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Abstract 

Autumn grass senescence is considered a key driver of quality and quantity in grassland 

ecosystems – hence foraging resource productivity – particularly in communal rangelands that 

are situated in sourveld. This is primarily the case because sourveld grasses significantly lose 

nutrients during senescence, thereby, reducing the condition of the subsequent forage. More 

importantly, in rangeland settings the autumn grassland senescence impact on fodder banks 

and this has serious implications on forage distribution and allocation particularly during dry 

seasons. Popular methods for assessing plant senescence have previously been dominated by 

visual scoring of leaf coloration and fall. However, the latter is often not applicable in grassland 

senescence assessments due to, among others, the tiny size and large number of grass leaves. 

Often the “big-leaf-hypothesis”, which treats the entire plant canopy as a leaf, is recommended 

in estimation of autumn grassland senescence. Besides, several challenges have been reported 

with the adoption of the aforementioned techniques and they include, among others, 

subjectivity, time lag effect, small scale applications and non-repeatability, particularly at 

landscape scale. By contrast, the advent of remote sensing has overcome similar challenges in 

other circumstances, and offered great prospects to effective monitoring of dynamics around 

plant phenology, including senescence. Taking the advantage of these techniques, the present 

study assessed the impact of autumn grass senescence on forage quality and quantity in 

subtropical sourveld grasslands of the KwaZulu-Natal’s (KZN) Midlands, South Africa, based 

on the modern generation broadband multispectral remotely sensed data with improved sensing 

characteristics.  

This was achieved by investigating the following objectives: 1) to provide an overview on the 

progress of remote sensing applications in characterizing grass senescence with possible 

challenges and opportunities, 2) to quantify the magnitude of decline in nGongoni (Aristida 

junciformis) grass quality and quantity owing to senescence using in-situ and Sentinel-2 data, 

3) to characterize the onset of autumn senescence in mesic subtropical sourveld grasslands 

using remotely sensed data, 4) to evaluate the relationship between remotely sensed autumn 

grass senescence and climatic factors plus topography and 5) to test the potential of the modern 

multispectral remote sensing dataset (i.e., Sentinel 2 and Landsat) in mapping grass senescence, 

and to identify the optimal waveband positions that are suitable for separating between 

senescent and non-senescent grass.  

The findings indicated that successful assessment of grass senescence based on remote sensing 

techniques is a function of monitoring the changes in its chlorophyll, biomass and Leaf Area 
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Index (LAI). Furthermore, the use of remote sensing data in concert with Random Forest 

analysis could predict grass quality and quantity at pre-senescence and senescence phases. In 

addition, there was a significant decrease in foraging resource quality from 24.52 µg Chl/cm2 

to 7.34 µg Chl/cm2 and quantity from 2.11 kg/m2 to 1.22 kg/m2 due to senescence. The onset 

of autumn grassland senescence in the study area was successfully determined with an 

inflection point on day number ± 102 of the year. The key environmental drivers of autumn 

grassland senescence in the study area were determined to be; the minimum (Tmin) and 

maximum (Tmax) air temperatures, together with soil moisture. The findings emphasised the 

value of using modern broadband multispectral remote sensing sensors with improved sensing 

properties in detecting autumn grassland senescence, highlighting the Red-Edge Position 

(REP) jointly with the Visible green and red bands as the most sensitive regions of the spectrum 

for mapping grassland senescence.  

The findings obtained in this study underscore the importance of the modern broadband 

multispectral remote sensing sensors like Sentinel 2 in reliable assessment of the dynamics 

around the occurrence of autumn grassland ecosystem senescence. This is vital to optimize our 

projections on potential onset of autumn grass senescence, hence, determination of possible 

duration of quality forage provision in the rangelands. Such information is required to improve 

planning, policy and decision-making pertaining to grazing patterns, the livestock numbers to 

be sustained as well as to signal appropriate times of livestock harvesting. This is more 

beneficial to small-holder farmers as they are often vulnerable to challenges arising from 

climate changes and poor rangeland management practices, among others.  

Keywords: Autumn senescence, communal rangelands, grasslands, remote sensing, sourveld. 
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1. Introduction  

1.1 Autumn senescence in grassland ecosystems 

Grass phenology can be defined as the study of periodic changes in the life cycle of the grass 

as a result of varying topographic and seasonal climatic conditions (Bertin, 2008). Broadly, in 

temperate regions such as the Midlands mist belt grasslands, these periodic changes comprise 

of the growing, maturity, senescence and dormancy stages and they are respectively associated 

with spring, summer, autumn and winter conditions (Volaire et al., 2009). The most common 

form of senescence in the grass is leaf senescence and is described as a decaying phase in the 

phenology of the grass (Corbane et al. 2008; Gregersen et al. 2008; Buchanan‐Wollaston et al. 

2003). Leaf senescence is characterized by gradually programmed cell deaths and is often 

indicative of the end of a growth cycle, while equally signifying the beginning of the new one 

(Royimani et al. 2021; Munné-Bosch and Alegre 2004; Gepstein et al. 2003). According to 

Munné-Bosch and Alegre (2004), this process is highly regulated at the cellular, physiological, 

molecular and biochemical levels of the plant, and is marked by three distinct phases, i.e., the 

onset, degeneration, and the terminal stages. During senescence, several changes are noted in 

the gene expression, physiology and metabolism of the grass leaves (Michelson et al. 2018; 

Guo et al. 2004). The occurrence of grassland leaf senescence can be detected by the combined 

observation of these signs. The first visual sign of grass leaf senescence is yellowing or leaf 

coloration which is the change in the color of the leaves from green to yellow due to chlorophyll 

degradation and carotenoid dominance (Buchanan‐Wollaston et al. 2003). Also senescing plant 

leaves can appear red because of increased anthocyanins content (Munné-Bosch and Alegre 

2004). Unlike other programmed cell death in vegetation, senescence is distinguishable by its 

gradual progression, and the association with nutrient translocation, from the photosynthetic 

parts like the leaves to the storage organs such as the roots (Buchanan‐Wollaston et al. 2003).  

Like any other physiologically programmed cell death process, leaf senescence is largely 

controlled by intrinsic biological processes and ecological factors, otherwise known as internal 

and external factors (Lim et al. 2007). These external drivers include, among others, 

waterlogging, drought, extreme temperatures, high or low incoming solar radiation, insufficient 

soil nutrients, excessive salinity, pathogens, or physical damage, while the internal factors 

include hormonal imbalances, age, reproductive development, ill-health etc. (Michelson et al. 

2018; Munné-Bosch and Alegre 2004; Guo et al. 2004). Both, these internal and external 

factors contribute to the initiation and progression of senescence in the grass, and may 

individually or collectively accelerate or delay the occurrence of senescence (Smart 1994). 
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Consequent to the pressure exerted by the aforementioned factors in each grass leaf and the 

subsequent leaf response, grass leaves may senesce separately or together and the latter is 

always uniformly detected at the canopy level (Royimani et al. 2021). However, from a forage 

quality and quantity perspectives in grassland ecosystems, the senescence of individual grass 

leaves is unworthy due to its disjointed nature of occurrence (Royimani et al. 2022). Instead, 

autumn grassland senescence, which is described as the seasonal grass wilting due to old age 

and the climatic conditions associated with autumn (Mariën et al. 2019), has generated interest 

due to its relative uniformity across the landscape. Therefore, in order to understand the impact 

of senescence on foraging resource quality and quantity as well as the potential implications 

on the livestock and livelihood mechanisms, the need to assess the dynamics around autumn 

grassland senescence is critical due to uniformity in occurrence.  

1.2 The socio-economic and ecological impact of autumn grass senescence 

The importance of monitoring autumn grassland senescence in rangeland settings including the 

opportunity to gain knowledge on the distribution, allocation, condition and availability status 

of forage, particularly during dry seasons (Asner et al. 2004). This is necessary for improved 

planning and decision-making pertaining to the livestock production systems, stocking rates, 

livestock harvesting as well as potential food shortages. During senescence, grass nutrients are 

withdrawn from the foliar to the rooting systems, thus, affect the conditions of the subsequent 

forage (Purdy et al. 2015). More importantly, senescence degrades plant enzymes such as 

chlorophyll and macromolecules like lipids, nuclei acids and proteins, and, thus, generally 

decreasing the photosynthetic activities in the leaves (Guo et al. 2004). Likewise, the effect of 

leaf detachment – as a result of dead grass leaves – at later stages of senescence (Gepstein et 

al. 2003), may significantly decrease the amount of biomass, hence foraging resource quantity. 

Considering the increasing rainfall variability and drought activities associated with the 

changing climatic conditions, especially in southern Africa (Van der Walt and Fitchett 2020), 

the impact of autumn senescence on grasslands is expected to rise. Meanwhile, knowledge on 

the dynamics around autumn grassland senescence is essential for the understanding of fodder 

bank capacities and the potential impact on the livestock and livelihood mechanisms of small-

holder farmers.  

Besides, grassland senescence is an important process not only for its ecological relevance but 

also in terms of persistence of the individual grass plants (Royimani et al. 2021). For instance, 

the reserved nutrients (from the leaves to the roots) during senescence help to reactivate growth 

and development of new, and often nutrient content rich, grasses in the next season (Buchanan‐
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Wollaston et al. 2003) and this is beneficial to quality forage production in rangelands. Also, 

ecologically, senescence is considered an adaptive mechanism of the plants, particularly during 

dry periods, as it helps to reduce the plant-water demand (Munné-Bosch and Alegre 2004). 

Specifically, senescence leads to stomatal closure and this reduces the amount of water lost by 

the grass through evapotranspiration, hence, the low grass-water demand (Anderegg et al. 

2020). In addition, the fallen grass leaves due to leaf detachment at later stages of senescence 

contributes to the decomposable waste material, which helps to increase the organic matter and 

nutrient content of the soil, and, thus, promoting primary productivity (Gepstein et al. 2003). 

Also, the high organic matter content as a result of increased decomposed waste material helps 

to improve the structure and water holding capacity of the soil, thereby, reducing soil erosion 

(Royimani et al. 2021). The accumulated waste material from the senescent fallen grass leaves 

may also act as a buffer to protect the soil surface by intercepting the incoming rainfall droplets, 

which decreases their intensity, soil splash and erosion. Similarly, the accumulated waste 

material often increases the fuel load, and, thus, promotes the occurrence of fires (Royimani et 

al. 2021), a key veld management process and practice in grassland ecosystems (O’Connor et 

al. 2020). Despite the above-mentioned socio-economic and ecological impact of senescence, 

there is a limited knowledge on the implications of autumn grassland senescence in the context 

of veld type and adopted rangeland management practices. This is critical considering the 

remarkable decline reported in sourveld grass quality because of senescence (Zacharias 1995), 

as well as the poor management practices that characterizes communal rangelands (Selemani 

2014). 

1.3 The impact of grass senescence on the livestock in the context of veld type and 

rangeland management system 

The impact of autumn grassland senescence on foraging resource quality and quantity is mainly 

experienced in sourveld as opposed to sweetveld (Royimani et al. 2021). In contextualizing the 

characterization of grasslands as either sweet or sour, this is a southern African concept and is 

used to distinct between grasslands that are found in high rainfall areas of soils with a low base 

status (sourveld) and those occurring in low rainfall areas of soils with a high base status 

(sweetveld) (Ellery et al. 1995). The high rainfall that characterizes sourveld (Ellery et al. 

1995) often promotes the leaching of grass nutrients. Using nitrogen content as a proxy for 

grass quality across sweet, mixed and sourveld, Zacharias (1995) discovered that, although 

sweet and mixed-veld grasses lose quality during senescence, the amount of decline in grass 

quality is remarkable in sourveld. With high nutrient loss in sourveld grasses, there is a greater 



5 
 

risk of quality forage shortages, hence, livestock starvation. Additional evidence suggests that, 

there is a general loss in body weights of animals that are feeding on sourveld during dry 

periods due to decrease in forage quality below the required level to sustain growth (Ellery et 

al. 1995). This discussion emphasizes the need to prioritize sourveld grazing lands in efforts 

aimed at monitoring the dynamics around autumn senescence as well as the associated impact 

on forage quality and quantity.  

With regards to management regimes, the impact of autumn grass senescence on forage quality 

and quantity is expected to be significant on communal rangelands compared to private grazing 

areas. Broadly, this could be due to either poor or lack of management practices in communal 

rangelands (Kiguli et al. 1999), together with absence of infrastructural facilities such as 

fencing (Bennett et al. 2010) to support the adoption of effective livestock and grazing 

management efforts. With issues emanating from resource constraints (Cousins 1999), 

communal farmers can barely afford the cost to fund the infrastructure of their rangelands and 

that can lead to poor protection or unsustainable utilization of available free-ranging natural 

forage. Communal rangelands can be defined as the veld whereby grazing areas and the 

subsequent resources, through the custodianship of traditional authorities, are managed and 

shared communally (Cousins 1999). This management approach often increases pressure on 

foraging resources, hence, the common perception that communal rangelands are either 

degraded or unproductive (Selemani 2014).  

In addition, the autumn grass senescence may, therefore, further increase the pressure on the 

quality and availability status of forage in communal rangelands. The pressure on communal 

rangelands forage could be further intensified owing to the lack of common commercial forage 

quality enhancement measures such as fertilizer applications, irrigation systems and 

supplementary feed (Brown and Shrestha 2000). Some of these measures like the irrigation and 

fertilizers can directly reduce the impact of autumn grass senescence by delaying its onset 

(Fataftah et al. 2021; ZHU et al. 2012), while supplements could contribute indirectly by 

lowering the amount of livestock reliance on natural pastures. Considering the importance of 

communal rangelands as the primary source of free-ranging feed for the livestock (Cousins 

1999) – a key livelihood mechanism for small-holder farmers, particularly in poor rural 

communities (Herrero et al. 2013) – the impact of autumn grassland senescence may threaten 

rural livestock and increase the vulnerability of small-holder farmers to poverty. In light of this 

background, the comprehensive examination of autumn grassland senescence is critical, 

particularly when viewed in the angle of addressing global Sustainable Development Goals 
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(SDGs) number 1, 2 and 10, which talks to no poverty, zero hunger and reduced inequality, 

respectively.  

1.4 Conventional and remote sensing methods for assessing plant senescence  

Traditional methods for assessing plant leaf senescence are dominated by field surveys, which 

are dependent on visual scoring of leaf coloration and fall (Anderegg et al. 2020). However, 

the main shortcomings of using such approaches in monitoring plant phenology are well 

documented in literature, and they include, among others, subjectivity, limitation to plot-scale, 

and effect of time lag  (i.e., they can only occur beyond a given decline in chlorophyll threshold) 

(Mariën et al. 2019). Similar studies have also stressed the challenges of using manual methods 

like field surveys in gathering data on vegetation properties, highlighting the associated high 

cost, the intensive time and labour required, as well as the difficulty in accessing remote areas 

(Royimani et al. 2019b). In contrast, earth observation instruments such as remote sensing have 

been a reliable primary source of data supporting the characterization of earth surface features 

such as vegetation in a spatially and temporally explicit manner (Sibanda et al. 2017a). Such 

approaches could be effective for continual broad-scale monitoring of autumn grass senescence 

at the landscape scale. However, few studies have been done to fully understand the role of 

remote sensing in autumn grassland senescence assessment (Liu et al. 2013; Asner et al. 2004; 

Bork et al. 1999). By far, these studies have been dominated by either the use of Analytical 

Spectral Devices (ASD) field spectroradiometer, which are limited to plot-scale, or the coarse 

resolution data like the Landsat 5 Thematic Mapper (TM) and 7 Enhanced Thematic Mapper 

Plus (ETM+) (Asner et al. 2004; Qi et al. 2002). Besides the averaging sensing properties, the 

Landsat 7 is known to suffer from the scan line error which compromises the quality of its data 

(Trigg et al. 2006; Storey et al. 2005). Furthermore, the course spatial resolution provided by 

instruments such as the Moderate Resolution Imaging Spectroradiometer (MODIS) (Kuenzer 

et al., 2015), although often recommended for large-scale applications, may not be suitable for 

estimating autumn grass senescence due to the high species diversity that characterizes 

grasslands (Collinge et al. 2003). Equally, the high spatial resolution (e.g., RapidEye, 

Quickbird, WorldView-2/3, etc.) and hyperspectral (e.g., Hyperion EO-1, Global Imager 

(GLI), etc.) datasets which are often commended for their improved quality are generally 

inappropriate for wall-to-wall and ongoing assessments required for autumn grassland 

senescence monitoring at the landscape scale. This is the case because of the expensive 

acquisition costs that characterizes these datasets vis-à-vis the small area coverage (Timothy et 

al. 2016).  
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Based on the above given background, it is evident that the application of remote sensing in 

grass senescence remains shallowly explored, and this has limited our potential to accurately, 

timely and reliably assess autumn senescence in grassland ecosystem, especially from a forage 

quality and quantity perspectives. Meanwhile, the launch of modern generation multispectral 

remote sensing sensors such as the Landsat 8 and Sentinel 2, with better spatial, spectral and 

temporal resolutions, offers prospects for the ongoing and large-scale monitoring of autumn 

grass senescence in a spatially and temporally explicit manner. The Landsat 8 provides readily 

available optical data captured at a spatial resolution of 30 m across the Visible, Near Infrared 

and Shortwave Infrared regions over an area coverage of 185 km. The Sentinel 2, on the other 

hand, allows for a free provision of the information collected at a spatial scale of 10 – 60 m 

through the Visible, Red Edge Position (REP) and the Shortwave Infrared (SWIR) sections of 

the spectrum across a geographical extent of 290 km. The high revisit time (i.e., 5 and 16 days 

for Sentinel 2 and Landsat 8) coupled with better spectral and spatial properties of these sensors 

will promote effective characterization of autumn grassland senescence even in resource 

constrained countries. In addition, these instruments are generally characterized by refined and 

strategically located spectral bands to optimize the assessment of autumn grassland senescence.  

1.5 Aim 

The aim of the current study was, therefore, to assess the impact of autumn grass senescence 

on foraging resource quality and quantity in subtropical sourveld grasslands of KwaZulu-Natal 

(KZN), South Africa, based on the modern generation broadband multispectral remotely 

acquired data. The focus was on a case study in the KZN Midlands communal rangelands.  

1.6 Objectives of the study 

The specific objectives were:  

1. To provide a detailed overview on the progress of remote sensing applications in 

characterizing grass senescence and the possible challenges and opportunities.  

2. To quantify the amount of decline in nGongoni (Aristida junciformis) grass, a dominant 

sourveld species, quality and quantity because of senescence, using in-situ and 

Sentinel-2 data. Also, to assess forage availability status at pre-senescence and 

senescence stages based on the Dry Matter content (DM) of the grass. 

3. To characterize the onset of autumn senescence in mesic subtropical sourveld 

grasslands using remotely sensed data.  
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4. To evaluate the climatic and topographic drivers of remotely sensed autumn grassland 

senescence.  

5. To test the potential of the modern multispectral remote sensing dataset (i.e., Sentinel 

2 and Landsat 8) in mapping grass senescence, and to identify the optimal waveband 

positions that are suitable for discriminating between senescent and non-senescent 

grass. 

 

1.7 Study site description  

This research was carried out at Vulindlela communal land, west of Pietermaritzburg, 

KwaZulu-Natal, South Africa (Figure 1.1) with central geographic coordinates 

29o.40’37.3584’’S and 30o.8’13.6572’’E. Broadly, this area is situated in the sourveld of the 

Midlands mist belt grassland region (Mucina et al. 2006). The area has subtropical climates, 

which include hot and wet summers and cold and dry frosty winters (Sibanda et al. 2021). The 

frost conditions generally start in mid-April through to end of August (Royimani et al. 2022). 

The frosty conditions associated with winter may promote grass senescence, and thereby 

increase the susceptibility of the grass to wildfires. The mean annual rainfall is around 950 mm 

(Singh et al. 2018; Sibanda et al. 2021), with most and least rainfall experienced during 

summer and winter, respectively. The average annual minimum and maximum temperatures 

are 6oC and 22oC in winter and summer, respectively (Royimani et al. 2023). Although not 

pronounced, the topography is defined by hilly and valley landscapes and an altitude ranging 

between 1273 to 1412 m.a.s.l. The soils at Vulindlela are predominantly loam with random 

rocky surfaces (Royimani et al. 2023).  

Historically, Vulindlela was dominated by forb-rich and sour Themeda triandra type grass 

species, however, has since been severely transformed owing to, among others, the nGongoni 

(Aristida junciformis) grass invasion (Scott-Shaw and Escott 2011). Consequently, the current 

vegetation at Vulindlela is strongly defined by the nGongoni and other mesic subtropical grass 

types of the sourveld along with patches of shrubs and pine (Pinus) and gum (Eucalyptus) 

plantations (Royimani et al. 2022). According to Sibanda et al. (2021) and Fynn et al. (2011), 

these mesic subtropical grasses comprises of, among others, Alloteropsis semialata, Aristida 

junciformis, Tristachya leucothrix, Themeda triandra, Panicum maximum, Eragrostis 

tenuifolia, Paspalum urvillei, Setaria sphacelata and Sorghum bicolour. Furthermore, 

Royimani et al. (2021) noted that sourveld grasses are generally known for their high degree 

of nutrient loss – hence decline in grazing value – particularly during the winter season and 
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that makes them a perfect choice of investigation in efforts aimed at understanding the impact 

of senescence on foraging resource quality and quantity.   

 

 

Figure 1.1 The location of Vulindlela communal area, KwaZulu-Natal, South Africa. 

 

In addition, observational evidence suggested that grasses at Vulindlela are largely exposed to 

continuous and uncontrolled grazing patterns. This is due to the lack of infrastructural facilities 

such as fencing to regulate the movement, grazing patterns as well as the numbers of the 

livestock or stocking densities. In contrast to rotational grazing, which is a common practice in 

commercial rangelands, continuous grazing is known to increase the pressure on grazing 

resources and often prevent grass growth (Teague et al., 2008). This may have negative 

implications on fodder bank capacities and further increase the risk of fodder deficiency, 

particularly during dry seasons. Moreover, uncontrolled fires were observed to be a common 

practice, especially over the dry winter period when the grass is dormant because of 

senescence, in turn affecting forage availability. Livestock farming has been identified as one 

of the key agricultural land use practice in the area, with a main focus on communal livestock 

production systems (Sibanda et al. 2021). However, evidence suggest that the management of 
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natural resources like pastures and the grazing patterns adopted in communal grazing lands are 

either not sustainable or ineffective (Ayantunde et al. 2014).  

With regards to household headships and socioeconomic activities, Vulindlela – a former 

homeland of KwaZulu – is typical of a South African rural community which is characterized 

by female-headed households and high levels of poverty and unemployment (Darbes et al., 

2014). Nonetheless, research shows that, by far, rural women constitute the greatest portion of 

the most vulnerable and marginalized population groups in underdeveloped rural communities 

like Vulindlela (Govender and Qwabe, 2022). The limited access to economic opportunities 

coupled with high levels of unemployment in Vulindlela suggest that the only means thorough 

which local populations can sustain their survival is by farming. However, observational 

evidence indicated that agriculture at Vulindlela is largely dominated by smallholder farming 

which include subsistence livestock and small household gardens. According to reports, the 

rise in demand for land to support developmental projects such as housing has led to increased 

loss of productive agricultural land at Vulindlela (Isikhungusethu Environmental Services (Pty) 

Ltd, 2016), thus, putting more pressure on limited productive agricultural land. Notable from 

this discussion is the importance of the livestock as a key household livelihood mechanism.  

1.8 Scope of the study  

In optimizing the assessment of grass senescence for the knowledge on foraging resource 

quality and quantity in communal rangelands that are situated in sourveld, the focus of this 

work was on exploring the role of the modern generation multispectral remote sensing dataset 

in monitoring the dynamics around the occurrence of autumn grassland senescence. Using the 

broadband multispectral remote sensing instruments in concert with robust and advanced 

algorithms like the Random Forest, this study assessed spectral, spatial and temporal windows 

for optimal detection of autumn grassland senescence. Specially, this work investigated the 

optimal remote sensing techniques, jointly with in-situ measurements of plant parameters, for 

reliable assessment of the onset and impact of autumn grass senescence on foraging resource 

quality and quantity. It further examined the climatic and topographic drivers of autumn 

grassland senescence, as well as the spatial scale required for effective discrimination between 

senescent and non-senescent grasses. Overall, the study revealed the importance of the Random 

Forest in extracting useful information for understanding the remotely sensed autumn grassland 

senescence. Equally, the study has identified the required period of time, spatial scale as well 

as spectral regions for reliable estimation of grassland autumn senescence together with key 

environmental drivers of this phenological stage.  
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1.9 Thesis outline  

This thesis comprises of seven chapters, of which five are stand-alone papers either published 

or submitted for publication in appropriate international journals, while the other two are this 

introduction and the final synthesis sections. The five chapters sent for publication addresses 

each of the research objective stipulated in section 1.6. There may be some overlap and 

repetition across chapters because of the need for each to stand alone as a separate published 

paper.  

1.9.1 General introduction and contextualization  

1.9.1.1 Chapter One 

This serves as an introductory chapter and provides the overview and contextualization of the 

study. More importantly, it highlights the main aim, scope and the outline of the work done 

together with specific research objectives to be addressed. It further illustrates the relevance of 

understanding the dynamics around, and the impact of, autumn grassland senescence on 

foraging resource quality and quantity, the chosen study area (communal sourveld grassland), 

as well as the adopted remote sensing-based methodology to address the stipulated research 

objectives.  

1.9.1.2 Chapter Two 

This chapter gives a detailed overview on the progress of remote sensing applications in 

characterizing grass senescence. It further elaborates on the challenges and possible 

opportunities presented by these techniques in assessing plant senescence. The chapter also 

presents the biophysical and biochemical properties of the plant, including chlorophyll content, 

biomass, LAI and the leaf coloration and fall, commonly used in remote sensing studies of 

plant senescence. It also highlighted the gaps together with the need for adoption of more 

objective ways of assessing grass senescence.  

