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ABSTRACT

Reliability Study under the Smart Grid Paradigm Using Computational Intelligent Techniques
and Renewable Energy Sources

Adeniyi Kehinde Onaolapo
School of Engineering
Doctor of Philosophy

The increase in the demand for a reliable electricity supply by the utilities and consumers has
necessitated the evaluation of the reliability of power systems. A reliable electricity supply is
characterized by no or minimal duration and frequency of supply outages. Current power sys-
tems are changing due to increasing power demand and depletion of fossil fuel deposits. These
changes are related to smart grids which are intelligent electric networks that are capable of using
demand management methods, supporting communication devices and monitoring of consumer
energy consumption. They can also integrate renewable energy sources thereby reducing reliance
on fossils fuel sources. The main objective of this study is to optimize power systems operations
and improve reliability. Different optimization methods are proposed in this study to address the
issues of power systems operations. These optimization problems consider different constraints for
maximum operations of the power systems. Case studies are used to confirm the proposed methods
using the historical and climatic data for the City of Pietermaritzburg (29.37°S and 30.23°E), and
Newcastle (27.71°S, 29.99°E) South Africa. Firstly, the implementation of the back-propagation
algorithm method of the artificial neural networks (ANNs) for designing a predictive model for
power system outage is proposed. The results obtained are found to be satisfactory. In situa-
tions where there is the problem of accessibility to large system data and presence of multiple
system constraints, another method is proposed. This second technique proposes the application
of a maximum entropy function-based multi-constrained event-driven outage prediction model,
using the collaborative neural network (CONN) algorithm. The outcome is better than the conven-
tional event-driven methods. Lastly, an adaptive model predictive control (AMPC) method with
the integration of renewable energy sources (RESs) and a battery energy storage system (BESS)
is proposed to further improve the reliability of the power system. The developed method uses
a modified Roy Billinton Test System (RBTS) to implement the reliability improvement of the
power system. The proposed computational intelligent techniques fulfil the necessities of opera-
tion robustness, implementation simplicity and reliability improvement of the power systems.

Keywords: Artificial neural networks, multiple linear regression, exponential smoothing, predic-
tive model, weather events, collaborative neural network, event-driven forecasting, multiple con-
straints, maximum entropy function, weather conditions, adaptive model predictive control, battery
energy storage system, cost of electricity, financial feasibility, reliability, renewable energy sources,
solar PV, wind plant.
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Chapter 1

Introduction

1.1 Background

Power system reliability is the probability that electric components supply power to the consumers

in an acceptable manner and quality [8]. Power system reliability is a germane requirement for

electric utility systems as well as to customers. Access to high quality uninterrupted power supply

is vital to the economic and industrial development of a nation. The main essence of a power

system is to supply electric power that is reasonably reliable and economically acceptable to con-

sumers at all times. An electricity power system is highly integrated and very complex. Faults

in any part of the network can lead to outages ranging from minor to major. Such outages could

have a serious economic impact on the utility and consumers alike. It could also cause damage

to appliances and even loss of lives in critical sectors like the hospitals. The three components of

a power system are the generation, transmission and distribution networks. The distribution net-

work components of a power system require more attention in terms of reliability improvements
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because outages are more common with varying degree of impact on consumers [9]. More than

80% of customer reliability problems are traceable to distribution systems [10]. Reliability im-

provement of the distribution network is directly proportional to the reliability improvement for

the customer. The daily increase in the demand for reliable electricity necessitates the need to

exploit computational intelligent techniques to make networks smarter and more reliable [11]. The

increasing emission of greenhouse gases, the challenge of fossil fuel depletion and the increase

in prolonged outages from traditional power systems has brought about the integration of renew-

able energy sources (RESs) such as solar photo-voltaic and wind turbine generation, and use of

battery energy storage systems (BESSs), to improve system reliability [3]. As of 2020, the global

fraction of power generation is 29% renewable energy, this is projected to become 35% in 2030

with solar and wind energies taking a significant portion [12]. This transition comes with its tech-

nical challenges which has resulted in unexpected outagesdue to the intermittency nature of the

RESs [13, 14, 15, 16]. Hence, the need for new models, algorithms and methods to tackle these

challenges in power systems. This thesis proposed different computational intelligent techniques

for dealing with renewable energy sources to investigate their reliability impacts in the power sys-

tems.

1.2 Motivation

This research was motivated by the experience of load shedding that takes place in South Africa.

This is coupled with electrical faults, that are often accompanied by short circuits when restored.

These short circuits can damage appliances and create avoidable inconveniences. Two questions

can be posed: if load shedding continues every year, i) Could it be related to the weather events? ii)

Is there be a deliberate plan, policy or project to prevent repeats of such occurrences? The answer
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is not far-fetched, the solution is in making the grid smart or smarter. Reliability of the grid cannot

be over-emphasized.

The transition of power systems from the traditional to one with substantial renewable energy

resource, with intermittent supplies, requires new smart techniques to make them reliable. The

contribution of renewable sources such as solar or wind to electricity needs is not accurately pre-

dictable. This has resulted in fluctuations in supply and varying disturbances that create serious

reliability challenges in the power systems. These challenges, encountered as a result of renewable

energy integration into the power systems pose greater challenges for the reliability, stability and

safety of the grid. Techniques are required to improve the performance and handle uncertainties

in the power systems. Stand-alone micro-grids (made up of renewable sources), with high level

of reliability, can be used in remote communities with complex terrains with little or no access

to the national grid. Grid-connected micro-grids can complement grid supplies at the distribution

network level, and improve the reliability of supplies during load-shedding and outages, thereby

providing consumers with environmentally-friendly, renewable and sustainable supplies. Such

critical sectors that need uninterrupted supplies, such as, hospitals, laboratories, medical facilities

and important academic and economic facilities can be connected to micro-grids for their supplies.

1.3 Aim and Objectives

The aim of this thesis is to investigate the application of computational intelligent techniques to

improve the reliability of power systems with integrated renewable energy sources. The proposed

intelligent techniques are implemented in the design of different models to improve the reliability.

The objectives of this research are:
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1. To investigate the reliability of electric power systems using the back-propagation algorithm

(BPA) of the artificial neural networks (ANNs) model, designed to predict electricity outages

caused by weather events;

2. To design and implement a multi-constraint event-driven outage model that depends on a

maximum entropy function for power systems reliability improvement;

3. To optimize micro-grid system operations and solve the optimization problem of disturbance

prediction using the adaptive model predictive control (AMPC) algorithm; and

4. To model a modified Roy Billinton Test System (RBTS) in order to improve reliability,

reduce emissions, balance the demand and supply of energy through RESs and a battery

energy storage system (BESS), and investigate the economic feasibility of the integration of

RESs and BESSs into power systems.

1.4 Hypothesis

This thesis formalizes the hypothesis that developing relevant electricity outage forecasting model,

using optimization methods (and sometimes with renewable energy sources) can be used to im-

prove the reliability of the power systems.

1.5 Contributions of Thesis

• Assessment of the dynamic and complex inter-relationship between climatic and technolog-

ical factors of system failure. The application of ANNs to forecast power outages of a South

African power system. The study findings are significant in the South African context, as
4



they show that AI methods can be applied to outage forecasting, and weather conditions do

impact on the performance of a distribution power system in South Africa. This contribution

has been published in [1];

• Development of a useful model for power utilities which will assist maintenance. Develop-

ment of a model for power outage forecasting using meteorological data and artificial neural

networks. This model uses the approach of expressing the outage events per season as the

target output. This contribution has been published in [1];

• Adoption of extensive statistical measures in evaluating the developed outage models. To

increase the credibility of the results, real-life data are used. The proposed method demon-

strates an improved performance, reduced computation time and an ease of implementation

when compared to other baseline methods. This contribution has been published in [1];

• Development of a model that will improve decision making by utilities. This can mean that

they pre-position materials and crews, and proactively inform consumers of possibilities of

outage. Conventionally, restoration plans of utilities are based on management discretion and

experience, and not expert outage prediction models. This contribution has been published.

in [1];

• Proffering of solution to complex event-driven power outage forecasting problems using neu-

ral network methods. The use of event-driven power outage algorithm can be applied using

CONN to various application cases to meet different power outage forecasting requirements.

This contribution has been published in [2];

• Development of a maximum entropy function model for a multi-constrained event-driven

power outage problem which converts the complex problem into two single-objective sub-

problems. This contribution has been published in [2];
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• Development of an event-driven outage model with multiple constraints converting the com-

plex problem into two single-objective sub-problems which are continuously differential,

this solves the problem that the objective function of the conventional min-max model is

non-differential. This contribution has been published in [2];

• Evaluation of the reliability, financial viability, and ecofriendly impacts of RESs incorpo-

rated into a micro-grid system are investigated. This contribution has been published in [3];

• Development of a model used for reliability evaluation of a power system with the integration

of RESs. This contribution has been published in [3].

• Development of a model used for reducing Cacs and Ccoe and increasing the use of RESs in

a power system. This contribution has been published in [3];

• Integration of a model which will help in estimating the costs of supply interruptions by

utilities, thereby improving power system reliability. This contribution has been published

in [3];

• Use of a model which will help in monitoring the efficiency of a power system with the

integration of RESs. This contribution has been published in [3];

• Implementation of a modified Roy Billinton Test System (RBTS) model which is verified

using the adaptive model predictive control (AMPC) method. This contribution has been

published in [3];

• Quantification of the emission parameters (oxides) from different case scenarios. This con-

tribution has been published in [3];

• Investigation of the impacts of annual real interest rates on the cost and emission parameters

of the micro-grid. This contribution has been published in [3].
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1.6 Thesis Structure

The structure of this thesis is organized in a multi-paper format. Three main chapters (Chapters 3

to 5) have been prepared for publications. The entire thesis is made up of six chapters that are

organized as follows.

• Chapter 1 is the introduction for the thesis. It contains the general background of power

systems reliability, the motivation, the aim and objectives, and the contribution of this thesis.

• Chapter 2 contains the theoretical background of the thesis. It covers the theoretical back-

grounds of different but related research work recorded in Chapters 3 to 5 of this thesis.

The mathematical modelling of the different methods used is discussed in their respective

chapters.

• Chapter 3, which has appeared in [1], provides the design and implementation of an artificial

neural networks (ANNs) model, using a back-propagation algorithm (BPA) for predicting

electricity outages caused by weather events.

• Chapter 4, which has appeared in [2], provides the design and implementation of a multi-

constraint event-driven outage model that depends on maximum entropy function for power

systems reliability improvement.

• Chapter 5, which has appeared in [3], presents the model of a modified Roy Billinton Test

System (RBTS) designed to improve reliability, reduce emissions, balance the demand and

supply of energy through RESs and battery energy storage system (BESS), and investigate

the economic feasibility of the integration of RESs and BESS into the power systems. The

model was used to optimize micro-grid system operations and solve the optimization prob-
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lem of disturbance prediction using the (adaptive model predictive control) AMPC algo-

rithm.

• Chapter 6 summarizes the conclusions, limitations of the work reported in this thesis and

future work.
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Chapter 2

Theoretical background
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2.1 Introduction

This thesis contains theoretical formulations and simulation experiments with their methodologies,

results, and conclusions. The work as a whole is based on several related research projects brought

together to form a complete study. The overriding theme is the relationship between reliability

studies, smart grid paradigm, renewable energy sources and computational intelligent techniques.

This chapter summarizes the relationships between the theme aspects.

2.2 System Reliability

The evaluation of power system reliability has typically been done using probabilistic and the

deterministic approaches [17]. The deterministic approach considers the characteristics and inter-

nal organization of the power system they operate and the previous experience of utilities on the

system. Its reliability is determined using a simple heuristics or rules-of-thumb. However, the

probabilistic approach considers the operation of the system and the stochastic characteristics or

modelling of the components of the system. The probabilistic approach is more intensive and com-

plex because it adopts a more complete depiction of the system. It requires more computational

effort to evaluate the reliability of the system. Despite the limitations of the probabilistic method,

it is more accurate and effective than the deterministic method. Hence, most literature report on

the probabilistic approach.
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2.2.1 Fundamental Concepts of Reliability

The reliability of a system is its ability to accomplish its proposed function in a specified period

of time under a given operating conditions. There are two fundamental concepts of reliability,

namely, system adequacy assessment (SAA) and system security assessment (SSA) [18].

An SAA relies on the sufficiency of resources in meeting the operating requirements and cus-

tomer demands. The resources include the equipment needed to supply electricity from generation,

to transmission, to distribution, and finally to consumers. An SAA associates with static condi-

tions and does not consider the transient perturbation responses and system dynamics. A system

state is adjudged successful if all operating constraints are met after evaluation. Such operating

requirements include the loading limits, bus voltages, and the load. If one or more of the con-

straints are not met, corrective actions, such as bus voltage set-points, reactive power adjustments

or generating units re-dispatch, are taken. To enforce the operating requirements, loads might be

curtailed.

The scope of an SSA covers the ability of a system to return from transient perturbation to stable

operating conditions after a disturbance. Hence, the system resilience against possible disturbance

that might result in voltage, frequency or transient instabilities or cascading failures of equipment

is the concern of an SSA. Solving the time-domain system dynamic behavior differential equations

might require numerical methods, such as the Runge-Kutta method, which is necessary to conduct

a detailed SSA study. This would include restoration actions, control processes and protection

systems representations [19]. SSA studies are highly complex in nature and are typically made for

a scheduled number of probable scenarios of disturbances and operations.

This study is concerned with the SAA of power systems.
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2.2.2 Hierarchical Levels and Functional Zones

A modern electric power system is very complex and large. An SAA study uses simulation and

mathematical methods to solve the models depending on the available computational power and

the features needed for the illustration of the system components. For simplicity, power systems

are categorized into functional zones in SAA studies. The first SSA category proposed a three

functional zone separation of power systems (HL1 – HL3), which are: Generation, Transmission

and Distribution (Figure 2.1) [17].

Figure 2.1 Functional zone Category 1 [18].

The second SAA category proposed a four functional zone separation of power systems (HL0

– HL3), which are: Energy, Generation, Transmission and Distribution [20]. The new functional

zone added in (Figure 2.2), i.e., Energy, accounts for the intermittent energy sources or intrinsic

variables (the renewable energy). HL0 gives a more accurate illustration of the generation sources

available in time. A Hierarchical level (HL) is usually a combination of Functional Zones (FZs).

The generation components and their ability to supply the system form Hierarchical Level One

(HL1). The generation and transmission facilities and their ability to supply the bulk consump-

tion points form Hierarchical Level Two (HL2). Finally, all functional zones and the system’s

combined ability to supply load continuously to every consumer form Hierarchical Level Three
12



(HL3). Approximate models are usually used for representing the components of Energy, Genera-

tion and Transmission zones to avoid making the scale of the problem cumbersome resulting in a

computationally unrealistic adequacy assessment [20].

Figure 2.2 Functional zone Category 2 [18].

The restructuring of electric power systems has resulted in privatization, decentralization and

unbundling of the generation, transmission and distribution operations. This restructuring in con-

junction with the new technology has renewed and strengthened the interest in the distributed gen-

eration (DG). Hence, there has been a promotion for massive integration of DG into the distribution

network. This has rendered the previous HL concept developed under centralized distribution (CD)

paradigm obsolete, and led to a re-organization that takes care of the DG (Figure 2.3) [21]. SAA

studies and methods described in this work cover the functional zones Category 3.

13



Figure 2.3 Functional zone Category 3 [18].

2.2.3 Reliability Indices

Reliability indices are very important outcome of SAA probabilistic studies. Reliability indices

are broadly referred to as past or predictive performance indices [22]. Information on system

reliability is provided by predictive indices which helps in the design horizon. Actual reliability of

the system and events observed are reported by past performance indices. Only predictive indices

are used in this work. The predictive reliability indices (or simply put, reliability indices) are

designated differently in accordance with the HL involved in the SAA study. Reliability indices

are classified as duration, frequency, energy, economic or probability indices, irrespective of the

designations [17]. A few examples of reliability indices are given below.

Duration and frequency indices:

• Loss of Load Duration - LOLD (hour, day or week/occurrence), is a measure of the average

duration of an event involving load curtailment; and

• Loss of Load Frequency - LOLF (occurrence/year), is a measure of the average number of

load curtailment events in a given assessment period (typically a year).

14



Energy indices:

• Expected Energy Not Supplied - EENS (MWh/year), is a measure of the average energy

curtailed in a given assessment period (typically a year); and

• Expected Power Not Supplied - EPNS (MW), is a measure of the average load curtailed.

Economic Indices:

• Expected Interruption Cost – ECOST (currency or $/year), is a customer damage functions,

i.e., a measure of the costs incurred as a result of power supply interruptions in a given

assessment period (typically a year); and

• Loss of Load Cost - LOLC (currency or $/year), is a measure of the average cost of load

curtailment in a given assessment period (typically a year).

Probability indices:

• Loss of Load Expectation - LOLE (hour, day or week/year), is a measure of the average

number of hours, days or weeks in a given assessment period (typically a year) with load

curtailment; and

• Loss of Load Probability - LOLP, is a measure of the probability of load curtailment.

In Chapter 5 the reliability indices used are EENS and ECOST.
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2.3 Smart Grid

Emerging solutions to address the problems of a modern electricity system that provide high quality

of power, reliable electricity supply and integrate RESs such as hydroelectricity, wind and solar into

electrical networks are called the Smart Grids. The smart grid concept is distinguished from the

traditional passive grid in its ability to control, coordinate and manage connected resources [23].

Controllable loads and small interconnected voltage generators make up the micro-grid. Micro-

grid can be grid-connected (i.e., linked to the main grid) or islanded (i.e., stand-alone). Strategies

such as centralized/decentralized load dispatching, local decentralized control, and supervisor con-

trol are used to control a micro-grid. In application, two or more of these strategies are at times

combined resulting in combinations of possible types of control [24].

2.3.1 Smart Grid Concept

The smart grid concept uses a system of upgrading the existing grid infrastructure by integrating

multiple technologies such as forecasting systems, advanced automated controls, automated sen-

sors, two-way communication, and two-way power flow. A smart grid enables communication

between the utility and the consumers which encourages energy to be used optimally based on

technical issues, price and environmental preferences. This improves the security, efficiency and

reliability of the grid, and reduces greenhouse gases (GHG). Today, energy generation is heavily

dependent on fossil fuels and there is an increasing demand for reliable energy daily; hence, renew-

able energy needs be adopted to reduce GHG emission and for a sustainable supply [24, 25]. The

integration of intermittent renewable sources into the existing electrical grid need serious modifica-

tions and improvements for an efficient system. Smart grids, therefore, harness the communication,

control, system management and efficient monitoring capability to the existing electrical grid for
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improved economy and efficiency. A smart energy management system is needed to coordinate

the use of time-varying models of energy pricing, smart home technologies, and smart grid [26].

A smart grid system has a cost saving advantage for users and utilities alike by reducing the num-

ber of power plants on standby and automatically shedding or reducing the peak demand, thereby

responding to varying costs of energy [27]. Table 2.1 shows a comparison between the traditional

grid and a smart grid.

