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Abstract. The microalgae Nannochloropsis sp. UHO3 and Skeletonema sp. UHO29 are newly isolated 
marine microalgae from coastal areas in Kendari, Southeast Sulawesi, Indonesia. Indoor studies of the 
microalgae showed potential as biodiesel feedstock due to their high growth rates, high biomass and lipid 
productivity. However, for commercial uses, especially for biodiesel feedstock, the species should have 
the ability to perform well under real outdoor conditions. This study aimed to determine the growth, 
biomass, and lipid productivity of the Nannochloropsis sp. UHO3 and Skeletonema sp. UHO29 in outdoor 
raceway ponds. The species were cultured using 1 m2 raceway ponds at 30 cm depth. The two species 
were cultured using water-based sea media enriched with f/2 nutrients for Skeletonema sp. and Walne 
media for Nannochloropsis sp. Cultures were initially operated in batch mode until they reached the 
stationary phase before operating in semi-continuous mode. The culture duration was about three 
months. Cell counting was done every two days, while sampling for biomass (dry weight - DW, and ash-
free dry weight - AFDW) and lipids were done every four days. The results showed that the two species 
of microalgae could grow well in outdoor raceway ponds. The specific growth rate of the Nannochloropsis 
sp. UHO3 ranged from 0.105 to 0.447 d-1 while the specific growth rate of Skeletonema sp. UHO29 
ranged from 0.127 to 0.457 d-1. Nannochloropsis sp. UHO3 and Skeletonema sp. UHO29 have high lipid 
content ranging from 15 to 44% AFDW and from 14 to 53% AFDW, respectively. The biomass 
productivity of Nannochloropsis sp. UHO3 and Skeletonema sp. UHO29 range between 10-122 g m-2 d-1 
and 13-107 g m-2 d-1 respectively, while the lipid productivity value for Nannochloropsis sp. UHO3 ranges 
from 4 to 31 g m-2 d-1 and for Skeletonema sp. UHO29 range from 5 to 25 g m-2 d-1. The results of this 
study indicate that the two microalgae species are potentially developed as biodiesel feedstocks due to 
their fast growth rate, high lipid content, high biomass, and lipid productivity under outdoor conditions.  
Key Words: biodiesel feedstock, marine microalgae, Nannochloropsis sp., raceway ponds, Skeletonema 
sp. 

 
 

Introduction. Algae cultures growing in outdoors are exposed to varying environmental 
conditions  during the day and with seasons (Borowitzka 2005). The ability of microalgae 
to tolerate wide variation of outdoor environmental conditions is a prerequisite 
characteristic of microalgae to be successfully cultured outdoors (Indrayani 2017; 
Indrayani et al 2019). Microalgae that are successfully produced commercially such as 
Dunaliella salina, Spirulina sp., Haematococcus pluvialis, and Chlorella sp. have the 
ability to tolerate variations in environmental conditions under outdoor conditions (Béchet 
et al 2013; Belay 2013; Borowitzka 2016). In addition, the variation of environmental 
conditions not only affects the growth of algae but also their biochemical composition 
including lipid. Lipids are of interest due to their various potential applications including 
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as biodiesel feedstock (Mata et al 2010; Ndimba et al 2013). Growth and lipid content are 
two important parameters used to assess the feasibility of microalgae as feedstock for 
biodiesel (Parmar et al 2011; Indrayani et al 2020a).  

Studies on evaluation of microalgal species for biodiesel feedstocks are enormous 
but the feasibility studies for outdoor culture of microalgae potential as biodiesel 
feedstocks in an open system such as raceway ponds are limited specifically in Indonesia. 
In this study, two newly isolated tropical marine microalgal species Nannochloropsis sp. 
and Skeleonema sp. were assessed for their ability to grow in open raceway ponds. From 
the indoor studies, it is known that the two species of microalgae have the potential to be 
developed as biodiesel feedstocks due to rapid growth, a broad salinity tolerance (2-7% 
NaCl), high biomass and lipid  productivities (Indrayani et al 2020b, 2021). However, it is 
unknown whether the microalgae can grow well under outdoor conditions where the 
environmental conditions are different from the controlled laboratory conditions. 
Therefore this study aims to determine the growth, biomass and lipid productivities of 
two newly isolated tropical marine microalgae Nannochloropsis sp. UHO3 and 
Skeletonema sp. UHO29 under outdoor conditions using 1 m2 paddle-wheel driven 
raceway ponds. 

