
Big data techniques for real-time
processing of massive data streams

Técnicas big data para el procesamiento de flujos de
datos masivos en tiempo real

Author: Laura Melgar García

Advisors: Dra. Alicia Troncoso Lora and Dra. Cristina Rubio Escudero

Center of Postgraduate Studies
Pablo de Olavide University

Doctoral Thesis by compendium of publications
International Doctorate Mention
Seville, January 2023

A mi familia y amigos.

Doctoral Thesis supported by the predoctoral scholarship program FPU (Formación
de Profesorado Universitario) granted by the Spanish Ministry of Universities
(FPU19/03488), by the Fulbright predoctoral research scholarship at the New York
University, by the Junta de Andalucía and by the research group PAIDI TIC-254: Data
Science & Big Data Lab, of the Pablo de Olavide University.

Declaration
I hereby declare that except where specific reference is made to the work of others, the
contents of this dissertation are original and have not been submitted in whole or in part
for consideration for any other degree or qualification in this, or any other university. This
dissertation is my own work and contains nothing which is the outcome of work done in
collaboration with others, except as specified in the text.

Laura Melgar García

Seville, January 2023

i

Agradecimientos

Me hace especial ilusión que las primeras líneas de esta Tesis Doctoral vayan dirigidas
a mis dos directoras, Alicia Troncoso y Cristina Rubio. Dos directoras que han sido la
conjunción perfecta para todas las etapas por las que he pasado en estos cuatro años.
Alicia, gracias por tu total disponibilidad y tus consejos siempre acertados. Cristina,
gracias por abrirme las puertas de la investigación y enseñarme esta profesión siempre
desde el lado más real y sincero.

A mis directoras de tesis me gustaría agradecerles la oportunidad que me han dado
para poder descubrir por mí misma que esta es la profesión a la que me gustaría dedicarme
al finalizar esta etapa. Ellas son mis referentes. Creo que esa Laura de 10 años a la que
le encantaba escribir sus historias y que estudiaba con una pizarra como si estuviese
dando clases estaría muy orgullosa de la actual Laura. Tener la posibilidad de escribir
mis propias "historias" científicas y dar clases en la Universidad es para mí trabajar en
lo que me gusta y creo que no hay mayor privilegio profesional que esto.

También quiero aprovechar para agradecer a mis amigos y familiares la compañía y
apoyo durante toda la etapa universitaria, ya que no lo hice en el TFG ni en el TFM.
Puede ser que dentro de mí supiese que me quedaba una última oportunidad para hacerlo.

A mis amigos de toda la vida, ¡qué suerte poder decir que conservo mis amistades
de cuando era pequeña, algunas desde los 4 años! Esther, María Amores, María Gonsi,
Cris, Rocío, Pauli, Salva, Mario, Monti, Si echo la vista atrás siempre os veo. Soy
muy afortunada de poder vivir tantas etapas con vosotros al lado.

A mis amigos de Ingeniería de la Salud por hacer que recuerde esa etapa de una
forma muy especial y divertida. Reme, Cati, Olga, Marta, Carmen, Eva, Antonio, ..., la
de buenos momentos que hemos pasado y, sobre todo, seguimos y seguiremos pasando.

A mis "chanaos" del Erasmus en Milán, Lau, Patxi, Vicent, Marta, Cris y un
larguísimo etcétera, gracias por darme el año más divertido de mi vida. El “Once Erasmus,
always Erasmus” se cumple y aunque ya no salgamos de martes a sábado, seguimos siendo
familia. Gracias a todos los "ESNers" de Milán porque hicisteis que me llevase un regalo

ii | Agradecimientos

para toda la vida: mi Andre, mi "ESNer preferito".

A mis amigos de París, ¡qué 14 meses más importantes pasé allí! Gracias a Pati por
estar siempre conmigo, también a María José, a Paco, a los compañeros del Máster que
me ayudaron inmensamente, a los de Aptus Health, sobre todo, a Thomas y a Anabelle
gracias por acompañarme y entenderme siempre, y a mis amigos de Disney que hicieron
que esa navidad y ese verano fueran mágicos. Gracias por hacer que Paris fuese casa.

A mis amigos de Nueva York de los que he aprendido tantísimo. Gracias a Vai por
ser de las personas más buenas que conozco y estar siempre en la puerta de enfrente,
a Lucrezia por nuestra complicidad, a mis brasileños que adoro Thales, Jorge, David y
Amanda, y a Maryam, Florine, Beatrice, Sandra, Gonzalo, Todos los que hicisteis
que viviese muy intensamente el caos de NYC y que esa ciudad sea siempre especial.
Muchísimas gracias a la Comisión Fulbright España y a Claudio Silva por apostar por mí.

A mis compañeros y amigos del lab de la UPO, gracias por formar parte de esta
etapa. Gracias a Paco por su apoyo constante y sus magníficas ideas, a Pepe porque
llegar al lab y que te reciban siempre con una sonrisa vale oro, a Rubén por sus historias
tan entretenidas, a Gualberto por su disponibilidad y buenos consejos y a Ángela, Andrés
y Adrián que tienen un futuro fantástico por delante. Y, por supuesto, gracias a David
porque tus podcasts realistas de WhatsApp me han motivado muchísimo y porque, sin
duda, sin ti esta tesis no sería lo que es. También gracias a Manuel, Pedro, Belén,
Alberto, José Mari, etc por acogerme tan bien en la US y porque espero que vayamos a
comer caracoles muchas más veces.

A mi familia que quiero tanto. A mi yaya porque la mejor herencia que nos ha dado
es su forma de ver la vida. Yaya, espero que estés contenta de tener, por fin, una nieta
Doctora como tanto has querido siempre, aunque no sea de las que están en el hospital.
A mis primos por los momentos tan buenos que pasamos en Monesterio, Chipiona o
Marismillas. A mis titos y titas por demostrarme siempre tanto cariño.

A mi padre y a mi madre, por haberme dado siempre libertad y haber confiado en
mí más que yo misma. No puedo sentirme más afortunada y agradecida por los padres
que tengo y lo sabe todo el mundo. Mamá, gracias por haberme transmitido siempre tu
positividad y fuerza y por volcarte siempre en todo lo que tenga que ver con Sandra y
conmigo, como si te estuviese pasando a ti misma. Papá, gracias por haberme enseñado
a ser siempre la mejor versión de mí misma sin tener que compararme con nadie y porque
si alguien lee esta tesis y me hace las mejores preguntas que se pueden hacer, sé que serás
tú. Aunque os lo diga muchas veces quiero que quede por aquí escrito: os quiero mucho.

| Agradecimientos iii

A Sandri, mi hermanita, mi compañera de todo. El regalo más grande que tengo
desde que nací y me lo hicieron mis padres. Gracias por ser la mejor hermana mayor que
se puede tener. Ya lo sabes, para mí es un orgullo que me confundan contigo. A Antonio,
gracias por ser tal cuál eres, el mejor compañero de vida para mi hermana. Y a toda la
preciosa familia Loal, por ser siempre tan auténticos. Y por supuesto, Sandri y Antonio,
gracias por hacerme tita porque nada me podría hacer más ilusión. Ese niño que viene
en camino no sabe la suerte que tiene con sus padres.

A Andre, por estar siempre. Gracias por creer en mí y entenderme en todo momento,
por tu forma de ser conmigo, tu forma de querer y de demostrarlo. Sin tu apoyo constante
no habría podido escribir esta tesis. Me siento muy afortunada del "nosotros" que estamos
creando. Sei sempre speciale. Ti voglio bene. También gracias a toda la familia Blanco-
Brizzi, a los gigliesi y a los italo-madrileños por acogerme tan bien.

Para mí se cierra una etapa estupenda. Ha sido un privilegio trabajar en la
investigación y enseñanza para descubrir cuántas cosas me quedan todavía por aprender
y aportar mi granito de arena para que otros puedan aprender. ¡Gracias a todos!

v

Abstract

Machine learning techniques have become one of the most demanded resources by
companies due to the large volume of data that surrounds us in these days. The main
objective of these technologies is to solve complex problems in an automated way using
data. One of the current perspectives of machine learning is the analysis of continuous
flows of data or data streaming. This approach is increasingly requested by enterprises
as a result of the large number of information sources producing time-indexed data at
high frequency, such as sensors, Internet of Things devices, social networks, etc. However,
nowadays, research is more focused on the study of historical data than on data received
in streaming. One of the main reasons for this is the enormous challenge that this type
of data presents for the modeling of machine learning algorithms.

This Doctoral Thesis is presented in the form of a compendium of publications with
a total of 10 scientific contributions in International Conferences and journals with high
impact index in the Journal Citation Reports (JCR). The research developed during the
PhD Program focuses on the study and analysis of real-time or streaming data through
the development of new machine learning algorithms. Machine learning algorithms for
real-time data consist of a different type of modeling than the traditional one, where
the model is updated online to provide accurate responses in the shortest possible time.
The main objective of this Doctoral Thesis is the contribution of research value to the
scientific community through three new machine learning algorithms. These algorithms
are big data techniques and two of them work with online or streaming data. In this
way, contributions are made to the development of one of the current trends in Artificial
Intelligence.

With this purpose, algorithms are developed for descriptive and predictive tasks, i.e.,
unsupervised and supervised learning, respectively. Their common idea is the discovery
of patterns in the data.

The first technique developed during the dissertation is a triclustering algorithm to
produce three-dimensional data clusters in offline or batch mode. This big data algorithm
is called bigTriGen. In a general way, an evolutionary metaheuristic is used to search for

vi | Abstract

groups of data with similar patterns. The model uses genetic operators such as selection,
crossover, mutation or evaluation operators at each iteration. The goal of the bigTriGen
is to optimize the evaluation function to achieve triclusters of the highest possible quality.
It is used as the basis for the second technique implemented during the Doctoral Thesis.

The second algorithm focuses on the creation of groups over three-dimensional data
received in real-time or in streaming. It is called STriGen. Streaming modeling is carried
out starting from an offline or batch model using historical data. As soon as this model
is created, it starts receiving data in real-time. The model is updated in an online or
streaming manner to adapt to new streaming patterns. In this way, the STriGen is able
to detect concept drifts and incorporate them into the model as quickly as possible, thus
producing triclusters in real-time and of good quality.

The last algorithm developed in this dissertation follows a supervised learning
approach for time series forecasting in real-time. It is called StreamWNN. A model is
created with historical data based on the k-nearest neighbor or KNN algorithm. Once the
model is created, data starts to be received in real-time. The algorithm provides real-time
predictions of future data, keeping the model always updated in an incremental way and
incorporating streaming patterns identified as novelties. The StreamWNN also identifies
anomalous data in real-time allowing this feature to be used as a security measure during
its application.

The developed algorithms have been evaluated with real data from devices and
sensors. These new techniques have demonstrated to be very useful, providing meaningful
triclusters and accurate predictions in real time.

vii

Resumen

El gran volumen de datos que nos rodean en la actualidad ha derivado en que uno de
los recursos más demandados por las empresas sea el uso de técnicas de aprendizaje
automatizado o machine learning. El objetivo principal de estas tecnologías es resolver
problemas complejos de forma automatizada a partir de los datos. Una de las perspectivas
actuales del machine learning es el análisis de flujos de datos continuos o data streaming.
Este enfoque está siendo cada vez más solicitado por las empresas debido a la gran cantidad
de fuentes de información que producen datos indexados en el tiempo en alta frecuencia,
como son los sensores, dispositivos del internet de las cosas, redes sociales, etc. Sin
embargo, a día de hoy, la investigación se centra más en el estudio de datos en histórico
que en los datos recibidos en streaming (a gran velocidad). Una de las principales causas
es el enorme reto que presenta esta tipología de datos para el modelado de algoritmos de
machine learning.

Esta Tesis Doctoral se presenta en la modalidad de compendio de publicaciones
aportando un total de 10 contribuciones científicas en Congresos Internacionales y revistas
con alto índice de impacto en el Journal Citation Reports (JCR). La investigación
desarrollada durante el programa de Doctorado se ha enfocado en el estudio y análisis
de datos en tiempo real o en streaming mediante el desarrollo de nuevos algoritmos de
machine learning. Los algoritmos de machine learning para los datos en tiempo real
constan de un modelado distinto del tradicional, donde destaca la actualización del modelo
de forma online para proporcionar respuestas precisas en el menor tiempo posible. El
objetivo principal de esta Tesis Doctoral es la aportación de valor a la comunidad científica
mediante 3 nuevos algoritmos de machine learning. Los tres algoritmos se encuadran en
técnicas de big data y dos de ellos trabajan con datos online o en streaming. De esta
manera, se contribuye al desarrollo de una de las tendencias actuales de la Inteligencia
Artificial.

Con este propósito se desarrollan algoritmos para tareas descriptivas y predictivas, es
decir, de tipo aprendizaje no supervisado y supervisado respectivamente. La idea común
en todos los algoritmos es el descubrimiento de patrones en los datos.

viii | Resumen

La primera técnica desarrollada durante la Tesis Doctoral es un algoritmo de
triclustering para conseguir agrupaciones de datos con tres dimensiones trabajando de
forma offline o en batch. Este algoritmo de big data se llama bigTriGen. De forma general,
se buscan grupos de datos con patrones similares usando una metaheurística evolutiva.
El modelo usa operadores genéticos como los operadores de selección, cruce, mutación o
evaluación en cada iteración. El objetivo del bigTriGen es la optimización de la función
de evaluación para conseguir triclusters de la mayor calidad posible. El bigTriGen se ha
usado como base para la segunda técnica implementada durante la Tesis Doctoral.

El segundo algoritmo se enfoca en la creación de grupos sobre datos con tres
dimensiones que se reciben en tiempo real o en streaming. Se ha llamado STriGen. El
modelado en streaming se lleva a cabo partiendo de un modelo offline o en batch que usa
datos históricos. Cuando este modelo está creado, se empiezan a recibir datos en tiempo
real. El modelo se actualiza de forma online o en streaming para adaptarse a los nuevos
patrones de los datos. De esta manera, se consigue que el STriGen detecte cambios de
deriva o concept drift y los incorpore al modelo lo más rápido posible, produciendo así
triclusters en tiempo real y de buena calidad.

El último algoritmo desarrollado en la Tesis Doctoral es de tipo aprendizaje
supervisado para predicción de series temporales en tiempo real. Se ha llamado
StreamWNN. Se parte de un modelo con datos en histórico basado en el algoritmo de
los k -vecinos cercanos o KNN. Una vez que el modelo está construido, se comienzan a
recibir datos en tiempo real. El algoritmo proporciona predicciones de los datos futuros
manteniendo el modelo siempre actualizado de forma incremental e incorporando además
patrones del streaming identificados como novedades. El StreamWNN también identifica
datos anómalos en tiempo real permitiendo así utilizar esta característica como medida
de seguridad para la aplicación en la que se use.

Los algoritmos desarrollados se han evaluado con datos reales procedentes de
dispositivos y sensores. Se ha demostrado la gran utilidad de estas nuevas técnicas que
proporcionan triclusters significativos y realizan predicciones muy precisas en tiempo real.

ix

Contents

I Summary of the dissertation 1

1 Introduction 3
1.1 Structure of the dissertation . 4
1.2 Research motivation . 5
1.3 Research goals . 7
1.4 Contributions . 8

2 Research context 13
2.1 The streaming paradigm . 14

2.1.1 Data streaming requirements . 14
2.1.2 Data streaming computational approaches 16

2.2 Streaming pattern evolution discovery . 17
2.2.1 Concept drift . 17
2.2.2 Novelties in streams . 18
2.2.3 Anomalies in streams . 18

2.3 Apache Kafka . 19

II Research methodology 21

3 Methodology 23
3.1 Triclustering . 24

3.1.1 Problem statement . 24
3.1.2 bigTriGen . 27

3.1.2.1 Fitness function . 29
3.1.2.2 Genetic operators . 30
3.1.2.3 Validation of the yielded triclusters 33

3.1.3 STriGen . 34
3.1.3.1 Offline phase . 35

x | Contents

3.1.3.2 Online phase . 38
3.1.3.2.1 Incremental learning 39
3.1.3.2.2 Concept drift . 42

3.1.3.3 Validation of the yielded triclusters 43
3.2 Forecasting . 45

3.2.1 Problem statement . 45
3.2.2 Offline phase . 48
3.2.3 Online phase . 51

3.2.3.1 Incremental learning . 53
3.2.3.2 Novelties and anomalies 56

4 Applications 59
4.1 Triclustering applications to Smart Cities and medicine 60

4.1.1 Precision agriculture . 60
4.1.1.1 Datasets description . 60
4.1.1.2 Parameter tuning . 62
4.1.1.3 Model performance . 62

4.1.2 Seismogenic . 65
4.1.2.1 Dataset description . 65
4.1.2.2 Parameter tuning . 66
4.1.2.3 Model performance . 66

4.1.3 Environmental sensors . 67
4.1.3.1 Dataset description . 67
4.1.3.2 Parameter tuning . 67
4.1.3.3 Model performance . 67

4.1.4 Medical images . 68
4.1.4.1 Dataset description . 68
4.1.4.2 Parameter tuning . 69
4.1.4.3 Model performance . 69

4.2 Forecasting applications to energy electricity demand 70
4.2.1 Dataset description . 70
4.2.2 Parameter tuning . 72
4.2.3 Model performance . 73

4.2.3.1 Incremental learning . 74
4.2.3.2 Novelties and anomalies 74
4.2.3.3 Scalability and timely results 76

| Contents xi

III List of publications 77

5 Publications 79
5.1 Journal and conferences articles . 80

5.1.1 "Discovering spatio-temporal patterns in precision agriculture based
on triclustering" . 80

5.1.2 "High-content screening images streaming analysis using the
STriGen methodology" . 92

5.1.3 "Coronavirus Optimization Algorithm: A Bioinspired
Metaheuristic Based on the COVID-19 Propagation Model" 96

5.1.4 "A new forecasting algorithm based on neighbors for streaming
electricity time series" . 112

5.1.5 "Discovering three-dimensional patterns in real-time from data
streams: an online triclustering approach" 125

5.1.6 "Generating a seismogenic source zone model for the Pyrenees: a
GIS-assisted triclustering approach" 146

5.1.7 "Nearest neighbors-based forecasting for electricity demand time
series in streaming" . 159

5.1.8 "A new big data triclustering approach for extracting three-
dimensional patterns in precision agriculture" 171

5.1.9 "Streaming big time series forecasting based on nearest similar
patterns with application to energy consumption" 183

5.1.10 "Nearest neighbors with incremental learning for real-time
forecasting of electricity demand" 200

5.1.11 "A novel distributed forecasting method based on information
fusion and incremental learning for streaming time series" 209

5.1.12 "Identifying novelties and anomalies for incremental learning in
streaming time series forecasting" 233

IV Final remarks 257

6 Conclusions and future developments 259
6.1 Conclusions . 260
6.2 Conclusiones . 263
6.3 Future works . 266
6.4 Trabajos futuros . 268

Bibliography 273

xiii

List of Figures

1.1 Summary of the publications and research goals 11

2.1 Examples of the different possibilities to identify patterns in streaming . . 18

3.1 Representation of triclusters . 26
3.2 Overview of the whole methodology of the bigTriGen algorithm. 28
3.3 Kafka architecture outline for STriGen algorithm. 34
3.4 Representation of streams. 38
3.5 Examples of the updating operations during the online phase. 41
3.6 Overview of the STriGen online phase for one tricluster. 44
3.7 Outline of the kafka architecture for the StreamWNN algorithm. 46
3.8 Overview of the whole methodology of the StreamWNN algorithm. 47
3.9 Sliding window for time series of the StreamWNN algorithm 48

4.1 NDV I samples for the studied maize crop 61
4.2 Yielded triclusters by bigTriGen for the maize plantation 63
4.3 Yielded triclusters by bigTriGen for the vineyard crop 64
4.4 Scalability analysis of the bigTriGen . 65
4.5 Analysis of the energy electricity demand in Spain 71
4.6 Evolution of mean euclidean distance between neighbors in the online model

as iterations pass for h=144 . 74
4.7 Second worst forecast day for no update execution during July 2015 75
4.8 Anomaly identified for h=48 during September 11th 2013 76
4.9 Time versus iterations for each horizon for daily incremental + novelties . 76

xv

List of Tables

4.1 TRIQ values for each tricluster of the maize dataset with NDV I index . . 63
4.2 TRIQ values for each tricluster of the vineyard dataset with MSI index . . 64
4.3 STriGen and baseline comparison for environmental sensors dataset 68
4.4 Performance metrics for each tricluster of the HCS images using STriGen 69
4.5 MAPE error metric (in percentage) for each type of update 73

1

Part I

Summary of the dissertation

3

1| Introduction

The main objective pursued during the PhD program is to contribute to scientific
research in Artificial Intelligence through the implementation of new algorithms.

This Chapter introduces the research conducted. Section 1.1 presents the organization
of the dissertation document. Section 1.2 describes the motivation for the development
of the PhD thesis. Section 1.3 presents the aims to be solved. Section 1.4 presents the
scientific publications in which these aims have been addressed.

4 1.1. Structure of the dissertation

1.1 | Structure of the dissertation
The dissertation has been organized into four parts, each of which has been structured

through chapters.

• PART I: SUMMARY OF THE DISSERTATION. This part has been
described in Chapters 1 and 2.

In particular, Section 1.2 presents the current situation of the research topic and
the main motivations for this dissertation. Section 1.3 defines the research goals.
Section 1.4 details the scientific contributions published during the PhD program
addressing these objectives.

The research work is contextualized in Sections 2.1, 2.2 and 2.3.

• PART II: RESEARCH METHODOLOGY. This part details the three new
machine learning methodologies implemented during the PhD program in Chapter
3 and the results obtained from their applications to real datasets in Chapter 4.

On the one hand, Section 3.1 summarizes the two new algorithms developed to
produce triclusters. The first one is described in Section 3.1.2 and has been
called bigTriGen as it is a big data algorithm that creates triclusters based on
genetic evolutionary heuristic. The second one is described in Section 3.1.3 and has
been called STriGen since it is an algorithm to create triclusters based on genetic
evolutionary heuristic in streaming or real time. Moreover, Section 3.2 summarizes
the new model developed to perform real-time predictions based on the nearest
neighbor algorithm. This algorithm has been called StreamWNN.

On the other hand, the applications of these algorithms to real datasets are in
Sections 4.1 and 4.2. Specifically, the first Section describes the applications of the
two new triclustering algorithms and the second one details the application of the
new forecasting technique.

• PART III: PUBLICATIONS. This part contains the research papers published
during the PhD program, detailed in Chapter 5. Publications are organized by date
of publication, specifying the type of scientific article.

• PART IV: FINAL REMARKS. The last part is addressed in Chapter 6 in which
some final conclusions are described, as well as future work to be carried out.

1| Introduction 5

1.2 | Research motivation
Artificial Intelligence or AI was born with the idea of endowing machines with the

same intelligent capabilities as human beings. The definition of intelligence in this context
has been quite ambiguous for decades, going through different approaches. At present,
the definition of intelligence for AI systems is mostly focused on creating systems that act
rationally to achieve the best possible results.

Machine learning or ML is a branch of Artificial Intelligence that focuses on learning
automatically from previous experiences without having to program tasks specifically. ML
methods are based on algorithms that learn from data by looking for patterns to make
decisions without human intervention.

For several years, AI and ML have been present in our daily lives in many aspects
and fields. Some of them are: medicine, social networks, advertising, recommender
systems, pattern recognition, Internet of Things, smart cities, cybersecurity, etc. All
these applications are making these technologies become a reality from which a lot of
information can be obtained to improve our quality of life.

Machine learning systems learn from data. For this reason, a large part of the efforts
prior to the application of a ML algorithm are focused on obtaining a suitable dataset.
Currently, a significant amount of our daily data is generated with a temporal component.
For example, most electronic devices generate time-indexed data continuously at high
speed.

Data streams are data that are received continuously at a high speed in instants
of time that do not have to be equispaced. Speed is one of the main characteristics
present in data that is receiving more and more attention thanks to applications of great
socio-economic impact today within Smart Cities or Industry 4.0. In fact the current
technological reality is moving towards the new concept of Fast Data, which aims to
reduce the time between the arrival of a data and the extraction of information from it.
According to a study by IBM [7], 88% of companies emphasize the need to analyze data
in near real-time and that the future of data is in its being fast.

Traditional techniques for working with large volumes of data such as MapReduce
and Hadoop with HDFS were born in the batch or offline processing paradigm, when
processing was done periodically and in blocks. However, the current trend of working
with data arriving in real-time and producing fast responses also affects traditional ML
algorithms and models that must be developed following a different approach. Although

6 1.2. Research motivation

the great increase of interest from the industry and companies in data streams is a fact,
most of the research today is still focused on working with static or batch data. Thus,
our proposal focuses on one of the current trends in high-frequency temporal data such
as continuous data flow to provide answers in real-time or in the shortest possible time.

During this dissertation, new machine learning algorithms are developed with online
learning for predictive (supervised learning) and descriptive (unsupervised learning) tasks.
In both types of learning, emphasis has been placed on detecting and dealing with new
patterns in the flow of data received on a continuous basis, such as the concept drift,
novelties and anomalies. To validate the proposed methodological developments, the
results are oriented to Smart City data in order to contribute with quick solutions in
areas such as precision agriculture, environmental sensors or sustainable and efficient
energy.

1| Introduction 7

1.3 | Research goals
The common objectives of this dissertation are to learn about and provide value to

the scientific community. These large-scale objectives can be subdivided into the following
research goals R.G.:

• R.G. 1: This objective is divided into two parts.

The first is the theoretical-practical study of the literature related to online learning
or continuous data streams. Specifically, the research focuses on studying what
data streams are, how to model these data in unsupervised and supervised learning
problems and how to implement new algorithms.

The second part deals with the study of other areas of machine learning, besides
from data streams, in order to be able to collaborate with other researchers.

• R.G. 2: Design and development of a machine learning model named bigTriGen to
perform triclustering on three-dimensional dataset using big data techniques.

Model verification with precision agriculture and seismic data.

• R.G. 3: Design and development of a new algorithm for triclustering in three-
dimensional data in real-time with online updating named STriGen.

Model verification with continuous data streams from environmental sensors and
medical images.

• R.G. 4: Design and development of a time series forecasting model that works
in real-time with online incremental learning by detecting new patterns called
StreamWNN.

Model verification with energy electricity demand in Spain in real-time.

8 1.4. Contributions

1.4 | Contributions
The techniques and results developed during the dissertation have been published in

relevant journals and conferences in the area of knowledge.

In this Section, the publications have been sorted by year, including a quality
indicator. Research papers published in journals have been rated according to the
impact factor (IF) of the Journal Citation Reports JCR. Papers published in international
conferences have been rated according to the GII-GRIN-SCIE (GGS) conference rating
[19].

2020

In the first year of the Ph.D. program, the study of triclustering algorithms and
the state of the art of data streams was initiated. As a result, a first version of the
bigTriGen batch triclustering algorithm for the study of patterns in precision agriculture
was published at an international conference [14]. This article received the invitation to
the Special Issue published in the year 2022 [17]. A first version of the STriGen algorithm
for producing triclusters that incrementally adapt to medical images was also published
at an international conference [13]. In addition, several collaborations were performed:
in an indexed journal [12], in an international conference [8] and in the congress of the
Spanish society of gastroenterology, hepatology, nutrition and pediatrics [20].

• SOCO 2020 [14]: Melgar-García L., Godinho M. T., Espada R., Gutiérrez-
Avilés D., Brito I. S., Martínez-Álvarez F., Troncoso A., Rubio-Escudero
C. "Discovering spatio-temporal patterns in precision agriculture based on
triclustering". 15th International Conference on Soft Computing Models in
Industrial and Environmental Applications (SOCO 2020). pp. 226-236, 2020.
Advances in Intelligent Systems and Computing, Vol. 1268. Springer International
Publishing, Cham. doi: 10.1007/978- 3-030-57802-2_22

Invitation for Special Issue in Neurocomputing journal.

• ACM SAC 2020 [13]: Melgar-García L., Gutiérrez-Avilés D., Rubio-Escudero C.,
Troncoso A. "High-content screening images streaming analysis using the STriGen
methodology". The 35th ACM/SIGAPP Symposium on Applied Computing
(SAC 2020). Association of Computing Machinery, pp. 537-539, 2020. doi:
10.1145/3341105.3374071

GGS class (rating): 2 (A-)

1| Introduction 9

• Big Data 2020 [12]: Martínez-Álvarez F., Asencio-Cortés G., Torres JF.,
Gutiérrez-Avilés D., Melgar-García L., Pérez- Chacón R., Rubio-Escudero C.,
Riquelme J. C., Troncoso A. "Coronavirus Optimization Algorithm: A Bioinspired
Metaheuristic Based on the COVID-19 Propagation Model". Big Data, Vol. 8 (4),
308-322, 2020. doi: 10.1089/big.2020.0051

IF: 3.644, 15/108 Computer Science, Theory and Methods: Q1.

• HAIS 2020 [8]: Jiménez-Herrera P., Melgar-García L., Asencio-Cortés G.,
Troncoso A. "A new forecasting algorithm based on neighbors for streaming
electricity time series". Hybrid Artificial Intelligent Systems (HAIS 2020). pp. 522-
533, 2020. Lecture Notes in Computer Science, Vol. 12344. Springer International
Publishing, Cham. doi: 10.1007/978-3-030-61705-9_43

Invitation for Special Issue in IGPL journal.

• SEGHNP 2020 [20]: Román E., Rubio C., Melgar L., Ribes C., et. al. "Aplicación
Guías ESPGHAN 2012: ¿En qué casos no las hemos aplicado?". SEGHNP Libros
de Trabajos 2020

Classified as "Distinction work" [12 works of distinction out of the 211 accepted]

2021

In the second year of PhD, the research focused on continuing the development of the
triclustering algorithms implemented in 2020 and initiating the development of the real-
time prediction algorithm. As a result, the complete STriGen algorithm for discovering
real-time triclusters was published in an indexed journal [16]. An application of the batch
triclustering algorithm for seismic data was also published in another indexed journal [2].
Finally, the first work of the StreamWNN algorithm for online time series forecasting
was published in a national congress where it won the best paper award in the general
category of the congress [15].

• Information Science 2021 [16]: Melgar-García L., Gutiérrez-Avilés D., Rubio-
Escudero C., Troncoso A. "Discovering three-dimensional patterns in real-time from
data streams: an online triclustering approach". Information Sciences, Vol. 558,
174-193, 2021. doi: 10.1016/j.ins.2020.12.089

IF: 5.910 9/156 Computer Science, Information Systems: Q1.

• Computers and Geosciences 2021 [2]: Amaro-Mellado J. L., Melgar-García L.,
Rubio-Escudero C., Gutiérrez-Avilés D. "Generating a seismogenic source zone
model for the Pyrenees: a GIS-assisted triclustering approach". Computers and

10 1.4. Contributions

Geosciences, Vol. 150, 104736, 2021. doi: 10.1016/j.cageo.2021.104736

IF: 2.991 42/109 Computer Science, Interdisciplinary Applications: Q2.

• CAEPIA 20/21 [15]: Melgar-García L., Gutiérrez-Avilés D., Rubio-Escudero C.,
Troncoso A. "Nearest neighbors-based forecasting for electricity demand time series
in streaming". XIX Conference of the Spanish Association for Artificial Intelligence
(CAEPIA 20/21). pp. 185-195, 2021. Lecture Notes in in Artificial Intelligence,
Vol. 2882 LNAI. Springer International Publishing, Cham. doi: 10.1007/978-3-030-
85713-4_18

First prize for the best paper in the general category of the congress.

2022

During the last year of the PhD program the investigation has been divided into two
parts. On the one hand, the two Special Issues of the works developed in 2020 have been
published. Specifically, the complete bigTriGen algorithm with its application to precision
agriculture has been published in an indexed journal [17]. In addition, the Special Issue
version of the collaboration [8] developed in 2020 has been published in another indexed
journal [9]. On the other hand, the incremental learning version of StreamWNN has been
published in an international conference [18].

• Neurocomputing 2022 [17]: Melgar-García L., Gutiérrez-Avilés D., Godinho
M. T., Espada R., Brito I. S., Martínez-Álvarez F., Troncoso A.., Rubio-
Escudero C. "A new big data triclustering approach for extracting three-dimensional
patterns in precision agriculture". Neurocomputing, 500, 268-278, 2022. doi:
10.1016/j.neucom.2021.06.101

IF: 5.719 30/139 Computer Science, Artificial Intelligence: Q1

Special Issue of the SOCO 2020 conference.

• Logic Journal of the IGPL 2022 [9]: Jiménez-Herrera P., Melgar-García L.,
Asencio-Cortés G., Troncoso A. "Streaming big time series forecasting based on
nearest similar patterns with application to energy consumption". Logic Journal of
the IGPL, 1367-0751, 2022. doi: 10.1093/jigpal/jzac017

IF:0.931 3/21 Logic: Q1.

Special Issue of the HAIS 2020 conference.

• ICDM 2022 [18]: Melgar-García L., Gutiérrez-Avilés D., Rubio-Escudero C.,
Troncoso A. "Nearest neighbors with incremental learning for real-time forecasting

1| Introduction 11

of electricity demand". IEEE International Conference on Data Mining (ICDM
2022).

GGS class (rating): 1 (A++)

2023

The research objectives of the StreamWNN are completed with two scientific papers
already in under review in two indexed journals. In particular, the first article addresses
the incremental learning approach in a more extensive way. The model is compared
with other forecasting techniques in the literature, demonstrating a better performance
in terms of time and accuracy. The second article focuses on the discovery of novelties
and anomalies in the continuous streams. The current version of these contributions are
in Sections 5.1.11 and 5.1.12.

• Under review 1: Melgar-García L., Gutiérrez-Avilés D., Rubio-Escudero C.,
Troncoso A. "A novel distributed forecasting method based on information fusion
and incremental learning for streaming time series".

• Under review 2: Melgar-García L., Gutiérrez-Avilés D., Rubio-Escudero C.,
Troncoso A. "Identifying novelties and anomalies for incremental learning in
streaming time series forecasting".

Figure 1.1 summarizes the mentioned publications and their relationship to the
research goals detailed in Section 1.3.

SOCO
Computers and

Geoscience Neurocomputing

ACM SAC
Information

Science

CAEPIA ICDM

Logic Journal of
the IGPL

Big Data,
HAIS, SEGHNP

R.G. 2

R.G. 3

R.G. 4

R.G. 1

2020 2021 2022 2023

Under review 1,
Under review 2

Figure 1.1: Summary of the publications and research goals

13

2| Research context

Data is one of the most relevant components of a machine learning application.
Depending on the nature of the data, different answers can be achieved. This

Chapter introduces the central concept of the dissertation: continuous data streams.
Section 2.1 discusses the problem of continuous data streams indicating its characteristics
and approaches for implementation in Sections 2.1.1 and 2.1.2, respectively. Section 2.2
presents a general overview of the types of patterns in continuous data streams. Section
2.3 describes the platform employed to manage data flows.

14 2.1. The streaming paradigm

2.1 | The streaming paradigm
Advances in technology in recent years have resulted in an increasing amount of data

being generated and stored. Since much of this data is generated by electronic devices, one
of its main characteristics is that it tends to have a very high temporal frequency, giving
rise to large volumes of information that are treated as continuous data flows or data
streams. These flows can be potentially infinite. Consequently, their storage, processing
and treatment are different from that used for static datasets. In addition, this type of
data brings the possibility of performing real-time analysis and making quick decisions.

Nowadays, these enormous amounts of incoming data arrive from many different
sources, such as Internet of Things (IoT), sensor networks, social media, medical devices
or videos. This huge variety of data sources is boosting the interests of the Fast Data
environment. In this paradigm, the main objective is to gain insights from the real-
time analysis of a set of data. For example, the detection of fraudulent operations in
banking transactions must be carried out as quickly as possible. The company Databricks
confirmed this assumption by publishing the growing number of streaming jobs from its
users. They stated that, in the last three years the number of streaming jobs went from
thousands to more than four million per week [4].

In terms of machine learning models, the process of learning from incoming flows of
data is different compared to that carried out for static datasets. In batch applications,
it is necessary to re-train the entire model to introduce new data into the learning model.
This approach is not effective for data streams. For data streams, the machine learning
model has to be updated in real-time considering the incoming data. This is one of the
requirements for the applications that work in streaming. All the main requisites for data
streaming applications are discussed in Section 2.1.1.

2.1.1 | Data streaming requirements
Batch data processing works with available static data. In this case, data can be

accessed as many times as necessary and without time or memory limitations. In contrast,
streams of data are flows of continuous data that are potentially infinite and can undergo
dynamic changes as time passes. In the streaming paradigm, the model has to produce
responses right after receiving each instance and has to work with limited memory.

The main requirements that data streaming applications have to guarantee are [11]:

2| Research context 15

• Stream incoming data: Streaming data must be received in a specific manner,
fulfilling different constraints. These constrains are: each data can be received
only once, in the order of arrival and following the first-in, first-out scheme. In this
way, no time is wasted in storing the data, contributing to a fast response time.
Only data that is considered to be essential for the accurate future behavior of the
execution will be stored. For example, if data indicating a new pattern in the flow is
detected, this data will be stored in a buffer that will be refilled and emptied while
monitoring the number of instances at all times.

In order to reduce as much as possible the waiting time between one response and
another, methods that work with data streams must have mechanisms to deal with
unexpected behavior data. This may be the case of: missing data, erroneous data or
delayed data. One of these mechanisms could be, for example, to previously know
the average of the batch data of each type. When the course of the program is
blocked, it is necessary to wait a short additional time.

Depending on the type of computational approach of the model, data prior to the
streaming phase will be used. Such data is called historical, offline or batch. They
must not satisfy any of the above conditions. They are used to create summaries or
offline model bases for real-time processing.

• Bounded memory: In general, data streams cannot be stored in memory because it
is not known when they will stop arriving. In other words, it is possible to have an
infinite continuous data flow, in which case it would be nearly infeasible to store all
the data due to memory limitations. This condition is related to not wasting time
storing the data in memory.

However, it is advisable to checkpoint the model using a secondary model in case of
system failures. In this way the integrity of the system can be preserved.

• Low latency: The time interval between the reception of the data and the model
response should be as short as possible.

Latency is also reflected in the time each iteration takes to fulfill the rest of the
requirements. Therefore, the way of receiving data streams, the process of working
with limited memory, the model update if necessary and the model response should
be as fast as possible.

• Stream modeling: Regarding the modeling, there are two main conditions to take
into account: to get a model that is always adapted to new data patterns and to
provide the fastest possible response.

16 2.1. The streaming paradigm

Streaming models are designed to avoid having to be completely retrained every time
a new input arrives as this would make it impossible to meet the limited memory
and time requirements. These models are continuously updated in a linear fashion
according to the number of instances. The models must always be adjusted to the
new patterns that arrive, eliminating outdated data. The update must be concrete
and fast.

Each time a response must be produced, the model must be updated. The
production of the response must also be concrete and fast.

It is essential for the modeling to be scalable. To this purpose, it is recommended
to perform the operations in a distributed and multi-threaded manner.

These requirements must be met each time a new data stream arrives.

2.1.2 | Data streaming computational
approaches

Traditional machine learning algorithms work with a batch or so-called offline
approach, i.e., all data is available and static. Algorithms that work with streaming
data follow an online learning approach. The concept of online or streaming learning is
usually interchangeable, as used in this dissertation [11].

One computational approach to online learning is the incremental or continual
learning. In this type of approach the model evolves by adapting to concept drift or new
patterns in the data. Therefore, the model learns and adapts autonomously when new
data arrives, mimicking human behavior. These algorithms have to add new information
but they also have to deal with catastrophic forgetting, i.e., they also have to maintain
previously learned concepts.

Another approach to learn from data streams is the offline/online. In this case, the
algorithm usually starts working in offline or batch mode by creating a summary of the
data or a base model without having to meet the requirements of the streaming paradigm.
Then, the online phase begins and online learning starts. The online phase can include
incremental or continual learning to keep the model updated.

2| Research context 17

2.2 | Streaming pattern evolution

discovery
One of the intrinsic characteristics of data streams is that it is common for new

patterns to emerge over time. Therefore, the behavior of the incoming data must be
monitored and the model must be kept updated. Different types of phenomena can
occur: concept drift in existing classes, emergence of new classes or detection of totally
different data at a single point in time [1]. These categories correspond to concept drift,
novelties and anomalies, defined in Sections 2.2.1, 2.2.2 and 2.2.3, respectively.

Each of these categories must address a different approach to discover the phenomena
and deal with them. However, the common concept is that the input data does not
contain the identification as concept drift, novelty, anomaly or none of them. Hence, to
know whether or not a pattern has been correctly detected in the data, it is necessary to
monitor its evolution. This Section defines and differentiates the three categories. The
method for identifying and processing them will depend on the learning model selected.

Figure 2.1 illustrates a graphical classification example of the performance of a model
over time. Figure 2.1a identifies the initial state of the model where two classes are shown.
Figure 2.1b shows the adaptation of the model to concept drift by changing its decision
boundary to differentiate the two classes at the following instant time. Figure 2.1c depicts
the new class identified as a novelty and the changing of the decision boundary at the
following instant time. Figure 2.1d shows the detection of an anomaly in the following
instant time.

2.2.1 | Concept drift
Concept drift refers to the opposite assumption of stationary learning. Stationary

learning focus on the idea of working with constant data distribution and constant patterns
over time. In other words, concept drift describes data distribution changes throughout
time. These changes can happen gradually, recurrently, abruptly or incrementally.

Due to concept drift, the model deteriorates producing less accurate responses and
becoming outdated. It is very important to adapt the model to current data. The
discovery and treatment of concept drift depends on the type of data and the type of
algorithm.

