KORESPODEN ARTIKEL

Email Universitas Negeri Makassar - Review Results and Revisions Required

DR. MUH. TAWIL, M.Si. UNM <muh.tawil@unm.ac.id>

Review Results and Revisions Required

1 pesan

JPPPF <jpppf@unj.ac.id> 4 April 2023 pukul 05.43 Kepada: "DR. MUH. TAWIL, M.Si. UNM" <muh.tawil@unm.ac.id>, Muhammad Amin Said <muhamin@unismuh.ac.id>

Muh. Tawil, Muhammad Amin Said, Kemala Suryansari:

We have reached a decision regarding your submission to Jurnal Penelitian & Pengembangan Pendidikan Fisika, "Exploration of Conceptual Understanding of Science Teachers and Students: Gap Conception of Current, Voltage in Indonesia".

Our decision is: Revisions Required

- Please Revise your paper and fill in the author responses form. Reviewer 3 comments also attached in this email. Make sure you write any details of the revision version of your manuscript on the author responses, in order Editor can make decision your manuscript go to round 2 review or accepted.
- 2. Attach your revision manuscript and author responses in the OJS system in the revision section

Editor JPPPF jpppf@unj.ac.id

Reviewer A: Recommendation: Revisions Required

1. The title represent the paper content.

Average

2. Comments for title.

The research title is too broad in scope and makes more specific according to the research locus.

3. The abstract represent the content of the paper (the purpose, methods, results, and impacts).

Average

4. The keywords indicate the scope of the research.

 $https://mail.google.com/mail/u/0/?ik=027041818c \&view=pt \& search=all \& permthid=thread-f: 1762196808406116384 \& simpl=msg-f: 1762196808406\ldots 1/8 (Marcov) = 1/8 (Marcov)$

Average

5. Comments for the abstract and the keywords.

The research method is described comprehensively. Data processing and analysis are explained in detail. The implications of the research results should be explained comprehensively. 4-5 keywords are sufficient, which describe the overall nature of the paper

6. The introduction was supported by theory and previous research.

Poor

7. Comments for introduction.

A more detailed and comprehensive analysis concerning the problem gap between ideal conditions and the facts that appear in the field.

b. The similarities and differences with previous research are described comprehensively c. The novelty of this research is explained explicitly and in detail

d. Add the results of preliminary studies relating to the understanding between students, teachers, and scientists regarding current and voltage.

8. The selected research methodology was appropriate for solving the problem.

Good

- 9. Comments for methodology.
 - a. Write down reference sources that explain the survey method used
 - b. The characteristics of the participants should be described in detail.

c. Participants' criteria corresponding to intelligence level, age, class, gender, place of

- residence (urban or rural), and social and economic status are described comprehensively.
- 10. The data presentation and its interpretation are original and reasonable.

Average

11. The data presentation and its interpretation were answer problems or hypotheses.

Average

12. The discussion analyzing the results.

Average

13. Comments for results and discussion.

 $https://mail.google.com/mail/u/0/?ik=027041818c \&view=pt \& search=all \& permthid=thread-f: 1762196808406116384 \& simpl=msg-f: 1762196808406\ldots 2/8$

Email Universitas Negeri Makassar - Review Results and Revisions Required

The presentation in the discussion section does not repeat what has been explained in the results section. It's better to paraphrase, so it's not repetitious.

The presentation in the discussion section should be linked to relevant theories and compared with the results of other research related to the concept of current and voltage.

Add an analysis regarding the strengths and limitations of the research that has been done.

14. The summary was answer the problem clearly.

Average

15. Comments for summary.

a. Conclusions are explained comprehensively and in detail,
b. The conclusions are adapted to the research data to answer the research objectives that have been described in the abstract section.

16. The relevance of the topic to be published in JPPPF.

Good

19. All references support the contents of the article.

Good

20. Comments for reference.

Please add excerpts and references from papers published in international journals in the last five years (2019-2023).

22. Additional comments to author.

1. The research title is too broad in scope and makes more specific according to the research locus

2. The research method is described comprehensively.

- 3. Data processing and analysis are explained in detail.
- 4. The implications of the research results should be explained comprehensively.
- 5. 4-5 keywords are sufficient, which describe the overall nature of the paper

6. A more detailed and comprehensive analysis concerning the problem gap between ideal conditions and the facts that appear in the field.

7. The similarities and differences with previous research are described comprehensively

8. The novelty of this research is explained explicitly and in detail

9. Add the results of preliminary studies relating to the understanding between students, teachers, and scientists regarding current and voltage.

10. Give examples of differences in understanding between students, teachers, and scientists regarding current and voltage.

11. Write down reference sources that explain the survey method used

12. The characteristics of the participants should be described in detail.

13. Participants' criteria corresponding to intelligence level, age, class, gender, place of

residence (urban or rural), and social and economic status are described comprehensively.

Email Universitas Negeri Makassar - Review Results and Revisions Required

14. The presentation in the discussion section does not repeat what has been explained in the results section. It's better to paraphrase, so it's not repetitious.

15. The presentation in the discussion section should be linked to relevant theories and compared with the results of other research related to the concept of current and voltage.16. Add an analysis regarding the strengths and limitations of the research that has been done.

17. Conclusions are explained comprehensively and in detail,

18. The conclusions are adapted to the research data to answer the research objectives that have been described in the abstract section.

19. Please add excerpts and references from papers published in international journals in the last five years (2019-2023)..

Reviewer B: Recommendation: Revisions Required

1. The title represent the paper content.

Very Good

2. Comments for title.

specific and describe your manuscript

3. The abstract represent the content of the paper (the purpose, methods, results, and impacts).

Good

4. The keywords indicate the scope of the research.

Good

- 5. Comments for the abstract and the keywords.
 - just recheck your grammatical errors
- 6. The introduction was supported by theory and previous research.

Very Good

7. Comments for introduction.

 $https://mail.google.com/mail/u/0/?ik=027041818c \&view=pt \& search=all \& permthid=thread-f: 1762196808406116384 \& simpl=msg-f: 1762196808406\ldots 4/8$

-

8. The selected research methodology was appropriate for solving the problem.

Good

- 9. Comments for methodology.
- 10. The data presentation and its interpretation are original and reasonable.

Good

11. The data presentation and its interpretation were answer problems or hypotheses.

Good

12. The discussion analyzing the results.

Good

- 13. Comments for results and discussion.
- 14. The summary was answer the problem clearly. Good
- 15. Comments for summary.
- 16. The relevance of the topic to be published in JPPPF.

Good

19. All references support the contents of the article.

Good

20. Comments for reference.

- please add more related study from international journal, that also explore the physics concept.

https://mail.google.com/mail/u/0/?ik=027041818c&view=pt&search=all&permthid=thread-f:1762196808406116384&simpl=msg-f:1762196808406... 5/8

Email Universitas Negeri Makassar - Review Results and Revisions Required

22. Additional comments to author.

- recheck your grammatical error
- Recheck the writting style on your appendix.

Reviewer C: Recommendation: Revisions Required

1. The title represent the paper content.

Good

2. Comments for title.

look at reviewer comment

3. The abstract represent the content of the paper (the purpose, methods, results, and impacts).

Average

4. The keywords indicate the scope of the research.

Good

5. Comments for the abstract and the keywords.

look at reviewer comment

6. The introduction was supported by theory and previous research.

Good

7. Comments for introduction.

look at reviewer comment

8. The selected research methodology was appropriate for solving the problem.

Average

9. Comments for methodology.

https://mail.google.com/mail/u/0/?ik=027041818c&view=pt&search=all&permthid=thread-f:1762196808406116384&simpl=msg-f:1762196808406... 6/8

look at reviewer comment

10. The data presentation and its interpretation are original and reasonable.

Good

11. The data presentation and its interpretation were answer problems or hypotheses.

Good

12. The discussion analyzing the results.

Good

13. Comments for results and discussion.

look at reviewer comment

14. The summary was answer the problem clearly.

Good

15. Comments for summary.

look at reviewer comment

16. The relevance of the topic to be published in JPPPF.

Good

19. All references support the contents of the article.

Good

20. Comments for reference.

look at reviewer comment

22. Additional comments to author.

look at reviewer comment

2 lampiran

JPPPF-AuthorResponse_nv2022.docx 17K

Exploration of Conceptual Understanding of Science Teachers and Students: Gap Conception of Current, Voltage in Indonesia

Muh. Tawil^{1, a)}, Muhammad Amin Said^{2,} Kemala Suryansari^{3, b)}

¹Faculty of Mathematics and Natural Science, Universitas Negeri Makassar, Makassar, 90224, Indonesia. ²Faculty of Teacher Training and Education, Universitas Muhammadiyah Makassar, Makassar, 90221,

Indonesia.