1.9.2 Operational scale assessment of grassland autumn senescence  

1.9.2.1 Chapter Three 

Using the nGongoni (Aristida junciformis) grass as an example, this chapter estimated the 

magnitude of decline in the quality and quantity of foraging resources because of senescence, 

using in-situ and Sentinel-2 data, and the random forest regression model. It further assessed 

forage availability status at pre-senescence and senescence phenological stages of the 

nGongoni grass using the Dry Matter content (DM) as a surrogate.  
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1.9.2.2 Chapter Four  

Owing to the understanding of the degree of decline in foraging resource quality and quantity 

following senescence (chapter three), this chapter sought to characterize the onset of autumn 

senescence in mesic subtropical sourveld grasslands using remotely sensed data. Taking 

advantage of the high temporal resolution of the Sentinel 2 remotely sensed datasets, 

specifically, this chapter developed monthly vegetation indices from January through June to 

meaningfully understand the grass senescence onset (i.e., inflection point in chlorophyll 

content). This was necessary to ascertain the potential duration of quality forage provision in 

rangeland ecosystems through the dry season.  

1.9.2.3 Chapter Five  

Having successfully determined the onset of autumn grassland senescence in the study area, 

chapter five focused on understanding the key remote sensing-derived environmental drivers 

of autumn grass senescence. Therefore, this chapter examined the spatial correlation between 

remotely sensed autumn grass senescence vis-a-vis climatic and topographic variables in the 

mesic subtropical grasslands. This was not only essential to understand the occurrence of 

senescence and its impact on foraging resources, but also to assist in developing effective 

rangeland management practices. 

1.9.2.4 Chapter Six 

In order to gain a conclusive understanding of the potential role of remote sensing techniques 

in the assessment of autumn grassland senescence, this chapter investigated the potential of the 

modern multispectral remote sensing dataset (i.e., Sentinel 2 and Landsat 8) in mapping grass 

senescence, and tested the optimal waveband positions that are suitable for discriminating 

between senescent and non-senescent grasses. This was necessary to gain knowledge on the 

possible scale of mapping required for detection of autumn grassland senescence.   

1.9.3 Synthesis and conclusion 

1.9.3.1 Chapter Seven 

This is a final chapter and it gives a synthesis of the conclusions drawn from the findings of 

the five analysis chapters presented in this work. The study has clearly determined the spectral 

spatial, and temporal, windows for effective monitoring of autumn grassland senescence using 

remote sensing techniques. In concluding, the section outlined the direction for future research 

and made recommendations for the application of this knowledge in practice.  
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2 Progress in remote sensing of grass senescence: a review on the challenges and 

opportunities 

 

This chapter is based on:  

Royimani, L., Mutanga, O. & Dube, T. 2021. Progress in remote sensing of plant senescence: 

 a review on the challenges and opportunities. IEEE Journal of Selected Topics in 

 Applied Earth Observations and Remote Sensing, 14, 7714-7723.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 



15 
 

Abstract  

Grass senescence estimation in rangeland environments is particularly important for 

monitoring the conditions of forage quality and quantity. During senescence, grasses lose their 

nutrients from the leaves to the root systems, and, thereby, affecting forage quality. Several 

remote sensing studies have been conducted on grasslands during the senescence phenological 

stage with a particular focus on detecting proportions of senescent grass leaves. Although the 

reported results from those studies were promising, our understanding of the role of remote 

sensing in estimating the autumn grassland senescence is still shallow. More so, the strengths 

and limitations presented by the newly developed remote sensing instruments in grass 

senescence estimation are not well documented. This work therefore provides a detailed 

overview on the progress of remote sensing applications in characterizing grass senescence. 

The review further highlights the challenges and possible opportunities presented by these 

techniques. Overall, the review indicated that the available studies on remotely sensed grass 

senescence applications are focused on understanding biophysical and biochemical properties 

and these studies identify the Leaf Area Index (LAI), biomass, chlorophyll content and leaf 

coloration and fall, among others, as key indicators of grass senescence. Nonetheless, recent 

scientific work highlights a mismatch between studies on vegetation phenology and the 

development in remote sensing technologies. The use of sophisticated and robust time-series 

analysis techniques like the piecewise linear regression with a breaking-point jointly with 

enhanced sensing properties from the modern generation sensors, presents novel prospects for 

the reliable estimation of grassland senescence at resolutions complementary to the spatial 

scale of the rangelands. It is, therefore, recommended that future studies close this research gap 

by adopting the recent satellite technologies together with advanced spatial data analytics to 

enhance rangeland resources monitoring.  

Keywords: Forage resources, grass quality and quantity, senescence, rangelands, remote 

sensing.  

2.1 Introduction  

The understanding of grass senescence in rangeland environments is of great importance as it 

informs the knowledge on availability status, condition, distribution and allocation of forage 

(Xu et al. 2019; Fuhlendorf and Engle 2001; Pickup 1996). By definition, senescence is 

generally described as the last phase in the plant’s lifespan (Lim and Nam 2007). In the process, 

plant components such as the leaves and stems individually or collectively deteriorates through 

time as a result of either internal or external factors (Gepstein et al. 2003; Lohman et al. 1994; 
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Smart 1994; Partridge and Barton 1996). Highlighting the impact of external factors in 

senescence, Castro and Sanchez-Azofeifa (2008), noted that the autumn senescence of 

deciduous vegetation in temperate regions is strongly influenced by the day-length of the region 

during this particular period. Buchanan‐Wollaston et al. (2003), also noted that the process of 

grass senescence is invaluable for livestock production as it helps to promote the growth and 

development of new and often nutritious feed. Nonetheless, many other studies have also 

highlighted the ecological relevance of grass senescence (Asner et al. 2004; Bartlett et al. 

1989). For instance, senescence reduces leaf area thereby minimizing the stomatal pores of the 

associated grass foliar and this in turn lowers the evapotranspiration fraction (Curran 1980). 

Also, the senescent grass leaves are known for their low absorptive capacity of the atmospheric 

carbon and thus decreasing the amount of sequestrated carbon (Asner et al. 2004; Bartlett et 

al. 1989). In addition to the common stressors of foraging resources like rangeland degradation 

(Pickup 1996), climate change (Adjorlolo et al. 2012), and the undesirable anthropogenic 

activities, grass senescence also presents extra pressure on ranch and forage quality and 

quantity. Therefore, this emphasizes the need to understand grass senescence, especially in 

developing countries where Gross Domestic Products (GDPs) are largely depended on 

livestock farming. Such information will not only provide insightful baseline knowledge on 

grass-production-budgets but also boost awareness on the value of livestock farming towards 

poverty alleviation which addresses Sustainable Development Goals number 1 (i.e., no 

poverty) and 2 (i.e., zero hunger). 

Traditionally, grass senescence estimation has been achieved, largely, by means of visual 

inspections and handheld field spectrometers (Liu et al. 2013; McKean et al. 1991; Asrar et al. 

1986a). However, the major drawbacks of such methods in vegetation assessment are well 

detailed in the literature and they include, among others, the limited spatial extents, 

compromised repeatability and excessive time and labour required (Royimani et al. 2019a; 

Royimani et al. 2019b). Contrastingly, remote sensing allows for reliable, cost-effective and 

repeated assessments of grass senescence at various landscape scales. Its ability to acquire 

spatial data repeatedly over the same locations provide the multi-temporal data required for 

detecting subtle changes in the physiology and phenology of grass canopies over time. In light 

of these benefits, scholars have explored the contributions of remote sensing techniques in 

estimating grass senescence using different sensing instruments, ranging from local (Asrar et 

al. 1986a) to regional (Asner et al. 2004; Qi et al. 2002) scales of application. Local scale 

assessment of grass senescence with remotely sensed data has often been done, using the 
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Analytical Spectral Devices (ASD) and other hyperspectral radiometers (Bork et al. 1999; 

Asrar et al. 1986a). Although these instruments produced adequate estimation accuracies, their 

limited coverage coupled with excessive acquisition cost often impede their adoption, 

especially for forage monitoring efforts at the landscape scale. Remote sensing multispectral 

sensors like the Landsat 5 Thematic Mapper (TM), Landsat 7, on the other hand, have 

dominated grass senescence monitoring at an operational scale (Guerini Filho et al. 2020; Liu 

et al. 2013; Asner et al. 2004; Qi et al. 2002; Bork et al. 1999). With improved spectral, spatial 

and temporal properties of these sensors, reasonable estimation accuracies of grass senescence 

in geographical scales that are complementary to the spatial extents of rangelands are 

achievable. Also, the free provision of data from these sensors is a huge advantage for 

rangeland resource monitoring, especially in resource limited regions like southern Africa. 

Nonetheless, the success of remote sensing techniques in characterizing grass senescence relies 

on the use of biochemical, physiological and phenological properties of the foliar as surrogates. 

Commonly used biophysical indicators that have aided the remote sensing of grass senescence 

include the Leaf Area Index (LAI) (Asrar et al. 1986a), fraction of absorbed photosynthetically 

active radiation (fAPAR) (Butterfield and Malmström 2009), chlorophyll content (Liu et al. 

2013), aboveground grass biomass (Guerini Filho et al. 2020; Butterfield and Malmström 

2009; Asner et al. 2004), among others.      

Despite this knowledge, only a handful of studies have reviewed remote sensing applications 

on vegetation with an element of senescence in general. For instance, Bradley (2014) reviewed 

remote sensing techniques for detecting invasive plants using phenological, spectral and 

textural attributes. Moore et al. (2016), gave a synthesis of remote sensing approaches for 

monitoring changes in the phenology of the Australian vegetation. Although the potential of 

remote sensing in characterizing senescence has been noted, however, such studies have largely 

focused on croplands and woody vegetation instead of grass species. This highlights the need 

for the state of the art review in the literature to understand the contributions of remote sensing 

methods in estimating grass senescence. Also, this information will serve as a baseline for 

identifying critical knowledge gaps for future improvements. Such a synthesis is even more 

relevant owing to current developments in remote sensing technology. For instance, the recent 

introduction of broadband multispectral remote sensing instruments (e.g., Sentinel-2 and 

Landsat 8) with improved spatiotemporal and spectral properties provides new options for 

grass senescence assessment and estimation. Therefore, the current study provided an overview 

of remote sensing techniques and their applications in characterizing grass senescence with 
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associated challenges and opportunities. Primarily, the study gave a detailed discussion of the 

methodology followed in searching and identifying relevant literature for the review process. 

Further, the study explored the process of grass senescence jointly with the subsequent impact 

on forage quality and quantity across various veld types. In addition, the review examined the 

differences in spectral reflectance of green versus senescent grass species. The study also 

interrogated the commonly used remote sensing techniques and vegetation indices for 

characterizing grass senescence. Lastly, the study highlighted the common challenges in 

remote sensing of grass senescence together with possible directions for future studies in 

remote sensing of grass senescence.  

2.2 Literature search and selection of source articles  

To achieve the objective of the present study, relevant literature from selected peer-reviewed 

journals were gathered and reviewed. The selected articles were identified using key search 

words from the web of science, google scholar, and other revered scientific databases. These 

repositories are believed to be among popular databases, which are rich in terms of peer-

reviewed scientific work of this nature. The key search words included: “remote sensing of 

grass senescence”, “remote sensing of dry grass biomass”, “grass senescence”, “sourveld grass 

development”, “livestock forage quality”, “remote sensing of grass phenology”, “autumn 

grassland senescence”, “pasture production”. Additional journal articles were found from the 

reference lists of included studies through a process known as backward reference list checking 

(Karlson and Ostwald 2016). Studies were, therefore, included or excluded on this work based 

on the above-mentioned criterion.  

2.3 Grass senescence and its impact on forage quality and quantity across various veld 

types 

Senescence is an important phenological stage in the life cycle of grasses which marks the end 

of the older life and paves a way for the beginning of a new one (Lim and Nam 2007; Dertinger 

et al. 2003). In the process, fundamental changes are notable in the gene expression, 

metabolism, and structure of various grass components such as the leaves and stem (Lim et al. 

2007). The earliest and the most common form of senescence in grasses is leaf senescence, in 

which the individual green leaves of the grass gradually turn yellow to brown in colour as a 

result of breakdown and loss of chloroplast (Corbane et al. 2008; Gregersen et al. 2008; 

Buchanan‐Wollaston et al. 2003). The progressive loss of green colour in grass foliage often 

coincides with the migration of nutrients from the tiller parts to the root systems (Das and 

Chaturvedi 2005). Broadly, the leaves can senesce as a result of either poor plant health status, 
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strenuous environmental conditions, and/or old age (Santos et al. 2010; Chaerle and Van Der 

Straeten 2000). The process whereby plant leaves uniformly go through senescence due to their 

old age, like the autumn senescence, at the landscape scale is called natural senescence 

(Gepstein et al. 2003), whereas induced senescence is consequent to actions of particular agents 

like diseases, extreme weather conditions or physical disturbances, among others (Figure 2.1).  

 

 

Figure 2.1 Schematic representation of leaf senescence as a result of internal and external 

factors. (Adapted from Lim et al. 2007).  

 

Based on Lim et al. (2007), figure 2.1 illustrates the phenology of the vegetation with a 

particular focus on the senescent stage with internal and external casual factors, on the left and 

right hand sides, respectively. It can be seen that the internal factors are largely defined by the 

biochemical constituents of the plant itself while the external causes are more of an outside 

agent, like micro-climate and pathogens, etc. Under the influence of internal factors, grasses 

can senesce earlier than their natural expected time, mainly due to excess or shortage of 

particular hormones or ill health. However, in external factors, grasses senesce because of 

limited sunlight, water, and nutrients, among others (Buchanan‐Wollaston et al. 2003). 

Research reveals that after senescence, the fallen grass material is decomposed to enhance the 

structure of the soil as well as water holding capacity, which also reduces soil erosion (Ackerly 
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1999; Kok et al. 1990). Likewise, the decomposed grass material activates soil nutrient 

turnover and primary productivity, which is necessary for livestock grazing purposes (Guo et 

al. 2004; Nagler et al. 2000). Clearly, grass senescence is not a completely undesirable process, 

especially for livestock production as it activates the development of new and mostly high 

nutrient forage (Buchanan‐Wollaston et al. 2003). A detailed scientific report of this process is 

presented in the works of Woo et al. (2019), Lim and Nam (2007), Lim et al. (2007), and 

Gepstein et al. (2003), etc.  

In addition, experimental studies showed that senescence is a major driver of grass quality and 

quantity (Hemminga et al. 1999; Lohman et al. 1994; Day 1983), especially for grazing 

purposes. This is particularly the case in sourveld grazing areas where grasses are subjected to 

a process of “leaf-to-root” nutrient translocation as a result of senescence (Smart 1994), and 

this significantly degrades grass leaf nutrients (Das and Chaturvedi 2005). A clear 

demonstration of this process has been made in Figure 2.2 using data extracted from Zacharias 

(1995). This author used nitrogen content as an indicator of grass quality to compare nutrient 

holding capacities between sweet-, mixed-, and sourveld grasses over different seasons. The 

results reveal that sweetveld grasses can hold nutrients constantly high throughout the year 

whereas the quality of mixed-veld grasses is highly variable mostly with seasons. On the other 

hand, sourveld grasses showed low nutritional content for most of the year, with the lowest 

(0.5%) nitrogen value reported in the transition from winter to spring. Evidently, sourveld 

grasses are mainly effective during summer as far as the livestock grazing purposes are 

concerned. Although grasses from the sweet- and mixed-veld are subjected to senescence, the 

ability of their leaves not to drastically lose nutrients makes them a better choice for the 

livestock production. It is also assumed that the yellow to brown leaves of sourveld grass, 

following senescence (Lim and Nam 2007) are not adequate nor even nutritious for the 

livestock consumption. Even though sourveld grazing areas are considered to be rich in terms 

of species diversity, Hardy et al. (1997) and Pickup (1996) maintain that not all the herbage 

produced in rangelands are palatable. This further perpetuates the selective grazing that has 

been reported in sourveld (Peddie 1995). Likewise, the selective grazing increases fuel loads 

(Little et al. 2015; Forsyth et al. 2010), and thereby promoting veld fires (Little et al. 2015). 

The remaining grass stems as a result of cold fires or senescence are often less likely to regrow 

their leaves until the next rainy season, mostly in spring, occur. This is precisely because grass 

production processes in sourveld are strongly influenced by seasonality and rainfall (Hardy et 

al. 1997). The subsequent impact, thereafter, is expected to be felt mostly by rural livestock 
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Contrary to the green leaves, the spectral properties of senescent vegetation are not easily 

discernable due to many factors including the soil background promoted by the decrease in 

foliar cover and LAI, among others. Similarly, spectral reflectance of senescing flora is often 

mixed and confused with fractions of adjacent green leaves and this is particularly the case 

when using measurements taken at the canopy level. However, with the understanding of the 

influential internal and external constituents,  Asrar et al. (1986b) showed that the spectra of 

senescing leaves can also be detected from various regions of the spectrum. As opposed to the 

high chlorophyll content of green leaves, which induces the spectral signatures at 450 and 550 

nm, the low chlorophyll content of senescent leaves increases the subsequent spectra at 675 nm 

wavelength (Peñuelas and Filella 1998). It is further noted that senescing leaves exhibit 

increased spectral reflectance in the red and SWIR regions of the spectrum due to decreased 

chlorophyll and water content (Matongera et al. 2018). The variation in water content between 

senescent and green leaves is further expected to induce their spectral distinctiveness in the 

MIR region of the electromagnetic spectrum (Adam et al. 2010).  

2.5 Remote sensing techniques and common vegetation indices for assessing grass 

senescence 

Globally, there is only a handful of remote sensing studies that have investigated the subject of 

grass senescence in rangeland ecosystems. For instance, Qi et al. (2002) tested the capabilities 

of the Landsat 5 and Landsat 7 images in estimating forage production based on combined 

fractional cover of the senescent and green leaves of the herbaceous vegetation in the Appleton 

Whittell Research Ranch, southeast of Arizona, United States of America (USA). The green 

canopy cover was assessed using the NDVI while the senescent components were characterized 

based on the Normalized Difference Senescence Vegetation Index (NDSVI) and the linear un-

mixing analysis. The formula for NDSVI and other indices commonly used in estimating grass 

senescence are presented in Table 2.1. Optimal estimates of forage production were obtained 

with R2 values of 0.91 and 0.93 and standard errors of 2% and 0.03(kg) for the senescent 

fractional cover and the total forage respectively. In addition, Qi et al. (2002) observed a poor 

correlation between the NDVI and the biomass of senescent grass, something that was also 

reported by Butterfield and Malmström (2009). The inability of the NDVI to successfully 

characterize grass senescence highlighted the need for an alternative technique like the NDSVI 

to optimize grass estimation during the senescent stage.  
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Table 2.1 Summary of commonly used vegetation indices in estimating plant phenology and 

senescence  

Index name Formula  Reference  

Enhanced Vegetation Index 

(EVI) 

2.5(NIR - Red)/(NIR  + C1 *   

Red – C2 * Blue + L) 

Gómez-Giráldez et al. 

(2020) 

Simple Ratio (SR) (NIR/red) McKean et al. (1991) 

Enhenced Vegetation Index 2 

(EVI2) 

2.5(NIR – Red)/(NIR + 2.4 * 

Red + 1) 

Gómez-Giráldez et al. 

(2020) 

Simple Ratio (SR) (MIR/IR) McKean et al. (1991) 

Sentinel-2 Red Edge Position 

(S2REP)  

705 + 35 * ((((NIR + R)/2) − 

RE1)/(RE2 − RE1))  

Gómez-Giráldez et al. 

(2020) 

Greenness Index  Karhunen-Loeve Transformation 

(KLT) 

McKean et al. (1991) 

Green Chromatic Coordinate 

(GCCs) 

G/(R + G + B)  Gómez-Giráldez et al. 

(2020) 

Meris Terrestrial Chlorophyll 

Index (MTCI) 

(NIR − RE)/(RE − R) Gómez-Giráldez et al. 

(2020) 

Normalized Difference 

Vegetation Index (NDVI)  

(NIR – R)/(NIR + R)  Butterfield and 

Malmström (2009); Di 

Bella et al. (2004) 

Green Normalized Difference 

Vegetation Index (GNDVI)  

(NIR - Red)/(NIR + Red) Gómez-Giráldez et al. 

(2020) 

Normalized Difference 

Senescence Vegetation Index 

(NDSVI) 

(RSWIR – Rred)/(RWSIR + Rred)  Qi et al. (2002)  

Inverted Red Edge Chlorophyll 

Index (IRECI) 

(NIR − R)/(RE1/RE2) Gómez-Giráldez et al. 

(2020) 

Soil Adjusted Vegetation Index 

(SAVI)  

1.5(NIR − Red)/(NIR + Red + 

0.5) 

Gómez-Giráldez et al. 

(2020) 

 Footnote: R = wavelength.  

 

In another study, McKean et al. (1991) investigated the role of the multispectral Thematic 

Mapper Simulator NS001 (TMS-NS001) datasets and time-series analysis in explaining grass 

senescence as a result of landslide debris flow across an uneven terrain of the Marin County of 

California in the USA. The authors derived three vegetation indices from the four TMS-NS001 

images acquired, of which two of those indices were based on the Simple Ratio (SR) calculated 

using band combinations from various regions of the spectrum (i.e., Near-Infrared/Red (Band 

4/Band 3), Mid-Infrared/Infrared (Band 6/Band 4)) while the third being the greenness index 
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(i.e., greenness). Their findings pointed out that the greenness index was a crucial indicator of 

grass senescence estimation with an R2 value of 0.60. Also, their results showed that the onset 

of senescence in grasses located in the valley areas was delayed and that could be attributed to 

the increased soil moisture content in those regions.  

In addition, Asrar et al. (1986a) examined the capabilities of the Modular Multispectral (MMR) 

Model 15-1000 and the Model 100-A radiometers in spectrally separating soils, senescent and 

green grass leaves in the Konza Prairie Research Natural Area, Manhattan, USA, using the 

discriminant and canonical discriminant analysis procedures. Based on their findings, the 

senescent grass was spectrally discrete from the other land cover classes with classification 

accuracies of 99 and 82% for the MMR Model 15-1000 and the Model 100-A, respectively. 

The strength of remote sensing instruments such as radiometers in characterizing grass during 

senescence relies on their ability to detect subtle changes in pigment concentrations. For 

instance, Merzlyak et al. (1999) noted that the spectral signal of the vegetation increases around 

550 and 740 nm due to senescence-induced chlorophyll degradation while remaining low at 

400 and 500 nm because of carotenoid retention. Additional evidence highlighted that at 500 

nm plant spectra are mainly controlled by both chlorophyll a/b as well as carotenoid, whereas 

at 680 nm it's determined by chlorophyll a (Cole et al. 2014; Castro and Sanchez-Azofeifa 

2008; Merzlyak et al. 1999). Although, the problem of mixed pixels which is commonly 

reported in studies of dry vegetation and soils was also noted in the study by Asrar et al. (1986a) 

with an error rate of 3% and 20% for the MMR Model 15-1000 and the Model 100-A, 

respectively. Besides the superior spectral properties of the radiometers employed, the success 

of the results obtained by Asrar et al. (1986a) could be attributed to the fact that the analysis 

was done at early stage of senescence when the green elements were still evident in the grass 

as compared to later stages when all the grass was completely dry. Butterfield and Malmström 

(2009), also examined the impact of senescence on biomass of the Avena fatua L. Bromus 

hordeaceus L. and Lolium multiflorum Lam. grasses in Michigan, USA, using a hyperspectral 

radiometer. Three models, namely; the NDVI, fraction of absorbed photosynthetically active 

radiation (fAPAR) and the LAI, were used as indicators of grass biomass. The study further 

emphasized the poor correlation between the NDVI and grass biomass, particularly when the 

fraction of senescent grass canopy was more than 50%, and this showed that the NDVI is not 

a reliable indicator of senescent grass biomass. Instead, the significant relationships between 

grass biomass and the fAPAR (R2 = 0.82, p < 0.001) and the LAI (R2 = 0.80, p < 0.001) 
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highlighted the suitability of these two indicators in characterizing grass senescence based on 

remotely sensed data.   

Furthermore, Asner et al. (2004) evaluated the temporal dynamics in the biophysical and 

ecosystem biogeochemical features of meadow during the senescence stage in the south of 

Santarém, Brazil, using the Landsat 5 Thematic Mapper (TM) and spectral mixture analysis. 

Specifically, these authors tested the relationship between the aboveground biomass of the 

Brachyaria brizantha and Pennesetum clandestinum grasses and the soil organic carbon across 

two different soil types (clayey Oxisols and sandy Entisols) during the senescence stage and 

linked the resultant correlations to short and long-term signs of nutrients in the grass. Their 

findings exhibited a dual decrease in both the aboveground grass biomass and soil carbon 

storage with progress in senescence across the two soil types. Equally, the analysis of nutrients 

showed that phosphorus (P) concentration was low in all grasses situated in both soil types and 

it further decreased with advancements in the stage of senescence while nitrogen (N) content 

varied and correlated less with either the aboveground biomass or soil organic carbon. In a 

multi-temporal study, Bork et al. (1999) also examined the potential of simulated eight 

broadband Landsat 5 TM and 52 narrowband ASD spectral signals in characterizing rangeland 

cover components, including grasses, in the north of Dubois, Idaho, USA. The results showed 

that optimal estimation of grass cover was achieved during the later stage of summer (August) 

due to the effect of senescence with correlation coefficients (r) of 0.4 and 0.54 for the 

broadband (NIR) and narrowband (ARgreen/blue) instruments, respectively. Guerini Filho et al. 