18 2.2. Streaming pattern evolution discovery

(a) Model performance at initial time

(b) Concept drift (c) Novelty update (d) Anomaly detection

Figure 2.1: Examples of the different possibilities to identify patterns in streaming

2.2.2 | Novelties in streams
Novelties identify patterns in the stream data different from those present during the

training phase. They define new classes that capture new behaviors. The main difference
of novelties with respect to concept drift is that the first one are new classes and the second
one entails a change in the concept associated with the classes present in the training.

When a novelty is discovered, it is important to add it to the model considering that
it is a new class. Novelties are patterns that are expected to recur in the data over time.
If model adjustment is not carried out, the performance of the model will be degraded
when instances belonging to the new class appear.

2.2.3 | Anomalies in streams
Anomalies or outliers in data streams identify instances that occur very distantly and

sporadically. Outliers are also unknown data that behave differently from the training
data. They identify a totally unexpected pattern. In contrast, when a pattern is identified
as a novelty it is expected that streaming instances of novelty class will be identified again.

Generally, anomalies are not included in the model but they trigger an alarm as soon
as they are identified.

2| Research context 19

2.3 | Apache Kafka
Apache Kafka is a distributed open-source platform for managing data streams from

various sources to send to users. This platform is scalable, fault tolerant and low latency.
Thousands of companies are currently using Apache Kafka to create high-performance
pipelines for streaming events [10].

Kafka consists of servers and clients that communicate via the TCP network protocol.
On the one hand, Kafka runs as a cluster of one or more servers. The servers in charge
of storage are called brokers and the servers for importing and exporting data are called
connectors, as Kafka Connect. On the other hand, the clients allow writing applications
and microservices for reading, writing and processing streams in a distributed and parallel
way.

Apache Kafka follows the general communication procedure: a sender communicates
a message to a receiver. Thus, the main terms of Apache Kafka are producers, events or
messages and consumers.

Producers are client applications that write messages in Apache Kafka. More
specifically, producers are said to publish streaming events. These events capture streams
of facts that occur and consist of a key, a value and a date-time. These events are published
by producers in topics to which consumers are subscribed. When the consumer detects
that there is a new message in the topic to which it is subscribed, it can read and process
that event in streaming. An important feature of Kafka that demonstrates its scalability
is that producers and consumers are not paired, i.e., producers do not depend on how
consumers are acting.

Events are published in topics. Topics are partitioned over a number of buckets in
different Kafka brokers to increase the scalability of the application. These events remain
in their topics for as long as determined in the Kafka configuration. A topic can have
none, one or multiple producers, as well as consumers. Events are always kept in the
order in which they were written.

During this dissertation Kafka has been used with the centralized ZooKeeper service
to control the flexible and synchronized operation of Kafka’s distributed systems.

21

Part II

Research methodology

23

3| Methodology

Streaming applications follow a different modeling than static or batch machine
learning methods. This Chapter describes the three new algorithms that have

been developed during this dissertation. Section 3.1 discusses the two new triclustering
algorithms implemented. In particular, the algorithm bigTriGen for big data triclustering
is in Section 3.1.2 and the new triclustering algorithm for streaming data called STriGen
is in Section 3.1.3. Section 3.2 introduces the new algorithm called StreamWNN for time
series forecasting in real-time.

24 3.1. Triclustering

3.1 | Triclustering
Two novel triclustering algorithms are presented in this Section. The traditional

conceptualization of clustering, biclustering and triclustering can be found in Section 3.1.1.
A new big data triclustering methodology named bigTriGen is introduced in Section 3.1.2.
The second novel triclustering algorithm works in streaming mode. It is called STriGen

and is described in Section 3.1.3.

3.1.1 | Problem statement
One of the best known machine learning techniques is the grouping of unlabeled

data into sets of similar samples. This technique is commonly referred to as clustering.
Clustering algorithms assemble data into a specific number of clusters or groups.
Depending on the algorithm, the specific number of clusters can be known in advanced or
not. However, the common feature of clustering techniques is that the clusters are formed
by sets of data with a relationship between their samples, but these relationships are not
known to the user. In other words, the resulting groups do not have a related label, they
are simply group1, group2, etc.

Traditional clustering algorithms are applied to datasets of one or two dimensions.
These dimensions will be referred to as instances (rows in a matrix) and features (columns
in a matrix), hereafter. A cluster is a group of instances over all features, i.e., for each
yielded cluster, the grouped instances share a behavior pattern across all features. The
next Formula represents the cluster k which consists of n instances and all F features of
the data or DF . The 2D of the example cluster refers to a two-dimensional dataset.

C2D
k =

{
(i1, ..., in), D

F
}

DF = fF
f=1 (3.1)

Biclustering is an evolution of the clustering algorithm applied to a two-dimensional
dataset that provides clusters formed by a set of instances over a set of features. An
example of the k produced bicluster with n instances and h features is:

B2D
k =

{
(i1, ..., in), (f1, ..., fh)

}
(3.2)

The definition of the triclustering technique is motivated by the path that many
real-world applications are currently following. It is becoming more common for data to

3| Methodology 25

be recorded over time from different sources such as sensors, Internet of Things (IoT)
devices or social media, providing time series data. Therefore, in the analysis performed
for this kind of data it is very important to take into account time as another dimension
of the dataset so that the evolution of the data over time can be considered. In this way,
triclustering algorithms are able to create groups of data with similar behaviors over time.
Triclustering uses three-dimensional datasets consisting of instances (rows in a matrix),
features (columns in a matrix) and times (depth in a matrix). A three-dimensional dataset
D3D can be defined as:

D3D =
{
DI , DF , DTP

}

DI = {i1, ..., iI}
DF = {f1, ..., fF}
DTP = {t1, ..., tTP}

(3.3)

which is composed of a total of I instances, F features and TP time points. The instance-
feature pair of the i− th instance and the j − th feature can be presented as a sequence
of time-indexed values as: DTP (i, j) = {vt1 , vt2 , ..., vtTP

}.

Therefore, a tricluster is group of instances over a group of features over a group of
time points. The tricluster k of a three-dimensional dataset with n instances, h features
and y time points is defined as:

Tk =
{
T I , T F , T TP

}
with T I ⊂ DI , T F ⊂ DF , T TP ⊂ DTP

=
{
(i1, ..., in), (f1, ..., fh), (t1, ..., ty)

} (3.4)

Each tricluster can have a different number of instances, features and time points.
The time series of a tricluster have similar behaviors in terms of values (instances-features
pairs) or trend. This homogeneity behavior pattern BP is summarized as:

BP
(
Tk(iX , fX)

)
∼ BP

(
Tk(iZ , fZ)

)
∀iX , iZ ∈ T I ,∀fX , fZ ∈ T F (3.5)

A graphical representation of the three-dimensional dataset D3D, its components in
slices and a tricluster is in Figure 3.1.

Clustering techniques, including biclustering and triclustering, can be performed
following different approaches. One of them is the evolutionary clustering approach, also
known as genetic clustering. In the genetic algorithms paradigm, a complete evolutionary
process is carried out for each tricluster to be obtained. With these evolutionary
meta-heuristics, similar behavior patterns BP are expected to be found. The general

26 3.1. Triclustering

(a) 3D data (b) Data slices (c) n × h × y tricluster

Figure 3.1: Representation of triclusters

methodology of this type of algorithms has two main actors: a population and several
individuals. A population contains individuals and an individual is a potential solution
of the algorithm. If a genetic triclustering is applied to a three-dimensional dataset, an
individual is a tricluster Tk with a set of instances, a set of features and a set of time
points.

Evolutionary clustering algorithms evolve the population of individuals by means
of genetic operators. The most common genetic operators are: generation of an initial
population, selection, crossover, mutation and evaluation. These individuals evolve by
optimizing a fitness function. In other words, evolutionary clustering algorithms represent
the process of natural selection by choosing the fittest individuals for reproduction. Thus,
the offspring of the next generation are the individuals with the highest value of the fitness
function.

Clustering techniques follow an unsupervised learning approach. This characteristic
makes the validation process of the obtained tricluster complicated, since the expected
results are not known in advance. There are several ways to approach the validation
process. Some of the most common approaches are: computing a metric to calculate how
homogeneous a cluster is, calculating how heterogeneous the samples in different clusters
are, or validating the results with an expert in the area.

3| Methodology 27

3.1.2 | bigTriGen
In this Section, a new big data triclustering algorithm is presented. It is based on

the genetic algorithm paradigm. These three features give the name bigTriGen to the
algorithm, i.e., a big data algorithm for triclustering based on genetic meta-heuristics.

The goal of the bigTriGen algorithm is to discover a triclustering model MD3D from
a three-dimensional dataset D3D. The triclustering model can be described as:

MD3D =
{
T1, T2, ..., TN

}
(3.6)

with N being the total number of triclusters found and each tricluster Tk following the
representation in Formula 3.4. Each Tk is a tricluster composed of a set of instances,
features and time points that have similar behavior pattern BP . The bigTriGen has to
meet specific requirements in order to demonstrate that it is a big data algorithm.

The bigTriGen evolves a population of individuals using genetic operators over a
given number of generations optimizing an evaluation function, also known as fitness
function. The algorithm uses genetic operators to obtain the best solutions in each
generation. The main parameters of the bigTriGen algorithm are:

• N : Number of triclusters to be mined or number of individuals to be discovered.

• G: Number of generations of the genetic evolutionary process.

• In: Size of the initial population.

• Sel: Fraction of the population that promoted to the next generation.

• Mut: Probability of mutation.

• wmsl, ws and wov: Weights for the MSL, for the tricluster area size and for the
overlapping components of the fitness function, respectively. They are defined in
detail in Section 3.1.2.1.

• wgr, wpe and wsp: Weights for the GRQ, for the Pearson correlation and for the
Spearman correlation components of the TRIQ quality measure, respectively. They
are defined in detail in Section 3.1.2.3.

In addition, bigTriGen has control parameters for the minimum and maximum
number of instances, features and times that can compose the tricluster.

A flow diagram of the whole bigTriGen methodology is in Figure 3.2.

28 3.1. Triclustering

Mutation
No

Yes

Processed generations

>= G

Crossover

Selection

Evaluation

Initial population

Select individual that
minimizes the fitness

function

Add tricluster to the
solution model

No

Yes

Number of
triclusters
found >= N

All triclusters found

Figure 3.2: Overview of the whole methodology of the bigTriGen algorithm.

bigTriGen is developed in Scala 2.12 with Apache Spark 2.3.4. The implementation
is based on the Apache Spark DataFrame object to take advantage of this data structure
and distribute the application across the nodes of the cluster where it is deployed.

3| Methodology 29

3.1.2.1. Fitness function

In bigTriGen the function to optimize is the fitness function. Triclusters with the
best fitness function promote since they provide the best possible solutions.

The fitness function is based on the multi slope measure or MSL measure. MSL

measures the resemblances of the slope angles formed by the components of the tricluster
at each time point. It is based on the differences between the angles that a series forms
with the X-axis every two points (the slope of a straight line). In other words, the MSL

provides a quantification of how similar the behavior patterns BP of a tricluster are.

MSL depends on the multiangular comparisons of the three graphic representations
of a tricluster. Henceforth, ACmulti defines the multiangular comparison term and TRIxop

defines the graphic representation of a tricluster with x, o and p being either instances I,
features F or time points T . Therefore, the three graphic representations of a tricluster
are: TRIift, TRIitf and TRItif . In particular, a graphic representation TRIxop analyzes
the evolution of the expression levels of x with o as the outlines by creating one panel
for each p. For example, TRItif creates a panel for each feature and in each panel times
are on the X-axis with each corresponding instance as the outline. The ACmulti(TRIxop)

considers the average of the differences of angles vectors formed by x and o for each panel
p. The MSL measure of a tricluster Tk is defined as the average of its three graphic
representations as defined in the following Formula. The complete description of the
MSL is in [5].

MSL(Tk) =
1

3

(
ACmulti(TRIift) + ACmulti(TRIitf) + ACmulti(TRItif)

)
(3.7)

The fitness function depends not only on the MSL measure but also on a control
mechanism to balance the size of the triclusters and the overlap between them. The fitness
function of a tricluster Tk is defined by:

Fitness_Function(T) =

wmsl ∗
(
MSL(Tk)/(2π)

)
+ ws ∗ S(T I , T F) + wov ∗OV (Tk,MD3D)

wmsl ∗ ws ∗ wov

(3.8)

where MSL(Tk) is the MSL measure of the tricluster, S(T I , T F) is the size of the area
demarcated by the instances and features of the tricluster and OV (Tk,MD3D) is the degree
of overlap of the tricluster with the remaining triclusters in the model MD3D . The rest
of the parameters represent the weights given by the user prior to the execution of the

30 3.1. Triclustering

algorithm: wmsl, ws and wov, for MSL, size of the area demarcated by the instances and
features of the tricluster and overlap respectively. A default setting of these weights is to
fix wmsl at 0.8 and distribute 0.2 between ws and wov.

3.1.2.2. Genetic operators

The bigTriGen uses genetic operators to evolve the individuals. These genetic
operators are the following:

Initial population The algorithm starts by creating In individuals. These individuals
are subsets of instances, features and time points that are randomly selected from
the dataset.

Depending on the application of the bigTriGen, it is of interest or not to create
a contiguous subspace of the data in a tricluster. For example, if the algorithm
is applied on a bioinformatic problem to discover genes and conditions that have a
homogeneous pattern, it would make sense that the initial population operator could
create individuals with instances and features that are not contiguous. However, if
the bigTriGen is applied to a field where efficient precision agriculture is under
consideration, this genetic operator must provide individuals that have a set of
contiguous instances, a set of contiguous features and a set of contiguous time points.
In the case of precision agriculture for a field, the algorithm performs this type of
approach since the farmer cannot provide a specific treatment for each point in the
field, but for some contiguous meters in the field. This approach is called squared
initial population.

The initial population operates differently when searching for the first solution
tricluster than for the rest of the N − 1 solution triclusters. In the first one,
individuals are generated completely randomly. For the remaining solutions, each
individual from the initial random population is checked and if an individual has
more than 20% of its components in the already found solution triclusters, this
individual will be randomly generated again until there is no overlap. The following
conditional Formula represents the two ways of creating the initial population
initial_popk of the k tricluster Tk:

initial_popk =

random_populationk, if k = 1

control {solsT ∩ random_populationk} otherwise
(3.9)

3| Methodology 31

where random_populationk refers to the complete random selection of instances,
features and time points for the individuals of the initial_popk, solsT are the
solution triclusters already found and control refers to the process of checking for
no more than 20% of overlapping components.

Evaluation The evaluation operator is implemented by means of the fitness function.
This operator is very important when promoting the best individuals to the next
generation, as well as for selecting the final solution triclusters.

The bigTriGen fitness function is described in Formula 3.8.

Selection A tournament selection algorithm is chosen for this genetic operator. This
operator separates the individuals randomly into three groups. Each group has its
individuals sorted by fitness.

The individuals that promote from this selection operation to the next generation
are called parents. The number of parents to be selected from one generation to the
next one is defined by the control parameter Sel, which is a percentage value over
the total number of individuals In.

num_parents = ⌊In× Sel⌉ (3.10)

Therefore, the algorithm selects from each of the three groups created by the
tournament selection operator the individuals with the highest fitness function.
Specifically, the number of individuals to be chosen from each group is one third of
the total number of parents or num_parents.

Crossover This operator of the bigTriGen creates new individuals from the crossover of
the parents. The individuals that have been promoted from the selection operator
are called parents. Specifically, two parents create two new mixed individuals called
offspring or children.

The first child is composed of the instances of the first parent, the features of the
second parent and the time points of the first parent. The second child is created
in the opposite way. Therefore, considering P1 and P2 as the parents with their
corresponding components and CH1 and CH2 as the children, the following Formula
describes the implemented crossover operator:

P1 =
{
P I
1 , P

F
1 , P TP

1

}
and P2 =

{
P I
2 , P

F
2 , P TP

2

}

CH1 =
{
P I
1 , P

F
2 , P TP

1

}
and CH2 =

{
P I
2 , P

F
1 , P TP

2

} (3.11)

32 3.1. Triclustering

The number of crossovers num_crossover to be performed is established in the
following Formula:

num_children = In− ⌊In× Sel⌉ = In− num_parents

num_crossovers = ⌊num_children/2⌉+ (num_children mod 2)
(3.12)

Once all num_crossovers crossovers are computed, children are sorted by best
fitness function and num_children are selected. At this point, the population
consists of In individuals: num_parents promoted from the selection operator and
num_children from the crossover operator.

Mutation The individuals selected from the crossover operator, known as children, are
eligible to be mutated. The selection or not of a child to be mutated is controlled
by the percentage parameter Mut. Each child receives a random percentage value
probability_mut. Children with probability_mut less than Mut are mutated.

Mutation is performed by adding or removing a random instance, feature or time
point of the child. One of these six operations is computed. The operation is chosen
randomly. This alteration of the children is only performed if the maximum and
minimum number of instances, features and time points of the individual can be
conserved.

Depending on the purpose of the application of the algorithm, i.e, working with
contiguous or non-contiguous data, the mutation operator can also change an
existing instance, feature or time point to a random one, in that way, three more
operations can be performed.

The mutation operator returns the offspring that have not been mutated and the
children that have been mutated. The goal of this operator is to guarantee variability
for the following generations.

The individuals that promote to the next generation are the parents, that are the
chosen individuals from the selection operator, and the mutated and not mutated children,
that are the children obtained after the mutation operator.

3| Methodology 33

3.1.2.3. Validation of the yielded triclusters

When working with real datasets, the ground truth of the solutions found by the
bigTriGen is not known. A common procedure to evaluate the results of this type of
unsupervised learning algorithms is to measure the similarity of the data in a tricluster.
The TRIQ measure is the triclustering quality measure selected for the bigTriGen. This
measure is extensively discussed in [6].

TRIQ provides a quality measure that considers the similarity of the triclusters
patterns using a weighted normalization of the MSL angle value, denoted GRQ(Tk). It
is a quality measure of the graphic representation of a tricluster Tk using the multi slope
measure MSL (Formula 3.7):

GRQ(Tk) = 1− MSL(Tk)

2π
(3.13)

In addition, TRIQ takes into account the level of correlation of the time series of the
tricluster using weighted Pearson and Spearman correlation values. The TRIQ measure
of the tricluster Tk is described in the following Formula:

TRIQ(Tk) =
wgr ∗GRQ(Tk) + wpe ∗ PEQ(Tk) + wsp ∗ SPQ(Tk)

wgr + wpe + wsp

(3.14)

where GRQ(Tk) is the measure corresponding to the graphical representation of Tk and
PEQ(Tk) and SPQ(Tk) are the Pearson and Spearman correlation quality values of Tk,
respectively. The weighted parameters wgr, wpe and wsp refer to the GRQ, Pearson
correlation and Spearman correlation. These parameters are typically configured with 0.4
for the wgr and the remaining 0.6 distributed between the wpe and wsp.

Another way to validate the yielded triclusters produced from the bigTriGen for real-
world datasets is to perform a visual analysis of the patterns discovered over time. Pattern
behavior analysis should be performed by an expert in the type of data. Depending on
the type of data, other analyses can be carried out. For example, when working with
agricultural crops fields, it is very useful for the expert to create relationships between
the tricluster patterns, their specific area in the crop and the treatments that were applied
to it.

34 3.1. Triclustering

3.1.3 | STriGen
In this Section, a new online triclustering algorithm is presented. The algorithm

is called STriGen where the ’S’ stands for the streaming or online mode, ’Tri’ for
triclustering and ’Gen’ for its based genetic evolutionary heuristic. The objective of
STriGen is to find groups of similar behavioral patterns in three-dimensional streaming
datasets.

The STriGen addresses the streaming mode using the offline-online computational
approach. During the first phase, the algorithm creates a sketch model or summary
model of the historical data, without having to satisfy any of the streaming requirements.
The second phase is an online phase that starts whenever the offline model is computed.
During the online phase, flows of new data are continuously arriving to the model. These
flows of new data are called data streams. The triclusters of the offline model evolve
during the online phase keeping the model always updated and identifying and processing
outdated data effects, called concept drift.

The STriGen is built on Apache Spark 2.3.4 with HDFS file system on Hadoop 2.7.7.
The algorithm uses Apache Kafka 2.11 as streaming platform with a single pipeline and
the Kappa Architecture. An overview of the workflow of the offline-online phase of the
algorithm is illustrated in Figure 3.3. Once the offline phase is finished, kafka producers
start receiving online data. Producers publish the online data in the kafka topic where
a queue of data is created. The kafka consumers process the data in the queue using a
first-in first-out basis. Consumers feed the streams to the online phase of the STriGen.
Accurate real-time triclusters are obtained thanks to the developed online phase which
updates the current model. When there are no more data streams, producers publish a
specific message so that kafka consumers can understand the algorithm has to finish.

Creation of the offline model

M: Current modelxst

Online update of
the triclusters

M
 is

 u
pd

at
ed

Offline
data

Online
data

Kafka producers

Queue streams

Kafka consumers

Figure 3.3: Kafka architecture outline for STriGen algorithm.

3| Methodology 35

The two phases of the STriGen algorithm are described in Section 3.1.3.1 and 3.1.3.2.

3.1.3.1. Offline phase

The offline phase of the STriGen processes data in static or batch mode without
meeting the requirements of streaming algorithms. The offline phase follows the same
methodology of the bigTriGen algorithm, described in Section 3.1.2. Therefore, STriGen

takes into account the same control parameters, the same main actors (individuals and
population) and the same fitness function formula as bigTriGen.

The objective of the offline phase of the STriGen is to create a summary model of
the components of each mined tricluster. The natural selection process is implemented
by selecting for reproduction the individuals with the best fitness functions. The fitness
function uses the multi slope measure MSL defined in Formula 3.7. In addition, the
fitness function controls the size of the triclusters with respect to their instances, features
and time points, and the overlap of the triclusters. The complete description of the fitness
function can be found in Formula 3.8.

The genetic operators used to evolve the individuals of a population are: creation of
an initial population, evaluation, selection, crossover and mutation:

Initial population The STriGen algorithm starts by creating an initial population of
In individuals that are subsets of random instances, features and time points.

The creation of the individuals in the population is completely random for the first
generation. For the rest of generations, this offline phase creates a percentage of the
individuals randomly and the others are created taking into account the unexplored
areas of the previous solution triclusters.

This control of the overlapping individuals is slightly different from the one of the
bigTriGen. This minor modification causes the STriGen to include one more
control parameter called Ale. Ale is the percentage of individuals In that have
to be randomly created for the rest of the N − 1 generations. Therefore, 100-Ale
is the percentage of individuals to be created from the unexplored areas in the
solutions already found.

Evaluation Once a population is created, it is evaluated to measure the quality of each
of individual. The evaluation operator is the same as the one of bigTriGen and uses
the same fitness function defined in Formula 3.8.

Selection The selection operator is the tournament selection with the same methodology
as the one described for the bigTriGen. In summary, individuals are divided

36 3.1. Triclustering

randomly into three groups. The tournament selection promotes one third of In×Sel
individuals from each group, considering Sel a fraction of the population. The
promoted individuals are called parents and are those with the best fitness function.

Croosover The crossover operator of the STriGen includes a different approach from
that of the bigTriGen. It is implemented by means of a random one-point crossover
technique. This technique mixes the instances and features of the two selected
individuals or parents to create two new individuals or children. This mixing occurs
only at a specific index location that depends on a new percentage control parameter
Cross. The one-point crossover with the index location as loc is represented as:

P1 =
{
P I
1 , P

F
1 , P TP

1

}
and P2 =

{
P I
2 , P

F
2 , P TP

2

}

CH1 =
{
(i1_P1, ...,iloc_P1, iloc+1_P2, ..., in_P2),

(f1_P1, ..., floc_P1, floc+1_P2, ..., fh_P2), P
TP
1

}

and

CH2 =
{
(i1_P2, ...,iloc_P2, iloc+1_P1, ..., in_P1),

(f1_P2, ..., floc_P2, floc+1_P1, ..., fh_P1), P
TP
2

}

(3.15)

with P1 and P2 referring to the parents and CH1 and CH2 to the crossed individuals
or children. Each parent can have a different number of instances and features, but
the total number of samples is represented as n instances and h features. For
example, iloc_P1 is the instance at index loc of P1 and fh_P1 is the last feature of
the first parent. Time points are not crossed, as the sketch model has to provide a
tricluster solution with contiguous data in time to evolve it in real-time.

Mutation The mutation operator is performed by inserting, removing or changing
instances, features or time points, following the same methodology as the one
described for the bigTriGen.

Algorithm 3.1 represents the methodology of the offline phase considering the control
parameters N and G defined by the user where N is the number of triclusters to be mined
and G the number of generations of the evolutionary process.

3| Methodology 37

Algorithm 3.1 Offline phase
1: for k = 1 to N do
2: Initialize population
3: Evaluate population
4: for g = 1 to G do
5: Select individuals
6: Crossover individuals
7: Mutation individuals
8: Evaluate new population
9: g ← g+1

10: end for
11: Select individual that minimizes the fitness function
12: Tk is made up of the components of the selected individual
13: k ← k+1
14: end for
15: return Summary model M with triclusters components

In general, the offline phase of the STriGen is very similar to the bigTriGen

methodology. However, two main differences should be noted. On the one hand, their
aims are different. The aim of the STriGen is to provide an accurate sketch or summary
model to build a good insight for the online or streaming phase of the algorithm. The
bigTriGen is a complete algorithm by itself and, therefore, aims to generate the best
triclustering model for its data. On the other hand, triclusters’ time points in the sketch
model of the STriGen offline phase have to be continuous. In addition, they have to take
into account the sliding window parameter described in the next Section 3.1.3.2. This
parameter focuses on keeping the triclusters with the most recent w samples, generating
up to date triclusters.

38 3.1. Triclustering

3.1.3.2. Online phase

The online phase starts when the offline summary model is computed. From this
time onward, data streams may start to arrive. A stream data is a set of I instances and
F features for a single time point, considering I and F as the same values of the offline
dataset D3D (Formula 3.3). The stream sample at time z is stz and consists of I instances
at time z and F instances at time z. Therefore, a stream stz can be defined as:

stz =
{
(i1, ..., iI)z, (f1, ..., fF)z

}
(3.16)

As streams can be infinite, the model uses a sliding window of w data that defines
the w most recent streams samples to consider. w is an integer number between 2 and the
total number of streams at the current moment z. Figure 3.4 depicts the case where w is
3. In this illustration, only the 3 most recent streaming samples are taken into account
at time z.

(a) Stream sample (b) Time window

Figure 3.4: Representation of streams.

Considering the sliding window, each time a new stream arrives at the time instant
z, the first task of the online phase is to remove all triclusters components that include
samples up to the instant point z−w−1. This is a very useful and common procedure for
machine learning techniques in streaming mode. Thus, the tricluster contains the most
recent data at any time.

In order to provide good quality triclusters in real time, triclusters have to be updated
quickly during the online phase. The following two sections are presented to achieve this.

3| Methodology 39

The first one performs the incremental update of the model. The second one describes
the procedure for detecting a concept drift and the update of the involved tricluster
components. In this way, the model is always formed by the triclusters adapted to the
most recent w streams without recomputing a whole batch algorithm.

The quality of each tricluster is evaluated in real-time to have a measurement of
its behavior pattern evolution. This evaluation is calculated using the graphical quality
measure GRQ of a tricluster, defined in Formula 3.13. The GRQ is part of the TRIQ

validation measure. A tricluster has higher graph quality as smaller the MSL value
is, which is minimized by the fitness function. Therefore, the GRQ(Tk) metric of the
tricluster Tk can be a value between 0 and 1, where 1 identifies a Tk with the highest
graph quality, which is the target to be pursued in this algorithm. This quality metric
helps to identify whether a tricluster needs to include new concepts, i.e., instances or
features that can identify a concept drift, or not. In the case that this happens, previous
samples could be removed from the tricluster to add those that are more recent and
provide more quality information.

3.1.3.2.1. Incremental learning

The incremental learning approach of the STriGen makes the model evolve and
include knowledge from the new stream sample considering, at most, the previous z

streams.

Four different scenarios are performed and evaluated with the corresponding GRQ

value of the new tricluster. The model selects the option with the highest GRQ value
that corresponds to the best graphical quality of each evolved tricluster. These updates
help the model to discover new components that may be of interest to the tricluster.

The first two possible updates of the incremental learning approach are related to
the already existing components in the tricluster Tk for the sliding window w. The other
two possible updates include the mutation operator that allows the tricluster to evolve by
deleting, adding or changing instances or features.

The first option to update the model refers to the case in which the tricluster has as
it most recent time instant the point z − 1, it is: Tk includes samples from the previous
stream. In this case, the update is performed including for the new stream at time z the
same existing instances and features in Tk, considering the window of streams w. This
update is illustrated in Figure 3.5a.

The second possible update is a particular case of the first one. This update is

40 3.1. Triclustering

performed whenever the tricluster does not include the instant z − 1 in its components.
Two options are carried out: either by adding only the next instant point of Tk or by
adding all the instant points until z. Figure 3.5b shows an example of this update where
the sliding window is 5, so at most 5 previous streams can be included in the tricluster
components. In the first option, the tricluster contains only three time points, i.e., z − 4

to z− 2. The second option includes all possible w time points, i.e., z− 4 to z, as did the
first possible update depicted in Figure 3.5a.

The third and fourth possible updates execute a random mutation operator. This
operator is performed to avoid obtaining a local optimum instead of the desired global
optimum, due to the fact that the offline phase is a NP hard problem and so the first two
updates might not be enough. The mutation operator is applied on the Tk obtained from
the above-mentioned updates. The genetic operator deletes, changes or adds instances or
features to Tk randomly. The STriGen firstly chooses the type of mutation randomly:
delete an existing sample, change an existing sample to a new sample or add a new
sample. The called sample can be an instance or a feature. The second random choice of
the STriGen consists of randomly selecting the specific instance or feature in which the
mutation is performed. It is important to take into account the following requirements:

• If the deleting option on the feature fz is randomly selected, the z − th feature is
removed from all the instances and time points of the existing tricluster Tk.

• If the adding option on the feature fz that is not in the tricluster is randomly
selected, the z− th feature is added for all instances and time points of the existing
tricluster Tk.

• For the changing option, the delete option is executed first and then, the add one.

The methodology of instance mutation is the same as that of the features but considering
the instance iz. These two options are illustrated in Figures 3.5c and 3.5d for feature
mutation and instance mutation respectively.

In summary, if the last point in the previous tricluster is z − 1, there will be 2
triclusters to evaluate. The first one will be the result of option number 1 and the second
one will be the one resulting from the mutation applied on it. However, if the last point
in the previous tricluster is not z − 1, there will be 4 triclusters to evaluate. These will
be the 2 resulting from update number 2 and the mutation of each of them.

The incremental learning approach of the stream z ends up evaluating the possible
triclusters with the GRQ measure. The tricluster that maximizes GRQ is selected and
the model is updated with its components. This process is performed for each of the N

3| Methodology 41

triclusters to find.

(a) Processing of new stream when the last
time point in the previous tricluster is z − 1.

(b) Processing of new stream when the last time
point in the previous tricluster is not z − 1.

(c) Feature mutation process. (d) Instance mutation process.

Figure 3.5: Examples of the updating operations during the online phase.

Algorithm 3.2 represents the methodology of the incremental learning of the
STriGen. The statements within the if-condition refer to the second option presented.
The sentences within the else-condition identify the case process in which the last time
point of the tricluster is z − 1, i.e., the first possible option explained.

42 3.1. Triclustering

Algorithm 3.2 Incremental update of the triclusters.
1: z ← current time
2: z-t ← last time of the tricluster TRI

3: if z − t != z-1 then
4: newTRI1 ← add(z − t+ 1,TRI)
5: newTRI2 ← mutate(newTRI1)
6: newTRI3 ← add([z − t+ 1,...,z],TRI)
7: newTRI4 ← mutate(newTRI3)
8: [bestTRI,bestGRQ] ← evaluate(newTRI1,newTRI2,newTRI3,newTRI4)
9: else

10: newTRI1 ← add(z,TRI)
11: newTRI2 ← mutate(newTRI1)
12: [bestTRI,bestGRQ] ← evaluate(newTRI1,newTRI2)
13: end if
14: return Updated tricluster with bestTRI and bestGRQ

3.1.3.2.2. Concept drift

Concept drift occurs whenever an existing concept changes or a new one appears
in the incoming stream data. In the STriGen online concept drift is detected with the
abrupt decrease of the quality measure GRQ. Its meaning is that tricluster components
are outdated or obsolete.

Two control parameters must be set prior to the start of the STriGen execution for
the algorithm to identify and resolve the concept drift in real-time. These two parameters
are minGRQ and numIt. The first is a threshold to identify an abrupt decrease in the
GRQ as a concept drift. The second is the maximum number of iterations the tricluster
can undergo to adjust to the new concept.

In case the GRQ of the current tricluster is less than minGRQ, a concept drift is
identified in the tricluster. In such a scenario, the update of the incremental learning
approach is not enough. The parameter GRQ allows STriGen to enter a loop for a
maximum of numIt iterations or until the GRQ of the current tricluster is greater than
minGRQ. A mutation is performed at each iteration and the evaluation of the GRQ is
made afterwards.

Therefore, the STriGen adjusts rapidly to small changes but also to abrupt changes
by detecting new tricluster components or by making the current ones disappear. This
update is described in Algorithm 3.3.

3| Methodology 43

Algorithm 3.3 Additional updating.
1: iter ← 0
2: while currentGRQ < minGRQ and iter < numIt do
3: TRI ← mutate(TRI)
4: currentGRQ ← evaluate(TRI)
5: iter ← iter+1
6: end while
7: return TRI

The complete online phase of the STriGen is in Algorithm 3.4.

Algorithm 3.4 Online phase.
S ← {}
while new data stream at time z do

for each TRI in current model do
TRI ← remove(z − w − 1,TRI)
[newTRI, currentGRQ] = updating(TRI) //Algorithm 3.2
if currentGRQ<minGRQ then

updatedTRI ← additionalUpdating(newTRI) //Algorithm 3.3
else

updatedTRI ← newTRI
end if
S ← S

⋃
updatedTRI

end for
end while
return Set of updated triclusters S

An overview of the online phase for a tricluster is illustrated in Figure 3.6. The
workflow is executed N times in parallel for each tricluster

{
T1, ..., TN

}
. The online

phase continues to run until no more stream data stz arrives.

3.1.3.3. Validation of the yielded triclusters

The validation of the triclusters solutions found by the STriGen is performed with
the analysis of the evolution over time of the GRQ(Tk) and the TRIQ(Tk), defined in
Formulas 3.13 and 3.14 respectively. Given that this is an online algorithm, it is of interest
to study the quality metrics throughout time and not only at the end of the execution, as
is case for the bigTriGen batch algorithm. Therefore, further analysis can be performed
on the model update for small and large changes in the streams.

44 3.1. Triclustering

Offline phase

Tricluster

Sliding window:
w most

recent streams

Evaluate individuals

Select best
individual:

currentGRQ

No

Update tricluster
with the components
of the best individual

Yes

currentGRQ <
minGRQ

iter = 0

Yes

NocurrentGRQ <
minGRQ AND

iter<numIt

Incremental
learning

Mutation

Evaluate individual:
currentGRQ

iter ++

Concept drift
detected

Continuous streaming
data arriving

stz

Update tricluster
with individual's

components

Figure 3.6: Overview of the STriGen online phase for one tricluster.

3| Methodology 45

3.2 | Forecasting
In this Section, a novel time series algorithm for real-time forecasting called

StreamWNN is presented. An overview of the developed methodology is in Section
3.2.1. The algorithm is composed of an offline phase followed by an online phase, defined
in Section 3.2.2 and Section 3.2.3 respectively.

3.2.1 | Problem statement
The traditional K-nearest neighbor (KNN) is a well-known machine learning

algorithm designed to predict the class of a sample by taking into account the classes
of its K closest instances. This algorithm can be applied in classification and regression
models, depending on the data type of the classes.

The traditional KNN algorithm is usually applied to time series problems. An
instance of a time series is represented by its past w features and its next h classes, with
w standing for past window and h for prediction horizon. When working with time-
dependent data, it is important to keep the data chronologically ordered. Therefore, a
time series Xt can be defined as a set of chronologically ordered values as follows:

Xt = {(x1, y1), ..., (xT , yT)} xi ∈ Rw yi ∈ Rh (3.17)

where the time series Xt is transformed into T instances composed of features and classes.
The i− th instance is represented as (xi, yi) with xi referring to the w past features and
yi to the next h classes. The traditional KNN algorithm applied to time series computes
the forecast ŷi of the next h classes by considering the K nearest instances to xi in terms
of distance.

The KNN methodology focuses on the idea of finding similar patterns in the data.
This approach is used to develop a new time series forecasting algorithm that works in real-
time. This new algorithm is denoted StreamWNN which stands for Stream Weighted
Nearest Neighbors, as it works in stream processing by providing real-time forecasts and
is based on a weighted version of the KNN .

The StreamWNN addresses the streaming mode using a two-phase approach, i.e.,
an offline phase followed by an online phase. The sole purpose of the first phase is to
provide a distributed big data model based on the KNN algorithm. The offline phase
does not have to satisfy any of the requirements of algorithms running in real-time. All

46 3.2. Forecasting

these conditions must be fulfilled during the second phase of the StreamWNN . The
online phase begins when the offline base model is computed. From this moment on, new
incoming instances arrive in real-time. First, the streaming features of the st−th instance
xst arrive and the StreamWNN performs the forecast of the next h classes in streaming
obtaining ŷst. Data streams do not stop arriving. Once the actual h classes yst arrive,
an error metric is calculated between the real value and the prediction. The online phase
is repeated as long as new data continues to be received. The model can be updated in
two different ways: following an incremental learning approach using an online buffer and
including stream novelties in the model. These two options are detailed in Section 3.2.3.1
and in Section 3.2.3.2 respectively.

The proposed algorithm is built on Apache Spark 2.3.4 and uses the HDFS file system
in Hadoop 2.7.7 and the Kappa Architecture in Apache Kafka 2.11 as streaming platform,
i.e., a single pipeline is specifically designed for the job. Figure 3.7 illustrates the kafka
architecture for the StreamWNN algorithm. Consumers are subscribed to the topics
where the kafka producers publish the new incoming data streams. The queue in the
topics follows a first-in-first-out basis so that all the streams are processed. When no
more data comes online, the producer publishes a specific message which makes the kafka
consumers understand that the algorithm is finished.

Creation of the offline model

Current model: Mxst

Real-time forecasting: yst

yst

M
 is

 u
pd

at
ed

^

Offline
data

Online
data

Kafka producers

Queue streams

Kafka consumers

Error of the forecast: MAPEst

Figure 3.7: Outline of the kafka architecture for the StreamWNN algorithm.

A flow diagram of the whole StreamWNN methodology is depicted in Figure 3.8.

3| Methodology 47

Set of patterns (setp) and
set of neighbors (setn)

from historical offline data

Creation of the offline model

Current model: MContinuous streaming
data arriving

Find closest pattern to xst in M: xmin
Farthest neighbor of xmin in M: nK

xst

Real-time forecasting: yst

Error of the forecast: MAPEst

No

yst

Yes
No

Instant of time t
 has passed

M is updated incrementally
with data in B

Yes

No

MAPEst > lowthr

Unknown pattern

NoYes

MAPEst > upthr

Anomaly
detected

M is updated

xst, yst added to M
as novelty

Novelty
detected

Yes

d(xst, xmin)
<

d(xmin, nK)

Add xst to the
online buffer: B

Alarm is triggered

Continue receiving
data streams

^

Annotations:
- Offline model is the base model
- upthr and lowthr are error thresholds
- Time t can be daily/monthly/quarterly
- Algorithm finishes when there are not
more streams of data

Figure 3.8: Overview of the whole methodology of the StreamWNN algorithm.

48 3.2. Forecasting

3.2.2 | Offline phase
The first phase of the StreamWNN is the offline phase. In StreamWNN the model

is created only once during its offline phase and in a distributed and efficient way in batch
processing. The next phase of the algorithm deals with streaming data using this offline
base model which is computed with historical data. Considering Xhistorical as the time
series of the historical data, Xhistorical is divided into 70% and 30% in a chronologically
ordered manner. The first split forms the set of neighbors (setn) while the remaining 30%
of the data forms the set of patterns (setp). This data separation is represented as:

Xhistorical = {(x1, y1), ..., (xH , yH)} = {(setn), (setp)} xi ∈ Rw yi ∈ Rh

setn = {(x1, y1), ..., (xN , yN)} xi ∈ Rw yi ∈ Rh

setp = {(xN+1, yN+1), ..., (xP+N+1, yP+N+1)} xi ∈ Rw yi ∈ Rh

(3.18)

where (xP+N+1, yP+N+1) is the same as (xH , yH) since setp consists of P instances, setn
consists of N instances and there are H instances in Xhistorical. Instances are generated
following a sliding window for the classes, i.e., there are no gaps between any of the
yi. Figure 3.9 illustrates an example of the sliding window with 100 time points as the
number of values in the past window or w, and 50 time points for the next horizon classes
or h. In the illustrated example, x1 covers {x1, ..., x99} and y1 covers {x100, ..., x149}, x2

covers {x50, ..., x149} and y2 covers {x150, x199} and x3 covers {x100, ..., x199} and y2 covers
{x200, x249}.

Figure 3.9: Sliding window for time series of the StreamWNN algorithm

The offline model is based on the traditional K-nearest neighbor methodology. The
offline part of the StreamWNN creates a model in which each instance of the setp is
associated with its K nearest instances from the setn. The euclidean distance is the

3| Methodology 49

distance metric selected to quantify how close two features are:

d(xi, xt) =

√√√√
|w|∑

l=1

(
xi(l)− xt(l)

)2

(3.19)

where xi(l) is the l − th value of the i− th feature of the set of patterns setp and xt(l) is
the l value of the t− th feature of the set of neighbors setn. The K closest features xt in
setn of the xi are included in the model. Therefore, considering that the setp consists of
P instances, the model has P unique patterns samples. It may happen that not all series
in the setn are in the model since some of them may not be the nearest neighbor of any
of the P instance patterns in the setp.