³State Senior High School 1 Gowa, Gowa, 92111, Indonesia.

Email: ^{a)}muh.tawil@unm.ac.id, ^{b)}muhamin@unismuh.ac.id

Abstract

In the industrial revolution 4.0 era of the 21st century, understanding the concepts of current, voltage is important for science students and teachers. Analyze gap in the conception of current, electrical voltage between students, and teachers of Junior high school, in Indonesia. A sample of 720 students and 527 teachers were selected by purposive sampling. Diagnostic tests of currents, electrical voltages, 30 items of valid and reliable questions. The results show that even with a simple circuit (one or two lamps and a battery) there is still a gap in the conception of current, voltage, if the circuit is a little more complicated, there will be many conception gaps, i.e.: (1) consumption model, (2) local reasening, (3) voltage source is seen as a fixed current source rather than a fixed voltage source, (4) voltage difference, (5) series and parallel terms, (6) electron-electron source, (7) power consumption, (8) guess answer choices, (9) the explanation does not match the correct choice.

Keywords: current, electrical, local reasening, consumption model, technical vocational education and training, voltage.

INTRODUCTION

In the era of the industrial revolution 4.0 of the 21st century, understanding current and voltage is very important for students and teachers to master electrical energy sources that are developing very quickly. Shiva, teachers, and physicists interpret physics concepts in an idioasyncranic way. For example, the concept of atoms in a physicist's head differs only slightly from one another, but the image of an atom in a student's, teacher's head can be very different from one another. Atom is one of the physics concepts agreed upon by many physicists. The atomic concept is a person's interpretation of the atomic concept, how the person imagines the atom. So the concept is a general sense, while the

concept can be different for each person. If a person's conception deviates a lot from what is meant by scientists, then a conception gap occurs (Turgut, 2011; Kuczmann, 2017; Nugraha et al., 2018).

Several research results have found that often errors are not due to mathematical errors alone, but often there is a clear and consistent pattern of student error answers, hence the term "conception gap" (Yolanda, 2017; Suprapto, 2020; Popat, 2021; Ahmad et al., 2021; Adhim et al., 2021; Ma'rufah et al., 2022). For example, Osborne, (2006); Shipstone, (2007), interviewed elementary school students in the United States who had never received a lesson in electricity. It turns out that they can have a conception gap regarding current, electric voltage. There are four models regarding current, voltage, i.e. current from only one pole that can light a lamp, calccing currents, consumption model, science model. Kapartzianis & Jeanne, 2014; Hidayati et al., 2014; Arfiyanti, et al., (2015); Sukarsa et al., 2015; McRorie & McKeown, 2017; Villanueva et al., 2021, found that there was a gap in the conception of physics in high school students.

One way to overcome the conception gap is to do remediation, related to this, many researchers suggest that students who experience a conception gap need to be remedied. (Firmansyah & Wulandari, 2016; Yolanda, 2017; Affriyenni, 2020; Fokides & Papoutsi, 2020; Busyairi et al., 2021; Ahmad et al., 2021). The conception gap regarding direct electric current are second only to those concerning mechanics (Zulvita, 2017; Suprapto, 2020).

Conception of students and teachers is always different from the conception of physicists. Conceptions of physicists will generally be more sophisticated, more complex, more complicated, involving more relationships between concepts than the conceptions of students and teachers. If the conceptions of students and teachers are the same as the simplified conceptions of physicists, the conceptions of students and teachers cannot be said to be wrong. But if the conceptual Gap". Usually, the conception gap involves students' and teachers' mistakes in understanding the relationship between concepts. For example, errors in the relationship between current and voltage, between series and parallel circuits (Setyani et al., 2017; Widodo et al., 2018; Stolzenberger et al., 2022; Ramli et al., 2022).

Various sources of gap concption are derived from students' experiences in everyday life, common misunderstandings across different cultures and populations, instructional practices, textbooks and over-reliance on colloquial language should be considered as potential source of misunderstanding (Atasoy, 2013; Urban ,2017; Halim & Musdar, 2020; Zainuddin, Mujakir, Ibrahim et al, 2020). Conception gap (Maison at al., 2020; Taqwa et al., 2020; Rico & Zonalia, 2021; Rohmawatiningsih et al., 202; Mengistu et al., 2022; Korganci et al., 2015; Rahmawati et al., 2018; Nugraha et al., 2018; Yolanda, 2020; Luthfi et al., 2021).

METHODS

The Research Method

This survey research aims to analyze the gap in the conception of current, electrical voltage of students and teachers of Technical Vocational Education and Training (junior high school), in Indonesia.

Participants

The research sample consisted of: 720 students Junior high school, each consisting of 175 from Bali, 150 from Java, 120 from Sulawesi, 170 from Sumatera, and 100 from Kalimantan and 527 teachers Junior high school, consisting of 157 from Bali, 100 from Java, 100 from Sumatra, 50 from Kalimantan. The indicators measured in this study consist of: consumption model, local reasoning,

voltage source is seen as a constant current source, current rather than voltage reasoning, charge density reasoning, and series and parallel circuits.

Data Collection Tools

The data was collected using the current,voltage dianostic (CVD) test of 30 items a score 1 if it was true and 0 if it was wrong and Certainty of Response Index (CRI): 0 (If you answer the question by guessing 100%), 1 (If you answer the question by guessing between 75% - 99%), 2 (If you answer the question by guessing between 50% - 74%), 3 (If you answer the question by guessing between 25% - 49%), 4 (If you answer the question by guessing between 1% - 24%) or 5 (If you answered the question without guessing at all (100% correct). Analysis of the coefficient of internal consistency of the test using Gregory analysis and student and teacher SPS data analysis using descriptive and inferential analysis with SPSS 21.

Validation and Reliability of Research Instruments

The CVD test was validated by 3 science education experts. Validation analysis using Gregory analysis (Arliniet al., 2017) as shown in Table 1. To calculate the value of the coefficient of internal consistency (internal validation) using equation (1), and to determine the category in Table The validation results show that the CVD test, internal validation value greater than .75 is included in the high category, this is eligible for use in research.

Table 1. Gregory's validation analysis tabulation							
	Expert Assessment						
	(1 or 2) score	(3 or 4) score					
weak relevance expert assessment (item is worth 1 or 2)	А	В					
strong relevance expert assessment (item is worth 1 or 2)	С	D					

Internal Consistency Coefficient (Internal validation) = $\frac{D}{A + B + C + D}$ (1) Remarks:

- A = Both experts give weak relevance
- B = The first expert gives strong relevance The second expert gives weak relevance
- C = The first expert gives weak relevance The second expert gives strong relevance
- D = Both experts gives strong relevance

Table 2. Content validation category (Arlini et al., 2017)

Interval	Category
> 0,8	high
0,4-0,8	medium

Analysis of the reliability of the CVD diagnostic test to calculate the level of percentages of agreements between the two raters stating "yes" or "no" used formula (2) (Grinnell, as citied in Fuadi et al., 2015). The results of the reliability analysis are 95 percent, which is greater than the lower limit of the reliability coefficient of .75, meaning that all research instruments are reliable.

Percentage of Agreement =
$$\frac{\text{Agreement}}{\text{Disagreement}-\text{Agreement}} \times 100\%$$
 (2)

Data Analysis

The research data was obtained through the provision of diagnostic tests to students and teachers at Junior high school who were members of the Subject Teacher Conference in every province in Indonesia. Research data were analyzed descriptively using SPSS 21.

RESULTS AND DISCUSSION

Results

The presentation of the data is sorted according to several types of conceptual gaps that are often found, namely: consumption models, local reasoning, voltage sources are seen as constant current sources, current rather than voltage reasoning, charge density reasoning as current carriers, and understanding of series and parallel circuits. According to the consumption or attenuation model, the electric current in the series circuit decreases in each resistor or lamp. So some of the current is absorbed in each component of the circuit so that according to students and teachers the current near the positive pole is greater than the near negative current from the power source. It turned out that with simple questions, students and teachers did not apply the consumption model. For example, in a series of 2 or 3 lamps in series they predict that the brightness of the lamp and the current through it are the same, but if the problem is made a little more complicated, the misconception of "consumption" still arises. The Distribution of Student (I) and Teacher (II) Answers is in Table 3.