(2020) explored the robustness of the Sentinel 2 data jointly with subsequent vegetation indices 

and the multiple linear regression model in estimating green, senescent and the total biomass 

of the natural grasslands in the Federal University of Santa Maria in southern Brazil. Based on 

the findings obtained, an adjusted coefficient of determination (R2
adjusted) and Root Mean 

Square Errors of 0.4, 0.3 and 0.42 as well as 0.13, 0.24 and 0.14 were, respectively, reported 

for the green, senescent and total biomass. The advantage of Sentinel 2 in detecting changes in 

grass pigments during senescence at a geographical scale adequate for rangelands monitoring 

was defined by its high spatial resolution (10 m) jointly with Red-Edge Position and large 

swath-width. Despite these promising results, overall observations suggest that the remote 

sensing of grass senescence remains a challenging undertaking, particularly at later stage of 

senescence. This is because of increased spectral mixing between the reflectance of the 

background soils and those of the senescent grass leaves.    
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Additionally, Di Bella et al. (2004) assessed the impact of senescence when estimating the 

fractional cover of photosynthetically active radiation based on green properties of ryegrass 

(Lolium perenne L. Manhattan) canopy measured with the NDVI. Findings showed that the 

impact of senescence on NDVI values was significant (r2 = 0.78; n = 16 and p < 0.001). 

Likewise, Archibald and Scholes (2007) used time-series satellite data to identify 

environmental factors that influence green-up dates between different rangeland cover features 

like grass species. Their investigation showed that unlike in the high latitudes where 

temperature and photoperiod determine phenology, soil moisture was the major driving factor 

behind plant senescence in the tropical regions (Castro and Sanchez-Azofeifa 2008; Archibald 

and Scholes 2007). Liu et al. (2013) also evaluated the robustness of TIMESAT in monitoring 

grass phenology in Inner Mongolia, China, using the time-series analysis of the Moderate 

Resolution Spectrodiometer (MODIS) NDVIs and double logistic function-fitting algorithm. 

In operation, TIMESAT uses four transition dates, namely, the onset of green-up, maturity, 

senescence and dormancy phase of the grass phenology. The derived MODIS NDVIs were 

fitted in the model (TIMESAT) to construct smoothing time-series curves and to determine 

each of the transition dates (green-up, maturity, senescence and dormancy). The NDVI yielded 

satisfactory explanation in each of the four phenological stages under investigation. The high 

temporal resolution of MODIS (daily) along with its global coverage allowed for the 

comprehensive examination of the chronological changes in the distribution and concentration 

of grass pigments as a result of senescence. However, it could be observed from the evidence 

presented in this review that remote sensing of grass senescence has not been keeping up to 

speed with advancements in remote sensing technology. This is demonstrated by the lack of 

studies which have adequately explored the potential of modern remote sensing techniques like 

the Sentinel 2, Landsat 8, geostationary sensors (Meteostat of Europe, INSAT of India), 

unmanned aerial vehicles (UAVs) and phenocameras (PhenoCams) in grass senescence 

estimation. In this regard, the remote sensing of grass senescence is missing a great opportunity 

to benefit from high quality data which is acquired at suitable time intervals for optimum 

detection of grass phenology, including senescence.   

2.6 Challenges in remote sensing of grass senescence  

One of the major drawbacks in remote sensing of plant assessment is the difficulty of 

associating spectra at a given wavelength with individual pigment concentrations (Adam et al. 

2010;  Merzlyak et al. 1999; Blackburn 1998). Although it is known that grass spectral 

signature varies across the spectrum (Gómez-Giráldez et al. 2020; Asner et al. 2004), due to 
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phenology and changes in the biochemical components, the confidence of stating categorically 

that at this specific wavelength the spectra is changing because of a decrease or increase in 

concentrations of a particular pigment is still very low. For this reason, it has been difficult to 

highlight explicitly the regions of the electromagnetic spectrum that can characterize grass 

senescence with optimal accuracies. This is not only common with data from the averaging 

broadband multispectral remote sensing sensors, as previously reported, but also with 

hyperspectral remote sensing techniques. Again, the spectral signal of the grass correlate with 

that of other similar vegetation due to resemblance in either the phenological stages or 

biochemical components, and this is generally the case despite the sensor resolutions (Adam et 

al. 2010) though it is more pronounced in some sensors than others. On the other hand, the 

spectra of a given species can vary within a particular wavelength because of differences in the 

age and micro-climatic conditions (Adam et al. 2010). It is, therefore, logical to question the 

possibility of having a unique spectral reflectance for a particular grass species, especially at 

advanced stages of the senescence period. In addition, at advanced senescence stage , a lot of 

material like the exposed soil background and litter from non-grass plants, whose spectra 

resembles that of senescent grass leaves (Shoko and Mutanga 2017b), is dominant and this 

causes spectral confusion. This problem was also reported by Asrar et al. (1986b).  

More so, the application scale of remote sensing techniques does not allow for the assessment 

of grass senescence at the plant of leaf level and this result in studies of this nature being 

conducted at the canopy level. Blackburn (1998), noted that the problems associated with the 

characterization of plant senescence at the canopy scale are not unusual in remote sensing of 

vegetation. They mainly stem from the uncertainty of whether the entire canopy is senescing 

or parts of it are going through senescence (Santos et al. 2010). Also, the adoption of the “big-

leaf-hypothesis” which was proposed by Stylinski et al. (2002), would not always yield the 

intended outcomes when estimating grass senescence through remote sensing methods due to 

the possibility of having crucial information obscured. The “big-leaf-hypothesis” proposes that 

the entire canopy of the plant, including grasses, be treated as a single big leaf when analyzing 

its spectral reflectance (Stylinski et al. 2002). However, this approach assumes uniformity in 

the spectra of the canopy and overlooks the possibility of spectral variation because of 

differences in factors such as the age or health status of each individual grass plant or among 

different grass leaves. Consequently, remote sensing of plant senescence has predominantly 

been focused on crops (Gregersen et al. 2008; Chaerle and Van Der Straeten 2000; Merzlyak 

et al. 1999) than on other vegetation types such as grasses. This is the case because crop fields 
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are reasonable plots that can be sampled in totality, at the leaf or plant level, if need be, for the 

estimation of senescence, unlike rangelands which are largely extensive (Xu et al. 2019). Also, 

senescence is relatively uniform in crops because they are often grown as mono-species and at 

the same time. 

2.7 Possible directions for future research endeavors  

Although, research shows that remote sensing has a critical role to play in characterizing grass 

senescence by identifying spatial and spectral resolutions, wavelengths, and image processing 

techniques that are suitable for estimation at this phenological stage. During senescence, grass 

canopy cover decreases because of reduction in biomass and chlorophyll content (Adam et al. 

2010) and this partly addresses the known problem of saturation which is common with remote 

sensing of green and dense covers (Mutanga and Skidmore 2004). Cole et al. (2014) also 

confirmed that the dry season offers a perfect time for discriminating between vegetation types. 

Using Sentinel 2 data, Mutanga and Shoko (2018) observed that the winter season, when 

vegetation was dry, was the best for discerning between C3 and C4 grasses. Also, previous 

studies have confirmed the possibility of successful assessment of plant senescence through 

remote sensing techniques (Cole et al. 2014; Santos et al. 2010; Chaerle and Van Der Straeten 

2000). For these reasons, it is evident that remote sensing of grass senescence is an achievable 

task. However, for objective quantification of grass senescence through remote sensing 

techniques, this study suggests that in addition to the adoption of the “big-leaf-hypothesis” the 

time/period in which the analysis is conducted should be considered. It therefore proposes the 

use of the “big-leaf-hypothesis” jointly with autumn senescence. During autumn, grass 

senescence is driven by natural processes such as seasonality and the age of the plant and this 

helps to promote uniformity in the spectral reflectance at the canopy level.  

Previous studies (Cole et al. 2014), have indicated that at the beginning of senescence, the 

spectra in the Red-Edge Position shift towards the shorter wavelengths due to alterations in the 

distribution and concentration of plant pigments. Likewise, Peñuelas and Filella (1998) state 

that the increasing concentration of carotenoid with respect to chlorophyll in senescing 

canopies serves as an indicator of the onset of senescence in the vegetation. With improved 

spatial and spectral properties and the availability of strategically located bands, current remote 

sensing sensors like Sentinel 2 are robust enough to detect these phenological changes in grass 

canopies. In another study, the concentrations of plant pigments (i.e., chlorophyll and 

carotenoid), based on an ASD field spectrometer data, were used successfully as pre-

symptomatic indicators of senescence (Cole et al. 2014). This was possible because chlorophyll 



30 
 

generally degrades faster than carotenes during senescence while leaving the carotenoids 

dominant at the canopy. Again, research has discovered that most compounds such as starch, 

glucose, and nitrogen are reversed by the plant during senescence, and, thereby, leaving the 

lignin and cellulose dominant (Cole et al. 2014). It is, therefore, fulfilling to assume that the 

estimation of proportions between these pigments can serve as proxies for plant senescence 

from a remote sensing perspective.  

Given that grass senescence is a process not a phenomenon, therefore, its effective 

characterization cannot be achieved through a single-date image acquisition but requires multi-

date images to detect the chronological changes in the phenology and pigments of the grass. 

The success of this undertaking relies on the availability of sensors with high re-visit time. 

However, the current excessive acquisition cost associated with the high-spatial and 

hyperspectral data suggest that this technology is not suitable for multi-temporal and time-

series analysis of grass senescence at the landscape scale. The provision of free quality data 

from optical remote sensing sensor, like the Landsat 8 and Sentinel 2, therefore, present new 

opportunities for objective estimation of grass senescence in a spatial scale complementary to 

the spatial extents of the rangelands. Besides the adequate resolutions and being readily 

available, the Sentinel 2 instrument also captures the Red-Edge Position of the spectrum 

(Sibanda et al. 2019), and this can benefit the characterization of rangeland resources even 

during senescence. It is believed that the availability of the Red-Edge Position in Sentinel 2 has 

contributed to its superior performance (96.18%) over Worldview 2 (94.44%) and Landsat 8 

(91.67%) in separating Festuca costata and Themeda triandra grasses during the winter season 

(Shoko and Mutanga 2017b). Certainly, this will improve the monitoring of rangeland 

resources even by resource limited countries who can barely live up to the price of the high-

spatial and hyperspectral sensors.  

Furthermore, the recent launch of Sentinel 3 satellite instrument by the European Space Agency 

(ESA) is a great step towards achieving subcontinental monitoring of grass senescence. Despite 

the averaged spatial properties, Sentinel 3 data, with high temporal resolution, will promote 

time-series analysis which is required to detect grass senescence. Again, the utility of 

sophisticated and robust time-series modeling techniques such as TIMESAT and the piecewise 

regression with a breaking point (Liu et al. 2013) together with quality satellite data (e.g., 

Sentinel 2 and Landsat 8) can optimize the accuracy of grass senescence estimation at the 

landscape scale. However, for the sustainability of forage resource management efforts based 

on remote sensing, the current study expand on the proposal made by Dube et al. (2016) and 
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Dube et al. (2017), which seeks to accelerate the discussion on the issue of trade-offs between 

sensor type, resolution, data cost and the application scale. Future studies should try to close 

this scientific knowledge gap by testing the utility of time-series analysis techniques in 

modelling grass senescence based on spatial scales that are reasonable to the spatial extents of 

the rangelands. Other studies could also investigate the magnitude of decline in rangeland 

foraging resource quality and quantity because of senescence. Again, the role of environmental 

variables in influencing the occurrence of autumn senescence in grasslands is largely unknown. 

The findings of such studies will help contribute towards developing sound-based decision 

support systems for monitoring rangelands grazing resources in the face of global change and 

anthropogenic impacts.     

2.8 Conclusion  

The present study has provided an overview of remote sensing techniques for characterizing 

grass senescence with associated challenges and opportunities. Senescence is an important 

phenological stage in herbaceous vegetation that determines not only the availability and 

quality of forage but rather its distribution and allocation. Unlike the use of conventional 

methods, remote sensing provides non-destructive and cost-effective ways of estimating grass 

senescence at the landscape scale. Remote sensing efforts on grass senescence depend on 

monitoring the changes in biochemical and physiological components of the grass during this 

stage. However, remote sensing derivatives such as the NDVI have not always provided 

reliable means of characterizing grassland autumn senescence. More so, this review has 

revealed that grass senescence estimation efforts based on remote sensing approaches have not 

been up to speed with advancements in remote sensing sensor technology. On the other hand, 

the adoption of sophisticated and robust time-series analysis techniques like TIMESAT and the 

piecewise linear regression with a breaking point jointly with improved quality data from the 

Sentinel 2 and Landsat 8 sensing instruments could improve the estimation of grass senescence 

at the rangeland scale. The results presented in this study are particularly important to forage 

production and remote sensing community as they add value to efforts of foraging resource 

monitoring and management through remote sensing methods.  
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3 Assessing the effect of senescence on mesic sub-tropical grass quality and quantity 

using in-situ and Sentinel-2 data 

 

The chapter is based on:  

Royimani L., Mutanga, O., Sibanda, M., Dube, T. & Slotow, R. Assessing the effect of 

senescence on mesic sub-tropical grass quality and quantity using in-situ and Sentinel-

2 data. (Submitted to a Journal).  
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Abstract  

Forage quality is one of the most important factors that determine the distribution and grazing 

patterns of the livestock. During senescence many herbaceous plants lose nutrients from the 

leaves to the roots, and, thus, making them unavailable for grazing. This study sought to 

quantify the amount of decline in nGongoni (Aristida junciformis) grass quality and quantity 

owing to senescence using in-situ and Sentinel 2 data and the Random Forest Regression. Also, 

it assessed forage availability status at pre-senescence and senescence stages based on the Dry 

Matter content (DM) of the grass. Chlorophyll content and biomass of the grass were used as 

surrogates for quality and quantity during pre-senescence and senescence stages, respectively, 

while averaged biomass values were used to determine DM contents. The adopted Random 

Forest yielded coefficients of determination (R2) of 91.3 and 96.6% as well as Root-Mean-

Square-Errors (RMSEs) of 2.12 and 0.55 µg Chl/cm2 for grass quality during pre-senescence 

and senescence, respectively. Again, the model obtained an R2 of 70.9 and 94.2% together with 

RMSEs of 0.34 and 0.02 kg/m2 when predicting grass quantity at pre-senescence and 

senescence stages, respectively. Optimal predictions of grass quality and quantity, both, at pre-

senescence and senescence stages were generally achieved with the Red-Edge and its 

associated indices jointly with the Near Infrared (NIR) and red band derivatives. There was a 

remarkable decrease in both quality (17.2 µg Chl/cm2) and quantity (0.89 kg/m2) of the grass 

because of senescence. A total of 68.5 and 78.2 %/m2 DM content was reported for pre-

senescent and senescent nGongoni grasses. These findings provide a novel, robust and cost-

effective approach for understanding the quality and quantity of foraging resources during dry 

seasons using in-situ and Sentinel 2 data. This is vital to understand variability in forage quality 

and quantity through space and time, which is necessary to facilitate the adoption of appropriate 

livestock management measures, particularly by communal livestock farmers to sustain their 

livestock production systems with minimal additional production inputs.  

 

Keyword: Forage quality and quantity, grazing, livestock, random forest, senescence, sentinel-

2. 

 

3.1 Introduction  

Senescence is one of the most important processes that govern the quality and quantity of free-

ranging livestock feed (Yang and Udvardi 2018). This is primarily the case in communal 

rangelands where common commercial forage quality enhancement inputs, such as fertilizer 
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applications, installation of irrigation systems, as well as the adoption of effective livestock 

control measures, are not available due to the husbandry model and resource constraints, among 

others (Brown and Shrestha 2000). Several studies have noted that during senescence, plants 

lose nutrients from the tiller parts to the roots (Gao and Li 2015; Guo and Gan 2014; Sarath et 

al. 2014). For instance, Cole et al. (2014), observed that during senescence, chemical properties 

like nitrogen, starch, and glucose are reversed from the leaves, and, thereby, leaving the 

cellulose and lignin dominating the canopy. Lignin and cellulose are indigestible structural 

parts of the leaves with minimal contributions to the plant nutrients and grazing requirements 

(Stichler 2002). Similarly, Yang and Udvardi (2018) noted a 61% decrease in nitrogen content 

from matured switchgrass (Panicum virgatum) leaves due to senescence. Rawnsley et al. 

(2002), also observed a significant decline in cocksfoot (Dactylis glomerata L.) grass quality 

because of senescence. According to Royimani et al. (2021), the impact of this phenomenon is 

dominant in sourveld grazing areas as opposed to the other veld types such as mixed- and 

sweetveld due to the year-round low grass nutrients associated with high rate of leaching. Given 

the widespread distribution of unpalatable grasses in sourveld grazing areas (Scott-Shaw and 

Escott 2011; Oudtshoorn 1999), partly because of selective grazing, this may create problems 

of forage deficiencies, particularly during the later stages of senescence. Certainly, there is a 

need for accurate measuring techniques to characterize the impact of autumn senescence on 

communal forage quality and availability. However, accurate, objective, and comprehensive 

means of estimating rangeland senescence in general, as well as the magnitude of decline in 

nutrients thereafter, are yet to be established.       

 

Traditional methods for gathering data on plant senescence such as visual scoring of leaf 

coloration and Soil Plant Analysis Development (SPAD) chlorophyll meter are often regarded 

as laborious, time-consuming, and inappropriate for optimal rangeland assessments, due to 

compromised repeatability and limited areal extent (Laliberte et al. 2007; Adamsen et al. 

1999). Alternatively, remote sensing allows for reliable and cost-effective means to monitor 

the dynamics in plant physiology and phenology in periods such as the senescence stage 

(Royimani, et al. 2022; Santos et al. 2010; Di Bella et al. 2004). In addition, remote sensing 

techniques provide repeated coverage (Royimani et al. 2019a), which is required to support 

time series analysis, hence, the opportunity to examine forage quality and quantity at various 

stages of senescence. Laliberte et al. (2007), successfully separated fractional cover 

components between senescent and green vegetation using high image resolution photography 

and the object-based image analysis techniques. Berdugo et al. (2013), also explained the 
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delays in wheat (Triticum aestiuum L.) senescence due to fungal infections using non-invasive 

sensing instruments (i.e., spectral reflectance, vegetation indices, chlorophyll fluorescence, and 

infrared thermography). Likewise, Santos et al. (2010) discriminated between pre-senescent, 

senescent, and dead tree leaves using hyperspectral remotely sensed data and univariate 

analysis of variance. Bremer et al. (2011) further demonstrated the contributions of the 

Normalised Difference Vegetation Index (NDVI) in explaining the visual quality of the turf-

grasses. Their findings showed that the red band was superior to NDVI in describing turf-grass 

quality. More so, the recently launched broadband multispectral Sentinel 2 has yielded 

reasonable accuracies in estimating plant quality (i.e., fertilizer nutrients) and biomass (Sibanda 

et al. 2015). This can be attributed not only to their improved spatial and spectral properties, 

but also to the availability of the Red-Edge Position, which is sensitive to changes in plant 

vigor (Sibanda et al. 2015). The provision of readily available data from the broadband 

multispectral sensors like Sentinel 2 can, therefore, benefit the ongoing assessment of foraging 

resources at the landscape scale.  

 

In addition, the adoption of non-parametric machine learning approaches like Random Forest, 

which are robust, has improved the characterization of vegetation traits like chlorophyll and 

biomass even on multispectral remote sensing datasets (Mutanga et al. 2012). These algorithms 

operate by creating subsets in the dataset to promote spectral distinctiveness of different 

features, hence, optimal prediction (Royimani et al. 2019a). For instance, the Random Forest 

uses the bagging (bootstrap) approach to create multiple decision trees from a given dataset, 

and averages the outcome based on the majority vote for classification while using the mean 

or median in regression (Odindi et al. 2016; Mutanga et al. 2012; Adelabu and Dube 2015). 

Several studies have demonstrated the strengths of the Random Forest technique in explaining 

plant foliar chlorophyll and biomass (Sonobe et al. 2020; Shah et al. 2019; Zhou et al. 2016; 

Mutanga et al. 2012). Again, unlike the parametric techniques such as the linear regression 

which assumes normality in the distribution of the data, the Random Forest is robust and does 

not suffer from the effect of overfitting (Odebiri et al. 2020). More so, Random Forest is fast, 

stable, and easy to implement (Abdel-Rahman et al. 2014; Odindi et al. 2014; Chan and 

Paelinckx 2008). Equally, many studies have used leaf chlorophyll, which is measurable 

through remote sensing means, as an indicator of plant health and quality (Ramoelo et al. 2015; 

Berdugo et al. 2013; Adamsen et al. 1999), while biomass has been used as a proxy for quantity 

(Sibanda et al. 2015 Skidmore et al. 2010;  Mutanga and Skidmore 2004).    
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Despite this knowledge, the examination of grass nutrient decline following senescence, 

particularly to understand the quantity and quality of the last standing forage at later stages of 

senescence, using remote sensing methods, is still limited. Such information is required to 

provide a better understanding of resource availability and quality in a spatially and temporally 

explicit manner. This information is also critical for sustainable maintenance of livestock 

stocking rates and rangeland integrity during critical times of forage production. Furthermore, 

assessing forage quality across the senescence period is an important consideration for 

analyzing the behavior of the livestock feed (Molle et al. 2009). Therefore, the present study 

aimed at quantifying the magnitude of decline in nGongoni (Aristida junciformis) grass quality 

(i.e., chlorophyll) and quantity (i.e., biomass) owing to senescence, using in-situ and Sentinel-

2 data and the Random Forest Regression model. To achieve this objective, the study estimated 

and compared the chlorophyll content and biomass of the nGongoni grass at pre-senescence 

and senescence stages. The study further examined the availability status of forage from the 

nGongoni grass in terms of Dry Matter (DM) during pre-senescence and senescence periods. 

The nGongoni grass was considered in this study because of its widespread distribution in the 

area (Scott-Shaw and Escott 2011), hence the main source of animal feed, especially during 

critical times of forage production when all the other patchy palatable grasses have been 

selectively grazed. It was, therefore, hypothesized, that the decline in nGongoni grass quality 

following senescence could be explained using the associated decrease in its leaf chlorophyll 

content, while quantity could be estimated based on its live-standing above-ground biomass.  

 

3.2 Methods and materials 

3.2.1 Sampling design and field data collection 

A purposive sampling approach was employed, as detailed in Royimani et al. (2019b), to locate 

a total of 80 plots at 150 m distance apart. The centre coordinates of the plots were taken for 

traceability in future site visits. The size of each plot was 10m * 10m and these were located 

within larger homogenous grass patches of about 15m * 15m to cater for any possible pixel 

geo-location mismatch with the Sentinel 2 image. In each 10m * 10m plot, three quadrants of 

50cm * 50cm in size were randomly established. Chlorophyll content readings and live-

standing above-ground biomass of the nGongoni grass were measured in these 50cm * 50cm 

quadrants between the 20th and 23rd of March and 2nd and 7th of September 2020 to represent 

the pre-senescent (figure 2(a)) and senescent (figure 2(b)) grasses, respectively. During March, 

grass chlorophyll was believed to be at maximum due to maturity while at minimum in 
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September because of dormancy in the temperate regions of the study site (Figure 1.1). 

Chlorophyll content measurements were taken using the SPAD-502 Plus. To minimize possible 

errors in the values of pre-senescent chlorophyll content, measurements were only taken on 

grasses that were fully grown, while no specific considerations were made when sampling 

during senescence stage. All the grasses in the 50cm * 50cm quadrant were clipped and rapped 

using brown paper bags for estimation of wet and dry live-standing above-ground biomass. 

Both, the pre-senescent and senescent clipped grasses were separately measured for fresh 

weight, herein referred to as wet biomass, using a calibrated scale. Next, the clipped grass 

samples were oven-dried at 105oC for 72 hours (Shreve et al. 2006) and weighed using the 

calibrated scale to determine the dry biomass and the outcomes were expressed as kilograms 

per square meter (kg/m2).  

 

 

Figure 3.1 Photos of the nGongoni grass taken on the 22nd of March and 3rd of September 2020 

in the study site to illustrate the conditions of the pre-senescent (a) and senescent (b) grasses, 

respectively. 

 

3.2.2 Image acquisition  

Two pre-processed Sentinel 2 images were downloaded from the Copernicus Open Access Hub 

using Quantum GIS (QGIS). The first image was acquired on the 20th March 2020 and 

represented the pre-senescence period while the second one on the 3rd September 2020 to 

represent the senescence phase. The choice of using Sentinel 2 data was determined by several 

factors, which include the free availability, extensive extent, improved resolution, and the 

coverage of the Red-Edge Position, among others. Similarly, numerous studies (i.e., Sibanda 
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et al. 2015; Shoko and Mutanga 2017a; Frampton et al. 2013) have explained dynamics in the 

physiological and biochemical properties of the vegetation, including grasses, using the 

Sentinel 2 data with satisfactory accuracies. However, bands 1, 9, and 10 were excepted from 

this study due to their insignificant contributions to vegetation assessments and analysis (Shoko 

and Mutanga 2017a).  

 

3.2.3 Vegetation indices  

The optimal performance of vegetation indices in characterizing vegetation attributes using 

remotely sensed data has been widely demonstrated (Royimani et al. 2019b; Sibanda et al. 

2015; Frampton et al. 2013). In addition to the popular NDVIs (i.e., the traditional NDVI and 

the NDI45), several other NDVIs were computed in this study using the combination of 

different wavebands located in the Red-Edge Position, with the red band centred in the Visible 

region (Table 3.1). In addition, the Pigment Specific Simple Ratio (PSSR), Terrestrial 

Chlorophyll Index (TCI), Inverted Red-Edge Chlorophyll Index (IRECI), Green Normalised 

Difference Vegetation Index (GNDVI), as well as the Normalized Difference Red Edge 

(NDVI705) were generated and considered in this study based on their optimal performance 

when estimating plant chlorophyll and biomass (Frampton et al. 2013; Sibanda et al. 2015; 

Mutanga et al. 2012; Matongera et al. 2017).  