Once the K closest neighbors of each pattern xi are found, the prediction of its next
classes yi is performed taking into account the classes of the K neighbors. The Formula
to calculate the offline predictions is the following:

ŷi(l) =
1∑K

j=1 αj

K∑

j=1

αj

(
ynj

(xi)(l)
)

1 ≤ l ≤ h (3.20)

with ynj
(xi)(l) representing the l − th class value of the j − th neighbor of xi and αj

defining the inverse squared euclidean distance between xi and its j− th neighbor xnj
(xi):

αj =
1

d
(
xi, xnj

(xi)
)2 (3.21)

The offline model is defined as:

M =

〈(
xi, yi

)
,

〈(
xn1(x

i), yn1(x
i)
)
, ...,

(
xnK

(xi), ynK
(xi)

)〉
〉

(3.22)

where (xi, yi) refers to the i− th instance from the setp and (xnj
(xi), ynj

(xi)) to its j− th

instance neighbor from the setn.

With the offline predictions ŷi, an average error metric of the performance of the
model can be computed. The actual next classes yi of xi are known since the offline model
works in batch processing. The error metrics used are the Mean Absolute Percentage
Error MAPE and the Mean Absolute Error MAE. These metrics are calculated for each

50 3.2. Forecasting

sample in the model.

MAPEi =
1

h

h∑

l=1

∣∣∣∣∣
yi(l)− ŷi(l)

yi(l)

∣∣∣∣∣× 100 (3.23)

MAEi =
1

h

h∑

l=1

∣∣∣yi(l)− ŷi(l)
∣∣∣ (3.24)

Once the offline model is created, MAPEoffline and MAEoffline are computed as the
average of all MAPEi and MAEi in the model.

The offline phase is represented in Algorithm 3.5.

Algorithm 3.5 Offline phase
1: w ← Window of past features
2: h ← Prediction horizon or next values to predict
3: K ← Number of neighbors to select
4: distances ← []
5: M ← []
6: for each xi in setp do
7: for each xt in setn do
8: distances ← add(distances, d(xi, xt));
9: end for

10: < (xn1(x
i), yn1(x

i)), ..., (xnK
(xi), ynK

(xi)) > ← K_smallest(distances, K)
11: M ← add(M , < (xi, yi), < (xn1(x

i), yn1(x
i)), ..., (xnK

(xi), ynK
(xi)) >>)

12: ŷi ← predict(M ,xi)
13: MAPEi ← MAPE(yi, ŷi)
14: MAEi ← MAE(yi, ŷi)
15: end for
16: MAPEoffline ← mean(MAPEi)

17: MAEoffline ← mean(MAEi)

18: return Offline model M , MAPEoffline, MAEoffline

3| Methodology 51

3.2.3 | Online phase
The second phase of the StreamWNN starts when the offline model is computed.

From this moment on, the algorithm can receive flows of data that must be processed in
real-time to obtain forecasts as fast as possible. Flowing data or streams are published in
kafka topics where a queue is created following the first-in-first-out criterion. The kafka
consumer collects groups of features (w instances) taking into account the sliding window
requirement for the classes. Thus, the past window of the st − th streaming instance is
xst.

Online predictions of the h next classes of xst are performed considering the current
model. Distances between the incoming stream xst and all the P feature patterns xi in
the model are calculated. The stream is associated only with its closest xi in the model,
which is called xmin from now on.

xmin = arg min
xi∈M

d(xi, xst) (3.25)

Online predictions ŷst are calculated taking into account two components. The first
one is the classes of its nearest pattern ymin. The second component is the classes of the
neighbors of xmin in the model. This last component can be represented as ynj

(xmin) for
the j − th neighbor of xmin. The complete online forecast formula is described as:

ŷst(l) =
1∑K

j=1 αj + αmin

×
(

K∑

j=1

αj

(
ynj

(xmin)(l)
)
+ αmin

(
ymin(l)

))
1 ≤ l ≤ h

(3.26)

with αmin referring to the inverse squared euclidean distance between xmin and xst:

αj =
1

d
(
xmin, xst

)2 (3.27)

The consumer continues to receive data streams and collects them. The actual classes
yst are the next h samples received after xmin. The online error metrics MAPEst and
MAEst are computed following Formula 3.23 and Formula 3.24 respectively, with yst and
its prediction ŷst. When no more streams are available, the online phase ends. Prior to
the end of the algorithm, the average MAPEonline and MAEonline metrics are performed.

When working with data streams, new behaviors are likely to appear in the data.

52 3.2. Forecasting

Data evolves over time and therefore the model must adapt and incorporate these new
behaviors to produce accurate responses. There are four different types of implementations
of the online phase of the StreamWNN : (1) Do not update of the model, (2) Update
the model following an incremental learning approach, (3) Add novelties to the model,
(4) Update the model with incremental learning and add novelties into the model.

In the first implementation the model remains the same as the one obtained from
the offline phase. The second implementation updates the neighbors

(
xnj

(xi), ynj
(xi)

)
of

the model with streaming data. This implementation is described in Section 3.2.3.1. The
third implementation discovers data that behaves differently compared to the samples
in the model. This option identifies anomalies in the streaming data that may trigger
an alarm. The whole procedure for identifying novelties and anomalies can be found in
Section 3.2.3.2. These two implementations can be computed at the same time in order
to take advantage of both updates.

The online part of the StreamWNN is in Algorithm 3.6.

Algorithm 3.6 Online phase including neighbor updating
1: M ← Offline model from Algorithm 3.5
2: distances ← []
3: for each xst that arrives do
4: for each xi in M do
5: distances ← add(distances, d(xi, xst))
6: end for
7: xmin ← K_smallest (distances, 1)
8: dmin ← d(xmin, xst)
9: ŷst ← predict (M ,xst)

10: MAPEst ← MAPE(yst, ŷst)
11: MAEst ← MAE(yst, ŷst)
12: M ← Check if M can be updated with Algorithm 3.7 and 3.8
13: end for
14: MAPEonline ← mean(MAPEst)
15: MAEonline ← mean(MAEst)
16: return updated M model, forecasts ŷst, MAPEonline and MAEonline errors

3| Methodology 53

3.2.3.1. Incremental learning

Typically in batch processing each time a change in the data distribution is discovered,
the entire model is trained again to include knowledge of this new trend. However, in
stream processing a complete retraining of the model is not possible since the algorithm
has to provide adequate and real-time responses. Incremental learning is a machine
learning paradigm that continuously learns from incoming data streams. In other words,
it does not assume that all the patterns that can provide information to generate an
accurate model are in the offline historical data. The incremental learning setting of
the StreamWNN detects different behaviors in the data from those already included in
the model and adds these new distributions of data to the current model incrementally.
The forecasts provided by the StreamWNN incremental learning update considers the
knowledge included in the incoming streams.

The StreamWNN update during its online incremental learning approach focuses
on the fitting of the associated neighbors of each instance in the model, i.e., the j − th

neighbor (xnj
(xi), ynj

(xi)) of the i− th instance (xi, yi) in the model is fitted. The model
modifies the neighbors of (xi, yi) but always keeping K associated instances for each of
them. Therefore, it can be said that the model is internally updated since it does not
increase the number of instances but only modifies the ones that it had before. The
incremental learning is performed according to the idea that there may be new data
distributions in the streams that are better neighbors of (xi, yi) than the already existing
neighbors in the model (xnj

(xi), ynj
(xi)). Neighbors of the model have a great influence

on the performance of online forecasts.

The methodology of the incremental learning approach for the StreamWNN follows
the same steps as the ones mentioned in the general online phase without updates, i.e.,
xst data representing the st− th feature instance from the stream flow is collected and its
online forecast ŷst is performed. Once the forecast is obtained, a condition involving the
distances is checked. Distances are computed as:

dmin = d(xmin, xst)

dK = d(xmin, xnK
(xmin))

(3.28)

where xmin is the nearest feature pattern in the current model (see Formula 3.25) of xst

and xnK
(xmin) is the farthest (K) neighbor of xmin in the current model.

In the case where dmin is less than dK , it can be understood that the incoming data
xst is a more accurate neighbor than xnK

(xmin). Changing the latter neighbor to xst

54 3.2. Forecasting

provides more accurate online forecasts. Whenever this condition is satisfied, a buffer of
online data B is filled as follows:

B =
{
(xmin, xst, dmin)

}
(3.29)

The online buffer is filled as many times as necessary. However, the model is updated
with knowledge in B only when a specific requirement is satisfied. This requirement must
be chosen prior to the execution of StreamWNN and depends on the data used. It can
be a time-based or a threshold-based option. For example, if the selected option is a
daily incremental learning, the update based on the buffer B will be performed every day.
The buffer will be checked after collecting all the data for a day and, if the buffer is not
empty, the incremental learning update will be performed. The requirement that depends
on a threshold is usually set considering the error metrics of the offline model. In this
case, whenever the ŷst provides a larger error than the defined threshold, the incremental
learning update is carried out with the instances in the buffer.

Whenever the specific requirement is met, the StreamWNN checks the buffer B and
the model. For each i− th instance of the model, all its neighbors in the model and the
possible neighbors in the buffer are collected:

neighbors_xi = {xn1(x
i), ..., xnk

(xi)} ∪ {xst(xi) ∈ B} (3.30)

where the first part of the union identifies the neighbors of xi in the model and the second
part are the streams that are in B associated with xi. Since each instance in the model
needs to have K neighbors, the K neighbors_xi with the smallest distance to xi are the
new neighbors. In other words, the model is updated to include the closest K neighbors
of xi.

The following Formula is an example of the 40 − th instance of the model that has
been updated incrementally. The streams xst10 and xst5 were in the buffer B associated
with x40. Its K=3 closest neighbors_x40 ordered from closest to farthest are: xst10 , its
first historical neighbor xn1 and xst5 :

M =

〈(
x40, y40

)
,

〈(
xst10(x

40), yst10(x
40)
)
,
(
xn1(x

40), yn1(x
40)
)
,
(
xst5(x

40), yst5(x40)
)〉
〉 (3.31)

3| Methodology 55

The methodology of the incremental learning approach of the StreamWNN is in
Algorithm 3.7.

Algorithm 3.7 Neighbor Updating
1: updatemoment ← select(time-based or threshold-base option)
2: B ← []
3: distancesM∪B ← []
4: if dmin < d(xmin, xnK

(xmin)) then
5: B ← add(B, < xmin, xst, dmin >)

6: if updatemoment and B not empty then
7: neighbors_xmin ← {xn1(x

min), ..., xnk
(xmin)} ∪ {xst(xmin) ∈ B}

8: distancesM∪B ← add(distancesM∪B,d(xmin,neighbors_xmin))
9: new_neighbors_xmin ← K_smallest(distancesM∪B,K)

10: M ← update(M , < (xmin, ymin), new_neighbors_xmin>)
11: end if
12: end if
13: return updated M model

56 3.2. Forecasting

3.2.3.2. Novelties and anomalies

Novelties and anomalies are highly correlated terms that identify patterns different
from the known concepts of the model. Although novelties and anomalies can be classified
together as "unknown patterns", each identifies a different behavior of the data and should
therefore be treated independently. Novelties and anomalies in data streams are very
interesting to study. Actions taken in real-time thanks to their identification, can modify
the course of a given execution and avoid erroneous operations.

In StreamWNN a xst is considered an unknown pattern if its error obtained
between the forecast ŷst and its actual class yst is greater than a defined threshold. This
identification follows an unsupervised learning approach, since the dataset has time series
data without any label concerning the identification or not of an unknown pattern. The
only way to determine if an unknown pattern is correctly identified is to monitor the
evolution of the error metric over time and to check the identified patterns in real-time.

When an unknown pattern is identified, the model performs a different approach
depending on an error-based threshold. Therefore, two thresholds are set prior to the
StreamWNN execution to identify novelties and anomalies. These two thresholds are
an upper one (upthr) and a lower one (lowthr). The values of these thresholds are defined
after an analysis of the errors obtained once the offline model has been computed. Thus,
they change depending on the dataset used.

Anomalies are defined as data that do not conform to the expected behaviors of the
incoming data. One way to identify anomalies using k-nearest neighbors based models
is to identify whether a pattern occurs far from its closest neighbors [3]. Following this
assumption, in StreamWNN anomalies are stream data that get a large error. The
meaning of a large forecast error is that its behavior is very different from the expected
one. Therefore, xst is identified as an anomaly if the online error of its h future values is
larger than upthr. The detection of an anomaly triggers a real-time alarm in the algorithm.
This alarm can influence the modification of the following incoming forecasts manually
by the user.

On the other hand, novelties are unknown patterns that represent new and emergent
patterns in the data. Novelties should be added to the model since data with similar
behavior is expected to appear in the input streams. Novelties are identified when an
instance gets an error greater than lowst but less than upthr.

The classification of an unknown pattern as an anomaly or a novelty is briefly
described in the conditional Formula 3.32.

3| Methodology 57

xst =

Anomaly if ŷst > upthr

Novelty if lowthr < ŷst < upthr

Not an unknown pattern otherwise

(3.32)

Upon identification of a novelty the model is updated by adding (xst, yst) as a new
instance. Its K neighbors are selected as its K closest instances from the entire offline
historical data, i.e., both setp and setn. The idea behind this is that new streaming
behaviors can include neighbors that were not selected as K closest neighbors for any of
the offline patterns. The model is said to be externally updated with novelties because
its dimensions increase.

An update representation of the model M composed of p instances and with xst

identified as novelty is:

M =

〈

〈(
x1, y1

)
,

〈(
xn1(x

1), yn1(x
1)
)
, ...,

(
xnK

(x1), ynK
(x1)

)〉
〉
,

...,
〈(

xp, yp
)
,

〈(
xn1(x

p), yn1(x
p)
)
, ...,

(
xnK

(xp), ynK
(xp)

)〉
〉
,

〈(
xst, yst

)
,

〈(
xn1(x

st), yn1(x
st)
)
, ...,

(
xnK

(xst), ynK
(xst)

)〉
〉

〉

(3.33)

Algorithms 3.8 and 3.9 describe the identification of unknown patterns in the stream
incoming data and the methodology for updating the model with novelties, respectively.

58 3.2. Forecasting

Algorithm 3.8 Unknown patterns identification
1: M ← Current model
2: lowthr ← select
3: upthr ← select
4: for each xst that arrives do
5: ŷst ← predict(M, xst) (see Equation 3.26)
6: MAPEst ← MAPE(yst, ŷst)
7: if MAPEst > lowthr then
8: xst is an unknown pattern
9: if upthr > MAPEst then

10: xst is a novelty
11: M ← Add novelty to the model with Algorithm 3.9
12: else
13: Anomaly identification
14: Alert created by the model
15: end if
16: end if
17: end for
18: return updated M model and identification of unknown patterns

Algorithm 3.9 Model update with novelties
1: M ← Current model
2: distances ← []
3: setoffline ← setn ∪ setp

4: xst ← Novelty
5: for each xi in setoffline do
6: distances ← add(distances, d(xst, xi))
7: end for
8: {n1(x

st), ..., nK(x
st)} ← K_smallest(distances, K)

9: M ← add(M , < (xst, yst), < (xn1(x
st), yn1(x

st)), ..., (xnK
(xst), ynK

(xst)) >>)
10: return updated M model with novelty

The same execution of the StreamWNN can perform the incremental learning
approach and the novelties approach. The first approach updates neighbors in the model
and the second approach identifies anomalies in real-time and updates the model with
novelties. The first one is an internal update and the second one is an external update.

59

4| Applications

The application of machine learning algorithms to real datasets can improve our
quality of life. This is one of the main goals of this dissertation. The three new

machine learning algorithms described in Chapter 3 are applied to real datasets and their
results are presented in this Chapter. On the one hand, the application of the bigTriGen
and STriGen triclustering algorithms to Smart Cities and medical projects is summarized
in Section 4.1. On the other hand, the results of the StreamWNN forecasting algorithm
for the Spanish energy electricity demand are presented in Section 4.2.

The complete results achieved in each of these applications can be consulted in the
scientific articles published during the PhD program.

60 4.1. Triclustering applications to Smart Cities and medicine

4.1 | Triclustering applications to

Smart Cities and medicine
This Section describes the applications made with bigTriGen and STriGen

algorithms. In particular, Section 4.1.1 describes the application of bigTriGen to precision
agriculture. Section 4.1.2 presents the application of the bigTriGen to find seismogenic
triclusters. Regarding the STriGen, Section 4.1.3 describes the application of this
algorithm to real environmental sensor data. Section 4.1.4 summarizes the results found
for the application of STriGen to medical images data. These applications are described
in detail in the scientific papers [2, 13, 14, 16, 17].

4.1.1 | Precision agriculture
This Section describes the application of the bigTriGen algorithm to two different

crop image datasets using vegetation indices to improve precision agriculture. In addition,
the parameters used and the performance of the image set are discussed.

4.1.1.1. Datasets description

The paradigm of agriculture has been evolving in recent decades. Crops are being
studied and treated following a site-specific management which has given rise to the
concept of precision agriculture. Not managing the crop in an uniform way can provide
both economic and environmental advantages. Effective implementation of precision
agriculture requires knowledge and characterization of spatial variability within the field.

The analysis of a field area by means of vegetation indices allows the identification
of different characteristics that are often invisible to the naked-eye. These indices are
algebraic combinations of the measured canopy multispectral reflectance of different
wavelength bands. This reflectance can be detected remotely using aerial or satellite
imagery. They allow the evaluation of both quantitative and qualitative measures of
crops such as cover, vigor, growth, type of quality. There are several famous vegetation
indices. Each index provides different information about the crop.

Two different crops located in Baixo Alentejo, Portugal, are studied using different
vegetation indices. The bigTriGen provides interesting triclusters for each of the analyzed
sites. The first crop is a 63.82 ha maize plantation and the second is a 5.15 ha vineyard

4| Applications 61

crop.

The maize plantation is monitored between April 2018 and September 2018,
coinciding with the sowing and harvesting of corn crops. A total of nineteen satellite
images are extracted from the Sentinel 2 Mission with a time interval between them of
five, ten and fifteen days. In this experimentation, the Normalized Differential Vegetation
Index NDV I is used. This index provides a value between 1.0 and -1.0 related with
the content of the studied vegetation. The 1.0 value corresponds to denser and healthier
areas, while -1.0 represents the poorer and most stressed areas. Figure 4.1 represents
three sample images of the NDV I values in the research site. The NDV I calculation
depends on the near-infrared band NIR and the band for the visible or Red regions. Its
formula is:

NDV I =
NIR−Red

NIR +Red
(4.1)

(a) June 24th 2018 (b) September 2nd 2018 (c) October 7th 2018

Figure 4.1: NDV I samples for the studied maize crop

The second crop studied with bigTriGen is a vineyard crop. The algorithm provides
precision viticulture triclusters. The area is monitored during 2018, 2019 and 2020
from May to October which are the months corresponding to the vineyard session.
Image data are extracted from the Sentinel 2 Mission using the QGIS software. In
this experimentation, four more indices are analyzed along with NDV I. The Soil-
Adjusted Vegetation Index SAV I and the Enhanced Vegetation Index EV I provide some
improvements to the NDV I index for this particular type of crop. They introduce a
correlation factor L for soil brightness. The EV I also includes two more coefficients C1

and C2 for the atmospheric resistance and a Blue band. In addition, the Moisture Strees
Index MSI and the Green Normalized Difference Vegetation Index GNDV I are studied
including two more bands: the middel-infrared MIR and the Green band, respectively.
Each of these indices is analyzed specifically for the information that they provide for

62 4.1. Triclustering applications to Smart Cities and medicine

vineyard crops. They are discussed in more detail in the following Sections. The formulas
for these crops are the following:

SAV I =
NIR−Red

NIR +Red+ L
(4.2)

EV I = 2.5× NIR−Red

NIR + C1 ×Red− C2 ×Blue+ L
(4.3)

MSI =
MIR

NIR
(4.4)

GNDV I =
NIR−Green

NIR +Green
(4.5)

4.1.1.2. Parameter tuning

Prior to defining the bigTriGen configuration parameter values, it is necessary to
run the algorithm several times with different settings for each parameter. For both
experimentation image dataset, the parameters with the best fit are: N=4, G=10,
In=200, Sel=0.8 and Mut=0.1. Weights are fixed to: wmsl=0.8, ws=0.1, wov=0.1,
wgr=0.4, wps=0.3 and wsp=0.3.

Regarding the vegetation indices, the coefficients of the SAV I and EV I indices,
defined in Formulas 4.2 and 4.3, are set according to the values that they usually used
when applied to vineyard crops. L is fixed to 0.5, C1 is 6 and C2 is 7.5.

4.1.1.3. Model performance

The yielded triclusters are validated by an agriculture expert of the specific crop type
of each dataset. In addition, the TRIQ measure provides a numeric value to determine
the quality of the tricluster, following the computation defined in Formula 3.14.

All four discovered triclusters from the maize crop dataset obtained high TRIQ

values, confirming the accurate quality of the triclusters. The TRIQ quality values for
this experiment can be found in Table 4.1. Figure illustrates the evolution of the NDV I

index over time for each of the instances and features of each tricluster. Figure 4.2 shows
that tricluster components have a similar behavior over time which is very important to
validate them graphically. The field’s farmer also validated the triclusters using additional
information. For example, the NDV I changes in triclusters T1, T2 and T3 are related to
the use of fertilizers and the increase of amount of water in the irrigation process. The
NDV I recovery from the initial values after mid September in the T3 zones is related to

4| Applications 63

the application of fungicide by the farmers in August. The crop zones in T4 present a
constant low NDV I over time.

T1 T2 T3 T4

0.803 0.753 0.827 0.742

Table 4.1: TRIQ values for each tricluster of the maize dataset with NDV I index

−1.0

−0.5

0.0

0.5

1.0

0
6
−
1
9
−
2
0
1
8

0
6
−
2
4
−
2
0
1
8

0
7
−
0
9
−
2
0
1
8

0
7
−
1
9
−
2
0
1
8

0
7
−
2
4
−
2
0
1
8

0
7
−
2
9
−
2
0
1
8

0
8
−
0
3
−
2
0
1
8

0
8
−
0
8
−
2
0
1
8

0
8
−
1
3
−
2
0
1
8

0
8
−
1
8
−
2
0
1
8

0
8
−
2
3
−
2
0
1
8

0
9
−
0
2
−
2
0
1
8

0
9
−
1
2
−
2
0
1
8

0
9
−
1
7
−
2
0
1
8

0
9
−
2
2
−
2
0
1
8

0
9
−
2
7
−
2
0
1
8

1
0
−
0
2
−
2
0
1
8

1
0
−
0
7
−
2
0
1
8

1
0
−
1
7
−
2
0
1
8

Date

N
D

V
I

(a) T1

−1.0

−0.5

0.0

0.5

1.0

0
6
−
1
9
−
2
0
1
8

0
6
−
2
4
−
2
0
1
8

0
7
−
0
9
−
2
0
1
8

0
7
−
1
9
−
2
0
1
8

0
7
−
2
4
−
2
0
1
8

0
7
−
2
9
−
2
0
1
8

0
8
−
0
3
−
2
0
1
8

0
8
−
0
8
−
2
0
1
8

0
8
−
1
3
−
2
0
1
8

0
8
−
1
8
−
2
0
1
8

0
8
−
2
3
−
2
0
1
8

0
9
−
0
2
−
2
0
1
8

0
9
−
1
2
−
2
0
1
8

0
9
−
1
7
−
2
0
1
8

0
9
−
2
2
−
2
0
1
8

0
9
−
2
7
−
2
0
1
8

1
0
−
0
2
−
2
0
1
8

1
0
−
0
7
−
2
0
1
8

1
0
−
1
7
−
2
0
1
8

Date

N
D

V
I

(b) T2

−1.0

−0.5

0.0

0.5

1.0

0
6
−
1
9
−
2
0
1
8

0
6
−
2
4
−
2
0
1
8

0
7
−
0
9
−
2
0
1
8

0
7
−
1
9
−
2
0
1
8

0
7
−
2
4
−
2
0
1
8

0
7
−
2
9
−
2
0
1
8

0
8
−
0
3
−
2
0
1
8

0
8
−
0
8
−
2
0
1
8

0
8
−
1
3
−
2
0
1
8

0
8
−
1
8
−
2
0
1
8

0
8
−
2
3
−
2
0
1
8

0
9
−
0
2
−
2
0
1
8

0
9
−
1
2
−
2
0
1
8

0
9
−
1
7
−
2
0
1
8

0
9
−
2
2
−
2
0
1
8

0
9
−
2
7
−
2
0
1
8

1
0
−
0
2
−
2
0
1
8

1
0
−
0
7
−
2
0
1
8

1
0
−
1
7
−
2
0
1
8

Date

N
D

V
I

(c) T3

−1.0

−0.5

0.0

0.5

1.0

0
6
−
1
9
−
2
0
1
8

0
6
−
2
4
−
2
0
1
8

0
7
−
0
9
−
2
0
1
8

0
7
−
1
9
−
2
0
1
8

0
7
−
2
4
−
2
0
1
8

0
7
−
2
9
−
2
0
1
8

0
8
−
0
3
−
2
0
1
8

0
8
−
0
8
−
2
0
1
8

0
8
−
1
3
−
2
0
1
8

0
8
−
1
8
−
2
0
1
8

0
8
−
2
3
−
2
0
1
8

0
9
−
0
2
−
2
0
1
8

0
9
−
1
2
−
2
0
1
8

0
9
−
1
7
−
2
0
1
8

0
9
−
2
2
−
2
0
1
8

0
9
−
2
7
−
2
0
1
8

1
0
−
0
2
−
2
0
1
8

1
0
−
0
7
−
2
0
1
8

1
0
−
1
7
−
2
0
1
8

Date

N
D

V
I

(d) T4

Figure 4.2: Yielded triclusters by bigTriGen for the maize plantation

For the second dataset, five vegetation indices are studied for the vineyard session
during 2018. Triclusters found by bigTriGen using the NDV I index showed a great
uniformity among all the zones found, i.e., the pattern behavior is uniform for all the
triclusters. The same assessment can be made with SAV I, EV I and GNDV I indices
with the 2018 images. However, the triclusters found with the MSI vegetation index
allow identifying different trends in the water stress behavior. This index usually varies
between 0.4 and 2, with higher values representing higher water stress and lower soil
moisture. The TRIQ quality measure of the yielded triclusters is in Table 4.2. High
TRIQ values and an expert of this type of crop allow the validation the triclusters. The
analysis of the productivity of each field zone can be performed considering the triclusters.

64 4.1. Triclustering applications to Smart Cities and medicine

The MSI evolution over time for each tricluster is shown in Figure 4.3.

T1 T2 T3 T4

0.8799 0.9365 0.9153 0.8321

Table 4.2: TRIQ values for each tricluster of the vineyard dataset with MSI index

1.00

1.25

1.50

0
5
−
0
1

0
6
−
0
1

0
7
−
0
1

0
8
−
0
1

0
9
−
0
1

1
0
−
0
1

MSI

D
a

te

(a) T1

1.0

1.1

1.2

1.3

1.4

0
5
−
0
1

0
6
−
0
1

0
7
−
0
1

0
8
−
0
1

0
9
−
0
1

1
0
−
0
1

MSI

D
a

te

(b) T2

1.1

1.2

1.3

1.4

1.5

0
5
−
0
1

0
6
−
0
1

0
7
−
0
1

0
8
−
0
1

0
9
−
0
1

1
0
−
0
1

MSI

D
a

te

(c) T3

1.2

1.4

1.6

0
5
−
0
1

0
6
−
0
1

0
7
−
0
1

0
8
−
0
1

0
9
−
0
1

1
0
−
0
1

MSI

D
a

te

(d) T4

Figure 4.3: Yielded triclusters by bigTriGen for the vineyard crop

The demonstration of bigTriGen scalability is carried out with twenty-four
experiments using 12, 24, 36 and 48 cores. In addition, the length of the vineyard dataset
is multiplied by 1, 2, 4, 6, 16 and 32, resulting in six datasets of increasing length. Figure
4.4 presents the execution time of each experiment where a linear increase can be identified
demonstrating the scalability of the algorithm.

4| Applications 65

100

200

x1x1x1x1 x2x2x2x2 x4x4x4x4 x8x8x8x8 x1
6

x1
6

x1
6

x1
6

x3
2

x3
2

x3
2

x3
2

Size multiplier

E
xe

c
u
ti
o
n
 t
im

e
 (

m
in

u
te

s
)

Cores 12 24 36 48

Figure 4.4: Scalability analysis of the bigTriGen

4.1.2 | Seismogenic
This Section describes the methodology followed to generate a seismogenic source

zone using bigTriGen. The description of the data used, the selected parameters and the
performance of the execution are described.

4.1.2.1. Dataset description

Seismogenic source zones are essential for applying seismic hazard calculations,
especially in regions with a low or a moderate seismicity. In this application, the
bigTriGen has been used to create a seismogenic source zone based on an updated,
reviewed, declustered, extensive and homogeneous earthquake catalog. The catalog
includes 3500 earthquakes events in the Pyrenees from 1978 to 2019 of magnitude equal
or greater than 2.5.

Data must be preprocessed to fit the bigTriGen modelling. In this case, the catalog is
sorted into 30× 20 cells. Each cell represents an area of approximately 16.5 km× 16.5 km.
The dataset employed consists of x, y and f coordinates. Relative latitude is represented
by the x coordinate and the relative longitude by the y coordinate. However, as time
between earthquake events is widely spaced, the third dimension of the data is not the
time but the following features of the recorded cell: {Mmax, D,M2.9,M3.3,M3.7,M4.1, E}.
These features represent:

• Mmax: Maximum earthquake magnitude recorded in the cell.

• D: Mean epicenters depth of the earthquakes recorded in the cell.

• M2.9: Number of earthquakes with a magnitude equal or larger than 2.9 recorded

66 4.1. Triclustering applications to Smart Cities and medicine

in the cell.

• M3.3: Number of earthquakes with a magnitude equal or larger than 3.3 recorded
in the cell.

• M3.7: Number of earthquakes with a magnitude equal or larger than 3.7 recorded
in the cell.

• M4.1: Number of earthquakes with a magnitude equal or larger than 4.1 recorded
in the cell.

• E: Total number of earthquakes occurring.

Following this definition, the cell C4,2,M3.3 identifies the number of earthquakes with
magnitude equal or greater than 3.3 in the cell with relative latitude 4 and relative
longitude 2.

After the execution of the bigTriGen algorithm with this seismic dataset, N

triclusters are found. Each yielded tricluster identifies an area with similar behavior
patterns discovered by the algorithm. This area corresponds to a set of relative latitudes
and a set of relative longitudes extracted from the x and y coordinates of each preprocessed
cell.

4.1.2.2. Parameter tuning

After running the bigTriGen several times, the parameters that fit the best to the
dataset are: N=8, G=30, In=20, Sel=0.8, Mut=0.5. Weights are fixed to: mmsl=0.8,
ws=0.1, wov=0.1, wgr=0.4, wps=0.3 and wsp=0.3.

4.1.2.3. Model performance

In this particular application, the delineated zones are evaluated by the seismic
characterization of each zone. An seismogenesis expert studied each tricluster using
seismic parameters such as the b − value to estimate the relationship between small
and large earthquakes which is related to the physics of the place, i.e., the lower the
value is, the more energy can be accumulated. According to the expert, another relevant
parameter that demonstrated the good quality of the solution triclusters is the annual
rate parameter normalized or AR3. This parameter corresponds to the number of events
that exceed a threshold per year. The graphical representation of these parameters allows
the evaluation of the zones identified by the bigTriGen. They are seismically different
from each other and cover the vast majority of the region’s epicenter.

4| Applications 67

4.1.3 | Environmental sensors
STriGen is applied to an environmental sensor dataset. The description of the real

dataset, the parameters used and the performance of the model are described in this
Section.

4.1.3.1. Dataset description

Nowadays, data streaming modelling is gaining importance due to the increasing
number of sources providing continuous and massive flows of data. Some of the most
common data streaming sources in these days are the social media, medical devices,
videos or Internet of Things (IoT). There are several applications of machine learning
models on this type of data. For example, obtaining triclusters from IoT environmental
sensors can help develop a more efficient management of specific areas in real-time.

For the application of the STriGen algorithm, a real-world dataset from seven
environmental sensors in twelve different areas of Malaga, Spain, has been selected. These
sensors record atmospheric pressure, precipitation, relative humidity, solar radiation,
temperature, wind direction and wind speed. The dataset consist of 5000 time points.

4.1.3.2. Parameter tuning

The STriGen has two phases: an offline phase which creates a base tricluster model
followed by an online phase where the triclusters are obtained in real-time. In this
particular application, the first phase uses the first 500 time points of the sensors dataset.
The remaining 4500 time points are used to obtain real-time triclusters and analyze the
patterns found.

After a tuning process, the traditional tricluster parameters are set to: N=3, G=200,
In=400, Sel=0.7 and Mut=0.4. Weights are set to: wmsl=0.8, ws=0.1, wov=0.1, wgr=0.4,
wps=0.3 and wsp=0.3. The STriGen specific offline parameters are set to: Ale=0.2 and
Cross=0.4. The STriGen online parameters are fixed at: w=20, minGRQ=0.975 and
minIt to 35.

4.1.3.3. Model performance

The components of each yielded tricluster vary with time as streams arrive at the
model. In this application, the quality measure used is the GRQ value. The mean GRQ

of the three triclusters for the entire streaming phase is 0.9468, denoting a very high
representation quality measure.

68 4.1. Triclustering applications to Smart Cities and medicine

Since it is a real dataset, the ground truth is not known. For this particular
application, the performance of the model is evaluated by comparing STriGen results
with those of a baseline algorithm on the same dataset. The selected baseline algorithm
is a version of the STriGen in which the best tricluster is not selected during the online
phase, but a random tricluster among all possibilities. The mean and standard deviation
GRQ measurements of the STriGen and the baseline algorithm are reported in Table 4.3.
Results demonstrate that STriGen is well adapted to the evolution of the data streams
since the STriGen results are higher than those of the baseline.

Algorithm T1 T2 T3

Mean Std Mean Std Mean Std

STriGen 0.9398 0.0294 0.9390 0.0289 0.9614 0.0299
Baseline 0.7653 0.0314 0.7682 0.0302 0.7665 0.3533

Table 4.3: STriGen and baseline comparison for environmental sensors dataset

4.1.4 | Medical images
This Section presents the application of the STriGen streaming algorithm to medical

High-Content Screening (HCS) images. This Section describes the dataset used, the
configuration parameters and the performance of the algorithm.

4.1.4.1. Dataset description

High-Content Screening is a biological technique that investigates the whole cellular
processes by providing insights into the biological circuits of genes in biology. HCS
combines an automated image acquisition and analysis of intact cells exposed to
some chemical or genomic perturbations that alter cells’ phenotype. Cell screening is
performed in parallel with measurements of multiple fluorescent readouts. During the
automated image analysis phase of this technique, measurement of subcellular locations
and fluorescence color intensity during different complex cellular events is performed
both temporally and spatially. The analysis of HCS images in real-time can provide
fast and accurate information about cells, which has proven very useful for detecting
DNA, cytokinesis, apoptosis or cell division.

STriGen is applied to a dataset of 406 HCS images of cervical cancer cells or
HeLa cells. In particular, the dataset presents the reaction of HeLa cells to Transferring
receptors. These receptors are often used to target cancer cells since they enhance site-
specific therapies. The application of STriGen to HCS can help to discover the fluorescent

4| Applications 69

marker color, cell component shape, spatial situation, distribution of color pixels in a
specific area to analyze interactions or co-occurrences and time evolution of a cell. Images
must be preprocessed prior to the execution of the streaming algorithm by creating a 3D
matrix with coordinates of each pixel of RGB image representing the color features of the
fluorescent marker.

4.1.4.2. Parameter tuning

For this application, the offline phase of the STriGen is performed with the first 10
streams. Therefore, the remaining 396 images are received as stream data in the online
phase of the algorithm.

After the tuning process, the configuration parameters are N=3, G=300, In=600,
Sel=0.7, Mut=0.4. Weights are set to the same values as in the previous application
of the STriGen, i.e., wmsl=0.8, ws=0.1, wov=0.1, wgr=0.4, wps=0.3 and wsp=0.3. The
specific offline parameters of the STriGen are set at: Ale=0.1 and Cross=0.4. The
online parameters that provide the most accurate results are: w=3, minGRQ=0.90 and
minIt=20.

4.1.4.3. Model performance

During the HCS image preprocessing phase, the ground truth is obtained and stored
in files. This is achieved from the actual pixel location of each cellular component.
The ground truth allows the calculation of traditional performance measurements such
as accuracy or f1 score for each tricluster in a specific time point. Table 4.4 shows
the obtained accuracy and f1 score values for this experiment, demonstrating the good
performance of the model.

Metric T1 T2 T3

Accuracy 0.9076 0.9083 0.9098
F1 score 0.7026 0.7041 0.6892

Table 4.4: Performance metrics for each tricluster of the HCS images using STriGen

The execution time of the streaming part of the algorithm is very important. The
online phase provides updated triclusters in an average of 16 seconds. Providing real-time
quality triclusters for HeLa cells with STriGen. This can help detect external agents
added to the exposed cell as substances, drugs or antibodies. In addition, the reaction of
the cell can be continuously analyzed by comparing how triclusters components change.

70 4.2. Forecasting applications to energy electricity demand

4.2 | Forecasting applications to

energy electricity demand
This Section describes the main experimentation carried out with the StreamWNN

algorithm. The dataset used is introduced in Section 4.2.1 and the selected parameters are
in Section 4.2.2. An overview of the results obtained is in Section 4.2.3. This application
is described in detail in the scientific papers found in [15, 18].

4.2.1 | Dataset description
Electricity demand forecasting is proving to be very useful for supply chain planning

in the energy sector, i.e., energy generation, storage and distribution. Energy demand
data are continuous flows of data, also known as data streams, coming from smart meters.
The StreamWNN is applied to the electricity demand data of Spain with the main
goal of improving the efficiency of the electricity demand management in real-time. The
algorithm processes and gets responses as new data arrives. In this type of data it is
very common for changes to occur over time, so that new patterns, new trends and
new behaviors can appear in real-time. In this way, the StreamWNN is able not only
to provide forecasts in real-time, but also to adapt and adjust the model to these new
arriving data, obtaining accurate and timely responses.

The electrical energy consumption of Spain is recorded over time providing one sample
every 10 minutes. In particular, in this work the energy demand in megawatt (MW) and
the date and time of the measured value are used. This experimentation is carried out on
497,832 samples corresponding to the whole time series data over 9 years and 6 months,
starting on January 1st 2007 and ending on June 21st 2016. This set is selected because
several benchmark algorithms used exactly this period of the data. These algorithms are
used to perform comparisons with the results obtained.

Specifically, once the dataset is preprocessed, it is divided into two sets of data:
offline and online or stream data, which correspond to approximately 70% and 30% of
the whole data chronologically ordered. The offline data is divided into the oldest 70%
of the chronologically sorted data for the setn and the remaining 30% for the setp. This
division makes the setn contain the electricity demand values from January 1st 2007 to
August 23rd 2011. On the other hand, the setp contains instances from August 24th 2011
through August 19th 2013.

4| Applications 71

The algorithm predicts almost 3 years in a real-time manner, i.e., the stream or online
dataset covers from August 20th 2013 to June 21st 2016. This incoming flow of data is
simulated for the StreamWNN since the goal is to study the behavior of the algorithm
for a specific set of stream data. Specifically, the data set intended to be used for the
online part imitates the behavior of continuous data streams. Each sample of the online
set is published in the kafka topic by the kafka producer every few seconds, randomly
calculated between 0.1 and 5 seconds.

The whole experimentation is executed in a cluster located in the Data Science and
Big Data Laboratory in Pablo de Olavide University. The cluster is made up of 4 nodes:
3 slaves and 1 master. It has 4 Processor Intel (R) Core (TM) i7-5820K CPU with 48
cores and 120 GB of RAM memory.

Figure 4.5 illustrates the average behavior of the electrical energy demand in Spain.
In particular, Figure 4.5a represents the mean demand by hour for the whole dataset,
Figure 4.5b depicts the average demand by week days and hours and Figure 4.5c shows
the mean demand by month and hours. Figure 4.5d represents the average demand by
month and its evolution over the years.

22500

25000

27500

30000

32500

0
0
:0

0

0
2
:0

0

0
4
:0

0

0
6
:0

0

0
8
:0

0

1
0
:0

0

1
2
:0

0

1
4
:0

0

1
6
:0

0

1
8
:0

0

2
0
:0

0

2
2
:0

0

0
0
:0

0

Hours

D
e
m

a
n

d
 v

a
lu

e
 i
n

 M
W

(a) Mean demand by hour

20000

25000

30000

35000

M
o
n
 0

0
:0

0

M
o
n
 1

2
:0

0

Tu
e
 0

0
:0

0

Tu
e
 1

2
:0

0

W
e
d
 0

0
:0

0

W
e
d
 1

2
:0

0

T
h
u
 0

0
:0

0

T
h
u
 1

2
:0

0

F
ri
 0

0
:0

0

F
ri
 1

2
:0

0

S
a
t
0
0
:0

0

S
a
t
1
2
:0

0

S
u
n
 0

0
:0

0

S
u
n
 1

2
:0

0

Week days and hours

D
e
m

a
n

d
 v

a
lu

e
 i
n

 M
W

(b) Mean demand by week day and hour

25000

30000

35000

0
1

0
2

0
3

0
4

0
5

0
6

0
7

0
8

0
9

1
0

1
1

1
2

Months

D
e
m

a
n

d
 v

a
lu

e
 i
n

 M
W

(c) Mean demand by month and hour

26000

28000

30000

32000

2
0
0
7
−
0
1

2
0
0
8
−
0
1

2
0
0
9
−
0
1

2
0
1
0
−
0
1

2
0
1
1
−
0
1

2
0
1
2
−
0
1

2
0
1
3
−
0
1

2
0
1
4
−
0
1

2
0
1
5
−
0
1

2
0
1
6
−
0
1

Years

D
e
m

a
n

d
 v

a
lu

e
 i
n

 M
W

(d) Mean demand by month during the years

Figure 4.5: Analysis of the energy electricity demand in Spain

72 4.2. Forecasting applications to energy electricity demand

4.2.2 | Parameter tuning
The StreamWNN is executed with 4 different sets of control parameters to study

the influence of the time window w, prediction horizon h and number of neighbors K on
the results achieved. These parameters are those considered optimal in several benchmark
algorithms using the same Spanish electricity energy demand dataset and are the ones
used for the StreamWNN :

1. For prediction horizon h=24 (4 hours): w=144 and K=4

2. For prediction horizon h=48 (8 hours): w=288 and K=2

3. For prediction horizon h=72 (12 hours): w=576 and K=4

4. For prediction horizon h=144 (24 hours): w=864 and K=4

The online incremental learning approach of the StreamWNN is performed with
five different values to study its influence on the results:

• Daily

• Monthly

• Quarterly

• ŷst larger than MAPEoffline

• ŷst larger than MAPEoffline + σ_MAPEoffline

with MAPEoffline referring to the average MAPE of the offline model and
σ_MAPEoffline to its standard deviation. Therefore the model can perform an
incremental learning approach with either a time-based option or a threshold-based option.
Each time this requirement is accomplished during the execution, the model can be
updated in an incremental manner considering the information in the buffer.

