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ABSTRACT

Human Emotion Recognition occupies a very important place in artificial intelligence and has sev-

eral applications, such as emotionally intelligent robots, driver fatigue monitoring, mood prediction,

and many others. Facial Expression Recognition (FER) systems can recognize human emotions by

extracting face image features and classifying them as one of several prototypic emotions. Local

descriptors are good at encoding micro-patterns and capturing their distribution in a sub-region of

an image. Moreover, dividing the face into sub-regions introduces information about micro-pattern

locations, essential for developing robust facial expression features. Hence, local descriptors’ effi-

ciencies depend heavily on parameters such as the sub-region size and histogram length. However,

the extraction parameters are seldom optimized in existing approaches.

This dissertation reviews several local descriptors and classifiers, and experiments are conducted

to improve the robustness and accuracy of existing FER methods. A study of the Histogram of Ori-

ented Gradients (HOG) descriptor inspires this research to propose a new face registration algorithm.

The approach uses contrast-limited histogram equalization to enhance the image, followed by bi-

nary thresholding and blob detection operations to rotate the face upright. Additionally, this research

proposes a new method for optimized FER. The main idea behind the approach is to optimize the

calculation of feature vectors by varying the extraction parameter values, producing several feature

sets. The best extraction parameter values are selected by evaluating the classification performances

of each feature set. The proposed approach is also implemented using different combinations of local

descriptors and classification methods under the same experimental conditions.

The results reveal that the proposed methods produced a better performance than what was re-

ported in previous studies. Furthermore, the results showed an improvement of up to 2% compared

with the performance achieved in previous works. The results showed that HOG was the most effec-

tive local descriptor, while Support Vector Machines (SVM) and Multi-Layer Perceptron (MLP) were

the best classifiers. Hence, the best combinations were HOG+SVM and HOG+MLP.

Keywords: Facial Expression Recognition; Local descriptors; Classification; Feature extraction.
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CHAPTER 1

INTRODUCTION

This dissertation is about Human Emotion Recognition based on analyzing face images in computer

systems.

1.1 Background

Emotion plays a central role in human interactions with other humans and human-machine interac-

tions. To make computers more useful and accessible to humans, it is essential to understand their

feelings and behavior in response to various stimuli [1]. For example, service robots demonstrating

emotional awareness could make human-computer interactions more natural and enjoyable. Market-

ing strategies that develop specialized adverts and customer reviews focused on users’ emotional states

will likely increase product acceptance [2]. Research in Human Emotion Recognition has been used

to develop assistive technology for disabled people [3]. It is also used in psychological studies for di-

agnosing mental diseases and concerning the level of technology adoption and effectiveness of remote

learning and working [4].

Several theories and models of emotion have been proposed to classify the spectrum of human

emotions. Feidakis et al. [5] identified up to 66 emotions and categorized them as basic/primary

(e.g., anger, anticipation, distrust, and fear) and secondary emotions (e.g., hopelessness, envy, and

satisfaction). However, the overlapping nature, subjectivity, and the sheer number of emotions make

it challenging to develop systems to recognize human emotions. For this reason, most studies have

focused on basic emotions, which are more easily defined. Russel’s [6] circumplex model of emo-

tions distributes the basic emotions on a two-dimensional space with respect to the valence (whether

negative or positive) and arousal (i.e., the intensity) components of emotion (see Figure 1.1).

Emotion recognition methods can be differentiated based on which aspects of the human body

are used to detect emotional states. Techniques based on electroencephalography recognize emotions

by monitoring the brain’s electrical activity, while electrocardiography measures the heart’s electri-
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Figure 1.1: Russel’s circumplex model of emotions [1].

cal activity. Other methods include skin resistance measurements, blood pressure, eye activity, body

gestures, and facial expressions. Recent advances in computer vision have increased interest in devel-

oping emotion recognition systems based on facial expressions. Facial Expression Recognition (FER)

does not require contact with the subject and provides high accuracy and reliability. However, FER

systems are challenged by several issues stemming from face image acquisition. Mainly, camera sen-

sors are used; hence, factors such as image resolution, scene illumination, head pose, and occlusions

are some difficulties that only FER systems face.

Three processes are essential when developing a robust FER system: 1) Face image acquisition, 2)

Feature extraction, and 3) Classification. Face detection aims at locating a face region and returning its

position. The human face contains much information, which is not necessarily helpful in recognizing

facial expressions. Feature extraction is essential for obtaining an appropriate face representation

that characterizes face deformations while discarding non-expression information. The facial features

must then be classified as one of the prototypic emotions.

Local descriptors are a collection of image features that extract textural lines, spots, edges, and

corners from images. Several approaches have been developed based on local descriptors due to their

simplicity and efficiency in characterizing facial expressions [7, 8, 9]. Deep learning techniques have
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also attracted much attention from the community due to their increased capacity for high recognition

rates [10]. The debate between handcrafted and deep features is still active because it is challenging

to obtain robust facial expression features [11].

1.2 Motivation and Problem Definition

A FER system typically operates in three stages: in the first stage, a face region is detected; in the

second stage, facial features are extracted to produce a feature vector; and finally, the feature vector

is classified as a facial expression in the third stage. Although much research has been done in this

area, many approaches are still under-underutilized and can be improved. After a face is detected, a

common task is normalizing the face region by performing operations such as contrast enhancement,

cropping, resizing, and face alignment. In [12], this process is called face registration, where Viola-

Jones-based algorithms and ellipse fitting techniques are used to detect a face region, align it and

remove background objects. However, this method relies on facial feature color models to rotate the

face blob, limiting its applicability to gray-scale images. Although face registration is part of many

FER approaches, little effort has been made to formulate an automated solution. This motivates this

study to propose an automated face registration algorithm. Additionally, the impact of face registration

on the recognition performance of various FER approaches must be investigated.

Feature extraction is aimed at generating a feature vector from a face image. The extracted fea-

tures must be robust to illumination variation, pose changes, occlusions, and low-resolution images.

Local descriptors are a powerful way of representing expression-related information. In particular,

the histogram-based local descriptors represent the occurrences of micro-patterns that make up facial

expressions. It is known that the aggregation of these micro-patterns into histograms leads to a loss of

information about the location of the micro-patterns [13, 14]. One solution is dividing the face region

into overlapping or non-overlapping sub-regions. Shan et al. [13] used the Local Binary Patterns

(LBP) descriptor to extract features from sub-regions of a face image. After that, a histogram was

created with 59 bins and extracted from 18×21 pixels sub-regions in a 110×150 image. However, the

extraction parameters (i.e., number of bins and sub-region) seemed arbitrarily chosen. Carcagni et al.

[12] studied the Histogram of Oriented Gradients (HOG) descriptor and proposed a method for opti-

mizing the cell size and histogram bins during the feature extraction. The study compared the HOG
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descriptor with three other local descriptors. However, the method for selecting the other descriptors’

parameters was not given. This motivates an investigation into optimizing the histogram-based local

descriptors for Facial Expression Recognition.

The final task of FER is to label a feature vector as one of a set of prototypic expressions. Ma-

chine learning classification methods help perform this task by creating a model for labeling feature

vectors based on a dataset. Some classification methods, such as Support Vector Machines (SVM),

are designed to divide the feature space into discrete classes. Recent studies have attempted to review

various local descriptors for Facial Expression Recognition. However, most of the time, only one or

two classifiers are used [11, 15]. Furthermore, whenever a method is evaluated, it is often compared

to other studies conducted under different conditions. Hence, it is necessary to analyze and compare

the performance of different combinations of local descriptors and classification methods under the

same experimental conditions.

1.3 Main Goal and Specific Objectives

The main goal of this research is to investigate existing local descriptors and classification techniques

for Human Emotion Recognition. This will ultimately require developing Facial Expression Recogni-

tion systems based on facial images.

Developing a robust and reliable FER system is particularly challenging because several factors

must be considered, such as the camera’s view angle, obstructing objects (or occlusions), the image

resolution, the scene illumination, and the color channels considered. The selection of which factors

to prioritize is highly dependent on the application. For example, service robots and surveillance

cameras must be able to handle different head poses and low image resolutions. On the other hand,

online learning and video meetings are most likely to deal with frontal-view images, higher image

resolutions, and few view obstructions. This research considers frontal face images and low-resolution

images as challenging conditions for FER. The algorithms were developed to reduce computational

costs while optimizing the recognition performance, assuming the input images were in the gray-scale

format.

The following specific objectives have been carried out:

• Replicate a study on the Histogram of Oriented Gradients (HOG) descriptor to confirm, under-
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stand and verify observations found in theory and literature.

• Obtain datasets with appropriate data that is unbiased of any factor or characteristic through

extensive literature surveys.

• Implement selected local descriptors and classifiers, depicting a comparative contrast between

the distinct methodologies and their suitability contexts and problems.

• Analyze and discuss the results, portraying strengths, weaknesses, and situational trade-offs

among each model and chosen local descriptors.

• Identify the most suitable combination of classifiers and local descriptors for Human Emotion

Recognition.

1.4 Contributions

This work contributes to the field of Human Emotion Recognition in the following ways:

• Identified factors that can improve the discriminability and robustness of existing and future

local descriptors for Facial Expression Recognition. One of the factors is the development of

expression-specific features.

• Proposed a novel face registration algorithm for aligning, cropping, and resizing the face image

before extracting features.

• Found that several local descriptors have been underutilized due to the lack of parameter opti-

mization. For instance, when used in its original form, the LBP descriptor is inefficient. How-

ever, appropriately selecting the number of histogram bins and sub-region size can improve its

classification performance.

• Analyzed the performances of several local descriptors and classifiers in the FER problem.

Experiments were conducted under different settings, such as varied extraction parameters, dif-

ferent numbers of expressions, and two well-known datasets. A new texture descriptor, ALDP

(Angled Local Directional Pattern), was examined with several classifiers for the first time.
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1.5 Dissertation Outline

• Chapter 2 presents a literature review of existing local descriptors for Facial Expression Recog-

nition. It also discusses face detection and classification techniques.

• Chapter 3 presents a study done to replicate a selected work on the HOG descriptor.

• Chapter 4 discusses a method for optimizing four local descriptors for FER.

• Chapter 5 is a comparative study of six local descriptors and four classifiers for FER.

• Chapter 6 concludes this work and gives some ideas for future works.
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CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

The most common framework for Facial Expression Recognition is to extract facial features and clas-

sify them as basic emotions such as anger, surprise, happiness, fear, disgust, and sadness. Much of the

research has been devoted to developing local descriptors to represent facial deformations robustly and

efficiently. Turan and Lam [11] reviewed histogram-based local descriptors for FER. They compared

the performances of 27 local descriptors on four facial expression datasets using the same experimen-

tal setup. The following FER approach was implemented: 1) face and facial component localization;

2) image resizing and subdivision; 3) Feature extraction; 4) Dimensionality reduction, and 5) classifi-

cation. Two different cross-validation schemes were used (i.e., Leave-One-Subject-Out and 10-fold).

Local Phase Quantization (LPQ) and Local Gabor Binary Pattern Histogram Sequence (LGBPHS)

achieved the best overall performances, giving consistent results across most datasets.

Slimani et al. [15] analyzed the performances of 46 LBP variants for Facial Expression Recogni-

tion on four datasets. The FER approach was configured as follows: 1) face localization and resizing;

2) feature extraction; 3) feature image subdivision and histogram calculation; 4) classification. The

study used the half-half scheme, and the average per-class accuracies were computed. Results show

that texture descriptors initially proposed for tasks other than facial emotion recognition can outper-

form state-of-the-art systems. The best recognition rates achieved were 100%, 98.57%, 95.92%, and

100% for CK, JAFFE, KDEF, and MUG databases, respectively.

The studies above reveal that local texture descriptors have great potential in developing future

FER systems. However, very few reviews have exclusively studied local descriptors designed to tackle

the FER problem. This review attempts to fill this gap by presenting FER’s most recent local descrip-

tors, including their strengths and weaknesses. An attempt is also made to identify specific factors that

could enhance the performance of future FER systems.

As seen in Figure 2.1, the general process for Facial Expression Recognition can be summarized

7



in four steps:

1. Face acquisition:

An input image is searched for a face region whose location must be returned. Additionally,

pre-processing operations may be performed to normalize facial appearance.

2. Feature extraction:

Features are extracted by applying a local descriptor (e.g., LBP or HOG) to the registered face.

This produces a feature image containing descriptor values in place of pixel intensity values.

3. Image subdivision and histogram computation:

The feature image is divided into equally sized sub-regions. A 1D histogram is computed for

each of the sub-regions. An additional step involves normalizing the histogram to increase its

generalizability. The normalized histograms of all the sub-regions are concatenated and the final

histogram is treated as a feature vector for classification.

4. Classification:

In the training stage, a model is learned based on feature vectors extracted from the training

set and their corresponding labels. The learned model is then used to classify a new sample’s

feature vector as one of the prototypic expressions.

Figure 2.1: Pipeline for a Facial Expression Recognition system using local descriptors.

2.2 Face Acquisition

2.2.1 Overview

Face acquisition is the preliminary step to recognizing a facial expression. The main processes in-

volved in acquiring facial data include face detection and face registration. Face detection is the
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process of searching an image for a face region. Once the face region has been located, its position

and bounds are returned. Face detection is usually followed by face registration/pre-processing, which

gives the face region a predefined shape, size, and pose.

2.2.2 Face Detection

Several techniques have been developed for detecting a face region from an image. Some face detec-

tion techniques include but are not limited to eigenspace methods, Haar classifiers, AdaBoost classi-

fiers, contour points, and skin color segmentation [16]. The Viola-Jones face detector [17] is one of

the most popularly used in modern FER systems [18, 19, 20, 21].

A Viola-Jones face detector is based on extracting Haar-like (i.e., rectangular) features computed

from an integral image (allowing features to be computed rapidly) and building a ”strong” classifier by

combining many ”weak” classifiers with increasing complexities. The cascade structure of classifiers

allows the background regions to be discarded from the image quickly and the face regions to be found

more quickly. Additionally, the framework is resilient to illumination variation, scale variation and

has a low computational cost and high true positive rate [12]. Figure 2.2 illustrates the detection of

faces of varying resolutions on the MIT + CMU dataset [17]. Some limitations of this strategy are the

long training periods and poor performance with rotated face images.

Figure 2.2: Examples of detected faces on the MIT+CMU dataset [17].
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2.2.3 Face Registration

Face registration (or face normalization or pre-processing) is essential to discard noise and person-

specific information (such as background and hair) from the face image. To train a machine learning

model, the input feature vector is required to have a predefined dimensionality. Thus, the basic re-

quirement of every FER system is that all face samples are of the same size, ensuring that all feature

vectors have the same dimensionality. In [22], faces are detected using the Dlib library [23], followed

by detecting 68 facial landmark points using the facial landmark detector in the same library. The

landmark detector uses a regression tree model, which finds these facial points directly from the pixel

intensities, allowing for a speedy detection. Finally, the faces are resized to 130 × 130 pixels. Note

that the faces are not aligned. This process is illustrated in Figure 2.3.

Figure 2.3: A framework for face detection and face extraction: (a) the original image, (b) the detected
face with 68 landmarks, (c) the face region, (d) the extracted face. [22].

In [8], 48 facial landmarks are detected using the Cascade Linear Regression (CLR) method. Then,

the distance between the eye centers is fixed to 55 pixels, followed by face alignment to reduce head

position variability. Finally, the distance between the eyes is used as a measure to resize the image to

110×150 pixels. In [19], the face is detected using the Viola-Jones algorithm and cropped to 100×100

pixels. No other processing is performed. In [12], an ellipse is fitted around the detected face blob

to rotate the face to a vertical position. Then, the locations of the eyes provide a measure to crop

and scale the face image to a size of 65×59 pixels. Note that the ellipse-fitting algorithm depends on

facial feature color models, making it unusable for grayscale images. Figure 2.4 illustrates the face

registration algorithm developed in [12].
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Figure 2.4: A face registration framework where the face is first rotated using a fitted ellipse, followed
by cropping and scaling the face area using the eye positions [12].

2.3 Feature Extraction

Feature extraction techniques can either be frame or sequence-based, depending on whether a static

image or a video sequence is used to extract facial features [24]. The frame-based approaches ex-

tract only the spatial information, such as the appearance and geometry of the face, which is then

used to characterize the facial expression. In contrast, the sequence-based approach can extract spatial

and temporal features to describe the evolution of expressions during a video sequence. Frame-based

approaches are preferred due to their simplicity, and no assumption is made about how the expres-

sion evolves (an assumption for many sequence-based approaches). Thus, the development of FER

systems based on static images has attracted much attention. Two main trends can be identified in

developing FER systems in this category. The first trend is the development of FER systems based on

the extraction of handcrafted features; the other consists of deep learning approaches.

Handcrafted techniques rely on domain-specific knowledge about the human face, such as fa-

cial skin changes (e.g., wrinkles) and the movement of facial components (e.g., the raising of the

eyes and the opening/closing of the mouth during an expression of surprise). Within the handcrafted

techniques, the geometrical features were developed to describe the shape and location of facial com-

ponents [25, 26, 27, 28, 29]. Some work was also done to reconstruct action units and interpret their

combinations as facial expressions [30]. Geometry-based FER systems were difficult to develop be-

cause they required the accurate labeling of action units and landmarks, which is time-consuming and

tedious. During this time, appearance-based FER systems were being developed, giving rise to local

descriptors for facial expression representation. Local descriptors have been used to extract texture
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information such as edges, corners, and spots that make up facial expressions and achieved the same

or better results while being less tedious to develop than the geometric features [31].

Recently, deep neural networks have been studied for Facial Expression Recognition [32, 33, 34,

35]. Unlike traditional techniques, deep learning includes little knowledge about facial structure and

appearance. Deep learning systems automatically detect and extract facial features based on neural

network layers such as convolution, pooling, and fully-connect layers. This field is attracting more

and more attention due to the improved recognition capacity offered by deep neural networks for static

and sequence-based recognition. Mainly, CNN (Convolution Neural Networks) is the basic network

for extracting more discriminative spatial features from face images, while LSTM (Long Short-Term

Memory) and RNN (Recurrent Neural Networks) are suitable for characterizing the spatio-temporal

features of sequences [10].

Although deep learning has improved the state-of-the-art in FER, it is still faced with several lim-

itations. The need for large-scale datasets, massive computing power, and large amounts of memory

make deep learning less desirable for embedded applications [36]. According to Ko [24], there is not

a solid theory of CNN, so it is not easy to understand why and how they work. On the other hand, FER

approaches based on handcrafted features are developed using face-physics-based models. Moreover,

handcrafted techniques, such as local descriptors, generally have a smaller memory footprint and are

computationally less complex. Therefore, it is arguable that, if appropriately crafted, conventional ap-

proaches can be more efficient and cost-effective than deep learning, especially for mobile platforms.

