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Abstract 23 

Greenhouse gas (GHG) emissions related to food consumption complement 24 

production-based or territorial accounts by capturing carbon leaked through trade. 25 

Here, we evaluate global consumption-based food emissions between 2000 and 2019 26 

and underlying drivers using a physical trade flow approach and structural 27 

decomposition analysis. In 2019, emissions throughout food supply chains reached 28 

30±9% of anthropogenic GHG emissions, largely triggered by beef and dairy 29 

consumption in rapidly developing countries - while per capita emissions in developed 30 

countries with a high percentage of animal-based food declined. Emissions outsourced 31 

through international food trade dominated by beef and oil crops increased by ~1 Gt 32 

CO2-eq, mainly driven by increased imports by developing countries. Population 33 

growth and per capita demand increase were key drivers to global emission increase 34 

(+30% and +19%, respectively) while decreasing emission intensity from land-use 35 

activities was the major factor to offset emission growth (-39%). Climate change 36 

mitigation may depend on incentivizing consumer and producer choices to reduce 37 

emission-intensive food products. 38 
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Introduction 39 

The agrifood system drives global land use, agricultural and other beyond-farm 40 

activities, and contributes to about one-third of global anthropogenic greenhouse gas 41 

(GHG) emissions1-3. The United Nations projects that an additional 70 percent of the 42 

current food demand will be needed to feed the world's estimated population of 9.1 43 

billion by 20504. Population growth, expansion of food production, and an increase in 44 

animal-based diets are likely to further increase emissions and squeeze the global 45 

carbon budget5,6. Thus, mitigating emissions at every stage of food supply chains from 46 

production to consumption is crucial to limit global warming6-8. 47 

Production-based emissions (PBE) or territorial emissions are based on emissions 48 

from production (including exports) within a region9. Previous studies1,2,10,11 have 49 

quantified global GHG emissions from food production based on global food-related 50 

emission inventories (e.g., FAOSTAT, EDGAR-Food). However, food products are 51 

increasingly traded internationally through global supply chains, and geographically 52 

distant consumer demand may lead to emission outsourcing to producers12-14. 53 

Consumption-based emission (CBE) accounting allocates emissions from producers 54 

to final consumers irrespective of the place of production15,16. CBE is complementary 55 

to PBE and allows allocating responsibility and informs emission mitigation from a 56 

consumer perspective. CBE helps to understand to what extent final consumers trigger 57 

emissions along the entire global supply chain, allows quantification of virtual flows in 58 

trade outsourced to other countries, and provides information for additional policy tools 59 

for emission mitigation with a focus on consumption17,18. Therefore, a detailed 60 

assessment of global consumption-based GHG emissions throughout food supply 61 

chains with a breakdown into the detailed process- and product-levels are needed to 62 

reveal the distant emission drivers and to facilitate emission mitigation from a 63 

consumer perspective. However, such consumption-based assessments are 64 

hampered due to the complexity and variety of processes in which different food 65 

products are cultivated, processed, and traded through multiple intermediate 66 

regions19,20 as well as the required degree of data consistency and granularity in terms 67 

of processes and products of the global agrifood system.  68 

A number of studies used bottom-up life-cycle assessment (LCA) to investigate 69 

emissions of specific food products during their lifecycle21. However, these results are 70 

not comparable because of differences in scope21,22 and oftentimes ignoring 71 

differences in emissions from different origins along global food supply chains20. With 72 

the international, time-series input-output databases at high sectoral detail, multi-73 

regional input-output (MRIO) analysis is now widely used for tracing consumption-74 

based emissions23. MRIO is applied to quantify emissions induced by food 75 

consumption based on input-output relations (in monetary values) along supply 76 

chains19,24. This approach has been frequently criticized due to its highly aggregated 77 

sectors lacking product details25-27. For example, soybean, together with other oilseed 78 

crops such as palm oil and rapeseed, are aggregated in the same oil crop sector, 79 

ignoring important finer-scale differences in terms of land use, input requirements, and 80 
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associated emissions. PTF based on physical product flows provides a more detailed 81 

analysis of trade flows for agricultural products based on higher sectoral and product 82 

resolution23. Some PTF bilateral trade approaches use the difference between 83 

production, imports, and exports to calculate GHG emissions from food 84 

consumption11,28,29 but without consideration of re-export via longer international supply 85 

chains. The improved PTF developed by Kastner et al. provides a framework with 86 

detailed data to link consumption and associated impacts to the origins of cultivated 87 

crops or livestock (on-farm stages) beyond bilateral trade25,26. 88 

Here, we analyze the trend of consumption-based food GHG emissions of 153 89 

products (both animal- and plant-based food) in 181 countries or areas for the years 90 

2000, 2005, 2010, 2015, and 2019. Using the PTF approach by Kastner et al.25 and 91 

detailed trade data from FAOSTAT30, we reallocate production-based GHG emissions 92 

(CO2, CH4, and N2O)31 from agricultural land use and land use change (LULUC), 93 

agricultural production, and beyond-farm processes (excluding emissions from 94 

household and end-of-life)1,2,32 throughout the supply chains of 153 products to final 95 

consumers. All emissions are in CO2 equivalents (CO2-eq) using 100-year global 96 

warming potentials of CH4 and N2O used in the IPCC 5th Assessment Report (AR5). 97 

We quantify emissions embodied in food domestic supply and trade (i.e., imports and 98 

exports) between countries involving re-exports. Finally, structural decomposition 99 

analysis is applied to identify the contributions of five driving factors from production to 100 

consumption to variations in consumption-based emissions - namely emission intensity, 101 

trade structure, domestic supply ratio, per capita consumption, and population. Our 102 

study uses the most recent data to attribute emissions across the entire food supply 103 

chains at a global scale to final consumers with a consistent and detailed breakdown 104 

of processes and products. This allows us to indicate how to reduce food emissions 105 

from production to consumption through policy applications for the entire supply chain 106 

and final consumers. 107 

Results 108 

Emissions driven by global and national food consumption 109 

In 2019, food consumption in the five highest emitting countries, China (2.0 Gt CO2-110 

eq), India (1.3 Gt), Indonesia (1.1 Gt), Brazil (1.0 Gt) and the USA (1.0 Gt), were 111 

responsible for more than 40% of global food supply chain emissions (16.0 (95% 112 

confidence interval 11.4-20.7) Gt CO2-eq) which cover most of the emissions of the 113 

global agrifood system2,3 ((Insert Fig. 1, details of uncertainty ranges see Suppl. Table 114 