The parameters required for the identification of novelties and anomalies are two
thresholds: upthr and lowthr. Both of them are based on error metrics obtained from
the offline model. This approach is performed in conjunction with the daily incremental
learning as it is the option that provides the best results. After a tuning process, the two
thresholds for anomalies and novelties detection are:

• lowthr = MAPEoffline

• upthr = MAPEoffline + 3 × σ_MAPEoffline

4| Applications 73

4.2.3 | Model performance
The metrics used to evaluate the performance of the algorithm are the mean absolute

percentage error MAPE defined in Formula 3.23 and the mean absolute error MAE in
Formula 3.24. These metrics are expressed in percent and in megawatt MW, respectively.

Table 4.5 presents a summary of the results obtained for each prediction horizon
during the streaming or online phase. The Table includes the results for the approach
without update of the StreamWNN , the incremental learning approach with online
daily basis, the novelties update and the two last options executed together, named
"online daily + novelties" in the Table 4.5. Four MAPE metrics are calculated for
each implementation: its mean value, its standard deviation σ and the best and worst
MAPE achieved. Results demonstrate that the most accurate performance is obtained
with the incremental learning approach together with the identification of novelties.

Type of update Mean σ Best Worst
No update 2.4288 2.0745 0.2464 33.0031

Online daily 2.1982 2.0138 0.2198 33.0031
Novelties 2.3139 2.1403 0.2464 21.5966

Online daily + novelties 2.0703 1.9974 0.2463 22.8013

(a) h=24
Type of update Mean σ Best Worst

No update 2.7617 2.0842 0.4101 31.2720
Online daily update 2.5499 2.0878 0.3207 31.2720

Novelties update 2.6486 2.0339 0.4101 31.2720
Online daily + novelties 2.4296 2.0886 0.2685 31.2720

(b) h=48
Type of update Mean σ Best Worst

No update 3.3535 2.8200 0.6002 33.3860
Online daily update 3.1350 2.8039 0.4493 33.3860

Novelties update 3.2692 2.7467 0.6002 33.3860
Online daily + novelties 2.9914 2.7813 0.4493 33.3860

(c) h=72
Type of update Mean σ Best Worst

No update 3.8466 3.6137 0.6548 29.3278
Online daily update 3.5741 3.5292 0.6267 27.0206

Novelties update 3.7585 3.5271 0.6548 29.3278
Online daily + novelties 3.4099 3.4238 0.6302 29.3278

(d) h=144

Table 4.5: MAPE error metric (in percentage) for each type of update

74 4.2. Forecasting applications to energy electricity demand

4.2.3.1. Incremental learning

The incremental learning approach is analyzed with the five possibilities defined
above: daily, monthly, quarterly, forecast ŷst greater than MAPEoffline and forecast
ŷst greater than MAPEoffline plus its standard deviation. The best results for all four
prediction horizons are obtained with the daily update. The possibility that provides the
second best results is the threshold based on MAPEoffline.

The behavior of this paradigm is based on the evolution of the average euclidean
distance between the neighbors in the online model as iterations pass. Figure 4.6 depicts
this evolution over iterations for the h=144, the behavior of the rest of prediction horizons
is similar. When there is no model update, the distance remains the same for all the
iterations. In contrast, when the online model is updated with incremental learning, this
distance decreases. The update that achieves the lowest average distance is the daily
update, which is the same update that achieves the lowest error metrics. Time-dependent
updates reduce this average distance in a stepwise fashion.

29000

30000

0
25

0
50

0
75

0
10

00

Number of iterations

D
is

ta
n

c
e

s

Updating No update
Day

Month
3 Months

MAPE
MAPE + std. dev.

Figure 4.6: Evolution of mean euclidean distance between neighbors in the online model
as iterations pass for h=144

4.2.3.2. Novelties and anomalies

In the case of the identification of a novelty, the StreamWNN online model is
updated by including the novelty in it. An interesting example of this update with the
Spanish electricity demand is July 2015 which ranked as the warmest July in the historical
series. This results in the model not having any similar patterns in the historical data, so
updating the model with novelties is key to obtaining accurate results.

Figure 4.7 illustrates the actual demand and forecast results achieved for July 21st

4| Applications 75

2015. This day was the second worst forecast day for the StreamWNN application
with no online update. The MAPE error achieved without updating matches the error
achieved for the daily incremental learning option. This average error is greater than
8%. However, the daily incremental update together with the novelties update provides
an error of only 2.9197% which corresponds to a very good improvement of the forecast
values.

25000

30000

35000

40000

00
:0

0

06
:0

0

12
:0

0

18
:0

0

00
:0

0

Hours − July 21st 2015

D
e

m
a

n
d

 V
a

lu
e

 (
M

W
)

Type of update

Real
No update and online daily

Novelties
Online daily+novelties

Figure 4.7: Second worst forecast day for no update execution during July 2015

In contrast, anomalies need to be identified in order to trigger an alarm so that the
user can act in real-time and prevent from future problems. Correcting the energy demand
in the next seconds after an anomaly is detected can help to adjust the demand quickly.

An example of a detected anomaly is depicted in Figure 4.8. It presents the actual
energy demand and the forecast of the eight hours that triggered the alarm as an anomaly
for the experiment with h=48. The anomaly was detected on a Wednesday morning, i.e.,
September 11th 2013 from 8:00am to 3:50pm. The actual energy demand is much lower
than the expected for a weekday at that time. If the alarm had been taken into account,
the energy demand for the rest of the day could have been modified for the following
hours avoiding more energy demand than necessary. It is important to consider that the
forecast of the same day for the following two years does not trigger any alarm which
supports the idea that September 11th, 2013 is correctly classified as an anomaly and is
not a novelty.

76 4.2. Forecasting applications to energy electricity demand

20000

25000

30000

35000

13
−0

9−
09

00
:0

0

13
−0

9−
10

00
:0

0

13
−0

9−
11

00
:0

0

13
−0

9−
12

00
:0

0

Dates

D
e

m
a

n
d

 v
a

lu
e

 (
M

W
)

Real Forecast as anomaly

Figure 4.8: Anomaly identified for h=48 during September 11th 2013

4.2.3.3. Scalability and timely results

The online execution of the StreamWNN has to provide accurate and timely
forecasts. Figure 4.9 demonstrates the scalability of the algorithm for the online daily
incremental learning along with novelties update. The other update types and the no
update option have a similar behavior. It can be said that the model is scalable since the
execution time increases linearly with iterations for all prediction horizons. The number
of iterations to be computed at each horizon for the same stream dataset is different, since
w and h are different in each case. In addition, this assumption influences the execution
time difference between h=72 and 144 compared to h=48 and 24, since the model must
be updated with a larger set of data for the two first horizons than for the other two.
The average time to perform an iteration is approximately 10 seconds for the first two
horizons and 6.66 seconds for the last two.

0

10000

20000

30000

40000

0

2
0
0
0

4
0
0
0

6
0
0
0

Iterations

E
x
e

c
u

ti
o

n
 t

im
e

 i
n

 s
e

c
o

n
d

s

Forecast Horizons h=24 h=48 h=72 h=144

Figure 4.9: Time versus iterations for each horizon for daily incremental + novelties

77

Part III

List of publications

79

5| Publications

Scientific contributions published in scientific papers during the PhD program are
presented in this Chapter in Section 5.1. The contributions have been sorted in

chronological order.

80 5.1. Journal and conferences articles

5.1 | Journal and conferences

articles

5.1.1 | "Discovering spatio-temporal patterns
in precision agriculture based on
triclustering"

Authors: Melgar-García L., Godinho M. T., Espada R., Gutiérrez-Avilés D.,
Brito I. S., Martínez-Álvarez F., Troncoso A., Rubio-Escudero C.

Publication type: Conference article.

Conference: 15th International Conference on Soft Computing Models in
Industrial and Environmental Applications (SOCO 2020).

Publication: Advances in Intelligent Systems and Computing, Springer
International Publishing, Cham.

Year: 2020.

Volume: 1268

Pages: 226-236

DOI: 10.1007/978- 3-030-57802-2_22

Discovering Spatio-Temporal Patterns
in Precision Agriculture Based

on Triclustering

Laura Melgar-Garćıa1(B), Maria Teresa Godinho2,3, Rita Espada4,
David Gutiérrez-Avilés1, Isabel Sofia Brito5,6, Francisco Mart́ınez-Álvarez1,

Alicia Troncoso1, and Cristina Rubio-Escudero7

1 Data Science & Big Data Lab, Pablo de Olavide University, 41013 Seville, Spain
{lmelgar,dgutavi,fmaralv,atrolor}@upo.es

2 Department of Mathematical and Physical Sciences, Polytechnic Institute of Beja,
Beja, Portugal

mtgodinho@ipbeja.pt
3 Center for Mathematics, Fundamental Applications and Operations Research,

University of Lisboa, Lisbon, Portugal
4 Associação dos Agricultores do Baixo Alentejo, Beja, Portugal

rita.espada.25@gmail.com
5 Department of Engineering, Polytechnic Institute of Beja, Beja, Portugal

isabel.sofia@ipbeja.pt
6 Instituto de Desenvolvimiento de Novas Tecnologias - Centre of Technology

and Systems, Lisbon, Portugal
7 Department of Computer Languages and Systems, University of Seville,

Seville, Spain
crubioescudero@us.es

Abstract. Agriculture has undergone some very important changes over
the last few decades. The emergence and evolution of precision agri-
culture has allowed to move from the uniform site management to the
site-specific management, with both economic and environmental advan-
tages. However, to be implemented effectively, site-specific management
requires within-field spatial variability to be well-known and character-
ized. In this paper, an algorithm that delineates within-field management
zones in a maize plantation is introduced. The algorithm, based on tri-
clustering, mines clusters from temporal remote sensing data. Data from
maize crops in Alentejo, Portugal, have been used to assess the suit-
ability of applying triclustering to discover patterns over time, that may
eventually help farmers to improve their harvests.

Keywords: Triclustering · Spatio-temporal patterns · Precision
agriculture · Remote sensing

c© The Editor(s) (if applicable) and The Author(s), under exclusive license
to Springer Nature Switzerland AG 2021
Á. Herrero et al. (Eds.): SOCO 2020, AISC 1268, pp. 226–236, 2021.
https://doi.org/10.1007/978-3-030-57802-2_22

5| Publications 81

Spatio-Temporal Patterns in Precision Agriculture with Triclustering 227

1 Introduction

It is a well-established fact that shortage of natural resources endangers our
future. Public awareness of these problems urges local authorities to intervene
and impose tight regulations on human activity. In this environment, reconciling
economic and environmental objectives in our society it is mandatory.

Precision agriculture (PA) has an important role in the pursuit of such aspi-
ration, as the techniques used in PA permit to adjust resource application to
the needs of soil and crop as they vary in the field. In this way, specific-site
management (that is the management of agricultural crops at a spatial scale
smaller than the whole field) is a tool to control and reduce the amount of
fertilizers, phytopharmaceuticals and water used on site, with both ecological
and economic advantages. Indeed, being able to characterize how crops behave
over time, extracting patterns and predicting changes is a requirement of utmost
importance for understanding agro-ecosystems dynamics [1].

One of the major concerns associated to the shortage of natural resources is
the enormous consumption of water associated to farming activities. Water is a
scarce resource worldwide and this problem is particularly acute in the South
of Europe, where the Alentejo (Portugal) and Andalusia (Spain) regions are
located. Both regions are mainly agriculture-dependent and thus farmers and
local authorities are apprehensive about the future.

In this paper, an algorithm is proposed to delineate management zones by
measuring the variability of crop conditions within the field through the anal-
ysis of time series of geo-referenced vegetation indices, obtained from satellite
imagery. In particular, the well-known normalized difference vegetation index
(NDVI), indicator for vegetation health and biomass, is used to analyze how the
crop varies over time in order to find patterns that may help to improve its pro-
duction. There are more vegetation indices as GNDVI, SAVI, EVI or EVI2 [2,3]
which should be used in extended works.

A triclustering method, based on an evolutionary strategy called TriGen [4]
has been applied to a set of satellite images indexed over time from a particular
maize crop in Alentejo, Portugal. Although the method was originally designed
to discover gene behaviors over time [5], it has also been applied to other research
fields such as seismology [6]. The TriGen is a genetic algorithm, and therefore
the fitness function is a key aspect since it leads to the discovery of triclusters
of different shapes and aspects. The multi-slope measure (MSL) [7], the three-
dimensional mean square residue (MSR3D) [8] and the least squared lines (LSL)
[9] are the available fitness functions to mine triclusters in TriGen. Furthermore,
the TRIclustering quality (TRIQ) index [10] was proposed to validate the results
obtained from the aforementioned fitness functions.

The rest of the paper is structured as follows. In Sect. 2, the recent and
related works are reviewed and the process of data acquisition and preprocessing
is described. In Sect. 3 the proposed algorithm and its adaption to this particular
problem are described. In Sect. 4 the results are presented and discussed. Finally,
in Sect. 5, the conclusions of this work and point directions for future work are
presented.

82 5.1. Journal and conferences articles

228 L. Melgar-Garćıa et al.

2 Related Works

This section reviews the most recent and relevant works published in the field
of spatio-temporal patterns in precision agriculture.

The spatio-temporal pattern discovery issues for satellite time series images
are discussed in [11]. The authors introduced how to perform an automatic
analysis of these patterns and the problem of determining its optimal number.
Unfortunately, these questions are still open issues in the literature and it is
unlikely that a general consensus can be reached in the near future.

The estimation of spatio-temporal patterns of agricultural productivity in
fragmented landscapes using AVHRR NDVI time series was analyzed in [12].
Four different approaches were applied to eight years of Australian crops, includ-
ing calculation of temporal mean and standard deviation layers, spatio-temporal
key NDVI patterns, different climatic variables and relationships between pro-
ductivity and production.

In Fung et al. [13], the authors proposed a novel spatio-temporal data fusion
model for satellite images using Hopfield Neural Networks. Synthetic and real
datasets from both Hong Kong and Australia, respectively, were used to assess
the method performance, showing remarkable results and outperforming some
of other existing methods.

The use of convolutional neural networks (CNN) is being currently applied
in a wide range of spatio-temporal patterns discovery applications [14]. Hence,
Tan et al. [15] enhanced an existing CNN model for image fusion by proposing
a new network architecture and a novel loss function. Results showed superior
performance in terms of accuracy and robustness. Ji et al. [16] proposed a 3D
CNN dealing with multi-temporal satellite images. In this case, the method was
designed for crop classification. After discussing the results achieved, outperform-
ing existing well-established methods, the authors claimed that it is especially
suitable for characterizing crop growth dynamics.

An ensemble model for making spatial predictions of tropical forest fire sus-
ceptibility using multi-source geospatial data can be found in [17]. The authors
evaluated the Lao Cai region, Vietnam, through several indices including NDVI.

Bui et al. [18] proposed an approach based on deep learning for predicting
flash flood susceptibility. Real data from a high frequency tropical storm area
were used to assess its performance.

Clustering-based approaches with application to precision agriculture can
also be found in the literature. Thus, clustering tools for integration of satellite
imagery and proximal soil sensing data are described in [19]. In particular, a novel
method was introduced with the aim of determining areas with homogeneous
parts in agricultural fields.

The application of triclustering to georeferenced satellite images time series
can be also found in [20]. However, the authors addressed a different problem: the
patterns analysis of intra-annual variability in temperature, using daily average
temperature retrieved from Dutch stations spread over the country.

5| Publications 83

Spatio-Temporal Patterns in Precision Agriculture with Triclustering 229

3 Methodology

This section introduces the TriGen algorithm, the methodology used to extract
behavior patterns from satellite images along with the time points when they
were taken. This methodology is applied to a 3D dataset (composed of rows,
columns, and depths) that represents the X-axis coordinates (rows) and the Y-
axis coordinates (columns) of each satellite image taken at a particular instant
(depth). TriGen is a genetic algorithm that minimizes a fitness function to mine
subsets of X-axis coordinates, Y-axis coordinates, and time points, called tri-
clusters, from 3D input datasets. The NDVI values in the yielded subsets of
[X,Y] coordinates along with the subset of time points, share similar behavior
patterns.

In general terms, TriGen is explained from two main concepts, presented in
the following sections: the triclustering model applied to the case study (Sect. 3.1)
and the inputs, output and algorithm workflow of TriGen (Sect. 3.2).

3.1 Triclustering

The case study presented has been modeled as a triclustering problem, in which
3-dimensional patterns are extracted from an original dataset. Prior to explaining
this development, it is necessary to distinguish between two types of dataset:

– D2D (2-dimensional dataset): a matrix with a set of instances (rows) and a
set of features (columns).

– D3D (3-dimensional dataset): a 3D matrix with a set of instances (rows) and
features (columns), taken at a particular time points (depths).

Clustering algorithms are applied to D2D datasets performing a complete
partition it; for each yielded clusters, the values of the grouped instances share
a behavior pattern through all features. In contrast, the triclustering algorithms
work with D3D datasets and group not only subsets of instances, but also subsets
of features and time points. In this case, for each yielded tricluster, the values of
grouped instances for the particular grouped features share a behavior pattern
through a group of time points.

Thus, for this case study, the application of the TriGen algorithm to a D3D

dataset of satellite images where the instances are the Y coordinates of the
space, the features are the X coordinates of the area and, the time points are the
moment at the images where taken, will yield a set of triclusters representing,
each of them, a behavior pattern of NDVI, for a particular subspace (subset of
Y and X coordinates) through a specific set of times (subset of time points).

3.2 The TriGen Algorithm

In order to mine the triclusters from the D3D dataset of satellite images, the
TriGen algorithm is applied. TriGen is based on the genetic algorithm paradigm;

84 5.1. Journal and conferences articles

230 L. Melgar-Garćıa et al.

therefore, it evolves a population of individuals employing genetic operators
during a specific number of generations to optimize an evaluation function.

The inputs of TriGen are two: the D3D dataset of satellite images and the
initial configuration of the genetic process. The parameters that can be set are
the number of triclusters to mine (N), the number of generations of the genetic
process (G), the size of the initial population (I), the fraction of population that
promoted to the next generation (Sel) and, the probability of mutation (Mut).
A complete analysis of the influence of these parameters in the performance of
the algorithm can be consulted in [4,7,8].

Each individual in the genetic process is represented as a tricluster and com-
posed of a subset of instances of D3D, a subset of features of D3D and, a subset
of time points of D3D; the individuals (triclusters) with the best fitness function
value are the output of the algorithm.

The genetic operators allow for searching among the individuals to obtain
better solutions for each generation. For the TriGen algorithm, the description
of them is the following:

– Initial population. The individuals are generated with three methods. The
first method consists in a random selection of the elements of the individuals.
The second one, considering the rows and columns of D3D as a geographical
area, performs a random selection of a rectangular sub-area and time points.
The last one selects the elements of the individuals taking into account the
rows, columns, and time points of D3D visited in already extracted solutions
in order to explore the most number of elements of D3D.

– Evaluation. This operator applies the fitness function to the population in
order to asses the quality of each individual. The fitness function used in the
present case study is MSL.

– Selection. A tournament selection algorithm is applied to promote the individ-
uals with the best evaluation to the next generation. The rest of individuals
in the next population are generated by crossing and mutations.

– Crossover. Two individuals are combined to generate another two ones. The
crossover used is the one point crossing. Each of the three elements of the
two involved individuals (parents), are split in two and the four parts are
combined two new individuals (offspring).

– Mutation. This operator modifies an individual to obtain variability in the
next generation. Three actions have been used: insertion of a new coordinate
[X, Y] or time point, deletion of an existing coordinate [X, Y] or time point
and change of an existing coordinate [X, Y] or time point.

4 Results

This section reports and discusses the results achieved after the application of the
proposed methodology to a particular dataset. Thus, Sect. 4.1 describes the high
resolution remote sensing imagery used in this study and Sect. 4.2 introduces
the validation function used to evaluate the quality of the triclusters obtained.
Finally, Sect. 4.3 reports the spatio-temporal patterns obtained and discusses its
physical meaning.

5| Publications 85

Spatio-Temporal Patterns in Precision Agriculture with Triclustering 231

4.1 Dataset Description

Located in the Baixo Alentejo region of Portugal, the site under study is a 63.82
ha maize plantation, with center at coordinates (38◦08′12′′N, 7◦53′42′′W), as
shown in Fig. 1. The site was monitored between sowing (April of 2018) and
harvesting (September of the same year) and it is characterized by a set of
nineteen images retrieved at time intervals of five, ten and fifteen days, from the
Sentinel 2 Mission. The research site was irrigated using a central pivot irrigation
system.

Fig. 1. Location of the research site.

Vegetation indices are, by definition, algebraic combinations of the mea-
sured canopy reflectance of different wavelength bands [21]. The use of Vege-
tation Indices in this context is based on the fact that healthy and unhealthy
plants reflect light differently. Due to this difference, crop canopy multispectral
reflectance, which is detectable remotely through aerial or satellite imagery, can
be used to monitor the state of the crop [22]. For these reasons, one of the
most widely used indices is applied to the images: the Normalized Differential
Vegetation Index (NDVI). The NDVI can be calculated as follows:

NDV I =
NIR − Red

NIR + Red
, (1)

where Red and NIR stand for the spectral reflectance measurements acquired
in the red (visible) and near-infrared regions, respectively, and NDV I ∈ [−1, 1].

As pointed out in [23], the NDVI index has proven to be quite useful in
monitoring variables such as crop nutrient deficiency, final yield in small grains,
and long-term water stress. All these variables are very important to the case
study presented here. Figure 2 illustrates how the NDVI of the target area varies
over time, including images at six different chronologically ordered time stamps.

86 5.1. Journal and conferences articles

232 L. Melgar-Garćıa et al.

(a) June 19th, 2018 (b) August 3rd, 2018

(c) September 22nd, 2018 (d) October 17th, 2018

Fig. 2. Sample NDVI values for the research site, chronologically ordered.

4.2 Behaviour Patterns Quality, the TRIQ Measure

The TRIQ index has been used in order to measure the quality of the yielded
triclusters in this case study, that is, the quality of the behavior pattern that
a tricluster depicts. TRIQ measures the quality of a tricluster based on three
elements: the similarity of the behavior patterns of the grouped [X,Y] points
along with the grouped time points and the Pearson’s and Spearman’s correlation
indexes between all the [X,Y] time series of the tricluster. TRIQ values rank in
the [0, 1] interval; TRIQ is a measure to maximize. A full description, definition,
development, and performance of TRIQ can be consulted in [10].

4.3 Discovery of Spatio-Temporal Patterns in Maize Crops

TriGen analyzes the evolution of NDVI indices in each specific area and discovers
triclusters of similar behavior patterns. Thus, the dataset with the NDVI indices
of the satellite images over time is the first input of the algorithm.

TriGen has some configuration parameters, above-mentioned in Sect. 3.2. The
algorithm has been run several times with different settings for each parameter.
The configuration parameters that fit the best to these images are: G = 10, I
= 200, Sel = 0.8 and Mut = 0.1. The number of triclusters to find is 4 and the
fitness function used is MSL. Therefore, these values are the second input of
the algorithm.

Each of the 4 discovered triclusters has a TRIQ measure. The first one has
a TRIQ of 0.803, the second has 0.753, the third has 0.827 and the fourth has
0.742. These high values lead to confirm the good quality of all the triclusters.
However, this measure itself does not guarantee the meaningfulness of the tri-
clusters discovered. In order to interpret the evolution of the triclusters in an

5| Publications 87

Spatio-Temporal Patterns in Precision Agriculture with Triclustering 233

accurate way, field’s farmers provided additional information about the planta-
tions site-specific conditions, such as irrigation or fungicide, for the same period.
This information confirmed that triclusters were meaningful also in geophysical
terms.

The triclusters discovered are represented in Figs. 3a, 3b, 3c and 3d. Each
graph represents the evolution of the NDVI of the selected [X,Y] components
over time. The black dashed line added in each graph represents the mean value
of all components. Triclusters components share a similar behavior. The first tri-
cluster corresponds to areas with high NDVI values that remain almost constant
over time. The components of the second tricluster are fields that start with a
high NDVI and experiment a sudden decrease for the rest of the dates studied.
The beginning of the third tricluster is similar to the previous one but with a
recovery of the initial values after mid September. The last tricluster is formed
by areas with constant low NDVI over time.

The changes of the NDVI values identified by triclusters 1, 2 and 3 during
the first samples seem to be related with the use of fertilizers and the increase
of the amount of water for the irrigation process. The third tricluster and some
components of the first one show a change in their behaviour at mid September.
It could be related to the application of fungicide by the farmers during August.

The proposed algorithm contributes in finding areas of similar crop conditions
over the NDVI vegetation index using satellite images in different times. In
addition, as TriGen includes the time dimension, the evolution over time of

−1.0

−0.5

0.0

0.5

1.0

06
−
19

06
−
24

07
−
09

07
−
19

07
−
24

07
−
29

08
−
03

08
−
08

08
−
13

08
−
18

08
−
23

09
−
02

09
−
12

09
−
17

09
−
22

09
−
27

10
−
02

10
−
07

10
−
17

Date

N
D
V
I

(a) Tricluster 1.

−1.0

−0.5

0.0

0.5

1.0

06
−
19

06
−
24

07
−
09

07
−
19

07
−
24

07
−
29

08
−
03

08
−
08

08
−
13

08
−
18

08
−
23

09
−
02

09
−
12

09
−
17

09
−
22

09
−
27

10
−
02

10
−
07

10
−
17

Date

N
D
V
I

(b) Tricluster 2.

−1.0

−0.5

0.0

0.5

1.0

06
−
19

06
−
24

07
−
09

07
−
19

07
−
24

07
−
29

08
−
03

08
−
08

08
−
13

08
−
18

08
−
23

09
−
02

09
−
12

09
−
17

09
−
22

09
−
27

10
−
02

10
−
07

10
−
17

Date

N
D
V
I

(c) Tricluster 3.

−1.0

−0.5

0.0

0.5

1.0

06
−
19

06
−
24

07
−
09

07
−
19

07
−
24

07
−
29

08
−
03

08
−
08

08
−
13

08
−
18

08
−
23

09
−
02

09
−
12

09
−
17

09
−
22

09
−
27

10
−
02

10
−
07

10
−
17

Date

N
D
V
I

(d) Tricluster 4.

Fig. 3. Triclusters found by TriGen in 2018.

88 5.1. Journal and conferences articles

234 L. Melgar-Garćıa et al.

each tricluster’s features can be analyzed. Nevertheless, the interpretation of
the results needs the validation of a specialist as the TRIQ measure does not
consider neither geographical nor environmental features.

5 Conclusions

The suitability of applying triclutstering methods to discover spatio-temporal
patterns in precision agriculture has been explored in this work. In particular, a
set of satellite images from maize crops in Alentejo, Portugal, has been analyzed
in terms of its NVDI temporal evolution. Several patterns have been found, iden-
tifying zones with tendency to obtain greater production and others in which
human interventions are required to improve the soil properties. Several issues
remain unsolved and are suggested to be addressed in future works. First, these
patterns may help to identify the most suitable moments to apply fertilizers or
pesticides. Second, the forecasting of maize production could be done based on
such patterns. Third, additional crop production features such as amounts and
characteristics of the fertilizers, phytopharmaceuticals and water used through-
out the season (moister probes placed 30 cm underground were used to access
the soil need for water before irrigation, when needed), would help to discover
more robust patterns. Fourth, more images records during more years and a
specific measure to assess the quality and meaning of precision agriculture tri-
clusters would improve the application of the proposed algorithm to agricultural
production. Fifth, more vegetation indices should be used.

Acknowledgements. The authors would like to thank the Spanish Ministry of Econ-
omy and Competitiveness for the support under project TIN2017-88209 and Fundação
para a Ciência e a Tecnologia (FCT), under the project UIDB/04561/2020. The authors
would also like to thank António Vieira Lima for giving access to data and Francisco
Palma for his support to the whole project.

References

1. Tan, J., Yang, P., Liu, Z., Wu, W., Zhang, L., Li, Z., You, L., Tang, H., Li, Z.:
Spatio-temporal dynamics of maize cropping system in Northeast China between
1980 and 2010 by using spatial production allocation model. J. Geog. Sci. 24(3),
397–410 (2014)

2. Jurecka, F., Lukas, V., Hlavinka, P., Semeradova, D., Zalud, Z., Trnka, M.: Esti-
mating crop yields at the field level using landsat and modis products. Acta Univer-
sitatis Agriculturae et Silviculturae Mendelianae Brunensis 66, 1141–1150 (2018)

3. Jiang, Z., Huete, A., Didan, K., Miura, T.: Development of a two-band enhanced
vegetation index without a blue band. Remote Sens. Environ. 112, 3833–3845
(2008)

4. Gutiérrez-Avés, D., Rubio-Escudero, C., Mart́ınez-Álvarez, F., Riquelme, J.C.: Tri-
gen: A genetic algorithm to mine triclusters in temporal gene expression data.
Neurocomputing 132, 42–53 (2014)

5| Publications 89

Spatio-Temporal Patterns in Precision Agriculture with Triclustering 235

5. Melgar, L., Gutiérrez-Avilés, D., Rubio-Escudero, C., Troncoso, A.: High-content
screening images streaming analysis using the STriGen methodology. In: Proceed-
ings of the 35th Annual ACM Symposium on Applied Computing, pp. 537–539
(2020)

6. Mart́ınez-Álvarez, F., Gutiérrez-Avilés, D., Morales-Esteban, A., Reyes, J., Amaro-
Mellado, J.L., Rubio-Escudero, C.: A novel method for seismogenic zoning based
on triclustering: application to the Iberian peninsula. Entropy 17(7), 5000–5021
(2015)

7. Gutiérrez-Avilés, D., Rubio-Escudero, C.: MSL: a measure to evaluate three-
dimensional patterns in gene expression data. Evol. Bioinform. 11, 121–135 (2015)

8. Gutiérrez-Avilés, D., Rubio-Escudero, C.: Mining 3D patterns from gene expression
temporal data: a new tricluster evaluation measure. Sci. World J. 2014, 1–16 (2014)

9. Gutiérrez-Avilés, D., Rubio-Escudero, C.: LSL: a new measure to evaluate triclus-
ters. In: Proceedings of the IEEE International Conference on Bioinformatics and
Biomedicine, pp. 30–37 (2014)

10. Gutiérrez-Avilés, D., Giráldez, R., Gil-Cumbreras, F.J., Rubio-Escudero, C.:
TRIQ: a new method to evaluate triclusters. BioData Min. 11(1), 15 (2018)

11. Radoi, A., Datcu, M.: Spatio-temporal characterization in satellite image time
series. In: Proceedings of the International Workshop on the Analysis of Multitem-
poral Remote Sensing Images, pp. 1–4 (2015)

12. Hill, M.J., Donald, G.E.: Estimating spatio-temporal patterns of agricultural pro-
ductivity in fragmented landscapes using AVHRR NDVI time series. Remote Sens.
Environ. 84(3), 367–384 (2003)

13. Fung, C.H., Wong, M.S., Chan, P.W.: Spatio-temporal data fusion for satellite
images using Hopfield neural network. Remote Sens. 11(18), 2077 (2019)

14. Kamilaris, A., Prenafeta-Boldú, F.: A review of the use of convolutional neural
networks in agriculture. J. Agric. Sci. 156(3), 312–322 (2018)

15. Tan, Z., Di, L., Zhang, M., Guo, L., Gao, M.: An enhanced deep convolutional
model for spatiotemporal image fusion. Remote Sens. 11(18), 2898 (2019)

16. Ji, S., Zhang, C., Xu, A., Shi, Y., Duan, Y.: 3D convolutional neural networks
for crop classification with multi-temporal remote sensing images. Remote Sens.
10(1), 75 (2018)

17. Tehrany, M.S., Jones, S., Shabani, F., Mart́ınez-Álvarez, F., Bui, D.T.: A novel
ensemble modeling approach for the spatial prediction of tropical forest fire sus-
ceptibility using logitboost machine learning classifier and multi-source geospatial
data. Theoret. Appl. Climatol. 137, 637–653 (2019)

18. Bui, D.T., Hoang, N.-D., Mart́ınez-Ávarez, F., Ngo, P.-T.T., Hoa, P.V., Pham,
T.D., Samui, P., Costache, R.: A novel deep learning neural network approach for
predicting flash flood susceptibility: a case study at a high frequency tropical storm
area. Sci. Total Environ. 701, 134413 (2020)

19. Saifuzzaman, M., Adamchuk, V., Buelvas, R., Biswas, A., Prasher, S., Rabe, N.,
Aspinall, D., Ji, W.: Clustering tools for integration of satellite remote sensing
imagery and proximal soil sensing data. Remote Sens. 11(9), 1036 (2019)

20. Wu, X., Zurita-Milla, R., Izquierdo-Verdiguier, E., Kraak, M.-J.: Triclustering geo-
referenced time series for analyzing patterns of intra-annual variability in temper-
ature. Ann. Am. Assoc. Geogr. 108, 71–87 (2018)

90 5.1. Journal and conferences articles

236 L. Melgar-Garćıa et al.

21. Schueller, J.: A review and integrating analysis of spatially-variable control of crop
production. Fertil. Res. 33, 1–34 (1992)

22. Xue, J., Su, B.: Significant remote sensing vegetation indices: a review of develop-
ments and applications. J. Sens. 17, 1353691 (2017)

23. Govaerts, B., Verhulst, N.: The normalized difference vegetation index (NDVI)
GreenSeekerTM handheld sensor: toward the integrated evaluation of crop man-
agement. CIMMYT (2010)

View publication statsView publication stats

5| Publications 91

92 5.1. Journal and conferences articles

5.1.2 | "High-content screening images
streaming analysis using the STriGen
methodology"

Authors: Melgar-García L., Gutiérrez-Avilés D., Rubio-Escudero C., Troncoso
A.

Publication type: Conference article.

Conference: The 35th ACM/SIGAPP Symposium on Applied Computing
(SAC 2020).

Publication: Association of Computing Machinery.

Year: 2020.

Pages: 537-539

DOI: 10.1145/3341105.3374071

Ranking: GGS class (rating): 2 (A-)

High-Content Screening images streaming analysis using the
STriGen methodology

Laura Melgar-García
Data Science & Big Data Lab, Pablo de Olavide University

Seville, Spain
lmelgar@upo.es

David Gutiérrez-Avilés
Data Science & Big Data Lab, Pablo de Olavide University

Seville, Spain
dgutavi@upo.es

Cristina Rubio-Escudero
Department of Computer Science, University of Seville

Seville, Spain
crubioescudero@us.es

Alicia Troncoso
Data Science & Big Data Lab, Pablo de Olavide University

Seville, Spain
atrolor@upo.es

ABSTRACT
One of the techniques that provides systematic insights into biolog-
ical processes is High-Content Screening (HCS). It measures cells
phenotypes simultaneously. When analysing these images, features
like fluorescent colour, shape, spatial distribution and interaction
between components can be found. STriGen, which works in the
real-time environment, leads to the possibility of studying time
evolution of these features in real-time. In addition, data stream-
ing algorithms are able to process flows of data in a fast way. In
this article, STriGen (Streaming Triclustering Genetic) algorithm
is presented and applied to HCS images. Results have proved that
STriGen finds quality triclusters in HCS images, adapts correctly
throughout time and is faster than re-computing the triclustering
algorithm each time a new data stream image arrives.

CCS CONCEPTS
• Information systems→ Clustering; Data stream mining; •
Computingmethodologies→Genetic algorithms; •Applied
computing → Molecular evolution; Imaging;

KEYWORDS
Real-time, Triclustering, Genetic operators, High-Content Screen-
ing
ACM Reference Format:
Laura Melgar-García, David Gutiérrez-Avilés, Cristina Rubio-Escudero,
and Alicia Troncoso. 2020. High-Content Screening images streaming analy-
sis using the STriGen methodology. In The 35th ACM/SIGAPP Symposium on
Applied Computing (SAC ’20), March 30-April 3, 2020, Brno, Czech Republic.
ACM, New York, NY, USA, Article , 3 pages. https://doi.org/10.1145/3341105.
3374071

1 INTRODUCTION
Nowadays, one of the biggest challenges in biology is understanding
genes and their biological circuits. Due to that, techniques that

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
SAC ’20, March 30-April 3, 2020, Brno, Czech Republic
© 2020 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-6866-7/20/03.
https://doi.org/10.1145/3341105.3374071

investigate complete cellular processes are becoming more relevant,
as High-Content Screening (HCS). HCS combines an automated
imaging and analysis of intact cells exposed to some perturbations
(chemical or genomic) that alter their phenotype [11].

HCS is made by many steps that can take too much time if they
are not effectively done. On the other hand, these days, stream com-
puting trends are rising, i.e., algorithms that react in the fastest way
to provide information from data in real time. Consequently, the
processing and analysis of HCS images in a streaming environment
could give quick information from them.

In [8] the TriGen algorithm is presented as a Triclustering algo-
rithm that discovers groups of 3D datasets throughout instances,
attributes and time. In [12] STriGen algorithm is introduced. STri-
Gen is a new incremental learning method that finds groups of
similar behaviour patterns in 3D stream data continuously. In this
paper, STriGen algorithm is applied to HCS images to get informa-
tion from images in real-time.

The article is structured as follows: STriGen and HCS method-
ologies are presented in Section 2; the experimental setup and the
yielded results in Section 3; and finally the conclusions are in Sec-
tion 4.

2 METHODOLOGY
2.1 STriGen methodology
STriGen is a new incremental learning method that creates triclus-
ters (based on TriGen algorithm [8]) and keeps them updated taking
into account the knowledge from previous streams and upgrading
its learning method. STriGen meets all 4 Data Streaming require-
ments, i.e., data has to be processed in the order of its arrival and
one by one; the learning model has to be updated incrementally;
the model has to deal with small amount of memory referring to
the huge quantity of data and it has to be fast.

STriGen algorithm is inspired in the offline/online approach of
stream algorithms. Consequently, STriGen starts with an execution
of the TriGen modified to treat stream data as static data withW
data, whereW is the maximum number of data streams that can
be used in an iteration of the STriGen algorithm. Afterwards, the
algorithm processes each new data stream and the model updates
incrementally and quickly basing itself on the new streams in order
to provide the upgraded triclusters.

5| Publications 93

SAC ’20, March 30-April 3, 2020, Brno, Czech Republic L. Melgar-García et al.

During this second phase of STriGen, it tries to extend the actual
triclusters throughout time removing the "oldest" time point to
keep always a maximum of W data points, a regular procedure
in Data Streaming algorithms [6]. In addition to the extension of
the actual triclusters over time, the learning model adjusts itself
incrementally depending on the GRQ (GRaphical Quality) measure,
part of one of the TriGen fitness functions [7].

More specifically, the STriGen learning model makes mutations
into triclusters, i.e., adding, deleting and/or changing both instances
and/or attributes, to be updated. These operations are quicker than
re-training TriGen each time a new stream arrives to keep the
learning model updated. Mutations allow to find current and global
real solutions as STriGen depends on the results from the first
execution of TriGen that can change every time it is executed. In
this way, triclusters are mutated until their GRQ values are higher
than minGRQ or until the number of iterations made is higher than
numIt. In this way, STriGen tries to include or remove some current
tricluster’s components in order to keep most accurate components.
These 2 parameters and also the "window" W parameter and a
minimum GRQ threshold (that can delete the oldest time included
in the tricluster when its GRQ is smaller than this) take different
values depending on the dataset, to be able to adjust to small or/and
abrupt changes in streams.

When the dataset is synthetic or when the resulting triclusters
are known in advance, a validation process to compare founded
and real triclusters is done with accuracy and F1 Score measures.
Datasets that are neither synthetic nor with known triclusters in
advance, are evaluated depending on the GRQ value.

2.2 High-Content Screening methodology
High-Content Screening or Analysis (HCS or HCA) is gaining im-
portance. HCS combines automated imaging acquisition and image
analysis using, most frequently, automated fluorescencemicroscopy
[4]. During the HCS process intact cells are incubated with sub-
stances that alter their phenotype in a desired way [3]. These cells
are screened and multiple fluorescence readouts are measured in
parallel. This process provides big volume of data with high bio-
logical information content. Subcellular locations and fluorescence
colour intensity during different complex cellular events, in terms
of space and time, are measured with the automated image analysis
phase of HCS [5]. HCS images have been useful to detect and study
DNA, cytokinesis, cell division, cell migration, apoptosis, mitosis,
and more cellular events of target components.