 
Material and Method 
 
Microalgae species. The microalgae species used in this study are Nannochloropsis sp. 
UHO3 and Skeletonema sp. UHO29 isolated from Kendari waters, Southeast Sulawesi, 
Indonesia, in June 2017 (Indrayani et al 2018). The strains were isolated using agar 
plating technique (Andersen & Kawachi 2005) in f/2 medium (Guillard & Ryther 1962). 
Briefly, 0.5 mL water samples are spotted in the middle of the agar f/2 medium (2%) and 
spread evenly on the agar surfaces using glass rod. Pure colonies were obtained after 
repeated streaking on the fresh agar f/2 medium.   
 
Inoculum preparation. To obtain sufficient inoculum for mass culture in outdoor 
raceway ponds, both microalgae species were scaled up indoors. The scale-up culture 
was carried out in stages starting from a volume of 2 L to 50 L. Scale-up culture used 
f/2+Si medium for Skeletonema sp. and Walne media for Nannochloropsis sp. The 
cultures were incubated at ambient room temperature (26-32oC), 12 hours light and 12 
hours dark cycles, light intensity ranging from 60 to 150 µmol photons m-2 s-1 and 
bubbled with air to facilitate mixing the cultures.   
 
Outdoor culture condition. The outdoor cultivation was conducted at the Shrimp Seed 
Center, Marine and Fisheries Service, Purirano District, Kendari, Southeast Sulawesi, 
Indonesia using 1 m2 tarpaulin paddle wheel-driven raceway ponds at 30 cm depth. The 
cultures were intermittently mixed using paddle wheel (mixed during the day and 
unmixed during night time). The cultures used filtered seawater based medium enriched 
with f/2+Si medium for Skeletonema sp. and Walne media for Nannochloropsis sp. at 
3.2% salinity (w/v NaCl). The cultures were initially operated in batch mode until reached 
stationary phase before initiating semi-continuous regime by periodically harvesting a 
certain amount of the culture and replacing the harvested volume with the same amount 
of fresh medium. The outdoor cultures were conducted for 3 months (July-September 
2019). 

Cell counting was carried out every two days, whereas dry weight (DW), ash-free 
dry weight (AFDW), and lipid were measured before harvesting.   
 
Analytical methods. The growth of the cultures was monitored by counting the 
numbers of microalgae cells every two days using a Neubauer haemocytometer 
(Moheimani et al 2013).  

The specific growth rate (μ) was calculated using the following equation:  
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where: N1 and N2 are the cell density at time 1 (t1) and 2 (t2) within the exponential 
phase.  

For DW determination, five mL of culture was filtered through pre-weighed and 
pre-combusted Whatman GF/C, 25 mm filter paper using a Millipore filter apparatus. The 
filters were dried in an oven at 75oC for 5 hours and then weighted (Moheimani et al 
2013). Determination of DW used the following formula:  

 
 

For AFDW determination, the DW filters were transferred to a furnace at 450oC, 
ashed for 5 hours, and then weighted after cooling. The following equation is used for 
AFDW calculation:  

 
 

The biomass productivity was calculated through the equation below: 
 

 
Total lipid determination was conducted by the method of Bligh & Dyer (1959) as 

modified by Kates & Volcani (1966). Briefly, 5 mL of culture was filtered through 
Whatman GF/C, 25 mm filters. The filters containing cells were crushed with a glass rod 
until a smooth green paste of about 0.5 mL was obtained. One mL of solvent mixture 
(methanol: chloroform: DI water in the ratio of 2:1:0.8 v/v/v) was added and mixed well 
with the glass rod and then transferred into a plastic centrifuge tube with screw cap. 
Another 1 mL of the solvent mixture was added into the glass tube to wash and clean all 
the remaining cells debris then transferred in the centrifuge tube. An extra 3.7 mL of the 
solvent mixture was added. The sample was centrifuged at 1107xg for 10 minutes. After 
centrifugation, the supernatant was transferred to a 20 mL glass tube with screw cap. For 
the second extraction, 5.7 mL of the solvent mixture were added to pellet in the 
centrifuge tube, vortexed to re-suspend the pellet and then centrifuged again at 1107xg 
for 10 minutes. The supernatants were combined in the 20 mL glass tube. Three mL of DI 
water and 3 mL of chloroform were added to the 20 mL tubes and mixed well by 
vortexing. The samples were then stored in the fridge undisturbed for 24 h for complete 
phase separation. After phase separation the upper layer was removed and then 
evaporated under a stream of pure N2 gas on heating plates at 38oC until complete 
dryness. After complete evaporation, the vials containing lipids were carefully weighed 
using analytical balance. Weight of lipids was calculated by subtracting the weight of vials 
containing lipids with the weight of the vials. 