The two-way communication in a smart grid facilitates communication between subscribers

and the utility which minimizes peak hours, reduces power loss, increases efficiency, increases

reliability and minimizes the total cost of subscriber energy. A Demand-Side Management (DSM)

program is used on the side of the consumer to manage the consumption patterns in accordance

with varying electricity prices. The consumer can use a DSM to move their load demand to off-

peak periods, reduce their load demand, and reducing their dependence on grid energy by relying

on renewable energy. To design an efficient smart grid system, the expertise and knowledge from

many fields need be integrated. One of these fields is computational intelligence or mathemati-

cal optimization [24]. It is used to optimize (minimize or maximize) objective function(s), under

equality and inequality constraints. In this work, ANN, CONN and AMPC intelligence techniques

are used. The canvassing for the incorporation of RESs into smart grid system is gaining momen-

tum. Renewable energy resources, such as, hydro, wind, and PV, are emerging alternatives for

electricity generation systems because they are clean and sustainable sources. In Chapter 5, wind

plants and solar PV are the RESs used together with a BESS.
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Table 2.1 A comparison between the traditional grid and smart grid [28].

S/n Traditional Grid Smart Grid
1 Dumb technology, infrastructure is

electro-mechanical. Devices do not
communicate among each other, and
self-regulation is little.

Digital technology, devices communicate
among each other, even remotely and self-
regulate.

2 Traditional grid separates alternative en-
ergy from power plants because of lack of
integrating infrastructure, thereby giving
consumers no choices.

Smart technologies allow different com-
panies and forms of alternative energies
on the grid, thereby giving consumers
choices.

3 Power distribution is one-way i.e. from
the generating plant down to the distribu-
tion system.

Power distribution is two-way i.e. from
the generating plant down to the distribu-
tion system and vice versa.

4 Limited control, it has to do with physical
presence at the power plant or substation.

Unlimited control, which is achieved us-
ing smart infrastructures and sensors. Re-
mote monitoring of energy and consump-
tion is prevalent.

5 Centralized energy generation. Decentralized energy generation which
decreases peak time strains, balances the
load and reduces the frequency power out-
ages.

6 Prone to failures as a result of limitations
and ageing.

Power can be re-routed around any faulty
area using smart technologies.

7 Equipped with limited sensors, making
location of fault a difficult task.

Equipped with multiple sensors, making
location of fault easy, thereby limiting
downtime.

8 Fault restoration is manual and has to do
with physical presence at the location of
fault.

Self-healing and remote restoration is
possible.

9 Energy distribution is monitored manu-
ally because of the nature of infrastruc-
ture.

Digital technology enables smart grid to
monitor itself, thereby managing distri-
bution, troubleshoot outages, and balance
loads.
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2.4 Renewable Energy

As at 2020, the energy mix of South Africa, which is the country of the study areas for this re-

search, is 88.9% fossil fuel, 5.6% nuclear energy, and 5.5% renewable energy. The renewable

energy components is made up of 2.0% wind, 2.1% hydro, 0.3% solar thermal, 1.0% solar PV,

and 0.1% biofuels [29]. The need for the development of sustainable energy and the design tools

for sustainable energy is discussed in this section. Chapters 3 and 4 investigate the reliability of

the power system based on the current mix of electricity. A design with greater incorporation of

renewable energy sources, integrated with a fossil fuel generator and optimized using an intelligent

technique is presented in Chapter 5.

2.4.1 Renewable Energy for Sustainable Living

The design for sustainable living is planning which improves the economic, social and ecological

well-being of both the present and the future [30]. The demand for sustainable energy is increasing

globally and the trend will continue in the next few decades as the environmental effects of GHG

emissions by fossil fuel become obvious. The use of renewable energy technologies in small and

large scales is becoming more evident as the prices of the components are becoming attractive and

cost-effective.

Mankind has used captured energy in different forms and for diverse purposes since fire was

discovered and animal power harnessed. This includes using wastes, biomass and wood for metal

melting, heating and cooking; and using animal for transportation, mechanical works, waterwheels

and windmills [31]. This leads to the events of the industrial revolution when there became a

heavy reliance on energy. The discovery of vast deposits of fossil fuel having higher density than
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biomass fuel, the rapid development of industrial processes which were energy intensive, and the

increase in energy demand in industrialized countries, resulted in the development of electricity.

Because fossil fuels were in abundance and inexpensive, machines (Ford Model T cars and Rudolf

Diesel’s engines) that were initially designed to run on alcohol and biomass fuels were converted

to fossil fuel engines. Since then, machines have been developed to rely heavily on fossil fuels;

and its demand and use, particularly in the transportation and electricity sectors have become a

very significant part of the technological society [32]. But about two centuries down the line, the

adverse effects of the fossil fuels in our environment became obvious. This awareness has led

to stricter legislation, policies and collaborations at the international level to curb the effects of

GHG emissions [7]. Despite this awareness, the transition to sustainable energy has been slow,

while energy consumption increases rapidly globally due to increased industrialization and rapid

population growth.

2.4.2 Generating Electricity from Renewable Sources

Grid networks are well established in most advanced countries. However, the siting of plants

and the generating methods for renewable energy is different from the conventional fossil fuel

generating methods. Transition to sustainable energy will have implications on the re-design of

these grids. Electricity generators can be classified into three, these are: i) capacity-limited; ii)

energy-limited; and iii) intermittent [30]. These are discussed in this section.

Conventional Thermal Generators

The oil-fired, gas-fired, coal-fired and nuclear power plants can be classified as capacity-limited

plants. The operation constraints, such as, the unplanned outages and time required for mainte-
20



nance; and the physical capacity of the plant, determine the quantity of electricity generated in

this category [33]. Conventional generators have large generating capacities, supported by a large

expanse of expensive conversion equipment and transmission lines. Electricity is transported from

the central generating points to the consumers over possibly several hundred kilometers away via

many branches of transmission and distribution lines. The long distances of electricity transmis-

sion often lead to high line losses. Although nuclear power plants do not generate electricity using

fossil fuels, but they have safety and environmental concerns, such as the possibility of accidents,

contamination of nearby water and land, and radioactive waste disposal.

Sustainable Energy Generators

Energy generation which depends on seasonal crop yields, waste, rainfall, etc. are classified as

energy-limited plants [34]. These energy sources are limited by the quantity of fuel or energy

available to them in a particular place, at a particular time; and as such, find it difficult to run at

the rated capacity. Plants fueled by waste, landfill gas, biomass, and hydro-electric power with

reservoirs, are some of the examples of such generators. Unlike the intermittent sources, energy-

limited plants have in-built storage capacities which depend on the size of storage facilities, for

instance, the size of reservoir for hydropower plants. The fast response and storage capacity of

energy-limited plants help the spinning reserve function, thereby providing energy to networks

during peak times, thus matching demand with supply. Energy-limited plants are expensive and

difficult to develop, the fuels are of lower energy densities, the local resources are limited, and

their rated capacities are much lower than capacity-limited plants.

Intermittent plants are renewable sources such as tidal, solar, wave and wind. These sources of

energy (apart from the tidal), vary according to weather, have no storage capacity and are unpre-

21



dictable [35]. The integration of a large percentage of intermittent sources into the grid can lead to

network balancing, control and reliability problems. Although weather prediction of an area may

indicate that sufficient electricity will be generated, the availability of that sufficient amount of

electricity at the time needed is not guaranteed. Intermittent plants may produce electricity when

there is no demand or refuse to generate when it is needed. Demand with the seasons and weather

pattern variations need be taken into consideration. Renewable plants (both the energy-limited

and intermittent plants) are generally smaller in capacity than the conventional (capacity-limited)

plants (except for the tidal plants). They are distributed throughout the network, usually located

wherever the energy can be exploited; hence, the name – distributed generation. The generators

are usually small in size, many in number, and sited throughout the network particularly in remote

locations and difficult terrains where the grid capacity is low.

2.4.3 Increased Incorporation of Renewable Energy Resources into the Grid

Increased incorporation of renewable energy resources into the grid has interesting implications

for electricity utilities. An electricity network that is more interconnected is required for a network

containing a large number of small generators spreading through the network. Many small areas

of the network will be self-sufficient while the rest will be designed for back-ups. The network

will be energized with different types of energy mixes depending on the available local resources,

suitable locations and the type of area. Incorporation of renewable energy resources into the grid

comes with benefits such as reduction in energy losses, elimination of heavy investment on energy

transmission over a long distance, reduction in environmental and health concerns, increase in the

security of supply, and greater autonomy and energy reliability, particularly in isolated terrains. As

fossil fuel generators approach the end of their useful lives, it is expected that they will be replaced

with renewable generators. The intermittent features in the readily available renewable sources,
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such as solar and wind, will cause network reliability problems. This is an envisaged challenge for

the transitional period because the demand and supply balance has to be reliably and effectively

maintained, with the ultimate goal of 100% renewable energy in mind. There are different opinions

on what to expect if intermittent sources are significantly integrated into a conventional electricity

networks. Some are of the opinion that a sizeable quantity of spinning reserve should be provided

by fossil fuel generators while others opined that energy storage is vital to intermittent energy [36,

37, 38, 39]. To design a sustainable energy system with high degree of reliability, the issue of

spinning reserve must be resolved. However, the solution is not provided by one single method

and the situation varies with the energy demand patterns, available local resources, weather pattern,

location, type and size of the network considered. Decision makers, local authorities and utilities

should take up the responsibility of maximizing the energy requirements, potentials, constraints,

etc. of intermittent renewable sources for a smooth transition to a grid that is heavily reliant on

renewable sources.

2.4.4 High Penetration of Renewable Sources in Small Areas

The grid networks that are currently with high penetration or 100% renewable energy develop-

ments are in small scale areas where main grid connection is expensive or difficult particularly in

difficult terrains, remote areas or islands [40, 41, 42]. There are the farms, industries and build-

ings making use of their waste products which are difficult to dispose of, reducing fuel bills and

ensuring energy self-sufficiency. These are the autonomous applications where high penetration

of renewable energy are currently taking place. The cost competitiveness of renewable energy is

increasing due to the increase in the cost of disposing of waste and increase in the comparative cost

of conventional energy. Economies of scale, increase production, research and further experience

will increase the economic feasibility and reliability of such systems. There is extensive litera-
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ture on the generation of electricity on a small scale for individual farms, grid-isolated islands,

and rural communities using renewable energy [43, 44, 45, 46]. However, few studies have used

a grid-backup connection; most have been autonomous systems. Despite the differences in the

emphasis of the studies, they have some important points:

• To allow energy supply with high reliability and security using renewable sources, there

must be adequate matching of demand and supply, and this is dependent on weather patterns.

Therefore, there must be optimal correlation between demand and supply by considering all

available supply sources.

• To allow energy supply with high reliability and security using renewable sources, it is nec-

essary to compensate for the unpredictable and variable nature of individual sources by using

a mix of available generation methods.

• When demand is not met by an intermittent supply, spinning reserves from energy-limited

sources should be used. If energy-limited sources are not available, electricity storage should

be considered, particularly in small scale projects. Generation increase during winter months

and inter-seasonal fuel storage can be considered in some climates.

2.4.5 System Design Approaches to Renewable Energy

Different models in the form of computer simulation packages have been proposed to help in

renewable energy system design. Various programs dealing with optimization and design of re-

newable energy have been proposed [47, 48, 49, 50]. The proposed systems can be classified into:

i) Geographical information-based systems; and ii) The matching system for demand and supply

for the assessment of energy from waste and biomass and the temporal analysis of intermittent
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energy sources. These are further discussed in this section.

Geographical Information-based Systems

A comprehensive map of a particular area is produced by integrating different information sources

on a computer database, which is referred to as the geographical information system (GIS). The

map may be built up using different layers, representing the wind or solar potential, the three-

dimensional relief, meteorological data, land availability, existing electrical network, the topology,

etc., to find the optimal solution or economic evaluation for energy supply of the area [51, 52].

Matching System for Demand and Supply

When dealing with energy supplies from renewable sources, the climate, quantitative and temporal

natures should be analyzed [53]. For instance, to design such a project as a solar powered streetlight

project, first, the photovoltaic arrays need to be correctly sized, then the battery requirement is

calculated, taking into consideration the available solar resource in the shortest day and the required

energy during the longest night. The cloud cover effects and battery inter-seasonal storage are

factored into the equations. The design results for such a system near the south or north poles with

six months of light followed by six months of darkness will be different from that of a location

near the equator where the day lengths do not vary. The results of such design would be more

complicated if it were to be wind power because of its unpredictable nature which makes it vary

significantly throughout the day. The intermittent nature of wind and solar sources has made

it expedient to consider the variations (both daily and seasonal) in their electricity supplies and

compare it with the demand pattern expected from a particular area. This way, the demand can be

matched to supply and the type and size of the intermittent sources, the spinning reserve or storage
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devices needed to ensure security and reliability of supply, can be determined. Grid connection,

auxiliary engines and the use of storage devices are few of the ways to evaluate intermittent wind

energy and PV supply systems, on an hourly or daily basis, by matching the potential supplies with

expected demands temporarily [54].

Optimisation Tools for Renewable Energy Design

There are different tools for the design of renewable energy supply systems for optimum solutions.

Optimization tools are known to be very effective and with high degree of accuracy. It is a complex

system that performs a detailed analysis of, usually, the economic and technical feasibility. These

provide solutions for power quality issues, distances to customers, actual line design, and reliability

issues. The operation strategy and design for a demand profile set and a given area can be found

using an optimization program. Analysis can be done on systems containing battery storage, diesel

generators, wind turbines, and solar PV; taking into consideration the non-linear performance of the

components. Optimization is usually achieved through a set of algorithms using relevant data (e.g.,

demand and climatic data) and economic and technical characteristics and constraints [55, 56, 57].

2.5 Computational Intelligent Techniques

Adaptive systems (both natural and man-made) respond to environmental feedback by modifying

internal structures or variables which results in better performance of the system. Such modifica-

tion is referred to as adaption or learning. Computational intelligent techniques are part of several

man-made adaptive systems [58, 59].
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2.5.1 Artificial Neural Networks

An ANN is a computer architecture modeled after the working operation patterns of the brain. It is

assembled by a sequence of nodes or neurons which are structured in layers [60]. These neurons

establish connections between different neural network processing elements and their associated

parameters. The neurons are connected in consecutive layers and each layer is weighted. The

weight wi j is the connection strength between ith neuron and jth neuron in one layer and the next.

A neural network structure is made up of one input layer, one or more hidden layers, and one output

layer. The complexity of the neural network system determines the number of hidden layers. The

data collected by the neurons of the input layer is transformed for the first hidden layer neurons

via the weight connecting them. The data moving from one layer to the next is processed and the

outcome transformed to the next layer. The process is further explained in the following steps,

using the input data (xi), processed in the next layer by jth node [61]:

1. The sum of weighted inputs is calculated and bias terms added, which is expressed as:

net j =
m

∑
i=1

xi ×wi j +θ j( j = 1,2, ...,n) (2.1)

2. A transfer function is used to normalize net j bringing the inputs and outputs to a predeter-

mined range of values. This enhances the training trends and patterns of the neural network.

There are many types of transfer functions, but only a sigmoid transfer function is used in

Chapter 3 as deemed suitable for use. This is:

f (x) =
1

1+ e−x (2.2)

3. The result is finally transformed to the neurons in the next layer.

ANNs are popular because of their ability to learn and adapt by discovering existing patterns in

the input data. Network training can either be supervised or unsupervised. In supervised training,
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the expected outputs is provided together with the inputs to optimize to minimum error in the output

using the best set of weights. Supervised training models are used in areas such as pattern and

sequence recognition, time series prediction, regression analysis, and function approximation. In

unsupervised training, the model is left to make sense of the patterns of inputs given and determine

the outputs by itself, without providing any expected outputs. Unsupervised training models are

used in areas such as anomaly detection and clustering. Although Artificial Neural Networks are

said to have difficulty of showing the problem to the network and unexplained functioning of the

network, but they can implement non-linear tasks, employ parallel features to continue operation

whenever an item of the neural network declines, and, handle incomplete data sets in both training

and predicting [62].

Multilayer Perceptron Model

This is a form of feedforward artificial neural network (FFANN) containing a minimum of three

layers of nodes. It is referred to as a multilayer perceptron model (MLP). The neurons in the

hidden layer(s) and output layer of an MLP use non-linear activation functions. The non-linear ac-

tivation function and multiple layers differentiate MLP from standard linear perceptron and helps

the network to differentiate non-linearly separable data [63]. These networks are suitable for mod-

elling applications like function approximation, prediction, and pattern classification. Function

approximations are used to model relationships between variables, prediction uses the knowledge

of current and previous trends to model forecasted outcomes, while pattern classification puts data

into discrete classes.
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Feedforward ANN Model

In a FFANN, the data or unit connections of the network move in the forward direction and not in

a cycle like recurrent neural network (RNN) models. The direction of movement originates from

the input nodes, passes through the hidden node(s) and terminates at the output node. FFANNs

find applications in data mining, pattern recognition, time series forecasting, dynamical modeling,

and complex pattern classification problems. An ANN is used in Chapter 3.

2.5.2 Collaborative Neural Networks

Collaborative Neural Networks (CONNs) apply the decisions from multiple agents to rethink or

improve the outputs given. For instance, using an artificial intelligent (AI) model for Task A,

which deals with predicting the future price of an apartment in Location A; and using another AI

model for Task B, which deals with predicting the future inflation rates in Location B. Although

the tasks use completely different data and arrive at unrelated outputs, it can be easily realized

that the objectives of the two tasks are indirectly related and influence each other. The Expert A,

handling Tasks A could possibly improve their outcomes by considering the insights of Expert B

and vice versa. The re-evaluation of results could be done until an optimal outcome is reached.

This idea is translated into neural networks as follows.

Having an n number of networks, and each network comprising [64]:

• Ii, 1 ≥ i ≥ n for the network input layer;

• Ni, 1 ≥ i ≥ n for the network hidden layer;

• Oi, 1 ≥ i ≥ n forthe network output layer.
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The output of the ANN, O1,O2, ...,On represents the input of the CONN, yielding a new and

improved output of O′
1 ,O′

2, ...,O′
n. The idea is developed from the fact that, though finding solutions

to complex problems may be difficult, the solutions of easier sub-problems might be used to solve a

complex problem. The output of the complex system is formed from the predictions of all the sub-

systems. Although Collaborative Neural Networks may require higher computational demands

than the simple artificial neural networks, but in addition to the advantages of simple artificial

neural networks stated in section. . . ., the collaborative neural networks significantly increase the

robustness to label noise and reduce the generalization error [65]. A CONN is used in Chapter 4.

Although the works reported in Chapters 3 and 4 use completely different data and arrive at

unrelated outputs, it can be easily realized that the objectives of the two works are indirectly related

and complement each other. However, the work reported in Chapter 4 super-cedes that of Chapter

3 in that the work in Chapter 4 employs the collaborative neural network model. The model

converts the complex event-driven outage forecasting problem into two continuous differential

single-objective sub-problems which are then solved by neural networks.