HCS processes involve different tasks as cell preparation and
labelling, image acquisition, image analysis and data management
[9]. In terms of data challenges, HCS has 2 principal issues: data
storage and data processing. One of the main interesting points of
HCS is the simultaneous analysis of images that requires a high
computing power and quickly computer network connections [1].

2.3 STriGen application to High-Content
Screening images

Applying STriGen to HCS images allows to discover the best fea-
tures to group to get information from cells. Actual numerical fea-
tures extracted from HCS images are: 1) fluorescent marker colour;
2) cell component’s shape; 3) spatial situation; 4) distribution of

Figure 1: Example of preprocessing phase of HCS images

pixel-colour in a cell region of interest to study interactions or
co-occurrences [11]. Moreover, evolution throughout time is added
to these 4 features when applying STriGen to HCS.

The type of images used in this experiment are individual intact
cells fluorescent microscopy-based HCS images. Images are pro-
cessed in order to create a dataset that fits STriGen requirements.
Firstly, each RGB image is transformed into a 3D matrix represent-
ing the coordinates of each image pixel in decimal numbers. In other
words, values that represent images colours are the pixel-colour
or fluorescent-marker colour features mentioned above. A filter is
passed through every image to not include any image that present
noise due to optic aberrations, microscopy issues or even bad ac-
quisition of the image. Secondly, data is prepared to fit STriGen
dataset specifications, i.e., taking into account: detecting the colours
specified to analyse and detecting areas limits (for areas with more
than an user fixed value). In addition, random values between 0
and 1000 are added in order to make STriGen able to ignore the
background of images. A graphical example of this methodology is
in Fig. 1.

3 RESULTS AND DISCUSSION
In this section, the results obtained by the application of the STriGen
algorithm to a HCS images dataset are presented.

STriGen has been applied to a set of HCS images from [2] of
HeLa cells (cervical cancer cells taken from a woman in the 50s that
can divide themselves an unlimited number of times in well pre-
served laboratory conditions [10]). For this experiment, the dataset
selected is the one that presents the reaction of HeLa cells to Trans-
ferrin receptors (usually applied as cancer cell target because they
enhances site-specific therapies). The quality of the resulting tri-
clusters is evaluated with the GRQ measure. In addition, for this
experiment, a dataset with the desired STriGen founded triclus-
ters has been created in order to compute F1 Score and Accuracy
measures to check the performance of the algorithm.

460 HCS images similar to the above image in Fig. 1 have been
used for this experiment with black for the background image,
blue for the cell border, red for the nuclear DNA and green for the
endosome compartment. Cell borders (blue colour) has been ignore
because they do not provide extra information about HCS features.

94 5.1. Journal and conferences articles

High-Content Screening images streaming analysis using the STriGen methodologySAC ’20, March 30-April 3, 2020, Brno, Czech Republic

Table 1: STriGen configuration parameters

Execution minGRQ thresholdGRQ numIt
1 0.95 0.80 10
2 0.88 0.70 15
3 0.90 0.75 20

Figure 2: F1 Score results

Figure 3: Accuracy results

Figure 4: STriGen execution time

STriGen has been executed 3 times due to the fact that the first
triclusters results depend on the first triclusters founded by TriGen.
In that way, configuration parameters take different values in each
execution to see the influence of them in the results (see Table 1)
excepting W that has as maximum value 3.

STriGen performance results are in the following figures: Fig. 3
shows accuracy values for all triclusters and Fig. 2 shows F1 score
values. Figures show that the algorithm performs in an accurate way
and can find components correctly. F1 score of the green triclusters
in all 3 executions varies a lot, it is due to the fact that green areas
spread through cells and are in continuous movement, however
the mean accuracy value in all 3 executions is 0.908. Red areas are
more stable in both measures because they are in a similar position
in all streams.

Apart from these measures, another important parameter that
represents the good performance of the algorithm is time execution.
This experiment has been done in a computer with an i7-5820K

3.3GHz processor and 48GB RAM memory. The first phase of STri-
Gen (that is just one execution of TriGen with the first 10 streams)
takes a mean of 8.9 minutes to execute completely. Afterwards,
the Data Streaming phase starts and each new image stream is
processed and provides founded triclusters in a mean of 16 seconds.

In general, the quality measures are mostly equal in the 3 ex-
ecutions. However, it can be seen that the execution time of the
3rd execution of STriGen is much smaller, due mostly to the small
value of numIt.

4 CONCLUSIONS
The STriGen algorithm performs with good results when dealing
with stream data as we have seen in Section 3. It is faster than
executing the TriGen algorithm when a new stream arrives and so
the evolution of data throughout time can be analysed in real-time.
It proves that the learning model updates incrementally making
mutations and taking into account theW most recent streams.

The application of HCS images into the Data Streaming environ-
ment with STriGen leads the possibility of obtaining information
about the evolution of HCS features, i.e. components colour, shape,
location and distribution, throughout time in real-time. A possi-
ble application of this experiment would be the fact that STriGen
could detect when external agents like substances, drugs, antibod-
ies, etc are added to the exposed cell and how the cell reacts to them,
e.g., changing triclusters components. It allows to do a continuous
analysis of the cell in real-time.

ACKNOWLEDGMENTS
Authors thank the Spanish Ministry of Economy and Competitive-
ness for the support under the project TIN2017-88209-C2-1-R and
TIN2017-88209-C2-2-R.

REFERENCES
[1] M. Bickle. 2008. High-content screening : A new primary screening tool ? 11, 11

(2008).
[2] CellOrgnizer Project [n. d.]. CellOrganizer project from Carnegie Mellon Univer-

sity. http://www.cellorganizer.org/2d-hela/
[3] D. Cronk. 2013. Chapter 8 - High-throughput screening. (2013), 95 – 117. https:

//doi.org/10.1016/B978-0-7020-4299-7.00008-1
[4] R. Flaumenhaft. 2007. 3.07 - Chemical Biology. (2007), 129 – 149. https://doi.

org/10.1016/B0-08-045044-X/00080-8
[5] G. Galea and J. C. Simpson. 2013. Chapter 17 - High-Content Screening and

Analysis of the Golgi Complex. 118 (2013), 281 – 295. https://doi.org/10.1016/
B978-0-12-417164-0.00017-3

[6] M. Ghesmoune, M. Lebbah, and H. Azzag. 2016. State-of-the-art on clustering
data streams. Big Data Analytics 1, 1 (2016), 1–27. https://doi.org/10.1186/
s41044-016-0011-3

[7] D. Gutiérrez-Avilés, R. Giráldez, F.J. Gil-Cumbreras, and C. Rubio-Escudero. 2018.
TRIQ: A new method to evaluate triclusters. BioData Mining 11, 1 (2018), 1–29.
https://doi.org/10.1186/s13040-018-0177-5

[8] D. Gutiérrez-Avilés, C. Rubio-Escudero, F. Martínez-Álvarez, and J.C. Riquelme.
2014. TriGen: A genetic algorithm to mine triclusters in temporal gene expression
data. Neurocomputing 132 (2014), 42–53. https://doi.org/10.1016/j.neucom.2013.
03.061

[9] S. Lee and B. J. Howell. 2006. [25] - High-Content Screening: Emerging Hardware
and Software Technologies. 414 (2006), 468 – 483. https://doi.org/10.1016/
S0076-6879(06)14025-2

[10] B.P. Lucey, W.A. Nelson-Rees, and G.M. Hutchins. 2009. Henrietta Lacks, HeLa
cells, and cell culture contamination. Archives of Pathology and Laboratory
Medicine 133, 9 (2009), 1463–1467.

[11] F. Heigwer M. Boutros and C. Laufer. 2015. Microscopy-based High-content
Screening. Cell 163, 6 (2015), 1314–1325. https://doi.org/10.1016/j.cell.2015.11.007

[12] L. Melgar-García, D. Gutiérrez-Avilés, and C. Rubio-Escudero. 2019. Discov-
ering Behavior Patterns in Big Data Streaming Environments : The STriGen
Methodology. (2019). Manuscript submitted for publication.

5| Publications 95

96 5.1. Journal and conferences articles

5.1.3 | "Coronavirus Optimization Algorithm:
A Bioinspired Metaheuristic Based on
the COVID-19 Propagation Model"

Authors: Martínez-Álvarez F., Asencio-Cortés G., Torres JF., Gutiérrez-
Avilés D., Melgar-García L., Pérez- Chacón R., Rubio-Escudero C., Riquelme J.
C., Troncoso A.

Publication type: Journal article.

Journal: Big Data.

Year: 2020.

Volume: 8 (4)

Pages: 308-322

DOI: 10.1089/big.2020.0051

IF: 3.644, 15/108 Computer Science, Theory and Methods.

Quartil: Q1.

ORIGINAL ARTICLE

Coronavirus Optimization Algorithm:
A Bioinspired Metaheuristic Based on the COVID-19
Propagation Model
F. Martı́nez-Álvarez,1,* G. Asencio-Cortés,1 J. F. Torres,1 D. Gutiérrez-Avilés,1 L. Melgar-Garcı́a,1 R. Pérez-Chacón,1

C. Rubio-Escudero,2 J. C. Riquelme,2 and A. Troncoso1

Abstract
This study proposes a novel bioinspired metaheuristic simulating how the coronavirus spreads and infects
healthy people. From a primary infected individual (patient zero), the coronavirus rapidly infects new victims,
creating large populations of infected people who will either die or spread infection. Relevant terms such as re-
infection probability, super-spreading rate, social distancing measures, or traveling rate are introduced into the
model to simulate the coronavirus activity as accurately as possible. The infected population initially grows ex-
ponentially over time, but taking into consideration social isolation measures, the mortality rate, and number of
recoveries, the infected population gradually decreases. The coronavirus optimization algorithm has two major
advantages when compared with other similar strategies. First, the input parameters are already set according to
the disease statistics, preventing researchers from initializing them with arbitrary values. Second, the approach
has the ability to end after several iterations, without setting this value either. Furthermore, a parallel multivirus
version is proposed, where several coronavirus strains evolve over time and explore wider search space areas in
less iterations. Finally, the metaheuristic has been combined with deep learning models, to find optimal hyper-
parameters during the training phase. As application case, the problem of electricity load time series forecasting
has been addressed, showing quite remarkable performance.

Keywords: metaheuristics; soft computing; deep learning; big data; coronavirus

Introduction
The severe acute respiratory syndrome coronavirus
2 (SARS-CoV-2) is a new respiratory virus, causing
coronavirus disease 2019 (COVID-19), first discovered
in humans in December 2019, that has spread across
the globe, having reportedly infected >4 million people
so far.1 Much remains unknown about the virus, in-
cluding how many people who may have very mild,
asymptomatic, or simply undocumented infections
and whether they can transmit the virus or not.2

The precise dimensions of the outbreak are hard to
evaluate.3

Bioinspired models typically mimic behaviors from
the nature and are known for their successful appli-
cation in hybrid approaches to find parameters in ma-
chine learning model optimization.4 Viruses can infect

people and these people can either die, infect other peo-
ple, or simply recover after the disease. Vaccines and
the immune defense system typically fight the disease
and help to mitigate their effects while an individual
is still infected. This behavior is typically modeled by
an SIR model, consisting of three types of individuals:
S for the number of susceptible, I for the number of
infectious, and R for the number of recovered.5

Metaheuristics must deal with huge search spaces,
even infinite for the continuous cases, and must find
suboptimal solutions in reasonable execution times.6

The rapid propagation of the coronavirus along with
its ability to cause infection in most of the countries
in the world impressively fast has inspired the novel
metaheuristic proposed in this study, named coronavi-
rus optimization algorithm (CVOA). A parallel version

1Data Science and Big Data Lab, Pablo de Olavide University, Seville, Spain.
2Department of Computer Science, University of Seville, Seville, Spain.

*Address correspondence to: F. Martı́nez-Álvarez, Data Science and Big Data Lab, Pablo de Olavide University, Seville ES-41013, Spain, E-mail: fmaralv@upo.es

Big Data
Volume 8, Number 4, 2020
ª Mary Ann Liebert, Inc.
DOI: 10.1089/big.2020.0051

308

D
ow

nl
oa

de
d

by
 9

5.
22

.1
78

.4
5

fr
om

 w
w

w
.li

eb
er

tp
ub

.c
om

 a
t 0

3/
03

/2
1.

 F
or

 p
er

so
na

l u
se

 o
nl

y.

5| Publications 97

is also proposed to spread different coronavirus strains
and achieve better results in less iterations.

The main CVOA advantages regarding other similar
approaches can be summarized as follows:

(1) Coronavirus statistics are not currently known with
precision by the scientific community and some
aspects are still controversial, like the reinfection
rate.7 In this sense, the infection rate, the mortality
rate, the spreading rate, or the reinfection proba-
bility cannot be accurately estimated so far, due
to several issues such as the lack of tests for asymp-
tomatic people. However, the current state of the
pandemic suggests certain values, as reported by
the World Health Organization (WHO).8 There-
fore, CVOA is parametrized with the actual
reported values for rates and probabilities, pre-
venting the user from performing an additional
study on the most suitable setup configuration.

(2) CVOA can stop the solutions exploration after
several iterations, with no need to be configured.
That is, the number of infected people increases
over the first iterations; however, after a certain
number of iterations, the number of infected
people starts decreasing, until reaching a void
infected set of individuals.

(3) The coronavirus high spreading rate is useful for
exploring promising regions more thoroughly
(intensification), whereas the use of parallel
strains ensures that all regions of the search
space are evenly explored (diversification).

(4) Another relevant contribution of this study is the
proposal of a new discrete and of dynamic length
codification, specifically designed for combining
long short-term memory (LSTM) networks
with CVOA (or any other metaheuristic).

There is one limitation to the current approach.
Since there is no vaccine currently, it has not been in-
cluded in the procedure to reduce the number of can-
didates to be infected. This fact involves an exponential
increase of the infected population in the first iterations
and, therefore, an exponential increase of the execution
time for such iterations. This, however, is partially
solved with the implementation of social isolation mea-
sures to simulate individuals who cannot be infected
during a particular iteration.

A study case is included in this work that discusses the
CVOA performance. CVOA has been used to find the op-
timal values for the hyperparameters of an LSTM architec-
ture,9 which is a widely used model for artificial recurrent

neural network (RNN), in the field of deep learning.10

Data from the Spanish electricity consumption have
been used to validate the accuracy. The results achieved
verge on 0.45%, substantially outperforming other well-
established methods such as random forest (RF), gradient-
boost trees (GBT), linear regression (LR), or deep learning
optimized with other metaheuristics. The code, developed
in Python with a discrete codification, is available in the
Supplementary Material section (along with an academic
version in Java for a binary codification).

Finally, the need to further study the performance of
well-established fitness functions11 is acknowledged.
However, given the relevance that this pandemic is
acquiring throughout the world and the remarkable re-
sults achieved when combined with deep learning, this
study is shared with the hope that it inspires future
research in this direction.

The rest of the article is organized as follows. Related
Works section discusses related and recent studies. The
methodology proposed is introduced in Methodology
section. Hybridizing Deep Learning with CVOA section
proposes a discrete codification to hybridize deep learn-
ing models with CVOA and provides some illustrative
cases. A sensitivity analysis on how populations are
created and evolved over time is discussed in CVOA
Sensitivity Analysis section. The results achieved are
reported and discussed in Results section. Finally, the
conclusions drawn and future study suggestions are
included in Conclusions and Future Works section.

Related Works
There are many bioinspired metaheuristics to solve
optimization problems. Although CVOA has been
conceived to optimize any kind of problems, this sec-
tion focuses on optimization algorithms applied to
hybridize deep learning models.

It is hard to find consensus among the researchers on
which method should be applied to which problem,
and, for this reason, many optimization methods
have been proposed during the past decade to improve
deep learning models. In general, the criterion for
selecting a method is its associated performance from
a wide variety of perspectives. Low computation cost,
accuracy, or even implementation difficulty can be
accepted as one of these criteria.

The virus optimization algorithm was proposed by
Liang and Cuevas-Juárez in 201612 and later im-
proved by Liang et al.13 However, as many other meta-
heuristics, the results of its application are highly
dependent on its initial configuration. In addition, it

CVOA: CORONAVIRUS OPTIMIZATION ALGORITHM 309

D
ow

nl
oa

de
d

by
 9

5.
22

.1
78

.4
5

fr
om

 w
w

w
.li

eb
er

tp
ub

.c
om

 a
t 0

3/
03

/2
1.

 F
or

 p
er

so
na

l u
se

 o
nl

y.

98 5.1. Journal and conferences articles

simulates generic viruses, without adding individual-
ized properties for particular viruses. The results
achieved indicate that its usefulness is beyond doubt.

One of the most extended metaheuristics used to im-
prove deep learning parameters is genetic algorithms
(GAs). Hence, an LSTM network optimized with GA
can be found in Chung and Shin.14 To evaluate the pro-
posed hybrid approach, the daily Korea Stock Price Index
data were used, outperforming the benchmark model. In
2019, a network traffic prediction model based on LSTM
and GA was proposed in Chen et al.15 The results were
compared with pure LSTM and autoregressive integrated
moving average, reporting higher accuracy.

Multiagents systems have also been applied to optimize
deep learning models. The use of particle swarm optimiza-
tion (PSO) can be found in Liu et al.16 The authors pro-
posed a model based on kernel principal component
analysis and back propagation neural network with PSO
for midterm power load forecasting. The hybridization
of deep learning models with PSO was also explored in
Fernandes-Junior and Yen17 but, this time, the authors ap-
plied the methodology with image classification purposes.

Ants colony optimization (ACO) models have also
been used to hybridize deep learning. Thus, Desell
et al.18 proposed an evolving deep RNNs using ACO
applied to the challenging task of predicting general
aviation flight data. The study in ElSaid et al.19 intro-
duced a method based on ACO to optimize an LSTM
RNNs. Again, the field of application was flight data
records obtained from an airline containing flights
that suffered from excessive vibration.

Some articles exploring the cuckoo search (CS)
properties have been published recently as well. In
Srivastava,20 CS was used to find suitable heuristics
for adjusting the hyperparameters of another LSTM
network. The authors claimed an accuracy superior to
96% for all the data sets examined. Nawi et al.21 pro-
posed the use of CS to improve the training of RNN
to achieve fast convergence and high accuracy. Results
obtained outperformed those than other metaheuristics.

The use of the artificial bee colony (ABC) optimiza-
tion algorithm applied to LSTM can also be found in
the literature. Hence, an optimized LSTM with ABC
to forecast the bitcoin price was introduced in Yuliyono
and Girsang.22 The combination of ABC and RNN was
also proposed in Bosire23 for traffic volume forecasting.
This time the results were compared with standard
backpropagation models.

From the analysis of these studies, it can be con-
cluded that there is an increasing interest in using meta-

heuristics in LSTM models. However, not as many
studies as for artificial neural networks can be found
in the literature and, none of them, based on a virus
propagation model. These two facts, among others, jus-
tify the application of CVOA to optimize LSTM models.

Methodology
This section introduces the CVOA methodology. Thus,
Steps section describes the steps for a single strain.
Remarks for a Parallel CVOA Version section intro-
duces the modifications added to use CVOA as a
parallel version. Suggested Parameters Setup section
suggests how the input parameters must be set. Pseu-
docodes section includes the CVOA pseudocodes.

Steps
Step 1. Generation of the initial population. The ini-

tial population consists of one individual, the so-called
patient-zero (PZ). As in the coronavirus pandemic, it
identifies the first human being infected. If no previous
local minima has been found, a random initialization
for the PZ is suggested.

Step 2. Disease propagation. Depending on the indi-
vidual, several cases are evaluated:

(1) Each infected individual has a probability of
dying (P DIE), according to the COVID-19
death rate. Such individuals cannot spread the
disease to new individuals.

(2) The individuals who do not die will cause infec-
tion to new individuals (intensification). Two
types of spreading are considered, according to
a given probability (P SUPERSPREADER):
(a) Ordinary spreaders. Infected individuals will

infect new individuals according to a regular
spreading rate (SPREADING RATE).

(b) Super-spreaders. Infected individuals will
infect new individuals according to a super-
spreading rate (SUPERSPREADING RATE).

(3) There is another consideration, since it is needed
to ensure diversification. Both ordinary and
super-spreader individuals can travel and explore
very different solutions in the search space.
Therefore, individuals have a probability of
traveling (P TRAVEL) to propagate the disease
to solutions that may be quite different
(TRAVELER RATE). In case of not being a
traveler, new solutions will change according
to an ORDINARY RATE. Note that one indi-
vidual can be both super-spreader and traveler.

310 MARTÍNEZ-ÁLVAREZ ET AL.

D
ow

nl
oa

de
d

by
 9

5.
22

.1
78

.4
5

fr
om

 w
w

w
.li

eb
er

tp
ub

.c
om

 a
t 0

3/
03

/2
1.

 F
or

 p
er

so
na

l u
se

 o
nl

y.

5| Publications 99

Step 3. Updating populations. Three populations are
maintained and updated for each generation.

(1) Deaths. If any individual dies, it is added to this
population and can never be used again.

(2) Recovered population. After each iteration,
infected individuals (after spreading the corona-
virus according to the previous step) are sent to
the recovered population. It is known that there
is a reinfection probability (P REINFECTION).
Hence, an individual belonging to this popula-
tion could be reinfected at any iteration pro-
vided that it meets the reinfection criterion.
Another situation must be considered since
individuals might be isolated, as if they were fol-
lowing social distancing recommendations. For
the sake of simplicity, it is considered that an
isolated individual is sent to the recovered pop-
ulation when the isolation probability is met
(P ISOLATION).

(3) New infected population. This population gath-
ers all individuals infected at each iteration,
according to the procedure described in the pre-
vious steps. It is possible that repeated new
infected individuals are created at each iteration
and, consequently, it is recommended to remove
such repeated individuals from this population
before the next iteration starts running.

Step 4. Stop criterion. One of the most interesting
features of the proposed approach lies on its ability to
end without the need of controlling any parameter.
This situation occurs because the recovered and dead
populations are constantly growing as time goes by,
and the new infected population cannot infect new
individuals. It is expected that the number of infected
individuals increases for a certain number of iterations.
However, from a particular iteration on, the size of
the new infected population will be smaller than that
of the current size because recovered and dead popula-
tions are too big, and the size of the infected population
decays over time. In addition, a preset number of iter-
ations (PANDEMIC DURATION) can be added to
the stop criterion. The social distancing measures also
contribute to reach the stop criterion.

Remarks for a parallel CVOA version
It must be noted that it is very simple to use CVOA in
a multivirus version since it can be implemented as a
population-based algorithm, when considering the
pandemic as a set of intelligent agents each of them

evolving in parallel. In contrast to trajectory-based meta-
heuristics, population-based metaheuristics enhances
the diversification in the search space.

For this case, a new variable must be defined, strains,
which determines the number of strains that will be
launched in parallel. Each strain can explore different
regions and can be differently configured so that each
of them intensifies with their own rates.

Several considerations must be done for this case:

(1) Every strain is run independently, following the
steps in the previous section.

(2) A wise strategy must be followed to generate PZs
for each strain. For instance, it is suggested the
generation of PZs is evenly spaced or, at least,
with high Hamming distances. That way, the ex-
ploration of distinct regions of the search space
is facilitated (diversification).

(3) The interaction between the different strains is
done by means of dead and recovered popula-
tions, which must be shared by all the strains.
Operations over these populations must be han-
dled as concurrent updates.24

(4) New infected populations, on the contrary, are
different for each strain and no concurrent oper-
ations are required.

(5) This version may help to simulate different rates
for different strains. That way, if there is any ini-
tial information about the search space, some
strains could be more focused on diversification
and some others on intensification.

Depending on the hardware resources and how busy
they are, every strain may evolve at different speeds.
This situation should not pose any problems since it
is known that the pandemic evolves at different rates
and starts at different time stamps depending on region
of the world.

Last, another application can be found for this paral-
lel version. CVOA simulates an SIR model and conse-
quently, any other global pandemic can be modeled by
using the specific rates. Different pandemics could be
run in parallel.

Suggested parameters setup
Since CVOA simulates the COVID-19 propagation,
most of the rates (propagation, isolation, or mortality)
are already known. This fact prevents the researcher
from wasting time in selecting values for such rates
and turns the CVOA into a metaheuristic quite easy
to execute.

CVOA: CORONAVIRUS OPTIMIZATION ALGORITHM 311

D
ow

nl
oa

de
d

by
 9

5.
22

.1
78

.4
5

fr
om

 w
w

w
.li

eb
er

tp
ub

.c
om

 a
t 0

3/
03

/2
1.

 F
or

 p
er

so
na

l u
se

 o
nl

y.

100 5.1. Journal and conferences articles

However, it must be noted that the current rates are
still changing and it is expected they will vary over
time, as the pandemic evolves. Maybe these values
will not be stable until 2021 or even 2022. The sug-
gested values have been retrieved from the World
Health Organization25 and are discussed hereunder:

(1) P DIE. An infected individual can die with a
given probability. The case fatality ratio26 varies
by location, age of person infected, and the pres-
ence of underlying health conditions but, cur-
rently, this rate is set to *5% by the scientific
community.27 Therefore, P DIE = 0:05.

(2) P SUPERSPREADER. It is the probability that
an individual spreads the disease to a greater
number of healthy individuals. It is believed
that this situation affects to a 10% of the infected
population,28 therefore, P SUPERSPREADER =
0:1. After this condition is validated, two situa-
tions can be found:
(a) ORDINARY RATE. If the infected individ-

ual is not a super-spreader, then the infec-
tion rate (also known as reproductive
number, R0) is 2.5. It is suggested that this
rate is controlled by a random number in
the range [0, 5].

(b) SUPERSPREADER RATE. If the infected in-
dividual turns out to be a super-spreader, then
up to 15 healthy individuals can be infected.
It is suggested that this rate is controlled by a
random number in the range [6, 15].

(3) P REINFECTION . This is a very controversial
issue, since the scientific community does not
agree on whether a recovered individual can
be retested positive or not. As claimed by the
WHO, no study has evaluated whether the
presence of antibodies to COVID-19 confers im-
munity to subsequent infection by this virus
in humans.29 Some tests performed in South
Korea suggest a rate of 2% according to the
Korea Centers for Disease Control and Preven-
tion.30 Therefore, P REINFECTION = 0:02, but
this value will be re-evaluated, for sure, in the
near future.

(4) P ISOLATION . This value is uncertain because
countries are taking different measures for social
isolation. This parameter helps to reduce the ex-
ponential growth of the infected population
after each iteration. In other words, this param-
eter helps to reduce R0 and it is crucial to ensure

the pandemic ends. Therefore, a high value must
be assigned to this probability. It is suggested
that P ISOLATION � 0:7, since this value
ensures R0 < 1 (please refer to Fig. 5 to see Dis-
cussion section).

(5) P TRAVEL. This probability simulates how an
infected individual can travel to any place in
the world and can infect healthy individuals.
It is known that almost a 10% of the popula-
tion travel during a week (simulated time for
every iteration),31 so P TRAVEL = 0:1.

(6) SOCIAL DISTANCING. It is the number of iter-
ations without social distancing measures. Since
the populations grow exponentially at the begin-
ning of the pandemic, this value must be care-
fully selected and must be set according to the
size of the problem. Empirical values that suit
for any codification vary from 7 to 12, so it is sug-
gested that 7 � SOCIAL DISTANCING � 12.

(7) PANDEMIC DURATION . This parameter sim-
ulates the duration of the pandemic, that is,
the number of iterations. Currently, these data
are unknown so this number can be adjusted
to the size of the problem. It is suggested that
PANDEMIC DURATION = 30.

(8) strains. This parameter should be adjusted
according to the size of the problem and the
hardware availability, and it is difficult to suggest
a value suitable for all situations. But a tentative
initial value could be 5, in an attempt to simu-
late one different strain per continent. There-
fore, strains = 5. Another important decision
that must be made is how to initialize every
PZ associated with the strains. When just one
strain is considered, PZ is suggested to be ran-
domly initialized. However, with strains > 1
the user should search for orthogonal PZs and
to uniformly distribute them in the search
space. This strategy should help to cover bigger
search spaces in less iterations and to explore
individuals with maximal distances.

Pseudocodes
This section provides the pseudocode of the most rele-
vant functions for the CVOA, along with some com-
ments to better understand them.

Function CVOA. This is the main function and its
pseudocode can be found in Algorithm 1. Four lists
must be maintained: dead, recovered, infected (the

312 MARTÍNEZ-ÁLVAREZ ET AL.

D
ow

nl
oa

de
d

by
 9

5.
22

.1
78

.4
5

fr
om

 w
w

w
.li

eb
er

tp
ub

.c
om

 a
t 0

3/
03

/2
1.

 F
or

 p
er

so
na

l u
se

 o
nl

y.

5| Publications 101

current set of infected individuals), and new infected
individuals (the set of new infected individuals, gener-
ated by the spreading of the coronavirus from the
current infected individuals).

The initial population is generated by means of the
patient zero (PZ), which is a random solution.

The number of iterations is controlled by the main
loop, evaluating the duration of the pandemic (preset
value) and whether there is still any infected individ-
ual. In this loop, every individual can either die (it is
sent to the dead list) or infect, thus enlarging the size
of the new infected population. This infection mecha-
nism is coded in function infect (see Function infect
section).

Once the new population is formed, all individuals
are evaluated and whether any of them outperforms
the best current one, the latter is updated.

Algorithm 1: Function CVOA

1: define infectedPopulation, newInfectedPopulation as set of
Individual

2: define dead, recovered as list of Individual
3: define PZ, bestIndividual, currentBestIndividual, aux as Individual
4: define time as integer
5: define bestSolutionFitness, currentbestFitness as real
6: time) 0
7: PZ) InfectPatientZero()
8: infectedPopulation) PZ
9: bestIndividual) PZ

10: while time < PANDEMIC DURATION AND sizeof
(infectedPopulation) > 0 do

11: dead) die(infectedPopulation)
12: for all i 2 infectedPopulation do
13: aux) infect(i,recovered,dead)
14: if notnull(aux) then
15: newInfectedPopulation) aux
16: end if
17: end for
18: currentBestIndividual)

selectBestIndividual(newInfectedPopulation)
19: if fitness(currentBestIndividual) > bestIndividual then
20: bestIndividual) currentBestIndividual
21: end if
22: recovered) infectedPopulation
23: clear(infectedPopulation)
24: infectedPopulation) newInfectedPopulation
25: time) time þ 1
26: end while
27: return bestIndividual

Function infect. This function receives an infected in-
dividual and returns the set of new infected individuals.
Two additional lists, recovered and dead, are also re-
ceived as input parameters since they must be updated
after the evaluation of every infected individuals. The
pseudocode is shown in Algorithm 2.

Two conditions are evaluated to determine the num-
ber of new infected individuals (use of SPREADER

RATE or SUPERSPREADER RATE) or how differ-
ent the new individuals will be (ORDINARY RATE
or TRAVELER RATE). The implementation on how
these new infected individuals are encoded accord-
ing to such rates is carried out in the function
newInfection.

Algorithm 2: Function infect

Require: infected as of Individual; recovered, dead as list of Individual
1: define R1, R2 as real
2: define newInfected as list of Individual
3: R1) RandomNumber()
4: R2) RandomNumber()
5: if R1 < P TRAVEL then
6: if R2 < P SUPERSPREADER then
7: newInfected) newInfection (infected, recovered, dead,

SPREADER RATE, ORDINARY RATE)
8: else
9: newInfected) newInfection (infected, recovered, dead,

SUPERSPREADER RATE, ORDINARY RATE)
10: end if
11: else
12: if R2 < P SUPERSPREADER then
13: newInfected) newInfection (infected, recovered, dead,

SPREADER RATE, TRAVELER RATE)
14: else
15: newInfected) newInfection (infected, recovered, dead,

SUPERSPREADER RATE, TRAVELER RATE)
16: end if
17: end if
18: return newInfected

Function newInfection. Given an infected individual,
this function generates new infected individuals accord-
ing to the spreading and traveling rates. This function
also controls that the new infected individuals are not
already in the dead list (in such case, this new infection
is ignored) or in the recovered list (in such case, the
P REINFECTION is applied to determine whether the
individual is reinfected or whether it remains in the re-
covered list). In addition, it considers that the new po-
tential infected individual might be isolated, which is
controlled by P ISOLATION. Although the use of an
extra list could be implemented, it has been decided
to treat these individuals as recovered. Therefore, if an
isolated individual is attempted to be infected, it is
added to the recovered list.

The effective generation of the new infected individ-
uals must be carried in the function replicate, whose
pseudocode is not provided because it depends on
the codification and the nature of the problem to be op-
timized. This function must return a set of new infected
individuals, according to the aforementioned rates.
Specific information on how this codification and
replication is done for LSTM models is provided in
Hybridizing Deep Learning with CVOA section.

CVOA: CORONAVIRUS OPTIMIZATION ALGORITHM 313

D
ow

nl
oa

de
d

by
 9

5.
22

.1
78

.4
5

fr
om

 w
w

w
.li

eb
er

tp
ub

.c
om

 a
t 0

3/
03

/2
1.

 F
or

 p
er

so
na

l u
se

 o
nl

y.

102 5.1. Journal and conferences articles

The pseudocode for the described procedure can be
found in Algorithm 3.

Algorithm 3: Function newInfection

Require: infected as Individual; recovered, dead as list of Individual
1: define R3, R4 as real
2: define newInfected as list of Individual
3: R3) RandomNumber()
4: R4) RandomNumber()
5: aux) replicate(infected, SPREAD RATE, TRAVELER RATE)
6: for all i 2 aux do
7: if i 62 dead then
8: if i 62 recovered then
9: if R4 > P ISOLATION then

10: newInfected) i
11: else
12: recovered)i
13: end if
14: else if R3 < P REINFECTION then
15: newInfected) i
16: remove i from recovered
17: end if
18: end if
19: end for
20: return newInfected

Function die. This function is called from the main
function. It evaluates all individuals in the infected
population and determines whether they die or not,
according to the given P DIE. Those meeting this con-
dition are sent to the dead list. Algorithm 4 describes
this procedure.

Algorithm 4: Function die

Require: infectedPopulation as list of Individual
1: define dead as list of Individual
2: define R5 as real
3: for all i 2 infectedPopulation do
4: R5) RandomNumber()
5: if R5 < P DIE then
6: dead) i
7: end if
8: end for
9: return dead

Function selectBestIndividual. This is an auxiliary
function used to find the best fitness in a list of infected
individuals. Its peudo code is given in Algorithm 5.

Hybridizing Deep Learning with CVOA
This section describes the codification proposed for an
individual, to hybridize deep learning with CVOA. The
term hybridize is used in this context as the combina-
tion of two computational techniques (deep learning
and CVOA) so that the best hyperparameter values
are discovered. This strategy is very common in ma-
chine learning for optimizing models during the train-
ing process.32–34

Algorithm 5: Function selectBestIndividual

Require: infectedPopulation as list of Individual
1: define bestIndividual as Individual
2: define bestFitness as real
3: bestFitness) MINVALUE
4: for all i 2 infectedPopulation do
5: if fitness(i) > bestFitness then
6: bestFitness) fitness(i)
7: bestIndividual) i
8: end if
9: end for

10: return bestIndividual

Hence, the individual codification shown in Figure 1
has been implemented to apply CVOA to optimize
deep neural network architectures.

As is shown in Figure 1, each individual is composed
of the following elements. The element LR encodes the
learning rate used in the neural network algorithm. It
can take a value from 0 to 5 and its corresponding
decoded values are 0, 0:1, 0:01, 0:001, 0:0001, and
0:00001.

The element DROP encodes the dropout rate ap-
plied to the neural network. It can take values from
0 to 8 that correspond to 0, 0:10, 0:15, 0:20, 0:25,
0:30, 0:35, 0:40, and 0:45, respectively. The dropout
rate is distributed uniformly for all the layers of the
network. That is, if the dropout is 0:4 and the network
has four layers, then the 10% (0:1) of the neurons of
each layer will be removed.

The element L of the individual stores the number of
layers of the network. It is restricted to 1 < L � 11.
The first layer is referred to the input layer of the neural
network. The rest of layers are hidden layers. The out-
put layer is excluded from the codification. Therefore,
the optimized network can contain from 1 to 10 hidden
layers.

The proposed individual codification has a variable
size. Thus, its size depends on the number of layers
indicated in the element L. Consequently, a list of
elements (LAYER 1, ., LAYER L) are also included
in the individual, which encode the number of units
(neurons) for each network layer. Each of these ele-
ments can take values from 0 to 11, and their corre-
sponding decoded values range from 25 to 300, with
a step of 25.

PZ generation
The PZ, as it has been described previously, is the indi-
vidual of the first iteration in the CVOA algorithm.
After the hybridization proposed, a random individual
is created considering the codification already defined.

314 MARTÍNEZ-ÁLVAREZ ET AL.

D
ow

nl
oa

de
d

by
 9

5.
22

.1
78

.4
5

fr
om

 w
w

w
.li

eb
er

tp
ub

.c
om

 a
t 0

3/
03

/2
1.

 F
or

 p
er

so
na

l u
se

 o
nl

y.

5| Publications 103

In first place, a random value for the learning rate of
the PZ is generated. Specifically, a number between 0
and 5 is generated randomly in a uniform distribution.
Such limits are indicated in Figure 1, according to the
possible encoded values of the learning rate element.
The same process is carried out to produce a random
value for the dropout element. In such case, a random
number between 0 and 8 is generated.

In second place, a random number of layers are gen-
erated for the element L of PZ. Such number of layers is
a random number between 2 and 11. Note that the first
layer is reserved for the input layer of the neural net-
work, as it has been discussed before.

In last place, for each one of the L layers, a random
number of units is generated between 0 and 11, cover-
ing the possible encoded values for the number of units
previously defined (Fig. 1).

Infection procedure
The infection procedure described here corresponds to
the functionality of replicate(), introduced in line 5
of Algorithm 3. This procedure takes an individual as
input and returns an infected individual according to
the following procedure.

The first step is to determine the element L of the
infected individual that will be mutated. The probabil-
ity of such mutation that occurs has been set to 1

3 so that
every element has the same probability to mutate. If the
mutation occurs, then the element L of the individual is

modified according to the process described in Single
Position Mutation section.

If the element L (the number of layers of the net-
work) changes, then the elements encoding the different
layers within the individual (LAYER 1, ., LAYER L)
must be resized accordingly. Such resizing process is
explained in Individual Resizing Process section.

The second step is to determine how many ele-
ments of the individual will be infected. If the
TRAVELER RATE < 0, then the number of infected
elements is generated randomly from 0 to the length
of the individual (excluding the element L). Else, the
TRAVELER RATE indicates itself the number of infec-
ted elements.

As third step, once the number of infected elements
of the individual is determined, a list of random posi-
tions is generated. For example, if three positions of
the individual must be changed, then the random
positions affected could be, for instance, referred to
the elements {DROP, LAYER 2, LAYER 4}.

Finally, the selected positions of the individual are
mutated. Such mutation is described in Single Position
Mutation section.

Individual resizing process
When an individual is infected at the position of the
element L, the list of elements that encodes the num-
ber of units per layer (LAYER 1, ., LAYER L) must
be resized accordingly.

FIG. 1. Individual codification for hybridizing deep learning architectures using the proposed coronavirus
optimization algorithm.

CVOA: CORONAVIRUS OPTIMIZATION ALGORITHM 315

D
ow

nl
oa

de
d

by
 9

5.
22

.1
78

.4
5

fr
om

 w
w

w
.li

eb
er

tp
ub

.c
om

 a
t 0

3/
03

/2
1.

 F
or

 p
er

so
na

l u
se

 o
nl

y.

104 5.1. Journal and conferences articles

In the case that the new number of layers after the
infection is lower than its previous value, then the
last leftover elements are removed. For instance, if
the initial individual is f2, 0, 4gf3, 2, 1, 6g (four layers),
the element L = 4 is infected and the new value is L = 2,
then the resulting individual will be f2, 0, 2gf3, 2g.

In the case that the new number of layers after the
infection is higher than its previous value, the new
random elements are added at the end of the indi-
vidual. For instance, if the initial individual is
f2, 0, 4gf3, 2, 1, 6g (four layers), the element L = 4 is
infected and the new value is L = 6, then the resulting
individual could be f2, 0, 6gf3, 2, 1, 6, 0, 4g.

Single position mutation
The process carried out to change the value of a specific
element of an individual is described in this section.

First, a signed amount of change C 2 f� 2, � 1,

þ 1, þ 2g is randomly determined using the following
criteria. A random real number P between 0 and 1 is
generated using a uniform distribution. If P < 0:25,
then the amount of change will be C = � 2. Else if
P < 0:5, then the amount of change will be C = � 1.
Else if P < 0:75, then the amount of change will be
C = þ 1. Else, the amount of change will be C = þ 2.

Once the amount of change is determined, the
new value for the infected element is computed. If its
previous value is V, then the new value after the single
position mutation will be V ¢ = V þC. If the new value
V ¢ exceeds the limits defined for the individual codifi-
cation, such value is set to the maximum or minimum
allowed value accordingly.

CVOA Sensitivity Analysis
This section discusses several aspects about the sensi-
tiveness of CVOA to different configurations. Hence,
Sensitivity to the Number of Strains section evaluates
the evolution of the populations for a different number
of strains. Sensitivity to the Parameters section assesses
the performance when other well-known viruses are
modeled. Finally, Sensitivity to the Social Distancing
Measures section provides information about R0 and
how it varies when social distancing measures change.

Sensitivity to the number of strains
This section provides an overview on how populations
evolve over time and how the search space is explored,
when a different number of strains are used.

A binary codification has been used, with 20 bits, to
conduct this experimentation. A simple fitness func-
tion has been evaluated, f (x) = (x� 15)2, because the

goal of this section is to evaluate the growth of the pop-
ulations, and not to find challenging optimum values.
This function reaches the minimum value at x = 15,
that is, f (15) = 0.

According to Suggested Parameters Setup section,
the following configuration has been used: P DIE =
0:05, P ISOLATION = 0:8, P SUPERSPREADER = 0:1,
P REINFECTION = 0:02, SOCIAL DISTANCING = 8,
P TRAVEL = 0:1, and PANDEMIC DURATION = 30.