 

3.2.4 Statistical analysis 

Field-measured chlorophyll and live-standing above-ground biomass of the nGongoni grass 

were tested for normality using the Shapiro-Wilk test. The requirement was to understand the 

extent to which the data deviated from the normal distribution curve as described in Sibanda et 

al. (2017b). Also, correlation tests were conducted between field-measured variables (i.e., 

chlorophyll and biomass) and the raw Sentinel 2 bands as well as between field-measured data 

and the vegetation indices using the cor.test function in R. In preparation for the establishment 

of the Random Forest Regression models, the various datasets were randomly split into 70% 

and 30% for training and testing purposes, respectively. The performance of the Random Forest 

models was validated based on the Root Mean Square Error (RMSE) and coefficient of 

determination (R2) with combined highest R2 and lowest RMSE values showing best 

performance and vice versa. 
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Table 3.1 Vegetation indices that were calculated in the present study.  

Vegetation index name Abbreviation  Standard formula Bands used 

Normalized Difference 

Vegetation Index 
NDVI 

(NIR − Red)/(NIR + 

Red) 

(Band 8 − Band 4)/(Band 8 + 

Band 4) 

Normalized Difference 

Vegetation Index 
NDI45 

(RE − Red)/(RE + 

Red) 

(Band 7 − Band 4)/(Band 7 + 

Band 4) 

Normalized Difference 

Vegetation Index 
NDVI B5 

(RE − Red)/(RE + 

Red)  

(Band 5 − Band 4)/(Band 5 + 

Band 4) 

Normalized Difference 

Vegetation Index 
NDVI B6 

(RE − Red)/(RE + 

Red) 

(Band 6 − Band 4)/(Band 6 + 

Band 4) 

Normalized Difference 

Vegetation Index 
NDVI B8a 

(RE − Red)/(RE + 

Red)  

(Band 8a − Band 4)/(Band 8a 

+ Band 4) 

Terrestrial Chlorophyll 

Index 
TCI 

(RE − RE)/(RE − 

Red) 

(Band 6 − Band 5)/(Band 5 − 

Band 4) 

Inverted Red-Edge 

Chlorophyll Index 
IRECI 

(NIR − 

Red)/(RE1/RE2) 

(Band 8 − Band 4)/(Band 

5/Band6) 

Pigment Specific Simple 

Ratio 
PSSRa (NIR/Red) (Band 8/Band 4) 

Green Normalised 

Difference Vegetation 

Index 

GNDVI 
(NIR − G)/(NIR + 

Green) 

(Band 8 − Band 3)/(Band 8 + 

Band 3) 

Normalized Difference 

Red Edge 
NDVI705 

(R750 − R705)/(R750 + 

R705) 

(Band 6 − Band 5)/(Band 6 

+Band 5) 
Footnotes: RE and Red are the spectral reflectance from the Red-Edge and the red band, respectively.  NDVI B5, 

NDVI B6, and NDVI B8a represents the NDVIs calculated using band 5, 6 and 8a with the red band, respectively.  

 

3.2.5 Random Forest model establishment and optimization 

Four sets of the Random Forest Regression model were built on R version 4.0.5 to predict the 

quality and quantity of the nGongoni grass during pre-senescence and senescence phenological 

stages, respectively (Figure 3.2). The Random Forest is an ensemble machine learning 

algorithm that explains and predicts parameters using measured-field variables (Odebiri et al. 

2020). In operation, it uses the bagging (bootstrap) approach to construct multiple decision 

trees from a given set of predictors (i.e., Sentinel 2 bands and vegetation indices in the present 

case) and averages the outcome (Mutanga et al. 2012). The bootstrap aggregation function 

helps in reducing the variance error emanating from the decision trees. A splitting point, 



41 
 

otherwise known as a node, is defined based on field-measured data (i.e., biomass and 

chlorophyll) and the associated thresholds that retain the most matching partitions. At each 

splitting point, predictor variables and their associated thresholds are tested for possible 

selection, and, hence, determination of the best split.  

 

In the present study, the process of data analysis was divided into four stages (Figure 3.2):  

In stages 1 and 2 (i.e., models one and two), we tested the potential of the Sentinel 2 data in 

explaining grass quality during pre-senescence and senescence based on the March and 

September field-measured nGongoni grass chlorophylls, respectively, as surrogates. Due to the 

closure of the laboratories as a results of the national shutdown associated with Covid19 in 

South Africa, experimental analysis of grass nutrients could not be conducted. Therefore, we 

adopted chlorophyll as an indirect measure of grass quality. Two Random Forest Regression 

models were built to evaluate the bands of the Sentinel 2 jointly with derived vegetation indices 

in separately explaining grass quality during these two periods. Likewise, in stages 3 and 4 

(i.e., models three and four), we explored the capability of the Sentinel 2 data in predicting 

grass quantity during pre-senescence and senescence using the live-standing above-ground 

biomass of the nGongoni grass (Figure 3.2). Again, two Random Forest Regression models 

were established to individually assess the Sentinel 2 bands together with subsequent indices 

in describing grass quantity over the pre-senescence and senescence stages.    

 

In the preliminary analysis stages, we fitted all the variables (i.e., Sentinel 2 bands and 

vegetation indices) in the respective models, and the variable importance ranking was done to 

establish the best performing variables for the final and optimal predictions of the grass quality 

and quantity. The variable importance ranking was done based on the out of bag (OOB) error 

rating and the outputs (Mean Decrease Accuracies) were expressed in percentage. To identify 

the best performing variables, the models were individually and repeatedly executed while 

altering their ntree and mtry values until the highest R2 and the lowest RMSE values were 

obtained. Tested mtry values ranged from 2 to 16 while ntree were between 100 and 2000. On 

the other hand, the nodesize was set to 1 throughout the analysis. The ntree is the number of 

trees built based on the bootstraps of the explanatory variables with a default value of 500 

(Odebiri et al. 2020), while the mtry is the number of predictors tried at each node and has a 

default value of 1/3 of all the variables used in case of regression (Mutanga et al. 2012). On 

the other hand, the nodesize is the lowest size of the terminal nodes of the trees in the regression 

and it has a default value of 1 (Mutanga et al. 2012). Using the predicted forage quality and 
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quantity values and the Inverse Difference Weighted interpolation technique in ArcGIS, we 

produced the predicted forage quality and quantity maps for the pre-senescence and senescence 

periods in the study site.  

 

 

Figure 3.2 Data analysis framework adopted in estimating the quality and quantity of the 

nGongoni grass at pre-senescent and senescent stages.    

 

3.2.6 Forage availability status from the pre-senescent and senescent nGongoni grasses 

Currently, there are no established Thresholds of Potential Concern (TPC) to understand the 

status of availability in forage from a chlorophyll and biomass perspective. Therefore, to 

determine the amount of available forage from the nGongoni grass during the pre-senescent 

and senescent stages, we adopted the quantification of the DM content for these two periods. 

The formula for computing DM content is given in equation (3.1):  

 

 DM (%/m2) =  
Dry Weight

Wet Weight
∗ 100 ………………………………………………....(3.1) 

 

where Dry Weight is the averaged weight of the grass biomass after oven drying while Wet 

Weight is the averaged weight of the fresh field-harvested biomass before oven drying. This 

approach (Equation 3.1) divides the mean weight of the sample after oven drying by the mean 
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weight of the sample before oven drying and multiplies the output by one hundred to get the 

DM content in percentage (Shipley and Vu 2002; De Waal 1990).  

 

3.3 Results  

3.3.1 Descriptive statistics 

Descriptive statistics of the pre-senescent and senescent nGongoni grass quality and quantity 

as well as for the combined datasets (i.e., n = 160) are shown in Table 3.2. The quality varied 

between 2.50 and 33.50 and between 1.70 and 14.30 µg Chl/cm2, for the pre-senescent and 

senescent grasses, respectively. The pre-senescent and senescent nGongoni grass quantity, on 

the other hand, varied between 0.98 and 3.40 and between 0.64 and 1.41 kg/m2, respectively. 

The averaged grass quality during pre-senescence was 24.52 µg Chl/cm2 while 7.34 µg Chl/cm2 

at senescent stage. Also, the averaged quantity varied between 2.11 and 1.22 kg/m2 for the pre-

senescent and senescent grass, respectively. Both, the pre-senescent and senescent quality 

content readings were higher than the quantity observations, with higher Standard Deviations 

(StDev) (Table 3.2).  

 

Table 2.2 Pre-senescent and senescent chlorophyll content and biomass of the nGongoni grass.  

Variables No. of samples  Minimum Maximum Mean StDev  

Quality      

Pre-senescent Chl (µg Chl/cm2) 
80 

2.50 33.50 24.52 8.48  

Senescent Chl (µg Chl/cm2)  1.70 14.30 7.34 3.13  

Quantity      

Pre-senescent biomass (kg/m2) 
80 

0.98 3.40 2.11 0.65  

Senescent biomass (kg/m2) 0.64 1.41 1.22 0.10  

Combined variables     

Chl (µg Chl/cm2)  
160 

1.70 33.50 15.93 10.71  

Biomass (kg/m2) 0.64 3.40 1.67 0.64  
Footnotes: Chl = chlorophyll, StDev = Standard Deviation. 

 

3.3.2 Correlation between field-measured and spectral variables  

Table 3.3 illustrates the magnitude of agreement between field-measured (i.e., chlorophyll and 

biomass) and Sentinel 2 (i.e., spectral bands and vegetation indices) variables for the pre-

senescent and senescent grasses. Generally, the study displayed a good positive relationship 

between the tested variables, both, at pre-senescent and senescent phenological stages. For 

instance, all the Sentinel 2 bands showed a good correlation with the quality and quantity of 
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the grass during pre-senescence. In addition, forage quality and quantity showed a good 

relationship, both, at pre-senescence (0.79) and senescence (0.77) stages.  

 

Table 3.3 Correlation between Sentinel 2 variables and biomass as well as chlorophyll content 

of the nGongoni grass.  

Variables 

Pre-senescent 

Chl Senescent Chl 

Pre-senescent 

Biomass Senescent Biomass 

Raw bands    

   Band 2 0.66 0.68 0.66 0.75 

   Band 3 0.72 0.76 0.73 0.82 

   Band 4 0.56 0.75 0.57 0.82 

   Band 5 0.72 0.84 0.75 0.91 

   Band 6 0.85 0.88 0.83 0.93 

   Band 7 0.86 0.89 0.83 0.93 

   Band 8 0.81 0.86 0.81 0.91 

   Band 8a 0.86 0.89 0.84 0.94 

   Band 11 0.65 0.73 0.66 0.78 

   Band 12 0.53 0.50 0.56 0.52 

Vegetation indices  
 

 

  PSSRa 0.89 0.65 0.85 0.67 

  IRECI 0.70 0.37 0.63 0.37 

  MTCI 0.64 -0.08 0.63 -0.06 

  NDVI 0.83 0.72 0.74 0.78 

  NDVI B5 0.74 0.43 0.76 0.68 

  NDVI B6 0.93 0.62 0.84 0.66 

  NDI45 0.92 0.63 0.81 0.66 

  NDVI B8a 0.91 0.64 0.83 0.68 

  GNDVI 0.75 0.69 0.74 0.76 

  NDVI705  0.74 0.73 0.73 0.77 

 

In addition, at senescent stage, all the Sentinel 2 bands displayed reasonable correlations with 

either the quality or the quantity of the grass. Furthermore, the relationship between the 

calculated vegetation indices and the quality and quantity of the nGongoni grass at pre-

senescence was significant. However, during senescence, the IRECI demonstrated poor 

correlations with either the quality or the quantity of the grass under investigation in the present 

study. Also, the MTCI showed a negative correlation with the quality and quantity of the 

nGongoni grass during pre-senescent and senescent stages.  
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3.3.3 Pre-senescent and senescent grass quality and quantity estimation using Sentinel 2 

data 

The Random Forest Regression models used in predicting the quality and quantity of the 

nGongoni grass in the present study yielded satisfactory results (Table 3.4). In stage one, which 

was the prediction of grass quality at the pre-senescent stage, the model obtained an RMSE of 

2.12 µg Chl/cm2 and an R2 of 91.3%, while in stage two, which was the assessment of senescent 

grass quality, an RMSE and R2 of 0.55 µg Chl/cm2 and 96.6% were acquired, respectively. 

When explaining the quantity of the grass at pre-senescent stage, in stage three, the model 

reported an RMSE of 0.34 kg/m2 and an R2 of 70.9%. The fourth model, which evaluated grass 

quantity at senescent stage, recorded an RMSE and an R2 of 0.02 kg/m2 and 94.2%, 

respectively.  

 

Table 3.4 Estimation accuracies of the nGongoni grass quality and quantity and the associated 

ntree and mtry values. 

Stage of 

analysis Model name Model description ntree mtry RMSE R2 (%) 

1 Model one Pre-senescent quality  100 6 2.12 (µg Chl/cm2) 91.3 

2 
Model two Senescent quality  300 8 0.55 (µg Chl/cm2) 96.6 

3 
Model three 

Pre-senescent 

quantity  200 8 0.34 (kg/m2) 70.9 

4 Model four Senescent quantity  500 6 0.02 (kg/m2) 94.2 

 

 

After model optimization, prediction accuracies for the quality and quantity of the nGongoni 

grass at pre-senescent and senescent stages improved slightly (Figure 3.3). For instance, the 

optimal model for predicting grass quality during the pre-senescent phase yielded an R2 of 

92.9% and an RMSE of 1.91 µg Chl/cm2 (Figure 3.3(a)). The predictive power of the model 

was boosted by the use of PSSRa, Band 6, NDVI B6, Band 7, as the most important variables 

(Figure 3.4(a)). Equally, the optimal model that estimated grass quality during senescence 

exhibited an RMSE of 0.48 µg Chl/cm2 and an R2 of 97.4% (Figure 3.3(b)), with the Red-Edge 

Position (i.e., Band 7, 8a, 6, and 5), jointly with the Visible red band and the NIR, emerging as 

the most important regions (Figure 3.4(b)). Furthermore, optimum prediction of the nGongoni 

grass quantity during pre-senescence was explained by the PSSRa, Band 8a, Band 6, NDVI 

B8a, (Figure 3.4(c)) as the most important variables. Again, an RMSE and an R2 of 0.34 kg/m2 

and 71.1% were obtained, respectively (Figure 3.3(c)). Also, the optimal model that estimated 
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grass quantity during senescence produced an RMSE of 0.02 kg/m2 and an R2 of 96.1%. It can 

be observed that the NDVI B5, Band 6, Band 5, Band 7, NDVI B6, PSSRa, and the Visible red 

band, in order of importance, were the most important variables when explaining the quantity 

of senescent grass (Figure 3.4(d)).      

 

 
Figure 3.3 Relationship between measured and predicted nGongoni grass quality during the 

(a) pre-senescent and (b) senescent stages as well as quantity over the (c) pre-senescent and (d) 

senescent periods. 
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Figure 3.4 Variable importance ranking for the estimation of the nGongoni grass quality during 

the (a) pre-senescent and (b) senescent stages and quantity during the (c) pre-senescent and (d) 

senescent periods.     
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3.3.4 Decline in grass quality and quantity due to senescence and forage availability status 

Figure 3.5 illustrates the averaged quality and quantity of the nGongoni grass measured on the 

field during the pre-senescent and senescent periods. Based on the figure (Figure 3.5), the 

maximum quality and quantity of the nGongoni grass at pre-senescence were 24.52 µg Chl/cm2 

and 2.11 kg/m2, respectively. As a result of senescence, the quality and quantity of the 

nGongoni grass dropped substantially (i.e., 17.18 µg Chl/cm2 and 0.89 kg/m2) to 7.34 µg 

Chl/cm2 and 1.22 kg/m2.  Besides, figure 3.5(a) and (b) shows that there was a greater reduction 

in quality than there was in quantity of the nGongoni grass because of senescence. With regards 

to the percentage DM and moisture contents of the nGongoni grass, a total of 68.5 and 78.2 

%/m2 DM as well as 31.5 and 21.8 %/m2 moisture contents were, respectively, recorded for 

the pre-senescent and senescent grasses.  

 

 

 
Figure 3.5 Decline in mean (a) chlorophyll content and (b) mean biomass of the nGongoni 

grass following senescence.     

Moreover, figure 3.6 shows the spatial distribution of the predicted pre-senescent and senescent 

nGongoni grass quality and quantity in the study area. Specifically, figure 3.6(a) indicates that 

during the pre-senescent stage, high-quality grass tends to spread towards the south-eastern 

side of the study site, whereas the better quality senescent grass appears to be concentrated in 

specific areas (Figure 3.6(b)). Figure 3.6(c), also reveals that high biomass of pre-senescent 

nGongoni grass generally dominated the southern parts of the study area with patches in the 

north-western parts. It can be noted that the nGongoni grass quantity during senescence also 

tends to be confined in specific zones within the study site, although such a dynamic pattern 

was not apparent (Figure 3.6(d). However, the western, central, and north-eastern parts of the 

study area were generally characterized by low volumes of quality forage, both, during pre-

senescent and senescent periods. 



49 
 

 

Figure 3.6 Spatial distribution of predicted grass quality at (a) pre-senescent and (b) senescent 

stages as well as the quantity during the (c) pre-senescent and (d) senescent periods. The empty 

or white spaces represent the other land use/land cover types which were masked in this study. 

 

3.4 Discussion  

3.4.1 Estimation of grass quality and quantity decline through senescence using Sentinel 

2 data 

The findings of this study showed that the quality and quantity of the nGongoni grass during 

pre-senescent and senescent phenological stages can be assessed successfully using the 

Sentinel 2 data, with a high degree of accuracy. Specifically, the Red-Edge Bands 6, 7, and 8a, 

jointly with their associated vegetation indices (i.e., NDVI B6, NDVI B7 and NDVI B8a) 

appeared to be the most important variables when estimating grass quality at pre-senescent 

stage. This could be attributed to the sensitivity of the Red-Edge Position of the spectrum to 

green features of the vegetation (Sibanda et al. 2021; Frampton et al. 2013), and the increased 

foliar chlorophyll of the nGongoni grass during pre-senescence. Sibanda et al. (2017b), 

highlighted the sensitivity of Sentinel 2’s Red-Edge Position to foliar chlorophyll which is 
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dominant in green and healthy leaves of pre-senescent nGongoni grass. Again, the PSSRa, 

which uses the information from the Near Infrared (NIR) and red bands, was very influential 

in characterizing grass quality at pre-senescence. Although the raw Sentinel 2 bands that are 

located in the Visible and NIR regions did not perform well in explaining grass quality at pre-

senescence, the increased explanatory power of their subsequent indices (PSSRa), on the other 

hand, could be justified by the fact that vegetation indices rely on the information from more 

than two wavebands (Sibanda et al. 2021). These results strengthen the findings from previous 

studies that have tested the robustness of vegetation indices derived from the Red-Edge in 

explaining green properties of the floral species (Sharma et al. 2015; Frampton et al. 2013; 

Mutanga et al. 2012).  

 

More so, the poor performance of the Shortwave Infrared (SWIR) region observed when 

predicting foliar chlorophyll is not uncommon in remote sensing studies of plant pigment 

estimation (Sibanda et al. 2021). This is because the SWIR is sensitive to structural components 

and water content of the plants (Hunt Jr et al. 2016). Meanwhile, the relatively low predictive 

power of the Visible region compared to the Red-Edge in explaining grass quality at pre-

senescence could be attributed to the low reflectance from the green leaves of the nGongoni 

grass during this period (Sims and Gamon 2002). Contrastingly, when chlorophyll content was 

reduced in the grass leaves because of senescence, the Visible red (Band 4) and the NIR regions 

along with the Red-Edge, emerged as the most important variables in explaining grass quality. 

The improved role of the Visible red in estimating grass quality during senescence is a 

consequence of the decrease in its chlorophyll, which promoted increased reflectance in this 

region. The spectral reflectance in the Visible red (Band 4) of the electromagnetic spectrum is 

known to be sensitive in dry structural features of the vegetation (Dube et al. 2021; Bremer et 

al. 2011) which are dominant in senescent nGongoni grass leaves (Cole et al. 2014). 

  

This study further showed that the optimal estimation of grass quantity at pre-senescence was 

achieved using the PSSRa, Band 8a, Band 6, and NDVI B8a, as the most important variables. 

Again, the majority of the influential variables when predicting grass quantity during pre-

senescence were located in the Red-Edge and the NIR regions. During pre-senescence, the 

canopy of the nGongoni grass, like any other vegetation, is generally green and dominant, and 

that may have increased the spectral reflectance in the NIR section. Many studies have noted 

the sensitivity of the NIR and the Red-Edge Position jointly with subsequent indices in 

estimating the above-ground biomass (Shoko and Mutanga 2017a; Sibanda et al. 2015; Sharma 
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et al. 2015 Ramoelo and Cho 2014). Shoko and Mutanga (2017b), also highlighted the 

importance of the Red-Edge and the NIR regions of Sentinel 2 in discriminating between the 

C3 and the C4 grass species. Equally, the best prediction of the nGongoni grass quantity during 

senescence was achieved based on the NDVI B5, Band 6, 5, 7, NDVI B6, Visible red band, 

and the PSSRa, as the most important variables. These results highlighted the importance of the 

Visible red, NIR, and the Red-Edge Position of Sentinel 2 multispectral sensor in explaining 

the live-standing above-ground nGongoni grass quantity during senescence. This may be 

attributed to the widespread distribution of the hardy tufted nGongoni grasses during 

senescence (Wiseman et al. 2002), which minimizes the exposure of the soil background to the 

emitted radiation and subsequently the measured reflectance. Dube et al. (2021), also revealed 

a similar trend of importance of the Visible red and NIR regions of the electromagnetic 

spectrum when explaining above-ground grass biomass during dry seasons using the Landsat 

8 multispectral instrument.  

 

With regards to the distribution of quality in the nGongoni grass during the two senescent 

phenological periods under investigation in this study, our findings indicated that high-quality 

grasses were spread towards the southern and patchy in the north-western part of the study site 

during pre-senescence, while centred in specific zones during senescence. Although not 

dominant, a similar trend was observed with regards to the distribution of quantity of the 

nGongoni grass during pre-senescence and senescent periods. This implies that the southern 

side of the study area is generally characterized by high concentrations of quality nGongoni 

grasses, hence, livestock forage. Contrary, the western, central, and north-eastern sides 

appeared to be signified by low volumes of both quality and quantity nGongoni grasses, hence, 

low livestock feed. These findings also highlight an element of potential overuse of foraging 

resources, or rather grazing resources in bad condition, particularly in the western, central, and 

north-eastern parts of the study area, which were noted as closer to community residential 

areas. Egeru et al. (2019), and Oba (2012) reported that the condition of grazing fields that are 

close to the settlements is often poor. Again, Sun et al. (2011) noted that heavily grazed areas 

are often characterized by low grass biomass, and the proximity of the western, central, and 

north-eastern areas of the study site to the residential areas may have promoted increased 

livestock grazing there. Over and above, the strong relationship displayed between foraging 

resource quality and quantity suggest that, grass biomass decreases with decline in its quality.  
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3.4.2 Implications of the observed findings on rangeland’s resource management 

This study has demonstrated the magnitude of decrease in the quality and quantity of the 

nGongoni grass because of senescence, with a clear indication of the available forage DM 

content during pre-senescence and senescent stages. It is worth noting that the quality of the 

nGongoni grass drops substantially (17.18 µg Chl/cm2) compared to its quantity (0.89 kg/m2) 

during senescence and this may have negative implications to the availability status and 

conditions of the subsequent forage in the rangelands. For instance, the low-quality feed from 

the dry nGongoni grass during senescence may not adequately meet the dietary requirements 

of the grazing livestock. Generally, these results are consistent with previous studies that have 

confirmed plant nutrient decline following senescence (Gao and Li 2015; Guo and Gan 2014; 

Sarath et al. 2014). Over and above quantifying the magnitude of decrease in the quality of 

forage resources due to senescence, the study also estimated the decrease in quantity of the 

foraging resources. Although the DM content results give an impression that adequate forage 

may be available during senescence, as opposed to pre-senescent period, the is a challenge of 

forage quality. The hardy dry leaves of senescent nGongoni grass may not meet the grazing 

requirements of the livestock, unlike the green grass leaves which are known to be low in fibre 

and high in digestible nutrients and soluble proteins (Mutanga et al. 2003; Stichler 2002). 

Besides the quality aspect, it is also worth noting that the 78.2 %/m2 DM content of the 

nGongoni grass during the senescent stage is not reflective of an increment from the pre-

senescent 68.5 %/m2 DM, but rather an indication of the lack of moisture content in senescent 

grass leaves. This is more challenges for rural livestock farmers who can barely afford the high 

cost of supplementary forage. With this knowledge, there is a need for adoption of robust 

models derived from Sentinel 2 data to monitor foraging resources for improved decision-

making on effective stock densities and grazing approaches. This is a critical step towards 

understanding poverty alleviation and food security efforts, particularly in developing 

countries whose economies are largely dependent on the livestock farming, both, on 

commercial and subsistence scales (Ramoelo and Cho 2014).  