1). Annual global GHG emissions associated with food increased by 14% (i.e., 2 Gt 115 

CO2-eq) from 2000 to 2019, which largely owes to consumption rise in populous 116 

countries, with China contributing 46%, India 24%, and Pakistan 11% to emission 117 

growth.  118 

The substantial increase in consumption of animal-based products contributed to ~95% 119 

of the global emission rise, reaching almost half of the total food emissions3, with 7.9 120 

(5.9-10.1) Gt CO2-eq in 2019. We find that many countries have dominated animal-121 
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based emissions, represented by Australia (82%), the USA (66%), and South Asian 122 

countries including India (63%). The share of animal-based emissions in total 123 

emissions continued increasing in most developing countries/regions (e.g., Brazil, East 124 

Asia) but remained stable in affluent countries. Beef and dairy contributed 32% and 125 

46% of the increase in global animal-based emissions and reached 3.4 Gt CO2-eq and 126 

2.8 Gt CO2-eq respectively in 2019 (Suppl. Fig. 1, details of the uncertainty ranges see 127 

Suppl. Table 2). Top emitters of beef consumption included Brazil (437 Mt CO2-eq), the 128 

USA (409 Mt), and Argentina (118 Mt) in 2000 but later included Brazil (409 Mt), China 129 

(402 Mt), and the USA (365 Mt). Increased consumption of beef led to 28% of China's 130 

growth of animal-based emissions. Beef's contribution is similar to pork which 131 

dominates China's meat market. Emissions from beef consumption constitute 64% of 132 

animal-based emissions in Brazil, and over 50% occurred in the Rest of Latin America 133 

and the Caribbean (LAC), the USA, Japan, and Southeast Asia. Emissions from India's 134 

dairy consumption increased considerably by 1.2 times, reaching 78% of national 135 

animal-based emissions as well as over 1/5 of global dairy emissions in 2019. Dairy 136 

consumption in Russia, Oceania, and European countries also contributed to over half 137 

of national animal-based emissions.  138 

The consumption of grains and oil crops is responsible for 43% (3.4 Gt CO2-eq in 2019) 139 

and 23% (1.9 Gt CO2-eq) of global plant-based emissions, respectively (Suppl. Fig. 2, 140 

details of uncertainty ranges see Suppl. Table 2). Rice contributes to over half of the 141 

global grain-related emissions (1.7 Gt CO2-eq), with Indonesia (20%), China (18%), 142 

and India (10%) being the top three contributors. Soybean (0.6 Gt CO2-eq) and palm 143 

oil (0.9 Gt CO2-eq) have the largest shares in global emissions from oil crops with 30% 144 

and 46%, respectively. Brazil's demand for soy-related food products generated the 145 

largest percentage of the world's soybean-related emissions (45%) in 2000, but it was 146 

replaced by China (32%) after 20 years. Indonesia, the world's leading consumer of 147 

palm oil, has the largest emissions from palm oil (35% of the global total in 2019), 148 

followed by Southeast Asia (13%), Western Europe (10%), and China (9%).  149 

 150 

(Insert Fig. 1 here) 151 

 152 

There are apparent inequalities in per capita emissions induced by food consumption 153 

worldwide, but the disparities have been gradually declining ((Insert Fig. 2 here)). 154 

Consistent with the scope of production-based estimates1,2,33, global average per 155 

capita emissions from food supply chains have increased from 1.8 (95% CI 1.6-3.1) to 156 

2.1 (1.5-2.7) t CO2-eq during the study period (details of uncertainty ranges see Suppl. 157 

Table 5). Australia has the highest average animal-based emissions (4.9 t CO2-158 

eq/person in 2019) from consumption, followed by Brazil (3.0 t/person), Canada (2.5 159 

t/person), and the USA (2.1 t/person) (Suppl. Fig. 3, details of uncertainty ranges see 160 

Suppl. Table 6). Although developed countries emit more animal-based emissions per 161 

capita (1.7 t CO2-eq/person) than the global average, differences exist between these 162 

affluent countries. For example, people in Australia, Canada, and the USA have higher 163 
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per capita animal-based emissions than Western Europeans (1.4 t CO2-eq/person) 164 

mainly due to higher red meat consumption. Indonesia (3.9 t CO2-eq/person in 2019), 165 

Oceania (2.6 t/person), and Brazil (2.0 t/person) have the highest level of plant-based 166 

emissions per capita despite a downward trend (Suppl. Fig. 4). Canada (1.8 t CO2-167 

eq/person) and European countries (1.3 t CO2-eq/person) have larger average plant-168 

based emissions than other developed countries, mainly due to large demand for oil 169 

crops (e.g., palm oil) and stimulants (e.g., coffee). Although below the global average 170 

of animal- (1.0 t CO2-eq/person in 2019) and plant-based emissions (1.1 t/person), per 171 

capita GHG emissions of the top two most populous countries, China (1.4 t/person) 172 

and India (1.0 t/person), increased by 64% and 19%, respectively. 173 

 174 

(Insert Fig. 2 here) 175 

 176 

International trade has reshaped food emission patterns 177 

Fig. 3 and Suppl. Fig. 5 show the countries with the largest amounts of emissions 178 

embodied in food imports and exports, and their ratio of domestic emissions to 179 

consumption-based emissions in 2019. Emissions from most major exporters are 180 

dominated by two categories – oil crops and beef. Indonesia (307 Mt CO2-eq in 2019) 181 

and Brazil (196 Mt CO2-eq) are the world’s largest exporters of embodied emissions 182 

from oil crops, dominated by palm oil and soybean, respectively. Indonesia's export of 183 

oil crop emissions almost tripled during the study period, while Brazil's emissions 184 

increased by 18%. Australia (200 Mt CO2-eq in 2019) and Brazil (144 Mt CO2-eq) 185 

export the largest amounts of beef-related emissions, followed by India (44 Mt CO2-eq) 186 

and the USA (30 Mt CO2-eq). We found that major net exporters, excluding Malaysia 187 

which highly relies on meat imports (from India, Australia, etc.), create over 70% of 188 

their food emissions within their national boundaries. As the world’s largest net exporter, 189 

