and the environment. At the landscape scale, the study 

used satellite images to characterize smallholder coffee landscapes and further examine the 

role of landscape setup in sustaining coffee pests across an altitudinal gradient. Finally, the 

study links the shade and edge effects to microclimate modification and pest abundance at the 

farm scale. 

 

6.2 Summary of the findings 

6.2.1 Leveraging satellite-based data to map smallholder coffee farms 

Data from earth observation and the use of the machine learning algorithms provide an 

unprecedented opportunity for mapping agricultural landscapes. Chapter two evaluated multi-

source satellite images with the least cost for mapping smallholder coffee farms in central 

Kenya. Commercially available 3 m PlanetScope and freely available Sentinel 2 (10 – 20 m 

pixel resolution), and Landsat 8 (30 m pixel resolution) spectral reflectance data combined with 

vegetation indices (VI) were tested using a random forest classifier to characterize landscape 

fragmention of coffee smallhloings in central Kenya. The dataset with the highest accuracy for 

land cover classification was further analyzed using FRAGSTAT software to predict 
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fragmentation indices in coffee agro-ecological sub-zones (Upper Midland UM1 – UM4) in 

the study area.  

 

Thirteen-band Sentinel 2 had the highest accuracy for mapping coffee (kappa - 0.98) compared 

to 4-band PlanetScope (kappa – 0.85) and 11-band Landsat 8 (kappa – 0.88). Despite having 

the highest spatial resolution, PlanetScope had the lowest accuracy, which only improved when 

combined with vegetation indices.  Sentinel 2 was the most robust satellite data due to the high 

number of spectral bands that delineated vegetation type more accurately than other satellite 

datasets. Similar findings were noted by Htitiou et al., (2019), Shoko and Mutanga, (2017) and 

Tawona et al., (2020) when using Sentinel 2 for mapping crops and grassland. The final land 

cover map from Sentinel 2 mapped the following classes: annual crops, banana, bareland, 

coffee, agroforest, grassland, perennials/shrubs, settlements, tea and waterbodies. Coffee 

covered over 50% of the total landscape in UM1 and UM2, while annual crops occupied 43% 

of the total landscape in UM3. Coffee was highly fragmented in UM3 and UM4, with the 

largest patches occupying 3% and 1.4% of the total landscape compared to UM1. 

 

6.2.2 Spatial scale and landscape metrics that influence coffee pests  

A network of 30 plots was assessed monthly for coffee berry borer (Hypothenemus hampei) 

and two species of antestia bugs (Antestiopsis thunbergii and Antestiopsis facetoides). The 

results showed a cyclic pattern with high variability of pest populations in plots across the 

elevation gradient and within the same agro-ecological sub-zones. The cyclic pattern was due 

to the coffee fruiting cycle and varied based on food and reproduction preferences. The antestia 

bugs prefer fully developed green berries for feeding and reproduction (Gesmalla Ahmed et 

al., 2016), whereas the coffee berry borer prefers the red berries dominant during the harvest 
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seasons (Damon, 2000). However, the coffee berry observation made during this study may 

not accurately represent the cyclic pattern of pest population dynamic due to the competition 

of Brocap traps with ripe berries during the harvest season or the availability of berries on the 

ground or on the tree due to the absence of total picking. In the absence of red berries, the 

Brocap traps become more attractive to flying female borers.  

 

Antestia bugs were mainly influenced by elevation, with A. facetoides preferring lower 

elevations and A. thunbergii at high elevations. This was in line with previous studies by Azrag 

et al. (2017, 2018) and Babin et al. (2018) that showed A. thunbergii preference for the high 

elevations where temperatures are cold enough for its development, survival, and reproduction, 

unlike its counterpart A. facetoides that prefer higher temperature. For the coffee berry borer, 

a wider distribution range was noted. However, localized factors such as agronomic practices, 

shade management, localized flowering or natural enemies could have influenced the observed 

abundance. Notable also was the influence of landscape structure on coffee berry borer 

abundance. Contiguous coffee patches in the higher agro-ecological sub-zones favoured coffee 

berry borer, whereas adjacency of coffee patches to either cropland or grassland favoured the 

abundance of antestia bugs. The limited flight capacity of the borer influenced the preference 

of the connected coffee patches to facilitate its movements, unlike the antestia bugs that have 

a high flight capacity and can thrive where coffee patches are interspersed. Patch diversity, 

composition, and configuration of land cover types varied in each agro-ecological sub-zones. 