 

3.5 Conclusion  

The objective of the present study was to quantify the amount of decline in nGongoni grass 

quality and quantity because of senescence using in-situ and Sentinel 2 data. Based on the 

findings, it can be concluded that the Sentinel 2 data, when used in concert with the Random 

Forest Regression model presents not only a novel but rather a robust and effective method 
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towards prediction of grass quality and quantity at various stages of senescence. Despite the 

common notable decrease in the live-standing above-ground biomass of the vegetation with 

decline in quality during senescence, this study further revealed that the degree to which the 

quality drops is remarkable. This poses serious problems of potential insufficient forage for the 

livestock grazing, and, hence, requires effective management interventions to either regulate 

the stock densities or grazing patterns. The subsequent impact is expected to be more on rural 

livestock farmers who are often characterized by resource constraints in order to obtain 

supplementary forage. The importance of this study is not only limited to academia, but rather 

to the livestock farmers in general and to the communal livestock farmers in particular, 

especially in developing regions such as southern Africa, which are faced with resource 

constraints. Also, it is recommended that future studies must test the effectiveness of the 

adopted model on different grass species, or different regions, to verify the generalisation of 

the findings. Confirmation results from such studies will help in providing insightful 

information not only on the impact of senescence on foraging resource productivity, but rather 

to improve policy and decision-making on forage availability and livestock management. This 

is important because livestock farming forms a key livelihood option, especially in developing 

countries.    
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4 Determining the onset of autumn grass senescence in subtropical sourveld grasslands 

using remote sensing proxies and the breakpoint approach 

 

This chapter is based on:  

Royimani, L., Mutanga, O., Odindi, J., Sibanda, M. & Chamane, S. 2022. Determining the 

 onset of autumn grass senescence in subtropical sour-veld grasslands using remote 

 sensing proxies and the breakpoint approach. Ecological Informatics, 69, 101651. 
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Abstract 

Information on the onset of autumn grass senescence in subtropical grasslands is essential for 

ascertaining the duration of poor forage quality. It is well-established that during senescence, 

grass leaves lose their nutrients to the rooting systems; which affects the quality and quantity 

of forage resources. The timing of the onset of autumn grass senescence is critical in 

determining the potential lifespan through which the provision of quality forage can be 

sustained in grazing lands. However, objective and robust methods for estimating the onset of 

autumn grass senescence at a rangeland scale are limited. Hence, this study sought to 

characterize the onset of autumn senescence in mesic subtropical sourveld grasslands using 

remotely sensed data. Ten monthly vegetation indices were generated from the Sentinel 2 data 

and used as proxies to explain the onset of autumn grass senescence. The performance of the 

proxies was validated using the corresponding field-measured monthly grass chlorophylls. 

Results showed that the Chlorophyll Red-Edge (CHL-RED-EDGE) and the Normalized 

Difference Red Edge Index (NDVI705) were the most important proxies for characterizing the 

autumn grassland senescence. In addition, monthly (i.e., January to June) mean values of the 

two best proxies were fitted in a piecewise linear regression model with a breakpoint approach 

to determine the start of autumn grass senescence. The first proxy (i.e., NDVI705) predicted that 

the grass in the study area starts senescing on day number ± 98 of the year (R2 = 0.97, RMSE 

= 0.024), while the second (i.e., CHL-RED-EDGE) suggested day number ± 106 of the year 

(R2 = 0.96, RMSE = 0.052). Overall, this study demonstrated the value of remote sensing 

proxies in estimating the autumn grass senescence and in determining its onset. These results 

provide a basis for understanding the impact of autumn senescence on foraging resource 

provision in rangeland ecosystems. 

Keywords: Grass senescence, forage, autumn onset, Sentinel 2, remote sensing proxy, 

breakpoint analysis. 

4.1 Introduction  

Quantifying the onset of autumn grass senescence is a critical step towards understanding its 

ecological implications as well as the dynamics in the provision and supply of quality forage 

in rangeland environments (Yang and Udvardi 2018; Ren et al. 2017). This is primarily 

important for two major reasons; firstly, grasses constitute the greatest portion of the natural 

pastures and secondly, they degrade during senescence; hence, losing their grazing value 

(Royimani et al. 2021). Even though it is noted that grasses may senesce individually because 

of, among others, physical damages and genetically related conditions (Royimani et al. 2021), 
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the impact of such senescence is not significant to forage productivity due to the disjointed 

nature of its occurrence. Instead, the autumn senescence, which is described as the seasonal 

plant wilting due to old age and the climatic conditions associated with autumn (Mariën et al. 

2019) has generated interest due to its relative uniformity across the landscape. Besides, the 

onset of autumn grass senescence can be accelerated or delayed due to changes in seasonal and 

climatic conditions; in turn, reducing or extending forage quality and quantity (Royimani et al. 

2021). For instance, studies indicate that the early onset of senescence reduces the growing 

period of the flora and the subsequent productivity, while delayed onset allows for maximum 

growth and maturity that increases forage quality (Gehrmann et al. 2021; Mariën et al. 2021; 

Anderegg et al. 2020; Guo and Gan 2014). Therefore, an accurate and timely assessment of the 

onset of autumn grass senescence is required to forecast the period through which quality 

forage provision can be ascertained in grazing lands.  

Current methods for assessing the start of autumn plant senescence have largely been based on 

field observations of changes in chlorophyll and nitrogen pigments as well as visual scoring of 

leaf coloration and fall (Anderegg et al. 2020; Mariën et al. 2019; Michelson et al. 2018). 

However, the drawbacks of such methods include the high cost of labour, time, and money and 

are limited to plot and field-scale applications (Mariën et al. 2019; Royimani et al. 2019a). 

Besides, leaf coloration and fall approaches are impeded by their subjectivity and the effect of 

time lag (i.e., they can only occur beyond a given decline in chlorophyll threshold) (Mariën et 

al. 2019). Hence, these approaches are inadequate in monitoring rangeland’s phenology at 

reasonable spatial extents (Makanza et al. 2018). On the other hand, remote sensing has been 

instrumental in providing near real-time high-quality data useful in explaining changes in plant 

pigments like chlorophyll over large spatial extents (Morley et al. 2020; Frampton et al. 2013; 

Di Bella et al. 2004). As a result, many remote sensing proxies that are sensitive to changes in 

chlorophyll e.g., the Normalized Difference Vegetation Index (NDVI), Plant Senescence 

Reflectance Index (PSRI), MERIS Terrestrial Chlorophyll Index (MTCI), Enhanced 

Vegetation Index (EVI), Chlorophyll Red Edge Index (CHL-RED-EDGE), and the Green-Red 

Ratio Index (GRVI) have been developed and used to optimize the quantification of plant 

senescence (Lang et al. 2019; Yu et al. 2019; Dash et al. 2010). For instance, Mariën et al. 

(2019) estimated the onset of autumn senescence in European beech (Fagus sylvatica L.) trees 

in Antwerp, Belgium, using a combination of field-based (i.e., chlorophyll content, nitrogen 

concentration, leaf coloration, and fall) and remote sensing (i.e., NDVI, EVI, CHL-RED-

EDGE, PSRI, and the MTCI) proxies with the breakpoint analysis. Based on their findings, the 
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start of autumn senescence in the vegetation was best explained by the CHL-RED-EDGE and 

the NDVI, with an inflection point on day number ± 248 of the year. Makanza et al. (2018), 

also investigated the utility of the Unmanned Aerial Vehicle (UAV) technology in assessing 

canopy senescence in crop plantations, in Harare, Zimbabwe, while Renier et al. (2015a), 

detected the onset of vegetation senescence in Mauritania using a time series analysis of the 

NDVI and the Normalized Difference Tillage Index (NDTI) generated from MODIS with three 

different classification techniques. Using the decision tree, the maximum likelihood, and the 

support vector machine classification techniques, they achieved 71.5%, 61.4%, and 72.3% 

classification accuracies, respectively. Generally, the estimation of the onset of plant 

senescence relies on the ongoing monitoring of dynamics in the trajectory of the chlorophyll 

through time.  

However, to the best of our knowledge, no study has estimated the onset of autumn senescence 

in subtropical grasslands using remote sensing techniques. Therefore, this study is the first 

attempt in testing the potential of vegetation metrics derived from the remotely sensed Sentinel 

2 dataset to explain the onset of autumn senescence in mesic subtropical sourveld grasslands. 

To achieve this objective, ten monthly vegetation indices were retrieved as proxies for the 

assessment of grass senescence for the period between March and June 2021. The performance 

of the vegetation indices was evaluated using corresponding monthly grass chlorophyll 

contents collected on the field and the best proxies were established. Mean monthly values of 

the best proxies were calculated for the detection of the onset of autumn grass senescence using 

the piecewise linear regression model and the breakpoint analysis (Mariën et al. 2019; Odindi 

and Kakembo 2011). The approach captures the inflection point, where the change in the slopes 

of the two or more datasets (i.e., from negative to positive or vice versa) occurs (Tomé and 

Miranda 2004). Our study hypothesized that the start of autumn senescence in the grass can be 

determined by explaining the inflection point in its monthly chlorophyll.   

4.2 Methods and materials 

4.2.1 Sampling strategy 

Monthly grass chlorophyll content values for this study were collected using a SPAD-502 

meter between March and June 2021 (Table 4.1). The assumption was that during March, the 

chlorophyll content in the grass leaves is at the peak due to maturity while at the lowest in June 

because of senescence (Table 4.2). A total of 110, 10 m-by-10 m plots were established at 150 

m distance apart using a purposive sampling approach (Royimani et al. 2019b). The 10 m-by-

10 m plots were located within bigger homogeneous plots of approximately 15 m-by-15 m to 
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minimize the potential errors arising from geolocation mismatch with the satellite imagery. 

Centre coordinates of the plots were taken using a Trimble GPS receiver with a sub-meter 

accuracy to facilitate tracing and identification during subsequent site visits. Although the 

measurements of plant chlorophyll when using the SPAD-502 meter are often taken at the leaf 

level, the narrow leaf surface area of the sampled grass leaves was inappropriate for this 

approach. Therefore, chlorophyll measurements were taken at the plant level, in the region 

between culm and inflorescence, and the SPAD-502 sensor was fully covered by the grass 

leaves. A calibration set of five simultaneous SPAD-502 readings were taken and averaged to 

determine a measurement. This exercise was reiterated three times in each plot and the 

outcomes were averaged to get one value for the plot. Also, mean values of the monthly grass 

chlorophylls were generated and plotted to understand the pattern in the temporal behavior of 

the chlorophyll for the duration of the study (Figure 4.1). However, using the March to June 

mean monthly chlorophylls, the trajectory of the grass chlorophyll was shown to be already on 

a down falling slope. To determine the behavior of the grass chlorophyll before senescence was 

visible, we extrapolated the mean values of the grass chlorophyll for January and February 

using a linear regression model in R. The extrapolated January and February mean chlorophylls 

corresponded to the ± 27th and 55th days of the year, respectively (Table 4.1). 

 

Table 4.1 Field data collection dates and the variables collected, frequency, and sampling scale.  

Date  

Corresponding 

DOY 

Variables 

collected Frequency Sampling scale 

-  27 -  -  -  

-  55 -  -  -  

23 – 29 March 2021 85 

Chlorophyll 

content 
Monthly Plant 

26 – 30 April 2021  118 

24 – 28 May 2021  146 

21 – 25 June 2021  174 

Footnote: DOY = Day of the year.  
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Table 4.2 Field captured visuals of the grass between March and June 2021 to illustrate the 

condition of the grass from the pre-senescent through to senescent phase.   

Month DOY Coloration stage  Photo 

March 85 Deep green  

 

April  118 Pale green  

 

May 146 Yellow  

 

June 174 Brown  
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4.2.2 Remote sensing proxies  

4.2.2.1 Sentinel 2 multispectral image acquisition  

Six pre-processed (i.e., L2A processing level) monthly scenes of the Sentinel 2 Multi-Spectral 

Instrument (MSI) were freely downloaded from the Copernicus Open Access Hub data 

repository (https://scihub.copernicus.eu/dhus/#/home). The acquisition dates of these Sentinel 

2 images are presented in table 4.3. These image dates were chosen because they overlapped 

with field data collection dates in this study (Table 4.1). All the Sentinel 2 images were 

georeferenced using the first-order polynomial transformation available in ArcGIS version 

10.6. The standard errors obtained are reported in table 4.3. In the process, the ArcMap’s base-

map imagery was used as a benchmark and recognizable features like crossroads and water 

bodies were identified as Ground Control Points (GCPs) to geometrically rectify the Sentinel 

2 images. This was necessary to avoid possible spatial or geometric inconsistencies in pixel 

locations across the multiple images.  

Table 4.3 Sentinel 2 image acquisition dates and the cloud cover proportions.  

Sensor 

Acquisition 

date 

Corresponding 

DOY 

Cloud cover 

(%) 

Standard error 

(RMSE) (m) 

 22-Jan-21 

 

27 0.063 1.879 

 24-Feb-21 

 

55 0.571 2.271 

Sentinel 2 29-Mar-21 

 

85 0.167 1.911 

 21-Apr-21 

 

118 0.029 2.089 

 23-May-21 

 

146 0.126 1.893 

 25-Jun-21 

 

174 2.950 1.287 

Footnote: DOY = Day of the year, Standard error = georectification error.  

The broadband multispectral remote sensing sensors like Sentinel 2 have been commended for 

rangeland monitoring and management due to their extensive coverage and free availability 

(Shoko et al. 2020). The high (i.e., 5-day) temporal resolution of the Sentinel 2 imagery 
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satisfies the requirements for the ongoing earth observation required for the detection of the 

onset of plant senescence. Also, the Sentinel 2 provides the coverage of the Red Edge Position 

(REP) (Frampton et al. 2013), which is required to explain subtle changes in plant pigments 

like chlorophyll through senescence. 

4.2.2.2 Vegetation index extraction  

Ten monthly vegetation indices were calculated and used as proxies for the period of the field 

data collection to estimate autumn grass senescence. The chosen indices included the CHL-

RED-EDGE, PSRI, MTCI, GRVI, Normalized Difference Senescent Vegetation Index 

(NDSVI), NDTI, and the four NDVIs. In addition to the traditional NDVI and the Normalized 

Difference Red Edge Index (NDVI705), two other NDVIs (i.e., NDVI-B8A and NDVI-B7) were 

explored using a combination of bands in the Near Infrared and the Red-Edge Band 8A and 

Band 7, respectively. The choice of the indices was motivated by their success in previous 

applications of plant senescence estimation (Mariën et al. 2019; Lang et al. 2019; Yu et al. 

2019) or due to the sensitivity of the region that contains the associated bands in detecting plant 

chlorophyll. Additional indices were generated using the best performing proxies for January 

and February 2021. Detailed descriptions of the indices used in this study together with their 

formulae are given in table 4.4. 

4.2.3 Statistical analysis  

All statistical analysis in the study were performed using R version 4.0.5 (R Core Team, 2021). 

Also, figures were coded in R using embedded packages like the plot and the segmented 

function. The monthly grass chlorophylls, as response variables, as well as the remotely sensed 

data, as predictors, were tested for normality using the Shapiro-Wilk test based on the p-value. 

The accuracies of the models and approaches employed were individually or collectively 

evaluated using the coefficient of determination (R2), Root Mean Square Error (RMSE), the 

Mean Square Error (MSE), and the level of significance (p-value).  
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Table 4.4 Chosen vegetation indices in the present study. 

Index name Abbreviation Formula Reference 

Green Red Ratio Index GRVI B03 - B04 / B03 + B04 

Lang et al. 

(2019) 

Normalized Difference Senescent 

Vegetation Index NDSVI B11 - B04 / B11 + B04 

Yu et al. 

(2019) 

Normalized Difference Tillage 

Index NDTI B11 - B12 / B11 + B12 

Mariën et al. 

(2019) 

Normalized Difference Vegetation 

Index NDVI B08 - B04 / B08 + B04 

Anderegg et al. 

(2020) 

Normalized Difference Vegetation 

Index NDVI-B7 B07 - B04 / B07 + B07 -  

Normalized Difference Vegetation 

Index NDVI-B8A 

B08A - B04 / B08A + 

B04 -  

Plant Senescence Reflectance Index PSRI B04 - B02 / B06 

Anderegg et al. 

(2020) 

Chlorophyll Red Edge 

CHL-RED-

EDGE B05 / B08 

Mariën et al. 

(2019) 

Normalized Difference Red Edge NDVI705 B06 - B05 / B06 + B05 

Dong et al. 

(2015) 

MERIS terrestrial Chlorophyll 

index MTCI B06 - B05 / B05 - B04 

Mariën et al. 

(2019) 

 

4.2.4 Optimal remote sensing proxies for estimating autumn grass senescence 

In identifying remote sensing proxies (i.e., predictors) that can explain autumn grass 

senescence with superior accuracies, the capabilities of the retrieved vegetation indices were 

tested based on the field-measured monthly grass chlorophylls (i.e., responses) using the 

Pearson’s Product correlation test. The importance of the proxy or predictor variable in 

detecting autumn grass senescence was determined based on the R2, RMSE and p-value 

obtained. The requirement for the best proxy was that it must be consistently significant (p < 

0.001) with a consistently high R2 and low RMSE values across all the four months considered 

for the analysis. Ultimately, proxies that satisfied all these requirements were chosen and used 

to estimate the timing of the start of autumn grass senescence in the study area.  
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4.2.5 Detecting the inflection point in grass chlorophyll during autumn senescence 

To explain the inflection point in the onset of autumn grass senescence, we separately averaged 

all the monthly 110 points and we ended up with monthly mean values. Next, the monthly 

means of grass chlorophyll, as expressed by the best proxy, were used starting from January to 

June 2021. Subsequently, the study employed a piecewise linear regression model with a 

breakpoint (Mariën et al. 2019; Odindi and Kakembo 2011), using the monthly means of the 

best proxies. The formula for the piecewise linear regression with a breakpoint is given in 

equation 4.1.  

 Y = b0 + b1 * X + b2 * (X - breakpoint) * (X > breakpoint) …………………...……. (4.1) 

where; X is the time (in days), Y is the remote sensing based chlorophyll content (in µg 

Chl/cm2), b0 is the intercept, b1 and b2 are the slopes of chlorophyll before and after the 

breakpoint. This function (equation 4.1) is composed of two expressions (equation 4.2 and 4.3) 

with formulae: 

 Y = b0 + b1 * X …………………………………………………...……....………. (4.2) 

and  

 Y = b0 + b1 * X + b2 * (X - breakpoint) ……………………………...……………. (4.3) 

Equation 4.2 deals with chlorophyll values of the grass before the breakpoint while equation 

4.3 takes care of grass chlorophyll after the breakpoint.  

In addition, effective detection of the inflection point using the regression with a breakpoint 

approach requires the definition of the actual breakpoint (Odindi and Kakembo 2011). To 

define the best breakpoint, a wider range of breakpoints was created using the four dates that 

fall in the middle of all the dates considered in this analysis. Specifically, these dates were day 

numbers ± 55, 85, 118, and 146 corresponding to February, March, April, and May, 

respectively (Table 4.1 and Figure 4.1). The optimal breakpoint was established through an 

iterative search between these four dates and was identified based on the lowest residual or 

Mean Square Error (MSE). The inflection point was defined as the point where the two slopes 

(i.e., before and after the onset of autumn grass senescence) meet. Using the means of the two 

predicted dates of the start of autumn grass senescence, we established the actual onset of 

autumn grass senescence in the study area (equation 4.4). 

Actual Onset of Autumn Grass Senescence (AOAGS) = M1 + M2 / n …………...………... (4.4) 
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where M1 and M2 are predicted dates for models one and two, respectively, while n is the 

number of models considered.    

 

Figure 4.1 Schematic representation of the mean monthly grass chlorophylls with extrapolated 

values for day number ± 27 and 55 to represent the January and February months, respectively. 

The black dotted rectangle at the centre of the figure illustrates the four dates used to determine 

the best breakpoint. 

 

4.3 Results 

4.3.1 Descriptive statistics 

Table 4.5 shows the descriptive statistics of the field-measured monthly grass chlorophyll for 

the study period. Overall, the grass chlorophyll varied widely with a maximum and minimum 

of 29.4 µg Chl/cm2 and 2.2 µg Chl/cm2 in March and June, respectively. High grass chlorophyll 

contents (mean, maximum, and minimum) were recorded in March while low values were 

obtained in June. In addition, a gradual decrease in monthly grass chlorophyll was observed 

from March to June (Table 4.5 and Figure 4.2). Normality tests indicated that, field-collected 

monthly grass chlorophyll did not deviate from the normal distribution (p > 0.05) with most of 

the data centred around the mean for all the months considered (Figure 4.2).  
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Table 4.5 Descriptive statistics of the field-measured grass chlorophyll content. 

Variable 

No. of 

samples Month Minimum Maximum Mean Standard deviation 

Chlorophyll 

content 

(µg Chl/cm2) 

110 

March 20.1 29.4 25.3 2.4 

April 10.3 25.9 17.3 3.4 

May 4.4 21.7 14.2 3.8 

June 2.2 11.6 5.8 2.0 

 

 

Figure 4.2 Distribution of field-collected chlorophyll content of the grass.  

 

4.3.2 Optimal remote sensing proxy for detection of autumn grass senescence   

Based on the Pearson’s Product correlation test result in table 4.6, all the remote sensing proxies 

calculated in this study, except the NDSVI, showed a good relationship (p < 0.001) with grass 

chlorophyll for most of the months considered. Again, the performance of the GRVI decreased 

substantially in May and June (Table 4.6). The MTCI was only insignificant (p > 0.001) in 

June. The PSRI and the CHL-RED-EDGE, on the other hand, demonstrated a negative 

correlation with the response variable (i.e., grass chlorophyll) for all the months considered in 

this investigation. Although all remote sensing proxies were generally significant in estimating 

the autumn grass senescence, their inconsistency throughout the study disqualified them in the 

selection of the best proxy. Contrary, the NDVI705, and CHL-RED-EDGE emerged as the most 
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important and consistent proxies in explaining autumn grass senescence in all the months, with 

high R2 and low RMSE values (Figure 4.3 and Table 4.6).  
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Figure 4.3 Relationship between field-measured (SPAD-502 values) and predicted grass chlorophyll based on optimal remote sensing proxies for 

all the months of data collection. The top row illustrates the correlation between grass chlorophyll and the NDVI705 for (a) March, (b) April, (c) 

May, and (d) June, while the bottom row shows the grass chlorophyll against the CHL-RED-EDGE for (e) March, (f) April, (g) May and (h) June.  
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4.3.3 Onset of autumn grass senescence  

The wider range of breakpoints set to determine the optimal breakpoint identified day number 

± 118 of the year, which is breakpoint number 3.0 in figure 4.4, as the most suitable date for 

explaining the inflection point in grass chlorophyll. This day (i.e., number ± 118) 

complemented the April field data collection date, thereby, indicating that the breaking point 

in the temporal trajectory of grass chlorophyll in this area is in April. According to figure 4.5(a), 

which shows the estimated date of the inflection point in grass chlorophyll based on the 

NDVI705, the onset of autumn grass senescence in the study area occurs on day number ± 98 of 

the year (R2 = 0.97, RMSE = 0.024). On the other hand, figure 4.5(b), which illustrates the 

inflection point in grass chlorophyll using the CHL-RED-EDGE, predicted day number ± 106 

of the year (R2 = 0.96, RMSE = 0.052) as the day in which autumn grass senescence begins. 

Averaging these two predicted dates, a mean day in which the onset of autumn grass senescence 

occurs was established to be day number ± 102. The inflection point is shown by the red vertical 

lines in both figures (Figures 4.5(a) and (b)). Also, it can be noted that the slope of the grass 

chlorophyll based on the NDVI705 changed from positive, before the onset of senescence, to 

negative, after senescence onset, while the reverse was observed for the CHL-RED-EDGE 

(Table 4.7).  

 

 

Figure 4.4 Four chosen breakpoints to estimate the onset of autumn grass senescence and their 

prediction accuracy in terms of the Mean Square Error (MSE).  
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Figure 4.5 Estimated onset of autumn grass senescence based on the (a) NDVI705 and the (b) 

CHL-RED-EDGE remote sensing proxies. 

 

Table 4.7 Chlorophyll content slopes and intercepts before and after the breakpoint. 

Proxy 

Slope before 

breakpoint y-intercept 

Slope after 

breakpoint y-intercept 

NDVI705 0,000264 0,376845 -0,00382 0,778807 

CHL-RED-EDGE -0,00068 0,406782 0,004924 -0,18897 

 

4.4 Discussion  

This study has demonstrated the potential of remote sensing proxies derived from the Sentinel 

2 multispectral data in explaining the onset of autumn senescence in mesic subtropical sourveld 

grasslands of the KwaZulu-Natal midlands region, South Africa. Specifically, these results 

highlighted that the CHL-RED-EDGE and the NDVI705 were the most sensitive proxies for 

detecting the autumn grassland senescence. One explanation for that is the sensitivity of the 

region of the electromagnetic spectrum that contains the bands that are used to generate these 

proxies. Both the CHL-RED-EDGE and the NDVI705 are retrieved using the strategically 

positioned bands located in the REP of the electromagnetic spectrum. The strength of the REP 

in explaining dynamics in plant pigments such as chlorophyll is well documented in the 

literature (Shoko and Mutanga 2017a; Sibanda et al. 2017a; Shoko and Mutanga 2017b; 

Frampton et al. 2013). Moreover, the positive relationship observed between field-measured 

monthly grass chlorophylls and the NDVI705 suggests that this proxy explains grass senescence 



72 
 

based on the chronological changes in its chlorophyll. Considering the “blue shift of the red 

edge” phenomenon in the shorter wavelengths of the REP due to senescence (Clark et al. 

