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ABSTRACT 

The main objective of the study was to ascertain the factors that influence the acquisition 

of computer programming skills by students who are enrolled for an Information 

Technology (IT) degree at a tertiary education institution. The study is driven by a societal 

need to empower as many individuals as possible with computer programming skills. The 

study is very relevant to the South African context in the light of the decision taken by the 

education department to establish computer programming as a niche skill for South African 

citizens. The learning of computer programming is however, not that straight forward and 

requires an intensive cognitive effort to ensure that students obtain a high degree of skill 

and expertise in computer programming. The study has been conducted at the University 

of KwaZulu-Natal (UKZN) where the Discipline of IT has been challenged by students’ 

performances in computer programming assessment. While there are “pockets” of 

excellence, there are numerous instances where students have performed poorly in 

computer programming assessment. The case of UKZN presents an ideal opportunity to 

study this phenomenon because it provides a diversified student population with regards to 

degree enrolment as well as gender and location. From a teaching and learning perspective, 

this knowledge will be pivotal for the IT academic department at UKZN as well as the 

general domain of teaching and learning of computer programming. 

The study adopted a quantitative approach and was guided by a conceptual framework. The 

study used a questionnaire that contained an open-ended question that enriched the analysis 

and discussion. The study’s main objective was to ascertain factors that will predict 

computer programming performance was achieved. The main factors that were identified 

as significant predictors of computer programming performance were problem solving 

ability and self- efficacy. A concomitant outcome from the study was the analysis of 

validity of the study’s conceptual model which was subjected to multiple regression and 

path analysis. The path analysis exercise resulted in the generation of a conceptual model 

that had a better fit to the study’s data than the a priori conceptual model. The study also 

discovered trends of computer programming strengths and weaknesses at UKZN and it is 

envisaged that this knowledge will contribute to enhance computer programming pedagogy 

and student performance in assessment tasks. 
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CHAPTER ONE – An Introduction to the Study 

1.1 Computer Programming in Society 

Computer programming skill has acquired an elevated status in society in general. The 

reason for this phenomenon is the ubiquitous presence of computers in society coupled 

with the notion of a 4th Industrial Revolution (4IR) where computing power in the form of 

robotics, artificial intelligence and data analytics will provide the infrastructure for 

economic well-being and business competitiveness. Ristić et al. (2016) stated that the 

reason programming is taught to students is so that eventually they will be able to secure 

high paying jobs. Kori, Pedaste, Niitsoo, et al. (2015) found that the common reasons why 

students chose to study Information Technology at a higher education institution was: 

• Inherent interest in the information technology field or working in this field 

• The information technology knowledge is necessary for a particular job that they 

had interest in pursuing 

• Financial stability and earning a suitable salary 

• To have a better chance in the working market and the possibility of many job 

opportunities 

• Job stability as the field of technology is promising in today’s job market and will 

remain promising in the future 

A multitude of these factors have propelled an increasing number of students to register for 

technology-oriented courses that provide a substantive exposure to computer programming 

content. In addition to these factors there has also been a significant push for students to 

learn how to program. Vee (2013) argued that since the 90’s computer programming 

professionals have stressed the need for future generations to equip themselves with a 

computer programming skillset. The importance of learning at least a single computer 

programming language has been equated to the acquisition of basic skills in numeracy and 

literacy. 

The rise in student enrolments for technology related courses has unfortunately been 

paralleled by an increase in failure and poor performance in these courses. The main 

contributor to this phenomenon is poor performance in computer programming assessment 

(Govender, 2021). According to Butler and Morgan (2007), 1st year information technology 

(IT) students face an assortment of challenges. The challenge of adjusting to a completely 
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new environment and learning style which is due to the transition from standard schooling 

to the tertiary education environment and also the challenge of learning a completely new 

form of language, which is computer programming, that many students have never been 

exposed to before. Students have consistently performed poorly in programming 

assessments at tertiary level and university courses with programming involved in the 

curricula have also experienced significantly high dropout rates (Kori, Pedaste, Tõnisson, 

et al., 2015; Luxton-Reilly et al., 2018). According to Kinnunen (2009) and Medeiros et al. 

(2018) a large number of institutions record high rates of failure in introductory 

programming courses. 

This phenomenon calls for an investigation into what precisely has an influence on 

students’ performance in introductory computer programming courses and what factors 

could lead to these students acquiring the requisite skill-set to become a competent 

computer programmer. This study will attempt to investigate and outline the main factors 

that have a significant influence on students' programming skills by conducting a quantitative 

analysis in the form of surveys to an audience of students enrolled in an introductory 

programming course in the discipline of the Information Technology at a tertiary 

educational institution. 

1.2 Background of the Study 

The industrial world has been inundated with a demand for computing based skills and the 

focus area has been in the domain of computer programming and software development 

(Dirzyte et al., 2021; Konecki & Petrlic, 2014). According to Abdunabi et al. (2019), the 

specific demand is for skills that translate to job roles such as business analytics, data 

analytics, project management, software engineering, software development and testing, 

systems analysis and design, database and network administrators. The demand in these 

skills is expected to escalate by an amount of 13% in the period from 2016 to 2026 

(Abdunabi, Hbaci, & Ku, 2019). Central to all of these job portfolios is either a deep or 

conceptual understanding of computer programming. 

Computer programming has always been regarded as a challenging field of study, currently 

and historically (Alturki, 2016; Cheah & Leong, 2019; Hassinen & Mäyrä, 2006). Failure 

and dropout rates for introductory programming modules have always been a topic of 

concern within the academic community. Bergin and Reilly (2005) produced seminal 
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papers based on empirical evidence, attesting to the cognitive challenges that students 

have as they learn how to write computer programming code and this compromises their 

chances of achieving a successful outcome. This phenomenon is philosophically explained 

by Guzdial (2010, p. 1) by suggesting that computer programming is “… innately 

one of the most complex cognitive tasks that humans have ever created”. As a result of the 

claim that computer programming is a challenging discipline to master, there have been 

many studies that have attempted to identify factors that contribute to the acquisition of 

competency in computer programming. Kazimoglu et al. (2012) have observed that 

students who are novice programmers tend to view the activity as purely technical. Due to 

this, students go about the task of programming in a superficial way without acquiring a 

deeper understanding of the intricacy required to develop a successful programming 

solution to a problem. This factor deals with the problem-solving ability of the students as 

well as their mental model abstraction of the problem domain. The challenge of engaging 

in abstract thinking and the ability to create an accurate mental model of the problem 

domain will have a compromising influence on students’ aspirations to be successful in 

computer programming. However, the cognitive dimension in computer programming is 

far more complex than just an ability to be a good problem solver. There is also the 

influence of psychological factors such as self-efficacy and a general attitude towards the 

task of computer programming. Lee et al. (2017) conducted a study on students’ 

performance in an informatics test that contained computer programming tasks and 

discovered a significant positive correlation between perception and attitude towards 

computer programming and their performance in the test. Kong et al. (2018) suggested that 

obtaining mastery in computer programming entailed the acquisition of competency in 

being able to establish meaning/comprehension of a problem situation, understanding the 

impact of the problem and the solution, being creative in solution development and 

possessing computer programming self-efficacy. Similarly, factors such as learning styles 

and motivation levels, previous experience, self-efficacy and problem-solving ability have 

received attention from previous studies (e.g. Corney et al., 2010; Hoda & Andreae, 2014; 

Nikula et al., 2011; Robins, 2010). However, there has been a dearth of literature regarding 

an amalgamation of these factors or the predictability of these factors in enabling the 

academics to have a sense of anticipation of how students will perform in computer 

programming assessments.    
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1.3 The Study’s Research Problem 

What factors influence the academic performance of computer programming by 

Information Systems and Technology (IS&T) students at the University of 

KwaZulu-Natal (UKZN)? 

The study’s research problems are contextualised by a conceptual framework that enabled 

the researcher to “unpack” the essence of the main problem statement underpinning the 

current study (see Chapter 2, Figure 2.1). The conceptual framework was guided by the 

study’s literature review and was used to ensure that the path of the study maintained its 

focus on the study’s research questions. The study’s sub-problems were guided by the 

conceptual framework. 

Research Questions 

1. How does problem-solving ability influence IS&T students’ performance in 

computer programming at UKZN? 

2. What is the influence of self-efficacy on IS&T students’ performance in computer 

programming at UKZN?  

3. What is the influence of learning approaches on IS&T students’ performance in 

computer programming at UKZN?  

4. How does intrinsic motivation influence IS&T students’ performance in computer 

programming at UKZN? 

5. How does extrinsic motivation influence IS&T students’ performance in computer 

programming at the University of KwaZulu-Natal? 

6. How can computer programming performance be improved by IS&T students at 

UKZN? 

 

1.4 The Research Objectives 

The study’s primary objective was to discover a core set of factors that will predict the 

performance of students in computer programming assessment at tertiary education level. 

The empirical phase of the study was confined to the cohort of IS&T students at UKZN 

due to operational convenience. The study adopted an exploratory stance that provided the 

researcher with the latitude of engaging with the literature in an open and unrestrained 

manner. The sub-objectives identified for the research were to: 
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1. Determine the role of problem-solving ability on students’ proficiency in computer 

programming. 

2. Determine the role played by self-efficacy on students’ proficiency in computer 

programming. 

3. Determine the influence of learning approaches (deep and surface) on students’ 

proficiency in computer programming. 

4. Ascertain how intrinsic and extrinsic motivation influences students’ proficiency in 

computer programming. 

5. Identify general factors that will contribute towards the acquisition of proficiency in 

computer programming. 

The study’s set of research questions and objectives was contextualised by the conceptual 

model (illustrated in Figure 2.1 on page 30) adopted for the study. 

 

1.5 Importance/Significance of the Study 

The demand for computer programming expertise has been elevated by the emergence of 

the 4th Industrial Revolution (4IR) that has compelled society to become intelligent users 

of technology. Technological intelligence is embedded into 4IR systems such as robotics, 

data analytics and artificial intelligence (AI) by virtue of computer programming logic. 

Sophisticated use of 4IR technology will only be possible if the user of such technology 

has comprehensive knowledge of computer programming logic. It is within this context 

that the directive from the economic sector is to ensure that graduates have a sophisticated 

understanding of computer programming, thereby enhancing their employability and 

ensuring that they add value to the sustained imperative to embrace 4IR technologies. 

Currently, academic studies have not been conclusive or convergent in their contributions 

towards ensuring that there is a core set of factors that need to be given cognisance, for 

students to acquire proficiency in computer programming. 

The current study attempted to address this impasse by adopting a conceptual framework 

that has been guided by previous academic literature on the topic. The main outcome from 

the study was to use evidence provided in the empirical phase of the study to determine the 

validity of the conceptual framework, and provide the researcher with evidence to provide 

answers to the study’s cohort of research questions as well as to contribute to the academic 

discourse on the proficiency of computer programming. In addition, the outcome 
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from this study will be used to inform the design and the pedagogical approach adopted for 

computer programming courses in the IS&T academic curriculum currently being 

implemented at the UKZN. 

1.6 Justification for the Study 

According to Tan et al. (2017) many students at tertiary education institutions tend to 

experience difficulty when it comes to mastering content from technically oriented subjects 

such as computer science. Butler and Morgan (2007) did identify poor performance in 

computer programming assessment as a serious problem and it has been a prominent issue 

since the 90’s with many students indicating that computer programming was not all that 

exciting to learn but it was quite a cognitive burden to engage with and ensure good results. 

Sunday et al. (2020) found that at a higher institution of learning, 67% of students had 

failed a module titled, “Introduction to Computer Programming” due to a lack of 

comprehension of basic computer programming logic. It is evident that computer 

programming has been known as a difficult subject in the past, however it is also evident 

that the trend has continued to the present day. It has become crucial for further research 

to ascertain   why students are struggling with this subject in particular. By gathering more 

knowledge, the reasons for the poor programming performance can be understood and 

analysed to draw conclusions. This knowledge/understanding will enable educational 

institutions to implement measures to reduce poor performance in computer programming 

and encourage more students to pursue computer programming as a career or a course of 

study. This approach would also have a significant benefit on developing countries as this 

would empower technical professionals in the country to drive technology focused solutions 

and thus improve their economy. According to Selamat et al. (2017) there will be a future 

demand for technical skills such as programming due to the requirements of the 4IR 

generation. Butler-Adam (2018) opines that in South Africa there will be a growing need 

for skilled professionals in the technology field within the coming years and an emphasis 

on learning problem solving and technology related subject matter will assume core focus. 

The exponential changes to societal behaviour due to the advent of sophisticated 

technological systems has resulted in a large portion of low-level jobs becoming 

automated. The prediction made is that the current decline in the need for low- level skills 

will be replaced with a heavy surge in jobs related to the technology field. The implication 

in this trend is that there has to be a huge focus on getting a core mass of expertise in 
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fields such as computer programming to ensure a nation’s survival in the age of 4IR. There 

is a corresponding need for educational institutions to place a heavy focus on computer 

programming pedagogy so that there is ample supply of computer programming skill. 

Currently the number and intensity of research efforts on this topic is severely lacking 

because the myriad of factors that influence the learning and academic performance by 

students in computer programming, provides a fertile area for research. The current study 

contributes in this regard by incorporating these factors into a conceptual model that will 

be subjected to empirical validation. 

Durak et al. (2019) stated that programming and learning how to use various applications 

are becoming increasingly crucial for students to learn both in primary and high school due 

to programming becoming a critical skill to have in the 21st century. Sarıtepeci et al. (2017) 

found through a study conducted with students that a group of students who had received 

training in computer programming fundamentals had also developed greater conceptual 

thinking ability and out-performed students who did not receive programming training. 

Durak also points out that critical thinking and problem-solving abilities have become 

crucial 21st century skills and teaching students programming improves their critical 

thinking abilities. 