Table 3. Distribution of Student (I) and Teacher (II) Answers in Percentage

Answer Option	А		В		C		D		Propo of cor answer	rect	Coorect option is
Problem	I	II	I	II	I	II	I	II	I	II	
Consumption	on Model										
1	11.11	30	48.14	10	9.25	20	27.77	40	22.7 7	40	D
2	35.18	10	22.22	40	31.48	40	11.11	10	31.4 8	40	С
3	12.96	20	37.03	40	31.48	10	18.52	30	37.0 3	40	В
Local Reasoning											
4	29.62	10	7.40	20	61.11	70	0	0	61.1	70	С

									1		
5	37.03	10	33.33	60	32.48	30	0	0	33.3 3	60	В
6	29.62	0	50.00	70	22.22	30	0	0	50.0 0	70	В
7	37.03	70	31.48	10	31.48	20	0	0	37.0 3	70	A
8	29.62	50	38.88	10	29.62	40	0	0	29.6 2	50	A
The voltage	e source is	seen as	a constant	current	source						
9	42.59	80	33.33	0	22.22	20	0	0	22.2 2	20	С
10	42.59	80	33.33	0	24.07	20	0	0	24.0 7	20	С
11	38.88	60	33.33	10	27.77	30	0	0	27.7 7	30	С
12	27.77	50	37.03	20	33.33	30	0	0	37.0 3	20	В
13	25.92	10	57.40	70	5.55	10	11.11	10	25.9 2	10	A
14	24.07	50	57.40	30	7.40	20	11.11	0	24.0 7	50	A
15	29.62	40	37.03	30	22.22	0	11.11	30	29.6 2	40	A
16	31.48	60	12.69	0	16.66	10	38.88	30	31.4 8	60	A
17	37.03	80	40.74	20	11.11	0	11.11	0	37.0 3	80	A
Current rather than voltage reasoning											
18	53.70	40	11.11	10	37.25	50	0	0	37.2 5	50	С
19	75.92	30	9.25	0	1.85	0	12.96	70	12.9 6	70	D
20	11.11	10	27.77	0	31.37	40	31.48	50	31.4	50	D

									8		
21	50.00	20	18.51	50	31.48	30	0	0	50.0 0	20	А
22	29.62	30	37.03	50	9.25	10	22.22	10	22.2 2	10	D
23	44.44	20	18.51	10	16.66	20	20.37	50	18.5 1	10	В
24	11.11	0	31.48	0	25.92	40	31.48	60	31.4 8	0	В
Charge de	nsity reason	ing as a	a current ca	rrier							
25	51.85	80	18.51	0	24.07	10	3.70	10	18.5 1	0	В
26	12.96	10	16.66	60	14.81	10	55.55	20	16.6 6	60	В
Understan	ding of elect	tric pov	ver								
27	33.33	20	37.03	30	13.72	50	14.81	0	33.3 3	20	A
28	12.96	30	25.92	20	14.81	0	44.44	50	12.9 6	30	A
Understanding series and parallel circuits											
29	40.74	0	16.66	10	22.22	30	18.51	60	18.5 1	60	D
30	31.48	30	27.77	10	16.66	30	24.07	30	31.4 8	30	A

Problems 1-3 (in appendix), conceptual gaps on the effect of resistance on current in electric circuits. All prisoners represented by the sign are of equal size. Each question consists of 3 series. In which circuit will the light shine brightest? If any of the components are changed in a series circuit, then the whole circuit is affected. When the resistance of a resistor is changed, the current in the entire circuit changes in magnitude. But students and teachers assume that the changed component only affects the flow in the following components and not the previous one. They seem to be analogizing a series to a river; the main effect of the embankment occurs in the down-stream flow. In the theory of reasoning of students and teachers like this is called local reasoning, namely the effect of changing the series is only "local" or sequential reasoning, namely the components that are located before the change are not subject to change. In question 1, the CRI score: 2, 70% of students; 60% of teachers; problem, 2, CRI: 3, 95% of students; 85 % of teachers, and 3 questions,

CRI scores: 1, 90 % of students; 75% of teachers give guess answers, woud townon (Horowitz., & Hill, 2015; Crowell, 2020).

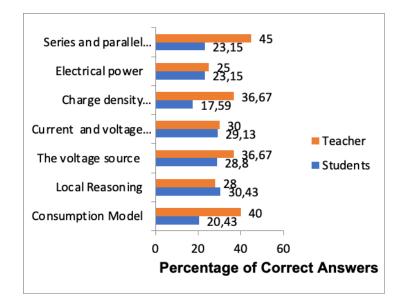
Problems 4-8 (in appendix), the gap in the concept of local reasoning, many students and teachers apply the electric current consumption model: 213 (or 29.62%) students and 53 10 %) teachers assume that the current in L1 is greater than the current in the lamp L2. Problem 4, CRI scores: 1, 85% of students; 75% of teachers give guess answers. Problem, 5 most students and teachers think that the current in lamp L1 is not affected by the change in resistor, but only the current through lamp L2. Question 5, CRI score: 2, 80 % of students; 70% of teachers give guess answers. Problem, 7-8 are very consistent with questions 5-6, and the percentage of students and teachers who use local reasoning is high.nThe gap in the conception of students and teachers, i.e.: a voltage source produces a constant electric current rather than producing a constant potential difference (if the source is ideal).

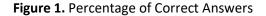
Problem, 9-12 (in appendix), the gap in the conception of a voltage source is seen as a constant current source, more than 50% of the sample answered that the brightness of the lamp and the electric current will increase when source II is connected. Students and teachers argue that the current is approximately doubled rather than increased if the source is not ideal. There were 60% of students and 75% of teachers could not give reasons for the selected answers. Problem, 12 most students and teachers answered that the current through source I did not change, the answer reaffirmed that students and teachers view a voltage source as a current source. In addition to these problems, gaps also occur with the same circuit except for the location of the battery II and the lights are swapped. CRI score: 1, 85 % of students; 80% of teachers give guess answers.

The gap in the conception of potential difference and at the same time shows errors that can occur if students and teachers only look at the current without a cause (potential difference). Problem, 13-15 (in appendix), only 28.60% of students; 36.67% of teachers who gave the correct answer, most of the samples answered that the brightness of the lamp and the electric current would increase when source II was connected. Students and teachers found the flow to be approximately doubled (rather than adding a little if the source was not ideal), and 70% of students and 55% of teachers were unable to give reasons for the chosen answers. In problem, 15 most students and teachers answered that the current through source I did not change, the answer reiterated that students and teachers viewed the voltage source as a current source. Conception gap also occurs with the same circuit except the location of the battery II and the lights are swapped. CRI scores: 1, 40% of students; 30% of teachers with guessed answers. A four-tier diagnostic test can identify lesson (Negoro & Kartina, 2019).

Problem, 14-17 (in appendix), only 29.13% of students and 30% of teachers gave correct answers, i.e: if I_2 is removed, the total resistance increases, the total current decreases, because of the potential difference, the current in the lamp L_1 increases. Most students and teachers answered that L_1 became brighter but with the wrong reason, namely the current that had passed through L_2 would pass through L_1 . Students and teachers think that the potential difference between X and Y becomes zero after the lamp is removed. There were 75% of students and 65% of teachers, unable to give reasons for the selected answers. Problem, 19 most students and teachers answered that the current through source I did not change, the answer emphasized again that students and teachers viewed the voltage source as a current source. Conception gap also occurs with the same circuit

except the location of the battery II and the lights are swapped. The results are very consistent with the results of problem 16-19. CRI scores: 1, 65% students; 75% of teachers give guess answers.