Brazil’s emission exports reached the highest level in the mid-term of the study period 190 

(720 Mt CO2-eq in 2010) and declined (to 581 Mt CO2-eq in 2019) in the later period. 191 

Overtaking US and Japan, China is by far the world's largest importer of embodied 192 

emissions (585 Mt CO2-eq in 2019). China’s imports of embodied emissions are 193 

dominated by oil crops (46%) and pork (16%), and both import volumes have 194 

quadrupled mainly due to an increase in China’s domestic demand for palm oil (+4.6 195 

times), soybean oil (+1.8 times), and soybean cake for pig feed (+4.5 times). Beef 196 

makes up the largest component of embodied emission imports from the USA (39% in 197 

2019), Japan (42%), Russia (51%), and South Korea (43%), while oil crops (mainly 198 

palm oil, soy) account for a large share in imports of embodied emissions by India 199 

(88%) and the Netherlands (51%). Over this period, ~30% of consumption-based food 200 

emissions in developed countries were generated overseas. This ratio in developed 201 

countries with only a weak degree of self-sufficiency, such as Japan, South Korea, and 202 

European countries, reached over 60%. In contrast, developing countries generated 203 

91% of food-related emissions within national boundaries in 2000, although this ratio 204 

declined to 85% in 2019. 205 
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 206 

(Insert Fig. 3 here)  207 

 208 

We observe that the patterns of emissions embodied in international trade of food have 209 

changed gradually, in which developing countries, especially China, are playing an 210 

increasingly important role (Fig. 4). Between 2000 and 2019, the share of emissions 211 

embodied in international trade to total consumption-based food emissions increased 212 

from 14% to 19%. In 2019, 16% of animal-based and 21% of plant-based food 213 

emissions were embodied in trade. Over this period, imports of embodied emissions 214 

of developed countries kept constant (~1.1 Gt CO2-eq), but its share in global trade 215 

declined from 56% to 39%. In 2000, the USA, Japan, and Western European countries, 216 

which are the world's richest countries, dominated international trade with their imports 217 

contributing to nearly half of the total food-related emissions embodied in global trade. 218 

By 2019 this share has dropped to 31%, while China has become the largest importer 219 

of embodied emissions (22%). For example, the largest embodied emission flows to 220 

China, i.e., imports from Brazil (319 Mt CO2-eq) and Indonesia (69 Mt CO2-eq), 221 

increased around fourfold, respectively, while flows from Brazil (-62%) and Indonesia 222 

(-33%) to Western Europe, which were the largest in the beginning, decreased. 223 

However, emission transfers within Europe have intensified, such as flows between 224 

Western European countries (+53%). Animal-based and plant-based emissions 225 

embodied in food exports to developing countries have increased by 84% and 1.5 226 

times. Increased food demand in developing countries creates a substantial increase 227 

in emission outsourcing to major food exporting countries, including Indonesia (+71%), 228 

Brazil (+65%), Australia (+34%), Canada (+42%), and the USA (+43%). 229 

 230 

(Insert Fig. 4 here) 231 

 232 

Drivers of emissions of the global food system 233 

We apply structural decomposition analysis (SDA) to investigate the contributions of 234 

different driving factors across the entire food supply chains to the variations of food-235 

consumption emissions globally and in different regions and countries ( Fig. 5 and 236 

Suppl. Table 7). Population growth was a significant contributor to emission rise in most 237 

countries/regions (except Japan and Russia), which increased global total emissions 238 

by 30% during the study period. The greatest emission increase driven by population 239 

was in South Asia (+71%), Sub-Saharan Africa (SSA) (+64%), Near East and North 240 

Africa (NENA) (+59%), and India (+42%). Above countries/regions have a high 241 

population growth rate (over 30%) (Suppl. Table 8), with SSA being the highest (71%). 242 

The rising per capita consumption level was another important driver of the global 243 

emission increase (+19%) over the period. Per capita consumption drove up food 244 

emissions in almost all developing countries, ranging from a modest +9% in LAC to 245 

+61% in China. Except for Indonesia and SSA (over 90% are plant-based) where 246 
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farmland expansion leading to extensive land-use change, over 50% of per capita 247 

consumption-related emission increases in developing countries are generated by 248 

growing demand for animal-based food, such as China (+60%), India (+87%), NENA 249 

(+77%) and LAC (nearly 100%) (Suppl. Table 7). However, declining demand for 250 

animal-based food led to the decline of embodied emissions in Australia (-38%), Japan 251 

(-7%), the USA (-6%), and Canada (-9%). These countries' per capita consumption of 252 

red meat, such as beef (-53%, -22%, -13%, and -7%, respectively), have declined over 253 

this period (Suppl. Fig. 6).  254 

Despite the upward trend of global food emissions by other drivers, emission intensity, 255 

measured by the amount of emissions per unit of weight of food product, was the 256 

dominant factor offsetting parts of emission growth, decreasing global emissions by 257 

37%, avoiding additional 5.2 Gt CO2-eq emission globally. Emission intensity includes 258 

three components, i.e., the intensity of LULUC, agricultural production, and beyond-259 

farm activities. The effect of substantially declining emission intensity from LULUC 260 

activities was responsible for over 5.4 Gt CO2-eq global emission decline (-39%) with 261 

other factors held constant and had a prominent effect on emissions in countries with 262 

extensive land use activities, such as Brazil (-90%), SSA (mainly South and Central 263 

African regions) (-57%) and Indonesia (-46%) (Suppl. Table 7). However, the driving 264 

effects of emission intensity related to agricultural production and beyond-farm 265 

processes slightly increased the world's emissions by 149 Mt CO2-eq (+1%) and 63 Mt 266 