The need for computer programming expertise is confirmed in reports by the Australian 

Government that indicated there is a shortage of skills in the domain of software 

development. This skill was identified as the one of the three most “in demand” 

occupations within the professional, scientific and technical services industry in Australia 

(Australian Government Department of Jobs and Small Business, 2018). This trend has 

been confirmed in the United States of America (USA) where it is reported that 

employment for software developers is expected to increase by 24% from 2016 to 2022 

(Kanaparan, Cullen, & Mason, 2019). 

Coupled with this demand for computer programming expertise, failure rates in academic 

courses related to computer programming have been reported to be between 30% and 50% 

(Kanaparan et al., 2019; Quille & Bergin, 2016; Watson et al., 2014) in introductory 

programming modules. 

As Kong (2017) points out, computer programming will be considered to be an 

indispensable skill in the digital era. It is within this backdrop that the current study had 

been undertaken. While studies pertaining to pedagogical interventions regarding 

computer programming have been undertaken in the past, the current study drew from this 
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knowledge to uncover knowledge of how computer programming students engage with the 

task of mastering computer programming skill in the current era. This knowledge will be 

crucial in helping educators to plan computer programming courses so that students are 

optimally placed to receive instruction that is planned according to an insight that is 

provided by the current study. 

1.7 The Study’s Limitations 

The study may be deficient in external validity because the study is limited to IS&T 

students from 2nd year up to Master’s level at UKZN. While the study examined the 

phenomenon of how students learn computer programming, this information is highly 

discipline-specific. The results of the study may not be appropriate in other instances. 

Another possible limitation in this study is that students may not know how to judge their 

own computer programming skills very well thereby compromising the integrity of the 

results with regards to self-efficacy, learning approaches and intrinsic and extrinsic 

motivation (major constructs used in this study to derive the conceptual framework). 
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CHAPTER TWO – The Literature Review 

2.1 An Introduction to the Literature Review 

The literature review section is used to contextualise the study by making a reference to 

previous studies on this topic as well as reference to key concepts that underline the study. 

2.2  Difficulties in learning computer programming 

It has been established by Garner that academic performance in computer programming 

requires a significant cognitive effort from students. However, there are many factors that 

contribute to this cognitive load and an understanding of these factors is pivotal to ensuring 

that the failure rates for computer programming assessment is brought under control. The 

factors that influence the proficiency of computer programming are vast and diverse and 

range from demographic variables such as gender and previous experience, to 

psychological variables such as intrinsic and extrinsic motivation to learn computer 

programming. This constellation of factors forms the basis for the discussion that follows. 

2.3 Self-efficacy in computer programming 

Self-efficacy (SE) is described as a person’s evaluation of their own abilities and skills that 

they possess and whether or not their competencies may be used to deliver meaningful 

results that may have a positive effect on their community as a whole (Bandura & Wessels, 

1994). Based on this definition, SE is a reference to an individual’s confidence in their 

ability to produce a desirable outcome. SE is a mental characteristic that plays an important 

role in many aspects of a person’s life. There is not a great deal of understanding when it 

comes to why some students seem to delight in and excel at computer programming while 

others find it an uninteresting struggle (Ramalingam et al., 2004). According to Govender 

and Basak (2015), there are numerous factors that affect a person’s ability to learn 

something new, but it is widely thought that attitude and SE towards the subject matter are 

some of the most important factors in determining one’s success in the particular field (D. 

W. Govender & Basak, 2015). According to Fang (2012), students who experience excess 

amounts of difficulty in programming may have low levels of self-efficacy which also 

reduces their motivation towards the subject. Tan et al. (2009) found that throughout the 

initial stages of learning programming the difficulties met by students, directly shaped their 

perceptions of programming as a whole. If students were faced with difficulty early on in 
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their experience with programming, they were more likely to adopt an overall view of 

computer programming as being inherently difficult. This means that students who have 

had a negative experience with programming earlier on will usually misjudge programming 

as being difficult and will hold on to that perception usually until the end of their degrees. 

This inaccurate negative perception of programming can lead to students having low 

enthusiasm and lower levels of self-efficacy towards the subject. Students who fall into this 

cycle will unconsciously reject the need to acquire mastery of computer programming 

thereby acquiring a low level of self-efficacy towards computer programming oriented 

challenges. According to Askar and Davenport (2009), SE has a profound influence on the 

activity of learning a new skill and severely impacts the invocation of that skill for problem 

solving purposes. Askar and Davenport (2009) argued that while an individual may possess 

the required knowledge and skill to accomplish a task but is lacking in self-belief and 

motivation, then these impediments will compromise the chances of success. 

Self-efficacy and Coding Ability 

Wiggins et al. (2017) studied the role that SE played on the quality of the coding that 

students produced when solving a problem using the Java programming language. Two of 

the significant outcomes from this study were that male students generally had a higher 

level of SE towards computer programming in comparison to female students. On an 

average, students with a higher SE in computer programming tend to produce higher 

quality code and achieve better performance in computer programming. Wiggins et al. 

(2017) do however, concede that the limitations of the study such as coding in a specific 

language and a small sample size do not make the results generalisable. A further analysis 

of the influence of SE and possibly gender on the attainment of good performance in 

computer programming is required. These results are corroborated in a similar empirical 

study by Lishinski et al. (2016) that was conducted on students. The study was based on 

their academic performance in a computer programming assessment as well as a computer 

programming project. The main outcome from this study was that SE was the most 

significant determining factor of computer programming performance. The preceding 

outcome applies for both, a summative examination-based setting or a formative computer 

programming project-based setting. Another significant outcome from this study was that 

female students who had low SE were less likely to recover from this situation thereby 

leading to a lack of meaningful engagement with computer programming tasks. However, 

male students who had low SE in computer programming tend to make more of an effort 
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to improve on their computer programming skills consequently also increasing their levels 

of self-efficacy towards computer programming. Female students were more prone to 

“internalising” their perceived lack of SE towards computer programming than male 

students. From a teaching and learning perspective, this is an important observation 

because the implication here is that introductory computer programming course content 

plays a pivotal role in ensuring competency and high levels of SE in computer 

programming, especially for female students. 

The role played by SE in enhancing computer programming skills is also confirmed in I. 

Govender et al. (2014) where a strong link is established between SE in problem solving 

and SE in computer programming. In this study it was suggested that students who have 

confidence in their problem-solving ability tend to perform better in computer 

programming tasks.  

A Psychological Perspective 

From a psychological perspective, Bresó et al. (2011) explain that students who had lower 

SE were more likely to have negative beliefs towards themselves and their ability to learn 

and be successful. These beliefs manifest as stress and anxiety towards their university 

work and courses. This inferiority complex may lead them to have a negative attitude 

towards certain subject matter that requires more time and effort to understand. The stress 

and anxiety around certain subjects may lead students to underperform in these subjects. 

Bong (2001) endorses the previous opinions by further suggesting that students with a low 

self-efficacy will be hesitant about setting challenging expectations for themselves in an 

academic context and will not try to go above and beyond but rather will only do what is 

compulsory of them. From a computer programming perspective, “doing only that which 

is required” would ultimately lead to failure because of the complexities involved in 

mastering computer programming. 

Students will only be able to achieve excellence in computer programming by 

nurturing/acquiring a passion for computer programming. Having a passion for a specific 

subject matter is especially relevant to the information technology (IT) and computer 

programming fields because the level of self-efficacy acquired by virtue of students’ 

engagement with their studies will prevail and impact on their performance as professionals 

in the working world. Students who have gained confidence in themselves during the 
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course of their university degree will surely outperform the ones who lack self- efficacy and 

enthusiasm in the workplace. 

According to Psycharis and Kallia (2017) educators should try to use pedagogical strategy 

that can improve students’ SE in traditionally difficult subjects that involve problem 

solving abilities such as mathematics and programming. Psycharis and Kallia also suggest 

that students’ themselves should find methods of boosting their self-efficacy in these 

subjects in order to develop their skills in these areas to their full potential. Durak et al. 

(2019) reported that female secondary school students displayed greater computational 

thinking and programming skills as compared to male students. The author stated that the 

reason for this difference could be because of the change in perception of gender 

stereotypes in recent times which has caused female students to improve in their self-

efficacy towards mathematical and problem based subject material. According to 

Wiedenbeck et al. (2007) students who have high SE in programming develop a greater 

interest in computers which then leads to better programming performance. Kanaparan et 

al. (2019) conducted a study of 433 programming students where a significant correlation 

between “programming self-efficacy and emotional engagement” was established for 

students registered in an introductory programming (IP) module. Kanaparan similarly 

found a strong connection in the study between students programming SE and their sense of 

satisfaction and interest in the module which also had a link to students’ performance in 

the module. Lastly, they also found that gratification had an influence on students’ interest 

in programming. Gratification in programming was described in the research as the 

immediate positive feeling experienced when a student gets a program to run successfully 

without errors. Typically, when a student has executed and debugged a program that they 

wrote from end to end, and the result is a fully working piece of software, students report a 

unique feeling of pride and accomplishment that they reportedly seldom feel when 

completing projects for other classes. This feeling of gratification has a positive impact on 

students’ interest in programming as they tend to associate the subject with those positive 

feelings after a few instances of carrying out a program successfully. A study involving 83 

secondary school students conducted by Kallia and Sentance (2019) established that those 

students who did not understand the functions of some core programming statements rate 

lower in self-efficacy as compared to students who understood these statements well.   

Presently, educators overlook the importance of their students’ belief in themselves and 

their programming abilities (Kong, 2017). Programming and writing code can be especially 
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demoralising for students due to the frequent errors experienced and the struggle of 

inserting the correct line of code to execute a program successfully. This is why in 

programming courses teachers should pay attention to their students’ self-efficacy 

rates/levels because self-efficacy theory states that the more self-efficacy a person has the 

more resilient to challenges and obstacles they become (Kong, 2017). 

A study from Durak et al. (2019) that contained 55 programming students found that female 

students have better computational thinking abilities as well as greater programming SE 

than male students. Female students were also shown to be superior at problem solving 

when compared to the male students. This may be related to one of the study’s other 

findings, which creates a linkage between SE, problem-solving ability and students’ 

preconceived notions about programming itself. This finding suggests that students who 

enter the field of programming with the preconceived notion that programming is a difficult 

subject or that programming is reserved only for the intellectually gifted individuals in 

society may be subconsciously lowering their level of self-efficacy towards the subject. 

Another factor that may play a role in this is the stigma or association with programmers 

as people who are socially isolated and develop into hermits who spend most of their time 

on their computers. This representation of programmers to the general public through media 

may be adding to the lack of self-efficacy that students feel when they think about 

programming as a concept. As the majority of young people cannot relate to this 

stereotyped view of a programmer and this may lead to them believing that they are simply 

not meant to become good programmers themselves. This view of programming before 

even beginning a programming class may be the preconceived notions that are leading to 

lowered self-efficacy in students. Gorson and O'Rourke (2020) conducted a study with 214 

computer science students at 3 different universities. The study was aimed at assessing 

students’ self-assessments of themselves when encountering different programming 

practices such as getting a syntax error or planning. The results of the questionnaire found 

that some students negatively assess themselves in each scenario of programming which 

leads to a further negative view of their programming abilities. The study also found that 

the more frequently a student negatively assesses themselves when performing 

programming tasks, the lower their self- efficacy tends to be. The study also looked at the 

students’ mental imagery of the competence required to be a professional programmer and 

found that students who believed that they could not acquire this level of competence had 

low levels of SE resulting in poor performance in computer programming assessment. 
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2.4 Previous Experience 

Students who are novice programmers may find the task of learning to write computer 

programming code filled with challenges and difficulties that they would not have 

anticipated. According to Kori et al. (2016), students who have had previous experience 

with learning programming, through high school classes or their own independent efforts, 

perform better in programming courses in university. The reason for this could be because 

of the programming environment itself. The activity of learning to write computer 

programming code is a “hands on” activity that requires intensive focus and a huge amount 

of practice and training. According to Vihavainen et al. (2011), learning programming is 

very much about learning by doing. Students who have taken up programming in previous 

years will almost certainly have had more exposure to programming in a practical way, 

which is what gives them an advantage over students whose first experience in 

programming is at university. 

Previous Experience and SE 

Ramalingam et al. (2004) found that past experience is a strong determining factor of 

current SE and performance in computer programming. Their study indicated that students’ 

high school experience of programming created a sense of awareness of their programming 

abilities even towards the latter part of their university course. It was found that for a large 

number of students’ previous exposure to programming would yield high self-efficacy. 

According to Govender and Basak (2015), students who have previously taken a 

programming course, perhaps in high school had a significantly easier time reading and 

understanding the programming language as compared to first time programming students. 

Further evidence is provided by Kolar, Carberry, and Amresh (2013) who determined that 

students who have had previous knowledge or engagement with computing programming 

had a higher level of SE towards computing skills. It is thought that this might be because 

the students had good insight into what to expect as they were not seeing the material for 

the very first time. This shows that previous experience can positively affect self-efficacy 

as it gives students an idea of what to expect, which would increase their confidence going 

in to a computer programming course at a tertiary education institution such as a university 

or college. Students with minimal exposure to computer programming tuition may take 

longer to adjust and become comfortable with the type of content being presented. This can 
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bring about negative associations with first time students as they might feel that they are 

slower at learning than their classmates. 

School-based Computer Programming Experience 

Armoni et al. (2015) determined that students who had previously learned programming in 

middle school could understand basic programming statements with minimal explanation 

needed from teachers in high school and they outperformed students in more difficult 

programming concepts such as loops. This outcome was refuted by Strong et al. (2017) in 

their study with 1st year university students where it was established that students who had 

previous high school experience with computer programming did not outperform students 

who did not have previous computer programming experience. Rather, students found that 

their past experience with programming gave them extra confidence when taking the class 

at tertiary level and they were more receptive to the learning process. Overall, they felt that 

having a familiarity with programming as a whole had a positive impact in their learning 

but did not necessarily have an impact on their skills and abilities. The outcome from this 

study is that previous experience has a positive influence on SE but not necessarily on 

academic performance because of a myriad of mitigating factors. The preceding assertion 

resonates with the outcome of a study that was conducted by Bennedsen and Caspersen 

(2005) where they found that students with previous experience relied too heavily on their 

past knowledge and eventually found themselves far behind in the course material. 