Problem, 18-24 (in appendix), the gap in the concept of current-than-voltage reasoning, only 17.59% of students and 30% of teachers gave the correct answer, most of the samples answered that the electrons came from the lamp rather than from the battery. Students and teachers argue that when the switch is closed, current arises due to electrons moving from the positive pole to the negative pole. There were 80% of students and 70% of teachers could not give reasons for the selected answers. Problem, 18, most students and teachers answered that the current through source I did not change, the answer reaffirmed that students and teachers view a voltage source as a current source. In addition to these problems, the conceptual gap with the circuit is the same except for the location of the battery II and the lights are swapped. Problem 24, only 31.48% of students and 0% of teachers, problem, 25 (in appendix) only, 18.51 students; 0% of teachers, problem, 26 (in appendix), only 16.66% of students, 10% of teachers mostly in the sample answered that the electric current does not change when the switch is closed. Students and teachers think that the voltage on the lamps is different, 75% of students and 80% of teachers cannot give reasons for the chosen answers. The gap in the concept of current reasoning rather than voltage of students and teachers is consistent. CRI score: 2, 65% students; teachers 75%. Students and teachers give guess answers. The results are very consistent with the results of problem 18-24. CRI scores: 1, 65% students; 75% of teachers give guess answers. Electrical I = charge /t, when t (Horowitz., & Hill, 2015; Crowell, 2020).


Problem, 25-26 (in appendix), gaps in the concept of charge density reasoning as current carriers, problem 25, 18.51% of students and 0% of teachers who gave the correct answer, and problem, 26; 66.66% of students; 60% of teachers, most of the samples answered that the voltage A is the same as the voltage B when the electric current flows. Students and teachers think that the voltage on the lamps is different, 85% of students and 80% of teachers cannot give reasons for the chosen answers. The conception gap also contains several other problems with the same circuit except the switch and lamp positions are swapped. The results are very consistent with the results of problem, 25-26. CRI scores: 1, 75 % of students; 85% of teachers give guess answers. Colloqually two types of charge, i.e: positive, negative.

Problem, 27-28 (in appendix), the gap in the concept of understanding electric power that gives the correct answer, problem, 27; 33.33% of students and 20% of teachers who answered correctly and problem, 28; 12.96% of students; 30% teachers. Most of the samples answered that the electric power changed when the lamp was on. There were 75% of students and 80% of teachers could not give reasons for the selected answers. The gap in the concept of electrical reasoning of students and teachers is consistent. CRI score: 2, 75% students; teacher 80%. Students and teachers give guess answers.

Problem, 29-30 (in appendix), the conceptual gap in understanding series and parallel circuits, give the correct answer, problem, 29, which is 10.51% of students and 60% of teachers, question 30, only 31.48% of students; 30% teachers. Most of the samples answered that the parallel circuit surrogate resistance is smaller. Students and teachers argue that the lamp voltages in parallel circuits are different. There are 75% of students and 80% of teachers cannot give reasons for the chosen answers. The gap in the concept of current reasoning rather than voltage of students and teachers is consistent. CRI score: 2, 65% students; 75% teachers. Difference in students'

understanding of simple DC circuits, in Indonesia (Marcelina & Hartanto, 2021). Conception gap of current, voltage indicators, in Fig.1.

Gap consumption model, 20.43% of students, 40% of teachers, the difference in the gap is 19.67%, quite large; local reasoning, 30.43% students, 28% teachers, the difference is 2.43%, the gap is small, the voltage source, 28.8% students, 36.67%, the difference is 7.87%. Current and voltage reasoning, 29.13% students, 30% teachers, the difference is 0.87% very small gap; charge density reasoning, 17.59% students, 36.67% teachers, the difference is 19.08 quite large, electrical power, 23.15% students, 25% teachers, the difference is 1.85% small gap, series and parallel circuit, 23.15% students, 45% teachers, the difference is 21.85% big gap. It was found that several current and voltage indicators had a large conception gap, Junior High School students and teachers in Indonesia.

This finding indicates that understanding the concepts of electric current and voltage really needs to be considered in the science learning process at Junior High School, so that students can overcome electrical problems. A tenthgrade high school student in Turkey, there is also a conceptual gap regarding the electric force between two objects independent of the relative permittivity of the medium between them' (Onder-Celikkanli & Tan, 2022).

Discusion

The conception gap occurs when there is a problem with the effect of resistance on the current in electrical circuits. All prisoners are depicted with the same sign. Students and teachers argue that if one component is changed in a series circuit, then the whole circuit is affected. When the resistance of a resistor is changed, the current in the entire circuit changes in magnitude. Students and teachers assume that the changed component only affects the flow in the following components and not the previous one. They seem to be analogizing a series with the flow of a river. In the theory of reasoning of students and teachers like this is called local reasoning, namely the effect of changing the series is only "local" or sequential reasoning, namely the components that are located before the change are not subject to change. The average value of the Certainty of Response Index is 70%, the answer choices are guessing. There is a career skills gap in the electricity industry, conception of innovation of the electric, (Zhang & Huang, 2012; Rodzalan et al., 2022).

The gap in the concept of local reasoning also still occurs, students and teachers apply the electric current consumption model. They still assume that the current in the first lamp is greater than the current in the second lamp in a circuit. Most students and teachers think that the current in the first lamp is not affected by the change in the resistor, but only the current through the second lamp. The percentage of students and teachers who use local reasoning is high. The gap in the conception of students and teachers, i.e.: a voltage source produces a constant electric current rather than producing a constant potential difference (if the source is ideal). High school students still experience a gap in the conception of simple electrical circuits from scientific conceptions (Wardiyah et al., 2019; Barniol & Zavala, 2014).

The gap in the conception of a voltage source is seen as a constant current source, in general students, teachers answer that the brightness of the lamp and the electric current will increase when the voltage source is connected. Students and teachers argue that the current is about twice that of the non-ideal source. Most of the teachers did not give reasons for the selected answers. This indicates that the teacher is less able to reason. Likewise, it was found that most students and teachers answered that the current through the power source did not change, the answer emphasized again that students and teachers viewed the voltage source as a current source. Conception gaps also occur in the same circuit except where the batteries and lights are swapped.

The conceptual gap regarding potential difference and at the same time shows errors that can occur if students and teachers only look at currents without a cause (potential difference). According to students and teachers: the brightness of the lamp and the electric current will increase when the voltage source is connected. Students and teachers argue that the current is approximately doubled (rather than a little more if the source is not ideal). Students and teachers view voltage sources as current sources. Conception gap also occurs with the same circuit except the location of the battery and lights are swapped. The percentage of students who cannot give reasons for the selected answers is greater. The average value of the Certainty of Response Index is 50%, the answer is a guess. Handhika et al, 2016, found that there was a conceptual gap in Newton's law. This means that in other lessons there is also a conceptual gap.

The student who gave the correct answer is greater, i.e: if the current I2 is removed, then the total resistance increases, the total current decreases, because of the potential difference, the current in the lamp L1 increases. Most students and teachers answered that L1 became brighter but with the wrong reason, namely the current that had passed through L2 would pass through L1. Students and teachers think that the potential difference between X and Y becomes zero after the lamp is removed. Most students could not give reasons for the selected answers. Conception gap occurs in the problem of

current through a voltage source I does not change, the answer confirms again that students and teachers view the voltage source as a current source. This also happens with the same circuit except the location of the battery II and the lights are swapped. This conceptual gap is very consistent. The average value of Certainty of Response Index is 65%, guess answers.

The gap in the conception of current rather than voltage reasoning, students and teachers answered that the electrons came from the lamp rather than from the battery. They argue that when the switch is closed, the current arises due to electrons moving from the positive pole to the negative pole. More percentage of students were unable to give reasons for the selected answers. They consider the current through the voltage source unchanged, the answer confirms again that they view the voltage source as a current source. Conception gaps also occur when the circuit is the same except for the location of the two batteries and the lights are swapped. They assumed that the electric current did not change when the switch was closed, and that the voltage is consistent. A larger percentage of teachers could not give reasons for the selected answers. The average value of Certainty of Response Index is 55%, guess answers.

The gap in the concept of reasoning of charge density as a current carrier, only 18.51% of students, 0% of teachers who gave the correct answer, They assume that voltage A is the same as voltage B on electric current flowing, the voltage on the lamp is different. Conception gaps also occur with the same circuit except the switch and lamp locations are swapped. This conceptual gap is very consistent. A larger percentage of teachers could not give reasons for the selected answers. The average value of the Certainty of Response Index is 70%, the answer is a guess.

Gap in understanding the concept of electric power 33.33% of students, 20% of teachers. They assume the electric power changes when the light is on. The gap in the conception of electrical power reasoning is consistent. A larger percentage of teachers could not give reasons for the selected answers. Average value The average value Certainty of Response Index 70%, guess answers.