2.5.3 Model Predictive Control

Model Predictive Control (MPC) is dependent on a model to forecast the future state of a system

accurately. They are prone to modelling errors or unknown external disturbances. Instability

and inefficiency can result if provision is not made for uncertainty. MPCs can be divided into

Stochastic MPC (SMPC) or Robust MPC (RMPC) methods. SMPC assumes that the uncertainty

is probabilistic while RMPC assumes the uncertainty is bounded [66]. The MPC control scheme

is capable of managing operational and physical constraints such as the slew-rate limits of a power

generator or storage capacity; integrating demand and supply projections; addressing complex
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system constraints; and offering a feedback mechanism. These make the system very sensitive to

disturbances and uncertainties [67, 68].

Adaptive MPC

Although an MPC is able to control system uncertainties to a certain degree, it has some draw-

backs. MPCs dealing with significant systemic uncertainties are inherently inadequate due to their

deterministic formulations. Inaccuracy in handling varying dynamics because the internal plant

models they use for prediction is constant, and they cannot achieve optimal outcomes because of

their constant penalty weights [69]. An adaptive-based MPC (AMPC) is able to overcome the

drawbacks mentioned above. They have excellent control performance because they utilize a dis-

crete model for their control operation. They are capable of making accurate forecasting for new

operating conditions by taking an updated model for the current operating condition at each time

step. Therefore, an AMPC is superior in regulating control and tracking performance as compared

to non-adaptive MPCs [70]. Although adaptive model predictive control may have the possibility

of costly installation but has the advantage of allowing the optimization of the current timeslot,

while keeping future timeslots in account; and gives high degrees of optimality and precision [71].

An AMPC is used in Chapter 5.
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Chapter 3

A Comparative Assessment of Conventional

and Artificial Neural Networks Methods for

Electricity Outage Forecasting

This chapter is based on the work reported in [1].
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3.1 Abstract

The reliability of the power supply depends on the reliability of the structure of the grid. Grid

networks are exposed to varying weather events, which makes them prone to faults. There is

a growing concern that climate change will lead to increasing numbers and severity of weather

events, which will adversely affect grid reliability and electricity supply. Predictive models of

electricity reliability have been used which utilize computational intelligence techniques. These

techniques have not been adequately explored in forecasting problems related to electricity outages

due to weather factors. A model for predicting electricity outages caused by weather events is

presented in this study. This uses the back-propagation algorithm as related to the concept of

artificial neural networks (ANNs). The performance of the ANN model is evaluated using real-

life data sets from Pietermaritzburg, South Africa, and compared with some conventional models.

These are the exponential smoothing (ES) and multiple linear regression (MLR) models. The

results obtained from the ANN model are found to be satisfactory when compared to those obtained

from MLR and ES. The results demonstrate that artificial neural networks are robust and can be

used to predict electricity outages with regards to faults caused by severe weather conditions.

3.2 Introduction

Reliable electrical power is very important. Plans for economic development in developing coun-

tries are incomplete without including planned reliable electricity supply. This is virtually in-

dispensable in modern society and requires dependable generation, transmission and distribution

stages. For grid systems, there is an interrelation between weather events and outage events; an

increase in weather events leads to an increase in the rate of grid fault occurrence. This makes
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the supply less reliable with higher maintenance costs. To solve this problem, electricity outage

predictive models that are dependent on weather events are important for reliable and efficient elec-

tricity supply [72]. In this study, there is a comparative evaluation of the performance of artificial

neural networks (ANN), multiple linear regression (MLR), and the exponential smoothing (ES)

models.

The authors in [73] successfully modeled failure rates in overhead distribution lines using pre-

diction models. They used Bayesian network and Poisson regression techniques and analyzed them

using a Monte Carlo method. Rodriguez and Vargas [74] estimated the restoration time-range to

solve the problem of load restoration using a fuzzy-heuristic technique. The proposed technique

was tested in a real network consisting of 290 nodes. Zhou et al. [75] proposed a method to reduce

large cascades of outages using the Markov chain to model historical data. The lines responsible

for large cascades were found using the asymptotic characteristic of the Markov model. Kankanala

et al. [76] estimated weather-induced outages in power systems using an ADABOOST algorithm.

They evaluated the performance of the model using real-life weather and historical data of four

cities in Kansas.

The authors in [77] investigated a less-researched weakness of a power system through which

the system can be attacked, thereby causing damage and outage. The proposed model was capable

of identifying the weakness of the system and quantifying the impact of the attacks. Eskandarpour

and Khodaei [78] developed a model based on the characteristics of the data used to predict power

outage using the support vector machine (SVM) method. The features of the data considered were

the seriousness of, and the distance from, the extreme event, together with component deteriora-

tion. Eskandarpour and Khodaei [79] proposed a method for predicting the component outage of a

power grid in expectation of a looming hurricane. The method used was logistic regression, and the

performance was validated using a case study. Jaech et al. [80] introduced a method for predicting
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the duration of an outage using field records. They trained neural networks as models and validated

the performance using natural language processing. They were able to establish good correlations

between environmental properties used and outage causes. In [81], the use of predictive models

that can improve the reliability and availability of electricity supply on a long-term basis was re-

ported. A display system for predictive maintenance purposes was developed. This determined the

date for servicing different components of the plant to avoid failure during operation.

The effects of vegetation on the reliability of the distribution system were analyzed in [82].

The researchers used parameters obtained from historical vegetation growth to develop models. It

was observed that, to achieve improvement in system reliability, a predictive model is required to

calculate the failure rate. In [83], the authors assessed the predictive reliability of a distribution net-

work in the USA. They developed a model with five-year historical fault data and proved, through

the results, the prospects and benefits of predictive models. An ANN and logistic regression (LR)

were used in [84] to develop a prediction model in the medical field. The ANN performed more

favorably than LR, confirming the efficiency of ANN models.

There are many components of distribution and transmission grids which are exposed to unfa-

vorable weather events and susceptible to faults, reviewed in [72]. It was reiterated that, as weather

events increase and become more severe due to climate change, electricity supply and grid relia-

bility will be affected. A review was given in [85] on the different factors which are responsible

for failures in distribution systems. The factors were categorized into: intrinsic factors (age of

equipment,equipment manufacturing defects, conductor sizes, etc.); external factors (ice, light-

ning, wind, birds/animals, trees, etc.); and human error factors (vandalism, work crew accidents,

vehicle accidents, etc.). It was inferred that external factors are predominant in causing faults in

distribution systems. Yuan et al. [86] developed a prediction outage model for typhoons using

historical data and random forest techniques. They were able to estimate the number of damaged
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poles and customer outages during a storm. Alpay et al. [87] developed a prediction model directly

from weather forecasts for understanding the hourly dynamics of outages caused by thunderstorms

using event-wise outage prediction models (OPMs). The validation work showed that the model is

capable of reporting temporary and storm-wide outage characteristics. Pasqualini et al. [88] pre-

sented a technique for overcoming a lack of data and distribution models in data-poor environments

using winter conditions and hurricane-force winds to forecast outage. Nateghi et al. [89] identified

the main features responsible for forecasting the duration of outages caused by hurricanes. They

were able to forecast the post-storm restoration times. In [90], Cerrai et al. presented outage pre-

dictions for ice and snow related storms using Bayesian regression tree and random forest models.

The techniques were able to predict both lower impact events and extreme events. They followed

on from this [91] and used the regression tree technique. This utilized weather and soil spatial

distribution, together with historical power outage and vegetation data, to predict the spatial distri-

bution and number of outages in a power distribution network. Dokic et al. [92] described how a

weather-related outage was modeled and assessed in real-time in a transmission network. Wanik

et al. [93] demonstrated an improvement in outage prediction using land cover and utility-specific

infrastructure data. The authors in [94] proposed a method based on the multi-interval parameter

estimation to determine outage in a Korea Electric Power Corporation network. The algorithm

proved appropriate for power system analysis of low frequency oscillation and efficient in term of

reliability and accuracy. An analysis of the resilience of the grid to extreme weather events was

conducted by Jufri et al. Grid vulnerability, grid exposure, and weather event intensity were used

as determinants to evaluate the resilience of the grid. This analysis can be used as a tool to plan,

prioritize and manage improvement strategies of grid resilience [95]. Kang and Lee presented the

demand response based prediction of load curtailment using historical data and k-nearest neighbor

(k-NN) ensemble method to alleviate the problem of scarcity of data and the uniqueness of cus-

tomer characteristics. The proposed method was compared with support vector regression and a
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multi-layer perceptron and gave superior results [94]. GIS spatial methods were used to analyze

hurricane-induced power outages in Tallahassee, USA, by Ghorbanzadeh et al. to understand the

difference in the impacts of Hurricane Michael and Hurricane Hermine previously experienced by

the city. The study results were able to identify high-risk areas. This will be useful for engineers

and planners who can focus on those areas for safety intervention efforts, and accessibility and

power restorations [96]. Lo Frano et al. investigated the creep phenomena and impact of age-

ing by subjecting an old reactor pressure vessel to blackout, and analyzed its thermo-mechanical

consequences using MARC and MELCOR codes. The results demonstrated a good agreement

between the theoretical and experimental results. Such a predictive model will help in the appli-

cation of operational management programs [97]. Watson et al. presented a weather ensemble

impact outage model that is able to predict the potential impacts of thunderstorms, such as the lo-

cation of storm impacts and the total damage by an event using weather variables, WRF (Weather

Research and Forecasting Model) simulation and NOAA (National Oceanic and Atmospheric Ad-

ministration) analysis data sets. This model found applications in preparing for thunderstorms by

decision makers [98]. Yang et al. used learning curves and evaluation metrics to develop a model

to quantify the uncertainty in outage prediction. The overestimation and underestimation biases

in low-severity and high-severity events were addressed using the proposed method [99]. In [5],

we developed a model using the ANNs method, and historical and meteorological data for outage

prediction; but wind speed, which is a significant factor responsible for high percentage of outages

was missing in the data. The model developed was also predicated on fault data instead of outage

data.

In summary, a review of previous studies shows that substantial work has been carried out on

weather-related outage prediction. This has produced a sound platform, but there is still much

work that can be done to create a predictive model with accuracy and efficacy that is satisfactory.
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The conventional approach, as used by electric utilities, makes the assumption of co-linearity,

and is low in accuracy. Computational intelligence methods are currently used to develop ro-

bust models to address system failure problems. These methods are robust, economical, efficient

and flexible, and can provide solutions to vague, complex, nonlinear and dynamic real-life prob-

lems [6]. They are replacing conventional methods.

For a new weather-event outage prediction method, there must be an improvement on current

models. Most existing electricity outage models do not take climate change into consideration;

hence, there is a need for new models which will handle this factor. The model should reconcile

the dynamic and complex inter-relationship between climatic and technological factors of system

failure. This is essential to establish a legacy that is secure and reliable for the future, both at the

local and global levels. The extent of the effectiveness of the methods used in this study can be

highlighted by comparison to other studies. A comprehensive literature review was carried out to

assess the work done in those studies, and Table 3.1 illustrates the effectiveness of the work done

here.
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Table 3.1 Comparison of studies
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[75] ✓ ✓ - - - -
[76] ✓ ✓ ✓ - - -
[77] ✓ - ✓ - - -
[79] ✓ - - ✓ - -
[80] ✓ ✓ ✓ - - -
[86] ✓ - ✓ - - -
[87] ✓ ✓ ✓ - - -
[88] ✓ ✓ ✓ - - -
[90] ✓ ✓ ✓ - - -
[91] ✓ - ✓ - - -
[92] ✓ ✓ ✓ - - -
[93] ✓ - ✓ - - -
[94] ✓ ✓ - - - -
[95] ✓ ✓ ✓ - - -
[100] ✓ ✓ - - - -
[96] ✓ ✓ - - - -
[97] ✓ ✓ - - - -
[98] ✓ ✓ ✓ ✓ - -
[99] ✓ ✓ ✓ - - -
This study ✓ ✓ ✓ - ✓ ✓

In this study, the main contributions are as follows:

i Assessment of the dynamic and complex inter-relationship between climatic and technolog-

ical factors of system failure. The application of ANNs to forecast power outages of a South

African power system. The study findings are significant in the South African context, as
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they show that AI methods can be applied to outage forecasting and weather conditions do

impact the performance of the distribution power system in South Africa;

ii Development of a useful model for power utilities which will assist maintenance crews. De-

velopment of a model for power outage forecasting using meteorological data and artificial

neural networks. This model uses the novel approach of expressing the outage events per

season as the target output;

iii Adoption of extensive statistical measures in evaluating the developed outage models. To

increase the credibility of the results, real life data are used. The proposed method demon-

strated an improved performance, reduced computation time and an ease of implementation

as compared to other baseline methods; and

iv Development of a model that will improve decision making by utilities. This can mean that

they pre-position materials and crews, and proactively inform consumers of possibilities of

outage. Conventionally, restoration plans of utilities are based on management discretion

and experience, and not expert outage prediction models.

This study uses feed-forward ANNs for predicting electrical system failure problems. The

performance of the developed ANN model is compared with conventional MLR and ES models.

The ANN model is further compared with recent optimization techniques.

3.3 Materials and Methods

This study uses three methods: the ES; MLR; and ANN. This forecasted weather was related to

electricity system failure. This section contains a brief discussion of the methods.
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3.3.1 Exponential Smoothing

Exponential smoothing is a prediction method in the moving average category, which predicts

dependent factors by using weighted averages of past data. The weights of previous data sets

are subjected to exponential decay, while new data sets are subjected to comparatively bigger

weights. The prediction of the dependent parameters from the weighted sum of observed variables

is illustrated using [101]:

Yt+1 = αXt +(1−α)Yt and (0 < α < 1) (3.1)

where Xt = target value at time t, Yt = predicted value at time t, (1−α) = damping factor and α =

smoothing value.

This model operates on the basic notion of a regular and stable time series trend, which persists

and has its historical trend continue into the future [102]. The values of damping factor (1−α) or

smoothing value (α) determine the accuracy of the ES prediction. The value of (α) is determined

using trial and error.

3.3.2 Multiple Linear Regression

Multiple linear regression is formed from the interconnection between a response parameter and

two or more explanatory parameters, by assigning a linear equation to the observed data. MLR is

given by [103]:

Y = β0 +β1X1 +β2X2 + ...+βkXk +E (3.2)

where the coefficients of regression are β0, β1, β2, βk; E is model deviation or error notation; Y is

the dependent parameter; and X1, X2,..., Xk are independent variables.
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The deviation notation of an MLR model is used to estimate its performance. This is the

deviation between the target and the forecasted values. The performances of MLR models are

usually analyzed using statistical calculations such as coefficient of determination (R2) and the

correlation coefficient (r).

3.3.3 Artificial Neural Networks

ANNs are computationally intelligent methods inspired by the operation of the neural networks in

a biological brain [104]. They are effective data-driven modelling tools which have found wide ap-

plication with dynamic, non-linear and complex systems. They are made up of different numbers

of perceptron which receive, process and transmit signals by the action of weight and bias adjust-

ments. Feed-forward multi-layer perceptron ANNs are widely used in engineering applications.

ANNs have interesting properties, such as real-time adaptability, multidirectional implementation

and robustness, irrespective of incomplete or damaged data, asynchronous processing possibility,

ability to learn, well-grounded mathematical foundation, automatic generalization, and high level

of parallelism. The main disadvantage of an ANN is that there is no rule-of-thumb for selecting

the appropriate configuration [104]. The typical structure of a feed-forward ANN is shown in Fig-

ure 3.1. ANN models learn from their input data sets iteratively by modifying their connecting

weights using their error values. They allocate weights to their input data and modify the weights

using training algorithms and transfer functions. The sigmoid transfer function s [105] can be

illustrated using

F =
1

1+ es (3.3)
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s = (a1w1 +a2w2 + ...)+B (3.4)

where F = output of each node, s = output of the sigmoid transfer function, a1 = input value,

B = bias and w = weight.

Figure 3.1 A typical structure of an ANN with three layers.

ANNs work iteratively by reducing the overall error E between the target X and the prediction

Y. The error is given by [106]:

E =
1
N

N

∑
i=1

(Xi −Yi)
2 (3.5)

where N represents the total number of actual data, and Xi and Yi represent the target and the

predicted values respectively.

In this study, feed-forward ANNs are created using the ANNs toolbox in the MATLAB envi-

ronment.
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3.4 Description of the Study Area

The case study here is the city of Pietermaritzburg (PMB). The city is the headquarters of the

Msunduzi local municipality, the Umgungundlovu district municipality and the KwaZulu-Natal

(KZN) province, South Africa. The city was founded in 1838 and is about 70 km from South

Africa’s tropical East coast and is 676 m above sea level. It often experiences extreme weather. The

city population in 2011 was 223,448, and it is growing. The city is the second-largest population

in the province with tourism and energy resources [107]. Thus, it is a major South African urban

area.

There are three operating units (OUs) in the KZN province; they are PMB, Newcastle (NWC)

and Empangeni (EMP) zones. Due to the outage problems associated with the PMB zone (Fig-

ure 3.2), and its extreme weather conditions, this network is chosen as representative and suitable

for use as a case study. The climatic variables that affect power outage were taken into consid-

eration while applying ANN models. These variables were discussed in [72]. In this work, the

variables considered are outage date OD, cloud amount CLD (%), minimum temperature TMN

(°C), maximum temperature TMX (°C), number of frost days FRSD (days/month), number of

wet days WETD (days/month), potential evapotranspiration PET (mm/month), precipitation PRE

(mm/month), vapor pressure VAPD (hPa or mbar), and wind speed WS (m/s). The data sets

spanned the period between January 2014 and July 2017 (forty-three months). They were ac-

quired from the South African Weather Service (SAWS) and the electricity public utility Eskom

Holdings SOC Ltd., Durban, KZN, South Africa.
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Figure 3.2 Overview of line fault in KZN zones between 2010 and 2017. [Source: Es-
kom]

The statistical features and historical trends of the acquired data for the case study are shown

in Table 3.2 and Figures 3.3–3.8, respectively. Figure 3.3 shows occasional heavy precipitation,

which is often accompanied by strong wind, lightning, flooding and landslides (responsible for

causing faults). Figure 3.4 shows record high temperatures, which impacts distribution and trans-

mission networks by reducing the maximum power rating of equipment and increasing energy

losses. Figure 3.5 shows the numbers of wet days per month. These are very low for several

months during the study period. A prolonged drought can result in the drying out of the ground,

reducing the thermal conductivity of the soil, and causing the rating of underground cables to re-

duce. Figure 3.6 shows high maximum wind speed for different months. High wind can cause

faults by damaging overhead lines, blowing debris against overhead lines, collapsing trees against

overhead lines, and uprooting utility poles in extreme high winds [108].
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Table 3.2 Statistics of data used in the research.

