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Abstract

Non-orthogonal bases of projectors on coherent states are introduced to
expand hermitean operators acting on the Hilbert space of a spin s. It is shown
that the expectation values of a hermitean operator Ain a family of (2s + 1)2
spin-coherent states determine the operator unambiguously. In other words,
knowing the Q-symbol of A at (25 4+ 1)? points on the unit sphere is already
sufficient in order to recover the operator. This provides a straightforward
method to reconstruct the mixed state of a spin since its density matrix is
explicitly parametrized in terms of expectation values. Furthermore, a discrete
P-symbol emerges naturally which is related to a basis dual to the original one.

1 Introduction

Phase-space formulations of quantum systems have a long history which starts with
Wigner’s introduction of a quasi-probability distribution to represent the state of a
quantum particle [1]. Moyal has shown that not only states but also operators can be
mapped onto functions on the phase space, or symbols [2]. In such a representation
a ‘twisted product’ of symbols keeps track of a possible non-commutativity of the
underlying operators. The inverse procedure, mapping phase-space functions into
operators, can be considered as quantization according to Weyl [3].

A unifying approach to symbols of operators is formulated conveniently in terms
of coherent states |a) for a particle defined as

ale) = ala), a€eC; (1)

here a and its adjoint a¥, satisfying the commutation relation [a,a*] = 1, are anni-
hilation and creation operators, respectively, of a harmonic oscillator. Three symbols
are widely used nowadays [4]. First, one can characterize a hermitean operator A by
its P-symbol P4(«a), given by the expansion coefficients of A when expressing it as a

linear combination of projectors on coherent states (1):

A= /Cd/,L(oz) Pi(a)]a)(al, du(a) = %dal day, a=a;+1ia;. (2)
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Explicitly, one can write
=Y AP oaman it A=Y AL am(at)". (3)

Thus, to obtain the P-symbol of ;l, write down the anti-normal expansion of the op-
erator in terms of annihilation and creation operators and replace them subsequently
by a and @, respectively. Second, the expectation values of A in the coherent states
|ar) define its Q-symbol:

Qala) = (a| Ala) = ZA a” (4)

which is closely related to the normal-ordered expansion of the operator. Finally, the
Weyl symbol of A—providing the Wigner function of a state [¢) if A = |¢))(¢p|—can
be defined in a similar way through symmetrical ordering [4].

2 Continuous redundant symbols for spin s

Consider a spin s with Hilbert space H,, which carries a (2s + 1)-dimensional irre-
ducible representation of the group SU(2). The ensemble of observables Afor a spin
s is denoted by A;, corresponding to the hermitean (2s+1) X (2s+ 1) matrices acting
on Hs. Phase-space symbols of operators are defined in analogy to those for a particle
once spin-coherent states have been introduced.

Denote the components of the spin operator by S = hs, satisfying the commu-
tation relations [$,,8,] = i8,,... The standard basis of the space H; is given by
the eigenvectors of the z component 8, = n, - § of the spin, which are denoted by
lp,n.), —s < pu < s. The ladder operators s1 = 8,435, act as usual® in this basis:

Selpn) =/s(s+1) —p(u £ 1) [p £ 1,n.). (5)

The eigenstates of the operator n - § satisfy

n'é|/“L7n>:/“L|/“L7n>7 —s<p< s, (6)

where the unit vector n = (sinv cos ¢, sindsing,cosd), 0 < ¥ < 7,0 < ¢ < 2m,
defines a direction in space. The collection of states with mazimal weight, u = s,
exhausts the coherent states [5],

n) = |s,n) = exp[—idm(p)-8]|s,n.), (7)

with a unit vector m(p) = (—sin g, cos¢,0) in the zy plane. In other words, each
coherent state |n) is obtained from rotating the state |s,n.) about an axis m(p) by
some angle 9.

IThe phases of the states are fixed by the transformation under the anti-unitary time reversal
operator T: Ty, n,)y = (—1)°7#| — g, ;).