Students with this attitude are usually surpassed by students who had minimalist exposure 

to previous computer programming knowledge and mitigated for this shortcoming by 

making an extra effort to obtain mastery of the course work content pertaining to computer 

programming. 

The Mediating Influence of Self-Efficacy  

While previous experience has been acknowledged as a contributor to performance in 

computer programming, all evidence suggests that this is done through the mediating 

influence of self-efficacy. Hence, at the introductory level, the teaching of computer 

programming should focus on ensuring that students have a pleasant or positive disposition 

towards computer programming such that it sparks students’ interest and passion for the 

subject thereby elevating their level of self-efficacy. Kittur (2020) found that the greater 

the programming experience of students the higher their level of programming self-

efficacy. Students with more experience are also better at dealing with complex 
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programming tasks. Kittur explained that these findings suggest that providing more 

experience to students and getting them involved with programming from their schooling 

years will support their SE in programming-related tasks. If students begin learning 

programming at school level they would be significantly more confident when they get to 

the tertiary sector. This confidence will also have an impact on their performance as 

discussed in the self-efficacy chapter. This point must be remembered because it will be 

not feasible in the South African context. Currently very few schools offer programming 

related instruction to pupils. Hence, the onus is on the tertiary sector to engage in innovative 

teaching methods that will enhance the SE levels of students and mitigate the lack of 

programming experience that most students suffer from. 

Islam et al. (2019) conducted a study with students who had previous experience and two 

groups of students with minimal previous experience. It was established that students with 

minimal previous experience struggled the most with syntax and algorithms and students 

with previous experience had difficulties in debugging their code. In both groups the 

students demonstrated a preference for a YouTube tutorial or any video that contained 

actionable steps that enabled the completion of a programming task. This insight could be 

another possible recourse that programming teachers could use to help students complete 

an exercise successfully. Once students have followed along with a video tutorial a few 

times there can be a practical exercise where the students need to write a similar type of 

program on their own without a video assisting them. This process could, over time, also 

contribute to improving the students’ self-efficacy. This is because completing 

programming exercises successfully, with the help of videos, will improve the students’ 

confidence in themselves to successfully execute a program. This is a significant 

accomplishment that many beginner programming students have never been able to 

achieve, which leads to low self-belief. 

Nazeri et al. (2018) suggest that students who have previous experience with programming 

either in secondary school or at home tuition perform better in programming classes due to 

already having exposure to problem solving, programming concepts and design concepts. 

Gathering these skills at an early age is beneficial for learning these concepts again at a 

tertiary level. Nazeri et al. (2018) also suggests that previous experience with mathematical 

classes also help students with programming later in their schooling years. 

Students’comfort levels when beginning a programming module also factor  into the reason 
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as to why previous experience plays a role in performance. Students who have taken 

programming as a subject at some previous stage of their lives tend to feel increased 

comfort levels when taking up a programming module at a tertiary stage. The experience 

however, is different for students who have had minimal prior experience with 

computerprogramming. These students will tend to feel a greater amount of anxiety when 

enrolling for a programming module and will not have any benchmark to assess the 

difficulty level of the module which leads to more feelings of stress and concern in these 

students (Nazeri et al., 2018). 

However, according to Alexandron et al. (2012) past programming experience in some 

instances could cause misunderstanding of new concepts. It could also cause programmers 

to use the programming patterns in a way that they are familiar with from their previous 

experiences which leads to them missing out on better ways of creating programs. 

Alexandron et al. (2012) also found that when experienced programmers move from a 

detailed level of programming to programming at a high-level they tend to feel as if they 

have less control over the programming environment and this loss of control can lead them 

to develop a negative attitude towards the programming course. This development of a 

negative attitude towards computer programming tends to subsequently lead to poor 

performance at the subject itself. These findings suggest that students who have had 

experience with one type of programming paradigm or style may be thrown off if they enter 

university and find that they are being taught a different type of programming style. As an 

example, the change from procedural-style programming/functional programming to 

object-oriented programming tends to be quite a challenge. In such cases students who have 

previous experience may still perform poorly due to the different programming paradigms 

and environments being used or due to these students developing a negative attitude 

towards the subject because it differs from their preferences. 

2.5  Intrinsic and Extrinsic Motivation 

The construct of Motivation can be categorised into 2 broad categories named intrinsic 

motivation (IM) and extrinsic motivation (IM) (Ryan & Deci, 2000).  IM refers to a person 

who is motivated to do something because they get enjoyment and pleasure from doing 

that task. EM means that a person is motivated to do something because of the outcome 

they will receive or to avoid a negative consequence. Gottfried (1985) found that 

intrinsically motivated students had more academic success than extrinsically motivated 
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students. IM and EM are significant factors that determine performance in computer 

programming because of the inherent nature of programming itself (Tavares, Henriques, & 

Gomes, 2017). As previously mentioned, proficiency in computer programming is only 

achieved by virtue of having a very “hands on” attitude. The more a student practices and 

takes time to write programs the more they will become adept at it. This is why students 

who have a genuine enjoyment and passion for writing computer programs and designing 

software will vastly outperform students who are extrinsically motivated and only write 

computer programs because they are required to do so in order to complete an assignment 

or a homework problem. Furthermore, students who possess high levels of IM are thought 

to deal better with adversity and challenges that may arise when compared with students 

who are extrinsically motivated. Extrinsically motivated individuals tend to give up more 

easily when faced with difficulty or obstacles Rego, Sousa, Marques, and e Cunha (2012).  

Factors that Determine Extrinsic and Intrinsic Motivation Traits 

It is understood that numerous factors can determine whether a person is intrinsically or 

extrinsically motivated. However, in a study done by Kori, Pedaste, Leijen, and Tõnisson 

(2016) it was found that students who had previous exposure to computer programming 

before their first year at university had more intrinsic motivation than students who were 

exposed to it for the first time at university. Perhaps this was due to the knowledge that 

students who had previous experience with computer programming had navigated through 

the initial cognitive challenges that the learning on computer programming tends to present 

to the novice programmer and they were now in a position to leverage the enjoyable parts 

of computer programming to increase their levels of self-efficacy.  

Furthermore, according to Forte and Guzdial (2005) and Kurkovsky (2006) students who 

study towards a non-computer science degree have less motivation to perform well in 

computer programming courses. This could be due to less exposure to computer 

programming course content and also, perhaps, the lack of a desire to work in the field of 

software development causes them to not take programming as seriously as students 

studying computer science. According to Bergin and Reilly (2005), a significant source of 

motivation for students in computer programming courses is eventually to become a 

professional software developer. For non-computer science students who are not driven by 

the desire to be employed in the software development sector, there is a substantial lack of 

motivation to acquire an expertise of computer programming content. The lack of IM leads 
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to reduced levels of enjoyment when it comes to computer programming thereby lowering 

students’ SE and ultimately their performance in computer programming assessment.  

Durak, Yilmaz, and Yilmaz (2019) also discovered that students’ SE and motivation levels 

can be negatively affected by aspects of programming that they do not find enjoyment in 

such as challenging exercises and spending great effort trying to grasp a concept. However, 

their motivation can increase when with aspects of programming that they do find 

enjoyable. Most students in the study conducted by Durak said that in particular they 

enjoyed learning programming through using robotics as it felt like a fun activity rather 

than learning a skill.  

According to the students, motivation levels tend to diminish when exposed to the more 

tedious and frustrating aspects of programming such as learning syntax and debugging their 

code. Furthermore, negative feedback on their progress and efforts from teachers or senior 

peers usually impairs students’ intrinsic motivation and leads them to developing a negative 

attitude towards the subject itself. These findings suggest that students who may start off a 

programming course with intrinsic motivation may become exasperated with the parts of 

the subject that they do not enjoy as well as criticisms that they may receive from their 

senior instructors.   

In a study that consisted of primary school students who undertook an 8-week course in IP, 

it was found that these students exhibited adult factors such as intrinsic and extrinsic 

motivation and previous experience had a distinctly positive effect on students’ 

programming SE. In particular, students’ inclination of pursuing a computer programming 

career later in life was found to be correlated to their level of intrinsic motivation for 

learning the subject matter. It was also found that students who had previous knowledge 

and engagement with computer programming displayed more extrinsic motivation than 

students with no previous experience (Aivaloglou & Hermans, 2019). The reason for this 

could be due to the increased levels of SE that students with previous experience tend to 

display, which may motivate them to spend extra time studying the material so that they 

are able to uphold their self-concept in this regard. According to Aivaloglou and Hermans 

(2019) the students in this study did not have stereotyped views of professional computer 

programmers as this study was conducted with students of a young age who were not yet 

exposed to these biases.      

Yacob and Saman (2012) found that programming students had two main sources of 

intrinsic motivation which were attitude and setting themselves stimulating goals. The 
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aspect of attitude tended to come from a student’s prior experience with programming and 

whether or not the current programming content that they are learning meets their 

expectations. The extrinsic factors that were found to motivate students the most were 

“clear direction, reward and recognition, punishment and social pressure and competition.” 

Each of these factors were found to positively contribute to student’s motivation to engage 

with the programming content. Out of each of these motivating factors, the main 

contributors were the desire to obtain a precise direction in terms of what was required, the 

consequences of failure and what reward was on offer if they achieved success. The factor 

of setting stimulating goals had the lowest motivating outcome from all of the factors. 

Yacob and Saman (2012) added that teachers of programming courses should try to 

communicate programming tasks and assignments as clearly as possible so that students 

can easily find their “clear direction” which would help motivate them in completing 

course work.   

Khaleel, Ashaari, and Wook (2019) conducted a quantitative study with how gamification 

affects students’ motivation and performance in programming. Gamification entails using 

a game style approach to learning something difficult like programming to increase 

motivation and engagement of students Khaleel, Ashaari, Wook, and Ismail (2015). 

Gamification uses techniques such as scoring points, earning badges, leader boards 

amongst students and team activities to drive engagement in a subject (Elshiekh & Butgerit, 

2017). According to Khaleel, Ashaari, and Wook (2020) using gamification methods such 

as badging can push students to complete homework or programming assignments so that 

they can get the immediate reward of earning a badge. Leader boards can show students 

their class ranking amongst other students which can act as a form of social pressure that 

incentivises them to improve their ranking. An experiment was conducted with 90 

Information Technology students at a University. The students were separated into a group 

that learned programming using gamification and a group that learned programming 

conventionally. The evidence from this study indicated that there was a significant 

difference in motivation levels between the 2 groups. The students in the experimental 

group reported having greater motivation to learn the programming material than the 

students in the other group. According to Khaleel et al. (2015) gamification exploits the 

extrinsic motivation that all humans naturally possess and uses this motivation to make 

learning less boring and more satisfying and rewarding. 80% of students were quoted as 

saying that they would enjoy their tertiary studies more if it included game-like elements 
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in the courses, and 60% of students said that their motivation would increase if their 

University displayed leader boards as this would encourage more competition between 

their peers and themselves (Andriotis, 2014).     

2.6 Problem Solving Ability  

Heppner and Petersen (1982) suggest that problem solving is the activity of achieving a 

goal when the method of achieving that goal is uncertain. According to Balmes (2017), 

students who achieve high scores in mathematics tend to also do well in computer 

programming assessment. This phenomenon can be as a result of the problem-solving 

abilities required in mathematics being very similar to the cognitive skills required in 

computer programming. Balmes goes on to suggest that excellence in mathematics is an 

indicator of a student who has the cognitive ability to learn computer programming. A 

study of students attitudes towards mathematics was conducted by Ali, Ali, and Farag 

(2014). The study found that students’ attitudes towards mathematics were significantly 

correlated with their performance in computer programming assessment. In the Balmes 

study it was discovered that mathematics scores can be a predicting factor in whether or 

not students will be able to pass university programming courses.  

Computer Programming and Mathematics 

A study conducted by Duran (2016) on university students similarly found that students 

computer programming marks were similar to their course marks in maths. These results 

are not surprising because mathematics is underpinned by rule-based logic and so is 

computer programming. Mathematics is driven by theories that are integral to problem 

solving. This is identical to computer programming where the syntax of a computer 

programming language coupled with the semantics of the logical rules and data structures 

provide the theoretical foundation for problem solving.  

Based on personal experience, the researcher realised that the logic of the computer 

problem solving process entails the development of solutions that require the designing of 

an interface, the writing of lines of code that align to a solution that has been logically 

designed and the integration of this solution with database technology. An IT degree 

provides a student with an ability to utilise computer programming knowledge and develop 

a fully-fledged solution to a societal or business problem. According to Lishinski, Yadav, 

Enbody, and Good (2016), there is a correlation between problem solving ability, the 

mental model of the problem domain and computer programming performance. However, 

this correlation did not apply to knowledge of simple programming structures and 



22 

 

superficial mastery of computer language syntax. It applied more significantly to the 

advanced aspects of computer programming where students had to develop a fully-fledged 

computer programming solution to a real-life problem. 