CO2-eq (+0.5%), respectively. Our decomposition results show that a sharp drop in 267 

Brazil's emissions (by ~1 Gt CO2-eq) during the period from 2010-2015 is attributed to 268 

the contribution of decreasing LULUC emission intensity. The root cause of the 269 

decrease in LULUC emission intensity is shrinking LULUC activities (largely 270 

deforestation) and associated emissions. After a series of measures34, such as the 271 

Forest code35 and Amazon Soy Moratorium36, for legally limiting deforestation activities 272 

in Amazon, Brazil’s deforestation rate reached a historically low level in 2010-2015, 273 

with a reduction of 50-80% compared with 200437 but this trend has significantly 274 

changed under the following political leadership38. 275 

Over this period, changes in the trade structure increased global emissions by 8% (1.1 276 

Gt CO2-eq) through increasing exported products from regions and countries with 277 

emission-intensive production, while a decline in food consumption from domestic 278 

supply in importing regions and countries reduced global emissions by 5% (0.7 Gt CO2-279 

eq). In 2000-2015, food importers became increasingly dependent on exports of 280 

emission-intensive products from agricultural suppliers including Brazil and Indonesia. 281 

As a result, international food trade accelerated global emissions. However, 282 

international trade tends to reduce emissions of global food consumption after 2015 283 

with the improvement of production productivity in exporting countries. 284 

 285 

(Insert Fig. 5 here) 286 

 287 
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Discussion and conclusions 288 

Our study attributes production-based emissions2,3,32 to final consumers at a product 289 

level using physical trade flows which provides complementary information to PBE, 290 

thus allowing to investigate emissions and target mitigation efforts across the whole 291 

food supply chain. Results show considerable differences regarding emission patterns 292 

and effects of drivers between regions and countries, and we could classify them into 293 

four groups according to these differences: (1) countries with high per capita food 294 

emission levels and dominant livestock emissions (mainly from red meat) (North 295 

America, Australia, LAC); (2) developed countries which heavily rely on imports and 296 

outsource substantial amounts of food-related emissions (Japan and Europe); (3) 297 

rapidly developing countries with substantial emission increase driven by rapid 298 

population growth or improved living standards (China, South Asia, NENA); (4) 299 

countries with emission-intensive production, mainly with extensive land-use change 300 

activities (Brazil, Indonesia, and South and Central African regions). Discussions on 301 

comparison with other studies of global food emissions are provided in the 302 

Supplementary Discussion. 303 

Our results show considerable differences in food consumption and associated 304 

emissions across countries. Residents in the first group of countries have an animal-305 

dominated (especially beef) diet and larger associated emissions compared with other 306 

groups, while the third group is generating increasing consumption of beef and dairy 307 

due to the demand for improving living standards and diet diversity. As for the same 308 

protein content, red meat, especially beef, generates more emissions than poultry, fish, 309 

and plant-based protein products39. Thus, the growth of the global population and rising 310 

per capita demand for emission-intensive food are likely to boost emissions further. 311 

Diet shifts, including reducing excessive intake of red meat or improving shares of 312 

plant-based protein, will not only reduce emissions but avoid health risks such as 313 

obesity and cardiovascular disease40. However, widespread and lasting diet shifts (e.g., 314 

the EAT-Lancet diet41) are very difficult to achieve within a narrow timeframe. Therefore, 315 

incentives that encourage consumers to reduce red meat or buy products with higher 316 

environmental dividends through eco-labeling, adding taxes or subsidies reflecting 317 

some of the environmental costs in product prices, and education on actual food 318 

emissions could help to reduce food emissions7,39. 319 

International food trade policies incorporating environmental externalities which are 320 

less covered in production-side policies are urgently needed to avoid possible 321 

emission leakage and realize emission reduction across supply chains. Emissions 322 

outsourced through international food trade increased by ~1 Gt CO2-eq over the study 323 

period, accelerating global emission increase and unequal distribution. Countries in 324 

the second and third groups have considerably lower PBE2 than CBE by outsourcing 325 

their domestic food emissions through imports from agricultural suppliers such as 326 

Brazil, Indonesia, and Oceania. Emissions embodied in these food imports vary 327 

considerably depending on the originating countries, while the world’s main food 328 

suppliers are not regions with the highest efficiency. For example, the total emission 329 
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intensity of production per kilogram of beef in Western European countries (range from 330 

15-17 kg CO2-eq) is far less than in Brazil (44-46 kg CO2-eq) (Suppl. Fig. 7), but the 331 

latter is the largest beef exporter for European countries42. Countries with high 332 

efficiency for domestic production import emission-intensive products from regions 333 

with a large scale of LULUC activities or low agricultural efficiency will tend to increase 334 

emissions of the global food system. Although the magnitude of food emissions 335 

embodied in global trade is considerable, proposals for measures to avoid carbon 336 

leakage such as the EU's proposed Carbon Border Adjustment Mechanism43 have 337 

rarely been extended to include agricultural or food-related emissions. Key emission-338 

intensive products which dominate international food trade (e.g., beef from Australia, 339 

beef and soybean from Brazil, palm oil from Indonesia) could be targets of such 340 

taxation policies. Our data and model with information at the product level can help 341 

quantify the size of the necessary adjustment. 342 

A series of trade policies are accelerating emissions through increasing food imports 343 

from countries/regions with emission-intensive production. For instance, the EU’s 344 

Green Deal encourages less intensive agriculture in Europe and increasing imports of 345 

agricultural products from countries such as Brazil, the USA, Indonesia, and Malaysia44. 346 

Another example that leads to emissions increase through trade is the US-China trade 347 

war, which led China to import more soybean from Mercosur countries to reduce its 348 

dependence on the USA45. Above imports from major suppliers induced by demand 349 

led to a surge in deforestation and associated emissions. However, trade between 350 

diverse international partners provides opportunities to ameliorate emissions by 351 

allowing consumers to choose products from places with less emission-intensive 352 

production. Long-term commitments are needed to comprehensively assess 353 

emissions embodied in the entire supply chain for trade-offs between domestic 354 

production and imports from multiple origins, thereby minimizing global impacts.  355 