Gap in the conception of understanding series and parallel circuits, 10.51% of students and 60% of teachers. They consider the resistance of the parallel circuit to be smaller, the lamp voltage in the parallel circuit to be different. The gap in the concept of current reasoning rather than voltage is consistent. A larger percentage of teachers could not give reasons for the selected answers. The average value of Certainty of Response Index is 65%, guess answers. Students still have difficulty understanding electric lines of force and electric fields in a circuit (Garza & Zavala, 2013; Leniz et al., 2017; Setyani, 2017; Suciatmoko et al., 2018)

Conception gap of each indicator, i.e: (1) consumption model is quite large, namely 19.67%, (2) local reasoning, 2.43%, the gap is small, (3) the voltage source, around 7.87%, quite small, (4) current and voltage reasoning, 0.87% very small, (5) charge density reasoning, 19.08 quite large, (6) electrical power, 1.85% quite small, (7) series and parallel circuit, 21.85% is huge. Several current and voltage indicators show a large conception gap, Junior High School students and teachers in Indonesia. Understanding the concept of electric current and voltage really needs to be considered in the science learning process at Junior High School, so that students can overcome electrical problems

CONCLUSION

Conception gaps found in other countries can also be found in Indonesia, among Junior High School students and teachers. If the conceptual gap outside and inside the country is the same, then the conceptual gap can be stated to arise in the interaction between the human brain and nature, without (or almost without) cultural influences. This is an interesting conclusion that contradicts the opinion of many psychologists who, among other things, look for cultural causes for the lack of success of science education in Indonesia. This conclusion was also confirmed by physicists, for example, there are many gaps in the conceptions of mechanics, heat, physical optics and geometry, atoms, molecules that are common today. Several conception gaps were found in this study, i.e.: (1) consumption model, (2) local reasonin, the gap is small, (3) the voltage source, around 7.87%, quite, (4) current and voltage reasoning, (5) charge density reasoning, (6) electrical power, (7) series and parallel circuits.

ACKNOWLEDGEMENTS

The authors would like to thank the Chancellor of State University of Makassar who has funded this research. Likewise, the author's appreciation goes to the Chair of the Research and Community Service Institute, the Junior High School students' and Teachers who are participating in Indonesia who have done CVD tests, and colleagues who have managed research data. Especially Subaer, M. Phil, Ph.D who has reviewed the English language of this article.

REFERECES

- Adhim, A., Budi, J., & Tjipto, P. (2021). Physics teacher's misconceptions about direct current material. *International Journal of Recent Educational Research*. IJORER, Vol. 2, No. 6, November 2021. <u>https://doi.org/</u> 10.46245/ijorer.v2i6.160.
- Affriyenni, Y., Susanti, N, E., & Swalaganata, G. (2020). The effect of hybrid-learning on students' conceptual understanding of electricity in short-term fundamental physics course. AIP Conference Proceedings 2215, 040001 (2020); https://doi.org/ 10.1063/5.0000508.
- Atasoy, Ş. (2013). Comparative analysis of the effectiveness of 4MAT teaching method in removing pupils' physics misconceptions of electricity. Journal of Baltic Science Education · December 2013. <u>https://doi.org/10.33225/jbse/13.12.730</u>.
- Arfiyanti, Ni P, V., Wayan, I, S., & Luh, P, B, Y. (2015). Miskonsepsi Siswa Dan Strategi Pembelajaran Yang Mampu Mengatasi Miskonsepsi Dalam Pembelajaran Fisika Di SMA. Jurnal Pendidikan Fisika Undiksha. Vol. 2 No. 1 (2015). <u>https://doi.org/</u> <u>10.23887/jjpf.v2i1.5097</u>.
- <u>Arlini, H., Humairah, N., & Sartika, D. (2017). Penerapan model pembelajaran kooperatif tipe</u> <u>think pair share dengan teknik advance organizer. *Jurnal Saintifik, 3*(2),182-189. <u>https://doi.org/ 10.31605/ saintifik.v3i2.163</u></u>
- Bank, M. (2019) Electricity Is Not What You Think. *Engineering*, *11*, 801-805. https://doi.org/ <u>10.4236/eng.2019.1112054</u>
- Barniol, P., & <u>Zavala</u>, G. (2014). Force, velocity, and work: The effects of different contexts on students' understanding of vector concepts using isomorphic problems. *Phys. Rev. ST Phys. Educ. Res.* 10,(2),020115-1-15. <u>https://doi.org/</u> 10.1103/ PhysRev STPER.10.020115
- Busyairi, A., Joni, R., & Ni, N, S, V. (2021). Penggunaan paradigma gaya gesek sebagai gaya reaksi untuk mereduksi miskonsepsi mahasiswa calon guru fisika. *Jurnal Ilmiah Profesi Pendidikan, 6*(1): 66 73. <u>https://doi.org/10.29303/jipp.v6i1.154</u>
- Crowell, B. (2020). *Conceptual physics*, <u>https://phys.libretexts.org/Bookshelves/</u> Conceptual _Physics/ Book%3A_Conceptual_Physics_(Crowell)
- Firmansyah, J., & Wulandari , S. (2016). Penerapan model pembelajaran generatif untuk mengurangi miskonsepsi pada materi gerak melingkar. *Serambi Akademica*, *IV*, (1),18-27 . https://scholar.google.co.id/ scholar?q= penerapan model
- Fokides, E., & Papoutsi, A. (2020). Using makey-makey for teaching electricity to primary school students. A pilot study. *Educ Inf Technol 25*, 1193–1215 (2020). https://doi.org/10.1007/s10639-019-10013-5.
- Fuadi, Sumaryanto, T., & Lestari, W. (2015). Pengembangan instrumen penilaian psikomotor pembelajaran ipa materi tumbuhan hijau berbasis starter experiment approach berwawasan konservasi. Journal of Educational Research and Evaluation (JERE), 4(1), 1-11. <u>https://journal.unnes.ac.id/sju/index.php/jere/article/view/6926</u>
- Garza, A., & Zavala, G. (2013). Contrasting students' understanding of electric field and electric force. *Physics Education Research Conference*, *1513*(1),142–145. https://doi.org/10.1063/1.4789672