2.6.1 A  Mental model visualisation of the problem domain 

Du Boulay (1986) suggested that the greatest impediment to successful acquisition of 

computer programming skills was the issue of mental model. A mental model is the mental 

image that students construct of the problem domain and it is within this image that students 

are able to foresee a solution. However, this solution path is also influenced by the problem 

of orientation. This aspect deals with students’ overall understanding of what computer 

programming can accomplish and why it is important to gain expertise of the activity of 

computer programming so that the computer-oriented solution can be developed. Du 

Boulay conflates the concepts of the mental model and the issue of orientation to what is 

referred to as the notional machine. This is the challenge that students are faced with when 

they do not fully understand the inner workings of the computer as a machine and how this 

relates to the writing of programs that represent a solution to a problem. Students need to 

grasp the concept that a machine will only understand and execute coding statements if it 

is written in a certain way and in a specific order, also referred to as the syntactical rules 

that are imposed on the computer programmer. Also, it is important to comprehend how 

the computer as a machine will store data such as inputs and outputs as well as data 

structures so that the manipulation of this data can be easily achieved. Many students do 

not understand this relationship between the code from a logical perspective and its 

physical implementation on the machine. This leads to a layer of abstraction that makes 

computer programming very difficult to understand. Such an appreciation for the notional 

machine emanates from a deep and meaningful introduction to the activity of computer 

programming. However, many educational institutions do not have the latitude of 

embracing time-consuming pedagogical strategy because of the imperative to cover course 

content in a confined time period. The challenge that academics are faced with is how to 

integrate the concept of the notional machine into course content in a seamless manner that 

enhances students’ mental model of the problem domain. The role played by the syntax 

and semantics of computer programming code was further explored by I. Govender (2021) 

who conducted a phenomenological study on the difficulties that novice programmers face 

when they learn to program. In order to enhance the mental model visualisation of the 

problem domain, I. Govender (2021) stresses the importance of using a “scaffolding” 
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approach to the teaching of computer programming that entails a strong focus on baseline 

knowledge involving computer programming language syntax and an inculcation of a deep 

appreciation for data types. Once these fundamentals have been entrenched, students will 

be cognitively prepared to engage in incremental learning that involves algorithm 

development and problem solving.  

2.6.2 Formal Language Notation and Problem Solving 

Du Boulay also refers to notation of formal languages as another aspect of difficulty. 

Novice programmers often have difficulty in remembering the syntax of the different 

programming languages they are required to learn (which concur with Butler and Morgan 

(2007)). This handicap is often coupled with an inability to understand the semantics of 

language constructs. The semantics of computer programming languages manifest in 

computer programming structures such as selection statement (commonly referred to as 

“if…then” statements), looping structures and data structures that are used to temporarily 

store data for quick and easy manipulation. Added to this mix are the complexities inherent 

in learning object oriented (OO) programming techniques such as the concept of a 

constructor, the use of inheritance hierarchies, polymorphism and method overloading. The 

challenge of acquiring mastery over structures is a constant struggle for both teachers and 

students. Data structures in programming are usually complex to teach to students on a 

theoretical level and equally difficult for students to understand without first working 

through numerous practical examples of these structures. These challenges have been 

documented by studies such as: Robins, Haden, and Garner (2006) who highlight the 

difficulties faced in learning looping and arrays; Goldman et al. (2008) who note the 

problems students have with learning inheritance and Garner, Haden, and Robins (2005) 

who allude to the abstractionism inherent in understanding how a constructor instantiates 

an object of a class.  

2.6.3   The Pragmatics of Computer Programming 

Finally, Du Boulay (1986) mentions the “pragmatics of programming” as a source of 

difficulty to many novice programmers. The pragmatics refer to aspects such as 

understanding what needs to be accomplished to develop a solution that meets the 

requirements of a problem, handling errors that may arise, debugging the program and time 

management. Beginner programmers are ill equipped to handle the realities of constructing 

a proper solution to a problem and may only become aware of these issues once they have 

started working on the task. Usually problems like these are enough to derail a whole 
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project for a beginner, which leads to students losing morale and motivation in learning 

computer programming all together.          

Hence, a student’s problem-solving ability, as well as their mental model visualization of 

the problem domain is a significant predictor of computer programming performance.  

Authors such as de Araujo, Andrade, and Guerrero (2016) and Romero, Lepage, and Lille 

(2017) have stressed on the importance of problem solving ability as a crucial factor in 

enhancing algorithmic thinking capacity. This assertion is supported in 96% of the papers 

that they reviewed as part of their systematic literature review. Wing (2008) defined 

algorithmic or computational thinking as “the thought processes involved in formulating 

problems and their solutions so that the solutions are represented in a form that can be 

effectively carried out by an information-processing agent” (p. 3717). 

Lawan, Abdi, Abuhassan, and Khalid (2019) conducted a study with 113 Information 

Technology and Engineering students at a university and it was found that when students 

spent additional time on improving problem solving skills it had a positive effect on their 

perceived ability to learn programming. Students with better problem-solving skills 

perceived learning programming languages as easier and encountered fewer difficulties 

with learning the programming language as students who did not perceive their problem-

solving ability as highly. In this study it was also concluded that demographics such as age, 

race and academic department do not have an effect on students’ problem-solving ability 

or their ability to learn programming.    

In a study conducted by Ismail, Ngah, and Umar (2010) that comprised of interviews with 

5 computer science lecturers at a university about the reasons for students’ poor 

performance at programming courses it was found that all 5 lecturers agreed that students 

tend to lack the fundamental skills needed for analysing and solving a problem. The 

lecturers believed that the reason for this lack of skill is that students were not taught how 

to think logically and dynamically at any point in their lives. It was suggested that students 

should be required to acquire logic, problem solving and creative thinking skills, possibly 

through a mathematics module, before registering for a programming module. It was also 

found that students often-times do not have the required problem-solving ability along with 

not knowing the syntax or how to write a programming statement correctly. This 

compounds on students’ problem-solving challenges because even if they do eventually 

understand and breakdown a problem correctly they cannot ultimately write code that 

works. It was agreed that students should spend more time actively engaging with the 
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tutorial and practical sessions and they should also receive feedback on their performance 

in these areas so that they can find their gaps in knowledge (Ismail et al., 2010).  

A preliminary study was conducted by Bain and Barnes (2014) which questioned students 

on the challenges they experienced when they learnt how to write computer programming 

code and it was established that 50% of students did not have a strategy of dealing with 

problems that arose while writing computer programming code. The main method of trying 

to solve the problem was to turn to internet searches. It was also gathered that 53% of 

students did not understand how different programming concepts and elements of code 

related to the bigger picture and how small sections of programming topics connected with 

others to form a whole solution to a problem. It was concluded that the fundamental issue 

with learning programming was inadequate problem-solving methods and a lack of critical 

thinking.  

Loksa et al. (2016) undertook a study of 48 high school students who attended a website 

development camp for two weeks. The researchers conducted experiments where the 

students were taught the basics of problem-solving and were exposed to strategies that 

programmers typically use to solve problems and tutored on how programmers decide on 

the correct path towards a solution. Two web development camps were set up and the 

programming performance of students in each camp was measured. The study was set up 

as an experiment where one camp had received the problem-solving training and the other 

camp did not. The students were given a project of developing a web application within a 

duration of two weeks. The main finding from this study was that the group of students 

who were tutored in problem-solving performed better due to higher rates of productivity 

when working on their websites. They also requested assistance from teachers less 

frequently and generally tried solving an issue by themselves before requesting for 

assistance. The students who received training were also found to have higher levels of SE 

and had adopted more of a growth mindset towards web development which essentially 

means that they saw the web development task as something they can learn from and 

improve at over time. Loksa et al. (2016) gives the recommendation that before students 

begin to engage in computer programming assessment tasks they first need to have 

foundational knowledge of problem-solving strategies and procedures that they can follow 

once they begin with development.   
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2.7 Deep and Surface Learning 

The approach that students adopt towards learning has been a topic of vast research 

pertaining to tertiary education (e.g. Lonka, Olkinuora, and Mäkinen (2004); 

Vanthournout, Coertjens, Gijbels, Donche, and Van Petegem (2013); Trigwell, Prosser, 

and Waterhouse (1999)). According to Marton and Säljö (1976) the main approach to 

learning is framed by concepts referred to as deep and surface learning. This was introduced 

in their seminal study where they gave students a passage to read and then asked the 

students to explain the main ideas presented in the reading and asked them what approach 

they took to the reading task. From the results of the study they found two different types 

of students. Students who wanted to gain an understanding of the information provided in 

the reading and students who wanted to remember information for the sake of being able 

to reproduce it in at the end of the session. From this, Marton and Säljö introduced the 

concepts of a deep learning approach and a surface learning approach.  They found that 

students who were genuinely interested in their classes and tried to obtain a genuine 

understanding of the academic material had a deep approach to learning. This type of 

student attaches personal value to the concepts and knowledge gained in class. Students 

who on the other hand use memorisation and rote learning techniques rather than 

understanding to pass tests and exams are said to adopt an approach referred to as surface 

learning (Spada & Moneta, 2012). Students who have a surface approach to learning may 

be able to pass and even excel in a subject, however their learning style is only appropriate 

in test and examination situations where they are required to simply reproduce information 

but in situations where they are required to use this information in a practical way they 

usually fall short. According to Lindblom-Ylänne, Parpala, and Postareff (2018) students 

using a deep approach to learning apply critical thinking skills, thereby enabling them to 

make connections between different concepts more easily. Lindblom-Ylänne et al. also 

went on to mention the link between the surface learning approach and self-efficacy. 

Students with low SE, low motivation to study and negative beliefs about studying tended 

to use the surface approach to learning. This again reiterates the importance of SE and 

motivation on students and the effect that this mindset has on students and their learning 

abilities.  

Hulleman (2007) found that when students were asked to apply programming concepts to 

their personal lives the students started to develop more of an interest in the programming 

at school and began performing better at the subject. The reason for this according to 
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Hulleman (2007) is that the students began to see more value in the work they were doing 

which made them care more about learning these concepts to understand them. This effect 

was found to be more pronounced in students with low SE.  

According to Floyd, Harrington, and Santiago (2009) students who participate more in 

class activities and adopt a positive attitude towards computer programming will tend to 

engage in more deep learning techniques. In the same study it was found that students who 

did not adopt negative perceptions of the course engaged in surface learning techniques. 

Floyd et al. (2009) says that the reason for this is that surface learning is a “survival 

strategy” for students when they do not find a course engaging and meaningful to their 

lives.  

According to Jenkins (2002) computer programming is more complex of a subject than 

most other subjects based on theory or rationale because programming consists of both. It 

requires learning of concepts through rote memorisation techniques while also having a 

deep understanding of code and practically working with developing programs to master 

the skill. He argues that this is where the problem with learning programming lies as 

students are unfamiliar with applying this blend of deep and surface learning as it is not 

commonplace in most other subjects.   

Biró and Csernoch (2014) found that by making use of surface learning strategies students 

are only storing certain parts of programming logic in their short-term memory. The 

understanding of why the logic works and how to apply it in different scenarios is not 

developed in their minds which is why it does not transfer into their long-term memory and 

this is why students who use rote memorisation techniques for concepts like programming 

functions often fail to reproduce the function correctly and also fail to adjust and change 

the function to fit the context of the question in examination situations.   

Fincher (2006) discovered that students who adopted a deep learning approach try to find 

value by relating the subject matter to their personal lives and finding their own importance 

in learning the material. This also suggests that students with a deep learning style are 

generally intrinsically motivated. On the other hand taking a surface learning approach is 

linked to more extrinsic motivations such as avoiding failure or social pressure. In a study 

where that entailed the interviewing of 177 university students who enrolled in a 

programming module, it was established that students who scored high on deep learning 

attributes also achieved high marks for their computer programming module (Fincher, 

2006).    
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In a study conducted by Hughes and Peiris (2006) a questionnaire was administered to a 

class of computer science students at a tertiary institution.  The results from the 

questionnaire were assessed alongside the students marks in their programming 

assessments. The researchers found that students who adopted a surface learning approach 

performed the poorest. It was also found that students who took a deep learning approach 

performed better, however, not as well as students who took a strategic learning approach. 

A strategic learning approach is when students learned programming with the intent of 

achieving high academic marks. The reason students who took a strategic approach could 

have performed better may be because these students adopted both deep and surface 

learning techniques to both memorise the concepts and gain an understanding of how to 

apply the concepts to different scenarios. It was argued that the students who adopted a 

fully deep learning style may lose sight of how to apply programming concepts in testable 

situations as they become too absorbed in developing a personal interest towards it (Hughes 

& Peiris, 2006).  

According to Peng, Wang, and Sampson (2017) students can be encouraged to engage in 

deep learning strategies by being assessed through project work instead of only being 

assessed through written examinations. By allowing students to work on a project such as 

developing a web application, either individually or in a group, the students will find more 

meaningfulness in the subject matter as they become invested in their projects. Peng et al. 

(2017) also suggests that through project work educators can better monitor and provide 

assistance to students and identify their weaker areas more efficiently. Konecki and Petrlic 

(2014) agree that programming needs to encompass both deep and surface learning 

approaches because of the fact that programming is more of skill than knowledge.  

According to Malik, Shakir, Eldow, and Ashfaque (2019) by teaching students problem 

solving skills and strategies this will inherently promote students to adopt deep learning 

techniques because being able to analyse a problem and converge at a solution is the same 

as taking on a deep learning approach.  

According to Ranjeeth (2011) 50% of computer programming students at tertiary education 

institutions have a tendency to adopt a surface learning approach for computer 

programming in introductory courses. The researcher suggests that students tend to adopt 

this style of learning to meet the course requirements and to be able to obtain a pass mark 

for programming assessment. This strategy results in the acquisition of a superficial 

understanding of computer programming that usually manifests in the final year of study 
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where the level of computer programming knowledge required to pass courses does tend 

to become more intense.  

Hence the adoption of deep and surface learning towards computer programming does 

become a factor that needs to be examined in greater detail in terms of its influence on 

students’ performance in computer programming assessment.  

 

 

2.8   A Reflection of the Literature Review 

While there has been numerous other studies on the individual factors that affect academic 

performance in computer programming by students, there is a lack of academic studies that 

have focused on the combination of factors such as mental model visualisation of the 

problem domain, psychological factors (intrinsic and extrinsic motivation as well as self-

efficacy), previous experience and learning style/approach. Research efforts on these 

factors have been quite disparate with studies tending to focus on a single factor or just a 

few factors. Based on the literature review, the number of factors that influence 

performance in computer programming have been saturated and have converged to a finite 

manageable list. The study’s conceptual model was leveraged on the knowledge that the 

constellation of factors that have been integrated into the framework have all been 

recognised and endorsed by the community of academics who have made contributions 

towards understanding the phenomenon of student performance in computer programming.  