Every experiment has been launched 50 times and,
on average, the optimum value was found during the
iteration number 13, 6, and 3, for 1, 4, and 8 strains,
respectively.

Figure 2 illustrates the evolution of the new infected
population over time, for 1, 4, and 8 strains. The number
of new infected people increases exponentially during
the first SOCIAL DISTANCING = 8 iterations because
R0 > 0 but, from iteration 9 onward, an acute decrease
is reported because R0 becomes <0. This fact is controlled
by P ISOLATION = 0:8 (a deeper study on R0 and
P ISOLATION can be found in Sensitivity to the Social
Distancing Measures section). It must be noted that iter-
ation 0 (PZ infection) counts as a regular iteration.

Figures 3 and 4 show the accumulated number of
recovered people and accumulated deaths, respectively.
Note that deaths and recovered individuals cannot
be infected again (except for the individuals in the re-
covered list that can be reinfected with a given prob-
ability, P REINFECTION). These two curves are a
direct consequence of the number of new infected peo-
ple, so, once the number of new infections decreases or
even disappears, these values remain almost constant.
Also, it can be observed that P ISOLATION = 0:8
after SOCIAL DISTANCING = 8 iterations help to flat-
ten the curves. A directly proportional relationship is
reported between the number of strains and the num-
ber of explored individuals at the end of the pandemic.

Four main conclusions can be drawn from the anal-
ysis of these figures:

(1) The number of new infected individuals, accu-
mulated recovered, and deaths is directly pro-
portional to the number of strains.

(2) The higher the number of strains, the lower the
number of iterations that are required to reach
the optimal value.

(3) The number of individuals evaluated increases
at each iteration on an almost linear basis, as
the number of strains increases. In case no ran-
dom numbers were generated, the relationship

316 MARTÍNEZ-ÁLVAREZ ET AL.

D
ow

nl
oa

de
d

by
 9

5.
22

.1
78

.4
5

fr
om

 w
w

w
.li

eb
er

tp
ub

.c
om

 a
t 0

3/
03

/2
1.

 F
or

 p
er

so
na

l u
se

 o
nl

y.

5| Publications 105

would be directly proportional, that is, four
strains would evaluate four times the number
of individuals than one strain would do.

(4) To reach the optimum values, the search space ex-
plored is smaller as the number of strains increases.
This is due to the generation of PZ evenly spaced,
which makes easier to explore wider areas.

Sensitivity to the parameters
Several well-known viruses with deep impact in human
beings’ health are modeled in this section, to assess the
CVOA robustness to different input parameter values.

Middle East respiratory syndrome (MERS), SARS,
influenza (seasonal strains), and Ebola have been se-
lected, with the parametrization given in Table 1. It is
worth mentioning that the modeling of each virus re-
quires much research and an approximate parametri-
zation has been used, according to the references in
the rightmost column.

All experiments have been conducted with 4 strains
and 30 iterations. The viruses with vaccines have been
simulated by using P ISOLATION = 0:95 after five iter-
ations, since this feature is not implemented in CVOA.

Table 2 summarizes the percentage of search space
explored and the best fitness found, on average.

FIG. 2. Number of new infected individuals for a 20-bit binary codification execution, with 1, 4, and 8 strains.

FIG. 3. Total number of recovered people for a 20-bit binary codification execution, with 1, 4, and 8 strains.

CVOA: CORONAVIRUS OPTIMIZATION ALGORITHM 317

D
ow

nl
oa

de
d

by
 9

5.
22

.1
78

.4
5

fr
om

 w
w

w
.li

eb
er

tp
ub

.c
om

 a
t 0

3/
03

/2
1.

 F
or

 p
er

so
na

l u
se

 o
nl

y.

106 5.1. Journal and conferences articles

Codifications of 10, 20, 30, 40, and 50 bits have been
used, with associated search spaces of length 1024,
1.05E+6, 1.07E+09, 1.10E+12, and 1.13E+15, respec-
tively. Several findings are revealed:

(1) CVOA finds the optimal values even for the
longest codification (50 bits) and it is done by
exploring a similar search space size as the
other configurations do.

(2) SARS is the second best parametrization, reach-
ing remarkable fitness even for 50 bits. But it
required the evaluation of a greater number of
individuals and, therefore, the execution time
was greater as well.

(3) MERS obtained the poorest results in terms of
fitness but it explored a smaller space search.
This situation may be explained due to the low
associated reproductive number (R0 < 1).

(4) Influenza has obtained slightly worse results in
terms of fitness than CVOA but with less solu-
tions explored. This configuration may be useful
to obtain satisfactory results in a reduced execu-
tion time.

(5) The high death fatality rate of Ebola pre-
vents from exploring most of the search space.
This fact makes difficult to visit optimal val-
ues. However, results for 40 bits are satisfac-
tory in terms of fitness. For 50 bits, its use is
discouraged considering the poor fitness value
reached.

It can be concluded that variations in the input pa-
rameter values lead to results varying both in fitness
and in execution time. This feature is very useful for
the CVOA parallel version, since strains with different
rates and probabilities can be simultaneously launched.
That is, strains aiming at diversifying can be combined
with strains aiming at intensifying.

Sensitivity to the social distancing measures
In this section, an analysis on how P ISOLATION
modifies R0 is conducted. The purpose is to discover
when R0 < 1, situation in which the pandemic preva-
lence declines. A study with a 10-bit to 50-bit codifica-
tion has been done as well as using different number of
strains (1, 4, and 8).

Figure 5 illustrates how R0 varies for a 40-bit codifi-
cation, with probabilities of isolation ranging from 0 to
1, and with 1, 4, and 8 strains. Quite similar behaviors
have been achieved for all codifications.

From the analysis of this figure, several conclusions
are drawn:

(1) R0 is linear and inversely proportional to
P ISOLATION .

FIG. 4. Total number of deaths for a 20-bit binary codification execution, with 1, 4, and 8 strains.

Table 1. Parametrization for other viruses

Disease R0

Fatality
rate (%) Vaccine

Super-
spreaders References

SARS 1.4–2.5 11 No Yes 35,36

MERS 0.3–0.8 34.4 No Yes 28,35,37

Influenza 0.9–2.1 0.1 Yes No 38

Ebola 1.5–1.9 50 Yes No 39,40

MERS, Middle East respiratory syndrome; SARS, severe acute respira-
tory syndrome.

318 MARTÍNEZ-ÁLVAREZ ET AL.

D
ow

nl
oa

de
d

by
 9

5.
22

.1
78

.4
5

fr
om

 w
w

w
.li

eb
er

tp
ub

.c
om

 a
t 0

3/
03

/2
1.

 F
or

 p
er

so
na

l u
se

 o
nl

y.

5| Publications 107

(2) The same negative slope is shown, with varia-
tions no higher than 10E�2 on average for all
codifications and number of strains.

(3) R0 is <1 with P ISOLATION values close to 0.65
(and higher). This fact involves a decline of the
infectious disease.

Results
This section reports the results achieved by hybridiz-
ing a deep learning model with CVOA. Study Case:
Electricity Demand Time Series Forecasting section
describes the study case selected to prove the effective-
ness of the proposed algorithm. Data Set Description
section describes the data set used. Performance Anal-
ysis section discusses the results achieved and includes
some comparative methods.

Study case: electricity demand time
series forecasting
The forecasting of future values fascinates the human
being. To be able to understand how certain variables
evolve over time has many benefits in many fields.

Electricity demand forecasting is not an exception,
since there is a real need for planning the amount to
be generated or, in some countries, to be bought.

The use of machine learning to forecast such time se-
ries has been intensive during the past years.41 But,
with the development of deep learning models, and,
in particular of LSTM, much research is being con-
ducted in this application field.42

Data set description
The time series considered in this study is related to the
electricity consumption in Spain from January 2007 to
June 2016, the same as used in Torres et al..43 It is a
time series composed of 9 years and 6 months with a
10-minute sampling frequency, resulting in 497,832
measures.

As in the original article, the prediction horizon is 24,
that is, this is a multistep strategy with h = 24. The size
of samples used for the prediction of these 24 values is
168. Furthermore, the data set was split into 70% for
the training set and 30% for the test set, and in addition,

Table 2. CVOA performance with different configurations

Disease

10 bits 20 bits 30 bits 40 bits 50 bits

Explored (%) Fitness Explored (%) Fitness Explored (%) Fitness Explored (%) Fitness Explored (%) Fitness

SARS 57.32 0 0.54 0 6E�03 1 1E�05 4 3E�08 252
MERS 20.34 0 0.04 16 1E�02 36 1E�05 112 2E�09 3210
Influenza 13.23 0 0.02 0 8E�04 2 1E�06 14 1E�08 310
Ebola 62.93 0 0.44 0 7E�02 4 2E�05 15 1E�09 810
COVID-19 15.63 0 0.21 0 1E�03 0 1E�05 0 2E�08 0

COVID-19, coronavirus disease 2019; CVOA, coronavirus optimization algorithm.

FIG. 5. R0 sensitivity to P ISOLATION, in a 40-bit codification.

CVOA: CORONAVIRUS OPTIMIZATION ALGORITHM 319

D
ow

nl
oa

de
d

by
 9

5.
22

.1
78

.4
5

fr
om

 w
w

w
.li

eb
er

tp
ub

.c
om

 a
t 0

3/
03

/2
1.

 F
or

 p
er

so
na

l u
se

 o
nl

y.

108 5.1. Journal and conferences articles

a 30% of the training set has also been selected for the val-
idation set, to find the optimal parameters. The training
set covers the period from January 1, 2007, at 00:00 to Au-
gust 20, 2013, at 02:40. Therefore, the test set comprises
the period from August 20, 2013, at 02:50 to June 21,
2016, at 23:40.

Performance analysis
This section reports the results obtained by hybridizing
LSTM with CVOA, by means of the codification pro-
posed in Hybridizing Deep Learning with CVOA
section, to forecast the Spanish electricity data set de-
scribed in Data Set Description section.

LR, decision tree, GBT, and RF models have been used
with parametrization setups according to those studied in
Galicia et al.44,45 A deep neural network optimized with
a grid search (DNN-GS) according to Torres et al.43 has
also been applied. Another deep neural network, but opti-
mized with random search (DNN-RS) and smoothed with
a low-pass filter (DNN-RS-LP),46 has also been applied.
Furthermore, CVOA has been combined with DNN
(DNN-CVOA), using the same codification as in LSTM.

These results along with those of LSTM, and combina-
tions with GS, RS, RS-LP, and CVOA, are summarized in
Table 3, expressed in terms of the mean absolute per-
centage error. It can be observed that LSTM-CVOA out-
performs all evaluated methods that have showed
particularly remarkable performance for this real-world
data set. In addition, DNN-CVOA outperforms all
other DNN configurations, which confirms the superior-
ity of CVOA with reference to GS, RS, and RS-LP.

Another relevant consideration that must be taken
into account is that the compared methods generated
24 independent models, each of them for every value
forming h. So, it would be expected that LSTM-
CVOA performance increases if independent models
are generated for each of the values in h.

These results have been achieved with the follow-
ing codification: {4,0,8}{9,7,2,7,2,7,10,7}. The decoded
architecture parameters are listed below:

(1) Learning rate: 10E�04.
(2) Dropout: 0.
(3) Number of layers: 8.
(4) Units per layer: [250, 200, 75, 200, 75, 200,

275, 200]

Finally, Figure 6 depicts the first 5 predicted days
versus their actual values, expressed in watts.

Table 3. Results in terms of MAPE for LSTM-CVOA compared
with other well-established methods

Method MAPE (%)

LR 7.34
DT 2.88
GBT 2.72
RF 2.20
DNN-GS 1.68
DNN-RS 1.57
DNN-RS-LP 1.36
DNN-CVOA 1.18
LSTM-GS 1.22
LSTM-RS 0.84
LSTM-RS-LP 0.82
LSTM-CVOA 0.47

Bold indicates the best results for the proposed method in the article
(LSTM-CVOA).

CVOA, coronavirus optimization algorithm; DNN, deep neural network;
DNN-CVOA, CVOA has been combined with DNN; DNN-GS, DNN opti-
mized with a grid search; DNN-RS, DNN optimized with random search;
DNN-RS-LP, DNN smoothed with a low-pass filter; DT, decision tree; GBT,
gradient-boosted trees; LR, linear regression; LSTM, long short-term
memory; LSTM-CVOA, CVOA has been combined with LSTM; LSTM-GS,
LSTM optimized with a grid search; LSTM-RS, LSTM optimized with ran-
dom search; LSTM-RS-LP, LSTM smoothed with a low-pass filter; MAPE,
mean absolute percentage error; RF, random forest.

FIG. 6. Actual versus predicted values for the first 5 days in the test set (in W).

320 MARTÍNEZ-ÁLVAREZ ET AL.

D
ow

nl
oa

de
d

by
 9

5.
22

.1
78

.4
5

fr
om

 w
w

w
.li

eb
er

tp
ub

.c
om

 a
t 0

3/
03

/2
1.

 F
or

 p
er

so
na

l u
se

 o
nl

y.

5| Publications 109

Conclusions and Future Studies
This study has introduced a novel bioinspired meta-
heuristic, based on the COVID-19 pandemic behavior.
On the one hand, CVOA has three major advantages.
First, its high relation to the coronavirus spreading
model prevents users from making any decision
about the input values. Second, it ends after a certain
number of iterations due to the exchange of individuals
between healthy and dead/recovered lists.

In addition, a novel discrete and dynamic codifica-
tion has been proposed to hybridize deep learning mod-
els. On the other hand, it exhibits some limitations.
Such is the case for the exponential growth of the
infected population as time (iterations) goes by.

Furthermore, a parallel version is proposed so that
CVOA is easily transformed into a multivirus meta-
heuristic, in which different coronavirus strains search
for the best solution in a collaborative way. This fact
allows to model every strain with different initial setups
(higher DEATH RATE, for instance), sharing recov-
ered or dead lists.

Additional experimentation must be conducted to
assess its performance on standard F functions and
find out the search space shapes in which it can be
more effective.

As for future study, some actions might be taken to
reduce the size of the infected population after several
iterations, which grows exponentially. In this sense,
a vaccine could be implemented. This case would
involve adding to the recovered list, at a given
VACCINE RATE healthy individuals. This rate will
remain unknown until a vaccine is developed.

Another suggested research line is using dynamic
rates. For instance, the observation of the preliminary
effects of the social isolation measures in countries
such as China, Italy, or Spain suggests that the
INFECT RATE could be simulated as a Poisson pro-
cess, but more time and country recoveries are required
to confirm this trend.

For the multistep forecasting problem analyzed, it
would be desirable to generate independent models
for each of the values that form the prediction hori-
zon h.

Finally, further research has to be conducted to as-
sess the CVOA performance when applied to other
fields and combined with other networks.

Supplementary Material
Along with this article, an academic version in Java for
a binary codification is provided, with a simple fitness

function in a GitHub repository (https://github.com/
DataLabUPO/CVOA_academic). The master branch
includes a simple implementation, whereas the sets
branch provides an optimized version with a command
line interface. In addition, the code in Python for the
deep learning approach is also provided, with a more
complex codification and the suggested implementa-
tion, according to the pseudocode provided (https://
github.com/DataLabUPO/CVOA_LSTM).

Author Disclosure Statement
No competing financial interests exist.

Funding Information
The authors thank the Spanish Ministry of Economy
and Competitiveness for the support under project
TIN2017-88209-C2.

References
1. Velavan TP, Meyer CG. The COVID-19 epidemic. Trop Med Int Health.

2020;25:278–280.
2. Li R, Pei S, Chen B, et al. Substantial undocumented infection facilitates

the rapid dissemination of novel coronavirus (SARS-CoV-2). Nature.
2020;368:489–493.

3. Giordano G, Blanchini F, Bruno R, et al. Modelling the COVID-19 epidemic
and implementation of population-wide interventions in Italy. Nat Med.
2020;26:855–860.

4. Del Ser J, Osaba E, Molina D, et al. Bio-inspired computation: Where we
stand and what’s next. Swarm Evol Comput. 2019;48:220–250.

5. Tolic D, Kleineberg K, Antulov-Fantulin N. Simulating SIR processes on
networks using weighted shortest paths. Sci Rep. 2018;8:6562.

6. Boussaı̈d I, Lepagnot J, Siarry P. A survey on optimization metaheuristics.
Inf Sci. 2013;237:82–117.

7. Tay MZ, Poh CM, Rénia L, et al. The trinity of COVID-19: immunity,
inflammation and intervention. Nat Rev Immunol. 2020;20:363–374.

8. World Health Organization. 2019. Available online at https://www.who
.int/es/emergencies/diseases/novel-coronavirus-2019 (last accessed
March 20, 2020).

9. Kelotra A, Pandey P. Stock market prediction using optimized deep-
ConvLSTM model. Big Data. 2020;8:5–24.

10. De-Cnudde S, Ramon Y, Martens D, Provost F. Deep learning on big,
sparse, behavioral data. Big Data. 2019;7:286–307.

11. Glover F, Kochenberger GA. Handbook of metaheuristics. New York:
Springer, 2003.

12. Liang YC, Cuevas-Juárez JR. A novel metaheuristic for continuous opti-
mization problems: Virus optimization algorithm. Eng Optim. 2016;48:
73–93.

13. Liang YC, Cuevas-Juárez JR. A self-adaptive virus optimization algorithm
for continuous optimization problems. Soft Comput. 2020. [Epub ahead
of print]; DOI: 10.1007/s00500-020-04730-0.

14. Chung H, Shin K-S. Genetic algorithm-optimized long short-term
memory network for stock market prediction. Sustainability. 2018;
10:3765.

15. Chen J, Xing H, Yang H, Xu L. Network traffic prediction based on LSTM
networks with genetic algorithm. Lect Notes Electr Eng. 2019;550:
411–419.

16. Liu Z, Sun X, Wang S, et al. Midterm power load forecasting model
based on kernel principal component analysis and back propagation
neural network with particle swarm optimization. Big Data. 2019;7:
130–138.

17. Fernandes-Junior FE, Yen GG. Particle swarm optimization of deep neural
networks architectures for image classification. Swarm Evol Comput.
2019;49:62–74.

CVOA: CORONAVIRUS OPTIMIZATION ALGORITHM 321

D
ow

nl
oa

de
d

by
 9

5.
22

.1
78

.4
5

fr
om

 w
w

w
.li

eb
er

tp
ub

.c
om

 a
t 0

3/
03

/2
1.

 F
or

 p
er

so
na

l u
se

 o
nl

y.

110 5.1. Journal and conferences articles

18. Desell T, Clachar S, Higgins J, Wild B. Evolving deep recurrent neural
networks using ant colony optimization. Lect Notes Comput Sci. 2015;
9026:86–98.

19. ElSaid A, ElJamiy F, Higgings J, et al. Using ant colony optimization to
optimize long short-term memory recurrent neural networks. In:
Proceedings of the Genetic and Evolutionary Computation Conference,
2018, pp. 13–20.

20. Srivastava D, Singh Y, Sahoo A. Auto tuning of RNN hyper-parameters
using cuckoo search algorithm. In: Proceedings of the International
Conference on Contemporary Computing, 2019, pp. 1–5.

21. Nawi NM, Khan A, Rehman MZ. A new optimized cuckoo search recurrent
neural network (CSRNN). In: Proceedings of the International
Conference on Robotic, Vision, Signal Processing & Power Applications,
2014, pp. 335–341.

22. Yuliyono AD, Girsang AS. Artificial bee colony-optimized LSTM for bitcoin
price prediction. Adv Sci Technol Eng Syst J. 2019;4:375–383.

23. Bosire A. Recurrent neural network training using ABC algorithm for
traffic volume prediction. Informatica. 2019;43:551–559.

24. Dhar V, Sun C, Batra P. Transforming finance into vision: Concurrent
financial time series as convolutional net. Big Data. 2019;7:276–285.

25. World Health Organization. 2020. Coronavirus disease 2019 (COVID-
19): Situation report 74. Technical report, WHO. Available online at
https://www.who.int/docs/default-source/coronaviruse/situation-
reports/20200403-sitrep-74-covid-19-mp.pdf (last accessed May 9,
2020).

26. Ghani AC, Donnelly CA, Cox DR, et al. Methods for estimating the case
fatality ratio for a novel, emerging infectious disease. Am J Epidemiol.
2005;162:479–486.

27. Mizumoto K, Chowell G. Estimating risk for death from 2019 novel
coronavirus disease, China, January–February 2020. Emerg Infect Dis.
2020;26;1251–1256.

28. Wu JY, Leung K, Leung GM. Nowcasting and forecasting the potential
domestic and international spread of the 2019-nCoV outbreak
originating in Wuhan, China: A modelling study. Lancet. 2020;396:
689–697.

29. World Health Organization. 2020. Immunity passports in the context of
COVID-19. Technical report, WHO. Available online at https://www.who
.int/news-room/commentaries/detail/immunity-passports-in-the-
context-of-covid-19 (last accessed April 29, 2020).

30. Korea Centers for Disease Control and Prevention. 2020. Coronavirus
Disease-19. Available online at https://www.cdc.go.kr/cdc_eng/ (last
accessed May 9, 2020).

31. González MC, Hidalgo CA, Barabási AL. Understanding individual human
mobility patterns. Nature. 2008;453:779–782.

32. Calvet L, Armas JD, Masip D, Juan AA. Learnheuristics: Hybridizing
metaheuristics with machine learning for optimization with dynamic
inputs. Math Open. 2017;15:261–280.

33. Darwish A, Hassanien AE, Das S. A survey of swarm and evolutionary
computing approaches for deep learning. Artif Intell Rev. 2020;53:
1767–1812.

34. Devikanniga D, Vetrivel K, Badrinath N. Review of meta-heuristic
optimization based artificial neural networks and its applications. J Phy:
Conf Ser. 2019;1362:012074.

35. Trilla A. One world, one health: The novel coronavirus COVID-19
epidemic. Med Clin. 2020;154:175–177.

36. World Health Organization. 2003. Consensus document on the epide-
miology of severe acute respiratory syndrome (SARS). Technical report,
WHO. Available online at https://www.who.int/csr/sars/en/
WHOconsensus.pdf (last accessed May 10, 2020).

37. World Health Organization. 2019. Middle East respiratory syndrome
coronavirus (MERS-CoV). Technical report, WHO. Available online at
https://www.who.int/emergencies/mers-cov/en/ (last accessed May 10,
2020).

38. Coburn BJ, Wagner BG, Blower S. Modeling influenza epidemics and pan-
demics: insights into the future of swine flu (H1N1). BMC Med. 2009;7:30.

39. Khan A, Naveed M, Dur e Ahmad M. Estimating the basic reproductive
ratio for the Ebola outbreak in Liberia and Sierra Leone. Infect Dis
Poverty. 2015;4:13.

40. World Health Organization. 2020. Ebola virus disease. Technical report,
WHO. Available online at https://www.who.int/news-room/fact-sheets/
detail/ebola-virus-disease (last accessed May 10, 2020).

41. Martı́nez-Álvarez F, Troncoso A, Asencio-Cortés G, Riquelme JC. A survey
on data mining techniques applied to electricity-related time series
forecasting. Energies. 2015;8:13162–13193.

42. Bedi J, Toshniwal D. Deep learning framework to forecast electricity
demand. Appl Energy. 2019;238:1312–1326.

43. Torres JF, Galicia A, Troncoso A, Martı́nez-Álvarez F. A scalable approach
based on deep learning for big data time series forecasting. Integr
Comp Aided Eng. 2018;25:335–348.

44. Galicia A, Torres JF, Martı́nez-Álvarez F, Troncoso A. Scalable forecasting
techniques applied to big electricity time series. Lect Notes Comput Sci.
2019;10306:165–175.

45. Galicia A, Talavera-Llames RL, Troncoso A, et al. Multi-step forecasting for
big data time series based on ensemble learning. Knowl Based Syst.
2019;163:830–841.

46. Torres JF, Gutiérrez-Avilés D, Troncoso A, Martı́nez-Álvarez F. Random
hyper-parameter search-based deep neural network for power con-
sumption forecasting. Lect Notes Comput Sci. 2019;11506:259–269.

Cite this article as: Martı́nez-Álvarez F, Asencio-Cortés G, Torres JF,
Gutiérrez-Avilés D, Melgar-Garcı́a L, Pérez-Chacón R, Rubio-Escudero
C, Riquelme JC, Troncoso A (2020) Coronavirus optimization
algorithm: a bioinspired metaheuristic based on the COVID-19
propagation model. Big Data 8:4, 308–322, DOI: 10.1089/
big.2020.0051.

Abbreviations Used
ABC ¼ artificial bee colony
ACO ¼ ants colony optimization

COVID-19 ¼ coronavirus disease 2019
CS ¼ cuckoo search

CVOA ¼ coronavirus optimization algorithm
DNN ¼ deep neural network

DNN-CVOA ¼ CVOA has been combined with DNN
DT ¼ decision tree

GAs ¼ genetic algorithms
GBTs ¼ gradient-boosted trees

GS ¼ grid search
LR ¼ linear regression

LSTM ¼ long short-term memory
MAPE ¼ mean absolute percentage error

RF ¼ random forest
RS ¼ random search

MERS ¼ Middle East respiratory syndrome
PSO ¼ particle swarm optimization

SARS ¼ severe acute respiratory syndrome
SARS-CoV-2 ¼ SARS coronavirus 2

WHO ¼ World Health Organization

322 MARTÍNEZ-ÁLVAREZ ET AL.

D
ow

nl
oa

de
d

by
 9

5.
22

.1
78

.4
5

fr
om

 w
w

w
.li

eb
er

tp
ub

.c
om

 a
t 0

3/
03

/2
1.

 F
or

 p
er

so
na

l u
se

 o
nl

y.

5| Publications 111

112 5.1. Journal and conferences articles

5.1.4 | "A new forecasting algorithm based on
neighbors for streaming electricity time
series"

Authors: Jiménez-Herrera P., Melgar-García L., Asencio-Cortés G., Troncoso
A.

Publication type: Conference article.

Conference: Hybrid Artificial Intelligent Systems (HAIS 2020).

Publication: Lecture Notes in Computer Science, Springer International
Publishing, Cham.

Year: 2020.

Volume: 12344

Pages: 522-533

DOI: 10.1007/978-3-030-61705-9_43

A New Forecasting Algorithm Based
on Neighbors for Streaming Electricity

Time Series

P. Jiménez-Herrera, L. Melgar-Garćıa, G. Asencio-Cortés, and A. Troncoso(B)

Division of Computer Science, Universidad Pablo de Olavide, 41013 Seville, Spain
pjimher@alu.upo.es, {lmelgar,guaasecor,ali}@upo.es

Abstract. This work presents a new forecasting algorithm for streaming
electricity time series. This algorithm is based on a combination of the
K-means clustering algorithm along with both the Naive Bayes classifier
and the K nearest neighbors algorithm for regression. In its offline phase
it firstly divide data into clusters. Then, the nearest neighbors algorithm
is applied for each cluster producing a list of trained regression mod-
els, one per each cluster. Finally, a Naive Bayes classifier is trained for
predicting the cluster label of an instance using as training the cluster
assignments previously generated by K-means. The algorithm is able to
be updated incrementally for online learning from data streams. The
proposed algorithm has been tested using electricity consumption with
a granularity of 10 min for 4-h-ahead predicting. Our algorithm widely
overcame other four well-known effective online learners used as bench-
mark algorithms, achieving the smallest error.

Keywords: Forecasting · Real time · Streaming data · Electricity
time series · Nearest neighbors.

1 Introduction

The current technological context has two main aspects of research and devel-
opment. On the one hand, an industrial aspect, where the boom in advanced
connection of devices or Internet of Things (IoT) is changing the means of pro-
duction and service management systems, leading our society to a new industrial
revolution known as Industry 4.0. And on the other hand, the data, as a conse-
quence of the enormous amount of data that is generated daily in our society,
coming from many different origins, including IoT between them, and leading
us to a new technological revolution based on the analysis of large scale data
known as Big Data.

Of the three V’s that initially defined Big Data (speed, variety and volume),
volume is perhaps the characteristic in which researchers have made the great-
est effort. Almost all the technology developed in recent years allows to obtain
approximate solutions to problems derived from the dimensionality of the data.

c© Springer Nature Switzerland AG 2020
E. A. de la Cal et al. (Eds.): HAIS 2020, LNAI 12344, pp. 522–533, 2020.
https://doi.org/10.1007/978-3-030-61705-9_43

5| Publications 113

A New Forecasting Algorithm 523

However, speed, despite being a feature present in many problems of data analy-
sis, has not had the same impact, or rather, it is beginning to have it at present.
Although the analysis of streaming data has been studied in the last decade, in
very few cases forecasting techniques have been developed, which allow to have
an updated model that is capable of giving a response in real time to obtain
forecasts.

In this work, a new forecasting algorithm based on the nearest similar pat-
tern for streaming electricity time series, named StreamNSP, is proposed. The
algorithm firstly determines different patterns in historical data. Once the data
stream is received, the algorithm predicts the pattern to which the data stream
just arrived belongs. Then, the prediction is obtained using the nearest neigh-
bor among the data with the same pattern to data stream. The performance
of the proposed method has been tested on a real-world related to energy con-
sumption. Finally, the results have been compared to that of the well-known
prediction algorithms for streaming data.

The rest of the paper is structured as follows. Section 2 reviews of the exist-
ing literature related to the forecasting algorithms for streaming energy data. In
Sect. 3 the proposed methodology to forecast streaming time series is introduced.
Section 4 presents the experimental results corresponding to the prediction of
the energy consumption. Finally, Sect. 5 closes the paper giving some final con-
clusions.

2 Related Work

Although time series forecasting have been extensively studied in the litera-
ture, there are very few works on time series forecasting for streaming big data
environments. In general, the methods for predicting time series can be classi-
fied into classical methods based on Box and Jenkins [1], such as ARIMA and
GARCH; and machine learning methods, such as support vector machines, near-
est neighbors techniques and artificial neural networks. For a taxonomy of these
techniques applied to energy time series forecasting, the reader is referred to [2].

In the last few years, some other techniques have been developed to forecast
time series in the context of big data. In [3] the energy consumption in several
buildings of a public university is predicted by applying a distributed k-means
algorithm in Spark. The study in [4] shows that suitable accuracy predictions
can be achieved by applying a deep learning algorithm to electricity consumption
data in Spain. On the other hand, in [5] different scalable methods such as
decision tree, gradient boosted trees and random forest, are used to also predict
the electricity consumption in Spain.

One of the main challenges today is real-time decision making based on the
analysis of continuous data streams usually coming from sensors in an IoT con-
text within the new edge computing paradigm or smart grids. A new representa-
tion of energy data streams was proposed in [6] for purpose of detecting outlier
consumers by applying clustering techniques in smart grids. In [7] the authors
presented an energy prediction system based on an edge computing architecture.

114 5.1. Journal and conferences articles

524 P. Jiménez-Herrera et al.

In particular, an online deep neural network model adapted to the characteristics
of IoT data was implemented for energy prediction. In [8] a new methodology
for real-time forecasting of energy demand using weather predicted data was
proposed. In [9] neural networks with different backpropagation algorithms was
also proposed for real-time energy consumption forecasting using climate data.
A combination of an online clustering algorithm with a neural-network based
predictive model was presented for electricity load forecast in [10].

After a thorough review, it can be concluded that very few papers have been
published to predict online streaming electricity time series and there is still a
lot of research to be done.

3 Methodology

3.1 Overview

The StreamNSP algorithm has been developed for streaming of time series data,
and it is based on a combination of the K-means clustering algorithm [11] along
with both the Naive Bayes (NB) classifier [12] and the K nearest neighbors
(KNN) algorithm [13] for regression.

The general idea behind the proposed forecasting algorithm is to take a
training set in a offline phase and firstly divide it in clusters using the K-means
algorithm. Then, the KNN algorithm is applied for each cluster producing a list
of trained prediction models, one per each cluster. Finally, the NB classifier is
trained for predicting the cluster label of an instance using as training the cluster
assignments previously generated by K-means.

Once the model of StreamNSP is generated in the offline phase, it is tested
and then updated online using data streams. The methodology carried out to
train, test and compare StreamNSP with a set of benchmark algorithms is graph-
ically described in the Fig. 1.

In first place, a previous process of data preparation is performed from the
historical time series data. This process is described in Sect. 3.2. After the prepa-
ration of data, a model is produced for each forecasting horizon, using both the
StreamNSP algorithm and a set of benchmark algorithms. Each model is eval-
uated using a prequential or interleaved test-then-train evaluation. Finally, a
comparison of error metrics was performed. The same evaluation procedure is

Fig. 1. Overview of the processes within the proposed methodology.

5| Publications 115

A New Forecasting Algorithm 525

carried out for both StreamNSP and benchmark algorithms. The offline phase
of StreamNSP is described in Sect. 3.3 and its online phase in Sect. 3.4. The
benchmark algorithms are described in Sect. 4.3.

The algorithm StreamNSP was implemented in the Java programming lan-
guage (Oracle Java 1.8.0 152-b16 SE for 64 bits) and adapted to be compatible
for the MOA framework [14]. All experiments for testing and benchmarking
StreamNSP were automated using the API of the MOA framework (version
19.04).

3.2 Data Preparation

The proposed forecasting algorithm is based on attributes (features) and a single
numeric class to predict. However, time series data in a streaming is a sequence
of numeric values. For such reason, the following data preparation process was
made before to train and test the model. The Fig. 2 describes visually the proce-
dure carried out to transform the time series data into a set of training and test for
each prediction horizon. Specifically, a set of w lagged variables, a1, . . . , aw, were
extracted from a time series x1, . . . , xn. These values reflect lagged windows of size
w from the time series, as it can be seen in Fig. 2. These variables will act as input
attributes for the model. Along with these attributes, a last column y representing
the class was added to the so called propositional tables for each forecasting hori-
zon from 1 to h, where h is the number of future values to predict. These column
is a future value, in the time series, with respect to the past values window.

Fig. 2. Data preparation process.

116 5.1. Journal and conferences articles

526 P. Jiménez-Herrera et al.

Finally, for each horizon, both training and test subsets were taken from
propositional tables, maintaining the original temporal order. The training set
will be used to train the model in its offline phase, while the test set will be used
to test and update the model in its online phase.

3.3 Offline Phase

The procedure carried out by the proposed StreamNSP algorithm in its offline
phase is described in Fig. 3. As it can be seen in such figure, given a training
set, each instance is extracted one by one according to its temporal order. Such
instance is composed by its attributes a1, . . . , aw and its numeric class y.

Fig. 3. Offline phase of the StreamNSP algorithm. (Color figure online)

Each instance from training set is stored in an internal training buffer, as
it is shown in Fig. 3. Once such buffer is completed (i.e. when the number of
instances i is equal to the training size trainSize) then such buffer is given to
the K-means clustering algorithm. In this work, K = 3 clusters was set to model
low, medium and high consumption.

As a result of the clustering, each instance is stored separately according to
its assigned cluster. Then, a KNN regression model is trained and stored for
each cluster. In this work, three KNN regression models were stored (K = 3).
The algorithm KNN used was configured for one nearest neighbor search.

5| Publications 117

A New Forecasting Algorithm 527

Fig. 4. Online phase of the StreamNSP algorithm.

A table containing the attributes a1, . . . , aw of all training instances along
with their cluster assignments (the cluster label) is also made and stored (table
coloured in orange in Fig. 3). Finally, a Naive Bayes model is trained using such
table, with the aim to predict the cluster label of further test instances.

3.4 Online Phase

The procedure carried out by the proposed StreamNSP algorithm in its online
phase is described in Fig. 4. As it can be seen, each instance is extracted one
by one in online streaming from a test set. Such instance is composed of its
attributes a1, . . . , aw and its numeric class y. The online phase is divided in two
steps, due to the prequential evaluation performed. First, the step of predicting
and, after, the step of updating the model.

The prediction step consists in receiving online the attributes a1, . . . , aw of
the instance and use the Naive Bayes classification model previously trained.
Such model returns the estimated cluster to which the test instance could belong
(let be the cluster j). Then, the proper KNN regression model (the model j) is
used to predict the numeric class ŷi of the instance.

The model updating step consists in receiving both the attributes a1, . . . , aw

and the actual class y of the instance. Using the Naive Bayes classification model,
an estimated cluster is produced (the same cluster as the prediction step, because
the instance attributes are the same). Finally, the regression model j is updated
using both the attributes and class of the instance.

4 Experimentation and Results

4.1 Dataset

The time series considered in this study is related to the electricity consumption
in Spain from 1 January 2007 at 00:00 to 21 June 2016 at 23:50. It is a time

118 5.1. Journal and conferences articles

528 P. Jiménez-Herrera et al.

series of 9 years and 6 months with a high sampling frequency (10 min), resulting
in 497,832 measures in total.

The time series was processed as described in Sect. 3.2 for a window of 144
lagged values corresponding to one day and a horizon of 24 values corresponding
to 4 h. Thus, the past day is used to predict the next 4 h. After the preprocessing,
we have removed the first 144 rows and the last 24 rows, in order to avoid empty
values in the instances.

4.2 Evaluation Metrics

The MAE, RSME and MAPE errors have been used to evaluate the results of
the proposed StreamNSP algorithm and the benchmark algorithms.

The MAE is the mean absolute error, which is the average of the absolute
differences between actual and predictions. The MAE is defined in Eq. (1), where
yi are actual values, ŷi predicted values and n is the number of predicted samples.

MAE =
1

n

n∑

i=1

|yi − ŷi| (1)

The RMSE is the root mean square error, which represents the square root
of the second sample moment of the differences between predicted values and
observed values or the quadratic mean of these differences. The RMSE metric is
defined in Eq. (2).

RMSE =

√√√√ 1

n

n∑

i=1

(yi − ŷi)2 (2)

Finally, the third evaluation metric is the MAPE, which is calculated as
the average absolute percent error, that is, the average of actual values minus
predicted values divided by actual values as can be seen in Eq. (3).

MAPE =
100

n

n∑

i=1

∣∣∣∣
yi − ŷi

yi

∣∣∣∣ (3)

4.3 Benchmark Algorithms

In order to compare the forecasting results of the algorithm StreamNSP with
other suitable approaches in the literature, four regression algorithms for online
learning from data streaming were selected.

The algorithm FIMTDD [15] learns a regression tree and it is able to address
time-changing data streams. The algorithm has mechanisms for drift detection
and model adaptation, which enable it to maintain accurate and updated regres-
sion models at any time. The algorithm observes each example only once at
the speed of arrival, and maintains at any-time a ready-to-use tree model. The
tree leaves contain linear models induced online. The number of instances a leaf

5| Publications 119

A New Forecasting Algorithm 529

should observe between split attempts was set to 200. The threshold below which
a split will be forced to break ties was set to 0.05.

The algorithm AdaGrad [16] is an online optimizer for learning linear regres-
sion from data streams that incorporates knowledge of the geometry of the data
observed in earlier iterations to perform more informative gradient-based learn-
ing. The adaptation feature of this algorithm derives into strong regret guar-
antees, which for some natural data distributions achieve high performance. No
regularization was used for the linear regression model and the learning rate was
set to 0.01.

The algorithm AMRulesReg [17] is an adaptive model that is able to generate
decision rules for regression from data streams. In this model, the antecedent of a
rule is a conjunction of conditions on the attribute values, and the consequent is
a linear combination of attribute values. Each rule uses a Page-Hinkley test [18]
to detect changes in the process generating data and react to changes by pruning
the rule set.

Finally, the algorithm Perceptron [19] is based on the algorithm Hoeffding
Trees [20], but instead of using Naive Bayes models at the leaf nodes it uses per-
ceptron regressors. The perceptron regressors use the sigmoid activation function
instead of the threshold activation function and optimize the squared error.

4.4 Results

The forecasting results obtained for StreamNSP and the benchmark algorithms
using the electricity time series data stream are presented and discussed in this
section.

Table 1 shows the MAE, RMSE and MAPE for StreamNSP, AdaGrad,
FIMTDD, Perceptron and AMRulesReg. These errors have been calculated and
averaged for all predicted horizons. As it can be seen that our StreamNSP algo-
rithm achieved better results in MAE, RMSE and MAPE than the other four
benchmark learners. The MAE error of StreamNSP has been compared with the
best MAE result of the other four benchmark learners, in this case AMRulesReg,
and it provides an error improvement of 66.958 MW. The difference between the
RMSE for AMRulesReg and StreamNSP algorithms is also high, in particular
144,315 higher for AMRulesReg. In addition, AMRulesReg obtained a MAPE of
0.313% worse than StreamNSP. Note that AdaGrad algorithm seems to be not
suitable for predicting energy consumption data, because of its high errors for
all the computed metrics.

Table 2 shows the errors for each prediction horizon. As it can be seen, the
growth of both MAE, RMSE and MAPE errors for the proposed StreamNSP
algorithm is lower and more stable across the predicted horizons than that of
the other four benchmarks. The increase of the MAPE across the 24 predicted
horizons is 0.816%. This value is computed by the difference between the maxi-
mum MAPE (2.336 for the horizon 24) and the minimum (1.52 for the horizon
1). The errors were always increasing across the horizons.

120 5.1. Journal and conferences articles

530 P. Jiménez-Herrera et al.

Table 1. Comparison of the errors ordered by MAPE.

Algorithm MAE RMSE MAPE (%)

AdaGrad 3242.434 3872.137 12.052

FIMTDD 1332.544 1751.836 4.911

Perceptron 612.676 986.839 2.297

AMRulesReg 590.401 944.853 2.211

StreamNSP 523.443 800.538 1.898

Table 2. Errors of the StreamNSP algorithm for each predicted horizon.