2.4 Local Descriptors

2.4.1 Overview

Local image descriptors are a common way of characterizing images for various computer vision

tasks. One of the most popular local descriptors is the Local Binary Patterns (LBP) descriptor [37].

Due to its high discriminability and robustness to image variants such as scale and rotation, LBP has

been a preferred choice for many classification problems. Although initially intended for texture clas-

sification, LBP has been applied to various problems such as face recognition, image retrieval, and

Facial Expression Recognition [11]. Initially, LBP variants were preferred due to their simplicity,

robustness to illumination variation, and ability to represent various facial textures. However, these
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approaches have been limited because they do not discriminate useful from non-useful textures, mak-

ing them sensitive to noise and positional variations. LBP has inspired the development of many other

local descriptors for FER, even outperforming the state-of-the-art deep learning approaches [38, 39].

Feature extraction based on local descriptors has two main components: local variation coding

and local feature representation [11]. Local variation coding aims at encoding a pattern (usually a

binary pattern) of image properties around a local region (usually around a pixel). Local feature repre-

sentation aims at capturing the distribution of the local variation codes in a sub-region (or sub-block)

expressed as a histogram. Finally, the histograms of all the sub-regions are concatenated to obtain a

feature vector. Local variation coding is a key component of local descriptors, and its effectiveness

in enhancing micro-patterns mostly depends on the image used for variation coding. Thus, the ap-

proaches in the literature can be differentiated based on the image properties they exploit to encode

patterns. Table 2.1 summarizes the research on local descriptors designed for FER over the last two

decades. Based on this research, local descriptors can be grouped into three main categories:

• Intensity-based approach

• Gradient-based approach

• Frequency, phase, and energy-based approach

2.4.2 Intensity-based Approach

The simplest form of local description compares the gray-levels or intensities of image pixels in a local

region. For instance, LBP is applied by thresholding each pixel in a textured image and replacing

them with binary codes. During the thresholding operation, the pixel value gc is compared with P

neighboring pixels and each Neighbor is assigned a binary value as follows: if the neighboring pixel

is less than the threshold it is assigned the value 0, otherwise it is assigned the value 1. Figure 2.5

shows as example, thresholding a 3×3 local patch with 8 neighbors, producing an 8-bit code. In this

case, the code has a dimension of 256. Several additions to the original LBP such as the definition of

a circular neighborhood and uniform patterns have been introduced to reduce the dimension of LBP

leading to a more compact representation [57]. The LBP descriptor is powerful because it can identify

micro-structures such as edges, lines, spots, and flat areas. Figure 2.6 gives examples of LBP codes
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Table 2.1: A summary of local descriptors for Facial Expression Recognition

# Ref. Year Complete name Abbrev. Image Property Dimension Strength Limitation

1 [40] 2011 Local Monotonic
Pattern

LMP Intensity 256 - -

2 [41] 2014 Median Binary
Pattern

MTP Intensity 512 - -

3 [42] 2014 Local Arc Pattern LAP Intensity 272 Better dimensionality,
speed, and efficiency than

LBP.

-

4 [43] 2012 Local Transitional
Pattern

LTrP Intensity - - -

5 [44] 2008 Centralized Binary
Pattern

CBP Intensity - - -

6 [45] 2014 Local Gradient
Pattern

LGP Intensity 8 Stable to monotonic
illumination changes.

Susceptible to noise.

7 [46] 2016 Local Dominant
Binary Pattern

LDBP Intensity 67 - -

8 [47] 2019 Local Prominent
Directional Pattern

LPDP Gradient magnitude
and orientation

- More resistant to
positional variation and

noisy edges.

-

9 [48] 2012 Gradient Directional
Pattern

GDP Gradient orientation 256 More stable and more
information than

intensity-based methods.

-

10 [49] 2013 Gradient-based
Local Ternary

Patterns

GLTeP Gradient magnitude 512 Resistant to illumination
variations and noise than
intensity-based methods

Threshold setting is
user-dependent.

11 [7] 2012 Local Directional
Pattern Variance

LDPv Edge responses 56 Insensitive to noise and
non-monotonous

illumination changes.

-

12 [50] 2012 Local Directional
Number

LDN Edge responses 56 More stable against noise
and illumination

variations.

-

13 [51] 2012 Local Gradient
Increasing Pattern

LGIP Edge responses 37 Stability to noise and
non-monotonic

illumination changes.

-

14 [52] 2013 Local Gray Code
Pattern

LGCP Edge responses - - -

15 [53] 2010 Local Directional
Pattern

LDP Edge responses 56 Less sensitive to noise
illumination and noise.

16 [39] 2022 Local Direction
Feature Structure

LDFS Edge responses - - -

17 [54] 2012 Binary Pattern of
Phase Congruency

BPPC Phase congruency 1062 Encodes expression
specific features.

Phase congruency leads
to high dimensionality

and computational costs.

18 [55] 2013 Local Gabor
Transitional Pattern

LGTrP Gabor transform 256 - High computational
complexity.

19 [56] 2012 Local Gabor
Directional Pattern

LGDiP Gabor transform 280 - High computational
complexity.
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obtained in a 3×3 pixel patch; 1 and 8 represent a spot or flat area, while 2, 3, 4 and 5 represent edges

of varying degrees of curvature.

Figure 2.5: An example of LBP computation on a 3×3 neighborhood. The threshold is 25 and the
labels are read clockwise to produce a binary pattern of 00111101.

Figure 2.6: Examples of LBP codes that occur in a circular symmetric neighborhood. Black and white
circles correspond to bit values of 0 and 1 respectively [57].

LBP can be formally defined as follows. Let I be a texture image, xc be the gray-level intensity

of the center pixel and xj be the neighboring pixels in local patch of P pixels. The LBP function is

defined by Equation (2.1).

LBP =

P−1∑
j=0

S(xj − xc)2
j (2.1)

where S(A) is defined as

S(A) =


1 if A ≥ 0

0 otherwise

The Median Ternary Pattern (MTP) combines the advantages of median filter and the quantization

of gray-scale values into three levels [41]. The code is more stable in the presence of noise and illu-

mination variation than Local Binary Patterns and Median Binary Patterns. However, MTP depends

on a user-specified threshold. Mohammad and Ali [40] proposed the Local Monotonic Pattern (LMP)

to find the monotonic intensity transitions of neighboring pixels at different radii and encodes them

similarly to LBP. Islam [45] presented the Local Gradient Pattern (LGP) based on the differences in

gray-levels of opposite pixels across the center of a 3 × 3 region. The pixel differences can be seen

as the local gradient flow across the center pixel. The local gradient flow is encoded as two differ-
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ent binary patterns concatenated to form a 4-bit code. The main contribution of this approach is its

simplicity and tiny feature vector length. In [43], the Local Transitional Pattern (LTrP) is proposed.

It compares the transition of intensity change at different levels of neighboring pixels. Santra and

Mukherjee [46] proposed a new descriptor called the Local Dominant Binary Pattern (LDBP) for Fa-

cial Expression Recognition of faces in multiple views. LDBP encodes an LBP-like pattern in a local

neighborhood but only in dominant directions of a pixel.

2.4.3 Gradient-based Approach

Gradient-based approaches examine the gradient/edge information in an image, enabling them to ex-

tract more expression-specific features than the intensity-based approaches. In this approach, edge

responses are computed by applying image filters. For example, the Local Directional Pattern (LDP)

descriptor uses eight Kirsch compass masks to compute the edge responses in 8 directions and en-

codes their relative strengths [53]. LDP assigns an 8-bit binary code to each pixel in an image using

a thresholding operation like the LBP operator. For each pixel, eight directional edges responses

{mi}7i=0 are computed by applying Kirsch masks (Mi) in eight different orientations centered on the

pixel’s position. Figure 2.7 shows the eight Kirsch edge masks in eight directions. Then the top-k

directional responses are assigned a 1 while the remaining 8 − k responses are assigned a 0. The se-

lection of k prominent directional responses makes the binary code resistant noise and non-monotonic

illumination changes. LDP is formally defined by Equation (2.2).

LDPk =

7∑
i=0

B(mj −mk)2
j (2.2)

where B(a) is defined as

B(a) =


1 if a ≥ 0

0 otherwise

Similarly, the Local Direction Number (LDN) extracts directional information using the edge re-

sponses in 8 directions and encodes it using the prominent direction indices and signs [50]. The direc-

tion information was computed using two types of compass masks (derivative-Gaussian and Kirsch
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Figure 2.7: Kirsch edge masks in eight orientations [50].

masks). The study found that Kirsch masks produce a more suitable code for expression recogni-

tion. Furthermore, the LDN code is more stable to illumination changes and noise than the Local

Directional Pattern and Local Derivative Pattern.

The Local Gradient Increasing Pattern (LGIP) defines a gradient image by replacing each pixel

with an 8-bit code according to the signs of eight responses computed from Sobel masks [51]. The So-

bel gradient operator produces a stable code faster than the Kirsch edges operator because the former

requires less computations. The Gradient Direction Pattern (GDP) quantizes the gradient directional

angles of pixels in a local neighborhood [48]. Gradients are computed by convolving the image with

two Sobel masks. GDP features are more stable and retain more information than gray-level-based

methods. However, the quantization depends on a user-specific threshold. Ahmed and Hossain [49]

developed the Gradient-based Local Ternary Pattern (GLTeP) by calculating the gradient magnitudes

of the local neighborhood using two Sobel masks and quantizing those values in three discrimination

levels. The method is robust to illumination variations but depends on a user-set threshold. Other

masks have been exploited. For example, Islam et al. [52] proposed the Local Gray Code Pattern

(LGCP) that finds the edge responses in eight directions using the Robinson compass mask and gen-

erates a code from the relative strength of the responses. Recently, Vidyarani and Math [39] proposed

the Local Direction Feature Structure (LDFS) that generates codes using the edge responses in four

directions and their matching feature structure. The specifics of the edge detection algorithm are not

given.

2.4.4 Frequency, Phase and Energy-based Approach

An image’s frequency, energy, and phase content has also been investigated. For example, the Bi-

nary Pattern of Phase Congruency (BPPC) descriptor applies the LBP descriptor to oriented Phase
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Congruency (PC) images [54]. PC images use the local phase information to enhance certain feature

types such as ridge, valley, and step edges, which are later encoded by the LBP descriptor. However,

the phase congruency calculation leads to high dimensionality. The Local Gabor Directional Pattern

(LGDP) combines both frequency and gradient properties by applying the Gabor filters over an image,

following convolutions to obtain the edge responses at each pixel. The code is generated in an LDP

fashion [56]. The drawback of the Gabor wavelets is a greater time and memory requirement. Ashan

et al. [55] combined an image’s Gabor wavelet transform and the local transitional codes to create the

Local Gabor Transitional Pattern (LGTrP). The method suffers from high computational cost due to

the computation of Gabor responses in eight directions.

BPPC can be more robust against illumination and contrast variations than the gradient-based

approaches due to its ability to describe various image features at different scales and orientations.

However, using multiple orientations in the PC calculation increases the computational costs.

To calculate the PC of a signal, its magnitude and phase information at a particular frequency must

be preserved. This can be achieved using two linear phase quadrature filters, such as the logarithmic

Gabor wavelet [58]. If I denotes the signal and M e
n and Mo

n represent the even-symmetric and odd-

symmetric wavelet at a scale n, respectively, then responses of each quadrature pair of filters are

expressed by the following vector:

[en(x), on(x)] = [I(x) ∗M e
n, I(x) ∗Mo

n]

As a result, the amplitude An and phase ϕn information of the transform are defined by Equations

(2.3) and (2.4).

An(x) =
√
en(x)2 + on(x)2 (2.3)

and

ϕn(x) = atan2(en(x), on(x)) (2.4)

respectively.

Then PC is defined as the local energy normalized by the sum of Fourier amplitude components.

PC is defined by Equation (2.5).

PC(x) =
E(x)∑
nAn

(2.5)
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where E(x) is defined as

E(x) =
√
F (x)2 +H(x)2

with

F (x) =
∑
n

en(x) and H(x) =
∑
n

on(x).

The expression of PC can be extended to account for noise and division by zero as follows:

PC(x) =
⌊E(x)− T ⌋∑
nAn(x) + ϵ

(2.6)

where the symbol ⌊·⌋ denotes that the enclosed quantity is not allowed to be negative, T is the threshold

and ϵ is a small constant.

2.5 Classification

2.5.1 Overview

Machine learning is concerned with creating a dataset by collecting examples of some phenomenon,

and then building a model based on that dataset. Classification is the use of machine learning in

determining to which of a set of classes an unidentified object belongs [59]. A model for performing

such as task is called a classifier. The ideal classifier must group data into categories so that data of

the same class are as similar as possible, and the classes are as distinct as possible1.

Several learning strategies exist for building a classifier, including supervised and unsupervised

learning. The main difference is that supervised learning uses labeled examples, while unsupervised

learning uses unlabeled examples. In supervised learning, the dataset is a collection of labeled exam-

ples {xi, y}Ni=0, where x is the feature vector and y is the label. Supervised learning aims to produce a

model that takes a feature vector x as input and outputs a value for labeling that feature vector. Differ-

ent classifiers differ based on their structure and mode of operation. For example, the Support Vector

Machine finds a separating hyperplane that separates the feature space into two regions. In contrast,

the k-Nearest Neighbor finds the best values of a parameter k to use in a voting system that decides

which class an observation belongs to.
1In this section, the terms ”example”, ”feature vector” and ”data point” are used interchangeably.
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By contrast, unsupervised learning uses datasets of unlabeled examples {xi}Ni=0 to create a model

that outputs a variable or another vector that can solve a particular problem. Clustering is a type of

unsupervised learning where the model groups data points into clusters based on their similarities and

assigns ids to each cluster. The main challenge of the clustering approach is deciding the optimal

number of clusters since labels are not provided during the training stage. Hence, deciding whether

a model is optimal is more complicated in clustering than in supervised learning [60]. In centroid-

based algorithms such as k-means, the goal is to find k feature vectors, called centroids, that divide

the feature space into clusters. Each sample in the dataset is assigned a cluster based on its distance

from the centroid of that cluster.

Density-Based Spatial Clustering of Applications with Noise (DBSCAN) is an algorithm that

groups data points based on their density, i.e., how closely packed they are [61]. DBSCAN defines

two hyper-parameters: ϵ and n. For a given point x, ϵ is the maximum distance between x and its

neighbors, and n is the minimum number of neighbors required to place them in the same cluster as

x. Essentially, ϵ determines the density required to build a cluster. The main drawback of DBSCAN

is the fixed nature of ϵ, which does not deal well with clusters with varying densities. Other clustering

forms include spectral and hierarchical clustering [60].

2.5.2 Facial Expression Classification

The last stage of the FER pipeline is classification, aiming to classify feature vectors as a prototypic

emotional expressions. Many existing approaches classify the basic emotions such as fear, anger,

surprise, happiness, disgust, and sadness [62, 63]. However, the set of emotions varies from one

application to the other. In the real world, the number and type of emotions vary from one application

to the other. In [64], a facial expression monitoring system predicts a patient’s sudden movement

during radiotherapy. Gaussian mixture model and a support vector machine are employed to classify

eight basic expressions (e.g., happiness and anger). The eight expressions are further classified as

uncomfortable and comfortable based on a rule. Dang et al. [65] studied the relation between facial

expression and customer impression of service quality by classifying seven basic expressions using

support vector machines (SVM). In [66], an entertainment robot system that can interact with humans

is proposed. The RBF (Radial Basis Function) network is proposed to solve a three-class problem

with positive, negative, and neutral expressions.
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Several classification techniques have been applied to FER. According to Revina and Emmanuel

[67], the major categories include the distance-based methods (dLHD, Euclidean Distance, MDC,

KNN), Support Vector Machine, statistical methods (HMM, HCRF), rule-based methods (Decision

Tree, CART), clustering based (LVQ), neural networks (MFFNN, BNN) and deep learning (CNN,

DBN) methods.

K-Nearest Neighbors

K-Nearest Neighbors (KNN) method classifies a new data point by giving it the same class label as

the most frequent label among the neighbors closest to it in the feature space. A constant, k, defines

the number of neighbors considered to classify a new feature vector. Figure 2.8 illustrates the KNN

with two classes (red and blue), and k is set to 5. The new sample is represented by the black dot and

surrounded by three blue and two red dots. Hence, it will be assigned to the blue class.

The KNN classifier has the advantage of zero training costs and good performance on both small

and large datasets. However, it becomes computationally expensive to find the k neighbors when

classifying high-dimensionality features.

Figure 2.8: KNN example with two classes (red and blue) and k = 5 [68].

Support Vector Machines

Support Vector Machines (SVM) have become the standard for many FER approaches due to their

advantages, such as fast training and no direct probability estimation [67, 69, 70]. An SVM is a

machine learning algorithm that classifies input features by defining a separating hyperplane. Fig-

ure 2.9 illustrates how a straight line could classify data into two classes. Given l training data vector

21



xi = (x1, x2, . . . , xl) and the corresponding labels yi ∈ {−1, 1} the following primal optimization

problem is defined as

min
w,b,ξ

{
1/2w⊤w + C

l∑
i=1

ξi

}
(2.7)

subject to

yi(w
⊤ϕ(xi) + b) ≥ 1 + ξi

ξi > 0, i = 1, . . . , l

where ξi represents the misclassification error for the i-th training vector, ξ is the total misclassi-

fication error; w is the normal vector to the hyperplane; b
∥w∥ represents the offset of the hyperplane

from the origin along the normal vector w (∥·∥ being the norm operator); ϕ(xi) is the kernel function,

mapping xi into a higher dimensional space and C is the regularization parameter.

Figure 2.9: Binary classification using SVM [69].

Naı̈ve Bayes Classifier

The Naı̈ve Bayes (NB) classifier assigns a label y ∈ {0, 1, . . . ,M} to a feature vector X ∈ Rn based

on the maximum likelihood framework defined by Equation (2.8).

ŷ = argmax
y

P (X|y) (2.8)
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By assuming that the features in X are mutually independent given a class label y, Equation (2.9)

can be used instead.

ŷ = argmax
y

N∏
i=1

P (xi|y) (2.9)

Naive Bayes classifiers differ based on how they model the probability distribution of features

given a class label (P (xi|y)). The Gaussian Naı̈ve Bayes classifier is the most common and assumes

a Gaussian distribution which is defined by Equation (2.10). The Cauchy distribution [71] has also

been investigated for FER.

P (xi|y) =
1√
2πσ2

y

exp

(
−(xi − µy)

2

2σ2
y

)
(2.10)

where xi is the i-th feature, and σy and µy are the standard deviation and mean of the Gaussian

distribution of the target label y, respectively.