Lipid productivity was calculated using the following equation: 
 

 
Results. The growth curves of Nannochloropsis sp. UHO3 and Skeletonema sp. UHO29 
during the culture period under semi-continuous regimes in outdoor raceway ponds can 
be seen in Figures 1. Both species can grow well under outdoor conditions. Initially, the 
cultures were run in batch mode until they reached early stationary phase before 
initiating semi-continuous regimes. The initial cell density of Nannochloropsis sp. UHO3 
culture  was about 150 x 104 cells mL-1 and the culture achieved the highest cell density 
at about 5367 x 104 cells mL-1 on day 14th. The Nannochloropsis sp. culture experienced 
the lag phase in the first two days before entering the exponential phase until day 8th 
day. On day 14th, the culture began to run semi-continuously by harvesting part of the 
culture (30-50%) and adding fresh culture media as much as the volume of harvested 
culture. The cultures were then allowed to grow until they reached maximum cell density 
(about four days) for further harvesting and so on during the culture period. For the 
Skeletonema sp. UHO29 culture, the initial cell density was about 50 x 104 cell mL-1 
reaching the maximum cell density of about 523 x 104 cells mL-1 on day 14 (stationary 
phase). After day 14th, the cultures were operated under semi-continuous regime by 
partial harvesting at interval 4 days. 
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Figure  1.  Growth curve of Nannochloropsis sp. UHO3 (left) and Skeletonema sp. UHO29 

(right) under semi-continuous regime in outdoor raceway ponds. 
 
The specific growth rate of Nannochloropsis sp. UHO3 and Skeletonema sp. UHO29 mass 
culture in the raceway pool outside can be seen in Figure 2. The specific growth rate of 
Nannochloropsis sp. UHO3 ranged from 0.105 to 0.447 d-1 (0.202±0.133 d-1) while the 
specific growth rate of Skeletonema sp. UHO29 ranged from 0.127 to 0.457 d-1 (0.317± 
0.129 d-1). 

 
Figure 2. Specific growth rate (d-1) of Nannochloropsis sp. UHO3 and Skeletonema sp. 

UHO29 in outdoor raceway ponds. 
 
Biomass yield of Nannochloropsis sp. UHO3 and Skeletonema sp. UHO29 mass culture in 
outdoor raceway ponds for 3 months can be seen in Figure 3. The average biomass yield 
of Nannochloropsis sp. UHO3 was about 0.614±0.146 g L-1 and the biomass yield of  
Skeletonema sp. UHO29 was about 0.515±0.219 g L-1. 
 

 
Figure 3. Biomass yield (g L-1) of Nannochloropsis sp. UHO3 and Skeletonema sp. UHO29 

in outdoor raceway ponds. 
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Biomass productivity of the two microalgae species mass-cultured in outdoor 
raceway ponds can be seen in Figure 4. The average biomass productivity of 
Nannochloropsis sp. UHO3 per volume was 0.133±0.115 g L-1 d-1 and per area was 
39.89±34.46 g m-2 d-1. While Skeletonema sp. UHO29 has an average biomass 
productivity per volume of about 0.166±0.109 g L-1 d-1 and per area of about 
49.85±32.57 g m-2 d-1. 
 

    
Figure 4. Biomass productivity of Nannochloropsis sp. UHO3 and Skeletonema sp. UHO29 

in outdoor raceway ponds in g L-1 d-1 (left) and g m-2 d-1 (right). 
  
