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ABSTRACT

The main objective of the study was to ascertain the factors that influence the acquisition
of computer programming skills by students who are enrolled for an Information
Technology (IT) degree at a tertiary education institution. The study is driven by a societal
need to empower as many individuals as possible with computer programming skills. The
study is very relevant to the South African context in the light of the decision taken by the
education department to establish computer programming as a niche skill for South African
citizens. The learning of computer programming is however, not that straight forward and
requires an intensive cognitive effort to ensure that students obtain a high degree of skill
and expertise in computer programming. The study has been conducted at the University
of KwaZulu-Natal (UKZN) where the Discipline of IT has been challenged by students’
performances in computer programming assessment. While there are “pockets” of
excellence, there are numerous instances where students have performed poorly in
computer programming assessment. The case of UKZN presents an ideal opportunity to
study this phenomenon because it provides a diversified student population with regards to
degree enrolment as well as gender and location. From a teaching and learning perspective,
this knowledge will be pivotal for the IT academic department at UKZN as well as the
general domain of teaching and learning of computer programming.

The study adopted a quantitative approach and was guided by a conceptual framework. The
study used a questionnaire that contained an open-ended question that enriched the analysis
and discussion. The study’s main objective was to ascertain factors that will predict
computer programming performance was achieved. The main factors that were identified
as significant predictors of computer programming performance were problem solving
ability and self- efficacy. A concomitant outcome from the study was the analysis of
validity of the study’s conceptual model which was subjected to multiple regression and
path analysis. The path analysis exercise resulted in the generation of a conceptual model
that had a better fit to the study’s data than the a priori conceptual model. The study also
discovered trends of computer programming strengths and weaknesses at UKZN and it is
envisaged that this knowledge will contribute to enhance computer programming pedagogy

and student performance in assessment tasks.
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CHAPTER ONE - An Introduction to the Study

1.1 Computer Programming in Society

Computer programming skill has acquired an elevated status in society in general. The
reason for this phenomenon is the ubiquitous presence of computers in society coupled
with the notion of a 4th Industrial Revolution (4IR) where computing power in the form of
robotics, artificial intelligence and data analytics will provide the infrastructure for
economic well-being and business competitiveness. Risti¢ et al. (2016) stated that the
reason programming is taught to students is so that eventually they will be able to secure
high paying jobs. Kori, Pedaste, Niitsoo, et al. (2015) found that the common reasons why
students chose to study Information Technology at a higher education institution was:

J Inherent interest in the information technology field or working in this field
o The information technology knowledge is necessary for a particular job that they
had interest in pursuing
o Financial stability and earning a suitable salary
o To have a better chance in the working market and the possibility of many job
opportunities
o Job stability as the field of technology is promising in today’s job market and will
remain promising in the future
A multitude of these factors have propelled an increasing number of students to register for
technology-oriented courses that provide a substantive exposure to computer programming
content. In addition to these factors there has also been a significant push for students to
learn how to program. Vee (2013) argued that since the 90’s computer programming
professionals have stressed the need for future generations to equip themselves with a
computer programming skillset. The importance of learning at least a single computer
programming language has been equated to the acquisition of basic skills in numeracy and
literacy.

The rise in student enrolments for technology related courses has unfortunately been
paralleled by an increase in failure and poor performance in these courses. The main
contributor to this phenomenon is poor performance in computer programming assessment
(Govender, 2021). According to Butler and Morgan (2007), 1% year information technology

(IT) students face an assortment of challenges. The challenge of adjusting to a completely

1



new environment and learning style which is due to the transition from standard schooling
to the tertiary education environment and also the challenge of learning a completely new
form of language, which is computer programming, that many students have never been
exposed to before. Students have consistently performed poorly in programming
assessments at tertiary level and university courses with programming involved in the
curricula have also experienced significantly high dropout rates (Kori, Pedaste, Tdnisson,
et al., 2015; Luxton-Reilly et al., 2018). According to Kinnunen (2009) and Medeiros et al.
(2018) a large number of institutions record high rates of failure in introductory

programming courses.

This phenomenon calls for an investigation into what precisely has an influence on
students’ performance in introductory computer programming courses and what factors
could lead to these students acquiring the requisite skill-set to become a competent
computer programmer. This study will attempt to investigate and outline the main factors
that have a significant influence on students' programming skills by conducting aquantitative
analysis in the form of surveys to an audience of students enrolled in an introductory
programming course in the discipline of the Information Technology at a tertiary

educational institution.

1.2 Background of the Study

The industrial world has been inundated with a demand for computing based skills and the
focus area has been in the domain of computer programming and software development
(Dirzyte et al., 2021; Konecki & Petrlic, 2014). According to Abdunabi et al. (2019), the
specific demand is for skills that translate to job roles such as business analytics, data
analytics, project management, software engineering, software development and testing,
systems analysis and design, database and network administrators. The demand in these
skills is expected to escalate by an amount of 13% in the period from 2016 to 2026
(Abdunabi, Hbaci, & Ku, 2019). Central to all of these job portfolios is either a deep or

conceptual understanding of computer programming.

Computer programming has always been regarded as a challenging field of study, currently
and historically (Alturki, 2016; Cheah & Leong, 2019; Hassinen & Mayra, 2006). Failure
and dropout rates for introductory programming modules have always been a topic of
concern within the academic community. Bergin and Reilly (2005) produced seminal



papers based on empirical evidence, attesting to the cognitive challenges that students
have as they learn how to write computer programming code and this compromises their
chances of achieving a successful outcome. This phenomenon is philosophically explained
by Guzdial (2010, p. 1) by suggesting that computer programming is “... innately
one of the most complex cognitive tasks that humans have ever created”. As a result of the
claim that computer programming is a challenging discipline to master, there have been
many studies that have attempted to identify factors that contribute to the acquisition of
competency in computer programming. Kazimoglu et al. (2012) have observed that
students who are novice programmers tend to view the activity as purely technical. Due to
this, students go about the task of programming in a superficial way without acquiring a
deeper understanding of the intricacy required to develop a successful programming
solution to a problem. This factor deals with the problem-solving ability of the students as
well as their mental model abstraction of the problem domain. The challenge of engaging
in abstract thinking and the ability to create an accurate mental model of the problem
domain will have a compromising influence on students’ aspirations to be successful in
computer programming. However, the cognitive dimension in computer programming is
far more complex than just an ability to be a good problem solver. There is also the
influence of psychological factors such as self-efficacy and a general attitude towards the
task of computer programming. Lee et al. (2017) conducted a study on students’
performance in an informatics test that contained computer programming tasks and
discovered a significant positive correlation between perception and attitude towards
computer programming and their performance in the test. Kong et al. (2018) suggested that
obtaining mastery in computer programming entailed the acquisition of competency in
being able to establish meaning/comprehension of a problem situation, understanding the
impact of the problem and the solution, being creative in solution development and
possessing computer programming self-efficacy. Similarly, factors such as learning styles
and motivation levels, previous experience, self-efficacy and problem-solving ability have
received attention from previous studies (e.g. Corney et al., 2010; Hoda & Andreae, 2014;
Nikulaetal., 2011; Robins, 2010). However, there has been a dearth of literature regarding
an amalgamation of these factors or the predictability of these factors in enabling the
academics to have a sense of anticipation of how students will perform in computer

programming assessments.



1.3 The Study’s Research Problem

What factors influence the academic performance of computer programming by
Information Systems and Technology (IS&T) students at the University of
KwaZulu-Natal (UKZN)?

The study’s research problems are contextualised by a conceptual framework that enabled
the researcher to “unpack” the essence of the main problem statement underpinning the
current study (see Chapter 2, Figure 2.1). The conceptual framework was guided by the
study’s literature review and was used to ensure that the path of the study maintained its
focus on the study’s research questions. The study’s sub-problems were guided by the

conceptual framework.

Research Questions

1. How does problem-solving ability influence IS&T students’ performance in
computer programming at UKZN?

2. What is the influence of self-efficacy on IS&T students’ performance in computer
programming at UKZN?

3. What is the influence of learning approaches on IS&T students’ performance in
computer programming at UKZN?

4. How does intrinsic motivation influence IS&T students’ performance in computer
programming at UKZN?

5. How does extrinsic motivation influence IS&T students’ performance in computer
programming at the University of KwaZulu-Natal?

6. How can computer programming performance be improved by IS&T students at
UKZN?

1.4 The Research Objectives

The study’s primary objective was to discover a core set of factors that will predict the
performance of students in computer programming assessment at tertiary education level.
The empirical phase of the study was confined to the cohort of IS&T students at UKZN
due to operational convenience. The study adopted an exploratory stance that provided the
researcher with the latitude of engaging with the literature in an open and unrestrained

manner. The sub-objectives identified for the research were to:



1. Determine the role of problem-solving ability on students’ proficiency in computer
programming.

2. Determine the role played by self-efficacy on students’ proficiency in computer
programming.

3. Determine the influence of learning approaches (deep and surface) on students’
proficiency in computer programming.

4. Ascertain how intrinsic and extrinsic motivation influences students’ proficiency in
computer programming.

5. Identify general factors that will contribute towards the acquisition of proficiency in
computer programming.

The study’s set of research questions and objectives was contextualised by the conceptual

model (illustrated in Figure 2.1 on page 30) adopted for the study.

1.5 Importance/Significance of the Study

The demand for computer programming expertise has been elevated by the emergence of
the 4" Industrial Revolution (4IR) that has compelled society to become intelligent users
of technology. Technological intelligence is embedded into 4IR systems such as robotics,
data analytics and artificial intelligence (Al) by virtue of computer programming logic.
Sophisticated use of 4IR technology will only be possible if the user of such technology
has comprehensive knowledge of computer programming logic. It is within this context
that the directive from the economic sector is to ensure that graduates have a sophisticated
understanding of computer programming, thereby enhancing their employability and
ensuring that they add value to the sustained imperative to embrace 4IR technologies.
Currently, academic studies have not been conclusive or convergent in their contributions
towards ensuring that there is a core set of factors that need to be given cognisance, for
students to acquire proficiency in computer programming.

The current study attempted to address this impasse by adopting a conceptual framework
that has been guided by previous academic literature on the topic. The main outcome from
the study was to use evidence provided in the empirical phase of the study to determine the
validity of the conceptual framework, and provide the researcher with evidence to provide
answers to the study’s cohort of research questions as well as to contribute to the academic

discourse on the proficiency of computer programming. In addition, the outcome



from this study will be used to inform the design and the pedagogical approach adopted for
computer programming courses in the IS&T academic curriculum currently being
implemented at the UKZN.

1.6 Justification for the Study

According to Tan et al. (2017) many students at tertiary education institutions tend to
experience difficulty when it comes to mastering content from technically oriented subjects
such as computer science. Butler and Morgan (2007) did identify poor performance in
computer programming assessment as a serious problem and it has been a prominent issue
since the 90’s with many students indicating that computer programming was not all that
exciting to learn but it was quite a cognitive burden to engage with and ensure good results.
Sunday et al. (2020) found that at a higher institution of learning, 67% of students had
failed a module titled, “Introduction to Computer Programming” due to a lack of
comprehension of basic computer programming logic. It is evident that computer
programming has been known as a difficult subject in the past, however it is also evident
that the trend has continued to the present day. It has become crucial for further research
to ascertain why students are struggling with this subject in particular. By gathering more
knowledge, the reasons for the poor programming performance can be understood and
analysed to draw conclusions. This knowledge/understanding will enable educational
institutions to implement measures to reduce poor performance in computer programming
and encourage more students to pursue computer programming as a career or a course of
study. This approach would also have a significant benefit on developing countries as this
would empower technical professionals in the country to drive technology focused solutions
and thus improve their economy. According to Selamat et al. (2017) there will be a future
demand for technical skills such as programming due to the requirements of the 4IR
generation. Butler-Adam (2018) opines that in South Africa there will be a growing need
for skilled professionals in the technology field within the coming years and an emphasis
on learning problem solving and technology related subject matter will assume core focus.
The exponential changes to societal behaviour due to the advent of sophisticated
technological systems has resulted in a large portion of low-level jobs becoming
automated. The prediction made is that the current decline in the need for low- level skills
will be replaced with a heavy surge in jobs related to the technology field. The implication

in this trend is that there has to be a huge focus on getting a core mass of expertise in
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fields such as computer programming to ensure a nation’s survival in the age of 4IR. There
is a corresponding need for educational institutions to place a heavy focus on computer
programming pedagogy so that there is ample supply of computer programming skill.
Currently the number and intensity of research efforts on this topic is severely lacking
because the myriad of factors that influence the learning and academic performance by
students in computer programming, provides a fertile area for research. The current study
contributes in this regard by incorporating these factors into a conceptual model that will
be subjected to empirical validation.

Durak et al. (2019) stated that programming and learning how to use various applications
are becoming increasingly crucial for students to learn both in primary and high school due
to programming becoming a critical skill to have in the 21% century. Saritepeci et al. (2017)
found through a study conducted with students that a group of students who had received
training in computer programming fundamentals had also developed greater conceptual
thinking ability and out-performed students who did not receive programming training.
Durak also points out that critical thinking and problem-solving abilities have become
crucial 21st century skills and teaching students programming improves their critical
thinking abilities.

The need for computer programming expertise is confirmed in reports by the Australian
Government that indicated there is a shortage of skills in the domain of software
development. This skill was identified as the one of the three most “in demand”
occupations within the professional, scientific and technical services industry in Australia
(Australian Government Department of Jobs and Small Business, 2018). This trend has
been confirmed in the United States of America (USA) where it is reported that
employment for software developers is expected to increase by 24% from 2016 to 2022
(Kanaparan, Cullen, & Mason, 2019).

Coupled with this demand for computer programming expertise, failure rates in academic
courses related to computer programming have been reported to be between 30% and 50%
(Kanaparan et al., 2019; Quille & Bergin, 2016; Watson et al., 2014) in introductory

programming modules.

As Kong (2017) points out, computer programming will be considered to be an
indispensable skill in the digital era. It is within this backdrop that the current study had
been undertaken. While studies pertaining to pedagogical interventions regarding

computer programming have been undertaken in the past, the current study drew from this
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knowledge to uncover knowledge of how computer programming students engage with the
task of mastering computer programming skill in the current era. This knowledge will be
crucial in helping educators to plan computer programming courses so that students are
optimally placed to receive instruction that is planned according to an insight that is

provided by the current study.

1.7 The Study’s Limitations

The study may be deficient in external validity because the study is limited to IS&T
students from 2" year up to Master’s level at UKZN. While the study examined the
phenomenon of how students learn computer programming, this information is highly
discipline-specific. The results of the study may not be appropriate in other instances.
Another possible limitation in this study is that students may not know how to judge their
own computer programming skills very well thereby compromising the integrity of the
results with regards to self-efficacy, learning approaches and intrinsic and extrinsic
motivation (major constructs used in this study to derive the conceptual framework).



CHAPTER TWO - The Literature Review

2.1 An Introduction to the Literature Review

The literature review section is used to contextualise the study by making a reference to

previous studies on this topic as well as reference to key concepts that underline the study.

2.2 Difficulties in learning computer programming

It has been established by Garner that academic performance in computer programming
requires a significant cognitive effort from students. However, there are many factors that
contribute to this cognitive load and an understanding of these factors is pivotal to ensuring
that the failure rates for computer programming assessment is brought under control. The
factors that influence the proficiency of computer programming are vast and diverse and
range from demographic variables such as gender and previous experience, to
psychological variables such as intrinsic and extrinsic motivation to learn computer

programming. This constellation of factors forms the basis for the discussion that follows.

2.3 Self-efficacy in computer programming

Self-efficacy (SE) is described as a person’s evaluation of their own abilities and skills that
they possess and whether or not their competencies may be used to deliver meaningful
results that may have a positive effect on their community as a whole (Bandura & Wessels,
1994). Based on this definition, SE is a reference to an individual’s confidence in their
ability to produce a desirable outcome. SE is a mental characteristic that plays an important
role in many aspects of a person’s life. There is not a great deal of understanding when it
comes to why some students seem to delight in and excel at computer programming while
others find it an uninteresting struggle (Ramalingam et al., 2004). According to Govender
and Basak (2015), there are numerous factors that affect a person’s ability to learn
something new, but it is widely thought that attitude and SE towards the subject matter are
some of the most important factors in determining one’s success in the particular field (D.
W. Govender & Basak, 2015). According to Fang (2012), students who experience excess
amounts of difficulty in programming may have low levels of self-efficacy which also
reduces their motivation towards the subject. Tan et al. (2009) found that throughout the
initial stages of learning programming the difficulties met by students, directly shaped their
perceptions of programming as a whole. If students were faced with difficulty early on in
9



their experience with programming, they were more likely to adopt an overall view of
computer programming as being inherently difficult. This means that students who have
had a negative experience with programming earlier on will usually misjudge programming
as being difficult and will hold on to that perception usually until the end of their degrees.
This inaccurate negative perception of programming can lead to students having low
enthusiasm and lower levels of self-efficacy towards the subject. Students who fall into this
cycle will unconsciously reject the need to acquire mastery of computer programming
thereby acquiring a low level of self-efficacy towards computer programming oriented
challenges. According to Askar and Davenport (2009), SE has a profound influence on the
activity of learning a new skill and severely impacts the invocation of that skill for problem
solving purposes. Askar and Davenport (2009) argued that while an individual may possess
the required knowledge and skill to accomplish a task but is lacking in self-belief and

motivation, then these impediments will compromise the chances of success.

Self-efficacy and Coding Ability

Wiggins et al. (2017) studied the role that SE played on the quality of the coding that
students produced when solving a problem using the Java programming language. Two of
the significant outcomes from this study were that male students generally had a higher
level of SE towards computer programming in comparison to female students. On an
average, students with a higher SE in computer programming tend to produce higher
quality code and achieve better performance in computer programming. Wiggins et al.
(2017) do however, concede that the limitations of the study such as coding in a specific
language and a small sample size do not make the results generalisable. A further analysis
of the influence of SE and possibly gender on the attainment of good performance in
computer programming is required. These results are corroborated in a similar empirical
study by Lishinski et al. (2016) that was conducted on students. The study was based on
their academic performance in a computer programming assessment as well as a computer
programming project. The main outcome from this study was that SE was the most
significant determining factor of computer programming performance. The preceding
outcome applies for both, a summative examination-based setting or a formative computer
programming project-based setting. Another significant outcome from this study was that
female students who had low SE were less likely to recover from this situation thereby
leading to a lack of meaningful engagement with computer programming tasks. However,

male students who had low SE in computer programming tend to make more of an effort
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to improve on their computer programming skills consequently also increasing their levels
of self-efficacy towards computer programming. Female students were more prone to
“internalising” their perceived lack of SE towards computer programming than male
students. From a teaching and learning perspective, this is an important observation
because the implication here is that introductory computer programming course content
plays a pivotal role in ensuring competency and high levels of SE in computer

programming, especially for female students.

The role played by SE in enhancing computer programming skills is also confirmed in 1.
Govender et al. (2014) where a strong link is established between SE in problem solving
and SE in computer programming. In this study it was suggested that students who have
confidence in their problem-solving ability tend to perform better in computer
programming tasks.

A Psychological Perspective

From a psychological perspective, Breso et al. (2011) explain that students who had lower
SE were more likely to have negative beliefs towards themselves and their ability to learn
and be successful. These beliefs manifest as stress and anxiety towards their university
work and courses. This inferiority complex may lead them to have a negative attitude
towards certain subject matter that requires more time and effort to understand. The stress
and anxiety around certain subjects may lead students to underperform in these subjects.
Bong (2001) endorses the previous opinions by further suggesting that students with a low
self-efficacy will be hesitant about setting challenging expectations for themselves in an
academic context and will not try to go above and beyond but rather will only do what is
compulsory of them. From a computer programming perspective, “doing only that which
is required” would ultimately lead to failure because of the complexities involved in

mastering computer programming.