Furthermore, our study traces the origins and emission intensities of specific products 356 

which ultimately flow to final consumers. Results show that reducing PBE through 357 

agricultural intensification with technology improvement or lower levels of resource 358 

inputs (reflected in lower emission intensity), especially for agricultural producers from 359 

group four with abundant natural resources (e.g., forests, peatland)46 which generated 360 

vast amounts of emissions from widespread LULUC activities such as deforestation, 361 

is vital for mitigating climate effects across food supply chains. Changes in consumer 362 

behavior or trade policies (e.g., proposed legislation to eliminate deforestation by 363 

European countries47) in the second and third group of countries can trigger deeper 364 

impacts via food supply chains and eventually improve production-side efficiency for 365 

the fourth group48. Altered levels and composition of food consumption (with less 366 

emission-intensive products) could reduce land use change, relocate production to 367 

places with fewer emissions, or incentivize food suppliers to decrease emission 368 

intensity as well as avoid destructive environmental impacts (e.g., through the Amazon 369 

Soy Moratorium36,49). However, we find that the fourth group of countries themselves 370 

have substantial consumption-based emissions due to the domestic demand for 371 

emission-intensive products (e.g., oil crops). Raising awareness and legislation 372 

nationally to reduce emissions from food production are needed across these countries, 373 
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otherwise the domestic leakage may offset part of the emission reduction brought by 374 

supply chain measures49.  375 
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Methods 376 

Food consumption accounting 377 

We apply the physical trade flow (PTF) approach proposed by Kastner et al.25,50 to 378 

calculate the consumption of 153 food products (both primary and processed products) 379 

(Suppl. Table 9, 10) based on the physical trade between 181 countries or areas in five 380 

given years (2000/2005/2010/2015/2019) (Supplementary Methods 1.1). We use the 381 

criteria proposed by the United Nations51 to define developed and developing countries 382 

(Suppl. Table 3). Countries or areas are classified into 18 countries/regions for 383 

comparison according to geographical locations (Suppl. Fig. 8, Suppl. Table 4). The 384 

PTF approach by Kastner et al. allows tracing product flows through international 385 

supply chains as well as final consumers to which products ultimately flow based on 386 

domestic production and bilateral trade between countries. We use data from the 387 

detailed trade matrix of products on FAOSTAT30 to construct the matrix showing the 388 

physical flows between counties. All data are in units of mass (metric tonnes). Detailed 389 

data sources used for this study are shown in Supplementary Methods 1.2 and Suppl. 390 

Table 11. We mainly use the reported import data by assuming that imports are more 391 

reliable due to the strict custom records52. The PTF approach assumes that the 392 

domestic production and imported products are proportionally distributed between 393 

domestic supply and exports. Because of the limited shelf life of food and the relatively 394 

small share of agricultural commodities used for food stocks, this study does not 395 

include variations in stocks. 396 

The PTF approach by Kastner et al. is suitable for linking consumption and associated 397 

environmental impacts to crop cultivation or livestock raising (on-farm stages)25 at a 398 

product level23. To investigate the GHG emissions of processed products generated 399 

during on-farm processes, we transform the bilateral trade matrix of processed 400 

products using the ratio of sources for primary products, which is developed based on 401 

the proportion of domestic production and imports of primary products (Supplementary 402 

Methods 2.2). We use conversion factors for agricultural commodities from FAO53 to 403 

convert the processed products into primary products, and some missing factors are 404 

supplemented by using the factors from the GTAP Data Base with Nutritional 405 

Accounts54 (Supplementary Methods 2.2 and Suppl. Table 9). Therefore, we can obtain 406 

the new production and bilateral trade matrix of the processed products in the form of 407 

primary equivalents, which trace the sources of raw materials for processed product 408 

production and the destination where these processed products are finally consumed 409 

(Supplementary Methods 2.3). Here we simplify the calculation by ignoring the 410 

difference between inputs during the production of processed products and assuming 411 

all primary products used as raw materials are consumed in one place. Furthermore, 412 

agricultural products for non-food use are excluded by using data of non-food use 413 

commodities from the food balance sheet on FAOSTAT55 (Supplementary Methods 414 

2.5).  415 
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Quantification of consumption-based food emissions  416 

By combining the emission intensity (the amount of emissions per unit weight of food 417 

product) and the consumption matrix (see Suppl. Fig. 9 for the accounting framework), 418 

the consumption-based emissions of each product are calculated as follows25:  419 

𝐸 = ∑  ∙ (𝐼 − 𝐴 ) ∙ 𝑃 ∙ = ∑ 𝑓 𝐿 𝑃 𝑐                                 Equation 1 420 

where 𝐸  refers to the consumption-based GHG emission of product 𝑖. 𝑓 = 𝐺 𝑃⁄  421 

represents the vector of emission intensity of product 𝑖  from food supply chain 422 

process 𝑗, of which 𝐺  is total emissions generated from supply chain process 𝑗 of 423 

product 𝑖, 𝑃  is the production vector of product 𝑖. 𝑐  is the vector of share of 𝐷𝑀𝐶  424 

in 𝐷𝑀𝐼 , of which 𝐷𝑀𝐶  (Domestic Material Consumption) is the amount of product 𝑖 425 

consumed domestically, 𝐷𝑀𝐼   (Domestic Material Input) represents total inputs of 426 

product 𝑖 in one country; 𝐷𝑀𝐼  equals 𝐷𝑀𝐶  plus exports of product 𝑖 (or production 427 

plus imports). 𝐿 = (𝐼 − 𝐴 )  denotes the trade structure of product 𝑖, of which 𝐴  is 428 

the matrix of export shares in 𝐷𝑀𝐼  , and 𝐼  is the identity matrix with the same 429 

dimension as matrix 𝐴  (Supplementary Methods 2.1). 430 

To obtain the emission intensity along supply chain processes, we distribute the annual 431 

GHG emissions (including CO2, CH4, and N2O) from LULUC, agricultural, and beyond-432 

farm activities to plant- and animal-based products using the similar approach 433 

performed by Hong et al.10. CH4 and N2O are converted into CO2 equivalents using the 434 