Multi-Layer Perceptron

Multi-Layer Perceptron (MLP) is a basic neural network that learns a non-linear model to map training

features X(x1, x2, . . . , xm) to output targets y. The model comprises one input layer, one or more

hidden layers, and one output layer. Each layer comprises neurons that transform the previous layer’s

value with a weighted linear summation w1x1+w2x2+. . .+wmxm followed by a non-linear activation

function g(·) : R→ R. Figure 2.10 shows an MLP with one hidden layer.
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Figure 2.10: MLP neural network with one hidden layer [68].

Factors Affecting Classification

Different classification techniques have different strengths and weaknesses, making them more useful

in certain contexts than others. Neural networks, for example, have a strong clustering ability, while

SVM works well with high dimensionality data, making them ideal for classifying local descriptor

features [72]. Hidden Markov Models (HMM) can easily model time dependencies and tackle emotion

recognition in image sequences [73]. Choosing a classification method should depend on factors such

as the type and dimensionality of features, the number of classes, and the application.

2.6 Model Evaluation

2.6.1 Overview

Evaluating the performance of machine learning solutions is essential [74]. Some evaluation methods

may be more suitable for one problem than others. Therefore, it is essential to know the pros and cons

of different methods through performance evaluation. Furthermore, a model may give satisfactory

results when using one metric but may give poor results when evaluated against others. Thus, it is also

essential to identify the most appropriate metrics for evaluating each machine learning problem.

FER systems applied in some areas of life, such as medicine or surveillance, must be highly accu-

rate, and any mistake may be life-threatening. On the other hand, applications such as online learning
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and video gaming are not as severely impacted by classification mistakes. Therefore, one must also

consider a model’s application context when judging between an acceptable and unacceptable level of

performance.

2.6.2 Evaluation Metrics

Empirical studies show that it is difficult to decide which metric to use for different problems [75]. The

accuracy metric is a basic performance measure in machine learning algorithms but is inappropriate

in case of imbalanced data, and error costs may vary depending on the application [76]. This section

reviews the most common metrics used in evaluating FER systems.

Confusion Matrix

The confusion matrix is probably the most popular way of describing a model’s performance. It

reveals the dependencies between the actual classes of samples and those predicted by a model [77].

Consider the confusion matrix of a binary classification problem as shown in Figure 2.11. Let the

two classes be named Positives and Negatives, and the columns represent the predicted classes for

each class, while the rows represent the actual classes. Four important terms can be defined: True

Positives, False Positives, True Negatives, and False Negatives. True Negatives (TN) are the cases

that are correctly predicted as Negative, True Positives (TP) are the cases that are correctly predicted

as Positives, and False Positives (FP) are the cases that are incorrectly predicted as Positive. The False

Negatives (FN) are the cases that are incorrectly predicted as Negative. According to Danjuma [78],

performance evaluation often involves a trade-off between True Positives and True Negatives, and

between recall and precision.

Figure 2.11: Confusion matrix.

The confusion matrix allows the definition of other important statistical measures, such as accu-

25



racy, recall, precision, and f1-score, defined as follows:

Accuracy =
TP + TN

TP + TN + FP + FN
(2.11)

Precision =
TP

TP + FP
(2.12)

Recall =
TP

TP + FN
(2.13)

and

F1-score =
2 ∗ precision ∗ recall

precision + recall
. (2.14)

Receiver Operating Characteristics

Receiver Operating Characteristics (ROC) curve summarizes a classifier’s performance over a range

of trade-offs between true positive and false positive error rates. The Area Under the Curve (AUC) is

the metric for the ROC curve. The larger the area, the better the model’s performance. Figure 2.12

gives an example of a ROC curve.

Figure 2.12: Example of a ROC curve [79].
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2.6.3 Evaluation Schemes/Strategies

Train-Test Split

The most basic method for conducting a supervised learning task is dividing the available data into

training and testing sets. The training set is fitted to the model to learn how to make predictions.

Then, the model is used to make predictions on the test data, and the performance is evaluated by

computing metrics such as accuracy and recall. This strategy can be appropriate for large enough

datasets because the model is trained only once. On the other hand, this method is less desirable for

small datasets because it reduces the amount of data available for the training stage, which reduces

the model’s learning potential. The train-test split can be done in various ways, e.g., 80% training

and 20% testing, 70% training and 30% testing, etc. The 50- 50% train-test split is one of the most

challenging because the amount of training data is significantly reduced [15].

Cross-validation

Cross-validation (CV) is a statistical method used to evaluate model performance. In this evaluation

scheme, the data is divided into multiple subsets called folds, and each fold is evaluated once. The

most common variants include k-fold [80] and Leave-One-Subject-Out (LOSO) [11]. In k-fold cross-

validation, the data is first divided into k subsets (known as the ”folds”) containing an equal number

of samples. Following this, k identical models are trained in successive runs. In each run, the model is

fitted on k − 1 of the folds, and the remaining fold is used for testing. To illustrate how k-fold works,

consider an example where k = 5. Figure 2.13 gives training and testing folds for each run. In the

first run, the model is trained on folds 1, 2, 3, 4 and tested on fold 5; In the second run, the model is

fitted on folds 1, 2, 3, 5 and fitted on fold 4; In the third run, the model is fitted on folds 1, 2, 4, 5 and

fitted on fold 3; and so on. After every run, a confusion matrix is computed by finding true positives,

true negatives, false positives, and false negatives. Finally, the average of all confusion matrices is

calculated. LOSO is a variant of cross-validation where the dataset is divided into k subsets, and each

subset contains a single subject. Therefore, every subject gets tested once. The model’s accuracy is

estimated by averaging the recognition rate over all the subsets or folds [74].
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Figure 2.13: An example of a 5-fold CV showing how data is divided into training and testing folds
in each run.

2.7 Databases

2.7.1 Cohn Kanade

The Cohn Kanade (CK) dataset is one of the oldest and most popular databases for benchmarking

facial expression analysis systems [81]. The authors identified several challenges that every FER

system faces. These include the description level, transitions among expressions, eliciting conditions,

reliability and validity of training and test data, individual differences in subjects, head orientations,

scene complexity image characteristics, and relation to non-verbal behavior.

2.7.2 Extended Cohn Kanade

The Extended Cohn Kanade (CK+) dataset is the extended version of the CK database, containing 593

image sequences from 123 subjects [82]. The database contains posed and non-posed images taken

under lab-controlled conditions. The experiments carried out in this research only used the posed

images where the subjects performed six expressions.

2.7.3 Database of Facial Affect from the InterNet

The Database of Facial Affect from the InterNet (AffectNet) is the largest facial expression, valence,

and arousal database in the wild, with over a million face images manually annotated for the presence

of seven discrete facial expressions [83].

28



2.7.4 Bahcesehir University Multimodal Affective Database

The Bahcesehir University Multimodal Affective Database (BAUM-2) dataset is one of the world’s

most challenging databases for evaluating facial expression systems [84]. The database contains face

images that simulate real-world conditions such as multiple head poses, illumination conditions, ac-

cessories, temporary occlusions, and subjects with a wide range of eyes.

2.7.5 Japanese Female Facial Expression

The Japanese Female Facial Expression (JAFFE) dataset has 213 images of 7 facial expressions posed

by 10 Japanese female models [85].

2.7.6 Multimedia Understanding Group

The Multimedia Understanding Group (MUG) dataset was introduced for the development and the sta-

tistical evaluation of Facial Expression Recognition systems [86]. The database contains face images

of 80 subjects performing both posed and induced expressions with high resolution and no occlusions.

There are also 80 facial landmarks points for a significant number of frames. The subjects performed

the six basic expressions as defined in the FACS manual.

2.7.7 UNBC-McMaster Shoulder Pain Expression Archive Database

The UNBC-McMaster Shoulder Pain Expression Archive database was formed by capturing 200 video

sequences of participants suffering from shoulder pain [87]. The database contains 48398 FACS-coded

frames, associated pain scores on a frame and sequence level, self-reported and observed, and 66-point

AAM landmarks. This is one of the most used databases for building FER systems in the context of

pain assessment.

2.7.8 RadBoud Faces Database

The Radboud Faces Database (RFD) dataset is a popular and publicly available facial expression set

containing Caucasian adult and children’s images [88]. This database contains face images of various

expressions, gaze directions, and head orientations in a lab-controlled environment.
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2.8 Chapter Summary

Research in Facial Expression Recognition (FER) has benefited from developing local descriptors due

to their ability to represent textures (e.g., edges and corners), which make up facial components active

during emotion elicitation. With the above review, the following conclusions can be drawn:

• For effective Facial Expression Recognition, it is essential to extract the expression-specific

features while discarding the meaningless ones. Failure to do this leads to descriptors with high

dimensionality, computation cost, and high sensitivity to noise and occlusions.

• Edge-based local descriptors methods can achieve the best balance between discriminability,

recognition accuracy, extraction speed, and robustness to image variants.

• Traditional machine learning classifiers such as SVM are competitive with the current deep

learning methods as candidates for better FER detection and recognition.
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CHAPTER 3

A COMPREHENSIVE STUDY OF FACIAL EXPRESSION

RECOGNITION USING HISTOGRAMS OF ORIENTED

GRADIENTS

3.1 Introduction

Facial Expression Recognition (FER) approaches can be distinguished based on their feature extrac-

tion method employed. The two main categories of feature extraction are the component-based ap-

proaches and the global approaches. The component-based approaches extract some facial compo-

nents (e.g., nose, eyes, and mouth) or the geometric configurations of such components (or facial

points), while the global approaches extract features representing the appearance of an entire face

region. Though both categories are extensively investigated, both approaches have some unresolved

issues. Component-based approaches are challenged by the misalignment of components in extreme

expressions and high computational requirements [11]. Secondly, finding a set of descriptors that

robustly characterizes facial expression traits is still challenging.

Some notable examples among the component-based approaches include Loconsole et al.’s [26]

use of linear and eccentricity geometrical features to train a machine learning classifier to recognize

eight emotions. Poursaberi et al. [30] proposed using Gauss-Laguerre wavelets to extract texture in-

formation from facial expressions and geometric positions of fiducial points to provide information

for upper and lower facial action units. Both geometric and textural features are used in expression

classification. Happy and Routray [89] developed a framework that uses appearance-based features

of selected patches depending on the position of facial landmarks that are active during emotion elic-

itation. The global approaches, such as Zhao and Zhang’s [90] use of the LBP descriptor, kernel dis-

criminant isometric mapping and the Nearest neighbor classifier, are also abundant. In [50], the Local

Directional Number (LDN) combined with SVM for expression classification is proposed. Uçar et

al. [28] presented a novel algorithm that uses curvelet transform to generate a feature set and online
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sequential extreme learning machine for classification.

The purpose of this study is to revisit the use of the Histogram of Oriented Gradients (HOG)

descriptor and Support Vector Machines (SVM) in the FER problem work done by Carcagni et al.

[12]. The authors highlight that an optimal set of HOG parameters can be found that gives the best

performance for FER. It inspires this study to propose a novel automatic face registration algorithm

for gray and color images.

3.2 Datasets

Two publicly available face datasets are used in this study: the Extended Cohn Kanade (CK+) dataset

[82] and the Radboud Faces Database (RFD) [88]. CK+ is one of the most used datasets to evaluate

FER solutions because it contains subjects from a variety of ethnicities, ages, and genders. This dataset

consists of 593 image sequences from 123 subjects. The dataset contains posed and non-posed images

taken under lab-controlled conditions. The experiments carried out in this study only use the posed

images of subjects performing six expressions.

To obtain a balanced dataset from the available sequences, the following images are selected: the

last images in the sequences for anger, disgust, and happiness; the last and fourth images for the first 68

sequences related to surprise; the last and fourth from last images for the images of fear and sadness.

A second dataset is created by adding images for the expression related to neutral. The number of

images collected amounted to 347 and 407 for the first and the second datasets respectively.

The RFD dataset contains pictures of 67 subjects (adults and children) displaying eight emotions.

One subset was created by selecting 469 images labeled with seven expressions: anger, contempt,

disgust, fear, happiness, sadness, and surprise. Another subset is formed by adding 67 images labeled

as neutral to the previous subset, bringing the number of images to 536 and the number of expressions

to 8. Figures 3.1 and 3.2 give some images from the CK+ and RFD datasets respectively. Table 3.1

gives the organization of the datasets.

Figure 3.1: Examples of images from the CK+ dataset [82].
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Figure 3.2: Examples of images from the RFD dataset [88].

Table 3.1: Summary of datasets

Dataset name Number of images Number of classes

CK+6 347 6

CK+7 407 7

RFD7 469 7

RFD8 536 8

3.3 Facial Expression Recognition Approach Overview

Several operations must be performed to recognize facial expressions from an input image. The ap-

proach adopted in this study has three stages: face acquisition, HOG feature extraction, and SVM

classification. The first stage is face acquisition which involves face detection and face registration.

Face detection involves locating a face region and returning its position. Face registration is performed

to give the image a predefined size and ensure the eyes have a consistent position relative to the im-

age. In the second stage, a feature vector must be extracted by applying the HOG descriptor to a

registered image. Finally, the feature vector is input to a set of trained SVM classifiers to predict a

facial expression in the third stage. To handle video input, a temporal window holds a fixed number of

expressions as they are detected, and a decision block returns a filtered expression based on an ad-hoc

rule. Figure 3.3 summarizes the proposed approach.
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Figure 3.3: Block diagram showing the different stages of the FER approach.

3.3.1 Face Acquisition (Detection and Registration)

Face acquisition involves detecting and registering a face image. Face detection locates and returns the

location of a face pattern in an input image. This is accomplished using a Viola-Jones frontal face de-

tector. In this face detector, Haar-like features of increasingly complex constitution are extracted from

an image and classified as either face or background. This study used OpenCV’s [91] implementation

of a Viola-Jones detector [17].

Face registration aims at giving detected faces a predefined pose, shape, and size. It is essential to

register faces because the best features are usually extracted from images where the eyes are in a con-

sistent position relative to the image. The following is a description of the face registration algorithm.

First, the image is converted to gray-scale, followed by enhancement by applying contrast-limited his-

togram equalization. Then, a thresholding operation followed by filtration techniques produces a face

blob image. Next, an ellipse is fitted around the face blob, and its angle is used to rotate the face to

a vertical position. This process is not always perfect, hence, the eye locations are used to rotate the

image a second time. The next step is cropping and resizing of the image. An elliptical crop followed

by a rectangular crop are employed to produce an image where the eyes are in a predefined position

relative to the sides of the image. Finally, the output image is resized to 59 pixels wide by 65 pixels

high. Figure 3.4 and Algorithm 3.1 give the procedure for registering faces.
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Figure 3.4: Block diagram illustrating face registration.

Algorithm 3.1 Face Detection and Registration
Inputs:

Iface : face image

Outputs:

Ireg : registered image

1: Pre-processing

2: Binary Thresholding

3: Blob Detection

4: Ellipse Fitting and Rotation

5: Eye Detection and Rotation

6: Cropping and Resizing

7: return Ireg

Pre-processing

The proposed approach for registering faces must handle gray-scale and color images. Hence, the

images are first converted to the gray-scale format. Consider a gray-scale image represented by a 2D

array of integers taking values between 0 (full black) and 255 (full white). Then, contrast-limited

automatic histogram equalization (CLAHE) [92] is used to balance the lighting across the image. The

effect CLAHE has on dark and bright images is illustrated in Figure 3.5. Let I be an M×N gray-scale

image of L intensity levels, and p be the normalized histogram of I . The contrast-limited equalized
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image, g, is defined as

gi,j =
⌊
(L− 1)

Ii,j∑
n=0

pn

⌋
(3.1)

where pn is defined as

pn =

∑
i,j A(Ii,j = n)

M ×N
; n = 0, 1, . . . , L− 1; 0 ≤ i < M ; 0 ≤ j < N ;

with A(x) defined as

A(x) =


1 if x is true

0 otherwise

(a) Enhancing a dark image

(b) Enhancing a bright image

Figure 3.5: Effect of contrast limited automatic histogram equalization.
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Binary Thresholding

Binary thresholding involves cutting out some parts of an image based on the range within which they

fall. Consider an image with intensity values I(x, y), then the thresholding operator B, is applied as

B(x, y) =

 1 if T1 < I(x, y) < T2

0 otherwise
(3.2)

where T1 and T2 are the lower and upper thresholds, respectively. These thresholds are defined as

T1 = µ− σ (3.3)

and

T2 = µ+ 2σ, (3.4)

where µ and σ are the mean and standard deviation of the intensity values, respectively. Specifically,

the mean and standard deviation are obtained by creating a histogram from the face center pattern.

The mean, µ, and standard deviation, σ, are defined as

µ =
1

N

∑
x,y

W (x, y)× I(x, y) (3.5)

and

σ =
1

N

√∑
x,y

(I(x, y)− µ)2, (3.6)

where N is the number of pixels in an image, and W (x, y) is the frequency of the bin (or interval)

where the intensity I(x, y) lies. Figure 3.6 shows the effect of binary thresholding and a gray-scale

image.

Blob Detection

The thresholding above aims to separate facial skin pixels from the background pixels. However,

this is difficult to achieve in a gray-scale image, where different objects can have similar intensities.

Hence, unwanted regions must be filtered out. The first filter is an ellipse computed from the face’s
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Figure 3.6: Binary thresholding.

Figure 3.7: Blob detection illustrated as a series of filtering operations with the result being a filled
polygon that acts a face blob.

dimensions and location. Elements inside the ellipse are retained, while elements outside the ellipse

are discarded. The second filter searches for the graph-encoded binary image’s largest connected

components [93]. The blob’s shape is then refined by estimating the polygonal shape around it. A

polygon is estimated by finding a set of contour points [94] enclosing the blob, computing its convex

hull [95], and approximating a polygonal shape. Polygon estimation is important because it fills holes

in the blob and makes the ellipse-fitting step more reliable. The process of blob detection is illustrated

in Figure 3.7.

Ellipse Fitting

A region-growing algorithm is employed to find an ellipse’s parameters that fit around the face blob

[91]. The ellipse’s angle is used to rotate the image so that the eyes are horizontal and the face is

upright and vertical. Figure 3.8 shows an ellipse fitted around the face blob, and the angle (θ) between
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the minor axis and the x-axis is used to rotate the image.

Figure 3.8: Rotate an image using the angle of an ellipse fitted around the face blob.

Eye Detection

The ellipse fitting algorithm sometimes fails to represent the face blob correctly, so the rotation angle

is wrong. The image is further rotated using the eye positions to solve this problem. Once the eyes

are located, the line passing through them is found, and its elevation angle is used to rotate the image

as shown in Figure 3.9. If the eye detector fails to detect eyes, their positions are estimated, and no

rotation is done.