Statistical
Parameter

PRE PET CLD TMN TMX VAPD WETD FRSD WS

Mean 61.51 89.25 45.74 9.97 23.77 13.41 9.57 1.84 2.96
Maximum 146.80 136.90 82.10 16.60 27.80 20.30 18.80 8.27 3.45
Minimum 12.80 57.80 16.50 3.60 20.00 8.30 2.74 0.00 2.08
Standard
Deviation

44.22 23.43 17.43 4.17 2.21 3.98 5.73 2.64 0.30

Variance 1.96 ×
103

549.0 303.7 17.40 4.88 15.85 32.84 6.96 0.09

Kurtosis
coefficient

1.52 1.73 1.98 1.67 1.96 1.73 1.40 2.74 3.15

Skewness
coefficient

0.38 0.15 0.24 0.05 -0.12 0.28 0.18 1.11 -0.63

Figure 3.7 shows the fluctuation of the outage events in different months in the city between

January 2014 and July 2017. The outage events vary from year to year, but in general, over 50%

of the outages have been attributed to weather events. From Table 3.3 and Figure 3.8, it can be

observed that 35% of the outages occurred during winter, 27% during autumn, 21% during spring,

and 17% during summer within the period covered (note that 2017 did not cover winter in full or

cover spring at all).

Table 3.3 Percentage analysis of outages per season

Season 2014 2015 2016 2017 Total

Summer (%) 7 3 4 3 17

Autumn (%) 10 3 4 10 27

Winter (%) 8 14 11 2 35

Spring (%) 8 7 6 0 21
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Figure 3.3 Historical trend of PRE, PET and CLD.

Figure 3.4 Historical trend of TMN and TMX.
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Figure 3.5 Historical trend of WAPD and WETD.

Figure 3.6 Historical trend of FRSD and WS.
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Figure 3.7 Historical trend of faults per month.
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Figure 3.8 Historical trend of outages per season.

3.5 Model Development

The potential explanatory variables were subjected to a screening process to investigate the predic-

tive model for variables with a good description of the system. This is to enhance good generaliza-
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tion from a robust learning process. To implement the ES model, the smoothing factor was varied

in steps of 0.1 between 0.1 and 0.9. The best smoothing factor that had the least error estimates

was 0.8. In this study, two models were developed for both MLR and ANN. All the historical

variables listed under the description of study area were used for Model 1 of both the MLR and

ANN methods to determine the weather-related electricity system failure (SF). Model 1, in both

cases, is governed mathematically by the expression

SF = f (OD, CLD, FRSD, PRE, PET,TMN, TMX, VAPD, WETD, WS ) (3.6)
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Pearson correlation analysis was used in Model 2 (for both MLR and ANN) to screen the vari-

ables to those presumed to be directly related or more appropriate. Table 3.4 presents the results

of the correlation analysis. The cut-off mark was chosen by accepting the correlation coefficient

in the range 0.5 ≤ |x| ≤ 1 and discarding the correlation coefficient in the range −0.5 < x < 0.5.

The results yield high correlation (0.5 or −0.5) for cloud amount, precipitation, minimum temper-

ature, maximum temperature, vapor pressure, number of wet days and wind speed. The remaining

variables with correlation coefficients in the range −0.5 < x < 0.5 were discarded.

Table 3.4 Pearson correlation analysis result

S/n Variables Correlation coefficients

1 OD -0.05051

2 CLD 0.549712

3 FRSD -0.26586

4 PET 0.471735

5 PRE 0.57765

6 TMN 0.597951

7 TMX 0.520818

8 VAPD 0.638733

9 WETD 0.534573

10 WS -0.57327

For Model 2, both the MLR and ANN models are governed by the expression:

SF = f (CLD, PRE, TMN, TMX, VAPD, WETD, WS) (3.7)

For training and testing purposes, the data sets were split in the ratio 70% to 30%; hence, 159
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data sets were used for training, and 68 data sets for testing. For the ANN models, feed-forward

ANNs with supervised learning methods were used in this study. Target outputs specified in Ta-

ble 3.5 were used for the system failure. The two ANN models were implemented in the ANN

toolbox in MATLAB, while the MLR and ES models were implemented using Microsoft Excel.

The input and output of the outage prediction model are the severity of the weather variables and

the number of outages respectively. The number of outages is a useful input to a system operator in

that the expected number of outages per season will assist the utility management, system operator

and maintenance crews to be proactive and be well prepared for the projection. This will in turn

reduce the down time and improve reliability. The two ANN models were subjected to the expres-

sions in (3.6) and (3.7) respectively; as were the two MLR models. The model performances and

the performance of the ES models can be compared. For ANN Models 1 and 2, the configurations

used were 10-60-1 (10, 60 and 1 neurons in the input, hidden and output layers) and 7-60-1 (7, 60

and 1 neurons in the input, hidden and output layers), respectively. Linear and sigmoid transfer

functions combined with a back propagation algorithm (BPA) were used for the ANN models. The

ability of an ANN to approximate functions is expressed through transfer functions. The common

types of transfer functions are piece-wise linear, sigmoid, unit step (threshold), and Gaussian. The

type of transfer function used is determined by the application requirements. Transfer functions

for the binary and bipolar sigmoid can be expressed, respectively, as [109]:

F =
1

1+ e−σx (3.8)

F =
1− e−σx

1+ e−σx (3.9)

where x = sum of weighted inputs and σ = steepness parameter.
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Table 3.5 System failure target outputs

S/n Year Time of the year Season Outage events

1 2014 1 January – 28 February Summer 16.0

2 2014 1 March – 31 May Autumn 22.0

3 2014 1 June – 31 August Winter 19.0

4 2014 1 September – 30 November Spring 18.0

5 2014/2015 1 December – 28 February Summer 7.0

6 2014/2015 1 March – 31 May Autumn 8.0

7 2014/2015 1 June – 31 August Winter 31.0

8 2014/2015 1 September – 30 November Spring 17.0

9 2015/2016 1 December – 28 February Summer 8.0

10 2015/2016 1 March – 31 May Autumn 8.0

11 2015/2016 1 June – 31 August Winter 26.0

12 2015/2016 1 September – 30 November Spring 13.0

13 2016/2017 1 December – 28 February Summer 7.0

14 2016/2017 1 March – 31 May Autumn 22.0

15 2016/2017 1 June – 31 July Winter 5.0

3.6 Model Evaluation

In this study, the performance of the predictive models was evaluated using six statistical measures.

The measures are R2, RMSE, MAPE, MAD, MSE and MAE. R2 measures the degree of variance

between the predicted and target values. RMSE is a measure of the error variance of the prediction
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model. MAPE calculates the absolute differences between the predicted and target values. MAD

measures the variability of a dataset by defining the deviation between each data point and its

mean. MSE (or MSD) is a measure of the average of the squares of the deviations—that is, the

average squared error between the predicted values and the target value. MAE measures the errors

between paired observations denoting the same phenomenon [110].

The closer that RMSE, MAPE, MAD, MSE and MAE are to zero, the better the model. For

R2, the closer it is to 1, the better the model; this can be obtained from

R2 =

 ∑
N
i=1 (Yi − Ȳ )(Xi − X̄)√

∑
N
i=1 (Yi − Ȳ )2

∑
N
i=1 (Xi − X̄)

2

2

(3.10)

The following equations are for the other statistical measures [101, 111, 112, 113].

The error variance of the prediction model can be calculated using

RMSE =

√√√√(∑
N
i=1 (Yi −Xi)

2

N

)
(3.11)

The absolute differences between the predicted and target values are

MAPE =
100
N

N

∑
i=1

|Yi −Xi|
Yi

(3.12)

while the deviation between each data point and its mean is obtained from

MAD =
1
N

N

∑
i=1

|Xi −X | (3.13)

and the average of the squares of the deviation is

MSE =
1
N

N

∑
i=1

(Yi − Ȳ )2 (3.14)

55



The errors between paired observations can be obtained from

MAE =
1
N

N

∑
i=1

|Yi −Xi| (3.15)

where, in these equations, N = number of occurrences in the set; and Xi, Yi, X̄ and

Ȳ = target, predicted and their respective mean values.

3.7 Results and Discussion

Table 3.6 presents the performance of the predictive models. The results of ANN Models 1 and 2

were satisfactory for both training and testing operations, but the performance of ANN Model 1

is better than all the other models. The performances of the models were compared and the R2 of

ANN Model 1 for training and testing are the highest; they are 0.9982 and 0.9999, respectively.

ANN Model 1 also recorded the lowest values for other measures during both training and testing,

such as RMSE (0.3156 and 0.0035), MAPE (0.0009% and 0.0001%), MAD (0.0293 and 0.0017),

MSE (0.0996 and 0.00001), and MAE (0.0293 and 0.0017). Ranking the models in order of

performance based on their statistical measures: ANN Model 1 > ANN Model 2 > ES Model >

MLR Model 1 > MLR Model 2). The results indicate that all or most of the considered variables

were significant, directly or indirectly, in determining weather-related electricity system failures

for PMB.
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Table 3.6 Statistics of data used in the research.

Train Test Train Test Train Test Train Test Train Test Train Test
Technique R2 R2 RMSE RMSE MAPE MAPE MAD MAD MSE MSE MAE MAE
ES 0.77 0.47 3.82 3.83 0.04 0.09 1.18 2.29 14.63 14.67 1.18 2.67
MLR
Model 1

0.51 0.56 5.22 3.13 0.14 0.12 4.09 3.13 27.24 9.80 4.09 3.66

MLR
Model 2

0.46 0.55 5.51 3.14 0.15 0.12 4.43 3.08 30.31 9.89 4.43 3.60

ANN
Model 1

0.99 0.99 0.32 0.01 0.01 0.01 0.03 0.01 0.09 0.01 0.03 0.01

ANN
Model 2

0.95 0.99 1.61 0.87 0.01 0.01 0.13 0.15 2.60 0.76 0.13 0.15

A careful analysis of the results shows that the accuracy of the prediction of the power system

outages depends on the ten variables considered in ANN Model 1 and MLR Model 1. A reduction

in the number of input variables in ANN Model 2 and MLR Model 2 reduced the accuracy of the

forecasted values for the models. Therefore, the ten variables make up the best subset of the model

that is sufficient to represent the weather related electricity system failure of the city, as opposed

to the scaled down number of variables of seven.

For both the training and testing of the five models, Figures 3.9–3.18 show how the data points

deviated from the line of equality.

The performance of the ES method is presented in Table 3.6, and in Figures 3.9 and 3.10. This

was implemented by incrementing the damping factor by 0.1 between 0.1 and 0.9. It was observed

that the damping factor with the highest error estimate was 0.1, while the damping factor with

the least error estimate was 0.8. Therefore, the best damping factor (with least error estimate) was

taken as 0.8. From Figures 3.9 and 3.10, which show the system failure plots of target vs. predicted

value for the ES Model training and testing, it can be observed that the deviations of the data points

from the line of equality are high. The percentage overfit suffered by the ES model is between 5.5
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and 39.9%, thereby showing unsatisfactory performance.

Figures 3.11–3.14 show the system failure plots of target vs. predicted values for MLR Models

1 and 2 training and testing. It can be seen that the deviation of the data points from the line of

equality is high, in a similar manner to the ES model. The percentage overfit of Models 1 and 2

varies between 4.7 and 43.8%, again showing unsatisfactory performance.

Figures 3.15–3.18 show minimal deviations confirming the satisfactory performance of the

ANN models and their efficiency when compared to conventional models. The figures show the

system failure plots of target vs. predicted value for ANN Models 1 and 2 training and testing. This

time, the deviation of the data points from the line of equality are very small. The percentage overfit

suffered by ANN models 1 and 2 is generally below 1%. This illustrates that the performance is

very satisfactory.

Figure 3.9 System failure plot of target vs. predicted value for ES Model training.
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Figure 3.10 System failure plot of target vs. predicted value for ES Model testing.

Figure 3.11 System failure plot of target vs. predicted value for MLR Model 1 training.
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Figure 3.12 System failure plot of target vs. predicted value for MLR Model 1 testing.

Figure 3.13 System failure plot of target vs. predicted value for MLR Model 2 training.
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Figure 3.14 System failure plot of target vs. predicted value for MLR Model 2 testing.

Figure 3.15 System failure plot of target vs. predicted value for ANN Model 1 training.
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Figure 3.16 System failure plot of target vs. predicted value for ANN Model 1 testing.

Figure 3.17 System failure plot of target vs. predicted value for ANN Model 2 training.
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Figure 3.18 System failure plot of target vs. predicted value for ANN Model 2 testing.

The number of input neurons of ANN model 1 was 10 by virtue of the number of input vari-

ables. Different configurations consisting of different numbers of hidden layers with different

numbers of neurons were trained and the configuration, with one hidden layer containing sixty

neurons giving the best results. The methods used in this study further illustrate that ANNs are

robust and applicable to weather related power system failure, and that they are able to account for

complex relationships between power system failure and climatic parameters. It can be inferred

that ANN-based models have potential in terms of managing weather-related power system failure

prediction effectively.
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3.8 Comparison with some Optimization Techniques

The results of the comparison of the proposed method with some optimization techniques are pre-

sented in Table 3.7. The data used for ANN Model 1 training were implemented using a differen-

tial search (DS), differential evolutionary algorithm (DE), genetic algorithm (GA) and ant colony

optimization (ACO) methods. The results were evaluated using the RMSE statistical measure. Al-

though the RMSE values for all the methods are very close, the ANN Model 1 method excelled

by its ease of implementation, its superior computation time, and having the least computation

complexity with respect to the other compared optimization methods.

Table 3.7 Comparison with some optimization techniques.

Method Computation

Time (s)

RMSE

ACO 52.32 0.3222

GA 54.35 0.3417

DE 51.29 0.3365

DS 45.06 0.3323

ANN model 1 25.14 0.3156

3.9 Conclusions

The performance of ANN-based and conventional predictive methods (MLR and ES) was com-

pared for weather related electricity system failure. Statistical measures serve as the basis for the

model performance using real-life data sets from PMB, South Africa. Two models were generated

64



for both ANN and MLR. In both cases, ten potential explanatory variables were used for Model

1, while seven potential explanatory variables were used for Model 2 after careful screening using

correlation analysis. An analysis showed that ANN Model 1 was better than the other models in

terms of performance. The order of performance of the models is ANN Model 1 > ANN Model

2 > ES Model > MLR Model 1 > MLR Model 2. The results are further confirmation of the ap-

propriateness and robustness of ANNs in predicting weather related electricity system failure. The

complex relationship between weather events and electricity system failure is demonstrated in this

study. Future research could investigate the use of larger data sets, investigate similar ANN models

when forecasting outages for multiple power systems, use metaheuristic optimization methods, and

compare the accuracy of the developed ANN model 1 against other artificial intelligent methods.
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Chapter 4

Event-Driven Power Outage Prediction

using Collaborative Neural Networks

This chapter is based on the work reported in [2].
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4.1 Abstract

Distribution networks are often exposed to many complex and unfavorable weather conditions that

are subject to many constraints and thereby susceptible to outages. Weather events are responsible

for several faults on the grid networks. Increase in the weather events can result in increase in

the frequency of grid faults thereby leading to increase in the maintenance cost of the grid system

and decrease in electricity supply’s reliability. Weather events based forecasting models are nec-

essary to overcome these problems. It is necessary to consider intelligent outage models to realize

effective weather-based outage forecasting. To develop a better performance model for outage

forecasting, it is essential to consider various types of events for different complex weather con-

ditions and constraints. The conventional event-driven forecasting algorithm is only appropriate

for a single type of event scenario and unable to adapt effectively to multiple types of event sce-

narios concurrently. A multiple-constraints event-driven outage model that depends on maximum

entropy function is proposed in this paper. The model transforms the complex event-driven outage

problem into two continuous differential single-objective sub-problems. An optimal outage fore-

casting solution for various difficult weather conditions is provided using the collaborative neural

network (CONN) algorithm. The CONN event-driven forecasting algorithm successfully resolves

the problem of the difficulty in obtaining very large complex weather events and outages data.

Unlike the conventional forecasting methods, the CONN algorithm provides an adaptive optimal

forecasting solutions for different complex events. This significantly decreases the constraints re-

quired in adapting to different weather events. The CONN algorithm’s performance was validated

by many experiments; which was applied to complex, multi-constrained weather conditions.
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4.2 Introduction

Event-driven power outage forecasting is a new research focus in electrical power systems [114,

115, 116]. Event-driven forecasting is a novel forecasting problem that takes into consideration

the complex weather events that are responsible for power outages. Event-driven forecasting uses

multiple climatic constraints and different outage events to provide the optimal outage forecast-

ing solution in complex scenarios. The conventional outage forecasting methods only address

single outage events and are unable to effectively address multiple outage event scenarios simul-

taneously [86, 87, 117, 90]. However, because electric power networks are subject to different

complex environmental events, it is essential to propose an outage forecasting method that is able

to provide an optimal forecasting solution for different complex events with multiple constraints

such as speed, deployment time, intensity factors, and confidence coefficient. In this study, the

event-driven algorithm based on collaborative neural network (CONN) methods was proposed.

The problem was effectively solved by the even-driven algorithm based on CONN using historical

and meteorological data. An optimal outage forecasting solution can be adaptively provided by the

CONN algorithm for different complex outage events such as storm, tornado, hurricane, flood, and

earthquake. The use of this method significantly reduces the cost and time involved in adapting to

diverse complex application scenarios. Authors in [118] investigated the severity of outages caused

by tree in Connecticut under heavy rain and winds events using Hurricane Sandy simulations and

machine-learning models. In [119], an algorithm was developed to simulate power outages using

the fragility functions under hazard loading. The algorithm works by estimating the probability of

experiencing outages due to a natural hazard. The model was validated with accurate predictions

despite the use of less input data from Ohio power station. As documented in reference [120]

a synthetic open-source extendable electric grid model was developed. The model design was a

data-driven, cross-domain, open-source technique for assessing a real-life power system during
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extreme weather events. In [121], the authors proposed a Support Vector Machine (SVM) based

outage model in response to an anticipated hurricane. The effectiveness of the model was evaluated

using the IEEE 118-bus test system. Authors in [122] proposed an artificial intelligence (AI) model

for improving network resilience in extreme weather events which was validated using standard

IEEE 118-bus test system. Reference [116] proposed a computing framework based on Spiking

Neural Network (SNN) for accurate classification of outage events in power networks. The pro-

posed method was validated using 16-machine, 5-area New England-New York system. In [123],

a multi-hazard method for characterizing the major predictors of sustained power outages due to

severe weather was proposed. The authors in [124] designed an approach to monitor the recovery

status and spatial extent of power outages using the black marble nighttime light (BMNTL). The

design serves as a good source of data for locating the areas where disaster relief are required.