Students will only be able to achieve excellence in computer programming by
nurturing/acquiring a passion for computer programming. Having a passion for a specific
subject matter is especially relevant to the information technology (IT) and computer
programming fields because the level of self-efficacy acquired by virtue of students’
engagement with their studies will prevail and impact on their performance as professionals

in the working world. Students who have gained confidence in themselves during the
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course of their university degree will surely outperform the ones who lack self- efficacy and

enthusiasm in the workplace.

According to Psycharis and Kallia (2017) educators should try to use pedagogical strategy
that can improve students’ SE in traditionally difficult subjects that involve problem
solving abilities such as mathematics and programming. Psycharis and Kallia also suggest
that students’ themselves should find methods of boosting their self-efficacy in these
subjects in order to develop their skills in these areas to their full potential. Durak et al.
(2019) reported that female secondary school students displayed greater computational
thinking and programming skills as compared to male students. The author stated that the
reason for this difference could be because of the change in perception of gender
stereotypes in recent times which has caused female students to improve in their self-
efficacy towards mathematical and problem based subject material. According to
Wiedenbeck et al. (2007) students who have high SE in programming develop a greater
interest in computers which then leads to better programming performance. Kanaparan et
al. (2019) conducted a study of 433 programming students where a significant correlation
between “programming self-efficacy and emotional engagement” was established for
students registered in an introductory programming (IP) module. Kanaparan similarly
found a strong connection in the study between students programming SE and their sense of
satisfaction and interest in the module which also had a link to students’ performance in
the module. Lastly, they also found that gratification had an influence on students’ interest
in programming. Gratification in programming was described in the research as the
immediate positive feeling experienced when a student gets a program to run successfully
without errors. Typically, when a student has executed and debugged a program that they
wrote from end to end, and the result is a fully working piece of software, students report a
unique feeling of pride and accomplishment that they reportedly seldom feel when
completing projects for other classes. This feeling of gratification has a positive impact on
students’ interest in programming as they tend to associate the subject with those positive
feelings after a few instances of carrying out a program successfully. A study involving 83
secondary school students conducted by Kallia and Sentance (2019) established that those
students who did not understand the functions of some core programming statements rate
lower in self-efficacy as compared to students who understood these statements well.
Presently, educators overlook the importance of their students’ belief in themselves and
their programming abilities (Kong, 2017). Programming and writing code can be especially
12



demoralising for students due to the frequent errors experienced and the struggle of
inserting the correct line of code to execute a program successfully. This is why in
programming courses teachers should pay attention to their students’ self-efficacy
rates/levels because self-efficacy theory states that the more self-efficacy a person has the

more resilient to challenges and obstacles they become (Kong, 2017).

A study from Durak et al. (2019) that contained 55 programming students found that female
students have better computational thinking abilities as well as greater programming SE
than male students. Female students were also shown to be superior at problem solving
when compared to the male students. This may be related to one of the study’s other
findings, which creates a linkage between SE, problem-solving ability and students’
preconceived notions about programming itself. This finding suggests that students who
enter the field of programming with the preconceived notion that programming is a difficult
subject or that programming is reserved only for the intellectually gifted individuals in
society may be subconsciously lowering their level of self-efficacy towards the subject.
Another factor that may play a role in this is the stigma or association with programmers
as people who are socially isolated and develop into hermits who spend most of their time
on their computers. This representation of programmers to the general public through media
may be adding to the lack of self-efficacy that students feel when they think about
programming as a concept. As the majority of young people cannot relate to this
stereotyped view of a programmer and this may lead to them believing that they are simply
not meant to become good programmers themselves. This view of programming before
even beginning a programming class may be the preconceived notions that are leading to
lowered self-efficacy in students. Gorson and O'Rourke (2020) conducted a study with 214
computer science students at 3 different universities. The study was aimed at assessing
students’ self-assessments of themselves when encountering different programming
practices such as getting a syntax error or planning. The results of the questionnaire found
that some students negatively assess themselves in each scenario of programming which
leads to a further negative view of their programming abilities. The study also found that
the more frequently a student negatively assesses themselves when performing
programming tasks, the lower their self- efficacy tends to be. The study also looked at the
students’ mental imagery of the competence required to be a professional programmer and
found that students who believed that they could not acquire this level of competence had
low levels of SE resulting in poor performance in computer programming assessment.
13



2.4 Previous Experience

Students who are novice programmers may find the task of learning to write computer
programming code filled with challenges and difficulties that they would not have
anticipated. According to Kori et al. (2016), students who have had previous experience
with learning programming, through high school classes or their own independent efforts,
perform better in programming courses in university. The reason for this could be because
of the programming environment itself. The activity of learning to write computer
programming code is a “hands on” activity that requires intensive focus and a huge amount
of practice and training. According to Vihavainen et al. (2011), learning programming is
very much about learning by doing. Students who have taken up programming in previous
years will almost certainly have had more exposure to programming in a practical way,
which is what gives them an advantage over students whose first experience in

programming is at university.

Previous Experience and SE

Ramalingam et al. (2004) found that past experience is a strong determining factor of
current SE and performance in computer programming. Their study indicated that students’
high school experience of programming created a sense of awareness of their programming
abilities even towards the latter part of their university course. It was found that for a large
number of students’ previous exposure to programming would yield high self-efficacy.
According to Govender and Basak (2015), students who have previously taken a
programming course, perhaps in high school had a significantly easier time reading and
understanding the programming language as compared to first time programming students.
Further evidence is provided by Kolar, Carberry, and Amresh (2013) who determined that
students who have had previous knowledge or engagement with computing programming
had a higher level of SE towards computing skills. It is thought that this might be because
the students had good insight into what to expect as they were not seeing the material for
the very first time. This shows that previous experience can positively affect self-efficacy
as it gives students an idea of what to expect, which would increase their confidence going
in to a computer programming course at a tertiary education institution such as a university
or college. Students with minimal exposure to computer programming tuition may take

longer to adjust and become comfortable with the type of content being presented. This can
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bring about negative associations with first time students as they might feel that they are

slower at learning than their classmates.

School-based Computer Programming Experience

Armoni et al. (2015) determined that students who had previously learned programming in
middle school could understand basic programming statements with minimal explanation
needed from teachers in high school and they outperformed students in more difficult
programming concepts such as loops. This outcome was refuted by Strong et al. (2017) in
their study with 1% year university students where it was established that students who had
previous high school experience with computer programming did not outperform students
who did not have previous computer programming experience. Rather, students found that
their past experience with programming gave them extra confidence when taking the class
at tertiary level and they were more receptive to the learning process. Overall, they felt that
having a familiarity with programming as a whole had a positive impact in their learning
but did not necessarily have an impact on their skills and abilities. The outcome from this
study is that previous experience has a positive influence on SE but not necessarily on
academic performance because of a myriad of mitigating factors. The preceding assertion
resonates with the outcome of a study that was conducted by Bennedsen and Caspersen
(2005) where they found that students with previous experience relied too heavily on their
past knowledge and eventually found themselves far behind in the course material.
Students with this attitude are usually surpassed by students who had minimalist exposure
to previous computer programming knowledge and mitigated for this shortcoming by
making an extra effort to obtain mastery of the course work content pertaining to computer

programming.

The Mediating Influence of Self-Efficacy

While previous experience has been acknowledged as a contributor to performance in
computer programming, all evidence suggests that this is done through the mediating
influence of self-efficacy. Hence, at the introductory level, the teaching of computer
programming should focus on ensuring that students have a pleasant or positive disposition
towards computer programming such that it sparks students’ interest and passion for the
subject thereby elevating their level of self-efficacy. Kittur (2020) found that the greater
the programming experience of students the higher their level of programming self-

efficacy. Students with more experience are also better at dealing with complex
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programming tasks. Kittur explained that these findings suggest that providing more
experience to students and getting them involved with programming from their schooling
years will support their SE in programming-related tasks. If students begin learning
programming at school level they would be significantly more confident when they get to
the tertiary sector. This confidence will also have an impact on their performance as
discussed in the self-efficacy chapter. This point must be remembered because it will be
not feasible in the South African context. Currently very few schools offer programming
related instruction to pupils. Hence, the onus is on the tertiary sector to engage in innovative
teaching methods that will enhance the SE levels of students and mitigate the lack of

programming experience that most students suffer from.

Islam et al. (2019) conducted a study with students who had previous experience and two
groups of students with minimal previous experience. It was established that students with
minimal previous experience struggled the most with syntax and algorithms and students
with previous experience had difficulties in debugging their code. In both groups the
students demonstrated a preference for a YouTube tutorial or any video that contained
actionable steps that enabled the completion of a programming task. This insight could be
another possible recourse that programming teachers could use to help students complete
an exercise successfully. Once students have followed along with a video tutorial a few
times there can be a practical exercise where the students need to write a similar type of
program on their own without a video assisting them. This process could, over time, also
contribute to improving the students’ self-efficacy. This is because completing
programming exercises successfully, with the help of videos, will improve the students’
confidence in themselves to successfully execute a program. This is a significant
accomplishment that many beginner programming students have never been able to

achieve, which leads to low self-belief.

Nazeri et al. (2018) suggest that students who have previous experience with programming
either in secondary school or at home tuition perform better in programming classes due to
already having exposure to problem solving, programming concepts and design concepts.
Gathering these skills at an early age is beneficial for learning these concepts again at a
tertiary level. Nazeri et al. (2018) also suggests that previous experience with mathematical
classes also help students with programming later in their schooling years.

Students’comfort levels when beginning a programming module also factor into the reason
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as to why previous experience plays a role in performance. Students who have taken
programming as a subject at some previous stage of their lives tend to feel increased
comfort levels when taking up a programming module at a tertiary stage. The experience
however, is different for students who have had minimal prior experience with
computerprogramming. These students will tend to feel a greater amount of anxiety when
enrolling for a programming module and will not have any benchmark to assess the
difficulty level of the module which leads to more feelings of stress and concern in these
students (Nazeri et al., 2018).

However, according to Alexandron et al. (2012) past programming experience in some
instances could cause misunderstanding of new concepts. It could also cause programmers
to use the programming patterns in a way that they are familiar with from their previous
experiences which leads to them missing out on better ways of creating programs.
Alexandron et al. (2012) also found that when experienced programmers move from a
detailed level of programming to programming at a high-level they tend to feel as if they
have less control over the programming environment and this loss of control can lead them
to develop a negative attitude towards the programming course. This development of a
negative attitude towards computer programming tends to subsequently lead to poor
performance at the subject itself. These findings suggest that students who have had
experience with one type of programming paradigm or style may be thrown off if they enter
university and find that they are being taught a different type of programming style. As an
example, the change from procedural-style programming/functional programming to
object-oriented programming tends to be quite a challenge. In such cases students who have
previous experience may still perform poorly due to the different programming paradigms
and environments being used or due to these students developing a negative attitude

towards the subject because it differs from their preferences.

2.5 Intrinsic and Extrinsic Motivation

The construct of Motivation can be categorised into 2 broad categories named intrinsic
motivation (IM) and extrinsic motivation (IM) (Ryan & Deci, 2000). IM refers to a person
who is motivated to do something because they get enjoyment and pleasure from doing
that task. EM means that a person is motivated to do something because of the outcome
they will receive or to avoid a negative consequence. Gottfried (1985) found that

intrinsically motivated students had more academic success than extrinsically motivated
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students. IM and EM are significant factors that determine performance in computer
programming because of the inherent nature of programming itself (Tavares, Henriques, &
Gomes, 2017). As previously mentioned, proficiency in computer programming is only
achieved by virtue of having a very “hands on” attitude. The more a student practices and
takes time to write programs the more they will become adept at it. This is why students
who have a genuine enjoyment and passion for writing computer programs and designing
software will vastly outperform students who are extrinsically motivated and only write
computer programs because they are required to do so in order to complete an assignment
or a homework problem. Furthermore, students who possess high levels of IM are thought
to deal better with adversity and challenges that may arise when compared with students
who are extrinsically motivated. Extrinsically motivated individuals tend to give up more
easily when faced with difficulty or obstacles Rego, Sousa, Marques, and e Cunha (2012).

Factors that Determine Extrinsic and Intrinsic Motivation Traits

It is understood that numerous factors can determine whether a person is intrinsically or
extrinsically motivated. However, in a study done by Kori, Pedaste, Leijen, and Tdnisson
(2016) it was found that students who had previous exposure to computer programming
before their first year at university had more intrinsic motivation than students who were
exposed to it for the first time at university. Perhaps this was due to the knowledge that
students who had previous experience with computer programming had navigated through
the initial cognitive challenges that the learning on computer programming tends to present
to the novice programmer and they were now in a position to leverage the enjoyable parts
of computer programming to increase their levels of self-efficacy.

Furthermore, according to Forte and Guzdial (2005) and Kurkovsky (2006) students who
study towards a non-computer science degree have less motivation to perform well in
computer programming courses. This could be due to less exposure to computer
programming course content and also, perhaps, the lack of a desire to work in the field of
software development causes them to not take programming as seriously as students
studying computer science. According to Bergin and Reilly (2005), a significant source of
motivation for students in computer programming courses is eventually to become a
professional software developer. For non-computer science students who are not driven by
the desire to be employed in the software development sector, there is a substantial lack of

motivation to acquire an expertise of computer programming content. The lack of IM leads
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to reduced levels of enjoyment when it comes to computer programming thereby lowering
students’ SE and ultimately their performance in computer programming assessment.
Durak, Yilmaz, and Yilmaz (2019) also discovered that students’ SE and motivation levels
can be negatively affected by aspects of programming that they do not find enjoyment in
such as challenging exercises and spending great effort trying to grasp a concept. However,
their motivation can increase when with aspects of programming that they do find
enjoyable. Most students in the study conducted by Durak said that in particular they
enjoyed learning programming through using robotics as it felt like a fun activity rather
than learning a skill.

According to the students, motivation levels tend to diminish when exposed to the more
tedious and frustrating aspects of programming such as learning syntax and debugging their
code. Furthermore, negative feedback on their progress and efforts from teachers or senior
peers usually impairs students’ intrinsic motivation and leads them to developing a negative
attitude towards the subject itself. These findings suggest that students who may start off a
programming course with intrinsic motivation may become exasperated with the parts of
the subject that they do not enjoy as well as criticisms that they may receive from their
senior instructors.

In a study that consisted of primary school students who undertook an 8-week course in IP,
it was found that these students exhibited adult factors such as intrinsic and extrinsic
motivation and previous experience had a distinctly positive effect on students’
programming SE. In particular, students’ inclination of pursuing a computer programming
career later in life was found to be correlated to their level of intrinsic motivation for
learning the subject matter. It was also found that students who had previous knowledge
and engagement with computer programming displayed more extrinsic motivation than
students with no previous experience (Aivaloglou & Hermans, 2019). The reason for this
could be due to the increased levels of SE that students with previous experience tend to
display, which may motivate them to spend extra time studying the material so that they
are able to uphold their self-concept in this regard. According to Aivaloglou and Hermans
(2019) the students in this study did not have stereotyped views of professional computer
programmers as this study was conducted with students of a young age who were not yet
exposed to these biases.

Yacob and Saman (2012) found that programming students had two main sources of

intrinsic motivation which were attitude and setting themselves stimulating goals. The
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aspect of attitude tended to come from a student’s prior experience with programming and
whether or not the current programming content that they are learning meets their
expectations. The extrinsic factors that were found to motivate students the most were
“clear direction, reward and recognition, punishment and social pressure and competition.”
Each of these factors were found to positively contribute to student’s motivation to engage
with the programming content. Out of each of these motivating factors, the main
contributors were the desire to obtain a precise direction in terms of what was required, the
consequences of failure and what reward was on offer if they achieved success. The factor
of setting stimulating goals had the lowest motivating outcome from all of the factors.
Yacob and Saman (2012) added that teachers of programming courses should try to
communicate programming tasks and assignments as clearly as possible so that students
can easily find their “clear direction” which would help motivate them in completing
course work.

Khaleel, Ashaari, and Wook (2019) conducted a quantitative study with how gamification
affects students” motivation and performance in programming. Gamification entails using
a game style approach to learning something difficult like programming to increase
motivation and engagement of students Khaleel, Ashaari, Wook, and Ismail (2015).
Gamification uses technigues such as scoring points, earning badges, leader boards
amongst students and team activities to drive engagement in a subject (Elshiekh & Butgerit,
2017). According to Khaleel, Ashaari, and Wook (2020) using gamification methods such
as badging can push students to complete homework or programming assignments so that
they can get the immediate reward of earning a badge. Leader boards can show students
their class ranking amongst other students which can act as a form of social pressure that
incentivises them to improve their ranking. An experiment was conducted with 90
Information Technology students at a University. The students were separated into a group
that learned programming using gamification and a group that learned programming
conventionally. The evidence from this study indicated that there was a significant
difference in motivation levels between the 2 groups. The students in the experimental
group reported having greater motivation to learn the programming material than the
students in the other group. According to Khaleel et al. (2015) gamification exploits the
extrinsic motivation that all humans naturally possess and uses this motivation to make
learning less boring and more satisfying and rewarding. 80% of students were quoted as

saying that they would enjoy their tertiary studies more if it included game-like elements
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in the courses, and 60% of students said that their motivation would increase if their
University displayed leader boards as this would encourage more competition between
their peers and themselves (Andriotis, 2014).

2.6 Problem Solving Ability

Heppner and Petersen (1982) suggest that problem solving is the activity of achieving a
goal when the method of achieving that goal is uncertain. According to Balmes (2017),
students who achieve high scores in mathematics tend to also do well in computer
programming assessment. This phenomenon can be as a result of the problem-solving
abilities required in mathematics being very similar to the cognitive skills required in
computer programming. Balmes goes on to suggest that excellence in mathematics is an
indicator of a student who has the cognitive ability to learn computer programming. A
study of students attitudes towards mathematics was conducted by Ali, Ali, and Farag
(2014). The study found that students’ attitudes towards mathematics were significantly
correlated with their performance in computer programming assessment. In the Balmes
study it was discovered that mathematics scores can be a predicting factor in whether or
not students will be able to pass university programming courses.

Computer Programming and Mathematics

A study conducted by Duran (2016) on university students similarly found that students
computer programming marks were similar to their course marks in maths. These results
are not surprising because mathematics is underpinned by rule-based logic and so is
computer programming. Mathematics is driven by theories that are integral to problem
solving. This is identical to computer programming where the syntax of a computer
programming language coupled with the semantics of the logical rules and data structures
provide the theoretical foundation for problem solving.

Based on personal experience, the researcher realised that the logic of the computer
problem solving process entails the development of solutions that require the designing of
an interface, the writing of lines of code that align to a solution that has been logically
designed and the integration of this solution with database technology. An IT degree
provides a student with an ability to utilise computer programming knowledge and develop
a fully-fledged solution to a societal or business problem. According to Lishinski, Yadav,
Enbody, and Good (2016), there is a correlation between problem solving ability, the
mental model of the problem domain and computer programming performance. However,

this correlation did not apply to knowledge of simple programming structures and
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superficial mastery of computer language syntax. It applied more significantly to the
advanced aspects of computer programming where students had to develop a fully-fledged
computer programming solution to a real-life problem.