1995a), it is befitting to have the NDVI705 ranked among the most important proxies for 

characterizing the autumn grass senescence. This also justifies the failure of the other indices 

(i.e., GRVI, NDVI, NDVI-B7, NDVI-B8A) to meet the set criteria for selection of the best 

proxy, despite their known sensitivity in plant pigments like chlorophyll (Lang et al. 2019; Ren 

et al. 2017; Di Bella et al. 2004). The NDVSI and NDTI, on the other hand, are mainly 

generated using bands that are located in the Shortwave Infrared region of the electromagnetic 

spectrum, which is less sensitive to plant chlorophyll but rather to water content and other 

biochemical constituents such as cellulose and lignin (Sibanda et al. 2021; Ceccato et al. 2001; 

Ben-Dor et al. 1997).  

Our findings contrast Mariën et al. (2019), who noted that detecting plant senescence onset 

based on changes in carotenoid derivatives (e.g., leaf coloration and fall) are often inaccurate. 

In our study, the CHL-RED-EDGE, which is sensitive to changes in plant carotenoid content, 

emerged as one of the best proxies for explaining the autumn grass senescence. This could be 

attributed to the strong relationship that exists between plant carotenoid and chlorophyll 

(Niroula et al. 2019). Other studies have further emphasized this inverse relationship between 

plant chlorophyll and carotenoid,  noting the consistent increase in carotenoid with decrease in 

chlorophyll (Royimani et al. 2021; Merzlyak et al. 1999; Peñuelas and Filella 1998). 

Additionally, this discussion suggests that the known time lag problem common between plant 

chlorophyll decline and carotenoid ascendancy when assessed through field observations and 

visual scorings (Mariën et al. 2019), can be overcome by the use of remote sensing proxies. 

The sensitivity of regions such as the REP can detect small changes in plant pigments, unlike 

the use of subjective field observations and visual scorings which introduces the issue of time 

lag (Mariën et al. 2019; Makanza et al. 2018). Furthermore, the explanatory power of the CHL-

RED-EDGE in optimally detecting autumn grass senescence in the present study is assumed to 

have been boosted by the sensitivity of the subsequent bands to carotenoid, which is strongly 

and inversely related to chlorophyll.  

With regards to the timing of the onset of autumn grass senescence, the two linear regression 

models established, based on the NDVI705 and the CHL-RED-EDGE, were successful in 

defining the days of the year in which the start of grass senescence can be expected in the area 

during autumn. The first model (i.e., NDVI705) indicated that the onset of autumn grass 

senescence is on day number ± 98 of the year (R2 = 0.97, RMSE = 0.024) while the second 
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model (i.e., CHL-RED-EDGE) suggested day number ± 106 of the year (R2 = 0.96, RMSE = 

0.052). Based on averaging these two predicted dates, the actual start of autumn grass 

senescence in the area was estimated to be on day number ± 102 of the year, which is in April. 

This attests to the observational evidence gathered in the area during field data collection. 

Again, this complements the evidence presented in table 4.2, using the monthly visuals of the 

conditions of the grass acquired in the study area. For instance, the clear change in grass colour 

from deep green in March (i.e., day number ± 85) to pale green in April (i.e., day number ± 

118) confirms this predicted date of the start of autumn grass senescence in this area.   

The findings of this study are crucial to rangeland users and managers as they provide a basis 

for knowledge on the potential duration of forage quality and quantity in the rangelands. The 

delayed onset of autumn senescence in grasslands postpones the time in which the nutrients 

could be relocated from the leaves to the roots, thereby extending the duration of their 

accessibility to the grazing livestock (Anderegg et al. 2020). Therefore, this information on the 

actual start of autumn grass senescence will inform local livestock farmers and range managers 

on the potential deficit of forage production in their grazing area, hence, the adoption of 

appropriate measures to minimize the possible impact on the livestock productivity. For 

instance, in the case of early onset of autumn grass senescence, these livestock managers can 

be empowered to make informed decisions regarding selling some of their livestock while still 

healthy, as opposed to waiting for later stages of senescence when the economic value of the 

animals has declined. This is particularly important in communal rangelands of developing 

regions where forage enhancement measures like fertilizer applications and supplements are 

limited due to resource constraints (Rabumbulu and Badenhorst 2017). Empirical evidence also 

highlights the ecological importance of understanding the start of autumn plant senescence. For 

instance, Royimani et al. (2021) noted that during senescence, the surface area and the stomatal 

pores of the grass leaves are significantly reduced,  thereby, decreasing the amount of 

sequestrated carbon, while Anderegg et al. (2020), reported the value of increased stay-green 

or delayed onset of senescence in vegetation for carbon assimilation. These findings further 

stress the importance of understanding the timing of the start of autumn grass senescence for 

its implications on climate regulatory initiatives.   
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4.5 Conclusion  

This study has established remote sensing-based proxies for estimating the onset of autumn 

senescence in grassland ecosystems. The identified best proxies were the NDVI705 and the 

CHL-RED-EDGE and they, respectively, explained the onset of autumn grass senescence 

based on changes in chlorophyll and carotenoid content of the grass. The explanatory power of 

the best proxies is believed to have been boosted by the utility of the bands in the REP of the 

electromagnetic spectrum. Based on the NDVI705, the estimated start of autumn grass 

senescence was on day number ± 98, while on day number ± 106 for the CHL-RED-EDGE. 

The mean day, which represents the actual start of grass senescence during the autumn season 

in the study area, was predicted to be day number ± 102 of the year. All the predicted dates of 

the start of autumn grass senescence in this study fall within the month of April which attests 

to the observational evidence. This reinforces the evidence presented in table 4.2 using field 

acquired photographs. This research provides baseline knowledge on the potential duration of 

forage provision and supply in rangeland ecosystems. Whereas our study provides a novel 

approach for determining the onset of autumn grass senescence, it is based on a single-season 

analysis, which may vary from year to year as per changing climatic conditions. Future studies 

should, therefore, consider long-term multi-temporal chlorophyll changes to determine a 

universal period of grass senescence onset in this area.  
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5 Multi-temporal assessments of remotely sensed autumn grass senescence across 

climatic and topographic gradients 

 

The chapter is based on:  

Royimani, L., Mutanga, O., Odindi, J. & Slotow, R. Multi-temporal assessment of remotely 

    sensed autumn grass senescence across climatic and topographic gradients. 

  Land, 14, 183.  
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Abstract   

Climate and topography are influential variables in the autumn senescence of grassland 

ecosystems. For instance, extreme weather can lead to earlier or later senescence than normal, 

while higher altitudes often favour early grass senescence. However, to date, there is no 

comprehensive understanding of key remote sensing-derived environmental variables to 

determine the occurrence of autumn grass senescence, particularly in tropical and subtropical 

regions. Meanwhile, knowledge of the relationship between autumn grass senescence and 

environmental variables is required to aid the formulation of optimal rangeland management 

practices. Therefore, this study aimed to examine the spatial autocorrelations between remotely 

sensed autumn grass senescence vis-a-vis the climatic and topographic variables in the 

subtropical grasslands. Sentinel 2’s Normalized Difference Red Edge Index (NDVI705) and the 

Chlorophyll Red-Edge (CHL-RED-EDGE) indices were used as proxies to explain the 

occurrence of autumn grass senescence, while monthly (i.e., March to June) values of the 

remotely sensed autumn grass senescence were examined against their corresponding climatic 

and topographic factors using the Partial Least Square Regression (PLSR), the Multiple Linear 

Regression (MLR), the Classification and Regression Trees (CART) and the Random Forest 

Regression (RFR) models. The RFR model displayed a superior performance on both proxies. 

Next, the mean monthly values of the remotely sensed autumn grass senescence were 

separately tested for significance against the average monthly climatic (i.e., minimum (Tmin) 

and maximum (Tmax) air temperatures, rainfall, soil moisture, and solar radiation) and 

topographic (i.e., slope, aspect, and elevation) factors to determine the environmental drivers 

of autumn grass senescence. Overall, the results indicated that Tmax, (p = 0.000 and 0.005 for 

the NDVI705 and the CHL-RED-EDGE, respectively), Tmin (p = 0.021 and 0.041 for the 

NDVI705 and the CHL-RED-EDGE, correspondingly) and the soil moisture (p = 0.031 and 

0.040 for the NDVI705 and the CHL-RED-EDGE, respectively) were the most influential 

autumn grass senescence drivers. Overall, these results have shown the role of remote sensing 

techniques in assessing the autumn grassland senescence along climatic and topographic 

gradients as well as in determining key environmental drivers of this senescence in the study 

area.  

Keywords: Autumn senescence, grass, climate, remotely sensed, topographic factors.  

5.1 Introduction  

Climate and topography are key drivers of plant phenology in terrestrial environments (Tao et 

al. 2021; Shoko et al. 2019; Wu et al. 2018; Liu et al. 2018; Tao et al. 2018; Liu et al. 2016; 



78 
 

McKean et al. 1991). Their variability often influences the occurrence, rate, and duration of 

key phenological stages such as the autumn grassland ecosystem senescence.  For instance, Liu 

et al. (2016) noted a variation in the start of grass senescence in the low-lying Inner Mongolian 

grasslands than the higher Qinghai-Tibetian Plateau. However, the extent and significance of 

the overlaps between autumn grass senescence and environmental factors such as climate and 

topography have not been established, especially from a remote sensing point of view. 

Meanwhile, understanding the relationship between autumn grass senescence and 

environmental variables is vital, given that senescence markedly decreases photosynthetic 

activities and plant productivity (Gepstein et al. 2003), which in turn affects forage quality, 

production and availability. Royimani et al. (2021), also noted that senescence can either 

extend or reduce floral species growing season, with serious implications on forage 

productivity. In addition, studies (e.g., Royimani et al. 2022; Royimani et al. 2021; Anderegg 

et al. 2020) have noted the socioeconomic and ecological impact of grassland senescence 

including their regulatory role in the climate-biosphere interactions and potential contribution 

to land degradation (Liu et al. 2016). Given the importance of rangelands and the livestock 

farming for subsistence and commercial purposes, particularly in the developing world (Shoko 

et al. 2019), understanding the impact of senescence on foraging resource productivity in 

response to climatic and topographic gradients is increasingly becoming an area of research 

interest. This information is required to monitor the impact of autumn senescence on foraging 

resource productivity (Munné-Bosch and Alegre 2004), hence, guiding planning and decision-

making on, among others, grazing patterns and stock densities.     

Useful assessment of the links between the occurrence of autumn grass senescence and 

environmental variables at a rangeland scale requires repeated observations acquired at 

extensive spatial extents. However, the commonly used methods for assessing plant 

senescence, such as visual scoring of leaf coloration and fall (Anderegg et al. 2020), do not 

effectively satisfy these requirements. Furthermore, these methods are generally not objective 

and they suffer from the time lag effect (Mariën et al. 2021). Contrary, remote sensing 

techniques offer repeated synoptic viewing of the earth surface (Royimani et al. 2019a; 

Royimani et al. 2019b; Sibanda et al. 2016), which may benefit the assessment of the spatial 

autocorrelations between grass senescence and environmental factors during the autumn 

season. Although many studies have examined plant senescence dynamics based on remote 

sensing techniques (Mariën et al. 2021; Makanza et al. 2018; Renier et al. 2015b), few have 

focused on the interactions between autumn senescence and environmental parameters. For 
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instance, Liu et al. (2016) assessed the effect of temperature, insolation and precipitation in 

temperate regions of China during the maturity stage using a 30-year (1981 - 2011) Normalized 

Difference Vegetation Index (NDVI) derived from the Global Inventory Modelling and 

Mapping Studies (GIMMS). Their findings showed that temperature was a decisive factor to 

the end of the growing season. However, the study was generalized across biomes, hence, did 

not offer an opportunity for a greater understanding of the autumn-senescence-environmental 

factors relationship in grassland environments, particularly in the subtropical regions.  

In addressing this knowledge gap, the current study examined the spatial autocorrelations 

between remote sensing derived autumn grass senescence and environmental parameters (i.e., 

climatic factors and topography) in the subtropical sourveld grasslands of the Midlands region, 

KwaZulu-Natal, South Africa, where autumn senescence is a key factor on forage quality and 

quantity (Royimani et al. 2021). Such information is critical to ascertain the understanding of 

the dynamics around the occurrence of autumn grass senescence and to accurately determine 

grass wilting for improved planning and decision-making on grazing patterns and overall 

rangeland management. Specifically, a better understanding of the influence of environmental 

factors on autumn grass senescence will help improve the projection of the onset and duration 

of autumn grassland senescence, hence, reliably determining the period of low and poor forage 

quality for grazing, while minimizing the subsequent impact on the livestock and wildlife. To 

achieve this aim, this study adopted two Sentinel 2 derived vegetation indices (i.e., the NDVI705 

and the CHL-RED-EDGE) that have been identified as the most sensitive proxies for 

explaining the occurrence of autumn grass senescence within the study area (Royimani et al. 

2022). Remotely sensed monthly (i.e., March to June) estimates of autumn grass senescence 

were assessed for sensitivity against their corresponding climatic (i.e., minimum (Tmin) and 

maximum (Tmax) air temperatures, soil moisture, solar radiation, and rainfall) and topographic 

(i.e., slope, aspect, and elevation) factors using the Partial Least Square Regression (PLSR), 

the Multiple Linear Regression (MLR), the Classification and Regression Trees (CART) and 

the Random Forest Regression (RFR) models. Next, monthly averages of the remotely sensed 

autumn grass senescence were tested against monthly mean values of the climatic and 

topographic variables using Pearson's product-moment correlation approach to understand 

possible environmental drivers of autumn grassland senescence. We hypothesized that the 

occurrence of autumn grass senescence in this area can be explained by the dynamics in the 

micro-climatic and topographic gradients.  
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5.2 Materials and Methods   

5.2.1 Field data collection   

A purposive sampling approach was used in the study area (Figure 1.1) to establish 110 plots 

measuring about 10m by 10m and their centre coordinates were recorded. The plots were 

designed to provide a representation of the topography of the study site, particularly with 

regards to the elevation, aspect and slope. For instance, some plots were created in low, middle 

and high altitudinal areas, while considering the effect of south, east, west and north facing 

slopes. Equally, we considered the effect of the slope gradient, whereby some plots were 

designed on steeper, while others on gentle slopes. Soil moisture content readings were 

collected monthly within the plots using the ML3 ThetaProbe Soil Moisture Sensor between 

the 20th of March and 30th of June 2021. The ML3 ThetaProbe Soil Moisture Sensor measures 

soil moisture from the earth surface to the depth of 7 cm and the measurements are often 

expressed in percentage per volumetric water content (%/VWC) (Goodchild et al. 2014). In 

this study five measurements were randomly taken within each plot and averaged to obtain a 

value for the plot. Subsequently, we created four monthly point maps of the soil moisture with 

the corresponding coordinate points for the months of March, April, May and June.  

 

5.2.2 Remotely sensed autumn grass senescence  

Two vegetation indices (i.e., the NDVI705 and the CHL-RED-EDGE), identified as the best 

proxies in explaining the occurrence of autumn grass senescence within the study area were 

adopted (Royimani et al. 2022). These indices were derived from the Sentinel 2 data acquired 

between March and June 2021. For detailed explanation on the establishment and validation of 

the named indices, readers are directed to Royimani et al. (2022). The considered indices were 

derived on monthly basis representing March, April, May and June 2021. In total, eight 

vegetation index maps were generated, with four monthly indices generated using the NDVI705 

and the CHL-RED-EDGE.  

 

5.2.3 Climatic and topographic variables  

Daily rainfall and minimum (Tmin) and maximum (Tmax) air temperature data for the study area 

were sourced from the South African Weather Service (SAWS). The daily rainfall and 

temperature values were aggregated to obtain monthly records. However, this data was 

provided as point data for the city of Pietermaritzburg, hence, inadequate for analysis. 

Therefore, additional monthly Tmin and Tmax and rainfall data were downloaded from the 
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KwaZulu-Natal Sugarcane Research Institute (KZN-SRI) website. Whereas the KZN-SRI has 

many weather stations distributed throughout the province of KwaZulu-Natal, we only used 

data from stations surrounding the study site. Next, we interpolated the combined KZN-SRI 

and SAWS data using the Inverse Difference Weighted (IDW) technique in ArcGIS 10.7 to 

generate a comprehensive Tmin and Tmax as well as rainfall data for the study site. Detailed 

descriptions of the topographic and climatic factors considered in the current assessment are 

given in table 5.1.  

 

Table 5.1 Topographic plus climatic variables used in this study.  

Variable  Units of measurement  Source 

Topographic factors 

Aspect Degrees North (oN)  ASTER DEM 

Elevation Meters (m) ASTER DEM 

Slope Degrees (o) ASTER DEM 

 

Climatic factor 

Tmin  Degrees Celsius (oC) SAWS, KZN-SRI  

Tmax Degrees Celsius (oC) SAWS, KZN-SRI 

Rainfall Millimeters (mm) SAWS, KZN-SRI 

Radiation  Watts Hours per square meter (Wh/m2)  ASTER DEM  

Footnote: ASTER = Advanced Spaceborne Thermal Emission and Reflection Radiometer, DEM = Digital 

Elevation Model. 

 

Aspect, slope, elevation and radiation were generated using the 30 m ASTER Digital Elevation 

Model (DEM) in ArcGIS. Specifically, aspect and slope were, respectively, calculated using 

the aspect and slope functions under the surface tools in Spatial Analysis Tools, ArcGIS 10.7. 

Similarly, radiation was derived using the Area Solar Radiation extension found under surface 

tools of the Spatial Analysis Tools, ArcGIS 10.7. Studies show that the application of modelled 

solar radiation from the DEM is a widely accepted practice in ecological remote sensing (Shoko 

et al. 2019; Dube and Mutanga 2016; Ruiz‐Arias et al. 2009; Kumar et al. 1997).  

 

5.2.4 Data processing and statistical analysis  

To ensure compatibility and consistency, all the generated monthly maps (i.e., sections 5.2.2 

and 5.2.3) were standardized to a common resolution based on the nearest neighbour 

resampling approach in ArcGIS 10.7. We then overlaid all the monthly vegetation indices plus 
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topographic and climatic maps with their respective monthly point maps to extract the 

corresponding monthly climatic, topographic and remotely sensed autumn grass senescence 

information. Ultimately, we generated four spreadsheets with the monthly climatic and 

topographic information jointly with corresponding monthly soil moisture content and 

remotely sensed derived autumn grass senescence values. The four monthly spreadsheets were 

further split into eight spreadsheets based on the vegetation index (i.e., the NDVI705 or the 

CHL-RED-EDGE) as predictor variables. The data were separately imported into R version 

4.1.3 (R Core Team) for further analysis. Again the data we split into 80% and 20% for training 

and testing, respectively. Four popular regression algorithms (i.e., the PLSR, MLR, RFR, and 

CART) were employed in each monthly NDVI705 and CHL-RED-EDGE spreadsheet to test 

the association between the remotely sensed autumn grass senescence and the climatic factors 

and topography. A 10-fold-cross validation approach was used at each stage of analysis to 

evaluate the model performances based on the obtainable Root Mean Square Error (RMSE), 

the coefficient of determination (R2) and the Mean Absolute Error (MAE).  

5.2.5 Model optimization and identification of key environmental determinants of 

autumn grass senescence 

Based on the performance of the four popular algorithms employed in section 5.2.4, one 

superior model was identified using the RMSE, R2, and MAE. The model was identified by 

averaging all the RMSEs, MAEs and R2s obtained throughout the four months of investigation. 

The model that yielded the lowest MAE and RMSE jointly with the highest R2 was determined 

to be the best, hence, selected for the final prediction of remotely sensed autumn grass 

senescence with climatic factors and topography. As the superior algorithm, the RFR was 

adopted and eight final models were built to individually relate the monthly remotely sensed 

autumn grass senescence values (i.e., the NDVI705 and the CHL-RED-EDGE) with their 

respective monthly climatic and topographic factors. These final models were optimized by 

tuning their ntree, mtry and nodesize values. The ntrees, ranged between 300 and 1200, mtrys 

were between 2 and 16, while the nodesizes were put to 1 throughout the analysis. The final 

prediction results were judged based on the RMSEs and their R2s. Next, we averaged all the 

monthly predictor (i.e., the NDVI705 and the CHL-RED-EDGE) and response (i.e., climatic 

and topographic) variables. The outcome was a set of two spreadsheets, first with the NDVI705 

and second with the CHL-RED-EDGE as predictors along with their monthly averages of 

topographic and climatic factors. Pearson's product-moment correlation tests were conducted 

in each set of the spreadsheet to determine the sensitivity of each climatic and topographic 
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factor to the remotely sensed autumn grass senescence. The significance of each topographic 

or climatic variable in influencing the occurrence of autumn grassland senescence was 

determined based on the p-value (P ≤ 0.05).  

5.3 Results  

5.3.1 Descriptive statistics  

Table 5.2 provides the descriptive statistics of the remotely sensed autumn grass senescence 

plus climatic and topographic variables used in this study. Overall, the estimates of autumn 

grass senescence based on the NDVI705 increased with a decrease in the CHL-RED-EDGE 

across the four-month period. Besides, there were no significant variations between the 

NDVI705 and the CHL-RED-EDGE values of autumn grass senescence from March to June. 

However, in March the values of the NDVI705-based autumn grass senescence were higher than 

those of the CHL-RED-EDGE derived autumn grass senescence. In addition, the monthly 

means of all the climatic variables (i.e., Tmin and Tmax, soil moisture, rainfall and solar radiation) 

also showed notable variations. Specifically, the means of the solar radiation, Tmin and Tmax 

demonstrated consistent declines throughout the four months, whereas the observable 

decreases in rainfall and soil moisture from March to May were followed by an increase in 

June (Table 5.2).  

5.3.2 Remotely sensed autumn grass senescence with climatic and topographic variables 

Based on the results from the preliminary analysis (Table 5.3), the prediction outputs of the 

four popular regression models (i.e., the PLSR, MLR, CART and the RFR) adopted in the study 

were generally significant. Specifically, the RFR outperformed all the other algorithms when 

using both the NDVI705 and the CHL-RED-EDGE as predictors throughout the four months 

considered in this investigation. This was demonstrated by the low RMSE and MAE with high 

R2. These results (Table 5.3) further indicated that the CART was the second most important 

algorithm in the four months of analysis. On the other hand, the performance of the PSLR was 

generally inferior throughout the various stages of the analysis.  

 

 

 

 

 



84 
 

Table 5.2 Descriptive statistics of the data collected and extracted for analysis. 

Month Variable Min Max Mean Stdv 

March 

NDVI705 0.248 0.532 0.396 0.057 

CHL-RED-EGDE 0.239 0.519 0.357 0.058 

Aspect 7.723 340.649 144.777 87.127 

Elevation 1273 1412 1340 30.359 

Slope 0.512 19.411 5.702 3.860 

Tmax
 25.5 25.85 25.65 0.131 

Tmin
 13.68 14.66 14.13 0.398 

Radiation 22878 232161 150843 65496.12 

Rainfall 69.44 87.65 79.39 7.095 

Soil moisture  12.5 34.9 22.43 3.764 

April 

NDVI705 0.182 0.477 0.346 0.051 

CHL-RED-EGDE 0.266 0.562 0.390 0.056 

Aspect 7.723 350.73 146.931 90.342 

Elevation 1273 1410 1340 31.702 

Slope 0.512 19.411 6.11 3.922 

Tmax
 24.51 25.08 24.78 0.217 

Tmin
 11.25 12.21 11.71 0.387 

Radiation 20736 256029 138918 75657.96 

Rainfall 58.5 64.74 62.04 2.137 

Soil moisture  10.1 30.1 16.36 4.505 

May 

NDVI705 0.108 0.291 0.223 0.034 

CHL-RED-EGDE 0.266 0.562 0.390 0.049 

Aspect 7.723 350.73 145.929 89.772 

Elevation 1273 1410 1340 31.298 

Slope 0.512 19.411 5.791 3.689 

Tmax
 22.2 22.85 22.51 0.262 

Tmin
 8.481 9.672 9.057 0.488 

Radiation 19653 304608 137763 87583.85 

Rainfall 13.86 15.25 14.64 0.401 

Soil moisture  0.685 21.030 11.269 4.289 

June 

NDVI705 -0.004 0.203 0.113 0.050 

CHL-RED-EGDE 0.522 1.076 0.666 0.111 

Aspect 7.723 350.73 141.185 87.491 

Elevation 1273 1412 1340 31.881 

Slope 0.512 19.411 6.125 3.850 

Tmax
 20.43 21.14 20.77 0.283 

Tmin
 6.876 7.919 7.379 0.418 

Radiation 22430 303014 131301 89098.69 

Rainfall 30.46 37.7 34.34 2.862 

Soil moisture  10.8 26.7 18.97 3.898 
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Table 5.3 Performance of the adopted algorithms based on the R2, MEA and the RMSE. 

Month Predictor variable Algorithm RMSE R2 MAE 

March 

NDVI705  

PLS 0.046 0.39 0.037 

CART 0.042 0.47 0.033 

MLR 0.041 0.46 0.032 

RFR 0.039 0.50 0.031 

CHL-RED-EGDE  

PLS 0.053 0.38 0.042 

CART 0.045 0.45 0.037 

MLR 0.046 0.46 0.036 

RFR 0.044 0.50 0.035 

April 

NDVI705  

PLS 0.038 0.35 0.031 

CART 0.034 0.63 0.028 

MLR 0.038 0.50 0.030 

RFR 0.035 0.62 0.026 

CHL-RED-EGDE  

PLS 0.042 0.34 0.034 

CART 0.041 0.42 0.031 

MLR 0.043 0.42 0.034 

RFR 0.041 0.55 0.032 

May 

NDVI705  

PLS 0.024 0.52 0.020 

CART 0.024 0.50 0.018 

MLR 0.026 0.49 0.021 

RFR 0.022 0.53 0.017 

CHL-RED-EGDE  

PLS 0.043 0.30 0.033 

CART 0.036 0.46 0.029 

MLR 0.043 0.36 0.036 

RFR 0.036 0.56 0.028 

June 

NDVI705 

PLS 0.041 0.36 0.033 

CART 0.046 0.42 0.035 

MLR 0.041 0.47 0.034 

RFR 0.033 0.68 0.026 

CHL-RED-EGDE  

PLS 0.091 0.35 0.077 

CART 0.082 0.53 0.060 

MLR 0.101 0.33 0.078 

RFR 0.081 0.60 0.058 
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Moreover, the averaged prediction outputs of the adopted algorithms across the four month-

period of the investigation maintained the findings presented in Table 5.3 that the RFR was the 

most useful model in associating the remotely sensed autumn grass senescence with climatic 

and topographic factors (Figure 5.1). A closer look at Figure 5.1(a), (b) and (c) indicates that 

the RFR is the only algorithm that had a low RMSE and MAE with a high R2 followed by 

CART. On the contrary, the PLSR displayed inferior performance based on two of the three 

model evaluation matrices (i.e., the R2 and the MAE).  