In [125], a support vector machine (SVM) model, subjected to the data of heavy-rain hazards was

used in making cost-sensitive prediction and the model evaluated using G-mean values. Authors

in [114] proposed an optimization technique to coordinate event-driven load shedding (LS) and cor-

rective line switching (CLS) and designed a two-loop algorithm to solve the optimization problem,

and its effectiveness was validated using an industrial power system and a standard IEEE 39 bus

test system. Reference [127] introduced the conditioned outage prediction models (OPM) to 102

storm events between 2005 and 2020 over the service territory of Eversource Energy, Connecticut,

USA. The study [128] proposed a wavelet based method that models the precise behavior of device

which eradicates some unrealistic assumptions. The research work as documented in [129] pro-

posed a ramp prediction technique based on event detection context and modified swinging door

algorithm and compared with conventional models. Authors in [130] explored a spatial power-

outage model and a geographic information systems (GIS) to investigate power failure events and

causes. The research in [131] proposed a machine learning method to overcome the challenge

of identifying the characteristics of lightning-based outages. Authors in [117] proposed an outage
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risk models that addressed the epistemic probabilities in physics-based hurricane predictions under

climate change.

In view of the reviewed literature, it can be observed that more research is needed to assess

the reliability of power systems considering weather events. The reviewed literature did not carry

out a concurrent assessment of multiple and complex constraints. The work done in this study is

compared with the literature as illustrated in Table 4.1 to assess the effectiveness of the proposed

method. The following acronyms were used for the extreme weather events (EWEs) discussed

in the table: (i) wind/rain (WDR); (ii) snow/winter storms (SNW); (iii) Heatwaves (HTW); (iv)

hurricanes (HUR) and (v) thunderstorms (TDS).

Table 4.1 Comparison of studies

Study HTW HUR SNW TDS WDR Complex
constraints

Multiple
constraints

[86] - ✓ - - ✓ - -
[87] - - - ✓ - - -
[90] - - ✓ - - - -
[117] - ✓ - - - - -
[118] - ✓ - - ✓ - -
[120] - - ✓ - - - -
[121] - - - - ✓ ✓ ✓
[122] - ✓ - - ✓ ✓ ✓
[124] - ✓ - - - - -
[125] - - - - ✓ - -
[127] - ✓ - - - - -
[129] - - - - ✓ - -
[130] - - ✓ ✓ ✓ - -
[131] - - - ✓ - - -
This study ✓ ✓ ✓ ✓ ✓ ✓ ✓

The studies reviewed show that more research is needed to find solutions to power outage fore-

casting problems due to multiple types of weather events. The contributions in this study are
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summarized as follows:

1. Solution to complex event-driven power outage forecasting problems was proffered using

neural network methods. The use of event-driven power outage algorithm can be applied

using CONN to various application cases to meet different power outage forecasting re-

quirements;

2. A maximum entropy function model is proposed for a multi-constrained event-driven power

outage problem which converts the complex problem into two single-objective sub-problems;

3. An event-driven outage model with multiple constraints converting the complex problem

into two single-objective sub-problems which are continuously differential, this solves the

problem that the objective function of the conventional min-max model is non-differential;

4. The problem of non-availability of large amount of outage events and weather data in com-

plex environment is successfully overcome.

Unlike the conventional outage methods, the CONN algorithm can iteratively provide an optimal

forecasting solution for different complex events and environments.

4.3 Description of the Study Case

This study chose the city of Newcastle (NWC), Latitude: 27.71° S, and Longitude: 29.99° E, as the

study area. NWC with a 2021 population projection of 396 240 is the third and tenth largest city in

the province (KwaZulu-Natal) and country (South Africa) respectively [126]. NWC is headquarter

to both Newcastle Local and Amajuba District municipalities and one of South Africa’s industrial
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hubs. It is the home of the largest producer of chrome chemicals in Africa and a coal mining site.

The municipality is currently executing an aggressive year 2030 city sustainability project [132].

The city is a temperate region and classified as ‘cold interior’ in South Africa. NWC’s temperature

often drops below the freezing point during winter season with occasional snowfalls. During sum-

mer season, NWC’s temperature is often extreme, and sometimes above 40 °C because of the El

Nino weather phenomenon and therefore prone to drought [4]. NWC is chosen as the suitable and

demonstrative case study for this research out of the three (i.e. the Pietermaritzburg, PMB, Em-

pangeni, EMP, and Newcastle, NWC) operating units (OUs) in Kwazulu-Natal (KZN) province

because of its drought-prone feature, extreme weather events and temperate climate.

4.4 Description of Data

This research model was developed using the data discussed in this section. Data sources and

analysis are described respectively.

4.4.1 Data Sources

The under-explored, yet valuable outage data repository from the public utility company in South

Africa, Eskom Holdings SOC Ltd., serves as an assessment resource for outage events risks in

South Africa. The data collected for this study spanned the period of fifteen months (between

October 2018 and December 2019) and a total of 323 observations was recorded during the period.

Whenever there is any disturbance incidence in the electricity sector, some entities are to file the

reports. Such entities include the local, generating and electric utilities, reliability coordinators,

balancing authorities, and security, telecommunication and computer offices. The criteria in the
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database reported information such as (i) date and time when the incidence starts; (ii) date and

time when the incidence ends/restored (iii) alert status; (iv) the event type i.e., cause of the outage;

(v) estimated peak demand involved; and (vi) estimated number of customers affected during the

event. However, under-reporting was observed because there is no enforcements to inadequate

reporting [123]. Notwithstanding, the data obtained is an invaluable resource for assessing the

power outage patterns and the related hazards to the electricity utilities in South Africa. Besides

electricity outage data, climate data of the study area was also collected from the South African

Weather Service (SAWS). The data information includes: (i) wind speed (WS in m/s), (ii) surface

pressure (SP, in kPa), (iii) rainfall (RF, in mm/month), (iv) frost point (FP, in °C), (v) relative

humidity (RH, in %), (vi) minimum temperature (Tmin, in °C) and (vii) maximum temperature

(Tmax in °C).

4.4.2 Data Analysis

Exploratory analysis of the power outage data was conducted and the incidents categorized as:

(i) equipment failure (EF); (ii) disruption in the course of system operation (SOD); (iii) system

sabotage and vandalism (SSV); (iv) public appeal (PA); (v) emergency due to fuel supply (FSE);

(vi) system islanding (SI); and (vii) extreme weather events (EWE, including climatic shocks and

severe tropical weather). It is observed that 55.2% of the electricity outages recorded in the data

occurred as a result of EWE; SSV accounts for about 20.8%; SOD 11.7%; PA 2.9%; EF 3.7%;

FSE 3.4%; and SI 2.3%. The impact and frequency trends of electricity outages are shown in

Figures 4.1-4.7. It is discovered that EWE was the most often cause of outages (Figure 4.1) while

the SSV followed by a distant frequency figure (Figure 4.2). The outage duration as a result of

EWE is about 53,281 hours (Figure 4.3) out of the cumulative total outages of 75,925 hours. EWE

outage affected about 113,580 customers out of the cumulative total of 208,238 customers.
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Figure 4.1 Power outage distribution in Newcastle.

Figure 4.2 Frequency of power outages in Newcastle.

Based on the analyzed data, this study categorized the extreme weather events as: (i) wind/rain

(WDR); (ii) snow/winter storms (SNW); (iii) Heatwaves (HTW); (iv) hurricanes (HUR) and (v)

thunderstorms (TDS). The duration, frequency and customer affected during climatic shocks are

shown in Figure 4.5 – Figure 4.7 respectively. It is observed from the EWE distribution that the
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Figure 4.3 Duration of power outages in Newcastle.

Figure 4.4 Number of customers affected by power outages in Newcastle.

TDS, HUR, SNW, and WDR are the most occurring events with varying impacts.
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Figure 4.5 Frequency of EWE outages in NWC.

Figure 4.6 Duration of EWE outages in NWC.
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Figure 4.7 Customers affected by EWE outage in NWC.

4.5 Modelling of Compound Event-Driven Power Outage Fore-

casting using Maximum Entropy Function

A model using maximum entropy function for compound event-driven power outage forecasting

problem is proposed in this section. This model converts the complex event-driven outage fore-

casting problem into two continuous differential single-objective sub-problems. The problem of

compound event-driven outage forecasting with multiple constraints can be expressed as [133]:

maxF(α) = ci fi(α1,α1, ...,αn)(i = 1,2, ..., p),

s.t. f j(α) = g j(α1,α1, ...,αn)≤ 0( j = 1,2, ..., p)
(4.1)

where F(α) is the event-driven power outage forecasting function, ci is the confidence coefficient,

ci ≥ 0, and mirrors the forecasting accuracy of different power outage events; i and j are the

numbers of objective and constraint functions respectively; α = (α1,α2, ...,αn) are the different
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extreme weather outage events, and α = (α1,α2, ...,αn) ∈ T ⊂ Rn is an n-dimensional decision

vector; T = {α ∈ Rn|di ≤ α ≤ ui, i = 1,2, ..., p} is the target space, di ∈ R and ui ∈ R are the

lower and upper bound of αi respectively; f j(α) is the inequality constraints; and g j(α) represents

the inequality constraint function. The g(α) functions, in real-life application, denote different

constraints such as speed, deployment time, intensity factors, and confidence coefficient, etc. con-

straints and they are all positive values. Ω = {α|α ∈ T,giα ≤ 0, i = 1,2, ..., p} is the feasible

domain with feasible solutions.

and the maximum entropy function of (4.1) is expressed as:

Fe(α) =
1
e

ln
p

∑
i=1

exp(e fi(α)),e > 0. (4.2)

where Fe(α) denotes a uniform approximation of the problem functions in the limit of e approach-

ing infinity. When e → ∞, for any α ∈ Rn, the compound event-driven power outage forecast-

ing problem with multiple constraints in (1) can be solved using the following multi-constrained

single-objective event-driven power outage forecasting sub-problem:

maxFe(α,c) =
1
e

ln
p

∑
i=1

exp(eci( fi(α)− f ∗i )),(i = 1,2, ..., p),

s.t. f j(α) = g j(α1,α2, ...,αn)≤ 0,( j = 1,2, ...,q)

(4.3)

where f ∗i is the reference points introduced to improve the accuracy of the calculation of the com-

pound event-driven power outage forecasting model.

Equation (4.3) is a function maximization problem with respect to the independent variables

α and c. This method converts the complex compound event-driven power outage forecasting
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problem into a single-objective sub-problem which is continuously differentiable and does neither

increase the number of constraints nor introduce new variables. The single-objective event-driven

power outage forecasting equation is used to calculate the optimal confidence coefficient as:

maxFe(α,c) =
1
e

ln
p

∑
i=1

exp(eci( fi(α)− f ∗i ))

s.t. c ≥ 0

(4.4)

Therefore, two sub-problems of (4.3) and (4.4) are formed from the multi-constrained com-

pound event-driven power outage forecasting problem. Neural networks are then used to solve the

two sub-problems iteratively in order to obtain the Pareto optimal solution for the multi-constrained

compound event-driven power outage forecasting problem, as expressed in the next section.

4.6 Compound Event-Driven Power Outage Forecasting Algo-

rithm Based on the Collaborative Neural Network Strategy

The CONN is a form of artificial neural network comprising more than one neural networks. The

strength of CONN is in its benefits; it is appropriate for application in complex and large-scale

scenarios and it adaptively assigns different neural network modules to different sub-problems.

Therefore, the complex and large-scale multi-constraint compound event-driven power outage

forecasting problem can be solved using the CONN. The CONN functions mainly by forming

a continuous path for the optimization process to begin from the starting point and converge at the

optimal solution. The CONN state equation is expressed as [133]:
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d
ds

α

β

= ξ

−▽α f (α)−▽α(α)T β

−β +(β +g(α))+

 (4.5)

where the gradient of g j is ▽αg j(α) for (i= 1, ...,q) and ▽αg(α)T =▽αg1(α), ...,▽αgq(α)T , ξ rep-

resents a positive constant, and α ∈ Rn,β ∈ Rq,(β )+ = [(β )+1 , ...,(β )
+
q ]

T ,and(β )+j = max{0,α}.

the neural network used in solving sub-problem (3) is expressed as:

d
ds

α

β

= ξ

−▽αFe(α,c)−▽αg(α)T β

−β +(β +g(α))+

 (4.6)

and another neural network used in solving sub-problem (4) is expressed as:

dc(s)
ds

= ξ (c−▽cFe(α,c))− c (4.7)

where c ∈ Rp

F =
1

1+ es (4.8)

With respect to the maximum entropy function, the compound event-driven power outage fore-

casting problem with multiple constraints is broken down into two sub-problems of equations (4.3)

and (4.4). The outage forecasting problem is solved by the mutual interaction of these two neural

networks, forming a CONN.
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4.7 Collaborative Neural Network Approach for Compound Event-

Driven Power Outage Forecasting Algorithm

A compound event-driven power outage forecasting algorithm which centers on the collaborative

neural network approach is proposed in this section. The compound event-driven power outage

forecasting problem with multiple constraints is first transformed into two single-objective sub-

problems using the maximum entropy function, the collaborative neural networks are then applied

to the two single-objective sub-problems, the initial confidence coefficient is assumed. If the result

of either of these sub-problems lead to the Pareto optimal solution of the compound event-driven

power outage forecasting problem, then the algorithm produces its output and stops; otherwise,

the confidence coefficient sub-problem is updated using another neural network. Until the pro-

cess leads to the Pareto optimal solution of the event-driven power outage forecasting problem,

the process is repeated. The two single-objective sub-problems are continuous convex, hence the

application of two neural networks to solve them. The collaborative neural network is constituted

by these two neural networks. The sequence of the compound event-driven power outage forecast-

ing algorithm established on the collaborative neural network approach is highlighted as follows.

Figure 4.8 shows the collaborative neural network algorithm [133].

1. Select an initial confidence coefficient c1 and set the number of initial iterations s = 1;

2. Use the Neural Network (4.6) for the confidence coefficient cs, to obtain the optimal solution

αs of the Lagrange multiplier vector betas and the single-objective sub-problem (4.3). If

αs is the Pareto optimal solution of the compound event-driven power outage forecasting

problem, then the algorithm produces its output and stops; otherwise, the process proceeds

to step 3;
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3. With the αs and β s obtained in step 2 above, a new optimal confidence coefficient is obtained

by solving (4.4) using (4.7);

4. The process proceeds to 2 after the number of iterations is set.

Figure 4.8 The CONN algorithm flow chart.
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4.8 Performance Evaluation

The CONN algorithm was assessed in different outage event scenarios. The multi-constrained

event-driven outage prediction in power systems was completed using the CONN algorithm. Five

types of EWEs with diverse constraints such as speed, deployment time, intensity factors, and

confidence coefficient were used. Both the constraints and quality of prediction are required to be

met in event-driven outage prediction.

4.8.1 Environment Settings

The program was implemented in Matlab2019b environment. There are five types of EWEs in

the experiments. The confidence coefficients of power outage for the five types of events, HTW,

HUR, SNW, TDS and WDR are 0.11, 0.10, 0.27, 0.35 and 0.17, respectively. Each types of event

had a different perceived speed factor (SPF), deployment time factor (DTF), intensity factor (IF),

and confidence coefficient (CoC), according to its own property. Table 4.2 and Table 4.3 presents

the parameters of the climatic seasons and that of the power outage events respectively. Four case

studies were explored to evaluate the performance of the proposed method.

4.9 Experimental Evaluation

The effectiveness of CONN algorithm was analyzed in multi-constrained power network through

simulation experiment. Four diverse case studies were used considering the SPF, DTF, IF, and CoC

constraints as shown in Table 4.4. The results and analysis of the experiment are presented in this

section.
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Table 4.2 The parameters of the climatic seasons [4].

S/N YEAR PERIOD CLIMATE FAULTS PER CLIMATE

1 2018 1 Oct – 30 Nov Spring 47

2 2018/2019 1 Dec – 28 Feb Summer 91

3 2018/2019 1 Mar – 31 May Autumn 59

4 2018/2019 1 Jun – 31 Aug Winter 29

5 2018/2019 1 Sep – 30 Nov Spring 78

6 2018/2019 1 - 31 Dec Summer 19

Table 4.3 The parameters of the outage events.

SYMBOL EVENT SPF DTF IF CoC

α1 HTW 0.10 0.3 0.25 0.11

α2 HUR 0.35 0.4 0.40 0.10

α3 SNW 0.05 0.2 0.20 0.27

α4 TDS 0.40 0.1 0.15 0.35

α5 WDR 0.15 0.5 0.30 0.17

In Table 4.4, MIN, Ratio and Time stand for minimum confidence constraints, coverage ratio

and computation time respectively. In Figure 4.9- 4.12, the chosen five EWEs were implemented in

four case studies using CONN algorithm. The minimum confidence constraint and the network’s

monitoring requirements were continuously increased from case 1 to case 4. Hence, there is room

for additional EWEs in the networks as the necessity arises.
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Table 4.4 The parameters of the experiments.

Case SPF DTF IF MIN Ratio (%) Time (s)

1 695 90 815 0.77 41.2 3.024

2 860 126 1230 0.84 63.6 3.407

3 1625 260 2180 0.92 87.9 4.735

4 2080 300 2675 0.99 97.1 5.128

Figure 4.9 Scatter diagram for case 1.

Figure 4.10 Scatter diagram for case 2.
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Figure 4.11 Scatter diagram for case 3.

Figure 4.12 Scatter diagram for case 4.

The SPF, DTF, IF and CoC constraints were applied to each case. Each case study depict a

particular network constraint as shown in Table 4.3.. The four case studies were chosen carefully

for a more instinctive impact. The increase in the number of weather events leads to increase in

the probability of outage forecasting and decrease in the coverage holes. In the CONN algorithm,

two NNs interacted and modified each other. There is a continuous optimization of the event-

driven outage forecasting in the network. In case study 1, the network was made to undergo

strict SPF, DTF, IF and CoC constraints. The number of EWEs permitted for the network’s use is
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limited. Therefore, the network’s outage prediction outcome (which is 41.2%) is unsatisfactory.

The constraints in case study 2 network increases with respect to case 1, the number of EWEs in

the network also increases leading to an improvement in the performance (63.6%) of the network.

As the number of EWEs in case study 3 network increases the more, the coverage holes reduces

considerably in the network and the network forecasting tends to be uniform (87.9%). As the

number of EWEs in case study 4 network increases further, the network forecasting tends towards

saturation reaching 97.1% coverage ratio. Under the present condition of the network, the CONN

algorithm continues its convergence towards the optimal solution, indicating a reasonable network

prediction. It is observed here that the CONN algorithm can effectively forecast multiple types of

events irrespective of multiple network constraints.

Figure 4.13 shows the event-driven outage performance and the resource allocation for the

extreme weather events in the four case studies. The four scenarios has different SPF, DTF, IF

and CoC constraints. It can be observed that the MIN requirements kept rising constantly from

case 1 to 4. The network’s prediction requirements kept improving constantly also. Therefore, to

meet the demand of diverse complex constraints, lots of EWEs are to be applied in the network’s

outage forecasting. The outcomes of the experiment show that the CONN algorithm is efficient in

allocating extreme weather resources in multi-constrained networks.
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Figure 4.13 The event-driven quality performance of the four cases.