For the present purpose, both the Q-symbol and the P-symbol of an operator on
H,s will be needed; the reader is referred to [6] for an equivalent of the Weyl symbol,
and to [4, 7] for further details. The P-symbol of an operator A is introduced in
analogy to (2) by

A=B2D T e, m)n)n], (3
AT s2
where the integration is over the surface of the unit sphere, S%. An explicit expression
for the symbol P4(n) in terms of the matrix elements (u, n, |A|/,Ll, n.) can be found in
[5]. As before, the Q-symbol equals the expectation values of A in the coherent states
(7),
Qa(n)= Tr [An)(n[] = (n| Aln), (9)

giving thus rise to a representation of A as a function on S?, the phase space of a
classical spin. The explicit inversion of (9) amounts to a straightforward method to
reconstruct experimentally a quantum state: if one measures the expectation values
(9) of the density matrix p of a spin in all coherent states, the data allow one to
determine p unambiguously [8, 9].

However, the data (9) are highly redundant. As any hermitean operator Ae A,
acting on the space Hs, the (unnormalized) density matrix p of a spin s depends on
N, = (25 4 1)? real parameters. The symbol @ 4(n) though takes values on all points
of the unit sphere. Therefore, one is urged to ask whether there are subsets of the
expectation values (9) which would permit reconstruction of an operator A in a more
economic way. This question has been answered in the positive: the determination of
Ais possible on the basis of exactly N, expectation values, associated with specifically
selected directions n,, 1 < n < N; [10]. In other words, an operator A s fixed by the
values of its Q-symbol at N, appropriately chosen points; the values of the symbol “in
between” can be calculated subsequently. For technical reasons, the spatial directions
n, given in [10] were restricted to a certain class of regular configurations. From now
on, a set of N points—as well as the associated familily of N, unit vectors n,—will
be referred to as a ‘constellation’ N

3 Discrete non-redundant symbols for spin s

The purpose of the present paper is to show that the restriction to the specific con-
stellations mentioned above is not necessary: given a generic constellation M, the N;
values of the Q-symbol (9) contain all the information about the operator A. Let us
put it differently: given any constellation M of vectors m,,, then either the numbers
@ 4(m,) determine ;l, or there is an infinitesimally close constellation M’ such that
the numbers Q4(m) do the job. Two constellations M and M’ are close if, for
example, the number

Ns
d(MlvM) = Z |1’1’1n - 1’1’1;| ’ (10)
n=1

is small. To visualise this statement, consider the real vector space IR: any three unit
vectors form a basis provided they are not coplanar or collinear. Among all possibilites,



the exceptions have measure zero. At the same time, it is obvious that arbitrarily small
variations of the vectors are sufficient to render them linearly independent.

In the proof given below, the determinant of the Gram matrix of Ng projection
operators on coherent states

is shown to be different from zero for any desired constellation M (or an infinitesimally
close one, M’). Equivalently, one can say that the operators @),, constitute a quorum
for a spin s: they provide a basis for any hermitean operators A:

JEREACN FON
S AQ,, A= Tr [AQ"]; (12)

n=1

A=
25 +1

the expansion coefficients A™ involve operators Q" dual to the elements of the original
basis: Tr [Q,Q™] = & [11].

The N? elements of the Gram matrix G, [12] associated with the constellation
M are given by the scalar product of the projectors on coherent states:

1 - ot 2s
Hn—m) . 1<nn <N,. (13)
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It will be essential for the following that the scalar product of two coherent states is
a polynomial in the components of the associated unit vectors m,, and m,,;.

Let us now turn to the proof that det G # 0 for arbitrary M. This can be shown
recursively by means of the matrices G(k),k = 1,..., Ny, which are (k x k) submatrices
of G located in its upper left corner with elements:

Gnn/(k) = Gnn/ 5 1 S n,n’ S k. (14)

Gt = Tr Q0] = I mf? = (

In particular, one has G(1) = 1, and G(N;) = G. Suppose that the first (& — 1)
projection operators @n,n = 1,...,k — 1, are linearly independent for a specific
constellation Mj_; of (k — 1) vectors. It follows that the determinant of G(k — 1) is
different from zero. Since all operators on H, do have an expansion of the form (8),
the ensemble of projectors {|n)(n|,n € S?} spans the entire space A,. Consequently,
there is at least one projector @k characterized by a vector m{, say, which cannot
be written as a linear combination of the operators @1, .. .,@k_l. Therefore, the
determinant of G(k) is different from zero at least for this vector m). (As it must
be, this argument fails if k exceeds N;.) Being a polynomial function of the k-th unit
vector, the determinant now will be shown to be different from zero for (almost) any
other choice of this vector. It will be possible to select, in particular, the projector
associated with the k-th vector, my, of the constellation M—or with a vector m/,
infinitesimally close to it: |mj — mg| < £/N;.