 

 

Figure 5.1 Algorithm’s performances based on the (a) RMSE, (b) MAE and the (c) R2. 

 

The final RFR models showed an improved explanation of the association between the 

remotely sensed autumn grass senescence and the topographic and climatic factors when using 

both predictors across the four months considered (Table 5.4). For instance, when using the 

NDVI705 and the climatic and topographic factors in March, the model yielded an RMSE of 

0.017 and an R2 of 0.69, while obtaining an RMSE and an R2 of 0.023 and 0.59, respectively, 

when using the CHL-RED-EDGE. Likewise, the NDVI705 recorded an RMSE of 0.012 and an 

R2 of 0.71 in April, whereas the CHL-RED-EDGE produced an RMSE of 0.018 and R2 of 0.60. 

Similarly, both the NDVI705 and the CHL-RED-EDGE reported RMSEs and R2s of 0.056 and 
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0.014 as well as 0.56 and 0.69 in May. Moreover, the NDVI705 showed an RMSE and R2 of 

0.013 and 0.71, while the CHL-RED-EDGE obtained an RMSE of 0.056 and R2 of 0.72 in 

June. Important variables for the final prediction models are presented in Figure 5.2. The 

predictive performance of each variable was assessed based on the obtainable Out of Bag Error 

Rate, which increases with significance.  

 

Table 5.4 Optimal RFR results for the relationships between remotely sensed grass senescence 

and climatic factors and topography.  

  NDVI705 CHL-RED-EDGE 

Month RMSE  R2 RMSE R2 

March 0.017 0.69 0.023 0.59 

April 0.012 0.71 0.018 0.60 

May 0.056 0.56 0.014 0.69 

June 0.013 0.71 0.056 0.72 

 

5.3.3 Climatic and topographic drivers of the autumn grassland senescence  

Using the monthly averages of the predictors (i.e., the NDVI705 and the CHL-RED-EDGE) 

against the response variables (i.e., topographic and climatic variables), we identified the key 

drivers that influence the occurrence of autumn grass senescence (Table 5.5). However, the 

majority of the CHL-RED-EDGE based R2 values were negative, indicating the inverse 

relationship that exist between this index and the predictor variables. Overall, our findings 

showed that only the climatic factors were sensitive to the occurrence of autumn grassland 

senescence. Specifically, the Tmin and Tmax, jointly with soil moisture were identified as the 

most influential factors in the occurrence of autumn grass senescence as shown by their 

significance levels (P ≤ 0.05). Obtainable R2 values for the three climatic factors that 

significantly influence the occurrence of autumn grass senescence were; 1.00, 0.98, and 0.81 

based on the NDVI705 and -1.00, -0.96, and -0.78 when using the CHL-RED-EDGE. 

Conversely, even though they displayed good R2 values (i.e., between 0.76, and 0.93), the 

insignificant p-values (P ≥ 0.05) highlighted the poor contribution of these other climatic 

variables in explaining the occurrence of autumn grass senescence in the study area. With 

regards to the topographic factors, only the slope showed good R2 values (i.e., -0.80 and 0.75 

when using the NDVI705 and the CHL-RED-EDGE, respectively), otherwise, they were all 
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insignificant when considering the p-value (P ≥ 0.05). Table 5.5 shows the contribution of 

environmental factors on autumn grassland senescence, with significant variables in bold.
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Figure 5.2 RFR model’s variable importance for assessing the response of remotely sensed autumn grass senescence against the climatic and 

topographic factors in (a) March, (b) April, (c) May, and (d) June. 
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The sensitivity of the topographic and climatic factors in influencing the occurrence of autumn 

grass senescence in the study area was further emphasized by the value of the t-statistics, with 

higher values signifying the importance and vice versa. 

 

Table 5.5 Correlations between remotely sensed grass senescence and climatic factors and 

topography. Influential variables are shown in bold.  

Variable 

NDVI705 CHL-RED-EDGE  

t-statistics p-value R2 t-statistics p-value R2 

Topographic factors        

Aspect -0.597 0.611 -0.39 0.492 0.672 0.33 

Elevation 0.163 0.886 0.11 -0.276 0.809 -0.19 

Slope -1.865 0.203 -0.80 1.588 0.253 0.75 

Climatic factors       

Tmax 55.095 0.000 1.00 -14.388 0.005 -1.00 

Tmin 6.832 0.021 0.98 -4.806 0.041 -0.96 

Radiation 3.502 0.073 0.93 -2.852 0.104 -0.90 

Rainfall 1.881 0.201 0.80 -1.661 0.239 -0.76 

Soil moisture  6.579 0.031 0.81 -4.461 0.040 -0.78 

 

Figure 5.3 shows the response of the remotely sensed autumn grass senescence (i.e., the 

NDVI705 and the CHL-RED-EDGE) to the most influential variables (i.e., Tmin, Tmax, and the 

soil moisture). Figure 5.3 (a-c) illustrates the remotely sensed autumn grass senescence based 

on the NDVI705, while Figure 5.3 (d-f) displays the remotely sensed autumn grass senescence 

based on CHL-RED-EDGE. Overall, the effect of time lag was evident between the occurrence 

of autumn grass senescence and the change in sensitive variables. The NDVI705-based autumn 

grass senescence indicated a continuous decline with a decrease in both the Tmin and Tmax during 

the autumn season. On the other hand, a synonymous decline in the NDVI705-based autumn 

grass senescence with soil moisture was followed by a sudden increase in soil moisture in June. 

Figure 5.3 (d-f) indicates an inverse relationship between the CHL-RED-EDGE-based autumn 

grass senescence and the influential variables. Generally, the consistent drop in Tmin, Tmax, and 

the soil moisture values was concurrent with the increasing CHL-RED-EDGE-based autumn 

grass senescence estimates.  
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Figure 5.3 The responses of the (a-c) NDVI705-based autumn grass senescence to (a) Tmin, (b) Tmax and (c) soil moisture together with that of the 

(d-f) CHL-RED-EDGE based autumn grass senescence to (d) Tmin, (e) Tmax and (f) soil moisture through time. 
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5.4 Discussion  

This study demonstrated the value of the multi-temporal remotely acquired Sentinel 2 satellite data 

in explaining the occurrence of autumn senescence along climatic and topographic gradients in the 

subtropical sourveld grassland ecosystems. This has been a limitation in understanding the 

dynamics around the occurrence of autumn senescence as well as the subsequent impact on 

foraging resource quality and feed availability in these regions. Our findings indicated that the 

occurrence of autumn grass senescence in the present study area is controlled more by climatic 

drivers, particularly the soil moisture, Tmin, and Tmax than topographic factors. Although not 

pronounced in the current findings, the sensitivity of air temperature variables (i.e., Tmax and Tmin) 

in influencing the occurrence of autumn grass senescence in the area could be attributed to the 

reported extremities of these variables (Ndlovu et al. 2021). For instance, the observed consistent 

decline in air temperatures is believed to have promoted irregular frost events, as they are known 

to be a common phenomenon in the area during this period (Ismail et al. 2021), hence, grass 

senescence. These results concur with studies indicating that extreme temperature conditions affect 

the natural processes of photosynthetic enzymes, and, thereby, accelerating or delaying 

chlorophyll deterioration (Liu et al. 2018; Liu et al. 2016; Fracheboud et al. 2009), whereas water 

shortages are known to influence plant carboxylation reaction, hence, fast-tracking chlorophyll 

degradation and plant senescence (Tao et al. 2021; Tao et al. 2018; Sade et al. 2018; Munné-Bosch 

and Alegre 2004).  

Although solar radiation and rainfall are known to be key climatic factors influencing plant 

phenology (Shoko et al. 2019), their impact was not significant in this study. However, these 

results should be discussed with caution, as the observed poor relationship between the remotely 

sensed autumn grass senescence and rainfall and solar radiation may not be universally constant, 

i.e., could be site-specific as a result of topographic and micro-climatic conditions. Specifically, 

the recorded poor correlation between the autumn grass senescence and rainfall in this study may 

possibly be a consequence of the high variability in rainfall during the same period (Ndlovu et al. 

2021), which could destruct the uniformity in the phenology of the grass. Similarly, the poor 

relationship notable between autumn grass senescence and solar radiation could be justified by the 

relatively uniform topography of the study area, which was observed during field data collection. 

Meanwhile, our assumption is that meaningful characterization of the links between remotely 

sensed autumn grass senescence and the incoming solar radiation and topographic factors such as 
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slope, aspect, and elevation, requires heterogeneity in the landscape, which is possible in 

pronounced mountainous and valley areas. Shoko et al. (2019) also indicated that heterogeneity in 

topography promotes spatial distinction in vegetation phenology, regardless of the similarity in the 

age of the floral species. Our results further showed the effect of time lag between the occurrence 

of autumn grass senescence and the change in sensitive climatic factors, thereby suggesting that 

the chlorophyll breakdown is not concurrent with, but follows the triggering effect of the 

environmental cue. Evidently, the importance of understanding the response of autumn grass 

senescence to changes in climatic and topographic factors cannot be over-emphasized, particularly 

in countries like South Africa, considering the projected shifts in seasonal patterns (Van der Walt 

and Fitchett 2020), which may further alter the current dynamics in phenological stages like the 

autumn grassland senescence, leading to potential forage deficiencies, especially during dry 

seasons. With its ability to either shorten or extend the growing season of the floral species, hence, 

productivity (Gepstein et al. 2003), the understanding of the links between the autumn grass 

senescence and environmental factors may help to strengthen our projections on possible timing 

and duration of autumn grassland senescence, which will, in turn, improve our assessment of 

fodder bank capacities for quality forage provision. Whereas this highlights the essence of future 

research on this subject matter, the emphasis of such work should be aimed at heterogeneous 

terrains, while fully embracing the potential impact of frost activities in the analysis. 

With regards to the performance of the RFR model, our results reinforce the evidence presented 

in previous studies that this model is robust when explaining ecological problems based on 

remotely acquired datasets (Royimani et al. 2019b; Mutanga et al. 2012). Again, although the 

findings in Figure 5.2 may give an impression that the topographic factors were among the 

important variables in April, May and June, a correct view is that these variables were only 

important in displaying the monthly relationship with the tested variables, which does not 

necessarily reflect the autumn grass senescence in the present case. According to our approach in 

this study, the autumn grassland senescence was explained based on the averaged performance of 

the month-to-month contributions of each variable and the variables that were consistently 

significant were identified as the environmental drivers of autumn grassland senescence.  
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5.6 Conclusion  

The present study examined the relationship between remotely sensed autumn grass senescence 

and the climatic factors plus topography in the subtropical sourveld grasslands of the Midlands 

region, KwaZulu-Natal, South Africa. The study employed Sentinel 2 derivatives using the PLSR, 

MLR, CART, and RFR models and the RFR model emerged as the superior model. The results 

further showed that Tmin, Tmax, and soil moisture were the most influential factors in the occurrence 

of autumn grass senescence in the study site. However, the observable poor relationship between 

autumn grass senescence and the other climatic factors and topography is believed to be indicative 

of the micro-climatic conditions and the relative homogeneity in the topography. However, for a 

conclusive understanding of the overlaps between autumn grass senescence and the climatic 

factors and topography, we suggest further investigation, particularly focusing on areas with 

heterogeneous landscapes and taking into account the effect of frost occurrences in the analysis.     
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6 Identifying the optimal waveband positions for mapping the autumn grassland 

senescence using the broadband multispectral remotely sensed dataset 

 

The chapter is based on:  

Royimani, L., Mutanga, O. & Odindi, J. Identifying the optimal waveband positions for mapping 

 the autumn grassland senescence using the broadband multispectral remotely sensed 

 dataset. (Submitted to a Journal). 
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Abstract  

While remote sensing of grass senescence is addressed in the literature, knowledge of optimal 

waveband positions that are suitable for discriminating between senescent and non-senescent grass 

is still limited. Notably, detection of senescent grass is important for understanding the available 

forage in rangeland environments, and associated ecological implications. The free provision of 

remote sensing data from the modern broadband multispectral sensors with better spatial and 

spectral properties offers prospects for reliable and wall-to-wall monitoring of grassland 

senescence in rangeland `ecosystems. The current study tested the potential of the modern 

multispectral remote sensing dataset (i.e., Sentinel 2 and Landsat 8) in mapping the senescent 

grass, and to identify the optimal waveband positions that are suitable for discriminating between 

senescent and non-senescent grasses. Locational information for senescent and non-senescent 

grasses was acquired on the field and was used to train the classification process. A Random Forest 

classification approach was employed using the Landsat 8 and Sentinel 2 multispectral datasets to 

spectrally discern between senescent and non-senescent grasses. Our analysis yielded overall 

classification accuracies of 0.82 and 0.78 and kappa coefficients of 0.64 and 0.56 for Sentinel 2 

and Landsat 8, respectively. Using the stepwise selection approach, the study further identified 

that the Red-Edge Position (REP), and the Visible green and red bands of the electromagnetic 

spectrum, were the optimal waveband positions for separating between senescent and non-

senescent grass based on the broadband multispectral remote sensing. This study has demonstrated 

the value of the readily available broadband multispectral remote sensing data in mapping autumn 

grassland senescence, and this lays a foundation for effective operational scale monitoring of 

foraging resource conditions at the landscape scale, particularly during dry seasons.  

Keywords: Broadband multispectral, optimal waveband positions, random forest, remote sensing, 

senescent grass.  

6.1 Introduction  

Grasslands are widely distributed and mostly situated in arid to semi-arid regions of the world, 

with an estimated areal coverage of about 40% globally (Wang et al. 2019), and 28% in southern 

Africa (Carbutt et al. 2011). Broadly, grassland ecosystems are valued for their socioeconomic 

and ecological importance. For instance, Wang et al. (2019) noted that grasslands account for 

approximately 30% of the global absorbed soil carbon, and, thus, making them one of the largest 
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carbon sinks. Equally, grasses are known for their integral role in the provision of wildlife habitat 

(Jones-Farrand et al. 2007), ecosystem energy exchange (Liu et al. 2019), and facilitation of soil 

development (Thompson and Kao-Kniffin 2019). In addition, grasslands provide the main source 

of free-ranging feed for the livestock and wildlife in the surrounding communities (Shoko and 

Mutanga 2017a; Nkonya et al. 2016), and, thereby, contributing to the national economies, food 

security, and poverty eradication, especially in developing regions (Herrero et al. 2013). Many 

studies (i.e., Meissner et al. 2013; Ramoelo et al. 2012; Knox et al. 2011) have further highlighted 

the importance of grass forage for livestock production, and linked to subsequent contributions to 

the Gross Domestic Products (GDPs) and food security. For instance, Havstad et al. (2007) 

reported that in the United States, grasslands have maintained a steady supply of forage production, 

which supports approximately 10% of the livestock production. Likewise, literature shows that 

about 250 million people in more than 100 nations are relying on rangeland resources like grasses 

for their livelihoods (Mansour et al. 2012). In this regard, the role of grasslands in ecological 

processes, economic growth, food security, and livelihood cannot be overlooked. 

However, unlike other plants which are perennial in growth form, the growth and development of 

grasses are strongly influenced by seasonality, with most of them wilting during the dry winter 

season (Shoko et al. 2019). This process is formally known as natural or autumn senescence, and 

is described as the phenological stage by which plants, including grasses, degrade through time 

(Royimani et al. 2021). Research points out that autumn senescence is an agent through which 

grasses significantly lose their nutrients, and, thereby, affecting the condition and availability 

status of the subsequent forage (Woo et al. 2019; Kim et al. 2016; Cai et al. 2016). As a result, the 

remaining grasses at later stages of senescence are of low grazing value. Several chronological 

stages, which lead to this significant decline in quality and quantity of the grass during autumn 

senescence, have been detailed in the literature, and they broadly include; programmed cell death, 

which coincides with nutrient departure, coloration, and leaf fall (Mariën et al. 2019). Leaf fall in 

grasses is generally caused by the failure of dead leaf cells to hold onto the main grass plant. Fallen 

grass leaves, on the other hand, form part of the residual biomass (Royimani et al. 2021), and, 

thereby, reducing the amount of available standing above-ground biomass, thus, affecting the 

forage availability status. Given factors such as biological invasion (Royimani et al. 2019b) and 

climate change (Liu et al. 2019), which are reported to have serious negative implications on the 

growth and development of grasses, and, hence, forage productivity (Royimani et al. 2019b), there 
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is a need for accurate detection and mapping of senescent grass not only to understand forage 

reserves, but also to gain knowledge on associated ecological implications.    

Monitoring of autumn grass senescence, through field surveys, has proved to be challenging, partly 

due to the extensive extent of the rangelands (Mariën et al. 2019). Also, conventional means for 

assessing grass senescence are often laborious, time-consuming, and costly (Laliberte et al. 2007), 

and, thus, limited to field- and plot-scale applications. Meanwhile, small-scale applications are 

usually not appropriate for wall-to-wall coverage, which is required for broad scale monitoring of 

rangeland resources. In contrast, earth observation technologies allow for non-destructive, cost-

effective, repeated, and operational scale monitoring of grasslands even during the dry seasons 

(Shoko and Mutanga 2017b). Many studies have successfully discriminated senescent components 

of the vegetation from adjacent classes using remote sensing techniques (Berdugo et al. 2013; Di 

Bella et al. 2004; Boyer et al. 1988). For instance, Laliberte et al. (2007) estimated fractions of 

senescent grass cover from the green ones using a very high-resolution photographic image and 

object-based classification approach. Their findings yielded correlation coefficients of 0.88 and 

0.95 for the senescent and green grass components, respectively. Similarly, Ren et al. (2017) 

investigated the start (green-up) and end (senescent) dates of the growing seasons in Mongolian 

grasslands using the Plant Senescence Reflectance Index (PSRI) derived from the Moderate 

Resolution Imaging Spectroradiometer (MODIS) dataset between 2000 and 2011. The 

performance of the PRSI was evaluated using the NDVI and it demonstrated a positive correlation 

(p < 0.1). Marsett et al. (2006), also estimated attributes (i.e., cover, height, and biomass) of 

senescent grasses in the region spreading between northern New Mexico and central Chihuahua to 

southeastern Arizona using the Soil Adjusted Total Vegetation Index (SATVI) and the raw Near 

Infrared (NIR) band of the Landsat 5 Thematic Mapper. Their results yielded coefficient of 

determination (R2) values of 0.77, 0.85, and 0.80 and Nash Sutcliffe values of 0.77, 0.70, and 0.78 

for biomass, height, and cover, respectively.  

Despite the efforts made in previous studies, there is still a paucity in understanding the optimal 

waveband positions, especially using the broadband multispectral remote sensing datasets which 

are readily available, to accurately detect grassland senescence at the landscape scale. 

Advancements in remote sensing sensor technology, which have seen the launch of modern 

broadband multispectral instruments like the Landsat 8 and Sentinel 2, offer greater prospects for 
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closing this research gap. These broadband multispectral sensors are increasingly becoming a 

reliable source of readily available quality data for rangeland resource management at operational 

scales. Besides the broad swath-width (185 and 290 km, for Landsat 8 and Sentinel 2, 

respectively), these sensors offer special capabilities for land cover monitoring purposes than their 

predecessors such as the Landsat 7 Enhanced Thematic Mapper Plus (ETM+) and Sentinel 1. For 

instance, the Landsat 8 offers increased spectral bands compared to the Landsat 7 (Shoko and 

Mutanga 2017a), while the Sentinel 2 bands are more strategically positioned for land cover 

monitoring than the backscatter bands of the Sentinel 1 (Meneghini 2019). Moreover, the Sentinel 

2 multispectral instrument provides refined spatial resolution (i.e., 10 to 20 m) vegetation related 

data and it also covers the Red Edge Position (REP) of the spectrum (Sibanda et al. 2017a), which 

is critical for explaining subtle changes in plant pigments during senescence (Clark et al. 1995a). 

Also, given their robust and advanced character (Royimani et al. 2019a), the non-parametric image 

classifiers like the Random Forest can help to achieve the maximum detection of senescent grass 

in rangelands. Taking the advantage of these benefits, the current study tested the potential of the 

modern multispectral datasets (i.e., Sentinel 2 and Landsat 8) in mapping senescent grass, and 

identified the optimal waveband positions for discriminating between senescent and non-senescent 

grasses based on the broadband multispectral remote sensing sensors, with medium spatial 

resolution in the midlands region of KwaZulu-Natal, South Africa.  

6.2 Methods and materials 

6.2.1 Field data collection  

Locational information for the senescent and non-senescent grasses were acquired at Vulindlela 

communal rangelands (Figure 1.1) between the 21 and 26 of June 2021 using a Trimble Global 

Position System (GPS) receiver with a 0.5 m accuracy. A total of 160 (i.e., 80 for senescent and 

80 for non-senescent) 30 m by 30 m plots were delineated using a purposive sampling approach 

(Royimani et al. 2019b), and their centre GPS points were collected. The 30 m by 30 m plots were 

established within homogenous patches of either senescent or non-senescent grasses to minimize 

the effect of possible geolocation mismatch with both the Sentinel 2 and Landsat 8 satellite sensors. 

These plots were created in 150 m apart to avoid possible overlaps and autocorrelations. The total 

number of collected points for each class is presented in table 6.1.  
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Table 6.1 Summary of the field collected data for each class.  

Class name No. of points 

Senescent grass 80 

Non-senescent grass 80 

Total 160 

 

6.2.2 Broadband multispectral remotely sensed data acquisition  

A scene of the Landsat 8 and Sentinel 2, corresponding to the date of the 20th and 30th June 2021 

respectively, were downloaded from the Google Earth Engine (GEE) to investigate the optimal 

waveband positions for classifying the senescent grass based on the broadband multispectral 

dataset. The descriptions, waveband positions, and the spatial resolutions of the two satellite 

images used are presented in table 6.2. In GEE, the Landsat 8 and Sentinel 2 surface reflectance 

images are available under the two respective files: 

“ee.ImageCollection("LANDSAT/LC08/C02/T1_L2")” and 

“ee.ImageCollection("COPERNICUS/S2_SR")”. On download, these images are provided to the 

Level 2 type of processing, which caters for orthorectification and atmospheric corrections. In 

addition, further processing parameters were implemented to remove cloud cover and to convert 

the image digital numbers (DNs) to reflectance values before the actual image download.  
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Table 6.2 Description of waveband positions and resolutions for the Landsat 8 and Sentinel 2 

spectral bands used in the current study.   

Band No. 

Band 

description 

Bandwidth 

(µm) 

Resolution 

(m) 

Band 

description 

Central 

wavelength 

(µm) 

Resolution 

(m) 

 Landsat 8 Sentinel 2 

Band 1  Coastal 0.43 – 0.45 30 
– – – 

Band 2  Blue 0.45 – 0.51 30 Blue 0.490 10 

Band 3  Green 0.53 – 0.59 30 Green 0.560 10 

Band 4  Red 0.63 – 0.67 30 Red 0.665 10 

Band 5  NIR 0.85 – 0.88 30 RE1 0.705 20 

Band 6  SWIR 1 1.57 – 1.65 30 RE2 0.740 20 

Band 7  SWIR 2 2.11 – 2.29 30 RE3 0.783 20 

Band 8 – – – NIR 0.842 10 

Band 8A 
– – – 

RE4 0.865 20 

Band 11 – – – SWIR 1 1.610 20 

Band 12 – – – SWIR 2 2.190 20 

 

6.2.3 Classification algorithm and identification of optimal wavebands 

The collected GPS points for the classes were used to retrieve corresponding Sentinel 2 and 

Landsat 8 spectral reflectance values in ArcGIS version 10.6. Before image classification, the 

extracted Landsat 8 and Sentinel 2 spectral data were randomly split into 70% and 30% for training 

and testing, respectively. Next, the Random Forest classification technique was employed in R 

version 4.0.5 to classify the senescent grass from the non-senescent one. The Random Forest is an 

ensemble machine learning algorithm that employs the bagging (bootstrap) approach to build 

multiple decision trees from a given set of predictors and it averages the outcome (Mutanga et al. 

2012). With the bootstrap aggregation function in place, the Random Forest is able to reduce the 

variance error arising from the decision trees, thus, improving the classification accuracy (Odebiri 

et al. 2020). Variable importance ranking was performed to establish the spectral bands that 

yielded superior discrimination between the classes investigated. To identify the optimal 
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waveband positions for discerning senescent grass from non-senescent one, we employed the 

stepwise selection approach. In operation, the stepwise selection approach incorporates the 

capabilities of both the backward and forward feature selection and it indicates the variables 

(bands) that were added and those removed from the model for superior separation between the 

investigated classes (Silhavy et al. 2017; Olusegun et al. 2015; Wagner and Shimshak 2007).   