2.6.1 A Mental model visualisation of the problem domain

Du Boulay (1986) suggested that the greatest impediment to successful acquisition of
computer programming skills was the issue of mental model. A mental model is the mental
image that students construct of the problem domain and it is within this image that students
are able to foresee a solution. However, this solution path is also influenced by the problem
of orientation. This aspect deals with students’ overall understanding of what computer
programming can accomplish and why it is important to gain expertise of the activity of
computer programming so that the computer-oriented solution can be developed. Du
Boulay conflates the concepts of the mental model and the issue of orientation to what is
referred to as the notional machine. This is the challenge that students are faced with when
they do not fully understand the inner workings of the computer as a machine and how this
relates to the writing of programs that represent a solution to a problem. Students need to
grasp the concept that a machine will only understand and execute coding statements if it
is written in a certain way and in a specific order, also referred to as the syntactical rules
that are imposed on the computer programmer. Also, it is important to comprehend how
the computer as a machine will store data such as inputs and outputs as well as data
structures so that the manipulation of this data can be easily achieved. Many students do
not understand this relationship between the code from a logical perspective and its
physical implementation on the machine. This leads to a layer of abstraction that makes
computer programming very difficult to understand. Such an appreciation for the notional
machine emanates from a deep and meaningful introduction to the activity of computer
programming. However, many educational institutions do not have the latitude of
embracing time-consuming pedagogical strategy because of the imperative to cover course
content in a confined time period. The challenge that academics are faced with is how to
integrate the concept of the notional machine into course content in a seamless manner that
enhances students’ mental model of the problem domain. The role played by the syntax
and semantics of computer programming code was further explored by I. Govender (2021)
who conducted a phenomenological study on the difficulties that novice programmers face
when they learn to program. In order to enhance the mental model visualisation of the

problem domain, I. Govender (2021) stresses the importance of using a “scaffolding”
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approach to the teaching of computer programming that entails a strong focus on baseline
knowledge involving computer programming language syntax and an inculcation of a deep
appreciation for data types. Once these fundamentals have been entrenched, students will
be cognitively prepared to engage in incremental learning that involves algorithm
development and problem solving.

2.6.2 Formal Language Notation and Problem Solving

Du Boulay also refers to notation of formal languages as another aspect of difficulty.
Novice programmers often have difficulty in remembering the syntax of the different
programming languages they are required to learn (which concur with Butler and Morgan
(2007)). This handicap is often coupled with an inability to understand the semantics of
language constructs. The semantics of computer programming languages manifest in
computer programming structures such as selection statement (commonly referred to as
“if...then” statements), looping structures and data structures that are used to temporarily
store data for quick and easy manipulation. Added to this mix are the complexities inherent
in learning object oriented (OO) programming techniques such as the concept of a
constructor, the use of inheritance hierarchies, polymorphism and method overloading. The
challenge of acquiring mastery over structures is a constant struggle for both teachers and
students. Data structures in programming are usually complex to teach to students on a
theoretical level and equally difficult for students to understand without first working
through numerous practical examples of these structures. These challenges have been
documented by studies such as: Robins, Haden, and Garner (2006) who highlight the
difficulties faced in learning looping and arrays; Goldman et al. (2008) who note the
problems students have with learning inheritance and Garner, Haden, and Robins (2005)
who allude to the abstractionism inherent in understanding how a constructor instantiates
an object of a class.

2.6.3 The Pragmatics of Computer Programming

Finally, Du Boulay (1986) mentions the “pragmatics of programming” as a source of
difficulty to many novice programmers. The pragmatics refer to aspects such as
understanding what needs to be accomplished to develop a solution that meets the
requirements of a problem, handling errors that may arise, debugging the program and time
management. Beginner programmers are ill equipped to handle the realities of constructing
a proper solution to a problem and may only become aware of these issues once they have
started working on the task. Usually problems like these are enough to derail a whole
23



project for a beginner, which leads to students losing morale and motivation in learning
computer programming all together.

Hence, a student’s problem-solving ability, as well as their mental model visualization of
the problem domain is a significant predictor of computer programming performance.
Authors such as de Araujo, Andrade, and Guerrero (2016) and Romero, Lepage, and Lille
(2017) have stressed on the importance of problem solving ability as a crucial factor in
enhancing algorithmic thinking capacity. This assertion is supported in 96% of the papers
that they reviewed as part of their systematic literature review. Wing (2008) defined
algorithmic or computational thinking as “the thought processes involved in formulating
problems and their solutions so that the solutions are represented in a form that can be
effectively carried out by an information-processing agent” (p. 3717).

Lawan, Abdi, Abuhassan, and Khalid (2019) conducted a study with 113 Information
Technology and Engineering students at a university and it was found that when students
spent additional time on improving problem solving skills it had a positive effect on their
perceived ability to learn programming. Students with better problem-solving skills
perceived learning programming languages as easier and encountered fewer difficulties
with learning the programming language as students who did not perceive their problem-
solving ability as highly. In this study it was also concluded that demographics such as age,
race and academic department do not have an effect on students’ problem-solving ability
or their ability to learn programming.

In a study conducted by Ismail, Ngah, and Umar (2010) that comprised of interviews with
5 computer science lecturers at a university about the reasons for students’ poor
performance at programming courses it was found that all 5 lecturers agreed that students
tend to lack the fundamental skills needed for analysing and solving a problem. The
lecturers believed that the reason for this lack of skill is that students were not taught how
to think logically and dynamically at any point in their lives. It was suggested that students
should be required to acquire logic, problem solving and creative thinking skills, possibly
through a mathematics module, before registering for a programming module. It was also
found that students often-times do not have the required problem-solving ability along with
not knowing the syntax or how to write a programming statement correctly. This
compounds on students’ problem-solving challenges because even if they do eventually
understand and breakdown a problem correctly they cannot ultimately write code that

works. It was agreed that students should spend more time actively engaging with the
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tutorial and practical sessions and they should also receive feedback on their performance
in these areas so that they can find their gaps in knowledge (Ismail et al., 2010).

A preliminary study was conducted by Bain and Barnes (2014) which questioned students
on the challenges they experienced when they learnt how to write computer programming
code and it was established that 50% of students did not have a strategy of dealing with
problems that arose while writing computer programming code. The main method of trying
to solve the problem was to turn to internet searches. It was also gathered that 53% of
students did not understand how different programming concepts and elements of code
related to the bigger picture and how small sections of programming topics connected with
others to form a whole solution to a problem. It was concluded that the fundamental issue
with learning programming was inadequate problem-solving methods and a lack of critical
thinking.

Loksa et al. (2016) undertook a study of 48 high school students who attended a website
development camp for two weeks. The researchers conducted experiments where the
students were taught the basics of problem-solving and were exposed to strategies that
programmers typically use to solve problems and tutored on how programmers decide on
the correct path towards a solution. Two web development camps were set up and the
programming performance of students in each camp was measured. The study was set up
as an experiment where one camp had received the problem-solving training and the other
camp did not. The students were given a project of developing a web application within a
duration of two weeks. The main finding from this study was that the group of students
who were tutored in problem-solving performed better due to higher rates of productivity
when working on their websites. They also requested assistance from teachers less
frequently and generally tried solving an issue by themselves before requesting for
assistance. The students who received training were also found to have higher levels of SE
and had adopted more of a growth mindset towards web development which essentially
means that they saw the web development task as something they can learn from and
improve at over time. Loksa et al. (2016) gives the recommendation that before students
begin to engage in computer programming assessment tasks they first need to have
foundational knowledge of problem-solving strategies and procedures that they can follow

once they begin with development.
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2.7 Deep and Surface Learning

The approach that students adopt towards learning has been a topic of vast research
pertaining to tertiary education (e.g. Lonka, Olkinuora, and Mékinen (2004);
Vanthournout, Coertjens, Gijbels, Donche, and Van Petegem (2013); Trigwell, Prosser,
and Waterhouse (1999)). According to Marton and Séljo (1976) the main approach to
learning is framed by concepts referred to as deep and surface learning. This was introduced
in their seminal study where they gave students a passage to read and then asked the
students to explain the main ideas presented in the reading and asked them what approach
they took to the reading task. From the results of the study they found two different types
of students. Students who wanted to gain an understanding of the information provided in
the reading and students who wanted to remember information for the sake of being able
to reproduce it in at the end of the session. From this, Marton and Sélj6 introduced the
concepts of a deep learning approach and a surface learning approach. They found that
students who were genuinely interested in their classes and tried to obtain a genuine
understanding of the academic material had a deep approach to learning. This type of
student attaches personal value to the concepts and knowledge gained in class. Students
who on the other hand use memorisation and rote learning techniques rather than
understanding to pass tests and exams are said to adopt an approach referred to as surface
learning (Spada & Moneta, 2012). Students who have a surface approach to learning may
be able to pass and even excel in a subject, however their learning style is only appropriate
in test and examination situations where they are required to simply reproduce information
but in situations where they are required to use this information in a practical way they
usually fall short. According to Lindblom-Ylanne, Parpala, and Postareff (2018) students
using a deep approach to learning apply critical thinking skills, thereby enabling them to
make connections between different concepts more easily. Lindblom-Ylanne et al. also
went on to mention the link between the surface learning approach and self-efficacy.
Students with low SE, low motivation to study and negative beliefs about studying tended
to use the surface approach to learning. This again reiterates the importance of SE and
motivation on students and the effect that this mindset has on students and their learning
abilities.

Hulleman (2007) found that when students were asked to apply programming concepts to
their personal lives the students started to develop more of an interest in the programming

at school and began performing better at the subject. The reason for this according to
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Hulleman (2007) is that the students began to see more value in the work they were doing
which made them care more about learning these concepts to understand them. This effect
was found to be more pronounced in students with low SE.

According to Floyd, Harrington, and Santiago (2009) students who participate more in
class activities and adopt a positive attitude towards computer programming will tend to
engage in more deep learning techniques. In the same study it was found that students who
did not adopt negative perceptions of the course engaged in surface learning techniques.
Floyd et al. (2009) says that the reason for this is that surface learning is a “survival
strategy” for students when they do not find a course engaging and meaningful to their
lives.

According to Jenkins (2002) computer programming is more complex of a subject than
most other subjects based on theory or rationale because programming consists of both. It
requires learning of concepts through rote memorisation techniques while also having a
deep understanding of code and practically working with developing programs to master
the skill. He argues that this is where the problem with learning programming lies as
students are unfamiliar with applying this blend of deep and surface learning as it is not
commonplace in most other subjects.

Bir6 and Csernoch (2014) found that by making use of surface learning strategies students
are only storing certain parts of programming logic in their short-term memory. The
understanding of why the logic works and how to apply it in different scenarios is not
developed in their minds which is why it does not transfer into their long-term memory and
this is why students who use rote memorisation techniques for concepts like programming
functions often fail to reproduce the function correctly and also fail to adjust and change
the function to fit the context of the question in examination situations.

Fincher (2006) discovered that students who adopted a deep learning approach try to find
value by relating the subject matter to their personal lives and finding their own importance
in learning the material. This also suggests that students with a deep learning style are
generally intrinsically motivated. On the other hand taking a surface learning approach is
linked to more extrinsic motivations such as avoiding failure or social pressure. In a study
where that entailed the interviewing of 177 university students who enrolled in a
programming module, it was established that students who scored high on deep learning
attributes also achieved high marks for their computer programming module (Fincher,
2006).

27



In a study conducted by Hughes and Peiris (2006) a questionnaire was administered to a
class of computer science students at a tertiary institution. The results from the
questionnaire were assessed alongside the students marks in their programming
assessments. The researchers found that students who adopted a surface learning approach
performed the poorest. It was also found that students who took a deep learning approach
performed better, however, not as well as students who took a strategic learning approach.
A strategic learning approach is when students learned programming with the intent of
achieving high academic marks. The reason students who took a strategic approach could
have performed better may be because these students adopted both deep and surface
learning techniques to both memorise the concepts and gain an understanding of how to
apply the concepts to different scenarios. It was argued that the students who adopted a
fully deep learning style may lose sight of how to apply programming concepts in testable
situations as they become too absorbed in developing a personal interest towards it (Hughes
& Peiris, 2006).

According to Peng, Wang, and Sampson (2017) students can be encouraged to engage in
deep learning strategies by being assessed through project work instead of only being
assessed through written examinations. By allowing students to work on a project such as
developing a web application, either individually or in a group, the students will find more
meaningfulness in the subject matter as they become invested in their projects. Peng et al.
(2017) also suggests that through project work educators can better monitor and provide
assistance to students and identify their weaker areas more efficiently. Konecki and Petrlic
(2014) agree that programming needs to encompass both deep and surface learning
approaches because of the fact that programming is more of skill than knowledge.
According to Malik, Shakir, Eldow, and Ashfaque (2019) by teaching students problem
solving skills and strategies this will inherently promote students to adopt deep learning
techniques because being able to analyse a problem and converge at a solution is the same
as taking on a deep learning approach.

According to Ranjeeth (2011) 50% of computer programming students at tertiary education
institutions have a tendency to adopt a surface learning approach for computer
programming in introductory courses. The researcher suggests that students tend to adopt
this style of learning to meet the course requirements and to be able to obtain a pass mark
for programming assessment. This strategy results in the acquisition of a superficial

understanding of computer programming that usually manifests in the final year of study
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where the level of computer programming knowledge required to pass courses does tend
to become more intense.

Hence the adoption of deep and surface learning towards computer programming does
become a factor that needs to be examined in greater detail in terms of its influence on

students’ performance in computer programming assessment.

2.8 A Reflection of the Literature Review

While there has been numerous other studies on the individual factors that affect academic
performance in computer programming by students, there is a lack of academic studies that
have focused on the combination of factors such as mental model visualisation of the
problem domain, psychological factors (intrinsic and extrinsic motivation as well as self-
efficacy), previous experience and learning style/approach. Research efforts on these
factors have been quite disparate with studies tending to focus on a single factor or just a
few factors. Based on the literature review, the number of factors that influence
performance in computer programming have been saturated and have converged to a finite
manageable list. The study’s conceptual model was leveraged on the knowledge that the
constellation of factors that have been integrated into the framework have all been
recognised and endorsed by the community of academics who have made contributions
towards understanding the phenomenon of student performance in computer programming.
An immediate outcome of the literature review was that it provided a context that forms a

suitable backdrop to the presentation of the study’s conceptual framework.

2.9 The Conceptual Framework

The study’s conceptual framework was constructed on the basis of the factors that have
been hypothesised to influence performance in computer programming. These factors are

illustrated in Figure 2.1.
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Figure 2-1: Factors that Influence the Leaming of Computer Programming

Figure 2.1 represents a primitive arrangement of factors that could be further arranged
according to dependent and independent variables as illustrated in Figure 2.2. The factors
identified in Figure 2.1 were taken from studies conducted by Bandura and Wessels (1994);
Duran (2016); Fang (2012); Gottfried (1985); Kori et al. (2016); Spada and Moneta (2012).
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Figure 2-2: A Conceptual Framework for the Learning of Computer Programming

In Figure 2.2, the independent variables are Previous Experience, Problem Solving Ability,
the Learning Approach (Deep and Surface) and Intrinsic and Extrinsic Motivation.
According to the discussion in the literature review, previous experience and problem-
solving ability have a direct influence on a student’s self-efficacy towards computer
programming which manifests on a student’s ability to learn computer programming. The
learning approach adopted by a student in terms of deep and surface learning also has a
direct influence on academic performance in computer programming as do intrinsic and
extrinsic motivation. While it has been established that previous experience and problem-
solving ability have an influence on performance of computer programming, these
influences are mediated by self-efficacy.

The dependent variable in the study is the students’ proficiency/academic performance in
computer programming. This variable was measured by obtaining a self-assessment-based
rating of students’ performance in computer programming assessment. The researcher was

aware that students in the IS&T department at UKZN engaged in a formal practically-based

31



computer programming assessment where they were required to use their programming
skills holistically to display their proficiency of computer programming and provide a
successful solution for the task given to them. It was envisaged that the mark obtained by
the students would provide a guideline to enable the students to rate their individual
performance in computer programming assessment. This self-reported rating will be used
as an indicator of the students’ academic performance in computer programming. The
strategy of using practical computer programming assessment activity as an indicator of
proficiency in computer programming has also been used in studies with a similar agenda
as the current study (e.g. Bennedsen and Caspersen (2007); Edwards, Murali, and
Kazerouni (2019). The preceding discussion reflecting the link between the dependent and
independent variables in the study is reflected by the illustration in Figure 2.1.

According to Abdunabi et al. (2019) self-efficacy in computer programming is theoretically
linked to a students’ background and previous exposure to programming as well as their
background in mathematics and problem solving. This link assumes that students who have
a good background in mathematics and have been educated in some form of computer
programming content (algorithmic or language syntax), prior to attending university, tend
to have a higher self-efficacy (SE) in programming. This is based on the knowledge that
these students have constructed a foundation of knowledge that assists them in
understanding programming concepts at university, regardless of the programming
language being taught. A students’ level of SE then has an impact on their learning style
as students with higher SE are more likely to adopt a deep learning style as they tend to
find the subject inherently interesting. Finally, the overall combination of each of these
factors, self-efficacy, deep and surface learning, previous experience problem solving
ability and intrinsic and extrinsic motivation result in a student achieving higher marks in
programming tests and exams. The results of tests and exams then feeds back into their
self-efficacy, if they have performed well in a test or exam this will work to increase their
belief in themselves their programming abilities which then results in them consistently
performing well on tests and exams. According to Yacob and Saman (2012) both intrinsic
and extrinsic motivation have a positive relationship to the learning of computer
programming. Also, students who find the subject more enjoyable will develop both
intrinsic and extrinsic motivation to work on programming tasks, thereby ensuring that they

are adequately prepared for exams and assignments pertaining to computer programming.
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2.10 Virtual Learning due to Covid-19

The Covid-19 pandemic has profoundly impacted on teaching and learning platforms
globally. The adoption of online learning has changed the learning behaviour patterns
where students have been forced into isolated learning situations. This resulted in a
pedagogical shift from on campus learning to virtual classrooms for programming students
across the globe (Mbunge, Fashoto, & Olaomi, 2021). This shift in learning was envisaged
to possibly manifest as an additional layer of complexity to the current study. However,
the academic literature on this topic does not provide a consensus on the role that online
learning has on academic performance in computer programming, as indicated by the

following discussion.

In a study conducted with a group of 45 first year university students studying object-
oriented programming using C++, Maltby and Whittle (2000) found that having face-to-
face (F2F) interactions with lecturing staff, tutors and other students did not have a
significant effect on the final outcome of students marks in programming exams compared
to online tuition. The most significant determinant of success in programming exams was
the level of effort that an individual student applied to their programming material. This
result was in contrast to what many students thought determined their marks which was
attending physical classroom lectures and interactions with educators and tutors. The
results of the study also showed that the students who generally performed well in C++,
before moving to virtual learning, still continued to perform well after moving to online
classes. These findings are supported by other research such as a survey done by Co and
Chu (2020) that found that 73.4% of students did not find online learning any more easy

or difficult than face-to-face learning.

However, in a study with a similar agenda by Khraishi (2021), it was reported that more
than 70% of students agreed that online learning (OL) may have advantages over traditional
on campus learning. A study by Li et al. (2021) looked at a group of programming students
who participated in pair programming sessions through Zoom and found that students
derived large amounts of value from having these sessions as they were able to problem
solve more collaboratively with their partner, brainstorm different ideas and impart/gain
more knowledge when it came to writing code. While this study provides evidence that OL
from a computer programming perspective is both feasible and practical, a study by Chen,

Lasecki, and Dong (2021) reported that a majority of the students (58%) had a preference
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for traditional face-to-face lectures over an online mode. The main reason for this
phenomenon is based on student perception that the traditional (face to face) teaching and
learning style offers greater educational value and provides more opportunity for
meaningful engagement with academic staff. A significant outcome from this aspect of the
report from this study is that a majority (70%) of high-achievers and a general majority
(56%) of students were of the opinion that the most problematic aspect of learning
computer programming via an online mode was the ability to understand aspects of
computer programming that were deemed to be cognitively challenging. This includes
aspects such as looping, selection structures, object-orientation (OO) and data structures.
The ironical outcome from this discussion is that the perception-based evidence did not
match the empirical evidence regarding students’ performance in computer programming.
The empirical evidence attested to by students’ academic performance in computer
programming assessment indicated that the high-achieving students performed equally
well with OL as they did with face to face (FTF) learning. This outcome is not a generalised
one as the analysis of results of low-end achievers did not provide a significant correlation
between FTF and OL.