Horizon MAE RMSE MAPE (%) Horizon MAE RMSE MAPE (%)

1 421.573 568.969 1.520 13 527.449 753.941 1.907

2 428.810 578.613 1.554 14 534.718 776.120 1.942

3 435.304 590.439 1.571 15 544.480 798.651 1.976

4 443.158 604.724 1.595 16 552.460 823.934 2.008

5 454.045 621.032 1.637 17 560.636 854.281 2.050

6 466.106 635.736 1.674 18 580.300 915.053 2.116

7 470.065 640.124 1.687 19 593.585 959.358 2.166

8 473.147 644.658 1.698 20 604.592 996.627 2.214

9 477.315 650.281 1.713 21 614.681 1031.443 2.245

10 483.942 660.731 1.742 22 622.031 1051.802 2.269

11 492.637 682.344 1.783 23 627.828 1063.401 2.292

12 510.162 722.867 1.845 24 643.615 1129.542 2.336

Figure 5 shows the MAPE for each predicted horizon for both the StreamNSP
and the benchmark methods. It can be observed that the StreamNSP exhibits
the highest stability of MAPE across the predicted horizons with respect to the
other benchmark learners. For the first 10 horizons, AMRulesReg and Perceptron
methods provided a lower MAPE than StreamNSP. However, StreamNSP has
the lowest average error for all horizons. StreamNSP has an error difference
among horizons of 0.816%, while AMRulesReg and Perceptron have 3.217% and
3.467%, respectively. For horizons higher than 10, StreamNSP overcame the rest
of algorithms, being the best method for higher horizons.

Figure 6 shows the best forecasted day according to the minimum MAPE
obtained for the StreamNSP. This figure includes the actual and predicted values
for each hour of the day (with 10 min of interval). This day corresponds to
October 29, 2015. The x-axis is the time and the y-axis is the target variable
(energy consumption in MW). The prediction fits very well at all times and it
does not shows large errors for any time.

Figure 7 shows the forecasted day with the biggest MAPE for the StreamNSP.
It can be seen high differences between the actual and predicted values. It seems

5| Publications 121

A New Forecasting Algorithm 531

1

2

3

4

5

6

7

8

9

10

11

12

13

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Predicted Horizon

M
A

P
E

 (%
)

Algorithms

AdaGrad

AMRulesReg

FIMTDD

Perceptron

StreamNSP

Fig. 5. Comparison of the MAPE for all algorithms along the predicted horizon.

21000

22000

23000

24000

25000

26000

27000

28000

29000

30000

31000

32000

33000

34000

00:00 01:00 02:00 03:00 04:00 05:00 06:00 07:00 08:00 09:00 10:00 11:00 12:00 13:00 14:00 15:00 16:00 17:00 18:00 19:00 20:00 21:00 22:00 23:00
Hour of the day

E
ne

rg
y

co
ns

um
pt

io
n

ACTUAL

PRED

Fig. 6. Best forecasted day for the StreamNSP (day with the smallest MAPE).

19000

20000

21000

22000

23000

24000

25000

26000

27000

28000

29000

00:00 01:00 02:00 03:00 04:00 05:00 06:00 07:00 08:00 09:00 10:00 11:00 12:00 13:00 14:00 15:00 16:00 17:00 18:00 19:00 20:00 21:00 22:00 23:00
Hour of the day

E
ne

rg
y

co
ns

um
pt

io
n

ACTUAL

PRED

Fig. 7. Worst forecasted day for the StreamNSP (day with the maximum MAPE).

122 5.1. Journal and conferences articles

532 P. Jiménez-Herrera et al.

that the nearest neighbour selected to make these predictions may not represent
correctly the energy consumption for such day. This day corresponds to May 1,
2014, which is a holiday in Spain (Labor day).

5 Conclusions

In this work the new StreamNSP forecasting algorithm has been proposed for
online learning on streaming data. StreamNSP has an offline phase to obtain
the prediction model using the historical data. This phase consists of splitting
the training data into clusters using the K-means algorithm. Then, a nearest
neighbors algorithm is applied for each cluster producing a list of trained regres-
sion models, one per each cluster. In addition to that, a Naive Bayes classi-
fier is trained for predicting the cluster label of an instance using as training
the cluster assignments previously generated by K-means. The algorithm can
be updated incrementally for online learning from data streams including new
instances into the model corresponding to its estimated cluster. StreamNSP
has been tested using the electricity consumption with a granularity of 10 min
for predicting a prediction horizon of four hours. The algorithm widely over-
came other four online learners, such as AdaGrad, FIMTDD, Perceptron and
AMRulesReg, achieving an average MAPE of 1.89% instead of 2.21%, 2.29%,
4.91% and 12.05% obtained by the other algorithms. Moreover, the StreamNSP
has obtained the most accurate predictions for large forecasting horizons (11 or
more values ahead).

As future work, other base algorithms will be tested for the clustering, clas-
sification and regression inner components of the StreamNSP. Furthermore, a
sensitivity study of the number of clusters used in StreamNSP will be performed.

Acknowledgements. The authors would like to thank the Spanish Ministry of Sci-
ence, Innovation and Universities for the support under the project TIN2017-88209-
C2-1-R.

References

1. Box, G., Jenkins, G.: Time Series Analysis: Forecasting and Control. John Wiley,
Hoboken (2008)

2. Mart́ınez-Álvarez, F., Troncoso, A., Asencio-Cortés, G., Riquelme, J.C.: A survey
on data mining techniques applied to electricity-related time series forecasting.
Energies 8(11), 13162–13193 (2015)

3. Pérez-Chacón, R., Luna-Romera, J.M., Troncoso, A., Mart́ınez-Álvarez, F.,
Riquelme, J.C.: Big data analytics for discovering electricity consumption patterns
in smart cities. Energies 11, 683 (2018)

4. Torres, J.F., Galicia, A., Troncoso, A., Mart́ınez-Álvarez, F.: A scalable approach
based on deep learning for big data time series forecasting. Integr. Comput.-Aided
Eng. 25(4), 335–348 (2018)

5. Galicia, A., Torres, J.F., Mart́ınez-Álvarez, F., Troncoso, A.: A novel spark-based
multi-step forecasting algorithm for big data time series. Inf. Sci. 467, 800–818
(2018)

5| Publications 123

A New Forecasting Algorithm 533

6. Laurinec, P., Lucká, M.: Interpretable multiple data streams clustering with clipped
streams representation for the improvement of electricity consumption forecasting.
Data Mining Knowl. Disc. 33(2), 413–445 (2018). https://doi.org/10.1007/s10618-
018-0598-2

7. Luo, H., Cai, H., Yu, H., Sun, Y., Bi, Z., Jiang, L.: A short-term energy prediction
system based on edge computing for smart city. Fut. Gener. Comput. Syst. 101,
444–457 (2019)

8. Kwak, Y., Seo, D., Jang, C., Huh, J.-H.: Feasibility study on a novel methodology
for short-term real-time energy demand prediction using weather forecasting data.
Energy Build. 57, 250–260 (2013)

9. Ahmad, T., Chen, H.: A review on machine learning forecasting growth trends
and their real-time applications in different energy systems. Sustain. Cities Soc.
54, 102010 (2020)

10. Gama, J., Rodrigues, P.P.: Stream-based electricity load forecast. In: Proceedings
of the Knowledge Discovery in Databases, pp. 446–453 (2007)

11. MacQueen, J.: Some methods for classification and analysis of multivariate obser-
vations. In: Proceedings of the 5th Berkeley Symposium on Mathematical Statistics
and Probability, vol. 1, pp. 281–297 (1967)

12. John, G.H., Langley, P.: Estimating continuous distributions in bayesian classifiers.
In: Proceedings of the 11th Conference on Uncertainty in Artificial Intelligence, pp.
338–345 (1995)

13. Aha, D., Kibler, D.: Instance-based learning algorithms. Mach. Learn. 6, 37–66
(1991)

14. Bifet, A., Holmes, G., Kirkby, R., Pfahringer, B.: MOA: massive online analysis.
J. Mach. Learn. Res. 11, 1601–1604 (2010)

15. Ikonomovska, E., Gama, J., Džeroski, S.: Learning model trees from evolving data
streams. Data Mining Knowl. Disc. 23(1), 128–168 (2011)

16. Duchi, J., Hazan, E., Singer, Y.: Adaptive subgradient methods for online learning
and stochastic optimization. J. Mach. Learn. Res. 12, 2121–2159 (2011)

17. Almeida, E., Ferreira, C., Gama, J.: Adaptive model rules from data streams. In:
Proceedings of the Machine Learning and Knowledge Discovery in Databases, pp.
480–492 (2013)

18. Basseville, M.: Detecting changes in signals and systems-a survey. Automatica
24(3), 309–326 (1988)

19. Bifet, A., Holmes, G., Pfahringer, B., Frank, E.: Fast perceptron decision tree
learning from evolving data streams. In: Proceedings of the Advances in Knowledge
Discovery and Data Mining, pp. 299–310 (2010)

20. Hulten, G., Spencer, L., Domingos, P.: Mining time-changing data streams. In:
Proceedings of the Knowledge Discovery on Databases, pp. 97–106 (2001)

124 5.1. Journal and conferences articles

5| Publications 125

5.1.5 | "Discovering three-dimensional
patterns in real-time from data
streams: an online triclustering
approach"

Authors: Melgar-García L., Gutiérrez-Avilés D., Rubio-Escudero C., Troncoso
A.

Publication type: Journal article.

Journal: Information Sciences.

Year: 2021.

Volume: 558

Pages: 174-193

DOI: 10.1016/j.ins.2020.12.089

IF: 5.910 9/156 Computer Science, Information Systems.

Quartil: Q1.

Discovering three-dimensional patterns in real-time from data
streams: An online triclustering approach

Laura Melgar-García a, David Gutiérrez-Avilés a, Cristina Rubio-Escudero b, Alicia Troncoso a,⇑
aData Science & Big Data Lab, Pablo de Olavide University, ES-41013 Seville, Spain
bDepartment of Computer Science, University of Seville, Avda. Reina Mercedes s/n, Seville 41012, Spain

a r t i c l e i n f o

Article history:
Received 22 July 2020
Received in revised form 13 November 2020
Accepted 30 December 2020
Available online 26 January 2021

Keywords:
Data streaming
Patterns
Real-time
Triclustering

a b s t r a c t

Triclustering algorithms group sets of coordinates of 3-dimensional datasets. In this paper,
a new triclustering approach for data streams is introduced. It follows a streaming scheme
of learning in two steps: offline and online phases. First, the offline phase provides a sum-
mary model with the components of the triclusters. Then, the second stage is the online
phase to deal with data in streaming. This online phase consists in using the summary
model obtained in the offline stage to update the triclusters as fast as possible with genetic
operators. Results using three types of synthetic datasets and a real-world environmental
sensor dataset are reported. The performance of the proposed triclustering streaming algo-
rithm is compared to a batch triclustering algorithm, showing an accurate performance
both in terms of quality and running times.

� 2021 Elsevier Inc. All rights reserved.

1. Introduction

Currently, research efforts are focused on developing new methodologies that consider continuous and massive flows of
data from a wide variety of sources with the objective of analyzing and taking advantage of them. Therefore, the term Data
Streaming that defines these in motion data takes relevance in this context. Nowadays, there are a vast variety of data
streaming sources such as Internet of Things (IoT), social media, medical devices, or videos. When dealing with continuous
flows of data and real-time characteristics, traditional machine learning methodologies (i.e., clustering, regression, classifi-
cation) have to be adapted to this new environment [1].

There are two main computational approaches to develop machine learning models for data streaming [1]. On the one
hand, incremental learning is found, where the model evolves and adapts incrementally to concept drift [2] in data streams.
On the other hand, the offline-online learning emerges, where the model is divided into an offline phase in order to create a
summary (or sketch) of the data without time execution restrictions and an online phase to update the synopsis data in real-
time as fast as possible.

Among all the streaming analysis tasks, the behavior pattern extraction becomes relevance as it is the base of a vast num-
ber of current real-time applications such as customer analysis, fraud detection, or sentimental analysis [3]. Different types
of algorithms are found in the literature depending on the type of patterns to be searched. Clustering [4] extracts similar
behaviour patterns over all the features analyzed. Biclustering [5] appears as an evolution of clustering since patterns can

https://doi.org/10.1016/j.ins.2020.12.089
0020-0255/� 2021 Elsevier Inc. All rights reserved.

⇑ Corresponding author.
E-mail address: atrolor@upo.es (A. Troncoso).

Information Sciences 558 (2021) 174–193

Contents lists available at ScienceDirect

Information Sciences

journal homepage: www.elsevier .com/ locate/ ins

126 5.1. Journal and conferences articles

be extracted from a subset of instances and features. Triclustering [6] allows for considering a third dimension in the dataset,
usually time, finding groups of elements with similar behaviour throughout three-dimensional datasets.

In this work, we present a new online triclustering algorithm for data streaming, called STriGen. The STriGen is a learning
method based on genetic algorithms, which combines an offline and online phase, to discover collections of resembling pat-
terns in 3D data streams in real time. We show the results obtained from the application of STriGen to three synthetic data-
sets of different complexity and to a real dataset collected from seven environmental sensors. The results obtained for the
synthetic datasets are validated by means of comparing the triclusters found to the real ones, providing quality evaluation
measures such as the accuracy and F1 score. The triclusters obtained by the STriGen using the real dataset can not be val-
idated as the synthetic ones since the real triclusters are not known, and therefore we use the Graphical Quality (GRQ) mea-
sure described in [7].

The rest of the paper is structured as follows: a summary of the previous research related to the paper’s topic is presented
in Section 2; Section 3 describes how the offline and online part of the proposed algorithm works; the experimental setting
carried out and the results obtained are shown in Section 4; and, finally, the conclusions and future works are provided in
Section 5.

2. Related works

In this Section, the current state of the art related to the proposed research is presented. The STriGen algorithm is asso-
ciated to two main areas: the streaming analysis and the triclustering approach.

Regarding the streaming analysis topic, several proposals of new machine learning approaches adapted to this emerging
environment can be found in the literature. In [8], an online version of the support vector machine model was developed to
predict air pollutant levels using streaming time series. The authors in [9] presented a streaming version of the linear dis-
criminant analysis algorithm for dimension reduction. In [10], the authors developed a streaming analytics system for
large-scale data. An adaptive ensemble learning for online activity recognition from data streams was presented in [11]. Fur-
thermore, efforts to develop tools to facilitate the adaption of classic machine learning models to the streaming environment
have been carried out. In this sense, a general adaptive incremental learning framework for streaming data analysis was per-
formed in [12] and, an API to apply machine learning algorithms to data streams, well-known as SAMOA, was introduced in
[13].

In streaming environments, both the prompt anomaly detection and the generation of a continuous flow of data are
highly explored fields. The authors in [14] presented a real-time methodology to detect cybercrimes related to credit card
frauds; another anomaly detection algorithm for streams of data was developed in [15]. In an overview regarding the pattern
discovery task in streaming, the authors in [16] proposed a methodology to discover patterns in multiple time-series in
streaming. A classification of streaming features based on an emerging-pattern approach was presented in [17]. The authors
presented SPADE in [18], which is a shape-based pattern detection method for streaming time-series.

Also, new online machine learning approaches have emerged in the area of evolving systems in clustering due to the rise
of the streaming analysis field. In [19], the authors developed a fuzzy-rule-based model with the capability to adapt to the
new streams of data and to deal with missing values efficiently. The authors in [20] presented an evolving optimal granular
system to perform the approximation of functions such as time-series models, classification or regression functions, demon-
strating its outperform when comparing with other evolving methods in multivariate problems. The authors in [21] pre-
sented a new approach for online regression and system identification problems in data streams, based on evolving fuzzy
systems. An updating of the previous methodology was developed in [22], where the authors presented a new rule splitting
framework for generalized evolving fuzzy systems, demonstrating the outperform of this new algorithm against the original
version. In [23], the author presented a new online incremental clustering algorithm based on a dynamic cluster merging
method, which consisted in the calculation of the covariance matrix of the clusters susceptible to be joined. Furthermore,
in [20], the authors developed other evolving systems specializing in evolving fuzzy rule-based models and neuro-fuzzy net-
works in online and real-time environments. A complete survey of evolving systems dealing with streaming data can be
found in [24].

In the streaming analysis field, an important research area is the adaptation of existing methodologies to the streaming
environment. Thus, some algorithms are adapted to the streaming environment using incremental learning. For example, K-
Means methods for data streaming modify just the calculation process of the closest mean to the new point instead of apply-
ing the whole algorithm every time a new point arrives [25]. We can also find a mixed online/offline strategy, which is
advantageous as streaming concerns just the online phase. In the offline phase, traditional algorithms are applied to the data
without meeting all the requirements of data streaming. During the online phase, selected streaming data are structured,
keeping only a statistic summary of them and not the full data. StreamKM++ [26] and CluStream [27] are some examples
of this online/offline methodology.

Finally, the triclustering topic emerges as a methodology for gene expression data time series. The goal in triclustering is
the same as in clustering, that is, minimizing the intra-triclustering distance and maximizing the inter-triclustering distance.
There are different triclustering algorithms approaches depending on their behaviour: iterative searches, distribution param-

L. Melgar-García, D. Gutiérrez-Avilés, C. Rubio-Escudero et al. Information Sciences 558 (2021) 174–193

175

5| Publications 127

eter identification, pattern mining, evolutionary multi-objective optimization, among other options [28]. The authors intro-
duced an algorithm based on the symmetry property of the triclusters in [29]. Lately, an extended and generalized version of
the previous proposal was presented in [30]. An evolutionary computation approach was proposed in [31], where the fitness
function was defined as a multi-objective measure. Another proposal based on genetic algorithms was developed in [32],
where the authors mined the optimal shifting and scaling patterns from 3D-microarrays. The triclustering genetic-based
algorithm, TriGen, also used multi-objective optimization approach [6]. The authors in [33] developed a triclustering algo-
rithm based on a statistical methodology for 3D short gene expression data time series datasets. The triclustering techniques
have been also applied to other areas. In particular, a triclustering algorithm was used to depict seismogenic zoning over the
Iberian Peninsula in [34]. The authors applied triclustering techniques in high-content screening images to identify its com-
ponents in [35]. Moreover, triclustering techniques have been successfully applied to medical environments, like in [36],
where triclustering was applied in combination with random forest to predict the need for non-invasive ventilation in
ALS patients. A survey of several existing triclustering algorithms can be found in [37].

3. Materials and methods

This Section describes the proposed algorithm STriGen. Section 3.1 defines and specifies the main characteristics of the
triclusters. The STriGen algorithm is presented in Section 3.2, including the type of data that it needs, the description of
its two phases and the validation of the resulting triclusters.

3.1. Tricluster definition

Triclustering algorithms are an evolution of clustering algorithms [38]. Specifically, clustering is applied on 2-dimensional
datasets and triclustering on 3-dimensional datasets. In both cases, data are a set of instances (rows in a matrix) and features
(columns in a matrix) and, just in triclustering, data also contain a set of time points (depths in a matrix).

In particular, a cluster is defined as a group of instances over all features. However, a tricluster is defined as a group of
instances over a group of features and over a group of time points. For example, in a 3-dimensional dataset with L instances,
K features and P time points, a resulting tricluster is a subset composed of j 6 L instances, h 6 K features and y 6 P time
points, respectively. An example tricluster formed by j � h � y components is represented in Fig. 1c. Fig. 1a represents
the 3-dimensional data and its 3 slices are presented in Fig. 1b.

3.2. The STriGen algorithm

STriGen is a triclustering algorithm based on a genetic evolutionary heuristic that finds groups of similar behaviour pat-
terns in 3-dimensional streaming datasets.

Data streams are continuous flows of data supplying new information. As data can possibly have an infinite volume, there
are some constraints that every streaming algorithm needs to satisfy [39]: single-pass and chronological order, i.e., streams
are processed one by one, only once and in the order of arrival. In addition, stream models have to incorporate new infor-
mation updating themselves dynamically and they have to detect and eliminate outdated data effects (also called concept
drift detection). Stream models also have to deal with very important constraints as bounded memory and bounded
response time. Therefore, only a summary of specific data can be stored and outputs must be provided as fast as possible
and the execution time of the learning model must increase linearly according to the number of instances. The STriGen algo-
rithm deals with data streams and satisfies all mentioned constraints.

Moreover, as streams can be infinite, there are different options to define which time window of data has to be considered
[1]. The proposed algorithm uses the w sliding window where the model takes into consideration only the most recent
instances. In particular, w is an integer number from 2 to the current number of streams. Thus, 2-dimensional data arrive
with all L instances and all K features, as defined in Section 3.1, so one stream is formed by L � K samples, as shown in

Fig. 1. Representation of triclusters.

L. Melgar-García, D. Gutiérrez-Avilés, C. Rubio-Escudero et al. Information Sciences 558 (2021) 174–193

176

128 5.1. Journal and conferences articles

Fig. 2a. Fig. 2b represents a particular case where w is 3 and so, by definition of sliding window, only the 3 most recent
streaming samples are considered.

There are two main computational approaches to model data streams [1]: the incremental learning and the offline-online
learning. In the first one, incremental learning, the model evolves and adapts incrementally to concept drift in data streams.
However, in the offline-online learning, the modeling is divided in an offline phase that creates a summary (or sketch) of the
data without execution time restrictions and an online phase to update the synopsis data in real time as fast as possible. The
proposed algorithm uses the offline-online learning approach and uses Apache Kafka as streaming platform.Fig. 3 is an over-
view of the workflow of the proposed algorithm. It starts with the offline phase that creates a summary model containing the
components of the triclusters found by the algorithm as explained in Section 3.2.1. Then, the Kafka producer publishes the
streaming data in a Kafka topic. A Kafka topic is a container that stores the data streams. The Kafka consumer receives the
data in streaming from the Kafka topic and executes the online phase of the algorithm. In this phase online, the initial tri-
clusters resulting from the offline step evolve over time as it receives new data streams to keep the model always updated as
explained in Section 3.2.2.

These two phases of the algorithm are described in detail below. The offline phase is described in Section 3.2.1 and the
online in the Section 3.2.2.

3.2.1. The offline phase
The offline phase of streaming algorithms processes data in a static or batch mode, i.e., not considering the requirements

of the streaming algorithms above-mentioned. However, the output of this phase has to be a summary or sketch of the data
that is the base of the online phase.

In particular, the offline phase of the proposed algorithm creates a summary of the components of each tricluster found.
STriGen applies evolutionary meta-heuristics of genetic algorithms to find triclusters. The process of natural selection is rep-
resented by the selection of the fittest individuals for reproduction in order to produce the offspring of the next generation.
Therefore, there are two main actors in the algorithm: population and individuals. One individual is a potential solution of
the algorithm, i.e., a tricluster containing instances, features and streams, and a population is composed of several
individuals.

Fig. 2. Representation of streams.

Fig. 3. Offline and online phases of the STriGen.

L. Melgar-García, D. Gutiérrez-Avilés, C. Rubio-Escudero et al. Information Sciences 558 (2021) 174–193

177

5| Publications 129

The algorithm starts creating an initial population with a random selection of instances, features and streams for each
individual. Afterwards, four genetic operators are used to make the population of individuals evolves optimizing a fitness
function. Once a solution tricluster is found, this process is repeated for all the rest of the desired triclusters but with a dif-
ferent way of creating the initial population. In other words, considering N as the number of triclusters to find, for the rest N-
1 triclusters, a percentage of individuals are generated randomly and the others are generated considering the non-explored
areas of the previous solution triclusters in order to avoid overlapping solutions.

Inspired by [6], the genetic operators, together with the initialization of the population, are crossover to make connec-
tions between individuals and share their components, mutation to make specific changes to individuals and explore new
possible components, selection to choose which individual stays in the next generation and evaluation to measure the qual-
ity of the population. These operations are made considering some triclustering configuration parameters: the number of
solution triclusters, the number of generations, the members of a population, the aleatory factor for the initial population,
the selection rate and the mutation probability rate. The crossover is implemented by means of a random one-point cross-
over [40]. Mutation is made by inserting, deleting or changing instances or features of the current tricluster. The tournament
selection mechanism is used to select the best individuals and the evaluation is implemented by means of a fitness function.

The fitness function employed by the proposed algorithm is the Multiple Square Lines (MSL), which is based on the sim-
ilarity among the angles of the slopes formed by the components of the tricluster at each time point. MSL is completely
described in [7]. In addition two terms are added to control the size of the triclusters regarding the number of instances, fea-
tures and times and to control the overlapping of the triclusters, respectively.

Finally, the measure used to evaluate the quality of a solution tricluster TRI is the Graphical Quality (GRQ) measure:

GRQðTRIÞ ¼ 1�MSLðTRIÞ
2p

ð1Þ

A tricluster will have a higher graphical quality as smaller the MSL value is, which is minimized by means of the fitness
function.

Finally, the components of the triclusters found in the offline phase are the individuals with the best fitness function
value, and the final summary of the offline phase is the initial base of the online phase. A scheme of the main steps of
the offline phase is shown in Algorithm 1.

Algorithm 1. Offline phase.

3.2.2. The online phase
Once the summary of the offline phase is ready, the online phase starts. In this phase, the algorithm considers all stream-

ing requirements.
Firstly, as the algorithm uses a sliding window, just the most recent w samples are considered. In particular, if the new

stream arrives at the instant point z, all triclusters components that include samples up to the z�w� 1 instant point are

L. Melgar-García, D. Gutiérrez-Avilés, C. Rubio-Escudero et al. Information Sciences 558 (2021) 174–193

178

130 5.1. Journal and conferences articles

deleted, i.e., they are not considered anymore. This is a common procedure in the streaming environment [41]. Thereby, the
sliding window model removes the oldest samples every time a new stream sample arrives and so, triclusters contain the
most recent data at every moment (see Fig. 2b).

Afterwards, the model has to evolve to include knowledge from the new stream sample. In traditional clustering tech-
niques applied to streaming, as for example K-Means, a common strategy is to add the new instance to its nearest ‘‘centroid”
if it is within the boundary of the cluster [42]. The STriGen algorithm computes different updating options and selects the
one with the highest GRQ value (Eq. 1), that corresponds to the best graphical quality of each tricluster. All updating options
try to find the most suitable tricluster’s components from the w streams.

One updating option is to maintain the same components of the existing tricluster from the instant point z� 1 to z�w. In
other words, including as components at instant or stream z the same instances and features of the previous tricluster. Fig. 4a
shows a graphical example of this updating. In the particular case of triclusters that do not include the instant z� 1 in their
components, two updating options are carried out: either adding just the following instant point of the previous tricluster or
all of the instant points until z.Fig. 4b is a graphical description of this updating, where the maximum number of instant
points that can be included in a tricluster is five, as w ¼ 5. Thus, the tricluster contains just three instant points (z� 4 to
z� 2) for the option 1 and the tricluster contains all five possible instant points (z� 4 to z) for the option 2.

In addition, as the offline phase is a NP hard problem, it is probable that even with the application of these updating
heuristics, the solution triclusters obtained might be a local rather than global optimal. To manage this issue and to allow
triclusters to evolve and adapt to new data streams, the mutation operator is included as another updating possibility. This
genetic operator deletes, changes or/and adds randomly samples (instances or/and features) in the triclusters resulting from
the above-mentioned updates. Firstly, the type of mutation is randomly selected: deleting an existing coordinate, changing
an existing coordinate to a new one or adding a new coordinate. Then, the specific instance or feature is also randomly
selected. If the deleting option is randomly selected and a specific feature of the tricluster is selected, this feature is removed
for all the instances and time points of the existing tricluster. In the case of the adding option, if a feature is randomly

Fig. 4. Examples of the updating operations during the online phase.

L. Melgar-García, D. Gutiérrez-Avilés, C. Rubio-Escudero et al. Information Sciences 558 (2021) 174–193

179

5| Publications 131

selected from the data that are not included in the tricluster, this feature is added for all the instances and time points of the
current tricluster and so, all its expression values. For the changing option, the deleting option is firstly executed and then
the adding one. The instance mutations follow the same procedure of the feature mutations but considering the instances.
Fig. 4c and Fig. 4d are graphical examples of mutation of features and instances, respectively. Once mutation is carried out,
the GRQ is computed for all updated triclusters and the tricluster that maximizes the GRQ is selected. This updating process
is represented in the pseudo code of the Algorithm 2.

Algorithm 2. Updating of the triclusters.

Another important aspect when dealing with stream computing is to consider the concept drift problem. Concept drift
occurs when an existing concept changes or a new concept appears [43]. There are different types of concept drift: incremen-
tal, gradual, abrupt or reoccurring. When any change starts to occur in expression values of the triclusters components, the
GRQ decreases abruptly. In such cases, only one updating is not enough. The parameterminGRQ let the algorithm entering in
a loop of a maximum of numIt iterations or until the GRQ is higher than minGRQ. Each iteration corresponds to a mutation
updating process. In this way, STriGen can adjust rapidly to small changes but also to abrupt changes detecting new com-
ponents of the triclusters or making the current ones disappear. This additional updating to deal with changes is represented
in the pseudo code of the Algorithm 3.

Algorithm 3. Additional updating.

In summary, an overview of the online phase is depicted in the pseudo code of the Algorithm 4.

L. Melgar-García, D. Gutiérrez-Avilés, C. Rubio-Escudero et al. Information Sciences 558 (2021) 174–193

180

132 5.1. Journal and conferences articles

Algorithm 4. Online phase.

3.2.3. Validation of triclusters
In the case of using synthetic data as experimental data, the triclusters’ coordinates that STriGen should find are previ-

ously known. To evaluate the performance of the STriGen in this situation two metrics, F1 score and accuracy, are computed.
Accuracy is the most used measure in the classification field. It represents the ratio of correctly predicted observation with
respect to the total number of observations, and it is appropriate if the dataset is symmetric, that is, when values of false
positive and false negatives are almost the same. In our case, the coordinates not being part of a tricluster solution are
far more abundant than the ones belonging to a tricluster. Therefore, we also include the F1 score, which is a weighted aver-
age of the precision and recall and considers both false positives and false negatives.

In the case of using real data as experimental data, F1 score and accuracy can not be computed. Then, we compute the
GRQ value to asses the quality of the triclusters found by the STriGen.

4. Results

This Section presents the results obtained by the application of the STriGen algorithm to different datasets, three synthet-
ics in Section 4.1 and one real in Section 4.2. In particular, Section 4.1.1 describes the synthetics datasets, in which STriGen
has been tested. Then, a summary of the main parameter settings can be found in Section 4.1.2. Section 4.1.3 discusses the
experimental results obtained by STriGen with different configuration settings.

4.1. Synthetic datasets

Synthetic datasets are essential to evaluate the quality of the algorithm, as we know in advance which should be the
results, i.e., triclusters that STriGen must find.

4.1.1. Description of the synthetic datasets
The algorithm is applied on three synthetic datasets that follow additive, multiplicative and dynamic additive models

respectively. A full description of these models can be found in [44,45]. This way, we can test how our model is capable
to adapt to different types of changes over time in data streams. All three datasets are made up of 800 instances, 4 features

Fig. 5. Example of a tricluster in the additive dataset.

L. Melgar-García, D. Gutiérrez-Avilés, C. Rubio-Escudero et al. Information Sciences 558 (2021) 174–193

181

5| Publications 133

and 500 streams for the two first datasets and 2100 streams for the third dataset. Instances are represented in rows, features
in columns and streams represent the depth of each 3D dataset. Each dataset contains three triclusters with a different num-
ber of instances (between 25 and 30) and features (between 3 and 4). The components that are not in any tricluster, take
random values.

� Additive dataset: For the additive synthetic dataset, a value cp 2 ½�30;30� has been added to each expression value in the
tricluster at time p in order to create the additive pattern over time. Therefore, a tricluster tri at the stream time p in the
additive dataset is defined as:

tril;k;p ¼ cp þ tril;k;p�1 1 6 l 6 L 1 6 k 6 K ð2Þ
where the tricluster at the initial time, tril;k;0, is generated with random expression values for each feature of the first
instance and the expression values for all features of the remaining instances according to the following equation:

tril;k;0 ¼ al þ tri1;k;0 2 6 l 6 L 1 6 k 6 K ð3Þ
where al is a random number between�30 and 30. In addition, an instance or a feature is added or deleted from the com-
ponents of the tricluster at random times in order to represent a small evolution of the tricluster. The initial expression
values for each instance or feature added at random times as a new tricluster component are random, and in the next
time they will follow the same behaviour of the rest of the components of the tricluster. An example of a tricluster in
the additive dataset is shown in Fig. 5.

� Multiplicative dataset: For the multiplicative dataset, each expression value in the tricluster at time p has been multi-
plied by a value rp 2 ½0:1;5:0� in order to create the multiplicative pattern over time. Thus, a tricluster tri at the stream
time p in the multiplicative dataset follows the equation:

tril;k;p ¼ rp � tril;k;p�1 1 6 l 6 L 1 6 k 6 K ð4Þ
where the tricluster at the initial time, tril;k;0, is also generated with random expression values for each feature of the first
instance and the expression values for all features of all the other instances according to the following equation:

tril;k;0 ¼ bl � tri1;k;0 2 6 l 6 L 1 6 k 6 K ð5Þ
where bl is a random number between 0.1 and 5.0. The procedure of adding or deleting instances or features of the tri-
cluster at random times follows the same behaviour explained in the generation of the additive dataset. Fig. 6 shows a
graphical example of a tricluster in the multiplicative dataset.

� Dynamic additive dataset:The third dataset is a dynamic additive dataset, that is, it is generated with different additive
datasets. In particular, it is made up of three different additive models: the first one from stream 0 to 399, the second from
400 to 1299 and the third from 1300 to 2100. The goal of this dataset is to test the performance of the proposed algorithm
to abrupt changes.

4.1.2. Experimental setting
There are two main groups of parameters in the STriGen algorithm: typical parameters of the evolutionary algorithm in

the offline phase and specific parameters of the STriGen. After a parameter tuning process and considering [6], the traditional
triclustering parameters have been fixed. In particular, the number of solutions has been set to 3, the generations to 200, the
members of the population to 400, the aleatory probability for the generation of the initial population to 0.2, the selection
probability to 0.7 and the mutation probability to 0.4. To assess the influence of the specific parameters of the STriGen, five

Fig. 6. Example of a tricluster in the multiplicative dataset.

Table 1
STriGen parameters for synthetic datasets.

Parameter Run 1 Run 2 Run 3 Run 4 Run 5

minGRQ 0.85 0.975 0.975 0.95 0.975
numIt 50 25 25 35 15
w 15 15 10 15 15

L. Melgar-García, D. Gutiérrez-Avilés, C. Rubio-Escudero et al. Information Sciences 558 (2021) 174–193

182

134 5.1. Journal and conferences articles

Fig. 7. Accuracy and F1 score of the tricluster solutions in the additive dataset.

L. Melgar-García, D. Gutiérrez-Avilés, C. Rubio-Escudero et al. Information Sciences 558 (2021) 174–193

183

5| Publications 135

Fig. 8. Accuracy and F1 score of the tricluster solutions in the multiplicative dataset.

L. Melgar-García, D. Gutiérrez-Avilés, C. Rubio-Escudero et al. Information Sciences 558 (2021) 174–193

184

136 5.1. Journal and conferences articles

Fig. 9. Accuracy and F1 score of the tricluster solutions in the dynamic additive dataset.

L. Melgar-García, D. Gutiérrez-Avilés, C. Rubio-Escudero et al. Information Sciences 558 (2021) 174–193

185

5| Publications 137

experiments with different parameters values have been carried out. Experiments shall be referred as ’Run’ from this point
on-wards. Table 1 presents the parameters for each experiment for all three synthetic datasets.

4.1.3. Analysis of results
Figs. 7–9 present the evolution over time of the accuracy and F1 score of the three triclusters obtained by the STriGen

algorithm for the additive, multiplicative and dynamic additive datasets, respectively.

� Additive dataset: In Fig. 7, it can be seen that both accuracy and F1 score improve over time with final metrics closer to 1
(the maximum value). The mean value of the accuracy for all fifteen solution triclusters (five ‘‘runs” for each of the three
triclusters) is 0.995. The maximum value of the F1 score is 0.983 and is reached with the parameters of the third run for
the third solution tricluster. The smallest F1 score is 0.8 and is reached for the third solution tricluster but with the con-
figuration of the forth run. Considering that the whole dataset has 800 instances, the STriGen algorithm has good results
and, furthermore, it is capable of adapting the solutions to the new streams of data arriving. All triclusters found in the
additive dataset follow a similar pattern in the procedure of finding the triclusters, excluding the third tricluster found on
the forth run, as shown in Fig. 7e and in Fig. 7f. This exception is due to the highminGRQ and high numIt fixed for the forth
run and because the GRQ obtained in the offline phase is 0.945. Therefore, STriGen has to improve the quality of the third
tricluster by introducing more mutations from the beginning and not trying to find the evolution of the values as in the
other triclusters. At the end of the forth run, the accuracy is 0.992 and the F1 score is 0.8. Regarding the control param-
eters, the tricluster with the highest accuracy and F1 score is the third tricluster with the parameters of the third run that
get a mean GRQ value of 0.976.

� Dynamic dataset: The performance of the algorithm is also accurate for the multiplicative dataset as shown in Fig. 8. The
mean value of the accuracy for all fifteen solution triclusters is 0.997. The final F1 score values range between 0.896 and
0.965, which are quite high values. All triclusters follow a similar pattern and they find the optimal components over
time. All three triclusters are found for all five runs without any incidence. It is important to consider that the spikes
are due to the fact that the F1 score increases when finding one new instance or feature on one particular stream and
not gradually. In this case, even if all experiments with different parameters provide similar results, the configuration
with the highest accuracy and F1 score is also obtained for the setup of the third run for the third tricluster that reaches
a mean GRQ value of 0.987.

� Dynamic additive dataset: For the dynamic additive dataset, the components of the triclusters change completely at
some streams and the difficulty in finding these new components that differ totally from the previous ones is high as
can be seen in Fig. 9. In this way, theoretically, with higher minGRQ and numIt the algorithm is forced to maintain a high
quality level and when it is not reached (usually when abrupt changes appear), it mutates instances and attributes com-
ponents repeatedly to find the new ones and maintain a good tricluster quality. In addition, in this type of dataset, if w is
very high, the algorithm might not notice that an abrupt change occurs until there are more streams of the new pattern
than of the previous one. For the experiments of the setup of the third run with a low w, the GRQ value decreases earlier
when an abrupt change occurs. The mean value of the accuracy for all the triclusters is 0.974. The evolution pattern of the
values is similar each time a new abrupt change happens. When the change occurs, the GRQ, accuracy and F1 score
decrease dramatically. Mutations allow to find the new members of the triclusters and so GRQ, accuracy and F1 score
increase continuously. The best accuracy and F1 score is 0.9887 and 0.793, respectively, both them are reached for the
first solution tricluster for the parameter configuration setup of the fourth run.

Summarizing, despite abrupt changes in the components of the triclusters, the STriGen algorithm performs correctly and
obtains good results in terms of adaptation to concept drift, finding the majority of the new components even if they are
totally different. Thus, it can be concluded that the STriGen has a huge potential as it is clearly able to detect patterns in data
streams even if they change abruptly along time.

4.1.4. Comparison with TriGen benchmarking algorithm
In this Section, the common points and differences between the TriGen and STriGen algorithms are firstly presented. Next,

a comparison of the quality of the triclusters by means of F1 and accuracy along with the computational time is carried out
for the triclusters found by both algorithms.

Table 2
Similarities and differences between TriGen and STriGen.

Common features STriGen new features

� Evolutionary process.
� Genetic operators.
� Genetic parameters.

� Consecutive instant points.
� Mutations keeps the consecutive instant points.
� Streaming execution.
� Streaming control parameters.
� Streaming input dataset.

L. Melgar-García, D. Gutiérrez-Avilés, C. Rubio-Escudero et al. Information Sciences 558 (2021) 174–193

186

138 5.1. Journal and conferences articles

Fig. 10. Comparison of the performance for STriGen and TriGen algorithms.

L. Melgar-García, D. Gutiérrez-Avilés, C. Rubio-Escudero et al. Information Sciences 558 (2021) 174–193

187

5| Publications 139

A summary of the common characteristics between TriGen and STriGen and the new ones included by STriGen is shown
in Table 2.

The common characteristics between both algorithms are mainly reduced to the offline phase of STriGen. TriGen and STri-
Gen implement a triclustering algorithm based on an evolutionary process, which minimizes a fitness function to obtain the
triclusters. Thus, both approaches share the fitness function to be minimized, and use the same genetic operators and typical
control parameters of an evolutionary process in the phase offline of STriGen.

As for the new features of STriGen, there are two main novelties. Firstly, about the instant points of a tricluster, STriGen
considers them as a complete and well-formed time series. That is, as a consecutive sequence of time points in opposition to
the TriGen algorithm, where this feature is not taken into account. Furthermore, the mutation operator of STriGen respects
the consecutive instant point feature of the tricluster when they are altered. This new characteristic is a key-point in the new
STriGen algorithm in order to be adapted to the streaming environment.

Finally, the second novelty is the capability of the STriGen algorithm to analyze streaming data. STriGen is run in a
streaming environment where it analyses an in-motion input dataset, increasing whenever the time points move forward.
Therefore, STriGen can find the evolution of patterns during the arrival of data streams and adapt the model accordingly, in
opposition to TriGen, where both the input data and its models are static. In addition, the streaming feature of STriGen
implies the inclusion of new control parameters in its online phase.

Fig. 11. Comparison of the execution times for STriGen and TriGen algorithms.

Fig. 12. GRQ values using STriGen for the real sensor dataset.