An immediate outcome of the literature review was that it provided a context that forms a 

suitable backdrop to the presentation of the study’s conceptual framework.  

 

2.9  The Conceptual Framework 

The study’s conceptual framework was constructed on the basis of the factors that have 

been hypothesised to influence performance in computer programming. These factors are 

illustrated in Figure 2.1. 
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computer programming assessment where they were required to use their programming 

skills holistically to display their proficiency of computer programming and provide a 

successful solution for the task given to them. It was envisaged that the mark obtained by 

the students would provide a guideline to enable the students to rate their individual 

performance in computer programming assessment. This self-reported rating will be used 

as an indicator of the students’ academic performance in computer programming. The 

strategy of using practical computer programming assessment activity as an indicator of 

proficiency in computer programming has also been used in studies with a similar agenda 

as the current study (e.g. Bennedsen and Caspersen (2007); Edwards, Murali, and 

Kazerouni (2019). The preceding discussion reflecting the link between the dependent and 

independent variables in the study is reflected by the illustration in Figure 2.1.  

According to Abdunabi et al. (2019) self-efficacy in computer programming is theoretically 

linked to a students’ background and previous exposure to programming as well as their 

background in mathematics and problem solving. This link assumes that students who have 

a good background in mathematics and have been educated in some form of computer 

programming content (algorithmic or language syntax), prior to attending university, tend 

to have a higher self-efficacy (SE) in programming. This is based on the knowledge that 

these students have constructed a foundation of knowledge that assists them in 

understanding programming concepts at university, regardless of the programming 

language being taught. A students’ level of SE then has an impact on their learning style 

as students with higher SE are more likely to adopt a deep learning style as they tend to 

find the subject inherently interesting. Finally, the overall combination of each of these 

factors, self-efficacy, deep and surface learning, previous experience problem solving 

ability and intrinsic and extrinsic motivation result in a student achieving higher marks in 

programming tests and exams. The results of tests and exams then feeds back into their 

self-efficacy, if they have performed well in a test or exam this will work to increase their 

belief in themselves their programming abilities which then results in them consistently 

performing well on tests and exams. According to Yacob and Saman (2012) both intrinsic 

and extrinsic motivation have a positive relationship to the learning of computer 

programming. Also, students who find the subject more enjoyable will develop both 

intrinsic and extrinsic motivation to work on programming tasks, thereby ensuring that they 

are adequately prepared for exams and assignments pertaining to computer programming.  
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2.10  Virtual Learning due to Covid-19 

The Covid-19 pandemic has profoundly impacted on teaching and learning platforms 

globally. The adoption of online learning has changed the learning behaviour patterns 

where students have been forced into isolated learning situations. This resulted in a 

pedagogical shift from on campus learning to virtual classrooms for programming students 

across the globe (Mbunge, Fashoto, & Olaomi, 2021). This shift in learning was envisaged 

to possibly manifest as an additional layer of complexity to the current study. However, 

the academic literature on this topic does not provide a consensus on the role that online 

learning has on academic performance in computer programming, as indicated by the 

following discussion. 

In a study conducted with a group of 45 first year university students studying object-

oriented programming using C++, Maltby and Whittle (2000) found that having face-to-

face (F2F) interactions with lecturing staff, tutors and other students did not have a 

significant effect on the final outcome of students marks in programming exams compared 

to online tuition. The most significant determinant of success in programming exams was 

the level of effort that an individual student applied to their programming material. This 

result was in contrast to what many students thought determined their marks which was 

attending physical classroom lectures and interactions with educators and tutors. The 

results of the study also showed that the students who generally performed well in C++, 

before moving to virtual learning, still continued to perform well after moving to online 

classes. These findings are supported by other research such as a survey done by Co and 

Chu (2020) that found that 73.4% of students did not find online learning any more easy 

or difficult than face-to-face learning.  

However, in a study with a similar agenda by Khraishi (2021), it was reported that more 

than 70% of students agreed that online learning (OL) may have advantages over traditional 

on campus learning. A study by Li et al. (2021) looked at a group of programming students 

who participated in pair programming sessions through Zoom and found that students 

derived large amounts of value from having these sessions as they were able to problem 

solve more collaboratively with their partner, brainstorm different ideas and impart/gain 

more knowledge when it came to writing code. While this study provides evidence that OL 

from a computer programming perspective is both feasible and practical, a study by Chen, 

Lasecki, and Dong (2021) reported that a majority of the students (58%) had a preference 
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for traditional face-to-face lectures over an online mode. The main reason for this 

phenomenon is based on student perception that the traditional (face to face) teaching and 

learning style offers greater educational value and provides more opportunity for 

meaningful engagement with academic staff. A significant outcome from this aspect of the 

report from this study is that a majority (70%) of high-achievers and a general majority 

(56%) of students were of the opinion that the most problematic aspect of learning 

computer programming via an online mode was the ability to understand aspects of 

computer programming that were deemed to be cognitively challenging. This includes 

aspects such as looping, selection structures, object-orientation (OO) and data structures. 

The ironical outcome from this discussion is that the perception-based evidence did not 

match the empirical evidence regarding students’ performance in computer programming. 

The empirical evidence attested to by students’ academic performance in computer 

programming assessment indicated that the high-achieving students performed equally 

well with OL as they did with face to face (FTF) learning. This outcome is not a generalised 

one as the analysis of results of low-end achievers did not provide a significant correlation 

between FTF and OL.  

The conflicting reports regarding the role played by OL versus FTF learning provides 

evidence that the introduction of OL as a variable in the current study is not warranted at 

this stage of such a study. 

2.11  Conclusion of the Literature Review and Conceptual Model 

According to Levy and Ellis (2006), a crucial reason for conducting a literature review is 

to establish what has been discovered in the field of study and to provide a context for the 

intended study. The literature review section for the current study has been designed along 

the dictates of Levy and Ellis and the progression of the literature review has been guided 

by the academic sources on the topic. The literature review has been designed to provide 

an exhaustive coverage of the main topics that prevail in this domain of study. The main 

coverage areas are illustrated in the hierarchical diagram in Figure 2.3 
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CHAPTER THREE – The Research Methodology 

3.1 Introduction to the Study’s Methodology 

A pre-cursor to a study’s research methodology is the research design and according to 

Sekaran and Bougie (2016), there are many aspects to be considered. These aspects will 

be used and discussed in accordance with the Research Design Framework provided by 

(Sekaran & Bougie, 2016, p. 102). 

The main purpose of the current study is to examine the relationships between the main 

variables of the study’s conceptual model so that a more nuanced understanding of the 

factors that influence computer programming performance could be established. This will 

enable the researcher to use this empirical evidence to answer the study’s cohort of 

research questions. The type of investigation is classified as a correlation-based study with 

the objective being to establish whether there is a statistically significant correlation 

between the study’s main variables. The extent of the researcher influence in the empirical 

phase of the study will be minimal and the planned data collection from a time-horizon 

perspective will be cross-sectional. It is suggested in Sekaran and Bougie (2016) as well 

as Mark  Saunders (2011) that a viable data collection approach for a cross-sectional study 

will be via the method of surveys, interviews or a combination of both. Many of the 

research methodology texts (e.g. Creswell & Creswell, 2017; Mark  Saunders, 2011; 

Sekaran & Bougie, 2016) have identified 3 primary approaches to conducting an empirical 

study. These are the quantitative, qualitative and mixed methods approaches. While the 

research design is meant to be the overall plan that guides the study and ultimately defines 

the methodology, it is the researcher’s worldview orientation (Saunders, Lewis, & 

Thornhill, 2009) that plays a significant role. The researcher’s worldview orientation is a 

reference to the researcher’s epistemological and ontological perspective on how new 

knowledge is obtained. The researcher currently has a strong leaning towards an objectivist 

worldview that is defined by unobtrusive data collection and analysis. However, in order 

to establish whether such a worldview orientation will be ideal for the current study, the 

researcher will provide an overview of the various research approaches and based on an 

analysis of each, a specific orientation will be selected and used to define the 

methodological detail for the current study. 
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3.2 The Quantitative Research Approach 

According to Apuke (2017), quantitative research is focused on gathering numeric data 

and analysing that data to find statistical relationships, which can help the researcher test 

a hypothesis. The main method of gathering data is through distribution of a questionnaire 

which is filled out by a set of participants to determine their thoughts or experiences 

regarding a particular research topic. Quantitative research is underpinned by positivism, 

which argues that an objective reality exists and is detached from the human mind 

(Rahman, 2020). Some of the key advantages to quantitative research is that it can depict 

an objective stance on the research problem. It can also be generalisable to other 

populations because it uses a large sample from which insights can be gathered. It is also 

one of the least time consuming methods of acquiring data (Rahman, 2020). 

Law, Lee, and Yu (2010) conducted a study to determine how motivation influenced 

academic performance in computer programming by students. The researcher took a 

quantitative approach by making use of a questionnaire that was distributed to a group of 

tertiary programming students. In total the researcher had collected 365 valid 

questionnaires filled out by students. From the results obtained the researcher was able to 

attribute a correlation between the students who were intrinsically motivated and their 

enjoyment of programming. It was also found that students who had intrinsic motivation 

reported greater self-efficacy in programming than students who were extrinsically 

motivated.   

According to Korkmaz and Altun (2014), the levels of self-efficacy displayed by students 

in a computer engineering course was greater than that of general engineering students. 

The reason for this difference is determined to be that computer engineering students are 

exposed to more programming as they enrol for more programming classes at university 

and are therefore exposed to more programming related assignments and homework as 

opposed to general engineering students who take more engineering related classes at 

university. This is an indication that one’s amount of previous experience in programming 

leads to higher self-efficacy. This study was underpinned by a quantitative survey that was 

carried out amongst 378 computer and general engineering students. The aim of the study 

was to determine students’ self-efficacy in a C++ programming class that both groups of 

students had completed.  
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3.3.  The Qualitative Research Approach 

According to Alase (2017), qualitative research allows for different individuals to 

communicate their experiences of a particular event or aspect of their lives. Information 

was gathered through listening and documenting individual experiences as well as their 

thoughts and opinions of what they experienced.  In the context of computer programming, 

qualitative studies have achieved moderate success in understanding difficulties associated 

with academic performance in computer programming.  

In a qualitative study conducted by Lishinski, Yadav, and Enbody (2017) with a group of 

university students learning programming, the study attempted to collect statements from 

each of the students after a programming assessment had taken place to understand their 

feelings and emotional state. The results found that students previous performance had a 

large influence on how they felt about programming assessments and their overall self-

efficacy. They also found that students who felt negative emotions because of performing 

poorly in previous assessments tended to have a low self-efficacy and this continued to 

affect how they perform in programming. The findings also suggest a feedback-loop that 

results in students having a negative outlook on programming from previous experiences 

and then this causes a lack of interest and motivation for the subject, which contributes to 

their low marks in future tests and assignments. The qualitative nature of this study allowed 

the researchers to delve deeper into subjective experiences of students, which as the 

researchers prove can yield significant results and patterns. The main benefit of adopting 

a qualitative approach is that it allows the researcher to adopt a deeper understanding of 

specific aspects of the task of learning to program; However, the generalisability of this 

methodology has been flagged as one of the main challenges (Ochieng, 2009).  

 

 3.4  The Mixed Methods Research Approach 

According to Hanson, Creswell, Clark, Petska, and Creswell (2005), the mixing of 

qualitative research methods with quantitative methods is named the mixed methods 

research approach. The idea behind this methodology is that the strengths of both 

paradigms of research are leveraged to produce a well-informed research outcome. In the 

context of learning of computer programming, mixed methods research has been widely 

used. 
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In a paper done by Mather (2015) to study how students learn the C programming 

language, the researcher employed a mixed methods approach, which consisted of 

distributing questionnaires to students and reviewing their marks on a programming test 

as the quantitative component, and observation of participants through video analysis as 

the qualitative component. Through this study the researcher found that students performed 

better when working with other classmates in pair programming activities, which was 

confirmed by students’ responses in their questionnaire showing their preference for 

collaborative working sessions. During their time spent in pair programming students were 

able to accomplish more in a shorter space of time and the researcher observed this through 

the video analysis portion of his study. However, from an analysis of the students’ test 

scores the researcher found that students collaborating did not help them with remembering 

key programming concepts in the test as reflected by their scores. The researcher 

concluded that working collaboratively does not equate to deep learning, which is 

necessary for performing well without any assistance. These findings required multiple 

data collection methods in order to reveal different truths.  

Another mixed-methods study conducted with 49 primary school students learning 

programming for the first time on the Scratch programming platform conducted focus 

group interviews about the students perceptions of programming and also did a quantitative 

analysis of their programming test results (Kalelioglu & Gülbahar, 2014). The study found 

through the student interviews that students had a positive impression of Scratch 

programming, with many of them stating that it was an enjoyable experience. After 

spending some time learning Scratch the students also said that they felt more confident 

with their programming abilities. While the qualitative results showed positive results 

overall the analysis of the students marks and tests showed that many of the students still 

struggled with their problem-solving abilities and this was a key area of weakness that the 

students still needed time to develop. The qualitative results did support these findings as 

many students did admit that they had a low perception of their ability to problem solve 

but still found enjoyment in the programming activities regardless of the difficulty they 

experienced with some of the questions. This is another example of how the mixed-

methods approach can reveal more substantial information pertaining to different factors 

or aspects of how students learn programming. It also shows how different data can be 

used in tandem as supporting evidence.  
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In another study Zahedi et al. (2021) conducted a mixed-methods study to determine if 

gamification had an influence on female programming students. From the quantitative 

results it was found that female students benefited from gamification practices just as much 

as male students, and this was found through analysis of the students’ results. However, 

these results were in contrast with the qualitative results. In interviews, most female 

students said that they were apathetic or felt negatively to some gamification practices, 

while some female students felt that gamification actually reduced their motivation 

towards the subject. These conflicting findings allowed the researcher to question more 

deeply if it was actually the gamification practices that had a positive impact on students 

marks or if other factors such as intrinsic motivation and self-efficacy could have played a 

larger role.  