Figure 3.9: The eye locations are used to rotate the image a second time.

Cropping and Resizing

The last step of face registration involves performing an elliptical and rectangular crop around the face

image and re-scaling it to a predefined size. First, the ellipse is used to crop the face region, and then

the eye locations are used to provide a measure to crop a rectangular portion of the face. Figure 3.10

shows how the image is cropped and scaled using the eye locations and ellipse axes. Let (xE , yE) be

the center of the ellipse and (xB, yB, wB, hB) represents the x-coordinate, y-coordinate, width and

height of the rectangular area being cropped. The following equations can be used to calculate these

parameters:

[
xE , yE

]
=

[1
2
(x1 + x2),

1

2
(y1 + y2) +

1

2
a
]
, (3.7)
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[
xB, yB

]
=

[
xE − b, yE − 0.8a

]
, (3.8)

and [
wB, hB

]
=

[
2b, 1.6a

]
, (3.9)

where (x1, y1) and (x2, y2) are the eye locations, a and b are half the axes’ lengths of the ellipse;

a being the major axis and b being the minor axis.

Figure 3.10: Parameters of the ellipse and rectangle used to crop and resize an image.

3.3.2 Histogram of Oriented Gradients

The Histogram of Oriented Gradients (HOG) descriptor was first proposed as a local-histogram de-

scriptor for human detection in [96] and since then has been successfully applied to Facial Expression

Recognition [97]. The HOG descriptor is calculated as follows. The first stage computes first-order

image gradients by differentiating along the x and y directions. In the second stage, the first-order gra-

dients are used to calculate the magnitude and orientation of the gradient images. In the third stage, the

images are divided into cells, and a histogram is computed for each cell. Each cell histogram divides

the gradient orientation range into a fixed number of intervals (or bins). The gradient magnitudes

of the pixels in the cell are used to vote into the histogram (see more details in the next paragraph).

In the fourth stage, the cells are grouped into larger spatially connected groups called blocks, and

block descriptors are calculated. A block descriptor is created by concatenating the cell histograms

in that block and normalizing them (further explained below). Note that the blocks overlap, so cells

are shared between blocks and appear more than once (but with different normalizations) in the final

feature vector. Finally, all the block descriptors are concatenated to form the final HOG feature vector.
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Consider L(x, y) as the intensity function of an M ×N gray-scale image. The first-order image

gradients along the x and y directions at coordinate (x, y) are defined by Equations (3.10) and (3.11).

Ix = L(x− 1, y)− L(x+ 1, y) (3.10)

Iy = L(x, y − 1)− L(x, y + 1) (3.11)

Given the differential components, Ix and Iy, the gradient magnitudes and orientations of the

image are defined by Equations (3.12) and (3.13).

M(x, y) =
√

I2x + I2y (3.12)

α =
180

π
(arctan2(Iy, Ix) mod π), (3.13)

where arctan2 is the four-quadrant inverse tangent, which yields values between −π and π. Using the

gradients magnitude and orientation, the Histogram of Oriented Gradients for each cell is defined by

Equation (3.14).

Hcell(i, j, k) =
∑

(u,v)∈Ci,j

M(u, v) if α(u, v) ∈ θk (3.14)

0 < i <
M

cellSize
− 1, 0 < j <

N

cellSize
− 1,

where Ci,j is a set of x and y coordinates within the (i, j) cell and θk is the range of each bin, e.g., for

6 orientations, θ1 = [165◦, 180◦)∪ [0◦, 15◦), θ2 = [15◦, 45◦), θ3 = [45◦, 75◦), θ4 = [75◦, 105◦), θ5 =

[105◦, 135◦), and θ6 = [135◦, 165◦). Therefore, Hcell(i, j, k) represents the Histogram of Oriented

Gradients at the (i, j) cell. After obtaining cell histograms, the cells are grouped into blocks and

normalized as follows:

• First, the block descriptor is built by concatenating cell histograms within the block using Equa-

tion (3.15).

Hblock =
(
H1

cellH
2
cell · · ·H

nc
cell

)
(3.15)
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where nc is the number of cells per block.

• Normalize the descriptor using L2 normalization defined by Equation (3.16).

ĥl =
hl√∑
l h

2
l + e2

, (3.16)

where hl is the l-th element of the block descriptor, ĥl is the corresponding normalized value,

and e is a constant to prevent division by zero.

• Limit the maximum value to 0.2 using by Equation (3.17):

h′l =


0.2 if ĥl > 0.2

ĥl otherwise
(3.17)

• Repeat L2 normalization using Equation (3.16).

• Concatenate all the block descriptors to produce the final HOG feature vector as given by Equa-

tion (3.18).

Hhog =
(
H1

blockH
2
block · · ·H

nb
block

)
(3.18)

where nb is the number of blocks.

Algorithm 3.2 summarizes the calculation of a HOG feature vector. In this study, scikit-image’s

implementation1 of the HOG descriptor was used.
1https://github.com/scikit-image/scikit-image/blob/main/skimage/feature/_hog.py

(accessed 31 July 2021)
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Algorithm 3.2 Histogram of Oriented Gradients
Inputs:

I : input image

Outputs:

Hhog : feature vector

1: Compute first order image gradients using Equations (3.10) and (3.11).

2: Compute gradient orientations and gradient magnitudes using Equations (3.12) and (3.13)

3: Build the Histograms of Oriented Gradients for all the cells using Equation (3.14).

4: Build a descriptor for all the blocks using normalization using Equations (3.15), (3.16), and (3.17).

5: Return a feature vector by concatenating all the block descriptors using Equation (3.18).

3.3.3 Support Vector Machines

Once all the HOG features are extracted, a training dataset comprises feature vectors alongside the

corresponding label. The datasets are used to train a classifier based on the SVM strategy. The

experiments discussed here use the multi-C-support classification (SVC) strategy2 implemented by

scikit-learn’s LIBSVM library.

A set of hyper-parameters must be tuned to train an SVM classifier: the kernel function, the

regularization parameter (C), and the kernel coefficient (gamma). For each classifier, grid-search

cross-validation is employed to find the best settings for the classifier [98]. Table 3.2 gives the can-

didate values for each SVM parameter. In grid-search cross-validation, all possible combinations of

the parameters are used to train a classifier using 10-fold cross-validation. Then, the parameter values

which produce the best average recall are selected. Table 3.3 gives the parameter values selected when

training the SVM classifier with different types of feature vectors depending on the local descriptor.
2https://github.com/scikit-learn/scikit-learn/blob/f3f51f9b6/sklearn/svm/

_classes.py (accessed 31 July 2021)
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Table 3.2: Hyper-parameter values used for the grid-search

Hyper-parameter Values

C 1, 10, 100, 1000

Gamma 5, 0.5, 0.05, 0.005

Kernel Linear, RBF

Table 3.3: Support vector machines hyper-parameter settings for different local descriptors

Descriptor C Gamma Kernel

HOG 1000 0.05 RBF

LBP 1000 0.05 RBF

CLBP 1000 0.05 Linear

WLD 1000 0.05 Linear

3.3.4 Temporal Analysis

A temporal window storing recent predictions and a decision block make the system suitable for

video sequences. The final expression is decided by observing m expressions stored in the temporal

window and checking whether at least n (provided n ≤ m) frames are classified with the same facial

expression. The expression is classified as s if the following condition is met:

i∑
j=i−m+1

Λ(pj , s) ≥ n (3.19)

where

s ∈ {anger, surprise, happiness, fear, disgust, sadness, contempt, neutral},
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and Λ(pj , s) is defined as

Λ(pj , s) =


1 if pj = s

0 otherwise
,

pj is the expression assigned to the j-th frame and i is the index of the most recent frame in the

window.

3.3.5 Other Local Descriptors of Interest

The performance of the HOG descriptor was compared with three other local descriptors: Local Bi-

nary Pattern (LBP) [99], Weber’s Local Descriptor (WLD) [97] and Compound Local Binary Pattern

(CLBP) [100]. These local descriptors are used in many existing FER approaches.

Local Binary Pattern

Local Binary Pattern (LBP) is a local descriptor commonly used to describe textural appearance in

pattern recognition problems. The LBP histogram contains information about the local micro-pattern

distribution, such as flat areas and edges in an image. The following is an account of how the feature

vector is computed. First, the LBP descriptor is applied to each pixel, treating it as a threshold and

assigning a label based on a rule (more details in the following paragraph). This produces an LBP im-

age, which is then subdivided into equally sized blocks, and the histogram of each block is computed.

The final feature is formed by ordering and concatenating the histograms of all the blocks.

The original LBP descriptor is computed using a 3× 3 grid of pixel intensities with a center pixel

(called the threshold), gc. Then a value of 1 or 0 is assigned to each of the eight surrounding pixels

using the following rule: if the neighboring pixel is less than the threshold, it is assigned the value 0.

Otherwise, 0 is assigned. A binary code is then read from the sequence of 0’s and 1’s and converted

to a decimal number. The decimal number is then assigned to the center (or threshold) pixel. Once

this operation has been performed on the entire image, an LBP image is obtained. The histogram of

the LBP image is then used as a feature vector [37]. An example of the LBP code of a pixel in a 3× 3

neighborhood block is given in Figure 2.5 under Section 2.4.2.

LBP can be extended to allow for any number of neighbors using a circular neighborhood and
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bi-linear interpolation of pixel values [57]. The descriptor can be extended further by restricting the

LBP codes to use only uniform patterns. An LBP code is said to be a uniform pattern if it contains

at most two bit-wise transitions from 1 to 0 or vice versa when considering the binary string circular

e.g., 00000000 and 00011110 are considered uniform patterns. The uniform LBP operator is denoted

as LBP u2
P,R, where P stands for the number of neighbors and R is the circular radius and u2 means

that only uniform patterns are retained and all remaining patterns are replaced by a single label. The

LBP code at a coordinate (x, y) is given by Equation (3.20).

fc(x, y) =

P−1∑
j=0

S(gj − gc)2
j , (3.20)

where

x = 0, 1, . . . , N − 1, y = 0, 1, . . . ,M − 1,

and gj corresponds to the neighboring intensity values, N and M are the width and height of the input

image, respectively, and S(A) is defined as

S(A) =


1 if A ≥ 0

0 otherwise

Then, a histogram, (Hi)i=0,1,...,n−1 is defined by Equation (3.21).

Hi =
N−1∑
x=0

M−1∑
y=0

I (fc(x, y) = i) (3.21)

where n is the number of unique labels and I(A) is defined as

I(A) =


1 if A is true

0 otherwise

A more recent addition to the LBP algorithm adds spatial information to the descriptor [101].

Spatial information is encoded by subdividing the image into m equally-sized blocks, Rj . Next,

the histograms of each block are concatenated into a single feature vector. The spatially enhanced

46



histogram can be defined by Equation (3.22).

Hi,j =
∑

(x,y)∈Rj

I (fc(x, y) = i) (3.22)

i = 0, 1, . . . , n− 1, j = 0, 1, . . . ,m− 1

Figure 3.11 and Algorithm 3.3 summarize the extraction of an LBP feature vector.

Figure 3.11: Computing the LBP features of an image.

Algorithm 3.3 Local Binary Patterns
Inputs:

I : input image

Outputs:

H = (H0H1 · · ·HNb−1) : feature vector

1: Divide the input image into blocks, (Ib)b=0,1,...,Nb−1.

2: for each block, b do

3: Compute LBP codes, f b
c , for the block b using Equation 3.20.

4: Compute a histogram, Hb, using Equation 3.21.

5: end for

6: Concatenate the histograms, H = (Hb)b=0,1,...,Nb−1.

7: return H

Weber’s Local Descriptor

Weber’s Local Descriptor (WLD) is comparable to the human perception of a pattern, which depends

not only on the change of stimulus (such as sound and lighting) but also on the original intensity of
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the stimulus [102]. WLD consists of a differential excitation (ξ) and a gradient orientation (θ). The

differential component is expressed as the ratio between two terms: the first is the relative intensity

differences of a current pixel against its neighbors; the other is the intensity of the current pixel. The

second component of WLD is the gradient orientation. A feature vector is obtained by rearranging

the differential excitations several times into subgroups following a particular rule (further discussed

below), then creating histograms of those subgroups. Finally, the histograms are reordered and con-

catenated into a single feature vector for classification. Figure 3.12 illustrates extracting WLD features

from an input image.

Consider a 3 × 3 pixels block, Gs, taken from an input image, G. The WLD operator is applied

as follows:

• Compute the differential excitation component, which is expressed as:

ξ(xc) = tan−1

(
V 00
s

V 01
s

)
= tan−1

[
p−1∑
i=0

(
xi − xc

xc

)]
(3.23)

• The second component of WLD is the gradient orientation θ(xc) which is defined as:

θ(xc) = tan−1

[
V 11
s

V 10
s

]
= tan−1

[
x5 − x1
x7 − x3

]
(3.24)

provided

Gs =

x0 x1 x2

x7 c x3

x6 x5 x4

ξ(xc) ∈
[
− π

2
,
π

2

]
θ(xc) ∈

[
− π

2
,
π

2

]

• Map the gradient orientations from the interval [−π
2 ,

π
2 ] to the interval [0, 2π] by applying the

following function:

θ′ = arctan2(V 11
s , V 10

s ) (3.25)
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where arctan2(V 11
s , V 10

s ) is defined as

arctan2(V 11
s , V 10

s ) =



θ if V 11
s > 0 and V 10

s > 0

π − θ if V 11
s > 0 and V 10

s < 0

θ − π if V 11
s < 0 and V 10

s < 0

2π + θ if V 11
s < 0 and V 10

s > 0

V 11
s = x5 − x1; V 10

s = x7 − x3

• The mapped gradients, θ′, are further quantized into T dominant orientations as follows:

Φt = fq(θ
′) =

2π

T
mod

(⌊ θ′

2π/T

⌋
, T

)
(3.26)

where t is a linear function that maps a differential excitation with orientation θ′ to a particular domi-

nant orientation Φt . Next, a 2D histogram, (WLD(ξj ,Φt))j=0,1,...,N−1, t=0,1,...,T−1, is created where

N is the dimensionality (number of pixels) in an image and T is the number of dominant orientations.

The 2D histogram has C rows and T columns, where C is the number of cells in each orientation.

Intuitively, each cell of the 2D histogram represents the frequency of a differential excitation interval

on a dominant orientation.

The 2D histogram is further encoded into a 1D histogram, H as follows. First, each column of the

2D histogram is projected to form a 1D histogram (H(t))t=0,1,...,T−1. Each histogram is produced by

grouping differential excitations ξj corresponding to a dominant orientation Φt.

Next, each sub-histogram, H(t), is divided into M segments, (Hm,t)m=0,1,...,M−1. The sub-

histograms, Hm,t, collectively form a histogram matrix. Each row of this matrix corresponds to a

differential excitation segment and each column corresponds to a dominant orientation. The histogram

matrix is reorganized as a 1D histogram by first concatenating the rows of the histogram matrix to

produce a histogram Hm = {Hm,t}t=0,1,...,T−1. The resulting M sub-histograms are concatenated to

form a 1D histogram H = {Hm}m=0,1,...,M−1.

Note that each sub-histogram, H(t), is divided into M segments, Hm,t, by dividing the interval of

differential excitations l = [−π
2 ,

π
2 ] into M segments lm. Furthermore, each sub-histogram Hm,t is an
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S-bin histogram defined as:

Hm,t = {hm,t,s} (3.27)

hm,t,s =
∑
j

δ(Sj = s)

Sj = mod
(⌊ ξj − ηm,l

(ηm,u − ηm,l)/S

⌋
, S

)
, δ(A) =


1 A is true

0 A is false
,

ηm,l =

(
m

M
− 1

2

)
π and ηm,u =

(
m+ 1

M
− 1

2

)
π .

Figure 3.12 and Algorithm 3.4 summarize the computation of a WLD feature vector.

Algorithm 3.4 Weber’s Local Descriptor
Inputs:

I : input image

Outputs:

H = (H0H1 · · ·HNb−1) : feature vector

1: Divide the input image into blocks, (Ib)b=0,1,...,Nb−1.

2: for each block, b do

3: Compute the differential excitations, ξj , using Equation (3.23).

4: Compute the gradient orientations, θj , using Equation (3.24).

5: Map the gradient orientation, θ′j , using Equation (3.25).

6: Quantize the mapped orientations into T dominant orientations, producing Φt using Equa-

tion (3.26).

7: Create sub-histograms, Hm,t, using Equation (3.27).

8: Concatenate the sub-histograms, Hb = {Hm,t}t=0,1,...T−1, m=0,1,...M−1

9: end for

10: Concatenate the 1D histograms, H = {Hb}b=0,1,...,Nb−1

11: return H
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Compound Local Binary Pattern

Compound Local Binary Pattern (CLBP) is an extension of the LBP descriptor. The CLBP operator

differs from the original LBP in that it encodes both the magnitude and the sign of the differences

between a center (or threshold) pixel and its P neighbors [100]. While LBP assigns one bit to each

neighbor, CLBP uses two bits to encode the signs and magnitudes of the differences between the center

pixel and its neighbors: the first bit expresses the sign of the difference in pixel values, and the second

bit is for the magnitude of the difference with respect to a threshold value. Thus, compared to LBP,

which produces a P -bit code, CLBP assigns a 2P -code to the center pixel based on the intensities of P

neighbors. The binary pattern is subdivided into two sub-CLBP patterns by regrouping the neighbors’

binary labels (more details in the next section). A 1D histogram is created for each sub-pattern, and

all are concatenated, producing a single feature vector. Figure 3.13 illustrates how the original LBP

code is computed over a pixel with a circular neighborhood of 8 pixels and the resulting LBP code

(11111111)2. The CLBP operator is illustrated in Figure 3.14. Here, each neighbor is represented by

two bits, which gives a 16-bit code when combined.

Figure 3.13: Generating a binary code using LBP, where the code is (11111111)2.

Figure 3.14: Illustration of the CLBP operator, where the code is (1011111110101010)2.

The CLBP code is further split into two sub-CLBP patterns. Considering the example above, the

split is performed according to the following sequences: (0, 1, 4, 5, 8, 9, 12, 13) and (2, 3, 6, 7, 10,

11, 14, 15), respectively. Figure 3.15 illustrates splitting a CLBP code into two sub-CLBP codes.
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Figure 3.15: Splitting a CLBP code into two sub-CLBP codes.

In this way, the histogram obtained only encodes the occurrences of micro-patterns in an im-

age. However, the availability of both location and spatial relationships can better characterize facial

features. For this reason, the CLBP descriptor is extended by first partitioning the input image into

sub-regions (or blocks) and applying the CLBP descriptor to each block. Finally, concatenating the

histograms of the blocks gives the final feature vector for classification. Figure 3.16 gives the process

of extracting the original CLBP feature vector.