The conflicting reports regarding the role played by OL versus FTF learning provides
evidence that the introduction of OL as a variable in the current study is not warranted at

this stage of such a study.

2.11 Conclusion of the Literature Review and Conceptual Model

According to Levy and Ellis (2006), a crucial reason for conducting a literature review is
to establish what has been discovered in the field of study and to provide a context for the
intended study. The literature review section for the current study has been designed along
the dictates of Levy and Ellis and the progression of the literature review has been guided
by the academic sources on the topic. The literature review has been designed to provide
an exhaustive coverage of the main topics that prevail in this domain of study. The main

coverage areas are illustrated in the hierarchical diagram in Figure 2.3
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Figure 2-3: A Hierarchical overview of the Literature Review
The broad classification of topics covered in the literature review provided a foundation
from which the researcher was able to develop a conceptual model to guide the data
collection phase of the current study. The conceptual model (Figure 2.2) provided the
researcher with a platform from which the study’s research design and data collection
instruments were developed. These core constructs from the study will be discussed in the
next chapter. The literature review also refers to the strategy of online learning and its
influence on computer programming performance. The outcome of this inquiry indicates
that online learning (OL) did not significantly influence academic performance in computer
programming. Informed with this knowledge, the researcher continued with the study by
not directing any focus on online learning as a variable that could have influenced the

outcome of the study.

35



CHAPTER THREE - The Research Methodology

3.1 Introduction to the Study’s Methodology

A pre-cursor to a study’s research methodology is the research design and according to
Sekaran and Bougie (2016), there are many aspects to be considered. These aspects will
be used and discussed in accordance with the Research Design Framework provided by
(Sekaran & Bougie, 2016, p. 102).

The main purpose of the current study is to examine the relationships between the main
variables of the study’s conceptual model so that a more nuanced understanding of the
factors that influence computer programming performance could be established. This will
enable the researcher to use this empirical evidence to answer the study’s cohort of
research questions. The type of investigation is classified as a correlation-based study with
the objective being to establish whether there is a statistically significant correlation
between the study’s main variables. The extent of the researcher influence in the empirical
phase of the study will be minimal and the planned data collection from a time-horizon
perspective will be cross-sectional. It is suggested in Sekaran and Bougie (2016) as well
as Mark Saunders (2011) that a viable data collection approach for a cross-sectional study
will be via the method of surveys, interviews or a combination of both. Many of the
research methodology texts (e.g. Creswell & Creswell, 2017; Mark Saunders, 2011;
Sekaran & Bougie, 2016) have identified 3 primary approaches to conducting an empirical
study. These are the quantitative, qualitative and mixed methods approaches. While the
research design is meant to be the overall plan that guides the study and ultimately defines
the methodology, it is the researcher’s worldview orientation (Saunders, Lewis, &
Thornhill, 2009) that plays a significant role. The researcher’s worldview orientation is a
reference to the researcher’s epistemological and ontological perspective on how new
knowledge is obtained. The researcher currently has a strong leaning towards an objectivist
worldview that is defined by unobtrusive data collection and analysis. However, in order
to establish whether such a worldview orientation will be ideal for the current study, the
researcher will provide an overview of the various research approaches and based on an
analysis of each, a specific orientation will be selected and used to define the

methodological detail for the current study.
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3.2 The Quantitative Research Approach

According to Apuke (2017), quantitative research is focused on gathering numeric data
and analysing that data to find statistical relationships, which can help the researcher test
a hypothesis. The main method of gathering data is through distribution of a questionnaire
which is filled out by a set of participants to determine their thoughts or experiences
regarding a particular research topic. Quantitative research is underpinned by positivism,
which argues that an objective reality exists and is detached from the human mind
(Rahman, 2020). Some of the key advantages to quantitative research is that it can depict
an objective stance on the research problem. It can also be generalisable to other
populations because it uses a large sample from which insights can be gathered. It is also
one of the least time consuming methods of acquiring data (Rahman, 2020).

Law, Lee, and Yu (2010) conducted a study to determine how motivation influenced
academic performance in computer programming by students. The researcher took a
quantitative approach by making use of a questionnaire that was distributed to a group of
tertiary programming students. In total the researcher had collected 365 valid
questionnaires filled out by students. From the results obtained the researcher was able to
attribute a correlation between the students who were intrinsically motivated and their
enjoyment of programming. It was also found that students who had intrinsic motivation
reported greater self-efficacy in programming than students who were extrinsically
motivated.

According to Korkmaz and Altun (2014), the levels of self-efficacy displayed by students
in a computer engineering course was greater than that of general engineering students.
The reason for this difference is determined to be that computer engineering students are
exposed to more programming as they enrol for more programming classes at university
and are therefore exposed to more programming related assignments and homework as
opposed to general engineering students who take more engineering related classes at
university. This is an indication that one’s amount of previous experience in programming
leads to higher self-efficacy. This study was underpinned by a quantitative survey that was
carried out amongst 378 computer and general engineering students. The aim of the study
was to determine students’ self-efficacy in a C++ programming class that both groups of

students had completed.
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3.3. The Qualitative Research Approach

According to Alase (2017), qualitative research allows for different individuals to
communicate their experiences of a particular event or aspect of their lives. Information
was gathered through listening and documenting individual experiences as well as their
thoughts and opinions of what they experienced. In the context of computer programming,
qualitative studies have achieved moderate success in understanding difficulties associated
with academic performance in computer programming.

In a qualitative study conducted by Lishinski, Yadav, and Enbody (2017) with a group of
university students learning programming, the study attempted to collect statements from
each of the students after a programming assessment had taken place to understand their
feelings and emotional state. The results found that students previous performance had a
large influence on how they felt about programming assessments and their overall self-
efficacy. They also found that students who felt negative emotions because of performing
poorly in previous assessments tended to have a low self-efficacy and this continued to
affect how they perform in programming. The findings also suggest a feedback-loop that
results in students having a negative outlook on programming from previous experiences
and then this causes a lack of interest and motivation for the subject, which contributes to
their low marks in future tests and assignments. The qualitative nature of this study allowed
the researchers to delve deeper into subjective experiences of students, which as the
researchers prove can yield significant results and patterns. The main benefit of adopting
a qualitative approach is that it allows the researcher to adopt a deeper understanding of
specific aspects of the task of learning to program; However, the generalisability of this
methodology has been flagged as one of the main challenges (Ochieng, 2009).

3.4 The Mixed Methods Research Approach

According to Hanson, Creswell, Clark, Petska, and Creswell (2005), the mixing of
qualitative research methods with quantitative methods is named the mixed methods
research approach. The idea behind this methodology is that the strengths of both
paradigms of research are leveraged to produce a well-informed research outcome. In the
context of learning of computer programming, mixed methods research has been widely

used.
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In a paper done by Mather (2015) to study how students learn the C programming
language, the researcher employed a mixed methods approach, which consisted of
distributing questionnaires to students and reviewing their marks on a programming test
as the quantitative component, and observation of participants through video analysis as
the qualitative component. Through this study the researcher found that students performed
better when working with other classmates in pair programming activities, which was
confirmed by students’ responses in their questionnaire showing their preference for
collaborative working sessions. During their time spent in pair programming students were
able to accomplish more in a shorter space of time and the researcher observed this through
the video analysis portion of his study. However, from an analysis of the students’ test
scores the researcher found that students collaborating did not help them with remembering
key programming concepts in the test as reflected by their scores. The researcher
concluded that working collaboratively does not equate to deep learning, which is
necessary for performing well without any assistance. These findings required multiple
data collection methods in order to reveal different truths.

Another mixed-methods study conducted with 49 primary school students learning
programming for the first time on the Scratch programming platform conducted focus
group interviews about the students perceptions of programming and also did a quantitative
analysis of their programming test results (Kalelioglu & Gulbahar, 2014). The study found
through the student interviews that students had a positive impression of Scratch
programming, with many of them stating that it was an enjoyable experience. After
spending some time learning Scratch the students also said that they felt more confident
with their programming abilities. While the qualitative results showed positive results
overall the analysis of the students marks and tests showed that many of the students still
struggled with their problem-solving abilities and this was a key area of weakness that the
students still needed time to develop. The qualitative results did support these findings as
many students did admit that they had a low perception of their ability to problem solve
but still found enjoyment in the programming activities regardless of the difficulty they
experienced with some of the questions. This is another example of how the mixed-
methods approach can reveal more substantial information pertaining to different factors
or aspects of how students learn programming. It also shows how different data can be

used in tandem as supporting evidence.
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In another study Zahedi et al. (2021) conducted a mixed-methods study to determine if
gamification had an influence on female programming students. From the quantitative
results it was found that female students benefited from gamification practices just as much
as male students, and this was found through analysis of the students’ results. However,
these results were in contrast with the qualitative results. In interviews, most female
students said that they were apathetic or felt negatively to some gamification practices,
while some female students felt that gamification actually reduced their motivation
towards the subject. These conflicting findings allowed the researcher to question more
deeply if it was actually the gamification practices that had a positive impact on students
marks or if other factors such as intrinsic motivation and self-efficacy could have played a
larger role.

Hence, while the mixed methods approach does provide a greater opportunity for
engagement with the respondents of a study, there is also a huge prospect of obtaining

conflicting outcomes because of the fundamental difference in methodologies.

3.5 Justification for the Quantitative Methodology

After reviewing the main approaches to an academic study, the researcher gravitated
towards a quantitative methodology to underpin the study. This decision was based on the
observation that many of the correlation-based studies on the factors that influence
academic performance in computer programming has been conducted using a quantitative
approach that manifests in a survey type of methodology. This survey type of approach
has also been conducted quite successfully in the studies that are detailed in the subsequent
discussion. Many of these studies have focused on constructs that are core to the current
study. As an example the construct of self-efficacy was studied by Karsten, Mitra, and
Schmidt (2012) with a sample of 151 IT teachers before and after they had completed an
online course on Scratch programming to determine if learning Scratch programming had
an impact on their programming self-efficacy. The study was conducted using web-based
questionnaires with Likert Scale questions about programming self-efficacy and
perceptions as well as questions about the participants attitude towards programming. The
results of the study found a significant difference in self-efficacy and attitude towards
programming after completing the Scratch course. It was found that the participants were
able to think more positively about programming and this influenced their belief that they

could handle more long and complex programming tasks in the future. These results show
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that some of the main factors discouraging people from taking an interest in programming

is a negative attitude and lack of confidence and motivation (Karsten et al., 2012).

In a study to analyse the factors that motivate students to study computer programming
Law et al. (2010) distributed questionnaires to students who were enrolled in two different
computer programming courses. The questionnaire was distributed to 386 students in total
and of the questionnaires returned 365 were valid samples that were used in the analysis
for the findings. The study found that factors such as individual attitude, having a clear
direction, and being rewarded for good work had the largest impact on students’ motivation
to learn programming. It was also found that students’ who set challenging goals for
themselves and students’ who felt social pressure to compete with their classmates had
greater levels of motivation. A smaller study on motivation and learning programming was
conducted by Yacob and Saman (2012) with 30 valid questionnaires being used for the
analysis. The findings from this study were similar to those identified in Law et al., that
students seem to be motivated by a set of intrinsic and extrinsic factors. Intrinsic factors
being: setting difficult goals for themselves and having an interest in programming.

Extrinsic factors being: social pressure and receiving rewards or recognition.

A quantitative study was conducted by Koulouri, Lauria, and Macredie (2014) with a
number of different groups of students who were enrolled at a tertiary education institution.
Each of the groups in the study had gone through different levels of learning aspects such
as problem-solving skills and different types of programming courses were taught to some
groups and not others. The researchers then measured each student in the different groups
by giving the groups the same programming activity/assessment to measure their
programming proficiency. It was found that students who had higher levels of experience
in programming and students who had better problem-solving skills performed better in
the programming activity/assessment.

The studies discussed in this section make strong reference to the variables that will be
used to guide the current study. Each of the studies presented were conducted using a
guantitative methodology with a survey instrument being used as the main form of data
collection. The validity and significance levels that were achieved in these studies
contributed towards a decision to opt for a quantitative methodology for the current study.
While the planned study adopted a predominantly quantitative approach, an open-ended
option has been included in the study’s data collection instrument so that the benefits of a

qualitative/mixed methods approach may be explored.
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3.6 Study Site and Target Population

The site for the study was the Pietermaritzburg and Westville campuses of UKZN.
However, due to the adoption of online learning the launch of the study’s questionnaire
was conducted during online lecture and practical sessions that were conducted via the
MsTeams (3™ year, Honours and Master’s) and Zoom (2" year) video conferencing

platforms.

3.6.1 Sample size

The estimated total population of the study was 420 university students from the IS&T
Discipline. A census approach was adopted where the sample size chosen for the study
was also the total population of the study which was 420 students. The research plan was
to use the census approach and obtain a 100% response from the population because this
was feasible and it would add immense value to the reliability of the study’s outcomes.
With the selected sample size, there was a high probability that the distribution of the
sampling means would be approximately normal (Sekaran & Bougie, 2016). This created
an opportunity to leverage the statistical power of parametric statistical analysis using a
95% confidence interval. These parametric statistical tests consist mainly of the one sample
t-test that was used to ascertain whether the measures of central tendency such as the mean
and median occured by chance or was statistically significant. Correlation analysis was
performed by bivariate correlation testing (Pearson or Spearman). In cases of doubt,
regarding the normality of the sampling distributions the back-up plan was to explore the

possibility of using non-parametric statistical tests.

3.6.2 The Study’s Sample

The population for the study comprised all Information System and Technology students
currently studying a computer programming module. The population consists of 2" and
3 year Information Systems and Technology (IS&T) students including Honours and
coursework Masters students. The purpose of using this set of students was that these
students are appropriately positioned in an academic context as they were in the midst of
undertaking a module that is focused on computer programming. The richness of the
empirical phase of the study could have been enhanced by the participation of 1% year

students. However, after careful review of the 1% year IS&T syllabus at UKZN, it was clear
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that the level of computer programming covered was not sufficient to make an accurate
evaluation of students’ computer programming abilities. The content at 1% year level is
quite superficial and introductory. The complexities inherent in ensuring good academic
performance in computer programming manifest when students engage with cognitively
challenging computer programming constructs such as looping and conditional logic in
conjunction with data structure and database manipulation. These assertions were based
on material covered in the literature review section. In the case of 2" and 3" year students,
there is an intensive engagement with all aspects of computer programming knowledge
thereby providing the researcher with an ideal opportunity to obtain an insight into
students’ level of computer programming proficiency. The decision to include Honours
and Masters students into the study’s sample was based on the fact that these students
would have been exposed to the rigours of computer programming tasks and they also
engage with a module named Software Engineering that has a significant computer
programming component.

3.7 The Data Collection

Data collection is the process that permits the researcher to collect, measure and analyse
information in an established systematic way using standard validated techniques for a
research study (Sullivan & Artino Jr, 2018). The main forms of data collection are surveys,
interviews, observations, focus groups and document analysis (Mark Saunders, Lewis, &
Thornhill, 2018). The current study used a survey approach that consisted of a
questionnaire as the primary data collection instrument that was used to obtain a broad
representation of computer programming knowledge and learning habits from the study’s
population. The questionnaire was launched during formal online lectures via the
intervention of the academic staff members who were lecturing on the 2" year, 3" year
and Honours and Master’s lecturing programmes. Students were informed of the
requirements of the questionnaire and were provided with an opportunity to complete the
questionnaire during the practical sessions for the courses that contained computer
programming content. The questionnaire was made available as an online survey via

Google forms (accessible at: https:/forms.gle/mtKiXc619XxGVhkC7). However, students who

did not complete the questionnaire during the practical sessions were allowed to save the

completed sections of the questionnaire and submit it at a later time of their convenience.
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3.8 Construct Validity

This study employed a structured, survey questionnaire as the primary source of data for
the study’s empirical analysis. The questionnaire (Appendix A) was designed to resonate
with the study’s conceptual framework. According to Peter (1981) construct validity refers
to the alignment between the constructs of the study (which are referred to as unobservable
variables specified at a conceptual level) and the questionnaire items that are used to obtain
a tangible measure of that construct. There is no precise measure of construct validity.
However, it can be inferred through techniques such as exploratory and confirmatory factor
analysis. The strategy is to ascertain whether the questionnaire items contributed by
explaining/accounting for the variance in the dependent variable. A viable strategy to
ensure construct validity is to align questionnaire items to previous studies where these

constructs and items have been validated.

3.8.1 Validation of the Study’s Questionnaire Items

The study’s main constructs were subjected to theoretical validation by using pervious
research efforts with a similar objective as the current and also included constructs that
were been identified in the study’s conceptual framework.
The discussion on construct validity is classified according to the study’s main constructs:
o Self-Efficacy (SE)
Bandura (2006) developed a guide for constructing SE scales. This guide, which has
reached seminal status, has been used extensively by researchers to measure this concept.
Ramalingam and Wiedenbeck (1998) used Classical Measurement Theory and factor
analysis techniques to confirm the validity of 30 questionnaire items linked to the Bandura
scale to measure self-efficacy in the domain of computer programming. Askar and
Davenport (2009) adapted the Bandura scale to measure SE of students during a Java
programming course delivered to Engineering students at a university. The current study
was guided by the afore-mentioned studies and 12 questionnaire items were adapted from
these studies to align with the context of the current study
e Intrinsic and Extrinsic Motivation
According to Nielsen (2018) the Motivational Strategies for Learning Questionnaire
(MSLQ) is a widely used instrument to measure intrinsic and extrinsic motivation levels
for students in higher education. Nielsen used this questionnaire as a starting point to

measure the levels of intrinsic motivation (IM) and extrinsic motivation (EM) of
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Psychology students to their academic studies. The outcome from this study was a set of
validated questionnaire items to measure IM (4 items) and EM (4 items). In a s similar
study Amabile, Hill, Hennessey, and Tighe (1994) used the Work Preference Inventory
(WPI) over a period of 8 years to collect data on motivational traits of college students and
working adults. The results from their study indicate the WPI is a reliable indicator of IM
and EM in various contexts. An examination of the MSLQ and the WPI instruments to
measure IM and EM revealed substantial overlap of the questionnaire items. A set of 7
questionnaire items (4 for IM and 3 for EM) was identified as applicable for the context of
the current study.
e Learning Styles
As discussed in the literature section of the study, learning styles is an attribute that
manifests in the form of deep and surface learning. In terms of quantifying this abstract
phenomenon, Mahatanankoon and Wolf (2021) provided a set of validated questionnaire
items (informed by seminal work on this topic by Marton and Sélj6 (1976)) to measure
deep and surface learning traits exhibited by students in the context of computer
programming. In the context of the current study 6 questionnaire items were adapted (3 for
deep learning and 3 for surface learning) for the current study.
e Problem Solving Ability

As discussed in the study’s literature review, problem solving ability was operationalized
for the purpose of computer programming inquiry by aligning this ability to the students’
mental model visualisation of a computer programming task to a formal programming
language notation was used to represent a solution to the task. To measure this ability, the
study was guided conceptually by the pragmatics of computer programming (Du Boulay,
1986) that allude to the challenges of solving computer problems by dealing with the
syntax and semantics of a computer programming language. This strategy was extended
operationally by leveraging questionnaire items to measure students’ problem solving
ability suggested by Tukiainen and Monkkonen (2002) and Koulouri et al. (2014). A series
of 10 questionnaire items were used that targeted student’s cognitive ability in developing
a mental model of the problem situation and identifying a correct solution to the problem.
These questions were devised to ascertain student’s ability to be cognitively adept at
prediction, conditional and iteration logic as well as data structure comprehension. In the
instances where computer programming code was required to contextualise the question,

the C# programming language was used because it is the current language of computer
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programming instruction used in the IS&T Discipline at UKZN. The relevance of these
constructs as a reliable indicator of problem-solving ability were confirmed during the pilot
study where academics who are experienced in the lecturing and research of computer
programming were consulted.