Hence, while the mixed methods approach does provide a greater opportunity for 

engagement with the respondents of a study, there is also a huge prospect of obtaining 

conflicting outcomes because of the fundamental difference in methodologies.  

 

3.5 Justification for the Quantitative Methodology 

After reviewing the main approaches to an academic study, the researcher gravitated 

towards a quantitative methodology to underpin the study. This decision was based on the 

observation that many of the correlation-based studies on the factors that influence 

academic performance in computer programming has been conducted using a quantitative 

approach that manifests in a survey type of methodology. This survey type of approach 

has also been conducted quite successfully in the studies that are detailed in the subsequent 

discussion. Many of these studies have focused on constructs that are core to the current 

study. As an example the construct of  self-efficacy was studied by Karsten, Mitra, and 

Schmidt (2012) with a sample of 151 IT teachers before and after they had completed an 

online course on Scratch programming to determine if learning Scratch programming had 

an impact on their programming self-efficacy. The study was conducted using web-based 

questionnaires with Likert Scale questions about programming self-efficacy and 

perceptions as well as questions about the participants attitude towards programming. The 

results of the study found a significant difference in self-efficacy and attitude towards 

programming after completing the Scratch course. It was found that the participants were 

able to think more positively about programming and this influenced their belief that they 

could handle more long and complex programming tasks in the future. These results show 
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that some of the main factors discouraging people from taking an interest in programming 

is a negative attitude and lack of confidence and motivation (Karsten et al., 2012). 

In a study to analyse the factors that motivate students to study computer programming 

Law et al. (2010) distributed questionnaires to students who were enrolled in two different 

computer programming courses. The questionnaire was distributed to 386 students in total 

and of the questionnaires returned 365 were valid samples that were used in the analysis 

for the findings. The study found that factors such as individual attitude, having a clear 

direction, and being rewarded for good work had the largest impact on students’ motivation 

to learn programming. It was also found that students’ who set challenging goals for 

themselves and students’ who felt social pressure to compete with their classmates had 

greater levels of motivation. A smaller study on motivation and learning programming was 

conducted by Yacob and Saman (2012) with 30 valid questionnaires being used for the 

analysis. The findings from this study were similar to those identified in Law et al., that 

students seem to be motivated by a set of intrinsic and extrinsic factors. Intrinsic factors 

being: setting difficult goals for themselves and having an interest in programming. 

Extrinsic factors being: social pressure and receiving rewards or recognition.  

A quantitative study was conducted by Koulouri, Lauria, and Macredie (2014) with a 

number of different groups of students who were enrolled at a tertiary education institution. 

Each of the groups in the study had gone through different levels of learning aspects such 

as problem-solving skills and different types of programming courses were taught to some 

groups and not others. The researchers then measured each student in the different groups 

by giving the groups the same programming activity/assessment to measure their 

programming proficiency. It was found that students who had higher levels of experience 

in programming and students who had better problem-solving skills performed better in 

the programming activity/assessment.  

The studies discussed in this section make strong reference to the variables that will be 

used to guide the current study. Each of the studies presented were conducted using a 

quantitative methodology with a survey instrument being used as the main form of data 

collection. The validity and significance levels that were achieved in these studies 

contributed towards a decision to opt for a quantitative methodology for the current study. 

While the planned study adopted a predominantly quantitative approach, an open-ended 

option has been included in the study’s data collection instrument so that the benefits of a 

qualitative/mixed methods approach may be explored. 
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3.6 Study Site and Target Population 

The site for the study was the Pietermaritzburg and Westville campuses of UKZN. 

However, due to the adoption of online learning the launch of the study’s questionnaire 

was conducted during online lecture and practical sessions that were conducted via the 

MsTeams (3rd year, Honours and Master’s) and Zoom (2nd year) video conferencing 

platforms. 

 

3.6.1 Sample size 

The estimated total population of the study was 420 university students from the IS&T 

Discipline. A census approach was adopted where the sample size chosen for the study 

was also the total population of the study which was 420 students. The research plan was 

to use the census approach and obtain a 100% response from the population because this 

was feasible and it would add immense value to the reliability of the study’s outcomes. 

With the selected sample size, there was a high probability that the distribution of the 

sampling means would be approximately normal (Sekaran & Bougie, 2016). This created 

an opportunity to leverage the statistical power of parametric statistical analysis using a 

95% confidence interval. These parametric statistical tests consist mainly of the one sample 

t-test that was used to ascertain whether the measures of central tendency such as the mean 

and median occured by chance or was statistically significant. Correlation analysis was 

performed by bivariate correlation testing (Pearson or Spearman). In cases of doubt, 

regarding the normality of the sampling distributions the back-up plan was to explore the 

possibility of using non-parametric statistical tests.  

 

3.6.2 The Study’s Sample  

The population for the study comprised all Information System and Technology students 

currently studying a computer programming module. The population consists of 2nd and 

3rd year Information Systems and Technology (IS&T) students including Honours and 

coursework Masters students. The purpose of using this set of students was that these 

students are appropriately positioned in an academic context as they were in the midst of 

undertaking a module that is focused on computer programming. The richness of the 

empirical phase of the study could have been enhanced by the participation of 1st year 

students. However, after careful review of the 1st year IS&T syllabus at UKZN, it was clear 
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that the level of computer programming covered was not sufficient to make an accurate 

evaluation of students’ computer programming abilities. The content at 1st year level is 

quite superficial and introductory. The complexities inherent in ensuring good academic 

performance in computer programming manifest when students engage with cognitively 

challenging computer programming constructs such as looping and conditional logic in 

conjunction with data structure and database manipulation. These assertions were based 

on material covered in the literature review section. In the case of 2nd and 3rd year students, 

there is an intensive engagement with all aspects of computer programming knowledge 

thereby providing the researcher with an ideal opportunity to obtain an insight into 

students’ level of computer programming proficiency. The decision to include Honours 

and Masters students into the study’s sample was based on the fact that these students 

would have been exposed to the rigours of computer programming tasks and they also 

engage with a module named Software Engineering that has a significant computer 

programming component.  

3.7 The Data Collection  

Data collection is the process that permits the researcher to collect, measure and analyse 

information in an established systematic way using standard validated techniques for a 

research study (Sullivan & Artino Jr, 2018). The main forms of data collection are surveys, 

interviews, observations, focus groups and document analysis (Mark Saunders, Lewis, & 

Thornhill, 2018). The current study used a survey approach that consisted of a 

questionnaire as the primary data collection instrument that was used to obtain a broad 

representation of computer programming knowledge and learning habits from the study’s 

population. The questionnaire was launched during formal online lectures via the 

intervention of the academic staff members who were lecturing on the 2nd year, 3rd year 

and Honours and Master’s lecturing programmes. Students were informed of the 

requirements of the questionnaire and were provided with an opportunity to complete the 

questionnaire during the practical sessions for the courses that contained computer 

programming content. The questionnaire was made available as an online survey via 

Google forms (accessible at: https://forms.gle/mtKtXc619XxGVhkC7). However, students who 

did not complete the questionnaire during the practical sessions were allowed to save the 

completed sections of the questionnaire and submit it at a later time of their convenience. 
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3.8 Construct Validity   

This study employed a structured, survey questionnaire as the primary source of data for 

the study’s empirical analysis. The questionnaire (Appendix A) was designed to resonate 

with the study’s conceptual framework. According to Peter (1981) construct validity refers 

to the alignment between the constructs of the study (which are referred to as unobservable 

variables specified at a conceptual level) and the questionnaire items that are used to obtain 

a tangible measure of that construct. There is no precise measure of construct validity. 

However, it can be inferred through techniques such as exploratory and confirmatory factor 

analysis. The strategy is to ascertain whether the questionnaire items contributed by 

explaining/accounting for the variance in the dependent variable. A viable strategy to 

ensure construct validity is to align questionnaire items to previous studies where these 

constructs and items have been validated.  

 

3.8.1 Validation of the Study’s Questionnaire Items 

The study’s main constructs were subjected to theoretical validation by using pervious 

research efforts with a similar objective as the current and also included constructs that 

were been identified in the study’s conceptual framework.  

The discussion on construct validity is classified according to the study’s main constructs:  

• Self-Efficacy (SE) 

Bandura (2006) developed a guide for constructing SE scales. This guide, which has 

reached seminal status, has been used extensively by researchers to measure this concept. 

Ramalingam and Wiedenbeck (1998) used Classical Measurement Theory and factor 

analysis techniques to confirm the validity of 30 questionnaire items linked to the Bandura 

scale to measure self-efficacy in the domain of computer programming. Askar and 

Davenport (2009) adapted the Bandura scale to measure SE of students during a Java 

programming course delivered to Engineering students at a university. The current study 

was guided by the afore-mentioned studies and 12 questionnaire items were adapted from 

these studies to align with the context of the current study 

•  Intrinsic and Extrinsic Motivation 

According to Nielsen (2018) the Motivational Strategies for Learning Questionnaire 

(MSLQ) is a widely used instrument to measure intrinsic and extrinsic motivation levels 

for students in higher education. Nielsen used this questionnaire as a starting point to 

measure the levels of intrinsic motivation (IM) and extrinsic motivation (EM) of 
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Psychology students to their academic studies. The outcome from this study was a set of 

validated questionnaire items to measure IM (4 items) and EM (4 items). In a s similar 

study Amabile, Hill, Hennessey, and Tighe (1994) used the Work Preference Inventory 

(WPI) over a period of 8 years to collect data on motivational traits of college students and 

working adults. The results from their study indicate the WPI is a reliable indicator of IM 

and EM in various contexts. An examination of the MSLQ and the WPI instruments to 

measure IM and EM revealed substantial overlap of the questionnaire items. A set of 7 

questionnaire items (4 for IM and 3 for EM) was identified as applicable for the context of 

the current study. 

• Learning Styles 

As discussed in the literature section of the study, learning styles is an attribute that 

manifests in the form of deep and surface learning. In terms of quantifying this abstract 

phenomenon, Mahatanankoon and Wolf (2021) provided a set of validated questionnaire 

items (informed by seminal work on this topic by Marton and Säljö (1976)) to measure 

deep and surface learning traits exhibited by students in the context of computer 

programming. In the context of the current study 6 questionnaire items were adapted (3 for 

deep learning and 3 for surface learning) for the current study. 

• Problem Solving Ability 

As discussed in the study’s literature review, problem solving ability was operationalized 

for the purpose of computer programming inquiry by aligning this ability to the students’ 

mental model visualisation of a computer programming task to a formal programming 

language notation was used to represent a solution to the task. To measure this ability, the 

study was guided conceptually by the pragmatics of computer programming (Du Boulay, 

1986)  that allude to the challenges of solving computer problems by dealing with the 

syntax and semantics of a computer programming language. This strategy was extended 

operationally by leveraging questionnaire items to measure students’ problem solving 

ability suggested by Tukiainen and Mönkkönen (2002) and Koulouri et al. (2014). A series 

of 10 questionnaire items were used that targeted student’s cognitive ability in developing 

a mental model of the problem situation and identifying a correct solution to the problem. 

These questions were devised to ascertain student’s ability to be cognitively adept at 

prediction, conditional and iteration logic as well as data structure comprehension. In the 

instances where computer programming code was required to contextualise the question, 

the C# programming language was used because it is the current language of computer 
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items (the major independent 

variables of the study) 

Section C Open-ended response  1 part 

 

 

3.10 Pilot Study and Survey Protocol 

The questionnaire was discussed with academics involved in the teaching of computer 

programming in the Information Systems and Technology (IS&T) at UKZN. Comments 

and suggestions were incorporated into the questionnaire so that it represented a cogent, 

logical document that flowed from one construct to the next and aligned with the 

programming experiences of students in the IS&T Discipline at UKZN. The questionnaire 

was piloted with 2 IS&T Master’s students and 2 students from the IS&T Honours class. 

The input received during the pilot studies was that the questionnaire was too long and a 

few questions were ambiguous. Also, the original questionnaire required students to solve 

computer programming related problems to ascertain their problem-solving ability. While 

these questions were not too intensive, the response from the pilot study was that these 

questions should be phrased as multiple-choice questions. All suggestions made during the 

pilot study deliberations were considered and in conjunction with the supervisor of the 

current study, many of these suggestions were implemented.  

3.11  Ethical Consideration 

The researcher applied for ethical clearance from the Research Office at UKZN. A 

gatekeeper application was made to the registrar’s office to obtain permission to collect 

data within the UKZN campus. Both the ethical clearance and gatekeeper applications 

were successfully granted. In terms of the survey protocol, the study’s respondents were 

informed of their voluntary participation in the study and in compliance with the Personal 

Protection of Information (POPI) Act, no personal information was collected that could be 

used to directly identify the study’s respondents. 

3.12 Planned Data Analysis  

The data analysis that was planned was descriptive and inferential statistical analysis. The 

descriptive statistics consisted of frequencies, mean, median and standard deviation 

statistics. The descriptive results are displayed by stacked bar graphs and histograms. 

These data visualisation techniques were used to provide an overall view of the empirical 
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evidence with regards to the study’s main constructs such as previous experience, problem 

solving ability, self-efficacy and performance in a formal computer programming 

assessment. The inferential statistics consists mainly of the one sample t-test and tests of 

normality. The correlation between the main constructs of the study were analysed by 

making use of the Pearson Correlation Co-efficient or the Spearman rho, bivariate and 

multiple regression and path analysis. The study also leveraged Confirmatory Factor 

Analysis techniques to ensure discriminant validity and an alignment with the study’s 

conceptual framework. The dependent variable, which is the performance in computer 

programming assessment, was determined by students’ responses where they will be asked 

to provide an approximate value that quantifies their performance (Section A, Part 3 of the 

questionnaire). A correlation analysis (Spearman or Pearson) was conducted between 

students’ survey-based responses to the problem-solving tasks administered in the survey 

(Questionnaire, Section B, Part 3) and their approximation of their performance in 

computer programming assessment. 