6.2.4 Accuracy assessment  

To evaluate the accuracy of the Random Forest classification model in discriminating between 

senescent and non-senescent grasses using the Landsat 8 and Sentinel 2 multispectral data, the 

confusion matrix otherwise known as a contingency table, was derived. We further calculated the 

user's, producer's, and overall classification accuracies, as well as the kappa statistic from the 

confusion matrix. The variable importance ranking for the best spectral bands in classifying the 

senescent grass from its co-occurring non-senescent grass was assessed based on Mean Decrease 

Accuracy. On the other hand, the performance of the established stepwise selection procedure was 

assessed based on the R-square with high R-square values representing the most sensitive bands 

and vice versa.   

6.3 Results 

6.3.1 Landsat 8 and Sentinel 2 classification performance  

Given in Table 6.3 are the user's, producer's, and overall classification accuracy assessment results, 

as well as the kappa coefficient values obtained, when discriminating between the senescent and 

non-senescent grasses using the Landsat 8 and Sentinel 2 broadband multispectral imagery. The 

Sentinel 2 yielded higher overall classification accuracy (0.82) and kappa statistic (0.64) compared 

to the Landsat 8 (0.78 and 0.56, respectively).  

Table 6.3 Classification accuracies from the Landsat 8 and Sentinel 2 images. 

Class  UA PA OA Kappa UA PA OA Kappa 

 Sentinel 2 Landsat 8 

Senescent grass 0.84 0.76 

0.82 0.64 

0.74 0.81 

0.78 0.56 
Non-senescent 

grass 0.81 0.88 0.82 0.75 
Footnotes: UA = User’s accuracy, PA = producer’s accuracy, and OA = overall accuracy.  
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Figure 6.1 illustrates the performance of the individual bands of the two broadband multispectral 

remote sensing sensors (i.e., Landsat 8 and Sentinel 2) used in this study in separating between the 

senescent and non-senescent grass. Band 4 followed by band 5, in order of importance, were the 

most important variables in both sensors when discriminating between senescent and non-

senescent grass. Band 4 in both sensors corresponds to the Visible red region of the 

electromagnetic, while band 5 in the Landsat 8 corresponds to the Near Infrared NIR and the Red-

Edge in Sentinel 2. Landsat 8’s bands 1, 7, and 3 were among the superior bands, while bands 2, 

3, 8A and, 12 of the Sentinel 2 contributed to the significant bands in separating between senescent 

and non-senescent grasses.  

 

 

Figure 6.1 Important variables as ranked by the Random Forest model for separating between 

senescent and non-senescent grass using the (a) Sentinel 2 and (b) Landsat 8. 

 

6.3.2 Spectral sensitive regions of the spectrum for discriminating between senescent and 

non-senescent grasses 

Figure 6.2 presents the mean spectral profiles of senescent and non-senescent grass based on (a) 

Sentinel 2 and (b) Landsat 8 multispectral datasets. According to Sentinel 2, it can be noted that 

the mean spectra of senescent grass were distinctive from that of non-senescent grass around the 

Visible, REP and, the NIR regions of the electromagnetic spectrum. On the other hand, the Landsat 

8 suggests that senescent grass is spectrally distinguishable from that of non-senescent grass in the 

Visible green to the NIR regions of the spectrum. The results (Figure 6.2), further showed that 

there were high levels of overlaps between the Landsat 8-based spectra of senescent and non-
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senescent grass across the various regions of the electromagnetic spectrum. Also, it could be seen 

that the spectral reflectance values of senescent grass were generally higher than that of non-

senescent grass in all the regions of spectral distinction.  

 

 

 

Figure 6.2 Mean spectral reflectance values for the senescent (dotted red) and non-senescent (solid 

black) grass from the (a) Sentinel 2 and (b) Landsat 8 multispectral datasets. The dotted blue boxes 

show areas with distinctive spectral variations. 

 

6.3.3 Optimal wavebands for mapping senescent grass 

Based on the results of the stepwise selection procedure, the Sentinel 2’s REP (i.e., B 5 and 8A) 

provided the most suitable region of the spectrum for optimal mapping of senescent grass (Figure 

6.3(a)). The figure (Figure 6.3(a)), further shows that the Sentinel 2’s NIR band was sensitive for 

discriminating between senescent and non-senescent grasses. Also, the Visible green and red bands 

of both the Landsat 8 and Sentinel 2 sensors appeared to be amongst the most important wavebands 

for mapping grassland senescence.  
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Figure 6.3 Significant bands for classifying senescent from non-senescent grass based on the (a) 

Sentinel 2 and (b) Landsat 8 multispectral sensors.   

 

6.4 Discussion  

The purpose of this study was twofold; firstly, to assess the potential of the modern multispectral 

remote sensing sensors (i.e., Sentinel 2 and Landsat 8) in mapping grass senescence, and, secondly, 

to determine the optimal waveband positions for discriminating between senescent and non-

senescent grasses based on the broadband multispectral remote sensing instruments with averaged 

resolutions. Modern multispectral remote sensing sensors are valuable in detecting autumn 

grassland senescence. For instance, the Sentinel 2 yielded an overall classification accuracy of 

0.82 and kappa coefficient of 0.64, while the Landsat 8 obtained 0.78 and 0.56 for overall 

classification accuracy and kappa, respectively. The difference in the classification accuracies 

obtained between these two sensors could be accounted for by the variation in the number of 

spectral bands and the spatial properties jointly with the coverage of the REP by the Sentinel 2 

sensor. With increased spectral bands, finer spatial resolution, and the coverage of the REP, the 

Sentinel 2 is better positioned to acquire more meaningful information, hence, the superior 

classification accuracies. These results attest to the finding by Shoko and Mutanga (2017a), who 

indicated that the Sentinel 2 yields superior classification outputs relative to Landsat 8. However, 

based on Matongera et al. (2017), the magnitude of difference in the obtainable classification 

accuracies between these two sensors is generally within the acceptable range (9%), and, thereby 

highlighting the fact that they can be used concurrently in mapping autumn grassland senescence.  

In addition, the results of this study indicated that, although not clearly distinctive, the Sentinel 

2’s-based spectral profile of senescent grass was higher than that of non-senescent grass across the 

regions of the electromagnetic spectrum. Specifically, when using the Sentinel 2 multispectral 



107 
 

dataset, optimal separation between the spectra of senescent and non-senescent grass was 

achievable around the Visible green and red as well as the REP and the NIR regions of the 

spectrum. This could be attributed to the strategic positioning of the Sentinel 2 spectral bands 

(Frampton et al. 2013), which caters for the swift changes in the biochemical and biophysical 

properties of the plants during senescence (Baranoski and Rokne 2005; Gitelson and Merzlyak 

1994). On the other hand, the Landsat 8-based spectral reflectance of senescent and non-senescent 

grass displayed high level of overlap in all the other regions except the Visible green and red bands. 

The identification of the Visible red band as one of the key regions in this study is in agreement 

with previous studies that reported that the Visible red region of the electromagnetic spectrum is 

highly sensitive to the dry properties of the vegetation (Wu et al. 2021; Jacques et al. 2014; Roberts 

et al. 1993). For instance, Dube et al. (2021) reported that the red band of the Landsat 8 was among 

the most important variables when classifying grass during the dry winter seasons. However, the 

performance of the NIR in separating between senescent and non-senescent grass was not superior 

based on the Landsat 8, and this could be attributed to the averaged spatial properties (i.e., 30 m) 

of the sensor as opposed to the finer spatial resolution (i.e., 10 m) of the Sentinel 2. However, the 

Visible green and red bands of the modern multispectral remote sensing do allow for meaningful 

classification of senescent and non-senescent grasslands. Equally, the REP proved to be among 

the sensitive regions of the electromagnetic spectrum for assessing autumn grassland senescence. 

Gitelson and Merzlyak (1996) and Gitelson et al. (1996), also discovered that the REP is important 

for explaining subtle changes in vegetation during senescence. Clear identification of these suitable 

waveband positions across the various regions of the electromagnetic spectrum is illustrated in 

figure 6.4.  
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Figure 6.4 Typical spectral reflectance of the vegetation showing the sensitive waveband positions 

for discriminating between senescent and non-senescent grasses based on the broadband 

multispectral remote sensing dataset. The blue highlighted corresponds to the Sentinel 2 while the 

red dotted boxes indicates the Landsat 8 sensitive bands. 

 

However, based on the results presented in this study, it should be noted that successful detection 

of autumn grassland senescence using remote sensing is not only a function of the spectral and 

spatial properties of the chosen sensor, but rather depended on the patch sizes of the senescent 

grass. For instance, the success of remote sensing sensors with bigger pixel sizes like the Landsat 

8 (i.e., 30 m) in mapping autumn grassland senescence also relies on the availability of large 

senescent grass patches. This explains the reason why the bands of the Sentinel 2 including the 

NIR generally performed better than the Landsat 8 because of the finer spatial resolution (i.e., 10 

m), which detected patches otherwise masked due to mixed-pixel problems in Landsat 8. Overall, 

these results have clearly demonstrated the contributions of the modern broadband multispectral 

remote sensing dataset in characterizing grass senescence. Given the benefits provided by these 

sensors, which include the large swath-width, free provision, and the improved spectral, spatial, 

temporal, and radiometric properties, among others, reliable assessment of rangeland resources 

can be guaranteed, even during the dry winter seasons when the quality and quantity of the forage 

is at minimum.  

 



109 
 

6.5 Conclusion  

The present study has investigated the potential of the modern multispectral remote sensing dataset 

(i.e., Landsat 8 and Sentinel 2) in mapping autumn grassland senescence, as well as determining 

the optimal waveband positions for discriminating between senescent and non-senescent grass 

using the broadband multispectral remote sensing sensors. Using the robust non-parametric 

Random Forest classification approach, the study has shown that senescent grass can be separated 

from the non-senescent grass based on the Landsat 8 and Sentinel 2 multispectral remote sensing 

datasets with adequate accuracies. Again, the results of this study have indicated that the Visible 

green and red jointly with the REP and the NIR were the most suitable wavebands for mapping 

senescent grass based on Sentinel 2, while the Visible green and red were recognized as the most 

important wavebands based on the Landsat 8. The study has generally confirmed the value of the 

modern broadband multispectral remote sensing dataset with improve resolutions in characterizing 

senescent grass from adjacent non-senescent grass. These results are important for reliable 

monitoring of rangeland resources such as grasses even during the dry winter seasons when the 

quality and quantity of the forage has significantly declined because of senescence.      
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7 Remote sensing of grassland autumn senescence for foraging resource quality and 

quantity: a synthesis, conclusion and recommendations for future 

 

7.1 Introduction  

Precise detection of autumn grassland senescence is necessary, not only for the understanding of 

the associated impact on foraging resource quality and quantity, but also to gain insight on potential 

implications for fodder banks, particularly during dry seasons. Besides their ecological 

importance, grasslands are also valued for their provision of the livestock and wildlife feed 

(Meissner et al. 2013; Ramoelo et al. 2012; Knox et al. 2011). However, during senescence, the 

quality and quantity of the grass deteriorates (Das and Chaturvedi 2005), and, thereby, affecting 

the conditions and availability status of the subsequent forage. Although previous studies have 

indicated that grass leaves may senesce individually (Royimani et al. 2022), the impact of such 

senescing leaves is insignificant from a forage quality and quantity perspective due to its disjointed 

nature of occurrence as opposed to the uniform senescence of the entire grass plant in totality 

across the landscape. Consequently, research on grass senescence particularly with an intention to 

gain knowledge on associated impact on forage quality and quantity has been focused on the 

autumn grassland senescence which is relatively uniform across the landscape. The autumn grass 

senescence can be described as the seasonal wilting of the grass due to aging and the conditions 

associated with the autumn season (Mariën et al. 2019). Furthermore, the impact of autumn grass 

senescence on foraging resources is believed to be prevalent in sourveld than in sweetveld due to 

the inability of sourveld grass species to constantly hold nutrients during senescence (Zacharias 

1995). This may present a greater risk of forage deficiencies, hence, livestock starvation. Also, 

with issues related to resource constrains for adoption of forage enhancement measures (e.g., 

fertilizer application and irrigation systems), which often delay senescence, the implications of 

autumn grassland senescence are expected to prevail in communal compared to commercial 

rangelands. One major socio-ecological benefit of autumn grassland senescence is its contribution 

to erosion reduction through shedding of leaves (Ackerly 1999; Kok et al. 1990). Therefore, 

studying the dynamics around the occurrence of autumn grassland senescence is critical for 

objective knowledge on the fodder banks as well as projections of potential forage shortages for 

the livestock and wildlife.  
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Data collection techniques for plant senescence assessment have by far relied on ground-based 

methods like field surveys and visual scoring of leaf coloration and fall and these are highly 

criticized for their limitation to small scale applications, associated cost and labour required, along 

with subjectivity (Anderegg et al. 2020; Mariën et al. 2019; Michelson et al. 2018). By contrast, 

with their “birds eye view” and repeated coverage in data acquisition (Sibanda et al. 2016), remote 

sensing offers plausible opportunities to explore dynamics around the occurrence of autumn 

grassland senescence in a timely, spatially and temporally explicit manner across the landscape. 

In addition, previous studies have embraced the use of plant chlorophyll – which is detectable 

through remote sensing means – as reliable proxy for monitoring vegetation senescence (Mariën 

et al. 2019). In light of the above given background, there is a need to consider the modern 

generation multispectral remote sensing datasets, including Sentinel 2 and Landsat 8, with 

improved spatial, spectral and temporal resolutions, jointly with broader areal and temporal 

coverages, in developing effective techniques to assess the dynamics around the occurrence of 

autumn grassland senescence. The importance of understanding the autumn grassland senescence, 

it’s onset and environmental drivers as well as the associated impact on forage quality and quantity 

include the contribution to the knowledge on fodder bank capacities as well as the potential times 

of forage deficits. Such information is required to aid effective planning and decision-making by 

farmers, while equally forming a basis for policy formulation and development by government 

with regards to the availability status of free-ranging quality forage in the rangelands. Therefore, 

the objectives of this study were:  

 

1. To provide a detailed overview on the progress of remote sensing applications in 

characterizing grass senescence and the possible challenges and opportunities.  

2. To quantify the amount of decline in nGongoni (Aristida junciformis) grass quality and 

quantity owing to senescence using in-situ and Sentinel-2 data. Also, to assess forage 

availability status at pre-senescent and senescent stages based on the Dry Matter content 

(DM) of the grass. 

3. To characterize the onset of autumn senescence in mesic subtropical sourveld grasslands 

using remotely sensed data.  
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4. To evaluate the correlation between remotely sensed autumn grass senescence and the 

climatic factors plus topography.  

5. To test the potential of the modern multispectral remote sensing dataset (i.e., Sentinel 2 

and Landsat) in mapping grass senescence, and to identify the optimal waveband positions 

that are suitable for discriminating between senescent and non-senescent grasses. 

 

7.2 Exploration of remote sensing techniques and associated plant properties for detection 

of autumn senescence 

Considering the increasing demand for meat and dairy products, as a result of population expansion 

(Kaliji et al., 2019) as well as the role of the livestock as a livelihood mechanism (Shoko et al. 

2019), investigating the possible techniques for meaningful assessment of autumn grassland 

senescence in a spatially and temporally explicit manner at the landscape scale is an important 

undertaking. The significance of this study (chapter 2) was to provide a detailed overview on the 

progress of remote sensing applications in characterizing grass senescence and to highlight the 

associated challenges and opportunities. The findings indicated that effective characterization of 

plant senescence through remote sensing means is a function of monitoring the changes in key 

biochemical and biophysical properties of the floral species as indicators and these include, among 

others, biomass, chlorophyll content, leaf coloration and fall as well as LAI. Also, in contrast to 

the highly priced and small area coverage quality data of the high spatial and hyperspectral remote 

sensing instruments (Royimani et al. 2019a), the study indicated that the modern generation 

multispectral sensors like Sentinel 2 and Landsat 8 with better spatial, spectral, radiometric and 

temporal properties can benefit the detection of autumn grassland senescence. For instance, the 

Sentinel 2’s 5-day revisit time is adequate to timely monitor changes in the chlorophyll content of 

the grass while the fine (10 m) spatial resolution and the REP are able to explain subtle changes in 

the concentration and distribution of pigments in the grass. In addition, the study noted that the 

advent of time-series algorithms such as the piecewise linear regression model with a breakpoint 

together with advanced and sophisticated models such as Random Forest is advantageous for 

ongoing and accurate characterization of autumn grassland senescence.  
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7.3 Quantifying the decrease in foraging resource quality and quantify due to senescence 

using Sentinel 2 and in-situ data   

In order to understand the impact of grass senescence on foraging resource quality and quantity, 

this study (chapter 3) examined the amount of decrease in nGongoni (Aristida junciformis) grass 

quality and quantity due to senescence using in-situ and Sentinel 2 and the Random Forest 

Regression. This was attainable through estimating the quality and quantity of the grass at pre-

senescence and senescence phenological stages and further assessed forage availability status at 

pre-senescence and senescence stages based on the Dry Matter content (DM) of the grass. The 

results demonstrated reasonable levels of accuracy in assessing pre-senescent and senescent grass 

quality and quantity. For instance, the Random Forest yielded R2’s of 91.3 and 96.6% as well as 

RMSEs of 2.12 and 0.55 µg Chl/cm2 when explaining grass quality during pre-senescent and 

senescent stages, respectively. Again, the model obtained R2’s of 70.9 and 94.2% together with 

RMSEs of 0.34 and 0.02 kg/m2 when predicting grass quantity at pre-senescent and senescent 

stages, respectively. The results further showed that optimal predictions of grass quality and 

quantity, both, at pre-senescent and senescent stages were achieved with the Red-Edge and its 

associated indices jointly with the Near Infrared (NIR) and red band derivatives. Furthermore, the 

findings exhibited a significant decrease in both quality (17.2 µg Chl/cm2) and quantity (0.89 

kg/m2) of the nGongoni grass due to senescence. A total of 68.5 and 78.2 %/m2 DM content was 

reported for the pre-senescent and the senescent nGongoni grasses.  

7.4 Characterization of autumn senescence onset in sourveld grassland ecosystems based on 

remote sensing dataset 

Given the reported remarkable decline in foraging resource quality and quantity following 

senescence (chapter 3), chapter 4 attempted to define the start date of autumn grassland senescence 

using remote sensing techniques and the piecewise linear regression model with a breakpoint. 

Using ten monthly vegetation indices derived from Sentinel 2, the study characterized the onset of 

autumn senescence in mesic subtropical sourveld grasslands. This was necessary to ascertain the 

duration of poor forage quality or the potential lifespan through which the provision of quality 

forage can be sustained in the rangeland. The findings suggested that the CHL-RED-EDGE and 

the NDVI705 were the best proxies for characterizing the autumn grass senescence. When fitted in 

a piecewise linear regression model the NDVI705 predicted that the grass in the study area starts 

senescing on day number ± 98 of the year (R2 = 0.97, RMSE = 0.024) while the CHL-RED-EDGE 
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suggested day number ± 106 of the year (R2 = 0.96, RMSE = 0.052). When averaging the two 

predicted dates, the findings indicated that the actual onset of autumn grassland senescence is on 

day number ± 102 of the year.  

7.5 Evaluating the influence of climate and topography on autumn grassland senescence  

Changes in climatic conditions and topography are among the primary drivers of the reported 

alterations and modifications in the physiology and phenology of the floral species (Shoko et al. 

2019). Similarly, the use of climatic and topographic information can benefit the projection efforts 

of the occurrence of autumn grassland senescence. This is the case precisely because extreme 

weather events can lead to earlier or later senescence than normal, while higher altitudes often 

favour early grass senescence (Liu et al. 2016). Therefore, this study (chapter 5) examined the 

spatial correlation between remotely sensed autumn grass senescence vis-a-vis the climatic and 

topographic variables in the subtropical grasslands. Sentinel 2’s NDVI705 and CHL-RED-EDGE, 

as best proxies for explaining autumn grassland senescence in this area (chapter 4), were tested for 

sensitivity against climatic and topographic factors using the PLSR, the MLR, the CART and the 

RFR models. Specifically, the tested climatic factors were; Tmin, Tmax, rainfall, soil moisture, and 

solar radiation, while topographic features were; slope, elevation and aspect. The RFR 

outperformed all the other models. With regards to the environmental cues of autumn grassland 

senescence, the study showed that Tmax, (p = 0.000 and 0.005 for the NDVI705 and the CHL-RED-

EDGE), Tmin (p = 0.021 and 0.041 for the NDVI705 and the CHL-RED-EDGE) and soil moisture 

(p = 0.031 and 0.040 for the NDVI705 and the CHL-RED-EDGE) were the most influential autumn 

grass senescence drivers, whereas none of the topographic features displayed sensitivity. The study 

further noted that the poor influence exhibited by topography on autumn grassland senescence was 

site-specific due to issues related to the homogeneity of the landscape.  

7.6 Testing the potential of the modern multispectral remote sensing in mapping grassland 

senescence and identifying the associated optimal wavebands for spectrally discriminating 

between senescent and non-senescent grasses 

Although previous studies have demonstrated the contribution of remote sensing methods in 

assessing plant senescence (Anderegg et al. 2020; Mariën et al. 2019; Michelson et al. 2018), some 

key questions still remained unanswered. One of the questions relate to understanding suitable 

spatial and spectral windows, based on the readily available broadband multispectral dataset, for 
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optimal detection of autumn grassland senescence. Hence the current study (chapter 6) tested the 

potential of the modern multispectral remote sensing dataset (i.e., Sentinel 2 and Landsat 8) in 

mapping grass senescence and, in identifying optimal waveband positions that are suitable for 

discriminating between senescent and non-senescent grasses. In achieving this, the study employed 

the Random Forest classification algorithm. The findings indicated that overall classification 

accuracies of 0.82 and 0.78 and kappa coefficients of 0.64 and 0.56 were obtainable for Sentinel 

2 and Landsat 8, respectively. Using the stepwise selection approach, the study further identified 

that the REP and the Visible green and red bands of the electromagnetic spectrum were the optimal 

waveband positions for separating between senescent and non-senescent grasses based on the 

broadband multispectral remote sensing, while the suitable spatial resolution depends on the patch 

size of the senescent grass. 

7.7 Conclusion  

Autumn grassland senescence is one of the key drivers of forage quality and quantity in rangeland 

ecosystems and remote sensing has played an instrumental role in providing a primary source of 

reliable quality data for this undertaking. The current study has, therefore, assessed the impact of 

autumn grass senescence on forage quality and quantity in subtropical sourveld grasslands of the 

Midlands communal rangelands, KwaZulu-Natal, South Africa, using the new generation 

broadband multispectral remote sensing instruments. Considering the projected shifts in climatic 

conditions in southern African, this was necessary in order to understand the impact of autumn 

grassland senescence not only on foraging resource quality but also on the fodder bank capacities. 

The findings of this study have demonstrated the role of the freely available modern multispectral 

remote sensing dataset with improved spectral, spatial, temporal and radiometric resolutions in 

optimally characterizing the dynamics around the autumn grassland senescence with reasonable 

accuracies. Specifically, the visible red, NIR and the REP as well as the NDVI705 and CHL-RED-

EDGE were generally identified as the most influential bands and indices for meaningful detection 

of autumn grassland ecosystem. Based on the results of this work, the following conclusions were 

drawn from each chapter (chapter 3 to 6):  

1. The quality and quantity of foraging resources decreased by about 17.2 µg Chl/cm2 and 0.89 

kg/m2, respectively, because of senescence.  
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2. The onset of autumn grassland senescence in the study area is on day number ± 102 of the 

year, which occurs in the month of April.  

3. The occurrence of autumn grassland senescence in the study area is primarily controlled by 

macro-climatic conditions (i.e., Tmin, Tmax, and soil moisture) than topography.  

4. The modern broadband multispectral remote sensing sensors with improved sensing 

properties are beneficial for effective monitoring of autumn grassland senescence, particularly 

the Visible green and red bands jointly with the REP. Moreover, the required spatial resolution 

for mapping autumn grassland senescence depends on the patch size of the senescent grass.   

 

These results are critical as far as the availability and management efforts of free-ranging quality 

forage are concerned, particularly to ensure reliable livestock production systems among the small-

holder farmers, who are often vulnerable due to challenges emanating from, among others, climate 

change, poor rangeland management methods and resource constraints. With this knowledge, the 

planning and decision-making of the farmers pertaining to grazing patterns and livestock numbers 

to be sustained in a particular veld can be significantly improved. In government and associated 

agencies, this information will help to support policy development with regards to sustainable 

utilization of foraging resources as the main source of free-ranging feed to the livestock, a key 

livelihood mechanism and a source of household wealth for many families.   

7.8 Recommendations and the future  

The findings of this study underline the relevance of the readily available broadband multispectral 

remotely sensed dataset in monitoring the dynamics of autumn grassland senescence. This is an 

important undertaking considering the impact of autumn senescence on foraging resources. 

However, in order to fully understand the potential impact of autumn grassland senescence in 

foraging resources including the livestock production system at the landscape scale, the following 

recommendations should be considered in future studies.   

 Considering the success of Sentinel 2 in assessing dynamics around the autumn grass 

senescence coupled with the recent launch of Sentinel 3, which has a swath-width of 1270 

km, these would enable the development of hybrid and fusion techniques for meaningful 

subcontinental detection of autumn grassland senescence, a task required for appropriate 

monitoring of foraging resources at the rangeland scale.       
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 The livestock numbers and grazing systems play a pivotal role in the availability status of 

foraging resources in rangeland environments. Therefore, future research should be on 

grazing systems used to assess possible irregularities between stocking densities, grazing 

systems and potential periods of forage deficiency, especially during dry seasons.   

 The current study has revealed that only a handful of remote sensing studies has been 

conducted on grassland autumn senescence, however the majority are either based on 

snapshot or done during a single season. Taking the advantage of the free available high-

temporal resolution Sentinel series data, future research should be focused on long-term 

understanding of the dynamics of autumn grass senescence.  
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