Figure 4.14 shows the forecasting error due to different constraints. It could be seen that the

error in MIN is lower than that in IF followed by case DTF and lastly SPF. It is also observed

that the percentage error is less in forecasting greater numbers of extreme weather events and vice

versa.

Figure 4.14 Forecasting error due to different constraints.
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Figure 4.15 shows the forecasting error of the extreme weather events. The α2 exhibits the

lowest percentage error followed by α3, then α5, α4 and lastly α1. It is also observed, just like

in the case of the percentage error due to different constraints, that the percentage error is less in

forecasting greater numbers of extreme weather events and vice versa.

Figure 4.15 Forecasting error for different extreme weather events.

4.10 Comparison with single artificial neural network method

The comparison between solution proffered by a single ANN and that of the CONN is presented

in Table 4.5. The results show that, although the computation time (s) for ANN is smaller than that

of CONN (which is to be expected because of the workload involved in CONN), the forecasting

quality (%), average forecasting error for EWE events at 300 outages (%), and average forecasting

error due to different constraints at 300 outages (%) in CONN give improvements over those of the

single ANN. The results show that the CONN algorithm is smoother in characteristic and superior

in computational efficiency as compared to the ANN algorithm.
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Table 4.5 Comparison with Single Artificial Neural Network Method

Parameter ANN CONN
Computation time (s) 27.25 30.57
Forecasting quality (%) 78.62 97.14.
Average forecasting error for EWE events
at 300 outages (%)

9.14 6.55

Average forecasting error due to different
constraints at 300 outages (%)

7.29 5.31

4.11 Conclusions

In this research, the model using CONN methods and maximum entropy function for multi-

constrained event-driven power outage forecasting algorithm was developed for the solution of

complex power outage forecasting scenarios. The developed model used solutions of easier sub-

problems to solve the complex multi-constrained event driven problem. Five types of power outage

events, HTW , HUR, SNW , T DS and WDR with different constraints, SPF , DT F , IF , and CoC,

were considered in four different scenarios. An effective optimal power outage forecasting solution

was provided by the collaborative neural network algorithm according to the various outage events

and network constraints. Moreover, the problem of acquiring a large amount of weather data in a

complex environment is overcome by CONN algorithm effectively. Based on the results obtained,

it was established that CONN algorithm is effective in providing power outage forecasting solu-

tions to multi-constrained and complex problems as compared to single artificial neural networks

method
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Chapter 5

Reliability evaluation and financial viability

of an electricity power micro-grid system

with the incorporation of renewable energy

sources and energy storage: Case study of

KwaZulu-Natal, South Africa

This chapter is based on the work reported in [3].
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5.1 Abstract

The increase in the demand for a reliable electricity supply by the utilities and consumers has

necessitated the evaluation of the reliability of power systems. A reliable electricity supply is

characterized by no or minimal duration and frequency of supply outages. This has triggered

the necessity of using renewable energy sources (RESs) with optimization methods for reliabil-

ity improvement of electricity systems and reduction of greenhouse gas (GHG) emissions. The

main objective of this study is to optimize micro-grid systems operations, improve reliability, re-

duce emissions and balance the demand and supply of energy through RESs and battery energy

storage system (BESS). The adaptive model predictive control (AMPC) method is used to ad-

dress the issues of micro-grid operation. The AMPC algorithm solves the optimization problem

of disturbance prediction in a micro-grid with different types of RESs and BESS integration. This

optimization problem considers different constraints for minimum operating costs in different case

scenarios. The financial viability of the proposed method is investigated. Solar photovoltaic (Solar

PV), wind plant (WP) and BESSs are used with the AMPC method to investigate the impacts of

annual real interest rates on cost and emission parameters, quantification of the emission oxides

from different case scenarios, reduction of the cost of electricity (Ccoe), and power system reliabil-

ity improvement. A modified Roy Billinton Test System (RBTS) is used to confirm the reliability

enhancement and financial feasibility of the system. Case studies are used to confirm the proposed

methods using climatic data for the city of Pietermaritzburg (29.37°S and 30.23°E), South Africa.

The results obtained establish that the incorporation of RESs and BESSs using the AMPC method

gives satisfactory outcomes.
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5.2 Introduction

The ever-increasing demand for electricity due to world population growth and economic expan-

sion has placed a massive demand on a reliable power supply. There are challenges due to the

fast depleting global deposits of fossil fuels. Environmental pollution and climate change due to

greenhouse gas emission coupled with unpredictable fuel pricing have given rise to the exploitation

of renewable energy sources (RESs) as reliable, sustainable, and non-polluting alternatives [134].

The provision of quality and reliable power supplies to the consumers at a reasonable cost is the

expectation of every utility [135]. Hence, global utilities have identified the incorporation of RESs

as a reasonable option for making such provisions. It has been projected that RES penetration into

power systems will increase from 25 % in 2017 to 85 % in 2050. This is mostly through the use

of solar photovoltaic (solar PV) and wind plants (WP) [136]. A reliable electricity supply is a

booster to the social development, economic growth, health, and physical well-being of a nation.

Reliability plays a crucial role in the design, implementation, and operation of an electrical sys-

tem [137]. The performance of the electrical system can be measured by utilities using reliability

indices. 80% of load point outages are caused by distribution system failures rather than transmis-

sion and generation failures [138]. The effect of outages can be severe to both the utilities and the

consumers. Utilities suffer economic loss and reputational damage while the consumers can suffer

damage to their equipment, can experience raw materials spoilage, and suffer from loss of revenue

and work. As a result, distribution system reliability deserves attention in the electrical system.

Further work on improvements in the reliability of the distribution system is necessary.

Reliability serves as a benchmark for providing the regulatory bodies with necessary informa-

tion in the deregulated environment. Conventional radial distribution systems can be less reliable

because of its single source. A fault on any part of the network can lead to an outage of the entire

system because of lack of alternative generation. Hence, the duration of outage is often longer in a
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single-source conventional distribution system.

When there is a fault on a lateral feeder, consumers on other lateral feeders experience voltage

fluctuations due to load changes. The incorporation of a multiple-source micro-grid system has

influenced the power system positively in a number of ways. The links between renewable energy

sources and consumers do not require investment of hundreds of kilometers of a transmission

line; hence, reducing maintenance costs, Camc, system costs Cacs, and costs of energy, Ccoe as

well as the installation time. The multiple-source nature of the microgrid system helps to ensure

an uninterrupted supply of electricity whenever there is a fault from the main source, thereby

enhancing the reliability of the system. Consideration has to be given to RESs as the most cost-

effective electrification solutions for the load requirements of remote areas. These are characterized

by complex terrains which require high cost installations with long installation times and safety

concerns for transmission and distribution lines [139]. As of 2016, 13% of the world population

is said to be without access to electricity. About one-fifth of these are said to be living in remote

areas with complex and difficult terrains and unable to connect to the national grid due to many

constraints [140]. RESs can be integrated into the power system to bring electricity to consumers

in such remote and rural settlements. For sustainable growth, microgrid systems can be used to

integrate RESs. RESs have many advantages such as low cost of emission, low maintenance and

operation cost, low fuel cost, and enhancement of power system reliability [141]. Many utilities

have proved their benefits and embraced the integration of RESs to meet global demand for energy

and allay public fear of the environmental impacts of using fossil fuels. Wind and solar energy are

now widely accepted due to their benefits both technically and economically [142].

The benefits of reducing the emission of greenhouse gases has encouraged utilities to harness

the wind and solar potential. The use of more than one RES in a system enables the weakness of

one source to be overcome by the strength of other and the disadvantage of intermittent supply is
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overcome by the use of a battery system. A battery energy storage system (BESS) can store energy

during normal operation which is used to supplement the supply during deficit or peak period.

Many studies have explored the methodologies and impacts of BESSs and RESs on the reliability

and financial viability of electrical systems.

Keshavarzi and Ali presented a control strategy under different operating conditions for BESSs

for minimization of power fluctuations due to intermittent supplies from RESs [143]. Hidalgo-

Leon et al. made a holistic review of the BESS, encompassing its technology, practical imple-

mentation, financial viability, and environmental effects [144]. They inferred that integration of a

BESS into a RES could effectively mitigate major RES issues. Graditi et al. proposed a model for

regulating and controlling a BESS in a RES micro-grid to avoid frequency instability and ensure

energy restoration in the network [145]. Farias and Canha analyzed the US Department of Energy

(DOE) database to provide cases of battery technologies, including their services, applications, and

benefits with respect to RES [146]. They explored the technical characteristics of different battery

types to provide insights into their energy flexibility, life cycle, and energy-storing capacity. Has-

sanzadeh et al. proposed a multi-term signal feedback technique for regulating constant power and

frequency deviation of RESs and BESSs, thereby improving microgrid performance [147]. Mon-

toya et al. addressed the problem of optimal dispatch of DC micro-grids with penetration of RESs

and BESSs using an exponential load model [148]. Gil-González et al. developed a mathematical

model for the optimal operation of dc micro-grids. Second-order cone programming was used

to convert non-convex into a convex model of economic dispatch and applied it to a system with

high penetration of BESSs and RESs to realize their objectives [149]. Brogan et al. used the ramp

time and delayed time of a BESS to improve the inertial and frequency of a power micro-grid sys-

tem [150]. Reihani et al. proposed optimization techniques for the control of how a BESS charges

and discharges in a micro-grid system [151]. Effective voltage regulation, power curve smoothing,

and peak load shaving were achieved. Kiptoo et al. considered a cost-benefit analysis in harnessing
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the benefits of the demand-side in optimal capacity sizing of micro-grid components [152].

Ganesan et al. proposed a hybrid power controller to manage the intermittent nature of the

power supply in a RES by sharing power between diesel generators, solar PV, and BESS [153].

To realize the power flow control, active power from the diesel generator and solar PV were man-

aged with respect to the system frequency. Alhejaj and Gonzalez-Longatt demonstrated that the

response from BESS inertia can cause a variation in the degree of change of frequency; thereby,

enhancing frequency response and offer frequency support to the system [154]. Ganesan et al.

discussed an analytical method for identifying suitable rating of voltage source that can act as fre-

quency and voltage references for a BESS [155]. This voltage source-based BESS was found to be

suitable in supplying reactive and real power to the load during grid outage. Marchi et al. proposed

a model covering the life cycle cost analysis of a BESS considering the operation cost components

of the system, such as cost of maintenance, decommissioning, and disposal [156].

Badal et al. presented the benefits of RESs, integration complexities, and control problems [157].

They investigated different control methods in different scenarios. Adefarati et al. proposed a

cost-effective, optimized micro-grid system using solar PV, diesel generator, methanol generator

and BESS; implemented by the HOMER application tool [137]. The performance of the system

was investigated using fuel cost, inflation rate, load demand and solar radiation. Çelikbilek and

Tüysüz presented a model for RES evaluation using Multi-criteria Optimization, Analytic Network

Process, Decision Making Trial and Evaluation Laboratory [158]. Ranking of RESs was further

performed using the proposed method. Kasturi and Nayak proposed a model for optimally allo-

cating RESs using mathematical methods in distribution systems [159]. The optimal allocation

problem formulated was solved using a multi-objective optimization approach. Karanki and Xu

presented an optimal location and sizing for BESSs to achieve loss reduction in distribution system

using the particle swarm optimization method [160]. Tan et al. presented a risk and cost model
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for optimal scheduling of a hybrid energy system using Latin hypercube optimization technique

[161]. The results not only reduced the intermittency of RESs, but also smoothed the tie-line

power. Ovaskainen et al. explored the simultaneous use of a BESS as an active harmonic filter for

improving power quality and voltage stability of a micro-grid [162]. Hussain et al. developed a

coordinated control strategy in a hybrid power system for maintaining system frequency thereby

ensuring satisfactory power system stability [163]. It was proved from the simulation results that

the load demands can be met by power generated from the RES and stored in the BESS. Khalili et

al. [164] investigated how voltage reduction (VR) and a demand response program (DRP) affects

the operation of a distribution system (DS). The reliability of the network was evaluated using

the energy not supplied (ENS) index. The ENS was minimized by reducing the voltage level of

the network using the load. The DS reliability was effectively improved through the combination

of DRP and VR methods. [165] explored the optimal scheduling of microgrids (MGs) contain-

ing a fossil fuel generator and RESs with a DRP. A multi-objective model using a weighted sum

technique was used to obtain Pareto optimal solutions which minimized the unused energy of the

implemented scenarios. The costs of electricity and generators were minimized, and the MG DRP

profit was maximized to achieve an optimal economic status.

In view of the studies reviewed, it can be seen that more work is needed to incorporate RESs

into power systems in order to realize the objectives of reliability improvement and cost reduction.

The studies reviewed did not carry out a simultaneous evaluation of system reliability, i.e., the

system costs Cacs, energy costs Ccoe and net present cost Cnpc. This was carried out in this study.

The impacts of the annual real interest rate (ARIR) on the cost and emission parameters are also

investigated. This gap is identified in Table 5.1 which compares the studies reviewed. The models

proposed in past studies did not consider the stochastic features of the vital components of the

micro-grid system. These are essential for evaluating the reliability of a power system. This study

has the goal of exploring the stochastic features of vital components of the micro-grid system to
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evaluate the reliability of the power system with respect to cost analysis considering Cacs, Cnpc

and Ccoe. Case studies for the reliability evaluation of the micro-grid system are explored. These

estimate the expected energy not served (EENS) and expected interruption cost (ECOST ) using

the proposed model. The contributions from this work are:

i. Evaluation of the reliability, financial viability, and eco-friendly impacts of RESs incorpo-

rated into a micro-grid system;

ii. Development of a model used for reliability evaluation of a power system with the integration

of RESs;

iii. Development of a model used for reducing Cacs and Ccoe and increasing the use of RESs in

a power system;

iv. Integration of a model which will help in estimating the costs of supply interruptions by

utilities, thereby improving power system reliability;

v. Use of a model which will help in monitoring the efficiency of a power system with the

integration of RESs.

vi. Implementation of a modified Roy Billinton Test System (RBTS) model which is verified

using the adaptive model predictive control (AMPC) method;

vii. Quantification of the emission parameters (oxides) from different case scenarios;

viii. Investigation of the impacts of annual real interest rate on the cost and emission parameters

of the micro-grid.

To the best of the authors’ knowledge, the reliability problems in micro-grid systems with

integrated RESs, and the investigation of the impacts of ARIR on the cost and emission parameters,
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have not been previously addressed using an AMPC optimization algorithm. This work proves,

through its results, that the reliability of a power system can be improved by the incorporation of

RESs using the proposed method, and Cacs and Ccoe can simultaneously be reduced. This outcome

can serve as a measure for making investment decisions by utilities and the governments with

respect to renewable energy policies.

Table 5.1 Comparison of studies
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[135][137][138][142][148][149][150]

[158][159][163][164][165][166]
✓ ✓ ✓ - - -

[139][154][156] ✓ ✓ - - - -

[160][162][167][168][169] ✓ - ✓ - - -

This study ✓ ✓ ✓ ✓ ✓ ✓

99



5.3 Background

In this study, RESs (in the form of a micro-grid) using AMPC method are adopted for reliability

and economic improvements. The micro-grid is described as a small entity of an electricity net-

work with a local supply that can function independently (islanded mode) or in conjunction with

the central grid. This can also be stand-alone which is useful for use in remote areas which are

isolated from the central grid due to operational barriers such as distance and cost of linking [170].

Islanded operation saves utilities from economic loss as well as improving system reliability and

environmental perspective. Economic advantages of the micro-grid are that they do not require

long transmission line investment if stand-alone and its operation and maintenance costs are low;

in addition and there is emission reduction. A micro-grid network comprises of the loads, control

units, sources (in the form of wind plant, mini gas turbine, solar PV, hydropower, diesel generator

or other generator), and BESSs. The micro-grid system proposed in this study is made up of diesel

generators, solar PV, wind plant, and a BESS. They are designed with system constraints and load

requirements arranged to reduce costs (total outage cost, Ctoc, Cacs, and, Ccoe) and improve reli-

ability. Case studies are used to confirm the proposed methods using climatic data of the city of

Pietermaritzburg, PMB (29.37°S and 30.23°E), South Africa. The climatic data is obtained from

the South African Weather Services (SAWS) and consists of the wind speed, solar irradiance, and

average daily ambient temperature. The proposed micro-grid system is presented in Figure 5.1.

The expression for total power generated PT by the proposed microgrid is obtained using [171]:

PT (i, t) = PSPV (i, t)+PWP(i, t)+PGEN(i, t) (5.1)

and power demand by consumers is expressed as:

PD(i, t) = PGEN(i, t)±PBESS(i, t) (5.2)
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where PSPV , PWP, PGEN , and PBESS are the power from solar PV, wind plant, diesel generator, and

BESS, respectively; t and i are the time period and node under analysis.

5.4 Modeling of the System Under Study

The system dynamics of a micro-grid network, using a diesel generator with RESs and a BESS,

are modeled in the MATLAB/Simulink environment in this work. The reliability of the energy

system is investigated in the micro-grid network using the proposed technique. The performance

of four case studies are investigated: the diesel generator and BESS; the diesel generator, solar PV

and BESS; the diesel generator, wind plant and BESS; and the diesel generator, solar PV, wind

plant, and BESS. It can be noted that the RES-generated energy during the normal operation of

the micro-grid does not meet demand; hence, the inclusion of a diesel generator in all cases. This

serves as back-up to the BESS. The BESS stores excess energy which is used during a generation

deficit. The units are connected to the DC buses using power electronic components. The diesel

generator, RESs and the BESS have their respective local controllers. These controllers carry out

the power conversion commands. Therefore the BESS absorbs any network unbalance, thereby

improving reliability and minimizing costs [172], [173].

5.5 Power Scheduling of the Adaptive Model Predictive Con-

troller

AMPC uses common ideas in addressing complex micro-grid problems and utilizes comprehen-

sive structures in organized forms. This work adopts the technique of controlling the micro-grid
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Figure 5.1 Configuration of the micro-grid network under study.

adaptively in order to guarantee an improvement in the reliability of consumer power supply. The

adaptive controller harmonizes the power in the network, thereby allowing the optimal generation

of power supply from each micro-grid unit. AMPC offers a solution by forming an optimal de-

sign of generation, demand, and energy storage for every optimization sample instance. The next

sample instance offers a new optimization solution using the output from the previous solution as

the new input. In theory, the feedback mechanism generates an optimal design that takes care of

the disturbances acting on the micro-grid. The main sources of uncertainty or disturbances in the

micro-grid system are the RES-generated energy (caused by wind speed and solar irradiation) and

energy demanded. The conventional model predictive controller (MPC) is unable to manage the

variations in RESs; hence, the AMPC is more suitable. This operates by updating the system with

changes to its internal operating conditions. The AMPC architecture and algorithm flowchart are
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shown in Figures 5.2 and 5.3. The state-space expressions often used for AMPC modeling is given

by [174]:

x(t +1) = Ax(t)+Bu(t) (5.3)

y(t) =Cx(t) (5.4)

where x(t), u(t) and y(t) are the BESS charging state, generating units vector variables and the

output vector of the system state, respectively.