 

3.13  Summary of the Research Methodology 

In conclusion the study has been set up to leverage the conceptual framework, engage in 

data collection via the study’s research instrument and proceed to the data analysis section. 

The alignment between the study’s conceptual framework and the data collection 

instrument has been presented in the current chapter. A theoretical explanation and 

presentation of the construct validity of the questionnaire items have been presented. The 

empirical validity of these items together with the predictive capacity of the study’s 

conceptual model is presented in Chapter 4.  
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pertaining to the ability to leverage the cognitive domain and demonstrate 

knowledge/comprehension of conditional, logical and data structure-oriented problems. 

The questions in this section of the questionnaire were structured as multiple-choice 

questions (MCQs). In Part Five of the questionnaire, the respondents were provided with 

an open-ended section where they could provide a response regarding their experience of 

learning computer programming and making suggestions on how this learning could be 

enhanced.  

The current chapter has been designed according to the following plan: 

• A presentation of the demographic data using tables and visualisations; this section 

contains frequencies and bar graphs to provide an overall view of the data. The 

main data items presented were demographics and background information of the 

participants. Descriptive analysis was carried out and presented using bar charts 

and pie graphs 

• Inferential statistics are presented by ensuring data reliability (Cronbach Alpha), 

data compliance in terms of testing for normality and the use of t-tests to establish 

the significance of the mean value that represents each construct; Confirmatory 

factor analysis (CFA) was conducted on the study’s conceptual model by inputting 

the study’s current dataset into the CFA model; relationships between variables 

were explored via bivariate correlations analysis to establish whether there were 

significant correlations and to identify the strength and direction of significant 

correlations; multiple regression analysis to ascertain whether the correlations can 

be expressed in a predictive linear relationship; and path analysis to find an optimal 

fitting model that explains maximum variance in the dependent variable.  

• Thematic analysis was also carried out on Section C, where the respondents were 

provided with an opportunity to openly express their thoughts on academic 

performance in computer programming. 

• The results were analysed with predominant quantitative techniques; however, the 

open-ended data represented an opportunity to triangulate the study’s quantitative 

data with the qualitative responses and provide a more enriched discussion of 

results.  
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4.2  Sample and Response Rate 

The data collection strategy was launched as a census sampling effort where all students 

who are registered for Information Systems and Technology (IS&T) courses were 

requested to respond to the questionnaire. The questionnaire for the study was made 

available via Google Forms and a link to the form was posted on the Learning Management 

System (LMS) used at UKZN for 2nd year, 3rd year, Honours and coursework Master’s 

students. Academic staff members also made announcements to the students to respond to 

the questionnaire and in the case of the IS&T 3rd year and Honours classes, students were 

allowed to complete the questionnaire as a practical task (that was classified as optional).  

Students were allocated time during their 3rd year, Honours and Master’s classes to 

complete the questionnaire including the set of problem-solving questions. However, 

students were given the latitude of using more time than what was available for the official 

lecture to complete the full questionnaire and submit later than the expected time. Also, 

the cohort of responses included responses from students who were not available during 

the official dissemination of the questionnaire.  

The population for the study was identified on the basis that all of these students would 

have had experience in computer programming at the level that was required in this study. 

The study’s population was identified as 420. Only 133 valid responses were received. 

This represents a response rate of 32%.  

 

4.3    Demographic and Background Information of Participants 

Section A of the questionnaire was designed predominantly to obtain demographic and 

background information from the study’s respondents. The strategy adopted here was to 

use an expansive approach that provided with an opportunity to scan the demographic data 

with the possibility of identifying any significant relationships that may emerge with the 

study’s main constructs. However, Section A did make specific reference to previous 

programming experience which does have a tangible link to the study’s main constructs. 

The demographic data pertaining to the level of study is presented in Figure 4.1. 
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Bougie (2016), the questionnaire items used to measure this construct is not ideally 

reliable. Gliem and Gliem (2003) do however advise that if the Cronbach alpha value 

achieves a value in the range between 0 and 3, then all items measuring a construct do 

contribute consistently to the overall measurement achieved. Upon further inquiry it was 

found that for the construct of Learning Styles, if Question item 3 (“I test myself on 

important topics until I understand them completely”) is removed, then the Cronbach alpha 

value for the Learning Styles construct increases to a value of 0.61. The improved 

Cronbach Alpha value creates a temptation to remove Question item 3 from the set of 6 

question items that measure learning styles. However, Youngman (1979) advises that 

while it is desirable to obtain high Cronbach alpha values, the internal consistency of 

questionnaire items does not have to be perfect. At this stage, the researcher has opted to 

include Question item 3 and subject the constructs to further validity testing in the form of 

factor analysis that is conducted in the section that follows. 

 

4.5 Factor Analysis 

Sekaran and Bougie (2016) make a specific reference to factor analysis as a valid statistical 

technique that could be used to reduce the complexity of a conceptual model by eliminating 

variables that are not tightly coupled with the latent variables or the main underlying 

constructs from the theoretical model. The process of variable reduction is conducted under 

the theory that, if the conceptual model does not have an alignment with the study’s data, 

then the conceptual model needs to be re-arranged or re-configured so that it has an optimal 

alignment with the conceptual model. According to Thu, Dang, Le, and Le (2021), this 

process of fitting the conceptual model to the study’s data is referred to as confirmatory 

factor analysis (CFA) which is a crucial process in ensuring construct validity.  

4.5.1 Confirmatory Factor Analysis 

The CFA conducted for the study’s data was confined to those constructs that consisted of 

multiple “observed” variables. These were Motivation, learning styles and self-efficacy 

and each of these constructs were measured using a Likert-scale as indicated in Table 4.3. 

According to Mark Saunders et al. (2018) factor analysis entails the construction of a 

correlation matrix between a study’s variables. The study’s latent variable set consisted of 

25 observed variables. These variables were identified from the study’s literature review 

and conceptual model.  
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The knowledge that the empirical component of the study is informed by a conceptual 

model creates an opportunity for the use of CFA. According to Hurley et al. (1997) and 

Goodwin (1999), once a study has a priori model CFA may be used as a variable reduction 

technique so that there is optimal factor loadings between the study’s observable variables 

and the latent variables (main constructs). The CFA technique was used in the current 

study to derive various specification models that will have an ideal fit with the study’s 

data.  

The objective to obtain an ideal conceptual model fit for the study’s data is driven by the 

need to ensure that the data analysis converges to a point where the study’s research 

questions can be answered with a measure of confidence. Based on various permutations 

of variable arrangements that were produced by the factor analysis exercise, a viable model 

that has been settled upon is presented in Figure 4.4. One of the objectives of construct 

validity is that the main constructs should have a high correlation with the study’s variables 

(Farrell & Rudd, 2009). As can be observed from Figure 4.3, all the correlations are within 

an acceptable range (>.5) and these correlations have been observed to be significant 

(p<0.05) which is indicative of a “good fit” between the study’s observed variables and 

the latent variables. However, in order to achieve this “good fit” the number of variables 

has been reduced from 25 to 17 (refer to Table 4.2). While this reduction in the number of 

variables will ensure a cogent model that may be used to ensure greater significance levels 

during further correlation analysis, the study’s aggregate data (mean, median and standard 

deviation) will be computed with the original variable set. This will provide the researcher 

with a more extensive set of resources to enable a “richer” discussion of the results 

obtained from the study’s data analysis.  

In terms of the overall fit between the 3 constructs illustrated in Figure 4.3, the following 

parameters were observed: 

• The Comparative Fit Index (CFI) index measurement should be closer to 1 

(Stapleton, 1997)  

• The Tucker Lewis Index (TLI) should be in the range of 0,9 to 1 (Thu et al., 2021)  

• The root mean square error of approximation (RMSEA) should be less than 0.08 

(Thu et al., 2021).  

In the context of the current study, the “model fit” indicators arising out of Figure 4.4 are 

CFI=0.91, the TLI =0.9 and the RMSEA =0.082. These results indicate that the empirical 

model that will be used for the data analysis for the study is not a perfect fit to the study’s 
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Table 4.12 Significance Testing for Self-Efficacy 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.7 Problem-Solving Ability and Performance in Computer 

Programming 

The construct of problem ability was operationalised/measured by adapting the computer 

programming aptitude test used by Tukiainen and Mönkkönen (2002) in predicting 

computer programming competence. The test to measure computer programming 

competence was presented to the study’s respondents via a series of problem-solving tasks 

that tested their cognitive processing ability when faced with computer programming 

related questions. These tasks were adapted to align with the computer programming 

content that was delivered to the respondents of the current study during their tenure as 
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exist on its own and be a full replacement for the close-ended questions especially in 

situations where the close-ended questions does not fully capture the essence of the topic 

under inquiry. In the case of academic performance in computer programming, the 

presence of the open-ended question is crucial because it provides the respondents of the 

study with an opportunity to respond in a manner that has not been catered for in the close-

ended section of the survey. A total of 47 of the 133 respondents took the opportunity to 

provide responses in an open-ended manner. This represented a response rate of 35%. 

The data generated in the open-ended section of the current study consisted of textual data 

that conveyed diverse opinions on the experience of computer programming. According 

to Saldaña (2013) a viable technique to regain a measure of control when confronted with 

a diverse dataset is to use a technique referred to as coding. These codes are used to classify 

data that are similar in meaning into clusters that are regarded as a conflation/reduction of 

the original dataset. Stuckey (2015) does advise however, that generating a set of initial 

codes is not easy and can be guided by the study’s main research objective. The main 

objective for the current study was to obtain empirical evidence attesting to the 

significance/role played by various factors in predicting computer programming 

performance. From an overview perspective the study did commence with an a priori 

model of factors that could influence academic performance in computer programming. 

According to Stuckey (2015) the constructs from such a model need to be combined with 

knowledge of the overall objective(s) of the study so that the codes that are identified could 

be aligned to the structural components of a study. Saldaña (2013) does however assert 

that the 1st phase of coding may be regarded as quite primitive and could be refined into a 

2nd set of codes that have a greater alignment with the study’s parameters.  

In the current study, the open-ended responses were collated into a spreadsheet application 

and then imported into the computer assisted qualitative data analysis software application 

named NVivo (version 12). A word cloud for the initial dataset was generated in Nvivo 

and presented in Figure 4.11. 
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From Figure 4.12 it can be established that the most prominent response was aligned to the 

difficulties associated with achieving good academic performance in computer 

programming. Saldaña (2013) advises that the major category of responses provide the 

researcher with guidance on how to refine the initial set of codes into themes. Based on 

the guidance provided in Figure 4.12, the main themes that have been identified in the 

corpus of qualitative data is listed as: 

• Difficulty in computer programming  

• Access to computer programming resources (conflated with programming tasks) 

• The challenges faced by BCom students 

While the 1st two themes have been identified by virtue of the number (frequency) of 

references (confirmed in Figure 4.12), the 3rd theme that refers to the challenges faced by 

BCom students needs a bit of elaboration. In the open-ended responses, there were 5 

instances where students made the claim of being BCom students (as shown in Figure 

4.12). Upon further examination of these responses, it was found that in all 5 instances, the 

students referred to the challenges that BCom students are faced with when it comes to the 

learning of computer programming. 

 

4.9.1 The difficulty in computer programming 

There was a high proportion of responses attached to this theme. A sample of verbatim 

responses are presented and discussed: 

Writing computer programming code is not easy especially if you are not experienced in 

coding (Theme1; Ref: 6) 

This comment alludes to the role that is played by previous experience. The influence of 

previous experience on computer programming skill/performance has been explored 

quantitatively in the 1st part of this chapter. This evidence corroborates the significance of 

previous experience. A further response aligned to this theme is: 

Mastering computer programming logic is not easy to achieve (Theme1 ;Ref:8) 

It is difficult for BCom students to compete with IT students (Theme1; Ref:11) 

 

These verbatim responses have a direct linkage to the data analysis from the quantitative 

section of the study where it has been established in Figure 4.6 that respondents who are 

registered for a BCom degree have lesser experience in computer programming thereby 

compromising their academic performance in comparison to students who are registered 

for an IT degree (B.Sc). This qualitative data becomes a catalyst for a further exploration 

of the quantitative data to establish whether there is a significant difference in computer 
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4.9.2 Access to Computer Programming Resources 

Many respondents complained about an access to a lack of quality resources to provide 

guidance that will ensure the attainment of academic performance in computer 

programming, Verbatim responses such as… 

more  videos will be enough - more exercises would be good (Theme2; Ref:2) 
 

For different sections in programming, I would like extra learning material, like 

YouTube link videos to get a better understanding (Theme2; Ref:3) 

 

The reference to video as a means of providing computer programming tuition is quite 

prominent. This value of this type of tuition has been under-estimated and not viewed with 

much priority. These comments attest to the importance of enhancing pedagogy in this 

regard. Also, respondents did make a request for greater practical engagement with 

computer programming tasks so that their level of knowledge could be improved from a 

“hands-on” perspective. 

we would like more programming practicals - that way we can practice more and 

understand more (Theme2; Ref:4) 
 
 

4.9.3 The Challenges faced by BCom students 

This theme has been analysed and the quantitative empirical evidence suggests that it is a 

real problem. It should however be noted that BCom students’ performance in computer 

programming assessment is not significantly different from BSc students. This may be 

attested to by the fact that surface learning traits may ensure that students are able to secure 

a pass when it comes to computer programming assessment. However, the BCom students 

lack of deep understanding of fundamental computer programming concepts has been 

exposed by the problem-solving tasks where there was a significant difference in 

performance when compared to BSc students. Also, the analysis in Table 4.2 suggests that 

BCom students have a significantly lesser amount of computer programming experience 

than BSc students. This significant difference did not however play a role in determining 

computer programming performance which was elaborated upon in the quantitative data 

analysis. The verbatim responses by BCom students in this regard do however highlight 

their plight when it comes to computer programming. 
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I feel that more should be done for BCom students programming projects/assignments 

should be given to us (Theme3; Ref:1)  
 

I wish there was better support for BCom students when it comes to programming 

(Theme3; Ref:4) 

 

It is difficult for BCom students to compete with IT students (Theme3; Ref5) 

 

4.10   Data Analysis Conclusion 

In conclusion the study’s data has been presented in a descriptive and inferential manner. 