In UM1 and UM2, coffee patches dominated the landscape, while UM3 and UM4 were the 

marginal coffee areas within a matrix of annual crops.  
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6.2.3 Shade and edge effect on microclimate and pest abundance 

Coffee farming systems play a significant role in regulating coffee pest populations and 

modifying microclimate. This study used data loggers to measure the microclimate of shaded 

and full sun coffee plots, whereas the edge effect was measured using the edge density and 

total edge contrast index from FRAGSTAT. The role of shade was significant in modifying the 

microclimate of plots in the lower sub-zones. Shaded plots recorded lower mean and maximum 

temperature than the full sun coffee plots throughout the year. Furthermore, the mean 

temperature decreased with increasing edge contrast between adjacent full-sun coffee and 

agroforest, alluding to the importance of the adjacent cover types. For the pests, A. thunbergii 

preferred shaded plots contrary to A. facetoides, which preferred full sun coffee. On the other 

hand, coffee berry borer preference varied with elevation. The borer preferred the full sun 

coffee at high and mid-elevation and shaded coffee at the lower elevation.  

 

6.2.4 Impacts of climate change on range shift of Arabica coffee habitat 

IPCC's special report on the 1.5 oC global warming showed that the tropical regions, where 

coffee and other crops with economic importance are grown, would adversely be affected and 

even worsen if the temperature rises by 2 oC. Given the new findings on the importance of 

shade in modifying the microclimate in coffee plots, the study examined the importance of 

countries implementing climate-friendly policies and its impact on habitat suitability for 

growing Arabica coffee, the primary host of the studied pests. RCP 2.6 predicts a scenario 

where temperature rise is limited to below 2oC by countries implementing climate-friendly 

policies. For the study area, the results showed an increase in the suitable coffee growing area 

with a shift towards the lower agro-ecological sub-zones, especially from 2050 to 2070. The 

models used in this study evaluated the robustness of resampling environmental variables to 

high and low resolution and accounting for spatial scale in the prediction accuracy, given that 
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species perceive their landscape based on the scale that meets their biological needs. The results 

showed that resampling to a coarser resolution is ineffective in making accurate predictions. 

Furthermore, tailoring environmental variables to the optimum spatial scale for resource 

utilization and foraging of the species improved the prediction accuracy.  

  

6.3 Implication of the study 

Countries with limited resources can exploit the robustness of freely available 10-20 m Sentinel 

2 time line datasets to generate updated land cover data. This will significantly meet the data 

gap in global datasets and assist in planning and policy formulations that guide the restoration 

of degraded landscapes and model ecosystem services, especially from shade coffee, 

generating integrated land management systems. The maps can also be integrated with crop 

phenology and climatic variables to understand the occurrence of coffee pests and diseases and 

predict yields for food security. Recently, land cover maps have become a critical baseline data 

in crop insurance against loss from extreme weather and pests and diseases and the 

development of AgriTech companies. The only cost that countries would have to incur is the 

collection of field data for verification. However, alternative methods that involve citizen 

science are now widely adopted, especially for large scale collection of reference data. The 

potential challenges with these new methodologies however, is on data integrity, but several 

data quality control levels are currently being adopted to minimize the errors. 

 

 Landscape structure, which is a result of landscape management by smallholder coffee 

farmers, limits or contributes to the thriving of coffee pests. Therefore, land use planning 

should be considered when establishing coffee plots with the awareness of the neighbouring 

patches, especially within a 300m radius. Participatory methods such as participatory 
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geographyical information system (PGIS) can be adopted to involve the community in the 

decision-making process (Ujamaa Community Resource Team, 2010). Furthermore, there is a 

need to introduce new patches of natural vegetation in simplified coffee landscapes to disrupt 

the dispersal of antestia bugs and coffee berry borer. To achieve this, farmers can plant shade 

trees as one of the climate-smart adaptation strategies that will mitigate against the impact of 

climate change whilst increasing biodiversity in their farms, which will offer biological control 

of pests through natural enemies. Additionally, farmers can benefit from the speciality market, 

which often has high prices for shade coffee. 