Table 3.1: Summary of the Questionnaire Validity

. Number of
Construct Reference (adaptation) Unestonnuive | (ems
Self-Efficacy Askar and Davenport 12 items
(2009)
Learning Styles Mahatanankoon and 6 items
Wolf (2021)
Motivation Amabile et al. (1994) 7 items
: e Tukiainen and .
Problem Solving Ability Monkkonen (2002) 10 items

3.8.2 Data Reliability

The routine check for data reliability was conducted via the Cronbach Alpha test. As is
suggested in Sekaran and Bougie (2010), a Cronbach Alpha value that is greater than 0.7
1s indicative of very good data quality. At this stage, as Peter (1981) suggests the exercise
n establishing construct validity is only tentative and is ideally achieved through a process
of iteration where the empirical data collected in the study is subjected to discriminant
validity tests that are guided by Cronbach’s alpha and factor analysis. Iirespective of the
outcome of the empirical validation tests, the theoretical basis for the study’s conceptual
model should always take precedence.

3.9 Questionnaire Design

The questionnaire (see Appendix A) was classified into 4 sections summarised in Table
32

Table 3.2: Sections in the Questionnaire

Number of

Section Label Purpose Components

Demographic- Part 3 of Section A
contains  reference to an
_ estimation by the respondent of
Section A their average computer 3 parts
programming level of
achievement (a major dependent
variable in the study).

Section B Behavioural,  cognitive  and
problem-solving  questionnaire

3 parts
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items (the major independent
variables of the study)

Section C Open-ended response 1 part

3.10 Pilot Study and Survey Protocol

The questionnaire was discussed with academics involved in the teaching of computer
programming in the Information Systems and Technology (IS&T) at UKZN. Comments
and suggestions were incorporated into the questionnaire so that it represented a cogent,
logical document that flowed from one construct to the next and aligned with the
programming experiences of students in the IS&T Discipline at UKZN. The questionnaire
was piloted with 2 IS&T Master’s students and 2 students from the IS&T Honours class.
The input received during the pilot studies was that the questionnaire was too long and a
few questions were ambiguous. Also, the original questionnaire required students to solve
computer programming related problems to ascertain their problem-solving ability. While
these questions were not too intensive, the response from the pilot study was that these
questions should be phrased as multiple-choice questions. All suggestions made during the
pilot study deliberations were considered and in conjunction with the supervisor of the

current study, many of these suggestions were implemented.
3.11 Ethical Consideration

The researcher applied for ethical clearance from the Research Office at UKZN. A
gatekeeper application was made to the registrar’s office to obtain permission to collect
data within the UKZN campus. Both the ethical clearance and gatekeeper applications
were successfully granted. In terms of the survey protocol, the study’s respondents were
informed of their voluntary participation in the study and in compliance with the Personal
Protection of Information (POPI) Act, no personal information was collected that could be

used to directly identify the study’s respondents.

3.12 Planned Data Analysis

The data analysis that was planned was descriptive and inferential statistical analysis. The
descriptive statistics consisted of frequencies, mean, median and standard deviation
statistics. The descriptive results are displayed by stacked bar graphs and histograms.

These data visualisation techniques were used to provide an overall view of the empirical
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evidence with regards to the study’s main constructs such as previous experience, problem
solving ability, self-efficacy and performance in a formal computer programming
assessment. The inferential statistics consists mainly of the one sample t-test and tests of
normality. The correlation between the main constructs of the study were analysed by
making use of the Pearson Correlation Co-efficient or the Spearman rho, bivariate and
multiple regression and path analysis. The study also leveraged Confirmatory Factor
Analysis techniques to ensure discriminant validity and an alignment with the study’s
conceptual framework. The dependent variable, which is the performance in computer
programming assessment, was determined by students’ responses where they will be asked
to provide an approximate value that quantifies their performance (Section A, Part 3 of the
questionnaire). A correlation analysis (Spearman or Pearson) was conducted between
students’ survey-based responses to the problem-solving tasks administered in the survey
(Questionnaire, Section B, Part 3) and their approximation of their performance in

computer programming assessment.

3.13 Summary of the Research Methodology

In conclusion the study has been set up to leverage the conceptual framework, engage in
data collection via the study’s research instrument and proceed to the data analysis section.
The alignment between the study’s conceptual framework and the data collection
instrument has been presented in the current chapter. A theoretical explanation and
presentation of the construct validity of the questionnaire items have been presented. The
empirical validity of these items together with the predictive capacity of the study’s

conceptual model is presented in Chapter 4.
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CHAPTER FOUR - Data Analysis

4.1 Introduction

Chapter 4 presents a statistical summary of the responses received during data collection.
The study’s data was obtained online, via Google Forms and downloaded into a
spreadsheet format. While a few of the illustrations were developed using the MsExcel
spreadsheet application, the majority of the analyses, interpretations and visualisations
were generated via SPSS version 28.

The primary data collection mstrument consisted of a questionnaire that comprised of 2
main sections (See Appendix A). The 1* section labelled as Section A consisted of
demographic questions and questions pertaining to levels of experience in the domain of
computer programming and systems analysis and design (SAD). The 2 section of the
questionnaire comprised of the core aspects that addressed the main objectives of the study.

This design view of the 2°¢ section of the questionnaire is provided in Table 4.1.

Table 4.1: Section Two of the Questionnaire

Type of Number
Section label Concept
response of Items
Intrinsic and Extrinsic
Part One Likert motlvaqon (pertaining t_o 7
Scale academic performance in
computer programming)
Likert p
Part Two Scale Learning styles 6
Part Three Likert Self-Efficacy 12
Scale
Problem Solving and
e . Computing Mental Model 10
Open ended response on
student experience/comments
1 Open Cw :
Part Five pertaining to academic 1
ended text .
performance in computer
programming

The questions for Part One, Part Two and Part Three of the questionnaire were presented
to the respondents as a 5-point Likert Scale type questions. The questions were positively
worded and coded into SPSS using a strategy of 5=strongly agree and 1=strongly disagree.

In Part Four of the questionnaire, the respondents were presented with a series of questions
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pertaining to the ability to leverage the cognitive domain and demonstrate
knowledge/comprehension of conditional, logical and data structure-oriented problems.
The questions in this section of the questionnaire were structured as multiple-choice
questions (MCQs). In Part Five of the questionnaire, the respondents were provided with
an open-ended section where they could provide a response regarding their experience of
learning computer programming and making suggestions on how this learning could be
enhanced.

The current chapter has been designed according to the following plan:

e A presentation of the demographic data using tables and visualisations; this section
contains frequencies and bar graphs to provide an overall view of the data. The
main data items presented were demographics and background information of the
participants. Descriptive analysis was carried out and presented using bar charts
and pie graphs

e Inferential statistics are presented by ensuring data reliability (Cronbach Alpha),
data compliance in terms of testing for normality and the use of t-tests to establish
the significance of the mean value that represents each construct; Confirmatory
factor analysis (CFA) was conducted on the study’s conceptual model by inputting
the study’s current dataset into the CFA model; relationships between variables
were explored via bivariate correlations analysis to establish whether there were
significant correlations and to identify the strength and direction of significant
correlations; multiple regression analysis to ascertain whether the correlations can
be expressed in a predictive linear relationship; and path analysis to find an optimal
fitting model that explains maximum variance in the dependent variable.

e Thematic analysis was also carried out on Section C, where the respondents were
provided with an opportunity to openly express their thoughts on academic
performance in computer programming.

e The results were analysed with predominant quantitative techniques; however, the
open-ended data represented an opportunity to triangulate the study’s quantitative
data with the qualitative responses and provide a more enriched discussion of

results.
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4.2 Sample and Response Rate

The data collection strategy was launched as a census sampling effort where all students
who are registered for Information Systems and Technology (IS&T) courses were
requested to respond to the questionnaire. The questionnaire for the study was made
available via Google Forms and a link to the form was posted on the Learning Management
System (LMS) used at UKZN for 2" year, 3" year, Honours and coursework Master’s
students. Academic staff members also made announcements to the students to respond to
the questionnaire and in the case of the IS&T 3™ year and Honours classes, students were
allowed to complete the questionnaire as a practical task (that was classified as optional).
Students were allocated time during their 3 year, Honours and Master’s classes to
complete the questionnaire including the set of problem-solving questions. However,
students were given the latitude of using more time than what was available for the official
lecture to complete the full questionnaire and submit later than the expected time. Also,
the cohort of responses included responses from students who were not available during
the official dissemination of the questionnaire.

The population for the study was identified on the basis that all of these students would
have had experience in computer programming at the level that was required in this study.
The study’s population was identified as 420. Only 133 valid responses were received.

This represents a response rate of 32%.

4.3 Demographic and Background Information of Participants

Section A of the questionnaire was designed predominantly to obtain demographic and
background information from the study’s respondents. The strategy adopted here was to
use an expansive approach that provided with an opportunity to scan the demographic data
with the possibility of identifying any significant relationships that may emerge with the
study’s main constructs. However, Section A did make specific reference to previous
programming experience which does have a tangible link to the study’s main constructs.

The demographic data pertaining to the level of study is presented in Figure 4.1.
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Level of Study

@ 2nd Year
W 3rd Year
M Honours
B Masters

Figure 4.1: Graphical illustration of Level of Study

The academic college of affiliation of the study’s respondents has been recorded and this
data may present an opportunity for further analysis. As can be observed from Figure 4.2,
64% of the respondents are from the College of Law and Management Studies (LMS) and
36% are from the College of Agriculture, Engineering and Science (AES).

College of Affiliation

M Agriculture, Engineering and Science ® Law and Management Studies ]

Figure 4.2: Graphical illustration of College of Affiliation

A summarised view showing an approximation of the years of computer programming

experience acquired by the study’s respondents is provided in Figure 4.3.
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Previous Computer Programming

Experience
44.4%,
59
31.6%
42
18.0%,
24

6.0%, 8

BETWEEN O AND 2 BETWEEN 2 AND 3 BETWEEN 3 AND4 MORE THAN 4 YEARS
YEARS YEARS YEARS

Figure 4.3: Previous Computer Programming Experience

The significance of the information presented in Figures 4.2 and 4.3 is that the majority of
the study’s respondents are affiliated to LMS and the researcher is aware that based on
curriculum specifications, students from AES will in all probability have greater previous
experience of computer programming engagement. This brings the construct of previous
experience into contention and at this stage, the researcher was “interested” to see what
the correlation between these variables turned out to be. This knowledge will assist in
guiding further statistical testing and provide convergence towards a discussion of the
study’s research questions. A point biserial correlation was conducted between the
respondents’ college of affiliation and the number of years of previous computer
programming experience. The dichotomous variable “College of Affiliation” was recoded
in SPSS with LMS being assigned a value of 1 and AES being assigned a value of 2. This
correlation was generated to obtain a Pearson r value as well as a Spearman rho value. In
both instances, the correlation was a weak, but positive correlation (1=0.25, n=133, p=0.03
and rho =0.25, n=133, and p=0.03). The Pearson correlation analysis between computer
programming experience and the college of affiliation is shown in Table 4.2 The
mnterpretation that is coupled with these results is that students affiliated to AES have a

higher correlation with greater levels of computer programming experience.
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Table 4.2 Correlation Between College of Affiliation and Previous Experience

and College of Affiliation

Point Bi-serial Correlation Between Previous Experience

Programming
Experience College

Programming Pearson Correlation 1 253"
Experience

Sig. (2-tailed) 0.003

N 133 133
College Pearson Correlation 253" 1

Sig. (2-tailed) 0.003

N 133 133

**. Correlation is significant at the 0.01 level (2-tailed).

4.4 Reliability Testing

Gliem and Gliem (2003) suggests that when Likert scales are used in a study, the reliability
of the data collection instrument needs to be established. According to Bujang, Omar, and
Baharum (2018), Cronbach’s alpha provides a very good measure of the inter-item
reliability in a questionnaire. The values for Cronbach’s alpha ranges from 0 to 1 with the
higher values indicating that the questionnaire items contribute towards measurement of
the construct under inquiry while lower values indicate that some or all of the items are
not making a contribution towards measuring the value of a specific construct in the study.
For the current study, there were 3 constructs that were measured using a Likert-scale type
of response. The outcome of the Cronbach alpha reliability tests that were conducted on
these 3 constructs are presented in Table 4.3

Table 4.3 Cronbach alpha analysis

No of Likert Scale Cronbach’s
Construct
Items alpha
Motivation 7 (abbreviated as IM1 to 0.64
(Intrinsic/extrinsic) IM7) ]
3 6 (abbreviated as LS1 to
Learning Styles LS6) 0.57
12 (abbreviated as SE 1
Self-Efficacy to SE12) 091

Sekaran and Bougie (2016) provide guidance on the use of Cronbach alpha by suggesting
that a co-efficient value that is less than 0.6 is “considered to be poor” (p.311) while those
in the range of 0.7 and above are considered to be good. In Table 4.2, it can be observed

that the Cronbach alpha value for Learning Styles is 0.57 and according to Sekaran and
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Bougie (2016), the questionnaire items used to measure this construct is not ideally
reliable. Gliem and Gliem (2003) do however advise that if the Cronbach alpha value
achieves a value in the range between 0 and 3, then all items measuring a construct do
contribute consistently to the overall measurement achieved. Upon further inquiry it was
found that for the construct of Learning Styles, if Question item 3 (“I test myself on
important topics until 1 understand them completely”) is removed, then the Cronbach alpha
value for the Learning Styles construct increases to a value of 0.61. The improved
Cronbach Alpha value creates a temptation to remove Question item 3 from the set of 6
question items that measure learning styles. However, Youngman (1979) advises that
while it is desirable to obtain high Cronbach alpha values, the internal consistency of
questionnaire items does not have to be perfect. At this stage, the researcher has opted to
include Question item 3 and subject the constructs to further validity testing in the form of

factor analysis that is conducted in the section that follows.

4.5 Factor Analysis

Sekaran and Bougie (2016) make a specific reference to factor analysis as a valid statistical
technique that could be used to reduce the complexity of a conceptual model by eliminating
variables that are not tightly coupled with the latent variables or the main underlying
constructs from the theoretical model. The process of variable reduction is conducted under
the theory that, if the conceptual model does not have an alignment with the study’s data,
then the conceptual model needs to be re-arranged or re-configured so that it has an optimal
alignment with the conceptual model. According to Thu, Dang, Le, and Le (2021), this
process of fitting the conceptual model to the study’s data is referred to as confirmatory
factor analysis (CFA) which is a crucial process in ensuring construct validity.

4.5.1 Confirmatory Factor Analysis

The CFA conducted for the study’s data was confined to those constructs that consisted of
multiple “observed” variables. These were Motivation, learning styles and self-efficacy
and each of these constructs were measured using a Likert-scale as indicated in Table 4.3.
According to Mark Saunders et al. (2018) factor analysis entails the construction of a
correlation matrix between a study’s variables. The study’s latent variable set consisted of
25 observed variables. These variables were identified from the study’s literature review

and conceptual model.
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The knowledge that the empirical component of the study is informed by a conceptual
model creates an opportunity for the use of CFA. According to Hurley et al. (1997) and
Goodwin (1999), once a study has a priori model CFA may be used as a variable reduction
technique so that there is optimal factor loadings between the study’s observable variables
and the latent variables (main constructs). The CFA technique was used in the current
study to derive various specification models that will have an ideal fit with the study’s
data.
The objective to obtain an ideal conceptual model fit for the study’s data is driven by the
need to ensure that the data analysis converges to a point where the study’s research
questions can be answered with a measure of confidence. Based on various permutations
of variable arrangements that were produced by the factor analysis exercise, a viable model
that has been settled upon is presented in Figure 4.4. One of the objectives of construct
validity is that the main constructs should have a high correlation with the study’s variables
(Farrell & Rudd, 2009). As can be observed from Figure 4.3, all the correlations are within
an acceptable range (>.5) and these correlations have been observed to be significant
(p<0.05) which is indicative of a “good fit” between the study’s observed variables and
the latent variables. However, in order to achieve this “good fit” the number of variables
has been reduced from 25 to 17 (refer to Table 4.2). While this reduction in the number of
variables will ensure a cogent model that may be used to ensure greater significance levels
during further correlation analysis, the study’s aggregate data (mean, median and standard
deviation) will be computed with the original variable set. This will provide the researcher
with a more extensive set of resources to enable a “richer” discussion of the results
obtained from the study’s data analysis.
In terms of the overall fit between the 3 constructs illustrated in Figure 4.3, the following
parameters were observed:

e The Comparative Fit Index (CFI) index measurement should be closer to 1

(Stapleton, 1997)
e The Tucker Lewis Index (TLI) should be in the range of 0,9 to 1 (Thu et al., 2021)
e The root mean square error of approximation (RMSEA) should be less than 0.08
(Thu et al., 2021).

In the context of the current study, the “model fit” indicators arising out of Figure 4.4 are
CFI=0.91, the TLI =0.9 and the RMSEA =0.082. These results indicate that the empirical
model that will be used for the data analysis for the study is not a perfect fit to the study’s
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data but it does have a close alignment with the suggested test statistics to guide knowledge

on the level of alignment to ensure a “good fitting” model.

Learning_Style

Mo o

H
m
-

@Dw{Er
@53

00 9 Q Q @
2 @ @ B @ @

Figure 4.4: Confirmatory Factor Analysis of the Observed Variables

From an item reliability perspective, the improvement in the internal consistency of the

empirical model is confirmed by the reworked Cronbach alpha values shown in Table 4.3
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Table 4.4 Re-worked Cronbach alpha analysis Values

No of Likert Scale Cronbach’s
Construct
Items alpha
Motivation 5 (abbreviated as IM1 to 0.83
(Intrinsic/extrinsic) IMS) ’
: 3 (abbreviated as LS1 to
Learning Styles LS3) 0.72
9 (abbreviated as SE 1
Self-Efficacy o SE9) 0.93

4.6 Inferential Analysis

Saunders et al. (2009) provides guidance on the process of extrapolating results from a
study’s sample to the study’s population, referred to as statistical inference. This enables
a researcher to determine the probability that the results obtained from the sample is purely
by chance or has a high probability of inference to the study’s population.
The plan going forward is to subject the study’s data (individual and aggregated) to the
following tests as suggested in Sekaran and Bougie (2016)
e Test of Normality — to provide guidance on the use of parametric or non-parametric
testing or a mix of both
e A presentation of the study’s frequency distributions
e The invocation of t-tests — to ensure that the aggregated values or measures of
central tendency reported from the Likert scale data representing the study’s main
constructs 1s significant
e The invocation of bivariate and multi-variate correlation analysis that is guided by
the study’s conceptual model and the outcome of the CFA exercise
e The mvocation of path analysis and structural equation modelling to examine the
correlations between the study’s main variables and the explore the opportunity of
developing a better correlational model between the study’s variables

4.6.1 Tests for Normality

The tests for normality somewhat controversial in the annals of statistical theory (Norman,
2010). In its purest form, the suggestion is that if the means of the sampling distribution is
normal, then the inferential statistics should be conducted using parametric statistical tests
and 1f it is non-normal, then non-parametric tests should be invoked (Saunders et al., 2009).
However, in a seminal article by Norman (2010), the preceding rules regarding parametric

and non-parametric testing is disputed and the suggestions made is that the error between
58



the 2 types of testing 1s usually minimal and since parametric tests are more robust, then if
the sample size is in excess of 30 and guided by the Central Limit theorem, parametric
testing will be the better option (Hoskin, 2012; Islam, 2018). However, during the course
of the data analysis presented for the current study, both parametric and non-parametric
testing options will be explored.