The descriptive presentation consisted of tables with measures of central tendency (mean 

and median) provided. This was supplemented by visualisations of the study’s data so that 

a proper context for the correlation analysis could be created. The correlation analysis 

conducted has positioned the study to engage in a discussion of results that will enable the 

answering of the research questions. The open-ended question analysis provided a glimpse 

of how the “depth-drive” qualitative insight could be integrated with quantitative data 

analysis techniques to add greater value to the discussions that will prevail in the study’s 

final chapter. 
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CHAPTER 5 – Discussion and Conclusion 

5.1 Introduction 

This chapter represents a reconciliation between the study’s research questions and 

objectives, the conceptual model, the empirical analysis and the main outcomes. This 

chapter is also used as an opportunity to contextualise the study’s findings with that which 

is prevalent in the academic literature. There will also be a discussion of the study’s main 

limitations and a discussion of possible avenues of future research in the attainment of 

good academic performance in computer programming.  

 

The main aim of this study is to determine factors that influence academic performance in 

computer programming by IS&T students at UKZN. This problem has been 

operationalised by a set of research questions and a conceptual model to provide guidance 

on the answering of the research questions. The constructs in the conceptual model has 

been identified in the study’s literature review thereby adding a measure of construct 

validity to the conceptual model. The conceptual model’s predictive capacity was, 

however, scrutinised via confirmatory factor analysis. The appropriateness of the model 

was subjected to further scrutiny by examining the possibility of using the Path Analysis 

technique to generate a model that had a greater “fit” to the study’s data. The final analysis 

conducted in the study was qualitative and it was necessitated by the open-ended question 

found in the study’s data collection instrument. The study has to be classified as a 

quantitative study driven by positivistic philosophy. However, the study’s open-ended 

question provided an opportunity to enrich the study’s value by catering for aspects of 

respondent behaviour that has not been predicted. While the intention of the researcher 

was not to engage in a mixed-methods research, the richness of data in the qualitative 

section of the study’s data collection instrument provided ample opportunity for 

integrating the quantitative analysis with the qualitative analysis to create a mixed-methods 

look and feel.  

The full interpretation of this study’s findings is presented in this chapter in relation to the 

research questions that are guiding this study. 
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5.2 The Study’s Context and Findings 

The study was commissioned to explore the role that five (5) significant constructs play in 

academic performance in computer programming. All of these constructs have been 

identified in the literature section of this study as significant role players in determining 

academic performance in computer programming. However, these constructs do not act in 

isolation. There has not been any previous study where all of these constructs have been 

combined into a single conceptual model. The cogency of this model has been tested by 

applying confirmatory factor analysis with the result showing that a reasonably “good fit” 

has been found for the conceptual model and the study’s data. To achieve this “good fit” 

many of the questionnaire items had to be eliminated and the improvement in the model’s 

internal reliability is confirmed by an improved set of Cronbach alpha scores that are in 

excess of 0.7 (shown in Chapter 4, Table 4.4). This strategy of variable reduction to 

improve the predictive capacity of a model is also used in Chowdhury and Turin (2020) as 

well as Mai, Tian, Lee, and Ma (2019).  

 

5.2.1 Previous Experience and Computer Programming 

The study’s main data collection instrument was a survey that was administered to students 

who are registered for the IS&T programme spanning from the 2nd level of undergraduate 

study to Masters. The study’s core set of respondents were students who were studying 

towards an BCom or a BSc degree where Information Systems was one of the major 

courses that the student was registered for. While the focus of discussion and data analysis 

has been centred on the constructs that are found in the study’s conceptual model, the 

researcher leveraged opportunities to gather data and conduct analyses on periphery 

constructs that will add value to the discussion of the study’s outcomes. One of these 

periphery analyses was the correlation between the number of years of computer 

programming experience and the degree that students were registered for. The findings 

showed a significant correlation and this knowledge will tie in to the main analysis sections 

because previous experience was identified as an a priori predictor of computer 

programming performance. The bivariate correlations did show a moderate but significant, 

positive correlation. This outcome suggests that previous experience does play significant 

role in academic performance in computer programming. The results from the current 

study are consistent with those observed in the systematic literature review by Medeiros, 

Ramalho, and Falcão (2018) where it was found that in a majority of studies, there is 
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evidence of a positive relationship between previous experience and proficiency in 

computer programming. However, this is not corroborated by all studies. In the current 

study, the multiple regression correlation analysis and the subsequent path analysis 

exercises showed that previous experience did not account for much of the variance in 

computer programming performance. The implication here is that the case of BCom 

students being compromised by a lack of previous experience is one that can be 

circumvented by pedagogical measures that can mitigate against this handicap. The 

knowledge obtained from the current study regarding previous experience is crucial 

because the implication is that when previous experience is considered as part of a broader 

understanding of the factors that influence computer programming proficiency, its 

significance is quite minimal.  

 

5.2.2 Problem Solving Ability and Computer Programming 

One of the study’s research questions was to establish the significance of problem-solving 

ability on proficiency in computer programming. The problem-solving concepts 

referenced in the current study had a strong computer programming alignment and entailed 

analogical reasoning, conditional and iteration logic and data structure processing logic. 

The study’s findings are quite convincing. Problem solving ability shows a strong, 

significant positive correlation with computer programming performance. This outcome is 

confirmed in the report compiled by Medeiros et al. (2018) where 26 papers on this topic 

were reviewed. While the significance of problem solving has been confirmed, the claim 

is made that the instruments used to measure problem solving ability are not consistent and 

there is no standardised instrument that can be relied upon. The instrument used in the 

current study was based on the highly recognised IBM programming assessment task 

(PAT) assessment framework. However, it was adapted to align with the computer 

programming framework currently used at UKZN. This ensured that students were familiar 

with the coding fragments to enable a seamless response. Barlow-Jones and van der 

Westhuizen (2017) used a similar instrument with a similar research agenda at the 

University of Johannesburg and the outcome was that problem-solving ability was a 

“major” predictor of computer programming performance. The implication from these 

results suggest that universities need to invest more time at 1st year level where there is 

focus on logical reasoning and algorithmic thinking so that students can obtain foundation 

knowledge on computer programming semantic structures to enhance problem solving. 
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This observation has significant implications for students who have not had prior 

experience in computer programming because a focus on algorithmic thinking would equip 

them with the cognitive structures required to obtain a deep understanding of computer 

programming logic. 

  

5.2.3 Self-Efficacy (SE) and Computer Programming 

The role that SE plays on computer programming performance has not received much 

prominence in the current literature on computer programming. In the past studies such as 

those by Bergin and Reilly (2006) and Ramalingam, LaBelle, and Wiedenbeck (2004, 

June) did show that SE was a good predictor of computer programming performance. This 

outcome is confirmed in the current study where 9 questionnaire items were used to 

establish the levels of SE of students when it comes to computer programming. The 

significant positive correlation observed indicates that SE is a good predictor of computer 

programming performance. However, as Tsai, Wang, and Hsu (2019) points out there is 

also a strong positive correlation between SE and previous experience, which is confirmed 

in the current study. The current study extends the network of influence regarding SE by 

observing that there is a strong positive correlation between SE and a deep learning style. 

These observations are significant from a pedagogical perspective because educators 

should make a concerted effort to enhance and enable high levels of SE amongst students 

in their programming courses. This can be achieved by providing students with extra 

resources to enable the attainment of good academic performance in computer 

programming, more practical tasks and extending the notional time of engagement with 

computer programming activity. This will mitigate any negative consequence that may 

accrue due to a lack of prior experience in computer programming or a lack of problem-

solving ability. Hence, the construct of SE is actually a function of previous experience 

and problem solving ability (Ramalingam et al., 2004, June) and it was used in the current 

study’s conceptual model as a dependent variable.  

 

5.2.4 Intrinsic and Extrinsic Motivation and Computer Programming 

The construct of motivation played a minimal role in predicting computer programming 

performance. While this construct had a weak but positive correlation with SE and learning 

styles it did not display a significant relationship with problem solving ability, previous 

experience or computer programming performance. This observation is consistent with the 
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results in a similar study by Pawlowski (2007) where it was reported that motivation made 

a contribution to the bivariate analysis framework but did not appear in the regression 

model because of a lack of significance. This outcome is contrary to the results reported in 

the study by Bergin and Reilly (2005) where intrinsic and extrinsic motivation was strongly 

aligned to computer programming performance. An interesting study is one conducted by 

Kim and Frick (2011) who observed that when students are confined to online learning, 

high levels of intrinsic motivation was a predictor of success in an online learning 

environment. 

5.2.5 Open Ended Responses pertaining to computer programming 

The study’s open-ended question provided the researcher with a different dimension to 

analyse students’ opinion on the topic of computer programming. The thematic analysis 

revealed reasons for poor performance in computer programming. These were a lack of 

learning resources, a lack of practical exercises and an apprehension by BCom students 

towards computer programming assessment. The open-ended responses became a catalyst 

for further analysis where an independent samples t-test comparison established that there 

was a significant difference in the problem-solving ability of BSc students in comparison 

to BCom students. However, this difference was not significant when it came to academic 

performance in computer programming. The data that was available for analysis indicated 

that BCom students were able to leverage surface learning characteristics and acquire good 

results for computer programming assessment. This observation ties into the final construct 

in the study’s conceptual model which is learning approaches/learning styles. The intention 

here was to measure the influence of learning styles on computer programming 

performance. The study’s survey-based data showed that there was a weak but positive 

correlation between a deep learning style and computer programming performance and 

problem-solving ability. The implication here is that students who have adopted a deep 

learning style generally tended to perform better in computer programming assessment. 

However, the weak correlation implies that students who adopted a surface approach to 

learning computer programming were also able to obtain a good performance score in 

computer programming assessment. This was revealed in the path analysis exercise where 

the learning styles construct had a minimal influence on the model’s ability to account for 

the variance in computer programming performance. This result suggests that the learning 

styles construct will have a greater impact in measuring the ability to learn computer 
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programming if the assessment used is adjusted to include questions that cater for a deep 

learning strategy.  

5.3 The Study’s Limitations and Delimitations 

The main limitation from the study is the threat to the external validity because a greater, 

more expansive sample would have created an opportunity for greater generalisation of the 

study’s results. The delimitation of confining the study to IS&T students was necessitated 

by the researcher’s concerns when it came to data collection because at the commencement 

of the study, the COVID-19 pandemic had devastating implications for free and open 

communication with potential respondents for the study. The researcher’s outreach was 

confined to IS&T platforms that were made available online. Another limitation of the 

study was the potential breach of internal validity because the measurement of student 

programming performance was done through an estimate provided by the study’s 

respondent. The original plan was to obtain knowledge of student marks in computer 

programming assessment via the IS&T department. The Protection of Personal 

Information (POPI) Act did however prevent access to any personal data pertaining to the 

study’s respondents. This potential weakness in the study was however mitigated by the 

inclusion of problem-solving tasks into the study’s questionnaire. The strong positive 

correlation between the scores obtained in the problem-solving tasks and the respondents’ 

estimation of their performance in computer programming assessment enhanced the 

reliability of these variables. The inclusion of problem-solving activity did deter students’ 

participation in the study resulting a lower than expected response rate. 

A further limitation of the study is that the researcher did not factor-in the possible 

influence of additional variables that may have been introduced because of the strategy of 

online learning that was adopted at UKZN. This limitation provides an avenue for further 

research on the topic of online learning and its influence on computer programming 

performance. 

 

5.4 Overall Study Conclusion 

This study was aimed at addressing the issue of students struggling to obtain proficiency 

in the domain of computer programming. There have been numerous previous research 

efforts that have studied this phenomenon and knowledge around this topic has grown 

substantially. The problem of poor performance in computer does however continue to 

prevail. The current study was grounded by the previous efforts at finding a solution to this 
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phenomenon. The difference however, is that this study adopted an inclusive approach 

where the main factors that influence academic performance in computer programming 

have been integrated into a single conceptual framework. The empirical analysis activity 

around this framework enabled the researcher to obtain a better understanding of the 

challenge of learning to program. This is the first study that has shown the relative 

importance of each factor in contributing towards an improvement in students’ 

performance in computer programming. The study was able to elucidate the pivotal role 

played by problem solving ability and self-efficacy in predicting performance in computer 

programming.  

The implication is that factors such as intrinsic and extrinsic motivation, previous 

programming experience and deep and surface learning do contribute, but only in a 

peripheral manner.  

This knowledge provides great pedagogical insight to lecturers and course coordinators 

because when students are empowered with a computer programming mindset that is 

generated through a comprehensive knowledge of computer programming fundamentals 

where logical, conditional and iterative structures are given substantial focus, then a solid 

grounding is established for data structure processing and object-oriented programming at 

a later stage. Also, the open-ended section of the data collection instrument provided great 

insight into students’ experience of learning to program. The plight of the BCOM student 

has been highlighted quite extensively and it is clear that these students do struggle with 

analogical reasoning and the quest to obtain deep understanding of computer programming 

fundamentals. This study highlights the need for a pedagogical intervention based on 

imparting problem-solving skills to these students. 

A further outcome is the development of a conceptual model to predict computer 

programming performance. This model has been subjected to validity testing in the form 

of confirmatory factor analysis, multiple regression analysis as well as path analysis. The 

study did produce a “good fitting” predictive model for the study’s data. However, the final 

model that was identified in the study is not an optimal one and opens up an avenue of 

extension where structural equation modelling techniques could be used to discover an 

optimal model that provides a maximum explanation of the variance in computer 

programming performance. A further interesting area of study is to explore the role that 

motivation and learning style play when students learn programming in an online 

environment as compared to a face to face setting. 
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