100-year global warming potential values of 28 and 265 from IPCC AR556. National 435 

emission data are obtained from the FAOSTAT Climate Change dataset31 (Suppl. Table 436 

11), which provides data of country- and process-specific emissions from the food 437 

system based on activity data and IPCC Tier 1 Methodology. Results of consumption-438 

based emissions of CO2, CH4, and N2O are shown in Suppl. Fig. 10 and Suppl. Data 439 

2. Detailed GHG categories and emission processes are shown in Suppl. Table 12.   440 

Allocation of LULUC emissions to food products 441 

A top-down approach is applied to allocate production-based LULUC emissions due to 442 

the expansion of cropland or pasture2,32 to primary products. LULUC emissions include: 443 

(1) CO2, CH4, and N2O from burning (of forests, savanna, humid tropical forests, and 444 

organic soils), (2) CO2 from net forest conversion, and (3) CO2 and N2O from the 445 

drainage of organic soils. We assume that LULUC emissions are directly related to 446 

land use areas for the production of primary products10,57,58 and distribute the annual 447 

LULUC emissions to products according to harvested cropland areas or pasture areas 448 

for feeding livestock in a given year. LULUC emission intensities are calculated using 449 

the production and LULUC emissions of primary products (Supplementary Methods 450 

3.1). All data of emission amounts31, land use areas59, and production quantity60 are 451 

obtained from FAOSTAT2,3,32. Legacy emissions cumulated in land due to LULUC 452 

activities over time or absorbed emissions by land due to agriculture abandonment are 453 

not incorporated. Based on the LULUC emission intensities of each product, we assign 454 

LULUC emissions to final consumers using the PTF approach as Equation 1. Results 455 

of consumption-based LULUC emissions in 181 countries are shown in Suppl. Fig. 11 456 



13 
 

and Suppl. Data 3. 457 

Allocation of agricultural emissions to food products 458 

Emissions from agricultural production for crops are: (1) N2O from crop residues, (2) 459 

CH4 and N2O from burning crop residues, (3) N2O from synthetic fertilizer, (4) N2O from 460 

the use of synthetic fertilizer, (5) N2O from manure applied to soils, (6) CH4 from rice 461 

cultivation and (7) CO2, CH4 and N2O from energy use for crop cultivation2,3,32. We 462 

allocate production-based agricultural emissions31 to crops and calculate agricultural 463 

emission intensities based on the production of crops from FAOSTAT60 464 

(Supplementary Methods 3.2). Emissions from crop residues61 are allocated by 465 

Nitrogen contents and production of specific crops, while emissions from burning 466 

residues62 are distributed by the amounts of burned biomass of crops. N2O from 467 

synthetic fertilizers is allocated to primary crops according to their fertilizer input 468 

rate63,64 and harvested areas from FAOSTAT60. Emissions from manure applied to soils 469 

and rice cultivation31 are distributed by harvested areas of crops and rice production 470 

quantity60, respectively. In addition, we use the impact coefficient of food products 471 

(emission per unit weight of the product)39,65 (Suppl. Table 13) to assign emissions of 472 

energy use to products.  473 

Emissions from the agricultural production of livestock (meat, dairy, and eggs) are 474 

generated in five main processes: enteric fermentation, manure management, feed 475 

production, manure left on pasture, and energy consumption. Country- and animal-476 

specific emissions from enteric fermentation (CH4) of ruminant animals66 and manure 477 

management (CH4 and N2O)67 based on Tier 1 level are obtained from FAOSTAT2,3,32, 478 

and then allocated to livestock products using FAOSTAT statistics of production10. 479 

FAOSTAT provides data on emissions generated in manure left on pasture (N2O)68 as 480 

well. Emissions of manure left on pasture are allocated into livestock products 481 

according to the pasture areas needed for feeding different animals, and then the 482 

emission intensity is calculated based on production amounts of livestock products. 483 

Emissions from feed crops are allocated to the livestock products that consume the 484 

feed during production. Emissions from feed crops, including barley maize, wheat, 485 

rapeseed cake, and soybean cake, for livestock production, are allocated to livestock 486 

according to the feed conversion ratios (FCRs) specific to each product at the national 487 

level69-72. FCRs are calculated based on the national feed use quantities55 and weight 488 

factors of each livestock product69,71,72 (Supplementary Methods 2.4). Then we 489 

calculate feed emissions per unit weight of animal-based products using the same 490 

approaches as crops. Moreover, we use data on production and emissions generated 491 

from the energy use of freshwater and marine products73 to calculate the emission 492 

intensity from fishery production. 493 

Based on the emission intensity of crops and livestock during agricultural production, 494 

we assign agricultural emissions to final consumers of 153 food products using the 495 

PTF approach as Equation 1. Results of consumption-based agricultural emissions in 496 

181 countries are shown in Suppl. Fig. 11 and Suppl. Data 3.  497 
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Allocation of beyond-farm emissions to food products 498 

Bottom-up aggregation and top-down allocation approaches are combined to distribute 499 

beyond-farm emissions to products. Emissions from beyond-farm processes include: 500 

CO2, CH4, and N2O from (1) processing, (2) packaging, (3) retail, (4) transport; (5) CO2 501 

and N2O from fertilizer manufacturing; (6) CH4 and N2O from industrial wastewater 502 

treatment related to food. The statistical data of total national emissions in the above 503 

six processes are obtained from FAOSTAT2,3,32. National emissions from food 504 

processing, packaging, retail, and industrial wastewater treatment31 are downscaled to 505 

the product level by using the impact coefficient of 153 products39,65 (Supplementary 506 