The study’s main constructs where subjected to the Shapiro-Wilk (SW) and Kolmogorov-
Smirnov (KS) test of normality and presented in Table 4.5

Table 4.5 Tests for Normality

Kolmogorov-Smirnov® Shapiro-Wilk
Statistic df Sig Statistic df Sig

|MotivationComposite 0.112 133 0.000 0.952 133 0.000

' LSComposite 0.095 133 0.005 0.980 133 0.045
“SEComposite 0.069 133 2007 0.987 133 0.233

* This is a lower bound of the true significance.

a. Lilliefors Significance Correction

When it comes to normality testing, the null hypothesis states that the sampling
distributions are NOT normal. As can be observed in Table 4.4 the constructs of
Motivation and Learning Styles (LS) pass the test for normality (null hypothesis rejected,
2<0.05) because the probability that the sampling distribution is not normal is quite low
(p=0.00 and p=0.045 respectively). However, the construct of Self-efficacy (SE) fails the
test of normality (null hypothesis accepted, p>0.05) because the probability that the
sampling distribution in not normal is quite high. It is also worth taking note of the
observation that Learning styles passes the test for normality only marginally (p=0.045).
Given the closeness of these tests to accept or reject the condition of normality, the strategy
adopted for the subsequent analysis will entail a mix of parametric and non-parametric

tests.

4.6.2 Frequency Distributions for the Construct of Motivation

From an overview perspective, the construct of Motivation (to learn computer
programming) has been represented by 8 questionnaire items where 5 represent intrinsic
motivation (IM) and 3 represent extrinsic motivation (EM). An overall presentation of the

responses 1s provided in Figure 4.5.
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Intrinsic and Extrinsic Motivation to Learn Computer Programming

| MAKE AR EFFORT TO MASTER COMPUTER PROGRAMMING SO THAT | CAN “HT IN" WITH OTHER STUDENTS It MY.. 1 : . 12% W
| ENGAGE WITH NEW TECHNOLOGY BECAUSE THAT IS WHAT SOCIETY EXPECTS OF ME 1 9 . 13% .

| WANT TO DO WELL IN MY PROGRAMMING MODULES DECAUSE IT 15 IMPORTANT TO SHOW MY ABILITY TO MY.., 4 I 205

1 ENGAGE WITH IVEW TECHIROLOGY 50 THAT | HAVE A SENSE DF CONTROL OVER THE mnmmnml 12% 39% . 29% M

GETTING GOOD MARKS FOR PROGRAMMING BRINGS ME A SENSE OF PERSONAL sIﬂISF’\C"O"d) 8% 9% v EeaTE et /% Eeeamtem—

| PREFER COURSE MATERIAL THAT AROUSES MY CURIOSITY EVEN IF IT IS DIFFICULT TO LEARN % 21% -

UWHEN | DON' T UNDERSTAND SOMETHING RIGHT AWAY | TRY 10 FIGURE (1 OUT &Y MYseLF OJSIL0% v, T )5 s

| PREFER COURSE MATERIAL THAT REALLY CHALLENGES ME 50 | CAN LEARN NEW THINGS 34% f I 22% _I
| | | I

W Strongly Disagree  ® Disagroe Neutral Agree W Strongly Agree

Figure 4.5: Overall view of responses for the construct of Motivation

The questions were phrased positively towards higher levels of intrinsic and extrinsic
motivation. The aggregated outcome of the frequency representation for the Motivation
construct 1s evidenced by the results shown in Table 4.6

Table 4.6 Measures of Central Tendency for Motivation

EM1:Iwantto do

well in my EM3: I make an
programming effort to master

M1: | prefer IM4: Getting good IM5: | engage with modules EM2: 1 engage comgputer
course materizl  IM2. When | don't IM3: | prefer marks for new technology becauseitis with new programming so
that really understand course matenal programming so that | have a important to show technology that | can “ft in"

challenges me sc  something right  that arou: my brings me a sense of control  my ability to my  because thatis with ather
Ican learn new away | try to figure curiosit n if it sense of personal over the family, friends and  what society sudents in my

things it out by myself s difficult to learn  satisfaction technology lecturers expects of me group/class

Valid 133 133 133

Missing 0

Std. Deviation

As can be observed in Table 4.6 the mean response is in excess of 3 (A>3) and the median
1s greater than or equal to 3 in all cases (Mdn>=3). To establish whether the mean and
median values are significant measures of central tendency for the dataset shown in Table
4.5 or whether these values occur by chance, the one sample t-test is used. The decision to
use the t-test 1s guided by suggestions in Saunders et al. (2009) where it is claimed that the
assumption of normality could be violated without much consequence. According to
DeCoster and Claypool (2004), the one sample t-test may be used to determine if the mean
of a sample is significantly different from a hypothesised value. In the context of the
current data (Table 4.5), the null hypothesis is that the mean (parametric) is equal to a
hypothesised neutral value of 3 (Ho:M=3) and median (non-parametric) is equal to a

hypothesised neutral value of 3 (Ho:Mdn=3). In both cases the alternate hypothesis is that
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these measures of central tendency are significantly different from 3 (4, # 3). The t-test to

establish the significance of the measures of central tendency have revealed results that are

identical to the non-parametric equivalent test, which is the one-sampled Wilcoxon signed

rank test illustrated in Table 4.7.

Table 4.7 One Sampled Wilcoxon Signed Rank Test for Motivation
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As can be observed in Table 4.7 the observed medians were significantly greater than the

hypothesised median of 3 in 6 of the 8 (75%) questionnaire items. Five of the 6 items were

aligned to observable measures of intrinsic motivation. The implication from this analysis
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1s that there 1s a significant (p<0.05) tendency by the respondents to opt for responses that
indicate high levels of intrinsic motivation to learn computer programming. This result
indicates that the majority of the study’s respondents have a positive disposition to intrinsic
motivation factors that guide them towards achieving a good learning of computer
programming. This conclusion cannot be made when it comes to the extrinsic motivation
factors which were items 7 and 8 on the questionnaire did not yield a significant (p>0.05)
outcome, thereby reducing the prospect of a 95% confidence with conclusions made in

terms of extrinsic motivation.

4.6.3 Frequency Distributions for the Construct of Learning Styles

From an overview perspective, the construct of Learning Styles has been represented by 6
questionnaire items where 3 of the items were positively worded in favour of a deep
learning style and the remaining 3 items were positively worded in favour of a surface
learning style. Essentially the learning style component bears testimony to student’s
learning behaviour patterns when it comes to obtaining a deep understanding of computer
programming or a surface understanding that enables them to pass computer programming

assessment. An overall presentation of the responses is provided in Figure 4.6.

Learning Styles in Computer Programming
LS6: | PREFER TO ENSURE THAT | PASS A COURSE EVEN THOUGH MY UNDERSTANDING OF CONCEPTS MAY

NOT BE VERY GOOD 5% E:_"'*L—“: !¢m

155: | FIND THE BEST WAY TO PASS TESTS IS TRVING TO LEARN THE ANSWERS TO LIKELY QuEsTions |88 17% | I@E“

TRC N 20% B 0% L] 10% ]
LS3: | TEST MYSELF ON IMPORTANT TOPICS UNTILI UNDERSTAND THEM COMPLETELY 4% fml‘m 29% 46%

L 29% B e % L 20% B

P |

L 2% B 7 e 15%

| | |

W Strongly Disagree Disagree W Neutral ™ Agree m Strongly Agree

L54: | TEND TO STUDY BEST BY USING MEMORISATION TECHNIQUES

JLS2: I FIND IT HELPFUL TO STUDY TOPICS IN DEPTH RATHER THAN TRYING TO REMEMBER IMPORTANT FACT51
FOR TESTS

LS1: I FIND MOST NEW TOPICS INTERESTING AND WILL OFTEN SPEND EXTRA TIME TRYING TO UNDERSTAP&]%
HOW THEY WORK

Figure 4.6: Overall view of responses for the construct of Learning Styles
The questions were phrased positively towards the adoption of higher levels of a “deep
learning” style towards computer programming. The aggregated outcome of the frequency
representation for the Learning Styles construct is evidenced by the results shown in Table

4.8
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Table 4.8 Measures of Central Tendency for Learning Styles

LS1: I find most
new topics

LS2: I find it
helpful to study

Learning Styles in Computer Programming

LS6: | prefer to
ensure that | pass

interesting and topics indepth LS3: Itest myself LS4:Itendto LS5: [find the a course even
will often spend  rather than trying on important study bestby  best way to pass though my

extra time trying to remember topics until | using tests istryingto  understanding of
tounderstand important facts for understand them memorisation learn the answers concepts may not

how they work tests completely techniques to likely questions  be very good
N Valid 133 133 133 133 133 133
Missing 0 0 0 0 0 0
Mean 379 3.79 368 3.48 329 3.47
Median 4.00 4.00 4.00 4.00 3.00 4.00
Mode 4 B 4 - B -
Std. Deviation 0.779 0.835 0.801 0910 1.013 0.989

As can be observed in Table 4.8 the mean response is in excess of 3 (A>3) and the median

1s greater than or equal to 3 in all cases (Mdn>=3). To establish whether the mean and

median values are significant measures of central tendency for the dataset shown in Table

4.8 or whether these values occur by chance, the one sample t-test is used. In the context

of the current data (Table 4.7), the null hypothesis is that the mean (parametric) is equal to

a hypothesised neutral value of 3 (Ho:AM=3) and median (non-parametric) is equal to a

hypothesised neutral value of 3 (Ho:Mdn=3). In both cases the alternate hypothesis is that

these measures of central tendency are significantly different from 3 (H, # 3). The t-test to

establish the significance of the measures of central tendency have revealed results that are

identical to the non-parametric equivalent test which is the one-sampled Wilcoxon signed

rank test illustrated in Table 4.9

Table 4.9 One Sampled Wilcoxon Signed Rank Test for Learning Styles
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LS3: | test myself on important topics
until | understand them completely
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One-Sample Wilcoxon Signed Rank Test One-Sample Wilcoxon Signed Rank Test One-Sample Wilcoxon Signed Rank Test
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As can be observed in Table 4.9 the observed medians were significantly greater than the
hypothesised median of 3 for 5 of the 6 questionnaire items (83%). This outcome is
consistent with the levels of significance reported via the t-test as well. The implication
from this analysis is that there is a significant (p<0.05) tendency by the respondents to opt
for responses that indicate high levels of deep learning. Another significant observation is
that 2 of the 3 questionnaire items that were positively worded to indicate surface learning
were also significantly (p<0.05) greater than the hypothesised median of 3. While the
responses pertaining to deep learning are indicative of a genuine desire to master the
challenge pertaining to attaining learning of computer programming, the high scores
reported for surface learning are indicative of an intention from the study’s respondents to
also ensure that they engage in techniques of learning that empower them with a maximum
opportunity to pass computer programming assessment activity. An interesting outcome
from this observation is to establish which of the learning styles have a dominant presence.
This knowledge will provide a greater understanding of the dominant learning behaviour
adopted by respondents when it comes to computer programming. According to Boone
and Boone (2012) and Joshi, Kale, Chandel, and Pal (2015), when a Likert scale
questionnaire contains multiple questionnaire items that measure a single construct, then
these questionnaire items can be combined by making use of measures of central tendency
such as a mean or median. In the context of the current data, the means and medians of the
datasets for deep (3 Likert scale items) and surface (3 Likert scale items) were compared
to establish whether there was a significant difference. The comparison of means was
conducted via the paired samples t-test as well as the related samples Wilcoxon Signed
Rank test. In both instances, the null hypothesis states that there is no significant difference

between the means and medians of the deep and surface learning data sets. However, the
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t-test and the Wilcoxon Signed Rank test indicate that is a significant (P<0.0.5) difference.

The outcomes for both these tests are shown in Table 4.10 and Figure 4.6.

Table 4.10 Paired Samples t-test for Deep and Surface Learning

N

Std. Deviation Std. Error Mean

Kair 1 LS_Deep 3.7544 133 064471 0.05590
LS_Surface 34160 133 0.72289 0.06268
Paired Differences Significance
Std. Difference One-Sided Two-Sided
Mean Deviation = Std. Error Mean Lower Upper t df p p
air 1 LS Deep - 0.33835 1.04848 0.09091 0.15851 0.51818 3.722 132 0.000 0.000
LS Surface

In Table 4.10 the mean value reported for deep learning is significantly greater than the
mean value reported for surface learning. This outcome is confirmed in the non-parametric
equivalent test that was conducted using the related samples Wilcoxon signed rank test.

Figure 4.7 illustrates the difference in the mean values reported for deep and surface

learning.

e Positive Differences
(41)
Negative Differences
W5}

Number of Ties = 23

-300 -200 100 00 100 200 300

LS_Surface -LS_Deep

Figure 4.7: Wilcoxon signed rank test for Deep and Surface

From Figure 4.7, it can be seen that 69 of the 133 samples shown a greater median value
for deep learning as opposed to 41 responses that favoured surface learning. The outcome

of this exercise enables one to confidently make the conclusion that the respondents
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displayed a significantly greater tendency to adopt a deep learning approach when it comes
to academic performance in computer programming. However, respondents also showed
a significant preference to adopt a surface learning behaviour when it comes to ensuring

academic performance in computer programming.

4.6.4 Frequency Distributions for the Construct Self-Efficacy

The construct of Self-Efficacy (SE) has been represented by 12 questionnaire items where
9 of the items were positively worded in favour of high levels of self-efficacy and 3
questionnaire items were positively worded in favour of low levels of self-efficacy.
Essentially the SE construct bears testimony to the cognitive state of respondents as they
tackle computer programming tasks. This construct consisted of questionnaire items that
were directed as specific aspects of computer programming. These aspects consisted of the
ability to write procedural and object-oriented code (4 questionnaire items), the ability to
debug and recover from errors and the ability to trace through the logic of computer
programming code (2 questionnaire items), the ability to compile a logical computer
programming solution to a given problem in a specified time range (4 questionnaire items)
and the inclination to seek assistance when it comes to the writing of computer
programming solutions (2 questionnaire items)

An overall presentation of the responses is provided in Figure 4.8.

Self Efficacy in Computer Programming
| COULD MANAGE MY TIME EFFICIENTLY IF | HAD A PRESSING DEADLINE ON A PROGRAMMING PROJECT 2
| FEEL MORE COMFORTABLE TO COMPLETE A PROGRAMMING PROBLEM IF SOMEONE SHOWED ME HOW..
| FEEL THAT | AM BETTER AT PROGRAMMING WHEN | GET THE HELP OF SOMEONE ELSE
| AM ABLE TO WRITE COMPUTER PROGRAMMING CODE TO SORT OUT A GIVEN SET GF NUMBERS INTO.,
1AM CONFIDENT OF MY ABILITY TO IDENTIFY THE OBJECTS IN THE PROBLEM DOMAIN AND DECLARE,...
1 COULD REWRITE LENGTHY AND CONFUSING PORTIONS OF CODE TO BE MORE READASLE AND CLEARER
| HAVE A GOOD UNDERSTANDING OF THE OBJECT-ORIENTED PARADIGM FOR PROGRAMMING
| COULD ORGANIZE AND DESIGN MY PROGRAM IN A MODULAR/PROCEDURAL MANNER
1AM ABLE TO MENTALLY TRACE THROUGH THE EXECUTION OF A LONG, COMPLEX PROGRAM
1 HAVE THE CAPACITY TO EASILY IDENTIFY ERRORS IN MY PROGRAMMING CODE
1AM ABLE TO CONSTRUCT PROGRAMMING CODE THAT 15 LOGICALLY CORRECT

| AM CONFIDENT OF MY ABILITY TO DEVELOP SUITABLE STRATEGY FOR A GIVEN PROGRAMMING TASK IN A... DSgN

8 strongly Disagree  ® Disagree  u Neutral = Agree  ® Strangly Agree

Figure 4.8: Overall view of responses for the construct of Self Efficacy
Ten of the 12 questionnaire items for SE were phrased positively towards the adoption of
higher levels of a SE in computer programming. Two of the questionnaire items (11 and
12) were positively worded favouring lower levels of SE. The aggregated outcome of the

frequency representation for the SE construct is shown in Table 4.11

66



Table 4.11 Measures of Central Tendency for Self-Efficacy

SE9: lam SE11: Ifeel
SEB:lam able to write more
SE7.lcould confidentof computer comfortable

rewnte my abilty to  programming to complete a SE12: | could
d SE2 lam SE3:lhave SE4 lam SES: Icould SE6 lhavea anc 2 -0d rt  SE10 Ifeel  programming m my
SELF EFFICACY  gyitabl able to \ org a r ob inthe out ven  that lam roblem if tir ently
strategy fora construct C ace design my understanding 5 0 problem be t someone ifl had a
aiven programming identify errors thr > pro nina ofthe object- code to domainand numbersinto programming showed me  pressing
programming code thatis inmy execution of a modular/proc oriented more declare, ascending/de when | getthe howto solve deadiine ona
task in a short logically programmung long, complex edural paradigm for readaktle and define, and scending help of the problem  programming
time correct code program manner programming clearer use them order someone else first project
Valid 133 133 133 133 133 133 133 133 133 133 133 133
Missing 0 o 0 0 0 [} ] 0 o o} [} 0
Mean 34 355 247 3209 337 339 309 332 270 227 2325 351
Median 3.00 4.00 4.00 3.00 3.00 3.00 i 3.00 4.00 2.00 2.00 4.00
Mode 4 4 4 4 4 3 4 4 2 2 4

Std. Deviation 1.037 0.957 0.997 0.981 1.026 1.043 0981 0.985 1.074 1.040 1.027

As can be observed in Table 4.11 the mean response is in excess of 3 (3/>3) and the median
1s greater than or equal to 3 in 10 of the 12 cases (Mdn>=3). In 2 instances, the mean and
median response is less than 3. It should be noted that in both of the cases where the mean
and median were less than 3, the questionnaire items were phrased positively towards
lower levels of SE. The one sample t-test was used to ascertain whether the measures of
central tendency were significant or occurred by chance. The results of the one sample t-
test as well as the Wilcoxon Signed Rank test are shown in Table 4.12

From Table 4.12 it can be observed that there is a significant difference (p<0.05) between
the mean and median values for 10 of the 12 (83%) questionnaire items used to measure
SE. Questionnaire items 4 and 7 did not yield results that are significant (p>0.05) and these
questionnaire items will be monitored during the correlation phase of the data analysis.
Also, the questionnaire items that were positively worded in favour of high levels of SE
showed a significant positive difference from the hypothesised neutral values for the mean
and median. This outcome i1s indicative of a high level of SE being displayed by the
respondents of the study towards the handling of computer programming tasks. The
preceding outcome is further corroborated by the negative differences recorded for
Questionnaire items 10 and 11. These questionnaire items were positively worded to
indicate low levels of SE. The low means and medians recorded are an indication that the
respondents disagreed with the statements attesting to low levels of SE when it comes to

academic performance in computer programming.
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Table 4.12 Significance Testing for Self-Efficacy

1 Dne—ﬁamele t Test COne-Sample Wilcoxon
TasT Value = 5 Signed Rank Test
Significance
B Sigab Diecision
i df One-Skded p | Two-Sided p| Difference
E1: 1 am confident of my ZHE'I.}I 4.513 132 0000 0.000 0.406 D.000 Reject the null
0 devesop sultable strateqy Tor hypoinests.
3 given programming iask ina
ehiort time
[5E2: | am abie to constnuct 6613 132 0000 0.000 0.545 0.000 Reject the null
rogramming coda that I hypothests.
ogically comect
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4.7 Problem-Solving Ability and Performance in Computer

Programming

The construct of problem ability was operationalised/measured by adapting the computer
programming aptitude test used by Tukiainen and Monkkonen (2002) in predicting
computer programming competence. The test to measure computer programming
competence was presented to the study’s respondents via a series of problem-solving tasks
that tested their cognitive processing ability when faced with computer programming
related questions. These tasks were adapted to align with the computer programming

content that was delivered to the respondents of the current study during their tenure as
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students of the IS&T curriculum at UKZN. The classification number of questionnaire

items used for the problem-solving construct is presented in Table 4.13

Table 4.13 Classification of Questionnaire items for problem solving

Computer Programming Concept Number of Questionnaire Items
Conditional logic (logical operators) 2
Predictive logic 3
Comparative logic 1
Iterative logic 2
Assignment logic 1
Data Structure logic 1

Respondents of the study were presented with the set of 10 computer programming related
tasks listed in Table 4.12 and were required to provide a response that was structured as a
multiple-choice type of question. Students were required to answer these programming
related tasks during their computer programming practical sessions at the University.
Student were given the latitude of completing these questions without any time restrictions
and this resulted in the submission of many late responses. Each of the study’s respondents
were scored on their performance by allocating a point value of 1 for a correct answer and
0 for an incorrect answer. In this way, each respondent scored a mark out of 10, thereby
providing a quantified indicator of the problem-solving ability of the student.