Figure 3.16: Generating a CLBP feature vector.

The following is a more detailed description of the CLBP operator. Each pixel is treated as a center

having P neighbors. Each neighbor is given a 2-bit code: the first bit is set to 0 if the neighboring

pixel is less than the center pixel and is set to 1 otherwise. The second bit is set to 1 if the magnitude

of the difference between the neighboring pixel and the center pixel is greater than the threshold,

Mavg. Otherwise, the bit is set to 0. The threshold value is the average magnitude of the differences

between the center pixel and its P neighbors. The rest of this discussion considers P = 8, also used

in implementing CLBP.

The average magnitudes Mavg can be computed as follows. First, through convolutions, apply
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eight filters (Ki)i=0,1,...,7 (see Figure 3.17) to the input images, obtaining the pixel differences for the

eight neighbors separately, producing eight matrices (Mj)j=0,1,...,7. Then, compute the averages of

the magnitudes of the previous matrices, obtaining Mavg. The matrices of pixel differences can also

be used to obtain the magnitudes and signs of the differences through simple operations.

Figure 3.17: Convolution masks used to generate the CLBP feature.

Let fc(x, y) be the function representing the CLBP code of a pixel positioned at (x, y) defined as:

fc(x, y) =
P−1∑
p=0

s(ip, ic)2
2p (3.28)

where s(ip, ic) is defined as

s(ip, ic) =



00 if ip − ic < 0 and |ip − ic| ≤Mavg

01 if ip − ic < 0 and |ip − ic| > Mavg

10 if ip − ic ≥ 0 and |ip − ic| ≤Mavg

11 otherwise

ic and ip represent the gray values of the center c, and a neighbor p, and Mavg is the average magnitude

of the differences between ic, ip pairs in the local neighborhood.

The CLBP binary code is subdivided into two sub-CLBP patterns fc1 and fc2. Hence, during

implementation, Equation (3.28) is not used but instead, Equations (3.29) and (3.30) are used. The

sub-CLBP patterns are defined as follows:
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fc1 =
∑

p∈O,k∈E

(
S1p(ip, ic)2

k+1 + S2p(ip, ic)2
k
)

(3.29)

fc2 =
∑

p∈O,k∈E

(
S1p(ip, ic)2

k+1 + S2p(ip, ic)2
k
)

(3.30)

O = {1, 3, 5, 7}, E = {0, 2, 4, 6}

where S1p(ip, ic) and S2p(ip, ic) are defined as

S1p(ip, ic) =


0 if ip − ic < 0

1 if ip − ic ≥ 0

, S2p(ip, ic) =


0 if |ip − ic| ≤Mavg

1 if |ip − ic| > Mavg

with

Mavg =
1

8

7∑
p=0

|ip − ic|

The result is two sub-CLBP patterns which are treated as separate binary codes. The binary codes

are only combined in the next stage: feature vector generation. After generating the sub-CLBP patterns

for each pixel, two binary codes for each pixel are obtained, thus, two encoded image representations.

Next, histograms are generated from the two sub-CLBP images and concatenated them, producing a

spatially combined histogram that acts as a feature vector for classification. Algorithm 3.5 summarizes

the generation of CLBP feature vectors.

55



Algorithm 3.5 Compound Local Binary Patterns
Inputs:

I : input image

Outputs:

H = (H0H1 · · ·HNb−1) : feature vector

1: Divide the input image into blocks, (Ib)b=0,1,··· ,Nb−1.

2: for each block, b do

3: Compute the sub-CLBP codes, f b
c1 and f b

c2, using Equations (3.29) and (3.30), respectively.

4: Create a histogram for the codes, Hb
1 and Hb

2.

5: Concatenate the sub-histograms, Hb = {Hb
1H

b
2}.

6: end for

7: Concatenate the 1D histograms, H = {Hb}b=0,1,...,Nb−1.

8: return H

3.4 Results and Analysis

3.4.1 Experimental Phase 1: Optimization of HOG Parameters

Qualitative Analysis

A qualitative analysis was done to observe the different feature outputs when the HOG parameters are

varied. HOG images were generated by setting the number of orientations to 9 and varying the cell

size3 between 3, 8, and 15. Figure 3.18 gives the HOG images for a particular subject’s neutral and

surprised expressions. It can be seen that when the cell size is 3, though there are more cells, the edges

are harder to see. When the cell size is 15, the edge information is too condensed to capture directions

adequately. The best result is seen when a cell size of 8 is used since the edge information is enough

to differentiate between the emotions.
3These parameter values are arbitrary and are used for illustration.
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Figure 3.18: Evaluating the HOG parameters visually. CS=Cell Size.

Quantitative Analysis

Using 10-fold cross-validation, several SVM classifiers were trained on HOG feature vectors extracted

using different parameter configurations. First, a classifier was trained on the CK+ dataset with 6

expressions. Figure 3.19 reports the average recall performance for varying cell sizes and a varying

number of orientations. The results indicate that the highest recall was 98.1% when the cell size was

8, and the number of orientations was 9. A similar performance was obtained when the number of

bins was 3. The parameter optimization procedure was repeated using feature vectors extracted from

the CK+ subset with 7 expressions, and the results were recorded in Figure 3.20. The cross-validation

recall was 96.5% when the number of orientations was 9, and the cell size was 8. This result confirms

that these parameters are most suited for FER.

An additional parameter optimization procedure was performed by training SVM classifiers using

the RFD dataset to compare with the results obtained from the CK+ datasets. Two subsets of RFD

were used. The first dataset contained subjects performing 7 expressions, and the other contained

subjects performing 8 expressions. Figures 3.21 and 3.22 give the performance results, showing that

the best parameters were a cell size of 8 and the number of orientations of 8. The best recognition rates

were reported as 96.4% when classifying 7 expressions and 93.1% when classifying 8 expressions. It

must be noted that the result was very similar when the number of orientations was 9, regardless of

the number of target expressions. This shows that the performance is still optimal when the number

of expressions varies. Tables 3.4 and 3.5 gather the confusion matrix results obtained on the CK+

datasets of 6 and 7 expressions, respectively.
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Figure 3.19: FER results for CK+ dataset with 6 expressions.

Figure 3.20: FER results for the CK+ dataset with 7 expressions.
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Figure 3.21: FER results for the RFD dataset with 7 expressions.

Figure 3.22: FER results for the RFD dataset with 8 expressions.

3.4.2 Experimental Phase 2: Evaluating the Approach on Other Datasets

In this experiment, the classifier was trained using HOG features extracted from the CK+ subset with

6 expressions. Using the best HOG parameters, the following performance was recorded: an average

recall of 98.1%, an average precision of 98.4%, an average accuracy of 99.4%, and an average f1-score

of 98.0%. Another classifier was trained on faces with 7 expressions achieving the following average

performances during cross-validation: average recall of 96.5%, an average precision of 97.2%, an
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average accuracy of 99.0%, and an average f1-score of 96.6%. Tables 3.6 and 3.7 gather the results

obtained when evaluating the approach on the RFD datasets. When the classifier was evaluated on

images from the RFD with 7 expressions, the reported results were as follows: an average recall

of 96.4%, an average precision of 96.8%, an average accuracy of 99.0%, and an average f1-score

of 96.4%. On the other hand, when the classifier was evaluated on images from the RFD with 8

expressions, the reported results are as follows: an average recall of 93.1%, an average precision of

93.7%, an average accuracy of 98.3%, and an average f1-score of 93.0%. It must be pointed out that

the classifier’s performance depreciates when the number of targets increases. Table 3.8 summarizes

the main results obtained on the four datasets.

Table 3.4: FER performance on CK+ with 6 expressions (normalized confusion matrix)

An Di Fe Ha Sa Su

An 93.3 2.2 0 0 4.4 0

Di 1.7 98.3 0 0 0 0

Fe 0 0 100 0 0 0

Ha 0 0 1.4 98.6 0 0

Sa 0 0 0 0 100 0

Su 0 0 0 0 1.5 98.5

An=Anger, Di=Disgust, Fe=Fear, Ha=Happiness, Sa=Sadness, Su=Surprise
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Table 3.5: FER performance on CK+ with 7 expressions (normalized confusion matrix)

Ne An Di Fe Ha Sa Su

Ne 96.7 0 1.7 0 0 1.7 0

An 4.4 88.9 2.2 0 0 4.4 0

Di 1.7 0 96.6 0 1.7 0 0

Fe 2 0 0 98 0 0 0

Ha 0 0 0 1.4 98.6 0 0

Sa 0 0 0 0 0 100 0

Su 2.9 0 0 0 0 1.5 95.6

Ne=Neutral, An=Anger, Di=Disgust, Fe=Fear, Ha=Happiness, Sa=Sadness,

Su=Surprise
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Table 3.6: FER performance on RFD with 7 expressions (normalized confusion matrix)

An Co Di Fe Ha Sa Su

An 97 0 0 0 0 3 0

Co 4.5 95.5 0 0 0 0 0

Di 1.5 0 98.5 0 0 0 0

Fe 0 3 0 94 0 0 3

Ha 0 0 0 0 100 0 0

Sa 3 1.5 0 4.5 0 91 0

Su 0 0 0 1.5 0 0 98.5

An=Anger, Co=Contempt, Di=Disgust, Fe=Fear, Ha=Happiness, Sa=Sadness,

Su=Surprise
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Table 3.7: FER performance on RFD with 8 expressions (normalized confusion matrix)

An Co Di Fe Ha Sa Ne Su

An 97 0 0 0 0 0 3 0

Co 3 89.6 0 0 0 7.5 0 0

Di 1.5 0 98.5 0 0 0 0 0

Fe 0 1.5 0 89 0 6 0 3

Ha 0 0 0 6 100 0 0 0

Ne 0 9 0 3 0 82.1 3 0

Sa 1.5 1.5 0 4.5 0 4.5 89.6 0

Su 0 0 0 1.5 0 0 0 98.5

An=Anger, Co=Contempt, Di=Disgust, Fe=Fear, Ha=Happiness, Ne=Neutral,

Sa=Sadness, Su=Surprise

Table 3.8: Performance of the proposed approach on different datasets

Dataset Precision Recall Accuracy F-score

CK+6 98.4 98.1 99.4 98.0

CK+7 97.2 96.5 99.0 96.6

RFD7 96.8 96.4 99.0 96.4

RFD8 93.1 93.1 98.3 93.0
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3.4.3 Experimental Phase 3: Evaluating Other Descriptors (LBP, CLBP, and WLD)

This section presents the performances of three local descriptors: LBP, CLBP, and WLD. Each local

descriptor was evaluated in two stages: in the first stage, feature vectors of a given local descriptor

were used to train and evaluate a classifier using 10-fold cross-validation; in the second stage, the

computational costs of each descriptor were evaluated. Note that the evaluation of descriptors was

performed on the CK+ dataset with 6 expressions.

In the first stage, the parameters for calculating feature vectors were set. For LBP and CLBP

descriptors, two parameters must be set: the number of histogram bins and the block size4. The values

for the number of histogram bins were 8, 16, and 32, while the block sizes were 2 to 24, taking steps

of 1. For WLD features, four parameters must be set: T , M , S, and the block size. Block sizes

ranged from 2 to 24 (inclusive), while T , M , and S varied independently, taking the values 4, 6, and

8. Figures 3.23, 3.24, and 3.25 show the parameter optimization results for each descriptor. Each

graph reports the FER performances (expressed as average recall) using different parameter values.

Figure 3.23 shows the FER results for the LBP descriptor using three different bin lengths and seven

block sizes. The best recall (95.3%) was produced using 16 bins and a block size of 8 × 8 pixels.

However, the results were the same when using 32 bins and 6 × 6 pixels blocks. Figure 3.24 gives

the parameter optimization results for the CLBP descriptor. It can be observed that the best FER

performance (94.6%) was obtained using 8 bins and a block size of 4 × 4 pixels. Figure 3.25 gives

the FER results when using WLD features, keeping M and S fixed, while the block size and T are

varied. The best performance (96.7%) was obtained using a block size of 8×8 pixels, T = 8, M = 4,

and S = 4. However, note that the performance was very similar when the block size was 7 and 9.

Table 3.9 summarizes the best extraction parameters for each descriptor.

The local descriptors were further evaluated using additional performance metrics such as preci-

sion, accuracy, and f1-score. Table 3.10 reports the cross-validation metrics obtained for each descrip-

tor. The local descriptors were also evaluated for their computational cost. This evaluation metric has

two components: the first measures the time taken in feature extraction, and the other measures the

SVM prediction time. Table 3.11 gives the computational costs by taking the average execution time

when processing 500 frames. The computational cost of the HOG descriptor was compared to LBP,
4In this chapter, block size refers to the side length of a square region in an image.
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CLBP, and WLD. The results show that HOG is measurably faster than the other descriptors.

Table 3.9: Best extraction parameters

Descriptor No. bins Block size T M S

LBP 16 8

CLBP 16 6

WLD 8 8 4 4

Figure 3.23: FER results using LBP features.
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Figure 3.24: FER results when using CLBP features.

Figure 3.25: FER results using WLD features when M = 4, S = 4, and the block size is varied. The
y-axis reports the average recall while the x-axis reports the block size.
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Table 3.10: Cross-validation performances different descriptors

Descriptor Recall Precision Accuracy F1-score

LBP 95.3 96.4 98.7 95.0

CLBP 93.4 94.6 98.0 93.2

WLD 96.7 97.0 98.9 96.5

HOG 98.1 98.4 99.4 98.0

Table 3.11: Computational cost of HOG compared with other descriptors (in milliseconds)

Descriptor Detection Registration Extraction Prediction Total Time

HOG 50.7 179.4 2.4 1.1 233.6

LBP 50.7 179.4 43.3 0.6 274

CLBP 50.7 179.4 115.5 0.8 346.4

WLD 50.7 179.4 170.6 2.5 403.2

3.4.4 Experimental Phase 4: Evaluating SVM on Sequences and Real-Time Data

This section details the results obtained when testing the system on video sequences. The procedure

was carried out in two stages: in the first stage, the system was tested on recorded video sequences,

and in the second stage, the system was applied to the video output from a laptop’s web camera.

Evaluation on CK+ Dataset

After proving the superiority of HOG compared to other texture descriptors, the entire FER system

must be evaluated. The system was evaluated quantitatively by running it on sequences from the

CK+ dataset. Three sequences were selected for evaluation, and the performance was noted as the

images evolved from Neutral to the specified expression. Figure 3.26 gives two examples of the
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output of the system when two sequences are considered as input. Results reveal that 33 out of

36 images were correctly classified, giving an accuracy of 91.7%. Another way of observing the

system’s output is by plotting the predicted expressions on a graph. Figure 3.27 gives the graphs

plotting the predicted output for six sequences of distinct emotions. The graphs show how the system

responds to images changing from the Neutral (Ne) expression to a given expression, e.g., Figure 3.26a

shows the expression varying from Neutral to Anger. The graph also shows the initial frame, the

first expression change, and the last frame. It is observed that the system correctly predicted most

expressions, although there were some classification errors in the sequences related to Anger, Disgust,

and Fear.

(a) Sequence S010001

(b) Sequence S037003

Figure 3.26: Output of the system for the first three images and the last five images for sequences
S010001 and S037003. Ne=Neutral, Fe=Fear, An=Anger
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(a) Sequence Anger (b) Sequence Disgust

(c) Sequence Fear (d) Sequence Happiness

(e) Sequence Sadness (f) Sequence Surprise

Figure 3.27: Graphs of predicted emotions versus time for six sequences.

Evaluation with on-line Video Stream

It was also tested with video input to ensure the system was ready for real-world environments. The

expressions were performed by starting with the Neutral expression and ending with the specified

expression. In Figure 3.29, it is observed that even though not all frames may be classified the same,

the final expression is correct because of the ad-hoc rule. The results also showed that the system

could correctly detect and register faces in a cluttered background.

69



The system was also tested on video input by varying the acquisition angle. Figure 3.28 gives the

output when the angle of acquisition is varied between −30◦ and 30◦, obtaining images in different

poses. The system correctly recognized expressions in most poses, showing that the faces were cor-

rectly detected and registered. Correctly registered images provide enough information to predict an

expression.

Figure 3.28: Output of the system when the angle of acquisition is varied between −30◦ and 30◦.
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Figure 3.29: Output of the system when tested on a video stream. The images progress from neutral
to a specified expression, and the expression is decided when the condition is met (ad-hoc rule).
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3.5 Discussion

3.5.1 Factors Affecting FER Performance

The system’s performance is seriously affected by three main factors: the selection of datasets, the

face registration, and the HOG extraction parameter choice. When the images were selected, a few

were found to be incorrectly labeled and had to be replaced. Incorrect labeling tends to introduce

ambiguity between expressions, decreasing predictions’ accuracy. The registration step is also crucial

to increase classification performance. A correctly registered frontal face image must have all the face

components to guarantee extraction of the key features and high prediction accuracy.

3.5.2 Comparing HOG with other Descriptors

This section compares HOG with three other descriptors by looking at two factors: the average perfor-

mance and the computational cost. The recall metric reported during cross-validation is popular when

comparing the prediction performance of different FER approaches. Table 3.12 records the average

performances of each descriptor when tested on the CK+ dataset with 6 expressions. Results show

that the HOG descriptor was superior, with an average recall of 98.1%, followed by the WLD report-

ing 96.7%. The LBP and CLBP perform less, with average recalls of 95.4% and 93.4%, respectively.

More can be said about these descriptors’ performance compared with the results obtained in [12].

The authors reported lower performances for all these descriptors and different parameter choices. It

is worth noting that the change in extraction parameters caused an improvement in the performances

of these descriptors.

The computational costs of each descriptor were also done. Recording the execution times of

each descriptor in real time was used to measure their computational cost. The HOG descriptor was

significantly more efficient, taking only 2.4ms and 1.0ms during extraction and prediction. This was

several magnitudes faster than the other descriptors, which took more than 60ms for extraction or pre-

diction. A probable reason for this is the efficiency of the code used to implement the HOG descriptor

compared with the other descriptors. While the HOG descriptor was compiled using Cython5, the

other descriptors were written in ordinary Python code. This means that the source code for the other
5https://pypi.org/project/Cython/ (accessed 1 Jan 2022)
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descriptors must also be optimized (i.e., using Cython), and another evaluation performed to get a

fairer judgment.

Table 3.12: Average recall performance of HOG compared to other descriptors

HOG LBP CLBP WLD

98.1 95.3 93.4 96.7

3.5.3 Comparison with Existing Approaches

The proposed approach must also be compared to existing state-of-the-art solutions. Table 3.13 gives

the average recall values per class when different approaches are evaluated on the CK+ dataset with

6 expressions. The proposed approach was comparable to previous studies and even superior in the

classes related to anger, disgust, and surprise.