The determinant of the matrix G(k), if conceived as a function of the k-th vector,
is infinitely often differentiable with respect to its components, according to (13).
Upon keeping the vectors m; to my;_; fixed, it may be regarded as a fictitious time-
independent Hamiltonian function of a single classical spin:

det G(nk) = Hk(nk) (7£ 01if n; = 1’1’12) . (15)

4



This Hamiltonian describes an integrable system since there is just one degree of free-
dom accompanied by one constant of the motion, the Hamiltonian itself citearnold84.
The two-dimensional phase space S? is foliated entirely by one-dimensional tori of
constant energy. In addition, a finite number of (elliptic or hyperbolic) fixed points
and one-dimensional separatrices will occur This can be seen, for example, by looking
at the flow on the unit sphere generated by Hy(ny):

dn OH

d—tk =ng; X a—n:, (16)
where d/0ny, is the gradient with respect to nj [14]. The right-hand-side is a (non-
zero) polynomial in the components of ng, implying that the integral curves of the
Hamiltonian are fixed points, separatrices, and closed orbits. This means that Hy(ny)
can take the value zero at a finite number of (open or closed) curves or points at most.
Consequently, the determinant of G(k) is different from zero for almost all choices of
ny. Therefore, one can rotate smoothly the vector m{ into any other vector, including
my, the k-th vector of the desired constellation M, thereby passing possibly through
points with det G(k) = 0. If, accidentally, mj corresponds to a point with vanishing
energy (this happens with probability zero only), one can nevertheless approach it
arbitrarily close by a vector mj, with |m) —my| < ¢/N; since levels of constant energy
have a co-dimension at most equal to one.

Working one’s way from k& = 2 to N;, one ends up with a constellation M’ which
is infinitesimally close to M since 3, |[m!, — m,| < € can be made arbitrarily small;
with probability one, however, the constellation M is obtained exactly. Consequently,
almost all constellations M of N, projection operators @n give rise to a basis in the
space of linear operators on H,. In turn, the values of the discrete Q-symbol related
to a constellation M are indeed sufficient to determine the operator A.

4 Discussion and Outlook

It has been shown that (almost) any distribution of N points on the sphere $? gives
rise to a non-orthogonal basis of coherent-state projectors @n in the linear space A,
of operators for a spin s. The collection of expectation values of an operator A in
these states will be called its discrete phase-space symbol, containing no redundant
information. The expansion (12) is the discrete analogue of (8) so that the coefficients
A" correspond to the discrete P-symbol of A which also represents it in a non-
redundant way. A second expansion in the ba81s Q" dual to the basis Qn requires
the discrete QQ-symbol as coefficients:

> Qam,)Q",  Qa(n,) = Tr [A@n] : (17)

Therefore, discrete Q- and P-symbols can be considered as dual to each other, provid-
ing co- and contravariant coordinates of the operator A. Contrary to the redundant
P-symbol (8), the discrete one is unique [15].



For a particle system, it is natural to ask a closely related question: which subsets
of coherent-state projectors form a basis in the space of operatorsacting on the particle
Hilbert-space? Minimal bases for the Hilbert space, i.e. pure particle states, have
been identified by von Neumann [4]. A matrix representation of A with respect to an
orthogonal basis of the Hilbert space depends on a countable number of parameters
while the Q-symbol ()4 is a smooth function in the complex plane. Therefore, one
might conjecture that the values ()4 on some countable subset of the complex plane
should suffice to determine A. The expansion coefficients of A in such a non-redundant
basis would then correspond to its non-redundant P-symbol.
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