The lipid yield of Nannochloropsis sp. UHO3 and Skeletonema sp. UHO29 during the 
culture period in outdoor raceway ponds can be seen in Figure 5. The Nannochloropsis 
sp. UHO3 culture has a lipid yield of 0.18±0.063 g L-1 whereas the Skeletonema sp. 
UHO29 has a lipid yield of about 0.138±0.043 g L-1. The average lipid content of 
Nannochloropsis was 30.47±11.06% biomass while Skeletonema has a lipid content of 
30.05±11.64% biomass weight. 
 

    
Figure 5. Lipid yield (g L-1) (left) and lipid content (% biomass) (right) of Nannochloropsis 

sp. UHO3 and Skeletonema sp. UHO29 in outdoor raceway ponds. 
 
The lipid productivity of Nannochloropsis sp. UHO3 and Skeletonema sp. UHO29 in 
outdoor raceway ponds during culture period can be seen in Figure 6. The average lipid 
productivity of Nannochloropsis sp. UHO3 per volume and per area was 0.039±0.036 g L-

1 d-1 and 11.733±10.699 g m-2 d-1, respectively. While the Skeletonema sp. UHO29 has 
an average lipid productivity per volume about 0.044±0.023 g L-1 d-1 and per area 
13.043±6.767 g m-2 d-1. 
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Figure 6. Lipid productivity of Nannochloropsis sp. UHO3 and Skeletonema sp. UHO29 in 

outdoor raceway ponds in g L-1 d-1 (left) and in g m-2 d-1 (right). 
 
Discussion. There are two systems of mass-scale microalgae culture, namely an open 
system and a closed system (Borowitzka & Moheimani 2013; Zittelli et al 2013). This 
study used  an open pond system namely paddle-wheel driven raceway ponds as this is a 
low cost and ease of operation culture system widely applied by microalgal industries 
(Borowitzka & Moheimani 2013). This system is used for the production of Spirulina / 
Arthrospira by Earthrise Nutritionals, LLC (California, USA) and Hainan DIC Microalgae 
(China) and to produce astaxanthin from Haematococcus pluvialis by Cyanotech Co. 
(Hawaii, USA) and Parry Agro Industries Ltd. (India) (Zittelli et al 2013). Unlike other 
commonly used raceway ponds which are made of concrete or fiberglass, the raceway 
ponds used in this study used white tarpaulin with metal frame due to low cost and ease 
of mobilization/assembly.  

The success of commercial production of microalgae in outdoor system is highly 
dependent on many factors, including microalgae's ability to tolerate environmental 
changes encountered in outdoor such as changes in temperature, light intensity, and 
salinity (Borowitzka 2005; Indrayani 2017; Indrayani et al 2019). From this study, it is 
known that the newly isolated marine tropical microalgae Nannochlropsis sp. UHO3 and 
Skeletonema sp. UHO29 can grow well in outdoor raceway ponds during the culture 
period. This shows that both microalgae can tolerate fluctuations in environmental 
parameters in outdoor, including temperature, salinity, and light intensity. The specific 
growth rate of Nannochloropsis sp. UHO3 ranged from 0.105 to 0.447 d-1 while the 
specific growth rate of Skeletonema sp. UHO29 ranged from 0.127 to 0.457 d-1. The 
specific growth rates obtained in this study were slightly lower than the specific growth 
rates obtained under indoor/laboratory conditions (Indrayani et al 2020a, 2021). The 
higher specific growth rate obtained under laboratory conditions was due to the stable 
and optimum growing condition maintained in the laboratory compared to the fluctuation 
of the environmental condition occurred under real outdoor conditions. However, the 
specific growth rates of the microalgae in this study are comparable with other studies 
(Moheimani & Borowitzka 2006; Vadiveloo & Moheimani 2018; Indrayani et al 2019, 
2020b).    

The Nannochloropsis sp. UHO3 and Skeletonema sp. UHO29 cultured in outdoor 
raceway ponds had high lipid content, ranging from 15 to 44% AFDW and from 14 to 
53% AFDW, respectively. Compared to the value of the lipid content when cultured in the 
laboratory, the lipid content in the outdoor raceway pond is higher (Indrayani et al 
2020b, 2021). The content of microalgae lipids in this study was higher than the research 
conducted by Crowe et al (2012), which obtained lipid content of Nannochloropsis salina 
cultured in raceway ponds in Tucson, USA rangeing from 15 to 25% AFDW. Research 
conducted by Benavides et al (2013) reported that the lipid content of diatom 
Phaeodactylum tricornutum cultured in open ponds ranged from 25 to 27.5% dry weight. 