- Halim,A., & Musdar, M. (2020). Development of concept maps diagnostic test for identification of students' misconceptions. Conference Paper *in* AIP Conference Proceedings ·2215, 050003. https://doi.org/ 10.1063/5.0000613.
- Handhika, J., Cari, C., Soeparmi, A., & Sunarno, W. (2016). Student conception and perception of Newton's law. *AIP Conference Proceedings*. *1708*, 070005. https://doi.org/10.1063/1.4941178
- Hidayati , F, N., Hamdi, A., & Syuhendri, S. (2014). Identifikasi miskonsepsi siswa kelas x pada materi elastisitas dan hukum hooke di sma negeri 1 Indralaya. Jurnal Inovasi dan Pembelajaran Fisika. <u>1(1)</u>. <u>https://doi.org/10.36706/jipf.v3i2.3838</u>.
- Horowitz, P., & Hill, W. (2015). The art of electronics (3rd ed.). Cambridge University Press.
- Kapartzianis , A., & Jeanne, K. (2014). Conceptual change activities alleviating misconceptions about electric circuits. <u>Journal of Baltic Science</u> <u>Education</u> 13(3):298-315 .https://doi.org/<u>10.33225/jbse/14.13.298</u>.
- Korganci, N., Mirona, C., Dafineia, A., & Antohea, S. (2015). The importance of inquiry-based learning on electric circuit models for conceptual understanding. *Procedia - Social* and Behavioral Sciences 191, 2463 – 2468. <u>https://doi.org/</u> 10.1016/ j.sbspro. 2015.04.530.
- Kuczmann, I. (2017). The structure of knowledge and students' misconceptions in physics. *AIP Conference Proceedings. 1916*, 050001. <u>https://doi.org/10.1063/1.5017454</u>.
- Leniz, A., Zuza, K., & Guisasola, J. (2017). Students' reasoning when tackling electric field and potential in explanation of dc resistive circuits. Physical Review Physics Education Research *13*. <u>https://doi.org/10.1103/PhysRevPhysEducRes.13.010128</u>
- Luthfi ,I., Mufit ,F., & Putri, M,R,N. (2021). Design Of Physical Teaching Materials Based On Cognitive Conflict Learning In Direct Current Electricity Integrating Virtual Laboratory. *Pillar of Physics Education*. 14(1),37-46 .<u>http://dx.doi.org/</u> <u>10.24036/10771171074</u>
- Ma'rufah ,D.M., Effendy., & Wonorahardjo,S. (2022). Identification of intermolecular force misconceptions in students with different scientific thinking skills and the improvement efforts using conceptual change text. *Improving Assessment and Evaluation Strategies on Online Learning www.taylorfrancis.com, CC BY-NC-ND* 4.0. https://doi.org/10.1201/9781003261346-19
- Marcelina, S., & Hartanto, J.T. (2021). Correcting Students' Understanding about Simple Direct Current (DC) Circuits through Scientific Approach. *JPPPF (Jurnal Penelitian dan Pengembangan Pendidikan Fisika)*. 7(2), 153-160. https://doi.org/10.21009/1.07207
- Maison, L, N., & Widaningtyas, A. (2020). Identifikasi Miskonsepsi Siswa pada Materi Usaha dan *Energi. Jurnal Penelitian Pendidikan IPA (JPPIPA)*. 6(1). pp. 32-39. https://doi.org/10.29303/jppipa.v6i1.314
- McRorie, Jr , J, W., & McKeown, N, M. (2017). Understanding the Physics of Functional Fibers in the Gastrointestinal Tract: An Evidence-Based Approach to Resolving Enduring Misconceptions about Insoluble and Soluble Fiber. <u>Journal of the</u> <u>Academy of Nutrition and Dietetics</u>. <u>117 (2)</u>, 251-264. <u>https://doi.org/10.1016/ j.jand.2016.09.021</u>
- Mengistu, A., Assefa, S., & Gebeyehu, D. (2022). Improving high school students' conceptual <u>understanding</u> of electricity and magnetism using scaffold analogy instructions. *Momentum: Physics Education Journal*, 6(1), 29-38. <u>https://doi.org/10.21067/mpej.v6i1.6223</u>.
- Negoro, A. R., & Kartina, V. (2019). Development of A Four-Tier Diagnostic Test For Misconception of Oscillation and Waves. *JPPPF (Jurnal Penelitian dan Pengembangan Pendidikan Fisika).* 5(2), 69-76. https://doi.org/10.21009/1.05201
- Nugraha , D, Ar., Dimas, A., & Setyani, N, D. (2018). Understanding the students' conception about electric current, voltage, and resistance. AIP Conference Proceedings, 020039-1-5. <u>https://doi.org/10.1063/1.5054443</u>.
- Onder-Celikkanli, N., & Tan, M. (2022). Determining turkish high school students' misconceptions about electric charge imbalance by using a four-tier misconception

test. <u>Physics Education</u>, <u>57</u>, (<u>5</u>), 055010. <u>https://iopscience.iop.org/article/</u> 10.1088/ 1361-6552/ac68c1/pdf

- Osborne, R. (2006). Towards modifying children's ideas about electric current. <u>Research in</u> <u>Science & Technological Education.</u> 1, (1), 73-82. <u>https://doi.org/ 10.1080/</u> 0263514830010108?journalCode=crst20
- Popat ,Y. (2021). Ohm's law: Misconceptions of the students at secondary and senior secondary level. International Journal of Engineering Applied Sciences and Technology, 2021 Vol. 5, Issue 12, ISSN No. 2455-2143, Pages 88-91 Published Online April 2021 in IJEAST. <u>http://www.ijeast.com</u>.
- Rahmawati., Rustaman, N.Y., Hamidah, I., & Rusdiana, D. (2018). The development and validation of *conceptualknowledge* test to evaluate conceptual knowledge of physics prospective teachers on. *JPII* 7 (4) (2018) 483-490. https://doi.org/10.15294/jpii.v7i4. 13490.
- Ramli, M.S., Affandi,M. H., Abd Rauf, A.R. & Pranita, D. (2022). Analysing teaching strategy, reflection and networking indicators towards learning for sustainable development (lsd) of *green* skills. *Journal of technical education and training.* 14 (1), 64-75. https://doi.org/10.30880/jtet.2022.14.01.006.
- Rico , A, E., & Fitriza, Z.(2021). Deskripsi miskonsepsi siswa pada materi senyawa hidrokarbon: studi literatur [Description of students' misconceptions on the material of hydrocarbon compounds: literature study]. Edukatif : Jurnal Ilmu Pendidikan Research & Learning in Education. 3(4), 1495 – 1502 . <u>https://doi.org/ 10.31004/</u> edukatif.v3i4.525
- Rodzalan, A. S., Noor, M. N. N., Abdullah, H.N., & Saat, M.M. (2022). Junior high school skills gap analysis in electrical and electronic industry: perspectives from academicians and industry players. *Journal of Technical Education and Training*. 14(1),158-177. https://doi.org/10.30880/jtet.2022.14.01.014
- Rohmawatiningsih, W., Rachman, I., & Yayoi, K. (2021). The implementation of RADEC learning model in thematic learning to increase the concept understanding of electrical phenomenon *.Momentum: Physics Education Journal*, *5*(2), 121-131. https://doi.org/10.21067/mpej.v5i2.5412
- Setyani. N, D., Suparmi., Sarwanto., & Handhika, J. (2017). Students conception and perception of simple electrical circuit. *Journal of Physics: Conference Series. International Conference on Science and Applied Science.* 909, 012051-1-11 https://doi.org/ 10.1088/ 1742-6596/909/1/012051
- Shipstone, <u>D, M.</u> (2007). A study of children's understanding of electricity in simple DC circuits. <u>European Journal of Science Education</u>. 6, (2), 185-198. <u>https://doi.org/.org/10.1080/0140528840060208</u>.
- Stolzenberger, C., Frank, F., & Trefzger, T. (2022). Experiments for studentswith built-in theory: PUMA: <u>Spannungslabor'</u>- an augmented reality app for studying electricity. *Phys. Educ.* 57, 045024-1-8.https://iopscience.iop.org/article/10.1088/1361-6552/ac60ae/pdf
- Suciatmoko, M.P., Suparmi, A., & Sukarmin, S.(2018). An analysis of students' conceptual understanding: How do students understand some electricity concepts? *AIP Conference Proceedings*, 020154. https://doi.org/10.1063/1.5054558
- Sukarsa , I, K., Nyoman , I, S., & Wayan, I, S. (2017). Pengaruh strategi pembelajaran peta konsep siswa terhadap remediasi miskonsepsi dalam pembelajaran fisika. <u>Jurnal</u> <u>Pendidikan Fisika Undiksha</u>. 1,(1),1. <u>https://doi.org/10.23887/jjpf.v1i1.3930</u>
- Suprapto, N. (2020). Do we experience misconceptions?: An ontological review of misconceptions in science. Studies in Philosophy of Science and Education Homepage: 1,(2), 50-55. <u>https://doi.org/10.46627/sipose</u>.
- Taqwa , M, R, A., Suyudi., A., & Sulur. (2020). Analisis miskonsepsi topik suhu dan kalor mahasiswa pendidikan fisika Universitas Negeri Malang. BRILIANT: Jurnal Riset dan Konseptual. 5 (3), 522-529. <u>http://dx.doi.org/10.28926/briliant.v3i4.502</u>.
- Turgut, Ü., Fatih, G., & Güven, T. (2011). An investigation ¹⁰th grade students' misconceptions about electric current. *Sciencedirect. Procedia Social and*

Behavioral Sciences. *15*, 1965–1971. <u>https://doi.org/</u> 10.1016/j.sbspro.2011.04.036.