Table 3.13: Average performances (%) of different approaches when tested on CK+ with 6 expressions

Expression [12] Proposed

Anger 88.6 93.3

Disgust 89 98.3

Fear 100 100

Happiness 100 98.6

Sadness 100 100

Surprise 97.4 98.5

Average 95.8 98.1
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3.6 Chapter Summary

This study showed the efficiency of the HOG descriptor and the SVM classifier when developing an

automatic FER system. More importantly, an extensive parameter selection was conducted for the

HOG descriptor and three other descriptors (LBP, CLBP, and WLD). The superiority of HOG was

evidenced in both cross-validation performance and computational cost during real-time execution.

The overall system was suitable for real-time applications using temporal analysis. Results show that

an appropriate selection of descriptor parameters leads to better performance than what was reported

in previous studies.
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CHAPTER 4

PARAMETER OPTIMIZATION OF HISTOGRAM-BASED LOCAL

DESCRIPTORS FOR FACIAL EXPRESSION RECOGNITION

4.1 Introduction

Feature extraction is one of the critical stages in Facial Expression Recognition (FER) because it must

provide the most discriminative features related to a particular expression. The features extracted

from a face image must be robust to changes in illumination, pose variation, noise, occlusions, scale

variation, and low resolution. The recognition of expressions is also tricky because of the complexity

of facial expressions. Local descriptors can solve this problem by capturing the local appearance of

image features (such as edges, lines, spots, and textures) related to various facial expressions. Jia et

al. [103] provide a solution for image noise, low resolution, and multi-intensity expressions. Hesse

et al. [104] handle different face views, while Makhmudkhujaev et al. [47] study the recognition of

noisy, and position-varied facial expressions.

This chapter studies four local descriptors that demonstrate robust FER characteristics. This study

contributes to developing a method for optimized feature extraction and feature vector calculation.

Another significant contribution of this work is showing the importance of correct face registration

to preserve only facial features and discard unnecessary regions. The remainder of this chapter is

organized as follows.

Section 4.2 presents the background and works related to this research. Section 4.3 discusses the

datasets used and the proposed FER approach. Section 4.4 presents the Experimental Results and

Discussion, which assesses the impact of face registration and optimizes local descriptors. Section 4.5

concludes the chapter.
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4.2 Background and Related Works

Extracting robust features from a face image is one of the most pressing issues for FER systems today.

Even the best classifier could fail if the features used do not appropriately represent facial expressions.

A robust feature must be highly discriminative, easily computed, of low dimensionality, insensitive

to noise, such as illumination changes, and have low intra-class variations [11]. Hence, extensive

work has been done to achieve robust feature extraction. Geometric features have been investigated to

represent facial expressions [25, 26]. Though geometric features can offer high discriminability, they

depend heavily on accurately detecting and aligning fiducial points in a face. Appearance features

can solve this problem by extracting features related to the appearance of the entire face or local

patches. The approach in [105] uses Gabor features and sparse representation-based classification to

recognize facial expressions. The method is robust to illumination changes, different resolutions, and

orientations. Sajjad et al. [106] fused two appearance and texture features: HOG and ULTP, and then

classified them using the support vector machines. Experiments show that the method performs well

in the presence of occlusions.

Local descriptors have proven to be a powerful way of characterizing expression-related informa-

tion while having low computational complexities. In particular, the histogram-based local descriptors

can represent the occurrences of micro-patterns (such as edges, lines, and bumps) that make up facial

expressions. However, the aggregation of these micro-patterns into histograms leads to a loss of in-

formation about the location of the micropatterns [13, 14]. To address this issue, weighted histogram

representations have been proposed to give more weights to regions with higher discriminability (e.g.,

eyes and mouth) and lower weights to regions with lower discriminability (e.g., image borders). Kabir

et al. [7] proposed the LDPv descriptor to characterize facial components’ texture and contrast in-

formation. The novel descriptor gives weight to the LDP code based on its variance. Recently, a

similar approach called the Weighted Statistical Binary Pattern (WSBP) descriptor was developed by

Truong et al. [107]. The new descriptor combines the histograms of sign and magnitude components

of the mean moments of an image. The histograms are weighted based on a new variance moment

that contains distinctive facial features. Though the weighted methods achieve high recognition rates

and robustness, they can suffer from high dimensionality and implementation complexity.

A popular technique for enhancing a local description based on a histogram is dividing the face
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into several overlapping or non-overlapping sub-regions. Shan et al. [13] reviewed FER based on

the LBP descriptor by extracting features from sub-regions of a face image. They extracted an LBP

histogram with 59 bins from 18×21 pixels sub-regions in a 110×150 image. However, the extraction

parameters1 were not optimized for FER. Carcagni et al. [12] were the first to optimize the cell size

and the number of orientations of the HOG descriptor. Results show that the best HOG parameters

are independent of the dataset used. The study further optimizes three other local descriptors (i.e.,

LBP, CLBP, and WLD) and compares them with the HOG descriptor. However, optimizing the other

descriptors is not detailed, leaving some questions unanswered, such as whether the optimization of

local descriptors is generalizable.

Garcia et al. [38] extract appearance and geometric features around specific face regions. This

approach segments three face regions: eye-eyebrows, nose, and mouth, dividing them into sub-regions.

The Local Fourier Coefficients (LFC) and Facial Fourier Descriptors (FFD) are extracted from each

sub-region, and the feature vectors of all the sub-regions are concatenated. It should be noted that

the final feature vector is a linear difference between the expressive and neutral features. Hence, both

the expressive and the neutral face are needed to recognize a given expression, which is not always

practical in real-life. Also, the approach could be negatively affected by pose variations. Turan and

Lam [11] studied the performance of several local descriptors when the resolution and number of

sub-regions of the face are varied. Five resolutions were used, and the face was divided into l × l

pixels sub-images where l was varied from 3 to 11. It was reported that higher resolutions and more

sub-regions lead to better classification performance. However, the results do not show a trend in

recognition performance as the number of sub-regions varies. Also, there is not enough discussion on

how the resolution and sub-region size2 affect the descriptor’s ability to represent facial features.

Most of the above approaches extract local descriptors by dividing the face images into sub-

regions. However, the approaches do not optimize the extraction parameters for FER, except for a

few works which attempt to optimize either the sub-block size, image resolution, histogram bins, or a

combination of these [11, 12]. The current work aims to study the importance of optimizing the sub-

region size and the number of histogram bins when calculating feature vectors of local descriptors.
1The term ”extraction parameters” refers to the variables controlling how a feature vector is calculated.
2In this chapter, the terms’ sub-region size’ and ’block size’ are used interchangeably.
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4.3 An Approach for Optimized Facial Expression Recognition

A simple and effective method for FER based on local descriptors and conventional classifiers was de-

fined by Slimani et al. [15]. The method involves dividing the face region into several non-overlapping

regions and extracting local descriptors from each sub-region. The histogram of each sub-region is

calculated separately and concatenated to form a single feature vector for classification. The study

reported in this chapter extends Slimani et al.’s [15] approach by optimizing the feature extraction

process. Figure 4.1 summarizes the proposed approach for optimized FER, consisting of training and

testing phases. In the training phase, images are pre-processed using face detection and registration.

Next, a local descriptor is applied to the registered faces to extract facial features. This study examined

four local descriptors: Histogram of Oriented Gradients (HOG), Local Binary Patterns (LBP), Com-

pound Local Binary Patterns (CLBP), and Weber’s Local Descriptor (WLD). Subsequently, feature

vectors are generated by dividing the face region into several sub-regions and calculating the his-

tograms of each sub-region. The feature vectors are normalized based on the type of local descriptor

used (see Section 4.3.3). To optimize the process of feature vector calculation, the extraction parame-

ters (i.e., the sub-region size and the number of histogram bins) are varied, producing several feature

sets. Then, the best extraction parameter settings are found by comparing the classification perfor-

mances produced by each feature set. Finally, the best feature set is used to train an SVM classifier. In

the testing phase, images are processed, and the feature vectors are generated based on the best extrac-

tion parameter values obtained from the training phase. After that, the feature vectors are classified as

facial expressions using the trained SVM model. Additionally, the SVM classifier is evaluated using

10-fold cross-validation.

Figure 4.1: The proposed approach for optimized Facial Expression Recognition.
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4.3.1 Datasets

The data used in this study was taken from the Extended Cohn Kanade (CK+) dataset and the Radboud

Faces Dataset (RFD). The procedure for creating sub-datasets has already been described in Chapter 3.

For both datasets, the expressions selected were anger, disgust, fear, happiness, sadness, and surprise.

In this study, only datasets with six expressions were used. Table 4.1 summarizes the number of

images and expressions considered in this study.

Table 4.1: Summary of datasets

Dataset Number of images Number of expressions

CK+6 347 6

RFD6 402 6

4.3.2 Face Detection and Registration

Faces were detected using a frontal face detector implemented by the OpenCV [91] library for the

Python programming language. The faces were then registered, giving them a predefined pose, shape,

and size. Detailed discussions of the face detection and registration algorithms have already been

presented in Chapter 3 under Section 3.3.1.

4.3.3 Feature Extraction and Feature Vector Calculation

Feature extraction and feature vector calculations are key stages of this FER method. Although the

two processes were portrayed separately in the preamble of this section, their workings are very

interlinked. The method used in this study divides the face image into several equally sized non-

overlapping sub-regions, and a local descriptor is applied to each sub-region, producing several his-

tograms. The final feature vector is generated by normalizing and concatenating the histograms into

a single 1D vector. It must be noted that the sub-region histograms are calculated separately and nor-

malized such that the frequencies sum to one3. The normalized histograms are then concatenated to
3This rule is applied to all the descriptors except the HOG descriptor, where the blocks are normalized in groups using

L2-Hys [96].
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form the final feature vector. Suppose Ij is a WS ×WS matrix of intensities representing the j-th

sub-region in the image, and the function D(x, y) computes the descriptor at a position (x, y) in Ij ,

then the histogram associated with this sub-region is defined by Equation (4.1).

Hj = {hi}i=0,1,...,Nb−1 (4.1)

hi =

WS−1∑
x=0

WS−1∑
y=0

δ(D(x, y), i)

δ(x, i) =


1 if L(i) ≤ x < U(i)

0 otherwise
, L(i) = i× n

Nb
, U(i) = (i+ 1)× n

Nb
,

where n is the number of possible descriptor values and Nb is the number of histogram bins.

The final feature vector is given by Equation (4.2).

H =

{
H0

(WS)2
,

H1

(WS)2
, . . . ,

Hm−1

(WS)2

}
(4.2)

where m is the number of sub-regions.

4.3.4 Feature Set Evaluation

This step involves fitting an SVM model with different feature sets and comparing their classification

performances. The performances are ranked by the average accuracies during 10-fold cross-validation.

Then, the best feature set and the corresponding best parameter setting are identified. Algorithm 4.1

defines the process of feature set evaluation in more detail.

4.3.5 Facial Expression Classification

In this study, facial expression classification was performed using Support Vector Machines (SVM)

classifiers. The SVM hyper-parameters were tuned using the grid-search cross-validation procedure

discussed in Chapter 3. Table 4.2 gives the hyper-parameter configuration for each descriptor.
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Algorithm 4.1 Feature Set Evaluation
Inputs:

(F1, . . . , Fm) : feature sets
(p1, . . . , pm) : extraction parameters for each feature set

Outputs:
Fbest : best feature set
pbest : best extraction parameters

1: Fbest ← F1 // Initialize the best feature set
2: pbest ← p1 // Initialize the best parameters
3: model← SVM() // Construct a new SVM model
4: maxScore← CrossV alidation(model, F1) // Obtain a cross-validation score
5: for i in (2, 3, . . . ,m) do // Train new models with the remaining feature sets
6: model← SVM()
7: score← CrossV alidation(model, Fi)
8: if score > maxScore then // Find the maximum score
9: Fbest ← Fi

10: pbest ← pi
11: maxScore← score
12: end if
13: end for
14: return Fbest, pbest

Table 4.2: Calibration of the SVM hyper-parameters

Descriptor C Gamma Kernel

HOG 1000 0.05 RBF

LBP 1000 0.05 RBF

CLBP 1000 0.05 Linear

WLD 1000 0.05 Linear

4.4 Experimental Results and Discussion

4.4.1 Experimental Phase 1: The Effect of Face Registration

This experiment investigated the effect of face registration on FER. First, classifiers were trained on

feature vectors extracted from unregistered faces, and the performance recognition rates during 10-fold

cross-validation were recorded. Then, classifiers were developed on feature vectors from registered

faces. The non-registered images were produced by simply detecting a face region and resizing it to

65×65 pixels. In contrast, the registered images were processed using the face registration algorithm

and resized to 59×65 pixels to balance performance and feature vector length. The parameter settings
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used to calculate the feature vectors are given in Table 4.3.

Table 4.3: Extraction parameters setting for comparing registered and unregistered features

Descriptor Parameters

HOG Number of bins = 9, block size = 8

LBP Number of bins = 16, block size = 7

CLBP Number of bins = 8, block size = 11

WLD T = 8,M = 4, S = 4, block size = 8

The results in Figure 4.2 show that the registration-based classifiers have a higher recognition rate

than the non-registration-based classifiers. The largest increase (22.2% for Anger) is observed for the

LBP descriptor. Table 4.4 shows each expression’s difference in recognition rate. The results show that

registration increases the recognition rate (e.g., fear) of some expressions. In the worst-case scenario,

registration does not affect the recognition performance (e.g., HOG happiness). The largest increase

can be observed for the LBP descriptor for the anger expression. Observing the results for the various

descriptors, the following pattern is observed: the performances are improved by the registration

process regardless of the descriptor used. These results suggest that face registration has a positive

(and non-negligible) impact on the feature extraction phase and, ultimately, recognition performance.

Figure 4.3 shows an example of a registered image compared to a non-registered image.

Figure 4.2: Recognition rates obtained with and without registered faces.
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Table 4.4: Recognition performance per class before and after registration

Expression
HOG LBP CLBP WLD

NR1 RE2 NR RE NR RE NR RE

Anger 88.9 93.3 68.9 91.1 84.4 80 77.8 93.3

Disgust 91.5 96.6 94.9 93.2 83.1 94.1 93.2 94.9

Fear 92.0 100 90.0 100 96.0 98.0 92.0 98.0

Happiness 98.6 98.6 95.7 98.6 91.3 97.1 95.7 98.6

Sadness 96.4 98.2 91.1 96.4 91.1 96.4 98.2 98.2

Surprise 98.5 98.5 97.1 97.1 95.6 98.5 95.6 98.5

Average 94.1 97.4 89.3 96.1 90.1 94.1 92.2 96.9
1 NR=Non-registered, 2 RE=Registered

Figure 4.3: Example of non-registered and registered images.

4.4.2 Experimental Phase 2: Optimizing Local Descriptors

This experiment aimed to find the most optimal way of extracting four local descriptors: HOG, LBP,

CLBP, and WLD. First, different feature sets were created based on the selected local descriptor.

Then, 10-fold cross-validation was done using each feature set, and the average recalls was recorded.

The feature sets were created by varying the extraction parameters of each descriptor as follows. The

parameters for LBP and CLBP were the number of histogram bins and the block size. The number of

bins varied between 8, 16, and 32, and the block size varied from 2 to 24, taking steps of 1. For the

HOG descriptor, the number of orientations varied between 3, 5, 7, 9, 12, 15, and 55, and the cell size

varied between 4 and 15 (inclusive). Concerning WLD, four parameters were tuned: T , M , S, and

the block size. Block sizes ranged from 2 and 24 (inclusive) while T , M and S took values of 4, 6,

and 8.

Figures 4.4, 4.5, 4.6, and 4.7 gather the FER results (expressed as average recall) when each
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descriptor was optimized on the CK+ dataset of 6 expressions. The best parameters for extracting

HOG descriptor are reported as 9 orientations and a cell size of 8, giving a recognition rate of 97.4%.

Concerning the LBP features, the recognition rate has a maximum value of 96.1% when the number

of bins is 16 and the block size is 7 pixels. The best recognition rate for the CLBP descriptor is

94.1% when the parameters are 8 bins and 11-pixel blocks. Finally, the best performance (96.9%)

for WLD is obtained using the following parameters: block size = 8, T = 8, M = 4, and S = 4.

The same parameter optimization procedure was repeated; the features are extracted from the RFD

dataset of 6 expressions. The results in Figure 4.8 show that the best parameters for extracting HOG

were 7 orientations and a cell size of 8 (RR4=97.2%). From Figure 4.9, the best parameters of LBP

parameters are reported as 16 bins and a block size of 8 (RR=94.6%). The best parameters for CLBP

are 8 bins and 6-pixel blocks, as shown in Figure 4.10 (RR=95.6%). Finally, Figure 4.11 shows the

best parameters of WLD as the block size of 7, T = 6, M = 4, and S = 4 (RR=96.5%). The main

observation is that the recognition rate rises and then falls as the block size varies. This suggests that

smaller blocks lead to too much fine-grain information, which is less helpful in representing action

units. On the other hand, larger blocks may merge multiple action units, which is less valuable because

it mixes discriminatory and non-discriminatory information. A similar finding was presented in [14].

The above results proved that the performance of these local descriptors improved due to opti-

mizing extraction parameters. However, the parameters must be assessed to determine whether they

depend on the training dataset used. Tables 4.5 and 4.6 give the extraction parameters and feature

vector length for each descriptor on each dataset. The results show that the most frequent value for

block size is 8; however this varies from 6 to 8. This means that a block size of 8×8 pixels could be

the best window for extracting features at the current resolution. On the other hand, the number of

histogram bins is different for all descriptors. These findings reveal that the optimum set of parameters

depends on the training dataset, which is not ideal.
4RR=Recognition Rate
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Figure 4.4: HOG optimization results (CK+ with 6 expressions).

Figure 4.5: LBP optimization results (CK+ with 6 expressions).

Figure 4.6: CLBP optimization results (CK+ with 6 expressions).
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Figure 4.7: WLD optimization results (CK+ with 6 expressions).

Figure 4.8: HOG optimization results (RFD with 6 expressions).

Figure 4.9: LBP optimization results (RFD with 6 expressions).
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Figure 4.10: CLBP optimization results (RFD with 6 expressions).