Figure 5.2 Control architecture of the study. (Pgen, Pdem, and Pnet are the generated,
demanded, and net power, respectively).
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Figure 5.3 AMPC algorithm flowchart.

The generated and demanded powers that are causes of disturbance in micro-grids during nor-

mal operations are difficult to predict, vary with time, and cannot be manipulated by the controller

because they are external inputs into the system. Hence, the disturbance is a problem that the

controller has to overcome. The effects of disturbances on the output can be incorporated into

the dynamic model to allow the controller to predict their impact on the performance of the sys-
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tem. The effect of the disturbance, d(t), can be factored into the AMPC state-space design. The

dynamic system equation can be expressed as [172]:

x(t +1) = Ax(t)+Bu(t)+Edd(t) (5.5)

y(t) =Cx(t) (5.6)

where Ed is the matrix that computes the impact of disturbances on the states. By discretizing (5.5)

and (5.6) with a sample time Ts, the discrete-time space model is:

x(t +1) = Adx(t)+Bu(t)+Edd(t) (5.7)

y(t) =Cx(t) (5.8)

where the discrete-time expressions are x(t +1), x(t), d(t), u(t), and y(t). Also, Ad , Bd and Ed

are eATs ,
∫ Ts

0 eATs Bdt and
∫ Ts

0 eATs Edt respectively. Since (5.7) and (5.8) increment, they become:

△x(t +1) = Ad△x(t)+B△u(t)+Ed△d(t) (5.9)

△y(t) =C△x(t) (5.10)

where the incremental expressions are △x(t+1), △x(t), △d(t), △u(t), and △y(t). Since existing

plant data is required when moving horizon control for control and prediction purposes, u(t) is

assumed to be implicitly unable to affect output y(t); but at the tth instant, u(t − 1) can affect the

output y(t). So (5.9) and (5.10) can be re-arranged to [175]:△x(t +1)

y(t +1)

= A

△x(t)

y(t)

+Bu(t)+Ed(t) (5.11)

y(t) =C

△x(t)

y(t)

 (5.12)
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where A =

 Ad 0T
d

CdAd 1

 ; B =

 Bd

CdBd

 ; E =

 Ed

CdEd

 ; C =

[
0T

d 1

]
; 0d =

[
0 0 0 0

]

and the augmented state space model matrices A, B and C are used for the predictive control design.

5.6 Modeling of the Renewable Energy Sources, Diesel Gener-

ator, and Load

The RESs, the BESS, the diesel generator, and the load used in this study are modeled in this

section.

5.6.1 Modelling of the Solar Photovoltaic

Solar PV has good qualities such as no fuel cost, no carbon emission cost, and low O & M cost. The

energy generated by solar PV depends on the ambient temperature, solar irradiance, and the sun’s

position in the sky. The power outputs of the MonoXTH PV module can be expressed using [176]:

PSPV (s(t)) = ncells ×FF ×V × I (5.13)

where s(t) is the random irradiance, ncells is the number of functioning photovoltaic cells, and FF

is the fill factor:

FF =
Vmp × Imp

Voc × Isc
(5.14)

where Vmp, Voc, Imp, and Isc are the voltage at maximum power [V], open-circuit voltage [V],

current at maximum power [A], and short circuit current [A], respectively.

V = (Voc +Kvt ×Tcell) (5.15)
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where Voc, Kvt , and Tcell are the open-circuit voltage [V], the voltage temperature coefficient

[mV/°C], and the cell temperature [°C], respectively.

I = s(t)× [Isc +Kct × (Tcell −25)] (5.16)

where Kct is the current temperature coefficient [mA/°C].

Tcell = Tamp + s(t)×
(

NOCT −20
0.8

)
(5.17)

where Tcell , Tamp, and NOCT are the cell temperature [°C], ambient temperature [°C], and nominal

cell operating temperature [°C], respectively.

5.6.2 Modelling of the Wind Energy

Wind energy, which is a clean and environmentally friendly RES, has many advantages such as

relatively low cost of production, low cost of O & M, free from Greenhouse gas (GHG) emission,

sustainable energy source, no fossil fuel costs, and advanced technologies [177, 142]. The power

generated by a wind plant can be represented by [178], [176]:

PWP(vi) =



0 vi < vci

PW
r × vi − vci

vr − vci
vci ≤ vi < vr

PW
r vr ≤ vi < vco

0 vco ≤ vi

(5.18)

where PW
r is the rated power output; and vi, vci, vco and vr stand for the actual, cut-in, cut-out, and

the rated wind speeds respectively.
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5.6.3 Network modelling

The network was modelled out of the set of available routes for optimal configuration. The network

was modelled as defined by the matrix [NC] as [179]:

[NC] =
m−1

∑
k=1

[AD]k (5.19)

where [AD]k represents the network’s m by m adjacency matrix, at network nodes in iteration k,

with elements [AD]i, j which equals 0 if no branch is connecting nodes i and j and equal to 1 if

otherwise. If all [NC]’s off-diagonal elements are non-zero, then the network is connected.

5.6.4 Uncertainty modeling

The design is done with consideration on forecasts based on a degree of uncertainty. Factors

considered as inputs in uncertainty modeling are distributed generators parameters, failure rates of

lines, and peak loads of the customers. The loads uncertainty is modelled as [179]:

[SU ] = f1.SL (5.20)

where [SL] is the vector of the network’s peak loads, f1 is the assumed scaling random function

with standard deviation 1 and mean 1. The uncertainties arising because of failure rates of lines are

obtained as the product of the failure rate per unit of line length, adopted standard deviation 2 and

random function f2 with mean 1. The mean operating power expected from the generators (i.e.,

the GEN, SPV, WP, and BESS) is scaled by adopted standard deviation 3 and random function f3

with mean 1.
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5.6.5 Modelling of the Battery Energy Storage System

RESs are characterized by an intermittent generation. This problem is solved using a BESS. Excess

energy is stored in the BESS, which is used when the RESs experience intermittency, thereby

avoiding power fluctuation and enhancing the reliability of the system [144]. The durability and

performance of the battery depend on its rate of charge, rate of discharge, state of charge, voltage

effect, and ambient temperature. The state of charge (SoC) of the battery, whose operation capacity

must be between the minimum and maximum allowable, is [171]:

SoCmin ≤ SoC(t)+ηc

k

∑
t=1

Pi(t)

−ηd ∑
k
t=1 Pi(t)≤ SoCmax, f or1 ≤ t ≤ k

(5.21)

and

SoCmin = (1−DoD)SoCmax (5.22)

where SoCmin and SoCmax are the minimum and maximum allowable states of charge, ηc and ηd

are the battery charging and discharging efficiencies, and DoD is the depth of discharge.

5.6.6 Modelling of the Diesel Generator

The operation of a diesel generator can be as the prime source, as standby, as a stand-alone system,

or connected to the grid. They can be reliable, mobile, fuel-flexible, easy, and quick to start

but have high O & M costs and GHG emissions. The operating parameters of the CAT 3512B

diesel generator, such as power output, fuel consumption, and fuel cost, are used in modeling the

generator in this study. The power output of the diesel generator PGEN can be represented by [171]:

PGEN = Pn ×NGEN ×ηGEN (5.23)

109



where Pn, ηGEN and NGEN are the nominal power generated, efficiency, and number of the diesel

generators, respectively.

A diesel generator operates within power constraints which are:

Pmin
GEN(i, t)≤ PGEN(i, t)≤ Pmax

GEN(i, t) (5.24)

The generator fuel cost FC is

FCi = aiP2
GEN(i, t)+biPGEN(i, t)+ ci (5.25)

where a, b and c are the respective coefficients of the fuel cost for the ith diesel generator.

A conventional power generator produces emissions. Emission Cost (EC) is introduced as a

penalty for GHG emissions. The EC is an economic benchmark used by the environmental regula-

tors to control the emission of GHG pollutants. It is applied as taxes to discourage the generation

of GHGs. The GHG Emission factor and costs for diesel generation is shown in Table 5.2.

5.6.7 Comparison of Microgrid Component Costs and Characteristics

The Cost and technical characteristics of micro-grid system components are shown in Table 5.3.

This is important for the design of a system so that they can be built within budget constraints.

110



Table 5.2 GHG Emission factor and costs for diesel generation [171].

Emission types
Emission cost

($/kg)

Emission factor

(kg/kWh)

NOx 1.086 0.00669

SOx 1.800 0.00036

COx 0.017 0.65700

5.6.8 Modelling of the Load

Some loads are critical while others are curtailable. Critical loads are classified as essential and

have to be met. The AMPC controller makes necessary load forecasting decisions. The load is

predicted at time-steps using the preceding data for future projections. The process continuously

estimates and updates the model parameters to minimize errors. The load demand for the micro-

grid is [174]:

Pload(i, t) = Pload−curt(i, t)(1−θ(i, t))+Pload−crit(i, t) (5.26)

where θ(i, t) is the curtailment ratio of the curtailable load; the Pload−curt(i, t) and Pload−crit(i, t)

are the curtailable and the critical loads, respectively.

5.7 Economic Modeling of the Renewable Energy sources

The economic model of the micro-grid under study is made up of the cost of energy Ccoe, the

annual cost of the system Cacs, the net present cost Cnpc, and the total outage cost Ctoc [180, 171].

The cost of energy is:

Ccoe =
Cacs

Pi
$/yr (5.27)
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Table 5.3 Cost and technical characteristics of the micro-grid system [171].

Parameter Value/Description Parameter Value/Description

Estimated parameters of the diesel generator

Installed capacity 4MW Lifetime 25000 h

Nominal rating 1280 kW Model CAT 3512B

Capital cost 1521 $/kW Coefficients of the fuel cost a = 2.4438, b = 208.21, c = 35.968

Replacement cost 1521 $/kW Efficiency 80%

Maintenance cost 0.01258 $/kW h Diesel fuel price 0.91 $/L

Estimated parameters of the solar PV

Installed capacity 2MW Voltage temperature coefficient 0.325 %/°C

Nominal rating 250 W Current temperature coefficient 0.050%/°C

Capital cost 550 $/kW Short circuit current 8.62 A

Replacement cost 550 $/kW Open circuit voltage 38.3 V

Maintenance cost 10 $/kW/year Dimension mm3

Lifetime 25 yr Weight 16.8 ± 0.5 kg

Model number LG250SIK-G3 Cells 6× 10

Maximum power point voltage 30.8 V Cells type Monocrystalline

Maximum power point current 8.13 A Frame Anodized aluminum

Nominal cell operating temperature (NCOT) 45 ± 2°C

Estimated parameters of the wind plant

Installed capacity 2MW Swept area 5027 m2

Nominal rating 2MW Rotor diameter 80 m

Capital cost 651 $/kW Nominal revolutions 16.7 rpm

Replacement cost 651 $/kW Frequency 50/60 Hz

Maintenance cost 20 $/kW/year Generator type 4 pole doubly-fed generator

Lifetime 25 yr slip ring and Blade dimension: Length = 39 m, Max. chord = 3.5 m

Model number V80-2.0MW Wind speed vci = 4 m/s, vr = 16 m/s and vco = 25 m/s

Estimated parameters of the battery energy storage system

Installed capacity 0.3MW Lifetime 5 yr

Nominal rating 200 Ah Battery max SoC 95%

Capital cost 300 $/battery Battery min SoC 40%

Replacement cost 300 $/battery Battery discharge efficiency 100%

Maintenance cost 10 $/battery/year Battery charge efficiency 85%
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where Cacs is the annual cost of the system in ($/kWh) and Pi is the annual energy production of

the generating units in (kWh).

The annual cost can be represented by

Ccoe = (Camc +Caec +Cacc +Carc +Ca f c) $/yr (5.28)

where Cacc is the annual capital cost, Carc is the annual replacement cost, Camc is the annual main-

tenance cost, Ca f c is the annual fuel cost and Caec is the annual emission cost. The annual capital

cost for a micro-grid system consisting of the diesel generator, solar PV, wind plant, and BESS is

a simple summation:

Cacc =Cacc,i

n

∑
i=1

(PGEN +PSPV

+PWP +PBESS) $/yr

(5.29)

where Cacc,i is the annual capital cost of each component of the micro-grid system. These can be

obtained from:

Cacc,i =CC+CRF(i,n) (5.30)

Carc,i = RC+SFF(i,n) (5.31)

Camc,i = MC+(1+ f )n (5.32)

Ca f c,i = FC+(1+ f )n (5.33)

Caec,i = EC+(1+ f )n (5.34)

where CC, RC, MC, FC and EC are the capital, replacement, maintenance, fuel and emission costs

respectively. The SFF , f and n are the sinking fund factor, annual inflation rate and lifetime of

each micro-grid system component.

The sinking fund factor is:

SFF(i,n) =
(

i
(1+ i)n −1

)
(5.35)
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The maintenance cost for generating unit i is:

MCi =
n

∑
i=1

(CiPi +CRi ×FCRi) $/hr (5.36)

where Ci, CRi, FCRi and Pi are the proportionality factor, the capacity rating, the fixed charge rate,

and the generating unit output power, respectively.

The fuel cost is:

FCi =
n

∑
i=1

(ai +biPi + ciP2
i ) $/hr (5.37)

where a, b and c are the diesel generator cost coefficients.

The emission cost is:

ECi =
n

∑
i=1

(αiPiEFCOx +α jPiEFSOx

+αkPiEFNOx) $/hr

(5.38)

where αiPi, αiPj, αiPk and EFCOx, EFSOx, EFNOx are the externality emission costs (in $/kg) and

the emission factors for COx, SOx, and NOx gases respectively.

The net present cost Cnpc can be expressed as:

Cnpc =

(
Cacs

CRF(i,n)

)
$/yr (5.39)

i =
(

i′− f
1+ f

)
(5.40)

CRF(i,n) =
(

i(1+ i)n

(1+ i)n −1

)
(5.41)

where i, i′, f , n and CRF represent the real interest rate, the nominal interest rate, the annual

inflation rate, the number of years (i.e., the lifetime of each micro-grid system component) and the

capital recovery factor respectively.
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The expected energy not served cost (Ceens) and expected interruption cost (ECOST ) are used

to obtain the total outage cost:

Ctoc = (Ceens +ECOST ) $/yr (5.42)

Ceens = (ke ×EENS) $/yr (5.43)

where EENS is the total annual energy not served (kWh) and the lost load value (ke) is in ($/kWh).

5.8 Modeling of the Adaptive MPC Optimization Problem

The focus of the proposed method is the economic feasibility of integrating RESs into the power

system while taking into consideration the relevant operational constraints. In this section, the cost

function formulation is discussed, i.e., the operational and functional constraints.

5.8.1 Formulation of the Cost Function

The proposed method is designed to achieve the objectives of improving the reliability of electricity

supply, reducing the operating cost of energy, preventing the battery from deep overcharge and

discharge, and guaranteeing energy efficiency by balancing supplies from the diesel generator,

RESs, and the BESS. Variables such as the power rates and values, which relate to lifespan and

utility cost of the generating units, are incorporated into the cost function. Quadratic cost functions

related to different generating units in the micro-grid are harnessed to minimize the total cost of
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the system and solved by the AMPC algorithm. The cost function can be expressed as [181]:

minJ =
Nc

∑
k=1

[
α1P2

GEN(t+k)+α2P2
SPV (t+k)

+α3P2
WP(t+k)+α4P2

BESS(t+k)

+β1△P2
GEN(t+k)+β2△P2

SPV (t+k)

+β3△P2
WP(t+k)+β4△P2

BESS(t+k)

]
+

Np

∑
k=1

[
γ1(SoCt+k −SoCre f )

2
]

(5.44)

where Nc is the control horizon, Np is the prediction horizon, and αi, βi and γi are the respective

weights of the variables. In the first four terms of the cost function, the weight of the manipulated

variables is used; hence, the optimal solution will apply weighted means in satisfying the objec-

tives. The subsequent four and one terms penalize the rate and confine the stored energy within an

operating point respectively.

5.8.2 Power Balance Constraints

It is necessary to include the energy balance constraints to achieve stability of the power system.

The energy demand and production balance for a reliable and effective operation of the micro-grid

network need to be met. The equality constraint is:
n

∑
i=1

PGEN(i, t)+
n

∑
g=1

PWP(g, t)

+
n

∑
h=1

PSPV (h, t)+
n

∑
j=1

PBESS( j, t)

−
n

∑
k=1

PBESS(k, t) =
n

∑
l=1

PD(l, t)

(5.45)

where PGEN(i, t), PWP(g, t) and PSPV (h, t) are the power output of the diesel generator, wind plant,

and solar PV. PBESS( j, t) and PBESS(k, t) are the charge and discharge power of the battery while
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PD(l, t) is the consumer load point power demand. n denotes the number of occurrences in time t

in the respective instances.

5.8.3 Inequality Constraints

The inequality constraints are the generating limits of each source as specified by the OEM. To pre-

vent overcharging and undercharging, the SoC of the battery bank is operated within the minimum

and maximum limits. This will improve the lifespan of the battery. The constraints are:

Pmin
GEN(i, t)≤ PGEN(i, t)≤ Pmax

GEN(i, t)

Pmin
WP (g, t)≤ PWP(g, t)≤ Pmax

WP (g, t)

Pmin
SPV (h, t)≤ PSPV (h, t)≤ Pmax

SPV (h, t)

Pmin
BESS( j, t)≤ PBESS( j, t)≤ Pmax

BESS( j, t)

Pmin
BESS(k, t)≤ PBESS(k, t)≤ Pmax

BESS(k, t)

SoCmin(m, t)≤ SoC(m, t)≤ SoCmax(m, t)

(5.46)

Variation in power can lead to energy losses. Therefore power rates constraints are formulated.

The micro-grid units and BESS are assumed to be electrically strong in responding to fast power

rates so that: 

△Pmin
GEN(i, t)≤△PGEN(i, t)≤△Pmax

GEN(i, t)

△Pmin
WP (g, t)≤△PWP(g, t)≤△Pmax

WP (g, t)

△Pmin
SPV (h, t)≤△PSPV (h, t)≤△Pmax

SPV (h, t)

△Pmin
BESS( j, t)≤△PBESS( j, t)≤△Pmax

BESS( j, t)

△Pmin
BESS(k, t)≤△PBESS(k, t)≤△Pmax

BESS(k, t)

△SoCmin(m, t)≤△SoC(m, t)≤△SoCmax(m, t)

(5.47)
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Figure 5.4 Modified Distribution System for RBTS Bus.
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Figure 5.5 Power flow diagram of the transmission system connecting the modified RBTS
system.
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Figure 5.6 Power flow diagram of the RBTS distribution system.
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Figure 5.7 Voltage at different terminals in the RBTS distribution system.
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Figure 5.8 Active power at different terminals in the RBTS distribution system.

5.9 Results and discussions

The reliability and economic impacts of integrating RESs into the power system are explored using

a modified Roy Billinton system (Figure 5.4).
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The power flow of the proposed distribution network was performed using DigSILENT Pow-

erFactory software. Figure 5.5 to 5.8 show the results of the power flow operation.