Methods 3.3). Since the food-transport emissions are closely related to the transport 507 

distance and freight volume, we use the monetary values between transport and food-508 

related sectors from the GTAP database74 to distinguish emissions from domestic and 509 

international transport. Therefore, emission intensities of specific products at different 510 

distances (within or between countries) can be calculated using the impact coefficient 511 

for food transport. In addition, emissions of fertilizer manufacturing are allocated 512 

according to the same approach of distributing synthetic fertilizer-related emissions in 513 

agricultural production. Beyond-farm emissions are attributed to final consumers using 514 

the PTF approach shown in Equation 1. Results of consumption-based beyond-farm 515 

emissions in 181 countries are shown in Suppl. Fig. 11 and Suppl. Data 3. 516 

Identification of driving factors 517 

To understand the driving forces behind emissions of food consumption, we employ 518 

the Structural Decomposition Analysis (SDA), the widely adopted method in energy 519 

and emission studies75, to decompose the global and regional emissions of 153 520 

products as: 521 

𝐸 = ∑ ∑ ∙ (𝐼 − 𝐴 ) ∙ 𝑃 ∙  = ∑ ∑ 𝑓 ∙ 𝐿 ∙ ∙ ∙ 𝑝 = ∑ ∑ 𝑓 𝐿 𝑅 𝐶 𝑝                      522 

Equation 2                                523 

where 𝐸 refers to the consumption-related emissions of 153 products. The equation 524 

includes five factors: emission intensity of product 𝑖 in process 𝑗 (𝑓 = 𝐺 𝑃⁄ ); trade 525 

structure of product 𝑖 (𝐿 ) defined in Equation 1; domestic supply ratio of product 𝑖 526 

(𝑅 = 𝑃 𝐷𝑀𝐼⁄ ), indicating the ratio of locally produced food to total food inputs; per 527 

capita consumption of product 𝑖  ( 𝐶 = 𝐷𝑀𝐶 𝑝⁄  ); population ( 𝑝 ). The difference 528 

between two time periods can be expressed as: 529 

∆𝐸 = 𝐸 − 𝐸 = ∑ ∑ 𝑓 𝐿 𝑅 𝐶 𝑝 − ∑ ∑ 𝑓 𝐿 𝑅 𝐶 𝑝                      Equation 3 530 

Thus the changes in consumption-based emissions during 2000-2005, 2005-2010, 531 

2010-2015, and 2015-2019 can be decomposed by five factors as:  532 

∆𝐸 = ∑ ∑ ∆𝑓 𝐿 𝑅 𝐶 𝑝 + ∑ ∑ 𝑓 ∆𝐿 𝑅 𝐶 𝑝 + ∑ ∑ 𝑓 𝐿 ∆𝑅 𝐶 𝑝 + ∑ ∑ 𝑓 𝐿 𝑅 ∆𝐶 𝑝 +533 

∑ ∑ 𝑓 𝐿 𝑅 𝐶 ∆𝑝                                                       Equation 4 534 

where ∆ represents changes in a factor from base year (0) to target year (t). Each of 535 

five terms in Equation 4 denotes the contributions to emission changes which are 536 
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triggered by one factor if other variables keep constant. The five factors in the SDA 537 

model can result in 5!= 120 first-orde decompositions, and here we use the solution 538 

named the average of two polar decompositions75,76 to approximate the average of all 539 

possible decompositions. The Euqation 4 are finally converted as: 540 

∆𝐸 = ∑ ∑ 0.5 ∆𝑓 𝐿 𝑅 𝐶 𝑝 + ∆𝑓 𝐿 𝑅 𝐶 𝑝 + ∑ ∑ 0.5 𝑓 ∆𝐿 𝑅 𝐶 𝑝 + 𝑓 ∆𝐿 𝑅 𝐶 𝑝 +541 

∑ ∑ 0.5 𝑓 𝐿 ∆𝑅 𝐶 𝑝 + 𝑓 𝐿 ∆𝑅 𝐶 𝑝 + ∑ ∑ 0.5 𝑓 𝐿 𝑅 ∆𝐶 𝑝 + 𝑓 𝐿 𝑅 ∆𝐶 𝑝 +542 

∑ ∑ 0.5 𝑓 𝐿 𝑅 𝐶 ∆𝑝 + 𝑓 𝐿 𝑅 𝐶 ∆𝑝                                       Equation 5    543 

where ∆𝐸 represents changes in consumption-based emissions along supply chains 544 

of 153 products; ∆𝑓  captures the change of emission intensity of product 𝑖 in supply 545 

chain process 𝑗; ∆𝐿  measures the change in international trade structure of product 546 

𝑖; ∆𝑅  denotes the change in the ratio of locally produced product 𝑖 to total inputs of 547 

product 𝑖 ; ∆𝐶   identifies changes in per capita consumption of product 𝑖 ; ∆𝑝 548 

measures changes in population.   549 

Uncertainty assessment  550 

Our results of global consumption-based emissions during different supply chain 551 

processes are generally consistent with global production-based food emission 552 

inventories from FAOSTAT2,3,32,77. Similar to the uncertainty analysis performed by 553 

Tubiello et al.2,33,78 and Hong et al.10, we conduct a Monte Carlo approach (running 554 

10,000 simulations) to assess the uncertainty range of consumption-based emissions 555 

by simulating the varying activity data, emission factors and parameters for each 556 

process according to the default uncertainty ranges derived from the standard IPCC 557 

guidelines79 and individual uncertainty ranges from previous studies (see Suppl. Table 558 

14). Uncertainty ranges of 95% confidence intervals of consumption-based food GHG 559 

emissions are adopted. Detailed uncertainty ranges of food emissions are provided in 560 

Suppl. Table 1, 2, 5, 6 and Suppl. Data 8, 9. We only consider the uncertainties 561 

generated in the production processes and do not include the uncertainties caused by 562 

trade because we cannot obtain the uncertainty ranges of original statistical data for 563 

reported imports of agricultural products11,19,28,80. We recognize that the uncertainties 564 

of trade data in this study have an unknown magnitude.  565 

Limitations  566 

Our study has the following limitations and future work will focus on these aspects to 567 

provide a more accurate analysis of consumption-based food emissions.  568 

First, the PFT approach by Kastner et al.25 allows us to quantify re-exports to other 569 

countries based on conversion matrices but ignores the connections with other sectors 570 

within the economy compared to the MRIO-based approach. We do not choose 571 

physical MRIO because the FABIO27 is outdated, and Exiobobase81,82 does not have 572 

as many countries and product detail as our database. The PTF approach we use is 573 

thus very suitable to capture relatively simple food supply chains but may ignore more 574 

complex processing and repacking steps in global supply chains and thus introduce 575 

some system boundary cut-off error23. A more feasible design in the next step requires 576 

integration with models such as MRIO to investigate the entire supply chain 577 

considering the heterogeneity of production inputs and connections between food-578 
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related and other sectors. 579 