Figure 4.11: WLD optimization results (RFD with 6 expressions).
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Table 4.5: Best parameters for the extraction on the CK+ dataset

Descriptor Number of bins Block size T M S Feature vector length

HOG 9 8 2430

LBP 16 7 1440

CLBP 8 11 576

WLD 8 8 4 4 9216

Table 4.6: Best parameters for the extraction on the RFD dataset

Descriptor Number of bins Block size T M S Feature vector length

HOG 7 8 1890

LBP 16 8 1152

CLBP 8 6 1760

WLD 7 6 4 4 8640

4.4.3 Comparison with the State-of-the-Art

Comparing FER systems in the literature is challenging because many studies do not report on their

evaluation strategy. Also, the training-testing data split often varies from one study to another. Nev-

ertheless, the result from this study can be fairly compared to works using 10-fold cross-validation

and the recognition rate5 as a performance metric. Table 4.7 gives various recent state-of-the-art ap-

proaches evaluated on the extended Cohn Kanade (CK+) dataset6. For each approach, the recognition

rates reported by the authors were recorded. All the approaches used SVM for classification, showing

superior performance, especially when working with small datasets. The best recognition rate was

achieved by the proposed approaches using the HOG descriptor improving, outperforming the results

in [12] by a difference of 1.6%. Compared to the same source, the proposed approach gives a better
5The recognition rates were obtained from the authors of the methods.
6When a value is not available, it is replaced by ’-’
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recognition rate for LBP, CLBP and WLD descriptors. This improvement is probably due to a more

optimum selection of descriptor parameters in this study.

Table 4.7: Performance of the proposed approach compared to various state-of-the-art approaches

Approach Year Feature Feature vector

length

Classifier Registration Number of

images

Recognition

rate (%)

[7] 2012 LDPv 2352 SVM No 1224 96.7

[12] 2015 HOG - SVM Yes 347 95.8

[12] 2015 LBP - SVM Yes 347 91.7

[12] 2015 CLBP - SVM Yes 347 92.3

[12] 2015 WLD - SVM Yes 347 86.5

[19] 2018 CLGDNP - SVM No 1482 95.3

[18] 2019 DRADAP - SVM No 1043 90.6

[8] 2019 LBP 2478 SVM Yes 150 96.2

Proposed 2022 HOG 2430 SVM Yes 347 97.4

Proposed 2022 LBP 1440 SVM Yes 347 96.1

Proposed 2022 CLBP 576 SVM Yes 347 94.1

Proposed 2022 WLD 9216 SVM Yes 347 96.9

4.4.4 Factors Affecting the Recognition Performance

The system’s performance is seriously affected by three main factors: the selection of datasets, the

face registration, and the feature extraction parameters. Incorrect labeling also tends to introduce

ambiguity between expressions and can decrease predictions’ accuracy. The registration step is crucial

to increase classification performance. A correctly registered frontal face image must have all the

facial components to guarantee extraction of the key features and high prediction accuracy. This

finding was also pointed out in [12], and the results confirm that the recognition performance is higher

when using registered images than when the images are not registered.
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4.5 Chapter Summary

This chapter presented a study on the optimization of local descriptors for FER. The proposed ap-

proach recognized facial expressions in three stages: face detection and registration, feature extrac-

tion, and classification. Findings reveal that face registration is critical for improving recognition

performance. The study was validated on two popular facial expression datasets, and the performance

obtained was comparable to the state-of-the-art. Parameter optimization was performed for four de-

scriptors: HOG, LBP, CLBP, and WLD, resulting in improved recognition rates. Although the best

parameters’ values differed depending on the dataset used, the block sizes were very similar, taking

values close to 8×8 pixels. The results showed that the performance peaked at this point. Considering

this, if improved, the current optimization procedure could be used to develop future FER systems

based on local descriptors.
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CHAPTER 5

A COMPARATIVE STUDY OF LOCAL DESCRIPTORS AND

CLASSIFIERS FOR FACIAL EXPRESSION RECOGNITION

5.1 Introduction

A few attempts have been made to compare the performances of local descriptors and conventional

classifiers applied to Facial Expression Recognition (FER). In 2018, Turan and Lam [11] studied 27

local descriptors under different conditions, such as varying image resolutions and the number of

sub-regions. Two classifiers were used to recognize expressions on four facial expression databases.

Their results were comparable to the state-of-the-art deep learning approaches on well-known datasets.

Slimani et al. [15] studied the independent performance of 46 LBP variants for FER. A single classi-

fication technique (i.e., SVM) was used to classify seven expressions. The study showed that several

local descriptors, initially proposed for other classification problems, outperformed the state-of-the-art

four databases. In both studies mentioned above, only one or two classifiers were considered, whereas

more classifiers still need to be investigated.

The work presented in this chapter compares the performances of six local descriptors and four

machine learning for FER. Multiple experiments were conducted under different settings, such as

varied extraction parameters, different numbers of expressions, and two datasets, to discover the best

combinations of local descriptors and classifiers for FER. The rest of this chapter is organized as

follows: Section 5.2 reviews local descriptors and classifiers, Section 5.3 gives the Materials and

Methods, Section 5.4 presents the Experimental Results and Discussion, and Section 5.5 concludes

the report.
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5.2 Related Works

5.2.1 Local Binary Patterns

Since its introduction as a textured-based descriptor in 1996, the Local Binary Patterns (LBP) descrip-

tor has undergone several improvements to produce a more robust descriptor. For example, Shan et

al. [13] improved LBP by dividing the face image into sub-regions of various sizes and positions.

The AdaBoost algorithm was used to learn the most discriminative LBP histograms. The so-called

Boosted-LBP features were then classified as expressions using machine learning techniques such

as template matching, Support Vector Machines, Linear Discriminant Analysis, and linear program-

ming. LBPTOP (Local Binary Patterns on three Orthogonal planes) extends LBP to encode temporal

changes and spatial changes [108]. This method extracts LBP patterns from three orthogonal planes:

the spatial, vertical spatio-temporal plane, and horizontal spatio-temporal plane. In [90], a new kernel-

based manifold learning method called kernel discriminant isometric mapping is proposed to reduce

the dimension of LBP features. The features were then classified using the Nearest Neighbor classifier.

Recently, Guo et al. [109] proposed the Extended Local Binary Patterns on three Orthogonal planes

(ELBPTOP) for spontaneous micro-expressions recognition, and in [110], a smaller LBP feature vec-

tor that is also resistant to noise is introduced. The novel descriptor considers four neighbors and

diagonal neighbors separately, and an adaptive window and averaging in radial directions to improve

the feature extraction. Finally, the feature vector is classified using SVM.

5.2.2 Local Directional Patterns

Local Directional Patterns (LDP) are binary patterns obtained by encoding the edge responses in a

local neighborhood of an image [53]. The LDP descriptor computes eight directional edge responses

at each pixel and encodes the responses as an 8-bit binary code using the relative strengths of the edge

responses. Specifically, the edge responses are computed by applying Kirsch edge masks. To form a

binary code, the k most significant responses are set to 1 while the remaining 8 − k bits are set to 0.

In summary, the LDP code is defined by Equation (5.1).

LDPk =

7∑
j=0

B(mj −mk)2
j (5.1)
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where mj is the j-th directional response, mk is the k-th most significant directional response and

B(x) is defined as

B(x) =


1 if x ≥ 0

0 otherwise

5.2.3 Angled Local Directional Patterns

Recently, the Angled Local Directional Patterns (ALDP) descriptor was proposed to improve upon

the LDP descriptor by addressing two drawbacks of LDP: (1) the static choice of the most significant

bits and (2) the value of the center pixel was ignored [111]. To address these issues, the ALDP

descriptor is extracted by first generating Kirsch mask responses (m0, . . . ,m7) just like LDP, then

computes angular vector components, (p0, . . . , p7) in four angles (0, 45, 90, 135). The angular vector

components are defined by Equations (5.2)−(5.9).

p0 = b(m0 − c,m4 − c) (5.2)

p1 = b(m3 −m2,m1 −m2) (5.3)

p2 = b(m7 −m6,m5 −m6) (5.4)

p3 = b(m7 −m0,m1 −m0) (5.5)

p4 = b(m6 − c,m2 − c) (5.6)

p5 = b(m3 −m4,m5 −m4) (5.7)

p6 = b(m5 − c,m1 − c) (5.8)

p7 = b(m3 − c,m7 − c) (5.9)
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where c is the center pixel of a 3× 3 grid and b(r, s) is defined as

b(r, s) =


1 if r ≥ 0 and s ≤ 0

0 otherwise

Consequently, the ALDP code of pixel is defined by Equation (5.10).

ALDPx,y(p0, p1, . . . , p7) =

7∑
i=0

pi × 2i (5.10)

where (x,y) are the coordinates of a pixel in an input image. Finally, a histogram of ALDP codes

is used as a feature vector for classification. One of the drawbacks of ALDP is the large size of the

feature vector. Since it considers eight angular vector components, the basic histogram size is 256,

unlike LDP, which has 56 histogram bins.

5.2.4 K-Nearest Neighbors

K-Nearest Neighbors (KNN) is one of the simplest machine learning algorithms successfully applied

to the FER problem. Sohail and Bhattacharya [112] proposed an approach based on eleven feature

points representing the principal muscle actions and the KNN classifier to recognize six basic facial

expressions, achieving an average accuracy of 90.76%. Panchal and Pushpalatha [113] proposed a

new descriptor combining LBP and Asymmetric Region LBP for feature extraction and KNN for

classification. When classifying seven expressions, an overall recognition accuracy of 95.1% was

achieved on the JAFFE database. It should be noted that the KNN algorithm does not construct a

general internal model but simply stores training data instances. Hence, no explicit training is required.

Hence, there are zero training costs. However, finding the k neighbors becomes computationally

expensive when classifying high-dimensionality features.

5.2.5 Multi-Layer Perceptron

Multi-Layer Perceptron (MLP) neural network has shown encouraging performances in recognizing

emotions. In [31], a system is proposed for classifying facial expressions using the Viola-Jones algo-

rithm for face detection, the HOG descriptor for feature extraction, PCA for dimensionality reduction,

and MLP for classification. They reported an average accuracy of 82.97% on the CK+ database when
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classifying eight basic expressions. Boughrara et al. [114] presented a new constructive training al-

gorithm for the Multi-Layer Perceptron. Unlike most traditional algorithms, which fix the structure

of the neural network before training, the proposed constructive training algorithm learns the network

architecture and performs the learning process simultaneously. The approach uses the Perceived Fa-

cial Images (PFI) in eight directions to extract features from a face image. The predicted expression is

obtained by a fusion of the neural networks corresponding to the eight directions. The main drawback

of MLP is that it is often time-consuming and tedious to determine a proper structure to guarantee

convergence and avoid over-fitting.

5.3 Materials and Methods

5.3.1 Method

Chapter 4 presented an optimized Facial Expression Recognition approach using local descriptors and

the SVM classifier. This study adapts the optimized FER approach to investigate several other local

descriptors and multiple classifiers instead of one. Figure 5.1 gives the modified FER approach for

this study, which is segmented into two phases: a training phase and a testing phase. In the training

phase, images are processed using face detection and face registration. Then, feature vectors are ex-

tracted from the registered face by applying a local descriptor and calculating histograms. The local

descriptors considered for this study are Local Binary Patterns (LBP), Compound Local Binary Pat-

terns (CLBP), Local Directional Patterns (LDP), Angled Local Directional Patterns (ALDP), Weber’s

Local Descriptor (WLD), and Histogram of Oriented Gradients (HOG). As in Chapter 4, various fea-

ture sets are generated by varying the extraction parameters, and the best feature set is used to train

a classifier. However, this study considers multiple classifiers; thus, the extraction parameter settings

may differ depending on the classifier used.
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Figure 5.1: FER method combining local descriptors and classifiers.

In the testing phase, test images are processed, and feature vectors are classified as expressions.

Again, the main difference between the current approach and the one in Chapter 4 is that more than one

classifier is used here. Another distinction in this approach is that it allows the number of expressions

to vary between 6, 7, and 8. The following classifiers were used: Support Vector Machines (SVM),

K-Nearest Neighbors (KNN), Naive Bayes (NB), and Multi-layer Perceptron (MLP). Table 5.1 gives

the hyper-parameter settings related to each classifier.

5.3.2 Datasets

These experiments used the Extended Cohn Kanade (CK+) and Radboud Faces Dataset (RFD). These

datasets have been presented in detail in previous chapters (see Chapter 3). Table 5.2 summarizes the

number of samples and expressions in each dataset.

Table 5.1: Classifier hyper-parameters

Classifiers Parameters

SVM Kernel = RBF, C = 1000, Gamma = 0.05

Gaussian NB Automatically selected

KNN k = 50

MLP solver = Adam, learning rate = 0.001, number of passes over the training data = 200
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Table 5.2: summary of the datasets

Database name Number of images Number of classes

CK+6 347 6

CK+7 407 7

RFD6 402 6

RFD7 469 7

RFD8 536 8

5.4 Experimental Results and Discussion

5.4.1 Performance Analysis for Varying the Number of Histogram Bins

In this experiment, the face regions were first detected and aligned using a face registration algorithm

that automatically positions the eyes and crops on the face image to discard background pixels. The

aligned face images were then resized to a resolution of 100×100 pixels. By setting the size of the

sub-regions to 13×13 pixels (i.e., 49 sub-regions in total), feature vectors are extracted from each

image. The number of histogram bins was varied to reduce the feature vector length while achieving

a high recognition rate. Note that for WLD, the histogram bins were set as M = 2, S = 2, and T

was varied from 2 to 24. Figure 5.2 gives the results1 obtained when the number of histogram bins

is varied for different descriptor and classification combinations. Different trends can be observed

depending on the type of classifier used. When SVM and MLP classifiers are used, the classification

performance improves or stays the same as the bin number increases. A similar result is seen in the

KNN classifier. However, the large size of the features negatively affects recognition rates of the

considered local descriptors (e.g., with the LDP descriptor, the performance decreases as the number

of bins increases). On the other hand, when using the NB classifier, the recognition rates decrease as

the number of bins rises, regardless of the type of features used. Tables 5.3 and 5.4 give the results,
1Results are given as the average accuracy during 10-fold cross-validation.
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with the optimum accuracies highlighted in bold.

(a) WLD results (b) LDP results

(c) ALDP results (d) LBP results

(e) CLBP results (f) HOG results

Figure 5.2: FER results for different number of bins on RFD dataset with 6 expressions.

Table 5.3: FER results on RFD with 6 expressions for different number of bins (WLD, LDP and
ALDP)

WLD LDP ALDP

Bins 8 16 80 88 96 8 12 48 52 56 16 32 96 112 128

SVM 92.0 93.0 95.4 96.0 96.0 94.7 93.7 96.9 96.9 96.9 94.6 94.3 96.0 97.0 96.0

NB 74.4 74.0 55.9 50.8 57.7 92.9 93.2 82.6 79.2 76.2 80.2 53.7 35.2 36.2 32.1

KNN 82.8 87.6 91.7 92.0 93.0 93.1 91.7 92.6 92.4 91.9 87.9 88.5 91.9 93.0 92.9

MLP 93.8 93.7 95.9 96.9 96.4 93.8 94.6 96.9 95.7 96.1 94.0 94.5 94.8 94.0 95.0
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Table 5.4: FER results on RFD with 6 expressions for different number of bins (LBP, CLBP and HOG)

LBP CLBP HOG

Bins 16 32 96 112 128 8 24 216 232 248 6 9 50 53 56

SVM 93.7 95.0 95.3 95.0 95.0 93.6 95.3 96.5 96.5 96.7 96.3 95.9 96.6 95.5 94.9

NB 90.5 91.2 65.9 47.3 38.8 86.9 92.2 43.0 42.0 45.3 93.9 93.4 87.4 88.8 88.1

KNN 91.7 92.2 92.1 92.4 92.9 88.6 92.3 95.0 94.0 95.2 93.6 93.7 91.0 92.3 91.6

MLP 94.0 94.2 95.2 95.0 95.3 92.5 95.8 96.3 96.0 96.2 95.9 96.4 97.4 95.6 96.6

5.4.2 Performance Analysis for Varying the Sub-region Size

Figure 5.3 shows the results for varying the sub-regions size on the CK+ dataset, while Figure 5.4

gives the results from the RFD dataset. Similarly, Tables 5.5, 5.6, 5.7, and 5.8 highlight the best

results in bold for each classifier and descriptor combination. A sub-region can be represented by a

square of size l× l, where l varies from 7 to 25, taking steps of 3. As observed in the tables, the larger

the sub-regions size (and the smaller the number of sub-regions), the better the recognition rates. This

trend is observed for all the classifier and descriptor combinations. It is also worth noting that no

single sub-region size works best for all descriptor and classifier combinations. However, the results

suggest that using sub-regions of 10×10 and 13×13 pixels leads to some of the highest recognition

rates. Table 5.9 gives the extraction parameters selected for the subsequent series experiments based

on the results obtained from the two previous experiments (see Sections 5.4.2 and 5.4.1).
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(a) SVM results (b) NB results

(c) KNN results (d) MLP results

Figure 5.3: FER results for different sub-regions sizes on CK+ with 6 expressions.