- Urban , H. (2017). Sequential reasoning in electricity: developing and using a three-tier multiple choice test. *Scientia in educatione*. *8*, (special issue)285-292 ,. https://doi.org/10.14712/18047106.755
- Villanueva, A., Ziyi, L., Yoshimasa., Kitaguchi., Zhu, <u>Z.,</u> Peppler, K., Redick,<u>T</u> ., & Ramani,K. (2021). Towards modeling of human skilling for electrical circuitry using augmented reality applications. <u>International Journal of Educational</u> <u>Technology in Higher Education</u>. 18(39), 2-23. <u>https://doi.org/ 10.1186/s41239-021-00268-9</u>.
- Wardiyah, K., Suhandi, A., & Samsudin, A. (2019). Alternative conception of high school students related to the concepts in the simple electric circuit subject matter. International Conference on Mathematics and Science Education of Universitas Pendidikan Indonesia. 4,183-187. <u>http://science.conference.upi.edu/</u> proceeding/index.php/ICMScE/issue/view/4
- Widodo,W., Rosdiana L., Fauziah, A, M., & S uryanti. (2018). Revealing student's multiplemisconception on electric circuits. Journal of Physics: Conf. Series, *1108*. 012088. <u>https://doi.org/10.1088/1742-6596/1108/1/012088</u>
- Yolanda, Y. (2017). Remediasi miskonsepsi kinematika gerak lurus dengan pendekatan STAD. *SPEJ (Science and Physics Education Journal)*. 1(1),39-48. https://doi.org/10.31539/spej.v1i1.76.
- Yolanda, Y. (2020). Development of contextual-based teaching materials in the course of magnetic *electricity*. *Thabiea: Journal of Natural Science Teaching*, 3(1), 59-69. <u>http://journal.iainkudus.ac.id/index.php/Thabiea</u>
- Zainuddin., Mujakir., Ibrahim ,M., Jatmiko, B., Halim, A., Yusrizal. (2020). Model of Cocoaer as alternative learning to prevent the potential misconceptions of high school students. *Journal of Physics: Conf. Series 1460*,012126-1-5. https://doi.org/10.1088/1742-6596/1460/1/012126.
- Zhang, Qi. J., Zhao, H.F., & Huang, J.Y. (2012). Conception of innovation of the electric vehicles. <u>Applied Mechanics and Materials</u>. 215-216, 493-496. <u>https://doi.org/10.4028/www.scientific.net/AMM.215-216.493</u>
- Zulvita, R., Halim, A., & Elisa. (2017). Identifikasi dan remediasi miskonsepsi konsep hukum newton dengan menggunakan metode eksperimen di MAN Darussalam. *JIMPF: Jurnal Ilmiah Mahasiwa Pendidikan Fisika.* 2(1), 128-134. <u>http://www.jim.unsyiah.ac.id/pendidikan-fisika/article/view/2213</u>

Appendix

CURRENT AND VOLTAGE DIANOSTIC (CVD) TEST

Instruction:

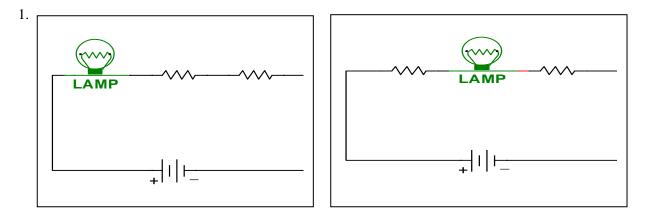
- a. The scope of the question is physics on the topic of electric current and voltage. These questions are intended to determine the extent of your understanding of these concepts, whether you already have an understanding of the concepts in accordance with the understanding of concepts by physicists.
- b. Answer all the questions below directly on the question.
- c. Choose one of the answers a, b, c, or d that you think is most correct by putting a cross (X) or red color on the available answers.
- d. Give a written reason why you chose that answer.
- e. After you have answered each question and the reasons, you are also asked to put a Certainty of Response Index (CRI) number: 0, 1, 2, 3, 4 or 5 in the CRI box provided with the following conditions:

CRI	Information
0	If you answer the question by guessing 100%
1	If you answer the question by guessing between 75% - 99%
2	If you answer the question by guessing between 50% - 74%
3	If you answer the question by guessing between 25% - 49%
4	If you answer the question by guessing between 1% - 24%
5	If you answer the question by not guessing at all (100% benar)

Example:

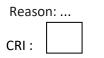
An atom is made up of particles. . .

- a. hydrogen, deutron and triton
- \mathbf{X} protons, neutrons and electrons
- c. protons, neutrinos and photons

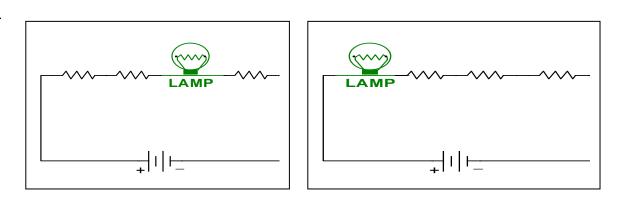

d. alpha, beta and gamma

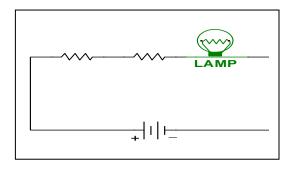
Reason: In atomic theory it is said that the basic particles that make up an atom are protons, neutrons, and electrons

C R I : 5

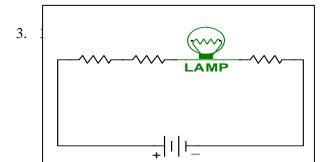

The following problem concerns the effect of resistance on current in the described electrical circuits. All prisoners represented by the sign are of equal size. Each question consists of 3 series. In which circuit will the light shine brightest?

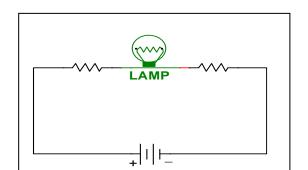
Problem, 1-3



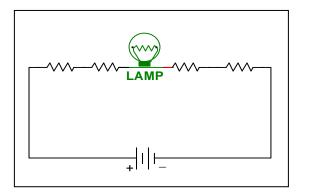

D. The lights will be equally bright in all circuits

2.


В


D. The lights will be equally bright in all circuits

С


Reason:....

CRI :

В

D. The lights will be equally bright in all circuits

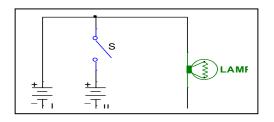
D

С

Reason: ... CRI: Problem, 4-8

Reason: ...

CRI:

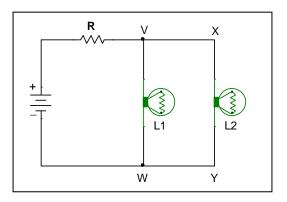

In the following circuit there are 2 batteries, 2 lamps which are identical, and the resistance current of which magnitude can be changeable

A. is greater than the current through the lamp L_2 B. is less than the current through the lamp L_2 C. is equal to the current through the lamp L_2

4. Electric current leawt Lamp L₁

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
LAMP	 LAMP

- 5. If the resistance R decreases, then the current through the lamp L₁ A. decreases B. increases C. does not change Reason: ..... CRI:
- 6. If the resistance R decreases, then the current through the lamp L₂ A. decreases B. increases C. does not change Reason: ..... CRI:
- 7. If the resistance R increases, then the current through the lamp L₁
  A. decreases B. increases C. does not change Reason: ...
- 8. If the resistance R increases, then the current through the lamp  $L_2$ 
  - A. decreases B. increases C. does not change Reason: ... CRI:




<ul> <li>The following question concerns addition voltage source (battery) in the circuit electricity. L lamp arranged with source voltage I, voltage source II arranged in parallel as shown in the figure below. Second source is the same and ideal, meaning that the voltage remains regardless of the electric current</li> <li>9. Initially switch S is open as shown in the figure. If switch S is closed, then the brightness of L will be</li> </ul>
A. decreases B. increases C. does not change Reason: CRI:
<ul> <li>10. If switch S is closed, then the electric current in the lamp will be:</li> <li>A. decreases B. increases C. does not change</li> <li>Reason: CRI:</li> </ul>
<ul> <li>11. If switch S is closed, the potential difference between the lamps will be:</li> <li>A. decreases B. increases C. does not change Reason: CRI:</li> </ul>
12. If switch S is closed, then the electric current flowing through the voltage source I will be: A. decreases B. increases C. does not change Reason: CRI:
Problem, 13-15
The following question concerns the effect of being revoked one of the two lamps arranged in parallel as shown below. The ideal voltage source (battery) is connected with the same two lamps $L_1$ and $L_2$ . at first both lights are on. One of the lamps, namely $L_2$
taken from the place. What happened?
13. If lamp $L_2$ is removed, the electric current in lamp $L_1$ will be:
A. decreases       B. increases       C. does not change         Reason:       CRI:
<ul> <li>14. If the lamp L2 is removed then the potential difference between X and Y will be:</li> <li>A. becomes 0 B. decreases C. increases D. does not change Reason:</li> </ul>

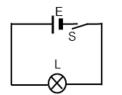
15. If the lamp L2 is removed then the potential difference between V and W will be:
A. becomes 0 B. decreases C. increases D. does not change Reason: .....
CRI: CRI: CRI: CRI

### Problem, 16-19

The following question concerns the effect of issuingone of two lamps arranged in a rowparallel in a closed circuit which also containsresistance R and an ideal voltage source (voltageremains no matter how large the electric current). The two lights light up. One of the lamps, namely  $L_2$ , is then taken from the place. What happen?