The study’s respondents were also required to provide an approximate measure of their
academic performance in computer programming assessment (refer to Section A, Part 3 of
the Questionnaire in Appendix A). These values were recorded using a scale of 1 to 8. A
bivariate correlation analysis was conducted between the respondents’ academic

performance and their problem-solving ability. The results are presented in Table 4.14.

69



Table 4.14 Academic performance in computer programming vs Problem Solving
ability

Problem Solving Ability vs Computer Programming Drco;?;r?#rtnei;g
peiRes Problem Solving  Performance
Ability (numeric)
Problem Solving Ability Pearson Correlation 1 588"
Sig. (2-ailed) 0.000
N 133 133
Computer Programming Pearson Correlation 588" 1
Performance (numeric) Sig. (2-ailed) 0.000
N 133 133
**_Correlation is significant at the 0.01 evel (2-tailed).

According to Saunders et al. (2009) the Pearson Product Moment Co-efficient (PPMC)
should be used to assess the validity of a correlation between 2 variables if both the
variables are numeric. As can be seen in Table 4.13, the PPMC is statistically significant
(1=0.59, n=133, p<0.01, two-tailed). The interpretation from this result is that there is a
significantly positive relationship between the respondents’ academic performance in
computer programming assessment and their problem-solving ability in the context of
computer programming tasks. This result provides a measure of validity to the construct
of academic performance which is an estimated value provided by the study’s respondents.

4.8 Correlation Analysis

The data analysis that has been presented thus far has been used to create a context for the
study’s data and will contribute to the discussion of results. However, the main focus of
the study is to establish the validity of correlations between the study’s main variables as
well as the study’s conceptual framework. The trajectory of the correlation analysis is
guided by Musil, Jones, and Warner (1998) in the sequence listed:
e Correlation analysis — ascertain if there is a statistically significant association
between variables of the study
e Regression analysis — this is similar to correlation analysis; however, one or more
variables is/are identified as the independent (predictor) variable(s) and that has a
mathematically linear relationship with a dependent (outcome) variable that
enables one to identify direct causal paths between the independent variables and

the dependent variable
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e Path Analysis — this 1s regarded as an extension to multiple regression analysis that
allows for the identification of possible indirect causal paths to the dependent
variable.

4.8.1 Bivariate Correlation Analysis

The data represented the study’s main constructs is represented by ordinal scales and
according to Saunders et al. (2009) the PPMC may be used to determine the relationship
between these constructs. The Pearson correlation analysis was chosen to establish the
significance of relationships between the study’s main constructs. It should be noted that
the initial matrix of bivariate correlations showed the construct of Learning Styles (LS) to
have very poor significance with regards to correlations with the study’s other variables.
It was decided to use the questionnaire items that were positively worded to ascertain levels
of deep learning towards the attainment of good academic performance in computer
programming for the generation of the bivariate correlation matrix shown in Table 4.15

Table 4.15 Bivariate Correlation of the study’s main constructs

Computer
Programming
Problem Solving Performance Programming Learning
Ability (numeric) Experience Style Deep Self Efficacy Motivation

Problem Solving Ability Pearson Correlation 1 588 553" 202" 434" 0.002
Sig. (2-taled) 0.000 0.000 0.020 0.000 0.986
N 32 123 133 123 133 133
Computer Programming Pearson Correlation = 1 508" 214" 5727 0130
Performance (numeric) Sig. (2aiod) 0000 0014 07000 0137
Programming Experience Pearson Correlation 553" y 1 235" 512" 0.131
Sig. (2-tailed) 0.006 0.000 0.134
Learning Style Deep Pearson Correlation < z 1 421" 505"

Sig. (2-tailed) 0.000 0.000

Self Efficacy Pearson Correlation 434" g 4217 1 202

Sig. (2-tailed)
Motivation Pearson Correlation

Sig. (2-tailed)
**_Correlation is significant at the 0.01 level (2-tailed)

*_Correlation is significant at the 0.05 level (2-tailed).

From Table 4.15 it can be observed that:

e There exists a moderate, but positively significant correlation between Problem
Solving Ability and Computer Programming Performance (r=0.59, n=133, p<0.01,
two-tailed)

e There exists a moderate, but positively significant correlation between Problem
Solving Ability and Computer Programming Experience (r=0.55 n=133, p<0.01,
two-tailed)
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o There exists a weak, but positively significant correlation between Problem Solving
Ability and Learning Styles (deep learning) (r=0.20 n=133, p<0.01, two-tailed)

e There exists a moderate, but positively significant correlation between Problem
Solving Ability and Self Efficacy (r=0.43, n=133, p<0.01, two-tailed)

e The results in Table 4.14 indicate that the bivariate correlation between Problem

Solving Ability and Motivation is nof significant co

4.8.2 Multiple Regression Analysis (MRA)

As explained in Swanson and Holton (2005) the next step after bivariate correlations is to
examine the combined effect of multiple independent variables with the dependent
variable. The objective of multiple regression is to provide the researcher with empirical
evidence to make decisions regarding the predictive capacity of the study’s conceptual
model or to enable an explanation of the relationship between the independent and
dependent variables in the study. The decision to conduct MRA is informed by Tranmer
and Elliot (2008) who suggest that the relationship between the explanatory variables and
the dependent variables should be a reasonable one and preferably greater than 0.15. The
correlation coefficients recorded in Table 4.14 are greater than .15 although the constructs
of learning styles and motivation are quite close to the threshold value of 0.15. These
constructs will be monitored in the MRA analysis and the Path analysis that will follow.
In the context of the data for the current study, the multiple regression model is guided by
Sekaran and Bougie (2016). The 1* output from this analysis is the Model Summary output
(Table 4.16) and the analysis of variance (ANOVA) output (Table 4.17.

Table 4.16 Model Summary for MRA

Model Summary

Adjusted R Std. Error of the
R R Square Square Estimate

697° 0.485 0.465 0.81695

a. Predictors: (Constant), MotivationCompositeMean, Problem Solving
bility, SECompositeMean, LS_Deep, ProgExperience
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Table 4.17 ANOVA showing the Significance of the Model

ANOVA*®

Sum of Squares df Mean Square F Sia.
Regression 79.976 5 15.995 23.966 < 001°

Residual 84.761 127 0.687
Total 164.737 132

. Dependent Variable: Computer Programming Performance (numeric)

b. Predictors: (Constant), MotivationCompositeMean, Problem Solving Ability, SECompositeMean,
S_Deep, ProgExperience

By analyzing tables 4.16 and 4.17 it can be established that the combined independent
variables significantly predict computer programming performance. The statistics that
support this conclusion is listed below:
e The F-statistic in Table 4.16 — F(5)=23.96 (p<0.01) — 1s an indicator of the
significance of the study’s multiple regression model
e The F-statistic provides a validation indicator for the conclusion that the composite
set of independent variables explains 46.5% of the variance in the dependent
variable (R=0.7; R?>=0.48.5; adjusted R?=0.46.5; p<0.01).
The final multiple regression output is to examine the coefficient values listed in Table
4.18 where it can be seen from the Beta values that problem solving ability and self-

efficacy are the 2 main predictors of computer programming performance (p<0.01).

Table 4.18 Coefficients of the Multiple Regression Model

Coefficients®

Standardized
Unstandardized Coefficients Coefficients Collinearity Statistics

B Std. Error Beta Sig. lolerance VIF
(Canstant) 0.974 0513 0.060

ProgExperience 0.132 0.093 0.159 0.598 1.672
Problem Solving Ability 0022 0004 0.000 0648 1542
SECompositeMean 0.577 0.128 0.000 05618 1617
LS_Deep -0.152 0.139 0.273 0634 1.578
MotivationCompositeMean 0.148 0.131 0.261 0.728 1.374

Dependent Variable: Computer Progremming Performance (numeric)

It should also be noted that according to the data presented in Table 4.18 programming
experience, learning styles and motivation are not significant predictors of computer

programming performance.

13



4.8.3 Path Analysis

The preceding correlation analyses looked at direct correlations between the study’s set of
independent variables and the dependent variable. The objective of path analysis is to
examine the correlations based on the study’s conceptual model (Musil et al., 1998). The
1* path analysis diagram generated by the study’s data is referred to as the “just identified”
(Streiner, 2005, p. 6) version where there is a perfect reproduction of the multiple
correlation matrix and designed according to the study’s conceptual model is shown in

Figure 4.9.

Programming
Expenence

.

0.49

Computer
Programming
Performance

Learing
Stykes

Motivation

Figure 4.9: Just Identified Path Analysis model
According to Malkanthie (2015) there are various indicators that provide information on
the predictive capacity of the model generated by path analysis. The “just identified” model
does not consider the possibility of the influence of intervening variables in establishing a
set of correlations with the dependent variable. According to Streiner (2005) there are
numerous paths between the exogenous (dependent) variables and the endogenous
variables. On the basis of path manipulation, one such path model that has been discovered

that satisfies the requirements of a “good fit” model is presented in Figure 4.10.
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Figure 4.10: Alternative Path Analysis model

In Figure 4.10, an alternative path analysis model has been generated where the model fit
indices (GFI=0.95; CFI=0.916; TLI=0.915; RMSEA= 0.113) are indicative of a good
model fit. It should be noted that in this model, the construct of Motivation has been
removed to ensure that the model is able to account for at least 46% of the variance in the
endogenous variable. Based on the study’s data, the construct of Motivation did not
contribute towards an ideal predictive model and the constructs of Problem-Solving ability
and Self Efficacy were the greatest contributors in enabling the model to account for

variances in the dependent variable.

4.9 Open Ended Question Analysis

According to Rouder, Saucier, Kinder, and Jans (2021), open-ended survey responses
complement the closed-ended section of a survey by providing the respondents of a study
with an opportunity to express an opinion in an “open-text” format. These types of
questions are used as a follow-up to survey-based questions where the survey section may
not obtain the deep insight required for the understanding of a phenomenon. For the current
study, a single open ended question was included in the questionnaire where respondents
are asked to provide an opinion on their academic performance in computer programming.

It should be noted that according to Rouder et al. (2021) the open-ended question could
7]



exist on its own and be a full replacement for the close-ended questions especially in
situations where the close-ended questions does not fully capture the essence of the topic
under inquiry. In the case of academic performance in computer programming, the
presence of the open-ended question is crucial because it provides the respondents of the
study with an opportunity to respond in a manner that has not been catered for in the close-
ended section of the survey. A total of 47 of the 133 respondents took the opportunity to
provide responses in an open-ended manner. This represented a response rate of 35%.
The data generated in the open-ended section of the current study consisted of textual data
that conveyed diverse opinions on the experience of computer programming. According
to Saldafia (2013) a viable technique to regain a measure of control when confronted with
a diverse dataset is to use a technique referred to as coding. These codes are used to classify
data that are similar in meaning into clusters that are regarded as a conflation/reduction of
the original dataset. Stuckey (2015) does advise however, that generating a set of initial
codes is not easy and can be guided by the study’s main research objective. The main
objective for the current study was to obtain empirical evidence attesting to the
significance/role played by various factors in predicting computer programming
performance. From an overview perspective the study did commence with an a priori
model of factors that could influence academic performance in computer programming.
According to Stuckey (2015) the constructs from such a model need to be combined with
knowledge of the overall objective(s) of the study so that the codes that are identified could
be aligned to the structural components of a study. Saldafia (2013) does however assert
that the 1 phase of coding may be regarded as quite primitive and could be refined into a
2" set of codes that have a greater alignment with the study’s parameters.

In the current study, the open-ended responses were collated into a spreadsheet application
and then imported into the computer assisted qualitative data analysis software application
named NVivo (version 12). A word cloud for the initial dataset was generated in Nvivo

and presented in Figure 4.11.
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Figure 4.11: Word Cloud for Open Ended Responses
According to Saldaiia (2013) the most commonly used words (as shown in Figure 4.11)
may be used to generate a rich textural description of the essence of the qualitative data.
From Figure 4.11 one of the main themes that may be identified is that ... students find it
difficult to write/understand/learn computer programming code and this could be a major
challenge for BCom students. Also, they require extra practice in coding”. Equipped with
this knowledge an initial set of codes was developed and a frequency of items that could

be classified into each of the codes is presented in Figure 4.12.

Count of Items found in each code/classification
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Figure 4.12: Frequency of items in each code
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From Figure 4.12 it can be established that the most prominent response was aligned to the
difficulties associated with achieving good academic performance in computer
programming. Saldafia (2013) advises that the major category of responses provide the
researcher with guidance on how to refine the initial set of codes into themes. Based on
the guidance provided in Figure 4.12, the main themes that have been identified in the
corpus of qualitative data is listed as:

e Difficulty in computer programming

e Access to computer programming resources (conflated with programming tasks)

e The challenges faced by BCom students
While the 1% two themes have been identified by virtue of the number (frequency) of
references (confirmed in Figure 4.12), the 3rd theme that refers to the challenges faced by
BCom students needs a bit of elaboration. In the open-ended responses, there were 5
instances where students made the claim of being BCom students (as shown in Figure
4.12). Upon further examination of these responses, it was found that in all 5 instances, the
students referred to the challenges that BCom students are faced with when it comes to the

learning of computer programming.

4.9.1 The difficulty in computer programming

There was a high proportion of responses attached to this theme. A sample of verbatim
responses are presented and discussed:

Writing computer programming code is not easy especially if you are not experienced in
coding (Themel; Ref: 6)
This comment alludes to the role that is played by previous experience. The influence of

previous experience on computer programming skill/performance has been explored
quantitatively in the 1% part of this chapter. This evidence corroborates the significance of
previous experience. A further response aligned to this theme is:

Mastering computer programming logic is not easy to achieve (Themel ;Ref:8)
It is difficult for BCom students to compete with IT students (Themel; Ref:11)

These verbatim responses have a direct linkage to the data analysis from the quantitative
section of the study where it has been established in Figure 4.6 that respondents who are
registered for a BCom degree have lesser experience in computer programming thereby
compromising their academic performance in comparison to students who are registered
for an IT degree (B.Sc). This qualitative data becomes a catalyst for a further exploration

of the quantitative data to establish whether there is a significant difference in computer
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programming performance and problem solving between BCom students and B.Sc
students. The results of the comparative analysis is presented in Table 4.19 From Table
4.18 it can be seen that the mean computer programming performance value for B.Sc
students is higher than BCom students. However, independent samples t-test shows that
this difference in the mean value is not significant. A similar analysis of means was

conducted in respect of problem-solving ability and the results are presented in Table 4.20

Table 4.19 Programming Performance for BSc vs BCom

Std. Error
Degree N Mean Std. Deviation Mean
Comp_Prog_Performance B.Sc 48 4.4792 0.94508 0.13641
BCom 85 42235 1.19897 0.13005
Independent Samples Test
of Variances t-test for Equality of Means
Significance
One-Sided Two-Sided Mean
F Sig. t df p p Difference
Comp_Prog_Performance Equal 4584 0.034 1.270 131 0.103 ;&Z@-- »Q‘ﬁ564
variances :
assumed ,!I |
Equal 1.356 117.124 0.089 ] T 04564
variances Y
not
assumed | I
Table 4.20: Problem-solving for BSc vs BCom
Degree N Mean Std. Deviation Std. Error Mean
Problem_Solving B.Sc 48 56.8125 20.31419 293210
BCom 85 482824 18.66344 2.02433
Levene's Test for Equality
of Variances t-test for Equality of Means
Significance
One-Sided Two-Sided
F Sig t df p p
Problem_Solving Equal 0.908 0.342 2452 131 0.008 0.016
variances
assumed
Equal 2.394 90.925 0.009 0.019
variances
not
assumed

From Table 4.20 it can be seen that there 1s a significant difference in the mean scores
obtained for problem solving ability between the BSc students and the BCom students

(MBsc >MBcom, N=133, p<0.05).
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4.9.2 Access to Computer Programming Resources

Many respondents complained about an access to a lack of quality resources to provide
guidance that will ensure the attainment of academic performance in computer
programming, Verbatim responses such as...

more videos will be enough - more exercises would be good (ThemeZ2; Ref:2)

For different sections in programming, I would like extra learning material, like
YouTube link videos to get a better understanding (ThemeZ2; Ref:3)

The reference to video as a means of providing computer programming tuition is quite
prominent. This value of this type of tuition has been under-estimated and not viewed with
much priority. These comments attest to the importance of enhancing pedagogy in this
regard. Also, respondents did make a request for greater practical engagement with
computer programming tasks so that their level of knowledge could be improved from a
“hands-on” perspective.

we would like more programming practicals - that way we can practice more and
understand more (Theme2; Ref:4)

4.9.3 The Challenges faced by BCom students

This theme has been analysed and the quantitative empirical evidence suggests that it is a
real problem. It should however be noted that BCom students’ performance in computer
programming assessment is not significantly different from BSc students. This may be
attested to by the fact that surface learning traits may ensure that students are able to secure
a pass when it comes to computer programming assessment. However, the BCom students
lack of deep understanding of fundamental computer programming concepts has been
exposed by the problem-solving tasks where there was a significant difference in
performance when compared to BSc students. Also, the analysis in Table 4.2 suggests that
BCom students have a significantly lesser amount of computer programming experience
than BSc students. This significant difference did not however play a role in determining
computer programming performance which was elaborated upon in the quantitative data
analysis. The verbatim responses by BCom students in this regard do however highlight

their plight when it comes to computer programming.
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1 feel that more should be done for BCom students programming projects/assignments
should be given to us (Theme3; Ref:1)

I wish there was better support for BCom students when it comes to programming

(Theme3, Ref:4)

It is difficult for BCom students to compete with IT students (Theme3; Ref5)

4.10 Data Analysis Conclusion

In conclusion the study’s data has been presented in a descriptive and inferential manner.
The descriptive presentation consisted of tables with measures of central tendency (mean
and median) provided. This was supplemented by visualisations of the study’s data so that
a proper context for the correlation analysis could be created. The correlation analysis
conducted has positioned the study to engage in a discussion of results that will enable the
answering of the research questions. The open-ended question analysis provided a glimpse
of how the “depth-drive” qualitative insight could be integrated with quantitative data
analysis techniques to add greater value to the discussions that will prevail in the study’s

final chapter.
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CHAPTER 5 — Discussion and Conclusion

5.1 Introduction

This chapter represents a reconciliation between the study’s research questions and
objectives, the conceptual model, the empirical analysis and the main outcomes. This
chapter is also used as an opportunity to contextualise the study’s findings with that which
IS prevalent in the academic literature. There will also be a discussion of the study’s main
limitations and a discussion of possible avenues of future research in the attainment of

good academic performance in computer programming.