 

The RCP 2.6 scenario underscores the importance of implementing climate policies and 

investing in green technology to limit temperature rise to below 2oC. The future scenario under 

RCP 4.5 and 8.5 predicts a loss of 50% of the current coffee-growing areas if the current 

anthropogenic activities continue or minimal mitigation is implemented. Achieving net-zero 

carbon footprints by the end of the century requires concerted efforts by all the countries, and 

this will reverse the negative trend of lower agro-ecological sub-zones becoming unsuitable for 

coffee production. Infact, these regions will create a new source of revenue for smallholder 

farmers and increase the country's gross domestic product. 

 

6.4 Conclusions  

The overall aim of this study was to understand the landscape ecology in smallholder coffee 

systems and its role in supporting coffee pests. The study adopted a hierarchical approach at 

ecological scales by examining the influence of shade on pest abundance at the plot scale to 

the impact of climate change at the regional/global level. The study concludes that, 
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1. Sentinel 2 provides a robust dataset for mapping land cover types due to the number of 

spectral bands. The SWIR bands were particularly critical for mapping the smallholder 

coffee landscape, 

2. The landscape structure in each Kenyan agro-ecological sub-zones was unique. 

Therefore, landscape management recommendations should be specific to each sub-

zones instead of blanket recommendations to improve the resilience of the coffee 

landscapes, 

3. The optimum landscape scale that influences coffee berry borer is 100m and 300m for 

antestia bugs, 

4. Due to the limited dispersal capacity, the coffee berry borer preferred connected coffee 

patches for ease of movement. Management strategies should introduce barriers to limit 

the dispersal of the borer, 

5. Shade and the elevation gradient strongly influence pest distribution and should be used 

as control strategies for exposing pests to extreme conditions that inhibit their 

proliferation,  

6. The edge effects of the adjacent patches are vital. Agroforest regulated the microclimate 

in full sun coffee plots, whereas cropland acted as alternative hosts for the antestia bugs, 

7. There is an urgent need for countries to formulate and implement climate policies that 

will limit temperature rise to below 2oC for optimum coffee production,  

8. Under the RCP 2.6 scenario, there will be an increase in suitable habitats for growing 

Arabica coffee, especially in the lower agro-ecological sub-zones of Kenya, 

9. Despite an increase in area under coffee, pests’ pressure will continue to be a challenge 

for smallholder farmers, but the severity under RCP 2.6, especially in 2070, will be less 

than all the other scenarios, and 
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10. Policy frameworks that encourage smallholder farmers to plant shade trees to improve 

landscape resilience and preserve biodiversity while reducing the negative impacts of 

excessive use of pesticides to control pests should be formulated. 

 

6.5 Future outlook 

Earth observation data are one of the primary inputs for understanding landscape ecology. 

Despite the advantages of seamless data acquisition and coverage on consistent temporal 

periods over the strenuous and often resource constraint in situ data collection, satellite-based 

datasets face pixel resolution challenges. This study adopted the 10-20 m Sentinel 2 images, 

however, satellite datasets with higher resolutions, such as the WorldView series with less than 

a centimetre resolution, can be explored to reveal further details on the existing landscape 

structure in smallholding or fusing Sentinel 1 (which is synthetic aperture radar data) with the 

Sentinel 2 to increase the delineation of features (Ochungo et al., 2019). This study used field 

observations and a land cover map to classify coffee plots into full sun and shaded systems. 