The system is made up of 26 circuit breakers; 1 transformer each for the solar PV, the wind

plant and BESS, and 22 distribution transformers. The repair rates, failure rates, customer and

feeder details of the major system components are found in [182]. The system is modeled with a 4

MW diesel generator, 2 MW solar PV, 2 MW wind plant, and 0.3 MW BESS installed capacities.

The network performance is measured by utilities using the reliability indices. The integration of

RESs using AMPC is necessitated for reliability improvement and cost reduction. Case studies

were used to assess the effects of the proposed method. RESs 1, 2, and 3 are solar PV, BESS and

wind plant. The case studies are:

i. Power system containing the diesel generator and RES 2.

ii. Power system containing the diesel generator, RESs 1 and 2.

iii. Power system containing the diesel generator, RESs 2 and 3.

iv. Power system containing the diesel generator, RESs 1, 2, and 3.

Table 5.4 shows the impacts on the reliability of the system. Table 5.5 shows the results for

the system costs for different case studies. The annual maintenance cost Camc, annual fuel cost

Ca f c, annual emission cost Caec, annual replacement cost Carc, annual capital cost Cacc, annual cost

of system Cacs, net present cost Cnpc, and cost of energy, Ccoe were considered for the different

case studies. Table 5.6 shows the impacts of incorporating solar PV, wind plant, and BESS on the

annual emissions and fuel consumption.

Figures 5.9 to 5.18 show the results of EENS (MWh/yr.), ECOST , Ceens or KeEENS, Ctoc,
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Table 5.4 Cost impacts on reliability using renewable energy sources integration.

Description Case 1 Case 2 Case 3 Case 4

EENS (MW h/yr) 6 874.4 6 451.4 6 515.2 6 367.5

ECOST (million $/yr) 8.806 8.269 8.102 8.002

Ceens or KeEENS (mil-

lion $/yr)

37.809 35.483 35.834 35.021

Ctoc (million $/yr) 37.818 35.491 35.842 35.029

Improvement on EENS

(MW h/yr)

- 423.0 359.1 507.0

% improvement on EENS - 6.15 5.22 7.37

Improvement on ECOST

($/yr)

- 536.9 704.3 804.5

% improvement on

ECOST

- 6.10 8.00 9.14

Improvement on Ceens

(million $/yr)

- 2.326 1.975 2.788

% improvement on Ceens - 6.15 5.22 7.37

Improvement on Ctoc (mil-

lion $/yr)

- 2.327 1.976 2.789

% improvement on Ctoc - 3.00 5.23 7.37
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Table 5.5 Cost saving impacts of renewable energy sources integration.

Description Case 1 Case 2 Case 3 Case 4

Camc (million $/yr) 0.834 0.751 0.687 0.687

Ca f c (million $/yr) 6.706 4.895 4.870 4.840

Caec (million $/yr) 0.510 0.371 0.370 0.368

Carc (million $/yr) 1.854 1.872 1.872 1.877

Cacc (million $/yr) 2.798 3.005 3.033 3.208

Cacs (million $/yr) 12.694 10.879 10.798 10.979

Cnpc (million $/yr) 27.606 23.660 23.483 23.451

Ccoe (($/kW h) 0.075 0.065 0.064 0.064

Improvement in Camc (million $/yr) - 0.083 0.147 0.147

% Improvement in Camc - 9.936 17.591 17.601

Improvement in Ca f c (million $/yr) - 1.811 1.836 1.866

% Improvement in Ca f c - 27.011 27.380 27.825

Improvement in Caec (million $/yr) - 0.139 0.140 0.142

% Improvement in Caec - 27.273 27.507 27.909

Increase in Carc (million $/yr) - 0.018 0.019 0.024

% Increase in Carc - 0.971 1.020 1.273

Increase in Cacc (million $/yr) - 0.208 0.235 0.410

% Increase in Cacc - 7.424 8.397 14.666

Improvement in Cacs (million $/yr) - 1.815 1.896 1.715

% Improvement in Cacs - 14.298 14.936 13.510

Improvement in Cnpc ((million $/yr) - 3.946 4.123 4.155

% Improvement in Cnpc - 14.294 14.935 15.051

Improvement in Ccoe ($/yr) - 0.011 0.011 0.012

% Improvement in Ccoe - 14.19 15.12 15.25125



Table 5.6 Impacts of incorporating RESs and BESS on the annual emissions and fuel
consumption.

Description Case 1 Case 2 Case 3 Case 4

Fuel (1000 L/yr) 44 036 26 356 20 281 19 610

COx (1000 kg/yr) 57 375 34 425 26 966 25 245

NOx (1000 kg/yr) 584.38 352.38 273.49 256.54

SOx (1000 kg/yr) 31.40 19.12 14.79 13.53

Camc, Ca f c, Caec, Cacs, Carc, Cacc, Cnpc, and Ccoe, respectively, in the four case studies. Generally, it

can be observed that the results in Case 4 supersede the other case studies, thereby demonstrating

the benefits of the integration of RES in reliability improvements.

For clarity, the results for cases 2-4 of Figure 5.10 are not the same. The ECOST (million $/yr)

for cases 1-4 are 8.8061, 8.2692, 8.1018 and 8.0016 respectively. The Ceens or KeEENS (million

$/yr) for cases 1-4 are 37.809, 35.483, 35.834 and 35.021 respectively. The Ctoc (million $/yr) for

cases 1-4 are 37.818, 35.491, 35.842 and 35.029 respectively.

Figure 5.9 Change in EENS
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Figure 5.10 Change in ECOST , Ceens and Ctoc

Figure 5.11 Change in Camc, Ca f c, Caec and Cacs
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Figure 5.12 Change in Carc and Cacc

Figure 5.13 Change in Cnpc
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Figure 5.14 Change in Ccoe

Figure 5.11 shows the improvements in EENS (MWh/yr.), of Cases 2 to 4 from Case 1. Cases

2, 3 and 4 increased by 422.97, 359.14 and 506.89 respectively. In Figures 5.12, Cases 2, 3 and 4 of

ECOST ($/yr) improved by 536.9, 704.3 and 804.5 over Case 1; Cases 2, 3 and 4 of Ceens (million

$/yr) improved by 2.326, 1.975 and 2.788 over Case 1; while for Ctoc (million $/yr), Cases 2, 3 and

4 improved by 2.327, 1.976 and 2.789 over Case 1 respectively. Figures 5.13 shows that Cases 2,

3 and 4 of Camc (thousand $/yr) improved by 82.83, 146.65 and 146.73 respectively over Case 1

(hence, the integration of RESs results in spending less on maintenance costs); Cases 2, 3 and 4 of

Ca f c (million $/yr) improved by 1.811, 1.836 and 1.866 over Case 1 (resulting in a significant drop

in spending on diesel fuel); Cases 2, 3 and 4 of Caec (thousand $/yr) improved by 139.03, 140.22

and 142.27 over Case 1 while Cases 2, 3 and 4 of Cacs (million $/yr) improved by 1.815, 1.896

and 1.715 over Case 1 respectively. Figure 5.14 shows that there is an increase in Carc (thousand

$/yr) in Cases 2, 3 and 4 by 18.0, 18.9 and 23.6 respectively over Case 1 and an increase in Cacc

(thousand $/yr) in Cases 2, 3 and 4 by 207.7, 234.9 and 410.3 respectively over Case 1. These two

increases are reasonable and understandable. Although there are increases in these two costs in

Cases 2 to 4 as compared to Case 1, the overall cost of the system, Cacs, shows improvement.
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Figure 5.15 Improvements on EENS

Figure 5.16 Improvements on ECOST , Ceens, and Ctoc.
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Figure 5.17 Improvements in Camc, Ca f c, Caec, and Cacs.

Figure 5.18 Improvements in Carc and Cacc.

Figure 5.15 shows Cnpc (million $/yr) in Cases 2, 3 and 4 with an improvement of 3.946,

4.123 and 4.155 respectively over Case 1. All these improvements in Figures 5.11-5.15 lead to the

improvement in Ccoe ($/kWh) in Cases 2, 3 and 4 by 0.0107, 0.0114 and 0.0115 respectively over

Case 1, i.e., cheaper costs of electricity units. This is illustrated in Figure. 5.16.
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Figure 5.19 Improvement in Cnpc

Figure 5.20 Improvements in Ccoe.

Figures 5.21 to 5.23 illustrate the percentage improvements in Cases 2 to 4 when compared to

Case 1. The percentage improvements of EENS, Cnpc and Ccoe are shown in Figure 17. EENS

improved by 6.15 %, 5.22 %, and 7.37 % in Cases 2, 3, and 4, respectively, when compared to

Case 1. The percentage improvement in Cnpc ranges from 14.3 % to 15.0 %, while Ccoe ranges

from 14.2 % to 15.3 %. In Figure 5.22, ECOST , Ceens and Ctoc have percentage improvements

ranging from 6.1 % to 9.1 %, 6.1 % to 7.4 %, and 2.9 % to 7.4 % respectively. Figure 5.23 shows
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the Camc, Ca f c, Caec and Cacs with percentage improvements ranging from 9.9 % to 17.6 %, 27.0

% to 27.8 %, 27.3 % to 27.9 % and 13.5 % to 14.9 % respectively. The percentage increase of

Carc and Cacc in Figure 5.24 range from 0.9 % to 1.2 % and 7.4 % to 14.7 % respectively. These

increases in Carc and Cacc are projected to reduce overtime as investments in RESs intensify.

Figure 5.21 Percentage improvement in EENS, Cnpc and Ccoe.

Figure 5.22 Percentage improvements in ECOST , Ceens, and Ctoc.
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Figure 5.23 Percentage improvement in Camc, Ca f c, Caec, and Cacs.

Figure 5.24 Percentage increase in Carc and Cacc.

5.10 Impacts of the Annual Real Interest Rate

The effects of the annual real interest rates (ARIRs) on the various economic and emission param-

eters are presented in this section. The economic parameters considered in this study are Cacs, Ccoe,

Cnpc and Ctoc. The emission parameters are COx, SOx, and NOx are also addressed.
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5.10.1 Relationship Between Annual Real Interest Rate and Annual Cost of

System, Net Present Cost and Total Outage Cost.

The plot in Figure 5.25 shows the relationships between the ARIR and Cacs, Cnpc, and Ctoc. Initially,

Cacs is approximately $10.9 million/yr between an ARIR of 2% to 5.2% before increasing to $11.17

million/yr at 6 % and then steadily increasing to $11.88 million/yr at 12 %. This shows that higher

ARIR means higher Cacs. This cost is directly or indirectly borne by the consumers. Cnpc is shown

to be inversely proportional to the ARIR. This illustrates that higher ARIR means lower Cnpc for

RES goods and services. By implication, higher ARIR erodes the present values of RES goods and

services. At first, Ctoc maintains an approximate value of $35.11 million/yr between an ARIR of

2 % to 4.5 % before increasing to $35.23 million/yr at 6 %, and then steadily increasing to $36.33

million/yr at 12 %. By implication, higher ARIR means higher Ctoc and higher consumer cost

burden.

Figure 5.25 Effect of annual real interest rate on Cacs, Cnpc and Ctoc.
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5.10.2 Relationship Between Annual Real Interest Rate and Annual Cost of

Energy

Figure 5.26 shows that the relationship between ARIR and the Ccoe is almost linear and slightly

rising. When the ARIR is high, Ccoe is also high. This implies that policymakers and government

should make efforts to reduce the annual real interest rate on RES-related goods and services in

order to encourage mass deployment of RESs. This will lead to cheaper electricity for consumers.

Figure 5.26 Effect of annual real interest rate on Ccoe.

5.10.3 Relationship Between Annual Real Interest Rate and Emission Pa-

rameters

Figures 5.27 to 5.29 show the relationships between the emission oxides (COx, SOx, and NOx),

the ARIR, and the RESs. Generally, at lower RES input, the COx, SOx, and NOx emissions were

high because the diesel generator operates for more hours. Therefore, the ARIR must be kept low

in order to keep the emission low and maintain a high penetration of RESs.
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Figure 5.27 Effect of annual real interest rate on COx.

Figure 5.28 Effect of annual real interest rate on SOx.

5.11 Comparison with other Reliability Optimization Methods

Table 5.7 presents the comparison of AMPC with other reliability optimization methods for the cost

function formulation of Case 4. The acronymns in Table 5.7 are defined as follows: DS-differential
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Figure 5.29 Effect of annual real interest rate on NOx.

Table 5.7 Comparison with other reliability optimization methods.

Method Simulation Time(s) Ceens (million $/yr) ECOST (million $/yr) COx (1000 kg/yr) Cacs (million $/yr)

GSA 83.024 36.105 9.782 36 856 11.605

ACO 87.300 36.559 10.379 36 923 11.947

GA 90.735 37.065 12.010 37 302 13.672

DE 88.121 36.721 10.983 37 018 12.547

PSO 88.981 36.929 11.809 37 275 13.021

DS 85.141 36.093 9.327 36 810 11.103

AMPC 75.424 35.021 8.002 36 777 10.979

search; PSO-particle swarm optimization; DE-differential evolutionary algorithm; GA-genetic al-

gorithm; ACO-ant colony optimization; GSA-gravitational search algorithm; and AMPC-adaptive

model predictive control. The results show that the simulation times for AMPC are much less than

that of the other methods when calculating Ceens, ECOST , COx, and Cacs. The results also show

much smoother characteristics and superior computational efficiency of the AMPC algorithm.
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5.12 Conclusions and Future Study

In this study, the economic, environmental, and reliability impacts of fossil fuel generators, Solar

PV, WP, and BESS in a micro-grid power system are investigated using the meteorological data of

Pietermaritzburg, KZN, South Africa. The objective functions considered are reliability improve-

ment, cost and emission minimization. The variables Ctoc, Camc, Ca f c, Caec, Carc, Cacc, Cnpc, and

Ccoe are carefully chosen as operational costs for the network. The oxides selected for emissions

are COx, SOx, and NOx. EENS and ECOST are the reliability indices used for the evaluation of

the network. The optimization problem is solved using an AMPC algorithm. The verification of

the proposed approach is done using a modified RBTS test system. Simulation results show that

the integration of a fossil fuel generator, RESs and a BESS using AMPC can improve reliability,

reduce emissions and minimize operational costs of the micro-grid. AMPC implementation in a

micro-grid system containing a fossil fuel generator, RESs and a BESS decreases the Ccoe by de-

creasing the associated operational costs. Decreasing the emissions level is done by reducing the

operational hours of the fossil fuel generator. By introducing different sources of renewable energy

into the micro-grid, EENS and ECOST are minimized leading to an improvement in the reliability

of the system. The results show that for policymakers, government, and investors to embark on a

system that makes economic and environmental sense, the ARIR must be kept as low as possible.

The economic, environmental, and reliability improvement of the power system is expected to im-

pact the performance of the system. The RESs are projected to dominate power supply worldwide

in the future.

However, this study acknowledges the limitation that all the standards, costs and data used in

this research are assumed to be accurate at the time this study was conducted. In this study, the

physical implementation of the proposed method on the field is not included.
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Further research works considering other optimization methods could be conducted to explore

further reliability improvement of power systems. While optimal solutions have been determined

using AMPC algorithm, similar data and objective functions can be subjected to other algorithms

and the output and efficiency compared. Superior results and reduced computation time of the

algorithm are possible if a combination of the methods are used.
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Chapter 6

Conclusions and Future Work

6.1 Conclusions

The transition to smart grid and sustainable power will create new and complex problems that

require appropriate modelling. Such problems find strong examples in the long-term reliability

evaluation of the power systems. The integration of RESs into conventional grids or transition

to a 100 % RESs can have a significant effect on the reliability of electricity. Hence, modelling

appropriately for this type of system is important so that the effects that such transition will have

on the reliability and security of supply is evaluated accurately. To evaluate the reliability of power

systems, computational intelligent techniques are some of the most appropriate tools. This work

investigated the application of computational intelligent techniques in improving the reliability of

the power systems with the integration of renewable energy sources. In Chapter 3, an ANN-based

predictive model using a back-propagation algorithm of a feed-forward ANN, and the historical

outage and meteorological data of Pietermaritzburg, KZN, South Africa were developed to improve
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the reliability of the power system. The results confirmed that the developed model is robust

and appropriate in predicting weather related electricity system failure. The complex relationship

between weather events and electricity system failure is demonstrated by the developed model.

In Chapter 4, a CONN-based model was developed to address complex power outage predic-

tive problems using solutions of easier sub-problems to solve the complex problem. The historical

outage and meteorological data of Newcastle, KZN, South Africa was used. The CONN model

addressed the problems of multiple constraints and non-availability of large outage datasets. An

effective optimal power outage forecasting solution is provided by the CONN algorithm according

to the various outage events and network constraints. The satisfactory results of the CONN algo-

rithm show that the model is effective in providing power outage forecasting solutions to multi-

constrained and complex problems.

Finally, in Chapter 5, an AMPC-based model was developed to investigate the economic, en-

vironmental, and reliability impacts of fossil fuel generators, with the integration of RESs, such as

solar PV, WP, and BESS in a micro-grid power system using the meteorological data of Pietermar-

itzburg, KZN, South Africa. The network was evaluated using the EENS and ECOST reliability

indices. The approach verified using a modified RBTS test system. The developed AMPC model

was able to improve reliability, reduce emissions and minimize operational costs of the micro-grid.

In general, the research work has confirmed that the reliability of the power systems can be

improved using computational intelligent techniques and RESs.
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6.2 Limitations of the Study

This thesis will like to acknowledge the following limitations:

1. The research work addressed the technical limitations of the various power sources consid-

ered, but did not take into consideration the limitations from government policies and other

logistics;

2. The historical outage and climatic data of only the cities of PMB and NWC, KwaZulu-Natal,

South Africa were considered;

3. The physical implementations of the proposed methods on the field were not included; and

4. All the standards, costs and data used were assumed to be accurate at the time this study was

conducted.

6.3 Suggestions for Future Study

The studies considered different reliability problems experienced by power systems and have de-

signed and developed different solutions using different methods. The work is very significant in

the field of implementation of intelligent techniques, design and modelling methodologies, smart

grid, and RESs. Many technical problems have been addressed and there is the possibility of

extending the methods proposed in this thesis to cover different applications. Further work is

therefore proposed to cover the following:

1. Practical implementation of the proposed methods could be undertaken to validate the sim-

ulation experiments;
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2. The integration of more or combination of other algorithms into the proposed methods to

increase their scope and applicability;

3. Other optimization methods could be used to investigate the reliability improvement of

power systems;

4. Similar data and objective functions can be subjected to other algorithms and the output and

efficiency compared;

5. A combination of novel intelligent methods could produce superior results and reduce com-

putation time of the algorithm;

6. Probabilistic models could be developed for home energy management systems (HEMS) and

their effects on the reliability of power systems studied; and

7. A user interface program for the integration of the algorithms and techniques could be de-

veloped for easier use of the models.
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