Second, we do not consider heterogeneity within countries. Countries present sub-580 

national differences in land-use, agricultural and other activities, and related emissions. 581 

However, data in terms of production, trade, and emissions along the entire food supply 582 

chain at the sub-national level is available for a few products and is limited to a range 583 

of potential errors with inconsistent data sources. Therefore, we only focus on the 584 

emissions from consumption and trade at a country level.  585 

Third, our study focuses on upstream emissions along food supply chains before 586 

household and excludes emissions from household consumption and end-of-life (i.e., 587 

waste management)1,2,32. Above emissions beyond supply chains are difficult to 588 

allocate to specific products given the limited data availability and are not part of the 589 

international trade flows. Nonetheless, given the large magnitude of these emissions, 590 

especially methane emissions from the decay of solid food waste in landfills and open 591 

dumps2, future studies which explore the mitigation of food emissions from consumers 592 

will incorporate such emissions as an extension of findings. 593 

Finally, the data available for this study have some limitations. Data of production for 594 

some processed products have the problem of item aggregation in 2000 and 2005, 595 

and we separate these products based on their shares in 2010. Meanwhile, because 596 

of the lack of a standard distribution approach as well as harmonized food emission 597 

coefficients at a product level, emissions from different processes are attributed to 598 

specific products according to different approaches applied by previous studies which 599 

may lead to biased results. Moreover, this study does not account for the legacy 600 

emissions or carbon removals from land which are difficult to allocate to specific years 601 

or products. With the improvement of data availability (e.g., the use of dynamic land-602 

use models), a more consistent and complete accounting framework of the food 603 

system in the future will cover these emissions with breakdown into detailed products 604 

at global, national, and sub-national levels. 605 

Data availability 606 

The LULUC, agricultural and beyond-farm emissions data are curated by the FAO and 607 

freely available from FAOSTAT77. Population data used in this study are obtained from 608 

World Population Prospects of the United Nations83. Data of monetary values for 609 

transport and food-related sectors are obtained from GTAP database74. 610 

Supplementary methods, discussion, figures, tables and datasets used in the analysis 611 

can be found in the Supplementary Information files. More detailed results are 612 

available from the corresponding author on reasonable request. 613 

Code availability  614 

Code developed for data processing in MATLAB is available in the Supplementary 615 

Information files. 616 
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Figure legends/captions  635 

Fig. 6: GHG emissions throughout global supply chains from consumption of food 636 

products by country in 2000 and 2019. The background map shows the level of consumption-637 

based emissions at the country scale. The pie chart shows the fraction of consumption-based 638 

emissions of animal-based and plant-based food products, and the size represents the total 639 

emissions for 18 countries/regions. AUS: Australia; BRA: Brazil; CAN: Canada; CHN: China; 640 

ROEA: Rest of East Asia; EE: East Europe; IND: India; IDN: Indonesia; JPN: Japanese; ROLAC: 641 

Rest of Latin America and the Caribbean; NENA: Near East and North Africa; ROO: Rest of 642 

Oceania; RUS: Russia; ROSA: Rest of South Asia; ROSEA: Rest of Southeast Asia; SSA: Sub-643 

Saharan Africa; USA: United States of America; WE: Western Europe. Details for the division 644 

and scope of 18 countries/regions are shown in Suppl. Table 3, 4. Base map layer: "World 645 

Countries". Downloaded from http://tapiquen-sig.jimdo.com. Carlos Efraín Porto Tapiquén. 646 

Orogénesis Soluciones Geográficas. Porlamar, Venezuela 2015. Based on shapes from 647 

Environmental Systems Research Institute. Free distribution. 648 

 649 

Fig. 7: Per capita GHG emissions of food consumption by country in 2000 and 2019. The 650 

background map shows the level of per capita consumption-based emissions at the country 651 

scale. The pie chart shows the fraction of average consumption-based emissions of animal-652 

based and plant-based food products per person, and the size represents per capita emissions 653 

of 18 countries/regions. Abbreviations of 18 countries/regions and the source of base map are 654 

shown in (Insert Fig. 1 655 

 656 

Fig. 8: GHG emissions embodied in domestic supply and international trade of food of 657 

major countries in 2000, 2010, and 2019. (a) Ratio of domestic GHG emissions to total 658 

embodied emissions of food consumption by eighteen major countries. Domestic GHG 659 

emissions refer to the emissions embodied in domestic food supply within a national territory 660 

including emissions from all food products, animal-based, and plant-based food products (from 661 

left to right). (b) GHG emissions embodied in food imports and exports of eighteen major 662 

countries. The circles represent net imports or exports of emissions from food consumption.  663 

 664 

Fig. 9: Patterns of emission flows embodied in international trade of all types of (a), 665 

animal-based (b), and plant-based (c) food products among and within 18 666 

countries/regions in 2000 and 2019 (unit: Mt CO2-eq). Width of the lines represent the 667 

volumes of emissions embodied in trade from exporter to importer, and the color is the same 668 

as the exporter. Flows in the above Figure cover more than 90% of total emissions embodied 669 

in international bilateral trade annually as small flows are not shown here. Number in brackets 670 

represents the ratio of emissions embodied in trade to total consumption-based emissions. 671 

Abbreviations of 18 countries/regions are shown in (Insert Fig. 1 672 

 673 

Fig. 10: Contributions of five driving factors to changes in GHG emissions from food 674 

consumption of the global (a) and 18 countries/regions (b-s) between 2000 and 2019. The 675 

grey bars indicate total emissions. The colored bars represent the absolute contribution 676 

(positive or negative) of different driving factors to the changes in global and national/regional 677 
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emissions in every period.  678 
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