Future studies can adopt hemispherical photography with Fisheye lenses or a Spherical crown 

densitometer to measure the shade level of coffee plots and biophysical variables such as leaf 

area index (LAI) and fraction of absorbed photosynthetically active radiation (fPAR). These 

biophysical variables can be upscaled to the biophysical bands in Sentinel 2, which would 

improve the classification of coffee bushes. Equally, agronomic practices such as pruning, 

fertilizer and pesticide application should be accounted for while assessing pest population 

dynamics. Finally, educating the community and the local stakeholders on the state of their 

landscape and the adaptation options available to them is key to developing resilient 

landscapes. Future studies can build a recommender system to facilitate this awareness process 

by providing location-specific landscape management options, consequently initiating 

behavioural change on how they manage their landscapes. 
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APPENDIX 

Supplementary Table 2.1: Scene description for each satellite dataset 

Satellite 

imagery 

Scene identity (ID) Date of 

Acquisition 

Cloud 

cover 

Source 

PlanetScope (PS) Analytic Ortho Tile  no.807181 03/10/2017 0% https://www.planet.com/ 

Sentinel 2 (S2) S2A_MSIL1C_20170827T075211_N0205_R092_T37MBV 27/08/2017 2% scihub.esa.int/dhus/ 

Landsat 8 (L8) LC08_L1TP_168061_20171228_20180103_01_T1 28/12/2017 0%  https://earthexplorer.usgs.gov/ 
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Supplementary Table 2.2: Variable importance (%) for vegetation indices and texture variables (described in Table 2) from Sentinel 2, Landsat 8, 

and PlanetScope datasets. 

Vegetation indices  Texture variables 

  Sentinel 2 Landsat 8 PlanetScope    Sentinel 2 Landsat 8 PlanetScope 

 Variables MDA MDG MDA MDG MDA MDG   Variables MDA MDG MDA MDG MDA MDG 

BI 25 42 16 22 26 27  MAX 9 8 9 7 9 7 

BI2 18 14 11 8 15 14  Homogeneity 11 7 11 8 8 8 

GEMI 12 10 9 8 10 12  GLCM variance 11 16 12 18 13 16 

GNDVI 10 15 14 18 11 11  GLCM mean 8 13 10 15 11 16 

MSAVI 10 9 8 12 11 14  GLCM correlation 11 12 11 12 11 13 

NDPI 29 30 28 20 - -  Entropy 8 8 9 7 8 7 

RI 19 20 16 12 28 22  Energy 8 8 7 7 8 8 

MCARI 13 10 - - - -  Dissimilarity 10 8 10 9 10 7 

MTCI 14 6 - - - -  Contrast 15 11 14 11 14 9 

REIP 11 4 - - - -  ASM 9 8 7 7 7 8 

S2REP 11 4 - - - -  
       

LAI 11 19 - - - -  
       

LAI_CW 15 19 - - - -  
       

LAI_CAB 10 16 - - - -  
       

FCOVER 7 10 - - - -  
       

FAPAR 7 11 - - - -  
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Supplementary Table 2.3: Variable importance (%) for wavelength bands (described in Table 1) combined with vegetation indices and texture 

variables (described in Table 2) for PlanetScope, Landsat 8 and Sentinel 2 datasets 

Sentinel 2 PlanetScope Landsat 8 

Variables MDA MDG Variables MDA MDG Variables MDA MDG 

B12 4 9 RI 12 12 B7 5 8 

B3 4 7 B2 6 10 B4 4 6 

B5 4 7 BI 5 9 NDPI 7 6 

B11 4 5 B3 5 8 GLCM Mean 4 6 

NDPI 5 5 B1 5 8 GLCM Variance 4 5 

BI 3 5 GLCM Mean 5 6 B2 3 5 

B2 3 5 BI2 6 6 GLCM Correlation 4 5 

GLCM Variance 3 4 GLCM Variance 5 6 GNDVI 3 5 

RI 4 4 B4 6 5 B3 4 5 

GLCM Mean 2 3 MSAVI 4 5 Contrast 6 4 

GLCM Correlation 3 3 GEMI 4 4 Dissimilarity 5 4 

B4 2 3 GLCM Correlation 6 4 BI 3 4 

LAI_CW 3 3 GNDVI 5 3 B6 4 4 

Contrast 4 3 Contrast 5 2 RI 5 4 

Energy 2 2 Energy 4 2 B5 5 4 

ASM 2 2 ASM 4 2 Entropy 4 3 

LAI 2 2 Dissimilarity 4 2 MSAVI 3 3 

MAX 3 2 Entropy 4 2 GEMI 4 3 

GNDVI 2 2 Homogeneity 4 2 BI2 4 3 

LAI_CAI 2 2 MAX 4 2 Homogeneity 5 3 
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