- 16. If lamp L2 is removed from its place, the electric current through lamp  $L_1$  will be:
  - A. decreases B. increases C. does not change
    - CRI:
- 17. The reason for the answer I gave is...
  - A. the current that passed through  $L_2$  will now be added to the current that passed through  $L_1$
  - B. in a parallel circuit the presence or absence of current in the XY branch does not affect the current in the VW . branch
  - C. the voltage difference between V and W decreases
  - D. the total current decreases so the voltage difference VW increases


CRI :
-------

18. If lamp  $L_2$  is removed from its place, the potential difference XY will be:

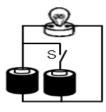
A.	becomes 0	B. decreases	C. increases	D. does not change
	Reason:		CRI:	

- 19. If lamp L2 is removed from its place, the potential difference VW will be:

Problem, 20 – 21



The circuit below consists of a battery E, lamp L, switch S and conductor wire


20. When switch S is connected, electrons will flow in the circuit. The electrons in the circuit come from...

A. Battery C. conductor wire B. switch D. Lamp Reason: ..... CRI:

### 21. When the switch is connected but the lamp L is dim, the electrons in the circuit become. . .

A. does not ch	ange	C. increase		
B. reduced		D. shrink		
Reason:	CRI:			

Problem, 22 - 23



In the circuit below, the two batteries are identical and ideal (no internal resistance). The electric current in the circuit when switch S is disconnected is I

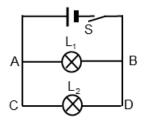
22. If switch S is connected, then the electric current flowing in the lamp becomes . . .

- A. do not change
- B. doubled from before
- C. reduced by two times from the original
- D. reduced by half from the original

Reason: .....

CRI:

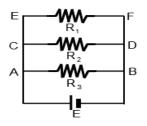
CRI:


23. If switch S is connected, then the clamping voltage of the lamp becomes. . .

- A. do not change
- B. doubled from before
- C. reduced by two times from the original

D. reduced by half from the original

Reason: .....


Problem, 24-26



In the circuit above, the battery is ideal (no internal resistance) and the lamp is identical. When switch S is connected, the electric current through the lamps  $L_1$  and  $L_2$  is the same

24. When switch S is connected and lamp $L_1$ is unplugged, the electric current through lamp $L_2$
A. do not change B. doubled from before C. reduced by two times from the original D. reduced by half from the original
Reason: CRI:
<ul> <li>25. When switch S is connected and lamp L₁ is unplugged, then</li> <li>A. point potential A is the same as point potential B</li> <li>B. point potential A is less than point potential B</li> <li>C. point potential A is greater than point potential B</li> <li>D. there is no potential difference between point A and point B</li> <li>Reason: CRI:</li> </ul>
<ul> <li>26. When switch S is connected and lamp L1 is removed, the potential difference between points C and D becomes</li> <li>A. do not change</li> <li>B. doubled from before</li> <li>C. reduced by two times from the original</li> <li>D. reduced by half from the original</li> <li>Reason: CRI:</li></ul>
Problem, 27 - 28
27. If a lamp with a specification of 2.0W/6V is plugged into a 3V voltage source, thenA. the power does not changeC. the power is a quarter of the originalB. the power is half of the originalD. twice the power from before
Reason: CRI:
<ul> <li>28. If the lamp is attached to a 12V voltage source for a long time, then</li> <li>A. the power does not change</li> <li>B. twice the original power</li> <li>C. four times the power</li> <li>D. all wrong</li> </ul>
Reason: CRI:

Problem, 29 - 30



The picture on the right shows a battery in parallel with three different resistances

29. The current and potential difference in a parallel resistance circuit are as follows:

- A. The electric current strength of the circuit is divided into resistance R₁, R₂ and R₃; and the potential difference of the voltage source is also divided into the clamping voltage VAB, VCD and VEF
- B. Strong electric current circuit is not divided on resistance  $R_1$ ,  $R_2$  and  $R_3$ ; and the potential difference of the voltage source is also not divided into clamping voltages  $V_{AB}$ ,  $V_{CD}$  and  $V_{EF}$
- C. Strong electric current circuit is not divided on resistance R₁, R₂ and R₃; and the potential difference of the voltage source is divided into the clamping voltage  $V_{AB}$ ,  $V_{CD}$  and  $V_{EF}$
- D. The electric current strength of the circuit is divided into resistances R₁, R₂ and R₃, and the potential difference of the voltage source is not divided into clamping voltages VAB, VCD and V_{EF} CRI:

```
Reason: .....
```

30. Parallel resistance can be replaced by a large resistance. . .

CRI:

- A. smaller than the smallest obstacle
- B. bigger than the biggest obstacle
- C. equal to the biggest obstacle
- D. equal to the smallest resistance

Reason: .....

# **Author Agreement Form**

Title of manuscript:	<b>Exploration of Conceptual Understanding of Science Teachers and Students: Gap Conception of Current, Voltage in Indonesia</b>
Submission Number:	32915
Name Corresponding author *:	Muh. Tawil
Email Corresponding author*:	muh.tawil@unm.ac.id
Whatsapp Number (include Country Code):	+62 81237844035
Full names and email of all authors (one per line):	Muh. Tawil ( <u>muh.tawil@unm.ac.id</u> ) Muhammad Amin Said ( <u>muhamin@unismuh.ac.id</u> ) Kemala Suryansari ( <u>kemala1671@gmail.com</u> )

* at least name and e-mail address will be listed

We, the above mentioned authors declare that this manuscript contain original, unpublished results which are not currently being considered for publication elsewhere while for all reused data the agreement of the publisher is attached.

We confirm that the manuscript has been read and approved by all the authors and that there are no other persons who satisfied the criteria for authorship but are not listed. We further confirm that the order of authors listed in the manuscript has been approved by all of us.

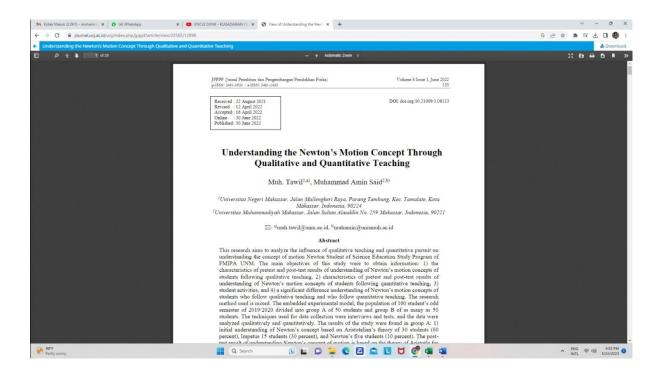
We understand that the *corresponding author* is the sole contact for the Editorial process. The corresponding author is responsible for communicating with the other authors about progress, submissions of revisions and final approval of proofs.

Date:	25 April 2023
	0
Corresponding Author sign:	A C

## JPPPF (Jurnal Penelitian & Pengembangan Pendidikan Fisika)

# **Ethic Statement Form**

I testify on behalf of all co-authors that our article submitted to JPPPF (Jurnal Penelitian & Pengembangan Pendidikan Fisika)


Title of manuscript:	<b>Exploration of Conceptual Understanding of Science Teachers and Students: Gap Conception of Current, Voltage in Indonesia</b>
Submission Number:	32915
Name Corresponding author *:	Muh. Tawil
Affiliation Corresponding author *:	Universitas Negeri Makassar
Email Corresponding author*:	muh.tawil@unm.ac.id
Whatsapp Number (include Country Code):	+62 81237844035
Full names and email of all authors (one per	Muh. Tawil ( <u>muh.tawil@unm.ac.id</u> )
line):	Muhammad Amin Said
	( <u>muhamin@unismuh.ac.id</u> )
	Kemala Suryansari ( <u>kemala1671@gmail.com</u> )

* at least name and e-mail address will be listed

#### Ethic Statement

- 1) this material has not been published in whole or in part elsewhere;
- 2) the manuscript is not currently being considered for publication in another journal;
- all authors have been personally and actively involved in substantive work leading to the manuscript, and will hold themselves jointly and individually responsible for its content.

Date:	25 April 2023
Corresponding Author sign:	- the c