(a) SVM results (b) NB results

(c) KNN results (d) MLP results

Figure 5.4: FER results for different sub-regions sizes on RFD with 6 expressions.
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Table 5.5: FER results for different sub-regions sizes on CK+ with 6 expressions using 10-fold (SVM
and NB)

SVM NB

l = 7 10 13 16 19 22 25 7 10 13 16 19 22 25

WLD 94.6 95.5 96.0 94.9 90.4 89.1 86.6 58.9 68.9 70.7 73.4 71.7 72.1 63.3

LDP 93.8 95.3 96.1 94.8 94.8 89.7 85.5 86.6 90.7 87.5 83.3 86.9 76.1 79.6

ALDP 93.5 96.6 97.5 97.4 95.4 91.5 89.9 38.6 65.2 75.7 73.8 77.5 76.2 75.7

LBP 93.4 94.8 96.4 94.8 95.9 93.6 90.6 64.3 82.1 82.7 75.9 73.2 72.6 67.7

CLBP 89.7 94.0 95.3 93.9 94.7 91.9 89.6 77.8 89.9 85.6 83.8 85.4 81.1 80.6

HOG 81.2 97.4 96.8 95.4 95.9 91.9 90.0 84.6 91.6 87.1 90.2 91.6 84.9 84.1

Table 5.6: FER results for different sub-regions sizes on CK+ with 6 expressions using 10-fold (KNN
and MLP)

KNN MLP

l = 7 10 13 16 19 22 25 7 10 13 16 19 22 25

WLD 80.3 81.7 77.6 75.1 72.4 70.0 68.8 95.4 94.7 96.3 96.1 95.4 94.2 92.0

LDP 76.8 79.0 78.9 72.9 70.4 69.1 59.6 95.1 95.8 95.9 93.9 93.7 89.9 85.6

ALDP 76.7 74.7 75.4 72.0 68.9 67.7 67.6 95.6 95.9 96.7 94.9 94.9 91.6 89.4

LBP 80.4 79.6 82.7 75.8 75.8 74.4 69.2 96.3 95.9 97.2 94.9 94.2 92.1 93.9

CLBP 75.4 76.8 77.3 75.3 75.1 67.7 67.3 96.6 95.8 97.5 94.8 94.0 92.8 91.0

HOG 88.5 90.0 87.1 85.4 87.0 82.9 79.1 94.9 98.3 97.3 95.5 95.2 90.8 93.4
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Table 5.7: FER results for different sub-regions sizes on RFD with 6 expressions using 10-fold (SVM
and NB)

SVM NB

l = 7 10 13 16 19 22 25 7 10 13 16 19 22 25

WLD 95.8 95.5 96.0 95.5 96.0 94.4 94.4 64.7 71.7 74.4 71.7 74.0 76.5 69.8

LDP 96.9 97.0 96.9 95.2 93.0 92 90.4 93.5 94.4 93.2 90.5 90.8 85.3 85.9

ALDP 96.0 95.6 97.0 95.2 95.8 92.8 92.6 48.4 70.2 80.2 84.6 84.2 82.4 80.2

LBP 96.3 96.5 95.3 95.7 96.0 92.7 90.8 69.8 90.9 91.5 90.9 91.4 87.0 83.6

CLBP 95.9 97.5 96.7 96.5 96.7 96.4 95.3 91.4 94.0 92.2 91.7 92.7 87.1 86.7

HOG 28.9 94.7 96.6 94.6 93.8 93.8 91.0 95.5 94.7 93.9 89.6 91.5 85.2 83.1

Table 5.8: FER results for different sub-regions sizes on RFD with 6 expressions using 10-fold (KNN
and MLP)

KNN MLP

l = 7 10 13 16 19 22 25 7 10 13 16 19 22 25

WLD 91.0 93.3 93.0 89.9 91.9 87.5 86.2 95.0 95.5 96.9 94.2 95.2 94.5 92.9

LDP 91.2 93.5 93.1 87.8 90.2 85.2 85.3 96.7 96.1 96.9 92.9 92.0 90.6 91.3

ALDP 92.2 89.8 93.0 90.1 91.5 84.6 82.7 94.7 94.7 95.0 94.2 93.5 90.9 90.2

LBP 90.0 91.7 92.9 91.2 91.6 86.2 82.1 95.2 96.7 95.3 94.0 95.9 92.9 90.5

CLBP 91.9 94.8 95.2 92.7 94.0 91.9 90.5 96.2 96.8 96.3 95.7 96.0 93.2 93.2

HOG 93.7 94.9 93.7 90.8 93.7 88.4 78.8 96.2 96.3 97.4 94.7 94.6 92.6 90.6

102



Table 5.9: Best extraction parameters for each combination of classifier and descriptor expressed as
(number of bins, block size)

SVM NB KNN MLP

WLD (88, 19) (8, 19) (96, 10) (88, 13)

LDP (48, 7) (12, 10) (8, 10) (48, 13)

ALDP (112, 13) (16, 16) (112, 13) (128, 7)

LBP (96, 19) (32, 19) (128, 13) (128, 10)

CLBP (248, 10) (24, 10) (248, 13) (216, 10)

HOG (50, 13) (6, 7) (9, 10) (50, 13)

5.4.3 Performance Analysis of the Classifiers

Figure 5.5 summarizes the best results when varying the sub-region sizes on the CK+ dataset (6 ex-

pressions). The results show that the best recognition rates (95 − 98%) were achieved using SVM

and MLP classifiers, while the lowest accuracies were produced by the NB and KNN classifiers

(73− 91%). A similar trend can be observed on the RFD dataset (6 expressions), as seen in Figure 5.6.

The performances of the SVM and MLP classifiers were further analyzed by repeating the previous

experiments across two datasets with a varying number of expressions. For the CK+ dataset, the ex-

pressions were Anger, Disgust, Surprise, Sadness, Happiness, and Disgust in the 6-class problems,

and the 7-class problem added the Neutral expression to the previous list. For the RFD dataset, the ex-

pressions were Anger, Disgust, Surprise, Sadness, Happiness, and Disgust in the 6-class problem, the

7-class problem added the expression of Contempt to the previous list, and the 8-class problem added

the Neutral expression. Considering the 6-class problem, SVM and MLP achieve similar classification

rates (above 95%) on the two datasets. Although their performances are similar, the MLP classifier

achieved slightly better recognition rates than SVM when classifying WLD, ALDP, LBP, CLBP, and

HOG descriptors. Both classifiers are negatively affected by the introduction of the Neutral. The most

significant performance drop is seen in the ALDP + SVM combination, where the accuracy drops by
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almost 7%. The recognition rates of both classifiers do not change much when the Contempt expres-

sion is introduced in the RFD dataset with seven expressions. Table 5.10 gives the results for the best

combinations when the number of expressions varies from 6 to 8. It can be observed that HOG + SVM

and HOG + MLP have the highest recognition rates.

Figure 5.5: FER results for the best of sub-regions on the CK+ dataset (6 expressions).

Figure 5.6: FER results for the best of sub-regions on the RFD dataset (6 expressions).
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Table 5.10: Comparison of recognition rates on the CK+ and RFD datasets with varying number of
expressions

CK+ RFD

Descriptor + Classifier 6-class 7-class 6-class 7-class 8-class

WLD + SVM 96.0 92.4 96.7 95.9 91.5

LDP + SVM 96.1 93.3 97.0 96.8 94.0

ALDP + SVM 97.5 91.2 97.0 96.8 94.1

LBP + SVM 96.4 93.0 96.6 97.0 93.0

CLBP + SVM 95.3 93.0 97.5 97.0 93.5

HOG + SVM 97.4 93.4 96.6 97.0 93.8

WLD + MLP 96.3 94.2 96.9 95.9 91.9

LDP + MLP 95.9 93.2 96.9 96.2 93.4

ALDP + MLP 96.7 92.7 95.4 95.3 93.0

LBP + MLP 97.2 93.1 96.7 96.4 94.0

CLBP + MLP 97.5 93.5 96.8 97.4 93.1

HOG + MLP 98.3 95.1 97.4 96.4 94.0

5.4.4 Performance Analysis per Class

In this Section, only the best-performing classifiers are analyzed with respect to their per-class per-

formances. Table 5.11 gives the results obtained on the CK+ datasets. The best combination is

HOG + MLP, exhibiting an accuracy of 100% for Happiness, Sadness, and Surprise, while the lowest

accuracy is 95.6% when for Anger. The following best combination is ALDP + SVM, showing the

lowest accuracy when classifying Anger and the highest accuracy when classifying Fear and Happi-
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ness. Results reveal that the Anger expression is the most challenging expression to classify, with

recognition rates as low as 82.2% in combinations like CLBP + SVM and LDP + MLP. The results

show that both SVM and MLP struggle to recognize the Anger expression from the others. This could

be due to ambiguity between classes or wrong labeling. Table 5.12 shows that the best combinations

are CLBP + SVM and HOG + MLP, with similar results on the RFD dataset. In both cases, the high-

est accuracies are obtained when classifying Anger, Happiness, and Surprise. CLBP + SVM performs

slightly better than HOG + MLP when classifying the Sadness expression, but HOG + MLP is better

at classifying Fear. In summary, HOG + MLP achieved the best results on both datasets.

Table 5.11: FER recognition rates per class on the CK+ dataset

Descriptor + Classifier Anger Disgust Fear Happiness Sadness Surprise Accuracy (%)

WLD + SVM 86.7 91.5 100 100 98.2 100 96.1

LDP + SVM 86.7 93.2 100 100 96.4 100 96.1

ALDP + SVM 93.3 94.9 100 100 98.2 98.5 97.5

LBP + SVM 86.7 96.6 100 97.1 98.2 100 96.4

CLBP + SVM 82.2 94.9 100 97.1 98.2 100 95.4

HOG + SVM 91.1 94.9 98.0 100 100 100 97.3

WLD + MLP 84.4 98.3 98.0 97.1 100 100 96.3

LDP + MLP 82.2 96.6 100 98.6 98.2 100 95.9

ALDP + MLP 82.2 96.6 98.0 98.6 98.2 100 95.6

LBP + MLP 86.7 94.9 96.0 98.6 100 98.5 95.8

CLBP + MLP 86.7 94.9 98.0 98.6 98.2 98.5 95.8

HOG + MLP 95.6 96.6 98.0 100 100 100 98.4
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Table 5.12: FER recognition rates per class on the RFD dataset

Descriptor + Classifier Anger Disgust Fear Happiness Sadness Surprise Accuracy (%)

WLD + SVM 98.5 100 92.5 100 91.0 98.5 96.8

LDP + SVM 97.0 98.5 94.0 100 95.5 97.0 97.0

ALDP + SVM 98.5 98.5 91.0 100 95.5 98.5 97.0

LBP + SVM 95.5 100.0 95.5 100 94.0 95.5 96.8

CLBP + SVM 100 98.5 92.5 100 95.5 98.5 97.5

HOG + SVM 100 98.5 94.0 100 91.0 97.0 96.8

WLD + MLP 100 98.5 94.0 100 92.5 97.0 97.0

LDP + MLP 98.5 98.5 91.0 100 95.5 98.5 97.0

ALDP + MLP 97.0 100 88.1 100 91.0 97.0 95.5

LBP + MLP 98.5 100 94.0 100 92.5 95.5 96.8

CLBP + MLP 98.5 98.5 94.0 100 92.5 97.0 96.8

HOG + MLP 100 98.5 94.0 100 94.0 98.5 97.5

5.4.5 Analyzing the Computational Costs

The computational costs of all the considered descriptors and classifiers were obtained by measuring

the processing times during extraction and prediction. First, the extraction time2 of each descriptor

was measured by setting the sub-region size to 13×13 pixels and the number of bins to 56. Then,

the number of histogram bins of each descriptor was set to the optimal value based on the classifier

used (see Table 5.9), and the sub-region size was set to 13×13 pixels. Tables 5.13 and 5.14 give the

extraction and prediction times, respectively, averaged over 500 iterations. Results show that the best

extraction time was achieved by WLD (0.54s) followed by HOG (1.72s). The longest times are seen in

the LBP and CLBP descriptors. NB was the fastest among the considered classifiers, with an average

prediction time of 197ms, followed by MLP, which took an average of 438ms. SVM came in the third
2Extraction time refers to both feature extraction and feature vector calculation.
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position, and KNN was the last.

The training times of classifiers when trained with different descriptors were also measured. For

all considered descriptors, the sub-region size was set to 19×19 pixels, and the number of histogram

bins3 was set to 48. The features were extracted from the RFD dataset with six expressions. Table 5.15

shows that KNN and NB had the fastest training time (a few milliseconds), SVM, which took 29ms.

MLP was the slowest, taking up to 6 seconds during training. All the experiments were performed on

Windows 10 PC with an AMD Ryzen 7 (3700U) processor and 12GB of RAM.

Table 5.13: Extraction times (in seconds)

WLD LDP ALDP LBP CLBP HOG

0.54 3.79 3.9 5.69 12.49 1.72

Table 5.14: Prediction times of various classifiers (times are given in milliseconds)

WLD LDP ALDP LBP CLBP HOG Average

SVM 1300 530 1240 1050 2520 1970 1435

NB 150 240 180 200 200 210 197

KNN 3010 500 3260 3560 6360 1160 2975

MLP 310 140 460 460 680 580 438

3Or the number of orientations in case of the HOG descriptor
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Table 5.15: Training times of various classifiers (times are given in milliseconds)

WLD LDP ALDP LBP LBP HOG Average

SVM 41 30 22 26 39 14 29

NB 9 6 6 8 6 4 6

KNN 1 1 1 1 1 1 1

MLP 6520 5680 7489 5991 6234 2836 5792

5.4.6 Comparison with the State-of-the-Art

Several local descriptors have been proposed in recent years to tackle the FER problem [115, 116,

31]. Table 5.16 gives the performances of various existing FER systems compared to the proposed

best combinations of local descriptors and classifiers. The table shows that several local descriptors

perform as well as deep neural networks. Furthermore, Shokrani et al. [117] proposed the Pyramid

Histogram of Oriented Gradients (PHOG) descriptor and KNN classifier, achieving an average accu-

racy of 100% on the CK+ dataset. Results like these are difficult to compare with other approaches

because they depend on the selection of the train and testing images. Recent studies evaluate their

methods using 10-fold cross-validation because it offers a more reliable measure of classification per-

formance. In k-fold cross-validation, each sample is used for training and testing once. On the other

hand, not all samples are available during the evaluation of train-test splits. Hence, a high accuracy

during a 67%-33% split, as in [117], is not always a good performance indicator.

It is clear from the table that the proposed approaches using HOG and CLBP either perform

better or as efficiently as other approaches. Although some existing approaches have produced higher

accuracies, they generally produce larger feature vectors. The proposed method finds the best balance

between a small feature vector and high accuracy by exploring several feature sets. The results show

that a small feature vector can achieve the same accuracy as a large feature vector if the extraction

parameters are appropriately set, as seen in Figure 5.2. This finding could greatly benefit existing

methods with high dimensionality and large memory footprints. It should be noted that, unlike many
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recent approaches, this study did not use any dimensionality reduction or subspace-learning methods

and still achieved competitive results.

Table 5.16: Comparison with state-of-the-art methods

Database Ref Year Features Samples Classifier No. classes Accuracy (Measure/Train-test)

CK+ [118] 2017 LTP + HOG 610 SVM 7 96% (10-fold)

CK+ [116] 2018 MRDTP + MRDNP 1281 ELM-RBF 7 98.4% (10-fold)

CK+ [119] 2017 Deep 927 FRR-CNN 6 92.06% (10-fold)

CK+ [111] 2017 ALDP - SVM 7 97% (80%-20%)

CK+ [32] 2017 Deep 927 FN2EN 6 98.6% (10-fold)

CK+ [31] 2019 HOG 634 MLP 8 82.97% (10-fold)

RFD [117] 2014 PHOG 630 KNN 7 100% (67%-33%)

RFD [120] 2012 PZM - KNN 6 94.51% (70%-30%)

RFD [115] 2020 HOG + LLE 469 SVM 6 93.54% (10-fold)

CK+ Proposed 2022 HOG 347 MLP 6 98.4% (10-fold)

RFD Proposed 2022 CLBP 402 SVM 6 97.5% (10-fold)

5.5 Chapter Summary

This study evaluated different combinations of local descriptors and classifiers for FER. The exper-

iments comprehensively evaluated six descriptors and four classifiers on two famous datasets, such

as CK+ and RFD. Notably, the appropriate choice of extraction parameters improved the considered

descriptors’ performances. The HOG descriptor achieved the most consistent performance in all the

datasets. The computational costs of each classifier and descriptor were also studied, and the NB

and MLP classifiers provided the fastest predictions. However, MLP can be time-consuming during

training compared to the other classifiers. When evaluating the classifiers’ recognition efficiencies,

the results showed that SVM and MLP achieved the best recognition rates.
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Figure 5.7: Prediction and training times of different classifiers.

In summary, of the six considered descriptors, HOG was one of the most promising, while SVM

and MLP ranked at the top of the classifier choices. It was also found that SVM was faster to train and

required little model tuning compared to MLP. On the other hand, MLP was notably faster at making

predictions, which could be an advantage in real-time applications.
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CHAPTER 6

CONCLUSIONS AND FUTURE WORK

This chapter presents the contributions of this research and proposes some directions for future work

regarding the work presented in this dissertation.

6.1 Factors Affecting Facial Expression Recognition Systems

This section summarizes the findings concerning the factors affecting FER systems.

• Datasets containing incorrectly labeled images tend to introduce ambiguity between expres-

sions, which brings down the accuracy of predictions. Hence, datasets must be carefully in-

spected (if possible, by at least two individuals) before being used.

• The registration step is also crucial to increasing the classification performance of a FER system.

A correctly registered frontal face image must have all the facial components to guarantee the

extraction of the best features and high prediction accuracy. Face registration also helps remove

non-expression-specific pixels such as the neck, hair, and ears.

• Extraction parameters such as block size and the number of histogram bins directly impact the

performance of histogram-based local descriptors. The experimental results show that as the

sub-region sizes increase, the recognition rate improves and then depreciates, revealing that

there exists an optimum parameter selection for any particular descriptor.

• Different classification techniques have different strengths and weaknesses, making them more

useful in some contexts than others. MLP and SVM have the best clustering ability and work

well with local descriptors. However, MLP is faster at making predictions than SVM.
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6.2 Concluding Remarks

Research in Facial Expression Recognition has enabled the detection of human emotions for many

artificial intelligence applications. This research was centered on developing FER systems using lo-

cal descriptors and conventional classification methods. The proposed methodology for recognizing

expressions consisted of three steps: i) face acquisition, ii) feature extraction and feature vector calcu-

lation, and iii) classification. The following is a summary of the findings of this research.

A comprehensive study was done on the HOG descriptor to understand and improve existing local

descriptors. This study inspired this research to propose a new face registration algorithm. Further-

more, a new approach for optimized Facial Expression Recognition was proposed, which finds the

parameter values for extracting local descriptors and normalizes them based on the sub-region size.

Results showed that the performances of four local descriptors (i.e., HOG, LBP, CLBP, and WLD)

were better than in previous studies. The system was also tested in real-time and recorded video data,

achieving satisfactory performance. Furthermore, the experimental results revealed that face registra-

tion had a sizable impact on recognition performance.

The proposed FER approach was also implemented with different combinations of local descrip-

tors and classification methods. The results showed that the HOG descriptor achieved the best perfor-

mance across all the datasets. NB and MLP classifiers were the fastest at making predictions, while

SVM and MLP classifiers produced the best recognition rates. Although MLP had a higher training

cost, it was remarkably faster at making predictions than SVM. Hence, the choice between MLP and

SVM appears to be a trade-off between training and prediction times.

6.3 Future Work

FER systems based on local descriptors and classification are simpler to develop and cost relatively

less than more advanced solutions like deep learning. These advantages make local descriptors a

competitive solution for mobile platforms and real-time applications with limited resources. However,

there are some aspects of this research that, if improved, could benefit the overall performance of FER

systems. Notable future work directions include:

• Analyze the effects of varying image conditions such as white noise, non-uniform illuminations,
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and different poses to assess the performance of FER methods in real-world situations. A dataset

such as the BU-3DFE dataset [84] could be used to analyze pose variation, while the Affectnet

dataset [83] contains real-world faces taken from the internet.

• Expression-specific features are the key to developing a robust facial expression descriptor.

Local descriptors that utilize the gradient or edge information are more robust to image variants

than intensity-based approaches. Moreover, selecting specific feature types, such as in [54], can

reduce the dimensionality of descriptors, improve extraction speed, and achieve the same or

better recognition efficiency.
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