The main aim of this study is to determine factors that influence academic performance in
computer programming by IS&T students at UKZN. This problem has been
operationalised by a set of research questions and a conceptual model to provide guidance
on the answering of the research questions. The constructs in the conceptual model has
been identified in the study’s literature review thereby adding a measure of construct
validity to the conceptual model. The conceptual model’s predictive capacity was,
however, scrutinised via confirmatory factor analysis. The appropriateness of the model
was subjected to further scrutiny by examining the possibility of using the Path Analysis
technique to generate a model that had a greater “fit” to the study’s data. The final analysis
conducted in the study was qualitative and it was necessitated by the open-ended question
found in the study’s data collection instrument. The study has to be classified as a
quantitative study driven by positivistic philosophy. However, the study’s open-ended
question provided an opportunity to enrich the study’s value by catering for aspects of
respondent behaviour that has not been predicted. While the intention of the researcher
was not to engage in a mixed-methods research, the richness of data in the qualitative
section of the study’s data collection instrument provided ample opportunity for
integrating the quantitative analysis with the qualitative analysis to create a mixed-methods
look and feel.

The full interpretation of this study’s findings is presented in this chapter in relation to the

research questions that are guiding this study.
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5.2 The Study’s Context and Findings

The study was commissioned to explore the role that five (5) significant constructs play in
academic performance in computer programming. All of these constructs have been
identified in the literature section of this study as significant role players in determining
academic performance in computer programming. However, these constructs do not act in
isolation. There has not been any previous study where all of these constructs have been
combined into a single conceptual model. The cogency of this model has been tested by
applying confirmatory factor analysis with the result showing that a reasonably “good fit”
has been found for the conceptual model and the study’s data. To achieve this “good fit”
many of the questionnaire items had to be eliminated and the improvement in the model’s
internal reliability is confirmed by an improved set of Cronbach alpha scores that are in
excess of 0.7 (shown in Chapter 4, Table 4.4). This strategy of variable reduction to
improve the predictive capacity of a model is also used in Chowdhury and Turin (2020) as
well as Mai, Tian, Lee, and Ma (2019).

5.2.1 Previous Experience and Computer Programming

The study’s main data collection instrument was a survey that was administered to students
who are registered for the IS&T programme spanning from the 2" level of undergraduate
study to Masters. The study’s core set of respondents were students who were studying
towards an BCom or a BSc degree where Information Systems was one of the major
courses that the student was registered for. While the focus of discussion and data analysis
has been centred on the constructs that are found in the study’s conceptual model, the
researcher leveraged opportunities to gather data and conduct analyses on periphery
constructs that will add value to the discussion of the study’s outcomes. One of these
periphery analyses was the correlation between the number of years of computer
programming experience and the degree that students were registered for. The findings
showed a significant correlation and this knowledge will tie in to the main analysis sections
because previous experience was identified as an a priori predictor of computer
programming performance. The bivariate correlations did show a moderate but significant,
positive correlation. This outcome suggests that previous experience does play significant
role in academic performance in computer programming. The results from the current
study are consistent with those observed in the systematic literature review by Medeiros,

Ramalho, and Falcdo (2018) where it was found that in a majority of studies, there is
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evidence of a positive relationship between previous experience and proficiency in
computer programming. However, this is not corroborated by all studies. In the current
study, the multiple regression correlation analysis and the subsequent path analysis
exercises showed that previous experience did not account for much of the variance in
computer programming performance. The implication here is that the case of BCom
students being compromised by a lack of previous experience is one that can be
circumvented by pedagogical measures that can mitigate against this handicap. The
knowledge obtained from the current study regarding previous experience is crucial
because the implication is that when previous experience is considered as part of a broader
understanding of the factors that influence computer programming proficiency, its

significance is quite minimal.

5.2.2 Problem Solving Ability and Computer Programming

One of the study’s research questions was to establish the significance of problem-solving
ability on proficiency in computer programming. The problem-solving concepts
referenced in the current study had a strong computer programming alignment and entailed
analogical reasoning, conditional and iteration logic and data structure processing logic.
The study’s findings are quite convincing. Problem solving ability shows a strong,
significant positive correlation with computer programming performance. This outcome is
confirmed in the report compiled by Medeiros et al. (2018) where 26 papers on this topic
were reviewed. While the significance of problem solving has been confirmed, the claim
is made that the instruments used to measure problem solving ability are not consistent and
there is no standardised instrument that can be relied upon. The instrument used in the
current study was based on the highly recognised IBM programming assessment task
(PAT) assessment framework. However, it was adapted to align with the computer
programming framework currently used at UKZN. This ensured that students were familiar
with the coding fragments to enable a seamless response. Barlow-Jones and van der
Westhuizen (2017) used a similar instrument with a similar research agenda at the
University of Johannesburg and the outcome was that problem-solving ability was a
“major” predictor of computer programming performance. The implication from these
results suggest that universities need to invest more time at 1% year level where there is
focus on logical reasoning and algorithmic thinking so that students can obtain foundation

knowledge on computer programming semantic structures to enhance problem solving.
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This observation has significant implications for students who have not had prior
experience in computer programming because a focus on algorithmic thinking would equip
them with the cognitive structures required to obtain a deep understanding of computer

programming logic.

5.2.3 Self-Efficacy (SE) and Computer Programming

The role that SE plays on computer programming performance has not received much
prominence in the current literature on computer programming. In the past studies such as
those by Bergin and Reilly (2006) and Ramalingam, LaBelle, and Wiedenbeck (2004,
June) did show that SE was a good predictor of computer programming performance. This
outcome is confirmed in the current study where 9 questionnaire items were used to
establish the levels of SE of students when it comes to computer programming. The
significant positive correlation observed indicates that SE is a good predictor of computer
programming performance. However, as Tsai, Wang, and Hsu (2019) points out there is
also a strong positive correlation between SE and previous experience, which is confirmed
in the current study. The current study extends the network of influence regarding SE by
observing that there is a strong positive correlation between SE and a deep learning style.
These observations are significant from a pedagogical perspective because educators
should make a concerted effort to enhance and enable high levels of SE amongst students
in their programming courses. This can be achieved by providing students with extra
resources to enable the attainment of good academic performance in computer
programming, more practical tasks and extending the notional time of engagement with
computer programming activity. This will mitigate any negative consequence that may
accrue due to a lack of prior experience in computer programming or a lack of problem-
solving ability. Hence, the construct of SE is actually a function of previous experience
and problem solving ability (Ramalingam et al., 2004, June) and it was used in the current

study’s conceptual model as a dependent variable.

5.2.4 Intrinsic and Extrinsic Motivation and Computer Programming

The construct of motivation played a minimal role in predicting computer programming

performance. While this construct had a weak but positive correlation with SE and learning

styles it did not display a significant relationship with problem solving ability, previous

experience or computer programming performance. This observation is consistent with the
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results in a similar study by Pawlowski (2007) where it was reported that motivation made
a contribution to the bivariate analysis framework but did not appear in the regression
model because of a lack of significance. This outcome is contrary to the results reported in
the study by Bergin and Reilly (2005) where intrinsic and extrinsic motivation was strongly
aligned to computer programming performance. An interesting study is one conducted by
Kim and Frick (2011) who observed that when students are confined to online learning,
high levels of intrinsic motivation was a predictor of success in an online learning

environment.

5.2.5 Open Ended Responses pertaining to computer programming

The study’s open-ended question provided the researcher with a different dimension to
analyse students’ opinion on the topic of computer programming. The thematic analysis
revealed reasons for poor performance in computer programming. These were a lack of
learning resources, a lack of practical exercises and an apprehension by BCom students
towards computer programming assessment. The open-ended responses became a catalyst
for further analysis where an independent samples t-test comparison established that there
was a significant difference in the problem-solving ability of BSc students in comparison
to BCom students. However, this difference was not significant when it came to academic
performance in computer programming. The data that was available for analysis indicated
that BCom students were able to leverage surface learning characteristics and acquire good
results for computer programming assessment. This observation ties into the final construct
in the study’s conceptual model which is learning approaches/learning styles. The intention
here was to measure the influence of learning styles on computer programming
performance. The study’s survey-based data showed that there was a weak but positive
correlation between a deep learning style and computer programming performance and
problem-solving ability. The implication here is that students who have adopted a deep
learning style generally tended to perform better in computer programming assessment.
However, the weak correlation implies that students who adopted a surface approach to
learning computer programming were also able to obtain a good performance score in
computer programming assessment. This was revealed in the path analysis exercise where
the learning styles construct had a minimal influence on the model’s ability to account for
the variance in computer programming performance. This result suggests that the learning

styles construct will have a greater impact in measuring the ability to learn computer
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programming if the assessment used is adjusted to include questions that cater for a deep
learning strategy.

5.3 The Study’s Limitations and Delimitations

The main limitation from the study is the threat to the external validity because a greater,
more expansive sample would have created an opportunity for greater generalisation of the
study’s results. The delimitation of confining the study to IS&T students was necessitated
by the researcher’s concerns when it came to data collection because at the commencement
of the study, the COVID-19 pandemic had devastating implications for free and open
communication with potential respondents for the study. The researcher’s outreach was
confined to IS&T platforms that were made available online. Another limitation of the
study was the potential breach of internal validity because the measurement of student
programming performance was done through an estimate provided by the study’s
respondent. The original plan was to obtain knowledge of student marks in computer
programming assessment via the IS&T department. The Protection of Personal
Information (POPI) Act did however prevent access to any personal data pertaining to the
study’s respondents. This potential weakness in the study was however mitigated by the
inclusion of problem-solving tasks into the study’s questionnaire. The strong positive
correlation between the scores obtained in the problem-solving tasks and the respondents’
estimation of their performance in computer programming assessment enhanced the
reliability of these variables. The inclusion of problem-solving activity did deter students’
participation in the study resulting a lower than expected response rate.

A further limitation of the study is that the researcher did not factor-in the possible
influence of additional variables that may have been introduced because of the strategy of
online learning that was adopted at UKZN. This limitation provides an avenue for further
research on the topic of online learning and its influence on computer programming

performance.

5.4 Overall Study Conclusion

This study was aimed at addressing the issue of students struggling to obtain proficiency
in the domain of computer programming. There have been numerous previous research
efforts that have studied this phenomenon and knowledge around this topic has grown
substantially. The problem of poor performance in computer does however continue to

prevail. The current study was grounded by the previous efforts at finding a solution to this
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phenomenon. The difference however, is that this study adopted an inclusive approach
where the main factors that influence academic performance in computer programming
have been integrated into a single conceptual framework. The empirical analysis activity
around this framework enabled the researcher to obtain a better understanding of the
challenge of learning to program. This is the first study that has shown the relative
importance of each factor in contributing towards an improvement in students’
performance in computer programming. The study was able to elucidate the pivotal role
played by problem solving ability and self-efficacy in predicting performance in computer
programming.

The implication is that factors such as intrinsic and extrinsic motivation, previous
programming experience and deep and surface learning do contribute, but only in a
peripheral manner.

This knowledge provides great pedagogical insight to lecturers and course coordinators
because when students are empowered with a computer programming mindset that is
generated through a comprehensive knowledge of computer programming fundamentals
where logical, conditional and iterative structures are given substantial focus, then a solid
grounding is established for data structure processing and object-oriented programming at
a later stage. Also, the open-ended section of the data collection instrument provided great
insight into students’ experience of learning to program. The plight of the BCOM student
has been highlighted quite extensively and it is clear that these students do struggle with
analogical reasoning and the quest to obtain deep understanding of computer programming
fundamentals. This study highlights the need for a pedagogical intervention based on
imparting problem-solving skills to these students.

A further outcome is the development of a conceptual model to predict computer
programming performance. This model has been subjected to validity testing in the form
of confirmatory factor analysis, multiple regression analysis as well as path analysis. The
study did produce a “good fitting” predictive model for the study’s data. However, the final
model that was identified in the study is not an optimal one and opens up an avenue of
extension where structural equation modelling techniques could be used to discover an
optimal model that provides a maximum explanation of the variance in computer
programming performance. A further interesting area of study is to explore the role that
motivation and learning style play when students learn programming in an online

environment as compared to a face to face setting.
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APPENDIX A - Survey Questionnaire

SECTION A: Demographic & Background Information

Please select the option that would best fit your response by making a tick (v) in the box
provided and fill in required information

Part 1:
Law & Management
College of —
Humanities
Affiliation
Agriculture, Engineering and Science
Degree B. Com B. Sc Hons MCom
Campus Westville PMB
Gender Male Female
Age 19-21 21-23 23-26
Part 2:

How many years of experience do you have in using the following computing
tools/techniques (Please tick (v') the relevant cell)

0-2 years

2-3 years

3-4 years More than 4 years

Computer
Programming

Database Design

Systems
and Design

Analysis

Part 3:

Level of Achievement

90-100 | 80-89

70-79| 60-69

50-59 | 40-49 | 40-49 | Below 49

On an average,
what is your
approximated
level (%) of
achievement in
computer
programming

On an average,
what is your
approximated
level (%) of
achievement in
systems analysis
and design
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SECTION B: Behavioural, Cognitive Factors and Problem Solving
Part 1: Intrinsic and Extrinsic motivation

Please select the option that would best fit your motivation style by making a tick (v') in
the box provided.

Indicate your preference
when it comes to

learning co.mputer Strongly Loree Noutral Deareer St.rongly
programming and Agree Disagree
understanding of

technology

I prefer course material
that really challenges me
so I can learn new things

When I don’t understand
something right away I try
to figure it out by myself

I prefer course material
that arouses my curiosity
even if it is difficult to
learn

Getting good marks for
programming brings me a
sense of personal
satisfaction

I want to do well in my
programming modules
because it is important to
show my ability to my
family, friends and
lecturers

I engage with new
technology because that is
what society expects of
me

I engage with new
technology so that I have
a sense of control over the
technology

I make an effort to master
computer programming sof
that I can fit in with other
students in my class
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Part 2: Learning style

Please select the option that would best fit your motivation style by making a tick (v) in
the box provided.

Indicate your Strongly Agree Neutral Disagree Strongly
preferences when it
comes to the studying of
course conftent

Agree Disagree

I find most new topics
interesting and will often
spend extra time trying
to understand how they
work

I find 1t helpful to study
topics in depth rather
than trying to remember
important facts for tests

I test myself on
important topics until I
understand them
completely

I tend to study best by
using memorisation
techniques

I find the best way to
pass tests is frying to
learn the answers to
likely questions

I prefer to ensure that I
pass a course even

though my
understanding of
concepts may not be
very good
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Part 3: Self-Efficacy

Please select the option that would best fit your level of intrinsic and extrinsic motivation
by making a tick (v') in the box provided.

Indicate your response Strongly Agree Neutral Disagree Strongly
to the questions on self-
efficacy and computer
programiming

Agree Disagree

I am confident of my ability
to develop suitable strategy
for a given programming
task in a short time

I am able to construct
programming code that 1s
logically correct

I have the capacity to easily
identify errors in my
programming code.

I am able to mentally trace
through the execution of a
long, complex program

I could organize and design
my program in a
modular/procedural manner

I have a good understanding
of the object-oriented
paradigm for programming

I could rewrite lengthy and
confusing portions of code to
be more readable and clearer.

I am confident of my ability
to identify the objects in the
problem domain and declare,
define, and use them.

I am able to write computer
programming code to sort
out a given set of numbers
into ascending/descending
order

I feel that I am better at
programming when I get the
help of someone else.

I feel more comfortable to
complete a programming
problem if someone showed
me how to solve the problem
first.
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I could manage my time
efficiently if I had a pressing
deadline on a programming
project

Part 4: Problem Solving and Mental Model

1. Assume that i 1s an integer

Identify the correct list of integers that meet the following conditions:
(1>=1) AND (i< 5)

Select the correct

Choose from the following options
answer with a v/

Option 1: 1;2;3;4;5
Option 2: 1 2; 3; 4;
Option 3: 2; 3; 4,

Option 4: This condition is impossible to satisfy
Option 5: An infinite set of numbers

2. Assume that j 1s an integer

Identify the correct list of integers that meet the following conditions:
(3>=3) OR (j<7)

Select the correct

Choose from the following options .
answer with a v/

Option 1: 3;4;5;6,7
Option 2: 3;4;5;6

Opftion 3: Integers greater than and equal to 3
AND less than 7

Option 4: Any mteger would meet satisfy this
condition

Option 5. This condition is impossible to satisfy

3. Examine the following series of characters and predict the NEXT item in the series
bce, bbede, bbbcdde,......

Select the correct answer

Choose from the following options
with a v/

Option 1: bbbbcddde

Option 2: bbbceddee

Opfion 3: bbbceddde

Option 4: There is not enough information to
predict the next item

Opftion 5: There could be more than one item that may
be regarded as the next item
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4. Examine the following series of characters and predict the NEXT item in the series
bcace, bcacacace, bcacacacacace,.......

. ) Select the
Choose from the following options correct answer
with a v/
Option 1: bcacecacecaceca
Opftion 2: bcacacacacacacace
Opftion 3: bcacecacacacece
Option 4: There is not enough information to predict
the next item
Option 5:  There could be more than one item that
may be regarded as the next item
Al Examine the following series of characters and predict the FIRST item in the series
......... , abecedd , abbeccedd , abbbecccedd
_ _ Select the
Choose from the following options correct answer
with a v/

Opftion 1: beedd
Opfion 2: abced
Opftion 3: abbccdd

Opftion 4: accdd
Opftion 5: There could be more than one item that
may be regarded as the first item

6. How many comparisons would it take to determine the smallest number in each of
the following situations?
a) There are 3 numbers in a list of numbers

1 2 3 4 5

b) There are 5 numbers in a list of numbers

4 5 6 7 More than 7

b) There are n numbers in a list of numbers (n>=1)

1 n-1 n n+l More than n+1
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7.  You are required to compute the sum of 20 numbers.

Which of the options listed below is the best strategy to follow:

Choose from the following options

Select the
correct answer

witha v’

Option 1: You would need to use an array of 20
numbers and sum all the elements in the array

Opftion 2: You could use a loop that executes 20 times
and a variable that represents the sum and add all the
numbers to this variable

Opftion 3: You could use 20 individual variables and
add all of these variables together to give you the sum

Option 4: You could use a single variable and 20
mput statements and add all the values that are input
into the single variable

Option 5: You could use an if then statement and as
soon as the condition that 20 numbers have been added,
you could stop execution

8.  You are required to compute the average of a set of numbers that are input via
the keyboard; the mput will stop as soon as the number zero is input. Which

looping structure will be an ideal choice? You may choose from:

Choose from the following options Select the correct answer with a v*

For Loop

While Lop

Foreach loop

Nested Loop

9.  Assume that 2 variables are declared and given values as follows:

int x=10; int y=20

You would like to write programming code so that the values are switched 1.e. x
becomes 20 and y becomes 10. Which of the following options 1s the correct way of

doing this?

Option 1: x=y; y=X;

Option 2: int temp=x; x=y; y=temp;

Option 3: int.Swap (X.y)

Option 4: int temp=X; y=X; X=Y;

103




10. Assume that the following values have been stored in a 2D data structure named

TwoD
TwoD
1 2 3
4 5 6
7 38 9

Determine the output that will be produced by the following programming segment

int sum=0;

for (int x = @; X < 3; Xx++)
sum += TwoD[x, x];

Console.WriteLine(sum);

Choose from the following options Select the correct answer with a v/
Option 1: 9
Option 2: 15
Option 3: 0
Option 4: 3
Option 5: An error will be output

SECTION C: Open Ended Response

Please provide any suggestions that you would like to make to help better understand your
approach/challenges with regards to learning/mastery of computer programming

Thank You for your Responses!
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