Research on microalgae mass culture in outdoor raceway ponds specifically in 
Indonesia is limited. In this study, the productivity values of Nannochloropsis sp. UHO3 
and Skeletonema sp. UHO29 were obtained, ranging from 10 to 122 g m-2 d-1 (average 
39.87±34.46 g m-2 d-1) and from 13 to 107 g m-2 d-1 (average 49.85±32.57 g m-2 d-1) 
respectively. The biomass productivity value of these two microalgae is higher than other 
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species of microalgae cultured in outdoor raceway ponds. For example, Nannochloropsis 
salina cultured in raceway ponds in Israel at 12 cm depth had biomass productivity of 
24.5 g m-2 d-1 (Boussiba et al 1987). Nannochloropsis gaditana cultured in raceway ponds 
in Spain had biomass productivity of 22.4 g m-2 d-1 (San Pedro et al 2015). Cyclotella sp. 
had biomass productivity of 12 g m-2 d-1 (Huasemann et al 2009), Scenedesmuss 
obliquus with average annual productivity of 15 g m-2 d-1 (Payer et al 1978), 
Pleurochrysis carterae with the productivity of 33.68 g m-2 d-1 (Moheimani & Borowitzka 
2006), Phaeodactylum tricornutum with the productivity of 11.7 g m-2 d-1 (Benavides et al 
2013), Tetraselmis with 5-40 g m-2 d-1  (Matsumoto et al 1995), Amphora sp. MUR258 
with the highest biomass productivity of 24 g m-2 d-1 (Indrayani 2017; Indrayani et al 
2019). The higher biomass productivity obtained in this study can be due  to several 
factors. First, the two microalgae species used in this study have fast growth and high 
biomass yields under outdoor conditions. Second, the depth of the cultures in the 
raceway ponds was also different. In this study, cultures were operated at  30 cm depth, 
while other studies operated at a 15-25 cm depth. So that the value of biomass 
productivity per area will be higher at higher depths even though the growth and yield 
are the same or slightly lower. 

In this study, the lipid productivity of Nannochloropsis sp. UHO3 ranged from 4 to 
31 g m-2 d-1 (average 11.73±10.69 g m-2 d-1) while Skeletonema sp. UHO29 had lipid 
productivity ranging from 5 to 25 g m-2 d-1 (average 13.043±6.767 g m-2 d-1). Compared 
to the previous studies, the two microalgae species used in this study had higher lipid 
productivity. A study conducted by Indrayani et al (2019) obtained the maximum value 
of lipid productivity from the diatom Amphora sp. MUR258 cultured in an outdoor 
raceway pond in Perth of 6.8 g m-2 d-1. Graesiella sp. WBG-1 cultured in raceway ponds 
had lipid productivity ranging from 2 to 2.9 g m-2 d-1 (Wen et al 2016). High lipid 
productivity value is closely related to high specific growth rates and high lipid yield of 
the species.  

 
Conclusions. The Nannochloropsis sp. UHO3 and Skeletonema sp. UHO29 could grow 
well in outdoor raceway ponds. The specific growth rate of the Nannochloropsis sp. UHO3 
ranged from 0.105 to 0.447 d-1 whereas the specific growth rate of Skeletonema sp. 
UHO29 ranged from 0.127 to 0.457 d-1.  The lipid content of Nannochloropsis sp. UHO3 
and Skeletonema sp. UHO29 ranged from 15 to 44% AFDW and 14 to 53% AFDW, 
respectively. The biomass productivity of Nannochloropsis sp. UHO3 and Skeletonema sp. 
UHO29 ranged between 10-122 g m-2 d-1 and 13-107 g m-2 d-1 respectively. The lipid 
productivity of Nannochloropsis sp. UHO3 and Skeletonema sp. UHO29 ranged from 4 to 
31 g m-2 d-1 and 5 to 25 g m-2 d-1 respectively. This study indicate that the two microalgae 
species are promising species as biodiesel feedstocks due to their high growth rate, high 
lipid content, high biomass and lipid productivities when grown in outdoor raceway 
ponds. 
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