L. Melgar-García, D. Gutiérrez-Avilés, C. Rubio-Escudero et al. Information Sciences 558 (2021) 174–193

188

140 5.1. Journal and conferences articles

Next, the results obtained by STriGen have been compared to the TriGen triclustering algorithm [6]. The best STriGen exe-
cution for each synthetic dataset between all five ‘‘run” is selected to carry out the comparison. The TriGen algorithm is re-
run each time a new data stream arrives. At each execution, TriGen considers just the previousw data samples. Fig. 10 shows
the mean of the accuracy and F1 score for the three triclusters obtained by the STriGen and TriGen algorithms. It can be
observed that the STriGen takes advantage of the sequential behaviour and finds the corresponding components of the tri-
clusters for the additive and multiplicative datasets easily as shown in Fig. 10a, 10b, 10c and 10d. However, as TriGen does
not consider the evolution over time of the triclusters components, it does not find the corresponding components as accu-
rately as the STriGen streaming algorithm. In the case of the dynamic additive dataset when abrupt changes occurs, the STri-
Gen algorithm takes some time to find the new components of the triclusters in contrast to TriGen as shown in Fig. 10e and
10f. The main reason is that TriGen considers just the previous w samples and not the evolution over time of the triclusters’
components as STriGen does.

One of the critical aspects in streaming models is the bounded response time. Fig. 11 presents the runtimes of the STriGen
and TriGen algorithms. The offline phase of STriGen is quite time consuming (first value of the graphic) and the next execu-
tions consume almost imperceptible time compared to TriGen execution times, since TriGen has to be recomputed each time
a new data stream arrives.

4.2. Real sensor dataset

4.2.1. Description of the real dataset
The real-world dataset contains data of seven sensors that record environmental data such as atmospheric pressure, pre-

cipitation, relative humidity, solar radiation, temperature, wind direction and wind speed. These sensors are placed in 12
different areas of Malaga (Spain). Some ones record data in just one location. However, other ones register data from differ-
ent locations in its territory, for example Malaga capital city that records in 10 different locations.

4.2.2. Experimental setting
The offline phase is computed with the first 500 streams. Afterwards, each time a new stream arrives, the STriGen algo-

rithm updates in quasi real time the triclusters and provides results. The experiment is carried out for 5000 streams, wherew
is fixed to 20, minGRQ to 0.975 and numIt to 35 after a process of tuning of the parameters in order to use the most accurate
values.

4.3. Analysis of the results

Fig. 12 shows the evolution over time of the values of GRQ for the STriGen algorithm. The average GRQ value for the three
triclusters is 0.9468. These GRQ values are between 0.78 and 0.99, so STriGen exhibits a notable improvement.

However, as it is a real dataset and the ground truth is not known, the GRQ quality measure is not sufficient. In order to
improve it, a baseline algorithm is used to compare results. The baseline algorithm is a simple triclustering in streaming. In
particular, the STriGen algorithm is modified in such a way that the algorithm do not select the best tricluster, i.e. with the
best GRQ, as defined in Algorithm 2, but a random tricluster between all the possibilities. This random assignment of the
triclusters is the baseline algorithm used to compare the results. The mean and standard deviation of the GRQ values for each
tricluster found by the STriGen algorithm and the baseline algorithm are presented in Table 3. The results of the STriGen
algorithm are higher than the ones of the baseline. Thus, STriGen is adapting correctly to the evolution of the data streams
of the sensors dataset.

Fig. 13 represents the three triclusters obtained by the STriGen algorithm from time 3000 to 3500 in order to show the
usefulness of the patterns found. Note that patterns evolve over time as streaming data arrives, for example at a time z, the
components of a tricluster can be totally different from the ones at time zþ 50. For this reason, this figure represents the
evolution of the three triclusters only from time 3000 to 3500 as it is complex to visualize all patterns for each of the
4500 data streams of the dataset. The first tricluster in Fig. 13a corresponds to interior areas, in particular the areas of Ante-
quera and Ronda, and they mainly include components of the relative humidity, temperature and wind speed. The second
tricluster in Fig. 13b is made up of the nearest areas to the sea of the capital city of Málaga and they contain mainly com-
ponents of the relative humidity, wind direction and wind speed sensors. The third tricluster in Fig. 13c contains west coast
areas such as the towns of Estepona and Fuengirola, and include mainly instances of the solar radiation, temperature and
wind speed sensors. This is just a particular sample of found patterns. In this case, there are three clearly different areas (in-

Table 3
STriGen and baseline comparison.

Algorithm Tricluster 1 Tricluster 2 Tricluster 3

Mean Std Mean Std Mean Std

STriGen 0.9398 0.0294 0.9390 0.0289 0.9614 0.0299
Baseline 0.7653 0.0314 0.7682 0.0302 0.7665 0.3533

L. Melgar-García, D. Gutiérrez-Avilés, C. Rubio-Escudero et al. Information Sciences 558 (2021) 174–193

189

5| Publications 141

terior, near to the sea in the east-side and near to the sea in the west-side) with different sensors instances. The precipitation
and atmospheric pressure sensors are not present in these patterns as the precipitation is zero in all areas and the pressure is
very similar in these time intervals. In the same way, Fig. 13 only includes the three more significant sensors for each tri-
cluster, as the other sensors are only present in these triclusters occasionally and are not relevant for the meaning of the
patterns.

Fig. 13. Triclusters patterns for the real sensor dataset from time 3000 to 3500.

L. Melgar-García, D. Gutiérrez-Avilés, C. Rubio-Escudero et al. Information Sciences 558 (2021) 174–193

190

142 5.1. Journal and conferences articles

In addition, the TriGen algorithm has been executed in order to consider its triclusters as the ‘‘real” ones and the STriGen
triclusters as the ‘‘found” ones. Besides the comparison with a baseline algorithm, this is an additional option to deal with
real datasets where the ground truth is unknown. This test has been carried out 5 times, in particular for streams from 3000
to 3020, 3500 to 3520, 4000 to 4020, 4500 to 4520 and 4980 to 5000. The TriGen algorithm is executed just in the w last
streams, namely 20 streams, and therefore, in this particular case the evolution over the different streams is not considered.
Fig. 14 presents the accuracy and F1 score obtained when comparing the TriGen and STriGen results using the real sensor
dataset. The highest accuracy is 0.787 and the highest F1 score is 0.705 for the STriGen algorithm. Even if TriGen is not exe-
cuted in all streams, the F1 score, accuracy and GRQ results of the STriGen ensures its good performance. In addition, the
STriGen algorithm keeps improving its results over time.

5. Conclusions

This work has introduced a new triclustering algorithm in the streaming environment. The algorithm consists of two
stages: an offline or batch phase and an online phase. The first one creates a sketch or summary model with the triclusters
components that optimize the fitness function. This fitness function considers the similarity between the angles of the slopes
that represent the values of the tricluster components. In addition, the GRQ quality measure is computed to evaluate the
evolution over time of the triclusters. Then, considering the offline summary model, the online phase of STriGen is computed
satisfying all the requirements of data streaming, i.e., each sample is processed just once and in the order of its arrival and
the model stores a limited amount of data and updates the model with a low computational cost. The STriGen has been
proved to be able to discover collections of resembling patterns in 3D stream data. The algorithm has been applied to three
synthetic datasets with different characteristics and to one real dataset of environmental sensors. Results have shown that
the algorithm detects both little and huge changes of instances and features in triclusters components. The validation of the
experiments is carried out comparing the found triclusters to the real triclusters in the case of the synthetic datasets and to
the solution found by the TriGen batch triclustering algorithm published in the literature in the case of the real sensor data-
set. For both type of datasets, the quality of the triclusters found is similar to the quality of the triclusters obtained by the
TriGen with much less execution time. Up to our knowledge, there are not many triclustering streaming algorithms in the
literature, so this field of research is noteworthy due to vast amount of streaming data sources available nowadays. Another
advantage of the proposed algorithm is the good performance in terms of accuracy and execution times provided for datasets
of different types and volumes.

The future work will be focused on addressing when a new stream concept is an outlier pattern and alert about that. In
addition, we plan to add different fitness functions and evaluation measures to extend the approach of the STriGen proposed
algorithm.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

Fig. 14. Comparison of results using TriGen and STriGen for the real sensor dataset.

L. Melgar-García, D. Gutiérrez-Avilés, C. Rubio-Escudero et al. Information Sciences 558 (2021) 174–193

191

5| Publications 143

Acknowledgements

The authors would like to thank the Spanish Ministry of Science, Innovation and Universities for the support under the
project TIN2017-88209-C2.

References

[1] P. Larrañaga, D. Atienza, J.D. Rozo, A. Ogbechie, C. Puerto-Santana, C. Bielza, Industrial Applications of Machine Learning, CRC Press, 2018.
[2] H. Wang, A. Zubin, Concept drift detection for streaming data, in: Proceedings of the IEEE International Joint Conference on Neural Networks, 2015, pp.

1–9.
[3] J. Gama, A survey on learning from data streams: current and future trends, Progr. Artif. Intell. 1 (1) (2012) 45–55.
[4] C. Rubio-Escudero, F. Martínez-Álvarez, R. Romero-Zaliz, I. Zwir, Classification of gene expression profiles: comparison of k-means and expectation

maximization algorithms, in: Proceedings of the 8th International Conference on Hybrid Intelligent Systems, 2008, pp. 831–836.
[5] J.A. Hartigan, Direct clustering of a data matrix, J. Am. Stat. Assoc. 67 (337) (1972) 123–129.
[6] D. Gutiérrez-Avilés, C. Rubio-Escudero, F. Martínez-Álvarez, J. Riquelme, TriGen: a genetic algorithm to mine triclusters in temporal gene expression

data, Neurocomputing 132 (2014) 42–53.
[7] D. Gutiérrez-Avilés, C. Rubio-Escudero, MSL: a measure to evaluate three-dimensional patterns in gene expression data, Evolut. Bioinform. 11 (2015)

121–135.
[8] B. Zhou, J. Li, X. Wang, Y. Gu, L. Xu, Y. Hu, L. Zhu, Online Internet traffic monitoring system using spark streaming, Big Data Mining Anal. 1 (1) (2018)

47–56.
[9] L.P. Liu, Y. Jiang, Z.H. Zhou, Least square incremental linear discriminant analysis, in: Proceedings of the IEEE International Conference on Data Mining,

2009, pp. 298–306.
[10] C. Za’in, M. Pratama, E. Pardede, Evolving large-scale data stream analytics based on scalable PANFIS, Knowl. -Based Syst. 166 (2019) 186–197.
[11] B. Krawczyk, Active and adaptive ensemble learning for online activity recognition from data streams, Knowl. -Based Syst. 138 (2017) 69–78.
[12] H. He, S. Chen, K. Li, X. Xu, Incremental learning from stream data, IEEE Trans. Neural Networks 22 (12) (2011) 1901–1914.
[13] A. Bifet, G.F. Morales, Big data stream learning with SAMOA, in: Proceedings of the IEEE International Conference on Data Mining Workshop, 2015, pp.

1199–1202.
[14] S.C. Pallaprolu, R. Sankineni, M. Thevar, G. Karabatis, J. Wang, Zero-day attack identification in streaming data using semantics and Spark, in:

Proceedings of the IEEE International Congress on Big Data, 2017, pp. 121–128.
[15] U. Rajeshwari, B.S. Babu, Real-time credit card fraud detection using streaming analytics, in: Proceedings of the 2nd International Conference on

Applied and Theoretical Computing and Communication Technology, 2016, pp. 439–444.
[16] S. Papadimitriou, J. Sun, C. Faloutsos, Streaming pattern discovery in multiple time-series, in: Proceedings of 31st International Conference on Very

Large Data Bases, vol. 2, 2005, pp. 697–708.
[17] K. Yu, W. Ding, D.A. Simovici, H. Wang, J. Pei, X. Wu, Classification with streaming features: an emerging-pattern mining approach, ACM Trans. Knowl.

Discovery Data 9 (4) (2015) 1–31.
[18] Y. Chen, K. Chen, M.A. Nascimento, Effective and efficient shape-based pattern detection over streaming time series, IEEE Trans. Knowl. Data Eng. 24 (2)

(2012) 265–278.
[19] C. Garcia, A. Esmin, D. Leite, I. Škrjanc, Evolvable fuzzy systems from data streams with missing values: with application to temporal pattern

recognition and cryptocurrency prediction, Pattern Recogn. Lett. 128 (2019) 278–282.
[20] I. Škrjanc, J.A. Iglesias, A. Sanchis, D. Leite, E. Lughofer, F. Gomide, Evolving fuzzy and neuro-fuzzy approaches in clustering, regression, identification,

and classification: a survey, Inf. Sci. 490 (2019) 344–368.
[21] E. Lughofer, C. Cernuda, S. Kindermann, M. Pratama, Generalized smart evolving fuzzy systems, Evolving Syst. 6 (4) (2015) 269–292.
[22] D. Leite, G. Andonovski, I. Škrjanc, F. Gomide, Optimal rule-based granular systems from data streams, IEEE Trans. Fuzzy Syst. 28 (3) (2020) 583–596.
[23] I. Škrjanc, Cluster-volume-based merging approach for incrementally evolving fuzzy gaussian clustering—egauss+, IEEE Trans. Fuzzy Syst. 28 (9)

(2020) 2222–2231.
[24] D. Leite, I. Škrjanc, F. Gomide, An overview on evolving systems and learning from stream data, Evolving Syst. 11 (2) (2020) 181–198.
[25] M. Ackerman, S. Dasgupta, Incremental Clustering: The Case for Extra Clusters, in: Proceedings of the Neural Information Processing Systems, 2014, pp.

1–13.
[26] M. Capó, A. Pérez, J.A. Lozano, An efficient approximation to the K-means clustering for massive data, Knowl.-Based Syst. 117 (2017) 56–69.
[27] U. Kokate, A. Deshpande, P. Mahalle, P. Patil, Data stream clustering techniques, applications, and models: comparative analysis and discussion, Big

Data Cognit. Comput. 2 (4) (2018) 32.
[28] R. Henriques, S. Madeira, Triclustering algorithms for three-dimensional data analysis: a comprehensive survey, ACM Comput. Surv. 51 (5) (2018) 1–

43.
[29] L. Zhao, M.J. Zaki, triCluster: an effective algorithm for mining coherent clusters in 3D microarray data, in: Proceedings of the ACM SIGMOD

International Conference on Management of data, 2005, pp. 694–705.
[30] H. Jiang, S. Zhou, J. Guan, Y. Zheng, gTRICLUSTER: A More General and Effective 3D Clustering Algorithm for Gene-Sample-Time Microarray Data, in:

Proceedings of the Data Mining for Biomedical Applications, 2006, pp. 48–59.
[31] J. Liu, Z. Li, X. Hu, Y. Chen, Multi-objective evolutionary algorithm for mining 3D clusters in gene-sample-time microarray data, in: Proceedings of the

IEEE International Conference on Granular Computing, 2008, pp. 442–447.
[32] N. Narmadha, R. Rathipriya, Evolutionary correlation triclustering for 3d gene expression data, in: Innovative Data Communication Technologies and

Application, Springer International Publishing, 2020, pp. 637–646.
[33] A. Tchagang, S. Phan, F. Famili, H. Shearer, P. Fobert, Y. Huang, J. Zou, D. Huang, A. Cutler, Z. Liu, Y. Pan, Mining biological information from 3D short

time-series gene expression data: the optricluster algorithm, BMC Bioinform. 13 (2012) 54.
[34] F. Martínez-Álvarez, D. Gutiérrez-Avilés, A. Morales-Esteban, J. Reyes, J. Amaro-Mellado, C. Rubio-Escudero, A novel method for seismogenic zoning

based on triclustering: application to the iberian peninsula, Entropy 17 (12) (2015) 5000–5021.
[35] L. Melgar-García, D. Gutiérrez-Avilés, C. Rubio-Escudero, A. Troncoso, High-content screening images streaming analysis using the strigen

methodology, in: Proceedings of the 35th Annual ACM Symposium on Applied Computing, 2020, pp. 537–539.
[36] D. Soares, R. Henriques, M. Gromicho, S. Pinto, M. de Carvalho, S.C. Madeira, Towards triclustering-based classification of three-way clinical data: A

case study on predicting non-invasive ventilation in als, in: Practical Applications of Computational Biology & Bioinformatics, 14th International
Conference (PACBB 2020), Springer International Publishing, 2021, pp. 112–122.

[37] P. Mahanta, H.A. Ahmed, D.K. Bhattacharyya, J.K. Kalita, Triclustering in gene expression data analysis: a selected survey, in: 2011 2nd National
Conference on Emerging Trends and Applications in Computer Science, 2011, pp. 1–6.

[38] N. Narmadha, R. Rathipriya, Triclustering: an evolution of clustering, in: Proceedings of the Online International Conference on Green Engineering and
Technologies, 2016, pp. 1–4.

[39] S. Guha, A. Meyerson, N. Mishra, R. Motwani, L. O’Callaghan, Clustering data streams: theory and practice, IEEE Trans. Knowl. Data Eng. 15 (3) (2003)
515–528.

[40] D.A. Umbarkar, P. Sheth, Crossover operators in genetic algorithms: a review, ICTACT J. Soft Comput. 6 (1) (2015) 1083–1092.

L. Melgar-García, D. Gutiérrez-Avilés, C. Rubio-Escudero et al. Information Sciences 558 (2021) 174–193

192

144 5.1. Journal and conferences articles

[41] M. Ghesmoune, M. Lebbah, H. Azzag, State-of-the-art on clustering data streams, Big Data Anal. 1 (1) (2016) 1–27.
[42] M.S. Hammoodi, F. Stahl, A. Badii, Real-time feature selection technique with concept drift detection using adaptive micro-clusters for data stream

mining, Knowl.-Based Syst. 161 (2018) 205–239.
[43] R.H. Moulton, H.L. Viktor, N. Japkowicz, J. Gama, Clustering in the presence of concept drift, in: Proceedings of the ECML/PKDD Machine Learning and

Knowledge Discovery in Databases, 2018, pp. 339–355.
[44] B. Pontes, R. Giráldez, J.S. Aguilar-Ruiz, Quality measures for gene expression biclusters, PLOS ONE 10 (3) (2015) 1–24.
[45] A. Mukhopadhyay, U. Maulik, S. Bandyopadhyay, On biclustering of gene expression data, Curr. Bioinform. 5 (2010) 204–216.

L. Melgar-García, D. Gutiérrez-Avilés, C. Rubio-Escudero et al. Information Sciences 558 (2021) 174–193

193

5| Publications 145

146 5.1. Journal and conferences articles

5.1.6 | "Generating a seismogenic source zone
model for the Pyrenees: a GIS-assisted
triclustering approach"

Authors: Amaro-Mellado J. L., Melgar-García L., Rubio-Escudero C.,
Gutiérrez-Avilés D.

Publication type: Journal article.

Journal: Computers and Geosciences.

Year: 2021.

Volume: 150

Pages: 104736

DOI: 10.1016/j.cageo.2021.104736

IF: 2.991 42/109 Computer Science, Interdisciplinary Applications.

Quartil: Q2.

Computers & Geosciences 150 (2021) 104736

Available online 24 February 2021
0098-3004/© 2021 Elsevier Ltd. All rights reserved.

Contents lists available at ScienceDirect

Computers and Geosciences

journal homepage: www.elsevier.com/locate/cageo

Generating a seismogenic source zone model for the Pyrenees: A GIS-assisted
triclustering approach
José L. Amaro-Mellado a,b, Laura Melgar-García c, Cristina Rubio-Escudero d,
David Gutiérrez-Avilés c,∗

a Department of Graphic Engineering, University of Seville, ES-41092, Seville, Spain
b National Geographic Institute of Spain, Andalusia Division, ES-41013 Seville, Spain
c Data Science & Big Data Lab, Pablo de Olavide University, ES-41013 Seville, Spain
d Department of Computer Languages and Systems, University of Seville, ES-41012, Seville, Spain

A R T I C L E I N F O

Keywords:
Seismic sources
GIS
Data science
Triclustering

A B S T R A C T

Seismogenic source zone models, including the delineation and the characterization, still have a role to
play in seismic hazard calculations, particularly in regions with moderate or low to moderate seismicity.
Seismic source zones establish areas with common tectonic and seismic characteristics, described by a unique
magnitude–frequency distribution. Their definition can be addressed from different views. Traditionally, the
source zones have been geographically outlined from seismotectonic, geological structures, and earthquake
catalogs. Geographic information systems (GIS) can be of great help in their definition, as they deal rigorously
and less ambiguously with the available geographical data. Moreover, novel computer science approaches are
now being employed in their definition. The Pyrenees mountain range – in southwest Europe – is located
in a region characterized by low to moderate seismicity. In this study, a method based purely on seismic
catalogs, managed with a GIS and a triclustering algorithm, were used to delineate seismogenic zones in
the Pyrenees. Based on an updated, reviewed, declustered, extensive, and homogeneous earthquake catalog
(including detailed information about each event such as date and time, hypocentral location, and size),
a triclustering algorithm has been applied to generate the seismogenic zones. The method seeks seismicity
patterns in a quasi-objective manner following an initial assessment as to the best suited seismic parameters.
The eight zones identified as part of this study are represented on maps to be analyzed, being the zone covered
by the Arudy–Arette region to Bagnères de Bigorre as the one with the highest seismic hazard potential.

1. Introduction

Seismogenic source zones are necessary for applying the most
widely used seismic hazard calculation method proposed by Cornell
(1968) and McGuire (1976). Originally, this method contemplated the
zones as an alternative to model the probabilistic space of distance-to-
source relationships with the area under analysis, particularly when
associations between seismicity and faults capable of triggering an
earthquake are not apparent (García-Mayordomo, 2015). In addition,
the method conceived a fault as a linear element, but it has evolved to
the use of fault as zones (even as 3D planes). This second option is much
more widely used today. Currently, there is a tendency to make greater
use of faults, but through a characterization collected in a database.
These records include geological and seismic data, such as the slip rate,
the fault length, the depth, recurrence periods, or maximum expected
magnitude (García-Mayordomo et al., 2012a).

∗ Corresponding author.
E-mail addresses: jamaro@us.es (J.L. Amaro-Mellado), lmelgar@upo.es (L. Melgar-García), crubioescudero@us.es (C. Rubio-Escudero), dgutavi@upo.es

(D. Gutiérrez-Avilés).

The main assumptions of the Cornell-McGuire method regarding the
occurrence of seismicity are the following (García-Mayordomo, 2015):

1. Earthquakes are independent random events (Poissonian).
2. The probability of earthquakes occurrence is the same through-

out the entire area.
3. The size of earthquakes is related to their frequency through the

Gutenberg–Ritcher Law (Gutenberg and Richter, 1944) of each
source zone, usually limited to a maximum magnitude value.

4. The seismic activity rate of each zone is constant over time.

These cannot be strictly fulfilled in practice since the mechanism of
accumulation and release of energy in earthquakes is a memory process
with long-range dependence (Barani et al., 2018), and the rate of
seismic activity is variable over time. However, in seismic engineering,

https://doi.org/10.1016/j.cageo.2021.104736
Received 26 August 2020; Received in revised form 5 February 2021; Accepted 18 February 2021

5| Publications 147

Computers and Geosciences 150 (2021) 104736

2

J.L. Amaro-Mellado et al.

seismogenic source zones are sufficiently adequate to estimate the
probability according to different levels of ground shaking (García-
Mayordomo, 2015). In this case, a memory process refers to the fact
that shocks do not happen independently at any time. By contrast,
they remember the occurrence (time and magnitude) of the last earth-
quake (Corral, 2006). The main strength of using zones is that they
are efficient because their associated parameters are somehow easily
obtained, and their calculations are fast. Thus, they have been used for
over 50 years so far.

Seismic source delimitation is a crucial task when a Probabilistic
Seismic Hazard Analysis (hereinafter, PSHA) is conducted (Morales-
Esteban et al., 2014). Once they have been geometrically outlined,
their activity is characterized based on the recorded seismicity. Both
stages define the seismic potential (geometric shape and size, maximum
expected magnitude, seismic activity, and frequency distribution in
size). Subsequently, the equations for predicting strong movements
should be considered, and, finally, the annual probability of exceeding
a certain magnitude earthquake should be obtained.

Despite the importance of the seismogenic zonation to conduct a
seismic hazard analysis, the criteria used for its definition are often
not uniform. It is a very complex process and depends strongly on the
analyst group’s criteria (Amaro-Mellado et al., 2017). There are two
main groups within these criteria: one based exclusively on the distri-
bution of seismicity and the other on geological domains or structures.
The criterion, or its weight, depends on the background of the analyst
who defines the zones. On the one hand, much weight is placed on
the characterization of sources, it will mainly be based on seismicity.
This can lead to inconsistent limits from a geological point of view
but valid for the calculation of hazards. On the other hand, if the
analyst relies on the location of the geological structure, two opposing
situations arise. In the first, areas are based exclusively on the limits of
large geological units, even if they have no relation to current tectonic
activity. In the second, they only consider areas with active faults,
even though the recorded seismicity does not allow for statistically
significant characterization.

Computational robust methods are becoming increasingly popu-
lar, as they can be applied in different geographical and geological
contexts (Morales-Esteban et al., 2014; Martínez-Álvarez et al., 2015;
Scitovski, 2018). Besides, when handling and representing georefer-
enced spatial information such as the distribution of epicenters, the use
of a geographic information system (hereinafter, GIS) is powerful. Its
ability to manage, represent, and generate geographical information is
a useful tool for integrating different geographic data kinds.

This work aims at proposing a seismic source model for the Pyrenees
range in southwest Europe. To this end, the use of a GIS and a triclus-
ter algorithm, called TriGen (Gutiérrez-Avilés et al., 2014), has been
applied to derive seismicity patterns from a seismic catalog. Later, the
source models have been drawn. Finally, seismic parameters have been
obtained from these zones, and they have been analyzed. The range of
seismicity in the Pyrenees is estimated as low to moderate and diffuse,
where earthquakes with a magnitude larger than or equal to 5.0 (M5+)
are infrequent. Besides, in these areas, obtaining a correlation between
epicenters and faults is difficult (Drouet et al., 2020). Therefore, seismic
zonings usage to drive a PSHA is adequate (Martínez-Álvarez et al.,
2015; Amaro-Mellado and Tien Bui, 2020).

2. Related work

In this section, research made in both domains presented in this
study is described: firstly, the studies in seismogenic zonings and,
secondly, the triclustering approach.

2.1. Previous seismic zonations for the Pyreenees

The Pyrenees are located in a border-area between France, Spain,
and Andorra, so each of these countries have studied their seismic-
ity. They are also included in some European seismicity projects as
SHARE (Woessner et al., 2011; Stucchi et al., 2013), or SIGMA (Pecker
et al., 2017).

In the Spanish seismic sources, the Pyrenees are an important region
due to their activity, and they are included in different seismic zona-
tions. For example, that conducted by Martín (1984), who established
27 zones for the whole Iberian Peninsula and adjacent area; Mezcua
et al. (2011) addressed a PSHA as a combination from the one defined
by Molina (1998) and the CODE one (from NCSE-2002 Ministerio de
Fomento (Gobierno de España), 2002, which is very similar to Martín,
1984). More recently, in the frame of the Updated Map of PSHA
for Spain, both García-Mayordomo et al. (2012b) and Bernal (2011)
defined a set of seismic sources. Later, Morales-Esteban et al. (2014)
Morales-Esteban et al. undertook a zonation for the whole Peninsula
from Mahalanobis distances, based only on an earthquake catalog
(including information on the shock such as date and time, hypocentral
location, or size) from 1978 to 2012. In Martínez-Álvarez et al. (2015),
Martínez-Álvarez et al. used the triclustering methodology to obtain
seismic sources for the whole Iberian Peninsula.

French institutions have also defined different seismogenic zona-
tions. In Metropolitan France, the first PSHA map was deployed in
2002 (Martin et al., 2002) and gave the foundations for the French
zoning (Drouet et al., 2020). Moreover, in 2004, Marin depicted PSHA
maps for France (Marin et al., 2004). Later, Baize et al. (2013) proposed
a new seismotectonic zoning for Metropolitan France based on geolog-
ical, seismological, and tectonic data. Recently, Drouet et al. (2020)
constructed a seismotectonic model (GEOTER) for Metropolitan France,
considering geological, structural, neotectonic, geophysical, and seis-
mological data. Besides, some seismic zonations have been conducted
specifically for the Pyrenees. In Njike-Kassala et al. (1992), the authors
established nine zones to calculate the b-value of the Gutenberg and
Richter relation (Gutenberg and Richter, 1944). Later, Secanell et al.
(2008) defined a seismotectonic zonation as a result of the ISARD
project, held by France and Spain. Finally, Rigo et al. (2015) proposed
eight zones to estimate stress tensors locally.

Finally, the Institut d’Estudis Andorrans holds an internet site (https:
//www.iea.ad/sismoweb, last accessed on November 2020) with infor-
mation on Andorran seismicity.

2.2. Triclustering

Regarding the second area of study of this research, the state of
the art of triclustering techniques is presented. The traditional clus-
tering approach is a data mining technique that works by grouping
objects according to a predefined similarity in a one-dimensional space.
When dealing with subspace clustering, the problem can be addressed
with biclustering (Pontes et al., 2015) or triclustering (Zhao and Zaki,
2005) if the context data is structured over two or three dimensions,
respectively.

In the last decade, the tricluster algorithm has evolved, and many
different algorithms have been proposed. For example, some triclus-
tering algorithms are based on iterative searches, distribution param-
eter identification, biclustering algorithms, pattern mining procedures,
or evolutionary multiobjective optimization (Henriques and Madeira,
2018).

In particular, in Liu et al. (2008) and Bhar et al. (2015) some
triclustering algorithms based on multiobjective techniques can be
found. Furthermore, classic bio-inspired meta-heuristics as genetic al-
gorithms (Holland, 1992) or newer, as the COVID-19 propagation
model (Martínez-Álvarez et al., 2020) emerge as a proper method to
optimize multiobjective functions. In this sense, the TriGen algorithm
presented in Gutiérrez-Avilés et al. (2014) is based on a population

148 5.1. Journal and conferences articles

Computers and Geosciences 150 (2021) 104736

3

J.L. Amaro-Mellado et al.

of individuals and some genetic operators. Different fitness functions
are also proposed in order to assess each research problem most ac-
curately. TriGen is the triclustering algorithm used in this study and
is further explained in 4.3. Besides developing triclustering method-
ologies, another open line of investigation is to measure the quality
of the triclustering algorithms’ solutions. In this sense, we can find
correlation-based measures inspired by Pearson and Filon (1898), and
Spearman (Spearman, 1910) correlation indexes. In Gutiérrez-Avilés
and Rubio-Escudero (2014) the authors propose a three-dimensional
version of the mean squared residue, a classical biclustering evaluation
measure (Cheng and Church, 2000). An evaluation measure based on
the last squared lines depicted by the discovered patterns in the tri-
clusters was presented in Gutierrez-Aviles and Rubio-Escudero (2014).
Finally, in Gutiérrez-Avilés and Rubio-Escudero (2015), the authors
present a new approach to measure the tricluster quality based on the
graphical representation of it.

Triclustering has many applications: biological as Li and Tuck
(2009) that combines gene regulator information with expression data;
medical as Melgar-García et al. (2020) that applies triclustering in
the streaming environment to high-content screening images or the
analysis of social networks as Gnatyshak et al. (2012). The domain
of seismic data has not yet been deeply analyzed with triclustering
techniques. To the best of our knowledge, only the work in Martínez-
Álvarez et al. (2015) applies triclustering techniques, particularly, the
TriGen algorithm, to data of the Iberian Peninsula, in order to discover
possible seismogenic zones.

3. Seismicity and geological settings

The Pyrenees mountain range, constituted from the collision be-
tween Iberian and Eurasian plates, was formed in Alpine times (Vissers
and Meijer, 2012); however, current deformation rates are relatively
low. Spanning over 450 km in E-W direction and 150 km in N-S (Rigo
et al., 2018), the Pyrenees have nearly cylindrical symmetry (Njike-
Kassala et al., 1992). It is bordered to the north by the North Pyrenean
Fault, which matches a 10–15 km vertical Moho offset, where the
crust is thicker on the Iberian plate (Gallart et al., 1981). The North
Pyrenean Fault extends along the whole chain in E–W direction, and
it is supposed to be the boundary between the two plates (Njike-
Kassala et al., 1992), and currently, between the well-known North
Pyrenean Zone and the Axial Zone. Upon Vissers and Meijer (2012),
the Pyrenees are characterized by, from north to south: first, a north-
directed thrust-belt including Mesozoic and Tertiary sediments of the
Aquitanian Basin; second, the North Pyrenean Zone, formed mainly
by Paleozoic basement and Mesozoic sediments; third, the Axial Zone
consisting of Paleozoic rocks; and, finally, the southern Pyrenees where
the southward thrust Mesozoic and Tertiary sediments prevail, and they
part of the Ebro foreland basin system.

Regarding seismicity, it is very complex (Souriau et al., 2014),
and it can be considered as low to moderate (Amaro-Mellado and
Tien Bui, 2020). In the western part, the seismicity is generally con-
centrated along the North Pyrenean Zone. In contrast, it is more
diffuse in the eastern part and not particularly associated with the
known faults (Njike-Kassala et al., 1992). Besides, the identification and
parametrization of seismogenic structures have to face some challenges.
The most important ones are the lack of surface faulting related to
shocks in the last centuries, the low deformation rates, or the fact of
being a political-border region (partially solved by the projects above
mentioned) (Lacan and Ortuño, 2012).

Over time, as can be deduced from earthquake catalogs, some
shocks have produced severe damages, mainly in the historical pe-
riod, even with estimated magnitudes between 6 and 7 or with MSK
intensities between VIII and IX (Lacan and Ortuño, 2012). Among
others, the 1373 earthquake (𝐼𝑜 = 𝑉 𝐼𝐼𝐼 − 𝐼𝑋) by Maladetta Massif,
in the Central Pyrenees; those happened during 1427 Amer and 1428
Queralbs, in Catalonia (up to 𝐼𝑜 = 𝐼𝑋), in the eastern Pyrenees;

the 1660 Bigorre earthquake (𝐼𝑜 = 𝐼𝑋), near Lourdes, and the most
recent (1750) in Juncalas (𝐼𝑜 = 𝑉 𝐼𝐼𝐼), close to the Bigorre one. In
the instrumental period, some relevant shocks (magnitude equal to
or larger than 5) have occurred, such as 1967 Arette (M5.3), in the
western Pyrenees, and 1996 St-Paul Fenouillet (M5.0), in the Agly
Massif, in the east (Amaro-Mellado and Tien Bui, 2020).

Some specific studies have been driven to study the seismicity of the
whole Pyrenees Njike-Kassala et al. (1992), Secanell et al. (2007), Rigo
et al. (2018), Amaro-Mellado and Tien Bui (2020). Besides, the Arudy–
Arette region has been analyzed in-depth by Gallart et al. (1980) and
Sylvander et al. (2008).

Fig. 1 shows a general view of the major events that have shocked
the Pyrenees from the raw data obtained from the earthquake cat-
alog published by the Instituto Geográfico Nacional (IGN)–National
Geographic Institute of Spain (NGIS) (Insitituto Geográfico Nacional,
2020). The map only represents the events with a magnitude larger
than or equal to 3.5, or macroseismic intensity, 𝐼𝑜, larger than or equal
to ‘‘V’’ in macroseismic scale. If both data appear, the magnitude one
prevails.

4. Methods

In this section, the methodology driven to generate the seismogenic
sources for the Pyrenees are described. Thus, the seismic dataset used
in this study is presented; later, the data processing undertaken in this
work is explained; and finally, a summary of the TriGen algorithm is
set out.

4.1. Generation of the earthquake catalog

The dataset employed in this study comes from the NGIS earthquake
catalog (Insitituto Geográfico Nacional, 2020). In-depth research on
the NGIS catalog is presented in González (2017). In particular, that
compiled in Amaro-Mellado and Tien Bui (2020) has been chosen in
this work. In this catalog, starting from the NIGS earthquake database,
different steps were taken to generate an updated, reviewed, homo-
geneous, declustered, and extensive catalog, including events with a
magnitude larger than or equal to 2.0; from 1373 to 2019; and the
geographical extension was limited by 2.5◦ W and 3.5◦ E meridians,
and 41◦ N and 44◦ N parallels.

The steps driven to compile the catalog were the following:

1. Data from other sources, such as specific studies or other cat-
alogs, were considered to re-evaluate the magnitude of some
shocks, particularly the major ones.

2. To conduct a seismic analysis, the size of the events must be
homogeneous. In this sense, the vast majority of the researches
use 𝑀𝑤 (Hanks and Kanamori, 1979), due to its direct re-
lationship with the released energy in the rupture by scalar
seismic moments. Besides, it does not get saturated for the
largest events (Das et al., 2019). Over time (from 1373 to 2019),
different kinds of sizes have been assigned to the earthquakes
(macroseismic intensities and several magnitude types). Herein,
to homogenize the size, 𝑀𝑤 was assigned to all the events,
according to Cabañas et al. (2015). Besides, after estimating a
lower magnitude of completeness (1.8), the cut-off magnitude
was set as 2.0.

3. As stated in Section 1, the earthquakes must be independent
events to fulfill the Poisson distribution. To this end, foreshocks,
aftershocks, and seismic swarms must be eliminated. In seis-
micity, this process is called declustering. In that work (Amaro-
Mellado and Tien Bui, 2020), it was based on the definition of
temporal and spatial windows following the method proposed
by Gardner and Knopoff (1974).

5| Publications 149

Computers and Geosciences 150 (2021) 104736

4

J.L. Amaro-Mellado et al.

Fig. 1. Seismicity in the Pyrenees from the raw NGIS earthquake catalog. Events instrumentally recorded (Circles); events with only macroseismic intensity (triangles). Above referred
earthquakes have been numbered: 1—Maladetta(1373); 2—Amer(1427); 3—Queralbs(1428); 4—Bigorre(1660); 5—Juncalas(1750); 6—Arette(1967); 7—St-Paul Fenouillet(1996).

4. Although it is not a specific task in a catalog generation, the
year of completeness related to different levels of magnitude
(𝑀𝑐—year of completeness) were defined: M2—2013; M3—
1978; M4—1943; and, M5—1810.

5. The final catalog, after removing the events deeper than 65
km, since they are not important for the seismic hazard of
the region (IGN-UPM-WorkingGroup, 2013), consists of 7706
earthquakes.

The present work aims at defining a source zone model, so such a
low cut-off value as 2.0 should not be established. Therefore, the cut-off
magnitude has been set as 2.5, as pointed out in other works (Njike-
Kassala et al., 1992; Talbi et al., 2013). Besides, it has been considered
in a recent work for the region (Drouet et al., 2020). This value is
judged as a good trade-off between the seismic hazard and the low to
moderate Pyrenees seismicity.

The final catalog of this work consists of 3500 earthquakes, with
𝑀𝑤 larger than or equal to 2.5, and it is shown in Fig. 2.

4.2. Dataset construction

The seismic data, analyzed in the previous section, must be con-
verted into a 3−𝐷 dataset (or cube of data) in order to be interpreted by
the TriGen algorithm. Herein, several new attributes must be generated
to transform a 2𝐷 dataset into a 3𝐷 one. Firstly, using a GIS, all data
included in the catalog have been sorted into 30 × 20 cells, each
representing an area of approximately 16.7 km ×16.4 km. Afterward,
each cell is characterized as a set of features. These features, origi-
nally defined by literature (Scitovski and Scitovski, 2013; Reyes and
Cárdenas, 2010), have been re-adapted to the Pyrenees seismicity and
are:

1. 𝑀𝑚𝑎𝑥: maximum earthquake magnitude recorded in the cell.
2. 𝐷: mean depth of all earthquakes’ epicenters recorded in the cell.
3. 𝑀2.9: number of earthquakes occurring with a magnitude larger

than or equal to 2.9 in the cell considered.
4. 𝑀3.3: number of earthquakes occurring with a magnitude larger

than or equal to 3.3 in the cell considered.

5. 𝑀3.7: number of earthquakes occurring with a magnitude larger
than or equal to 3.7 in the cell considered.

6. 𝑀4.1: number of earthquakes occurring with a magnitude larger
than or equal to 4.1 in the cell considered.

7. 𝑁 : total number of earthquakes occurring.

As can be seen in Fig. 3, the result of applying this data transforma-
tion is a data cube (or 3𝐷 dataset) where every cell is defined by three
coordinates 𝑥, 𝑦 and 𝑓 . The 𝑥 coordinate is in [1, 30] representing the
relative latitude, the 𝑦 coordinate is in [1, 20] representing the relative
longitude, and, the 𝑓 coordinate is in {𝑀𝑚𝑎𝑥, 𝐷,𝑀2.9,𝑀3.3,𝑀3.7,𝑀4.1}
and represents the particular feature. Therefore, as an example, the
cell 𝐶1,2,𝑀3.7

represents the number of earthquakes occurring with a
magnitude larger or equal to 3.7 in the cell with relative latitude 1
and relative longitude 2.

4.3. The TriGen algorithm

The triclustering algorithm used in this research is TriGen
(Gutiérrez-Avilés et al., 2014), which stands for Triclustering Genetic
based algorithm. As it can be appreciated in Fig. 4(a), the TriGen
algorithm receives the 3D input dataset as well as the control param-
eters to yield a set of tricluster solutions. To do this, TriGen performs
an evolutionary heuristic search with a population of individuals that
evolves using genetic operators during a specific number of generations
with the main goal of optimizing an evaluation function. Considering
that an individual is a potential solution tricluster, in this case, each
individual represents a zone of the Pyrenees.

Focusing on the algorithm, TriGen repeats for each tricluster so-
lution (𝑁 control parameter) the following process. Firstly, it creates
an initial population that is evaluated based on a fitness function that
has to be optimized. Afterward, four genetics operators are applied
to the initial population during a number of generations (𝐺 control
parameter) in order to select the best individual that is going to be
the solution tricluster. The four genetics operators that are repeated
are selection, crossover, mutation, and evaluation.

Each operator has specific characteristics as were deeply analyzed
in Gutiérrez-Avilés et al. (2014), Gutiérrez-Avilés and Rubio-Escudero
(2015):

150 5.1. Journal and conferences articles

Computers and Geosciences 150 (2021) 104736

5

J.L. Amaro-Mellado et al.

Fig. 2. Catalog of the work. The size of all the events is given as moment magnitude (𝑀𝑤).

Fig. 3. TriGen input dataset.

• The initial population is created differently to search for the
first solution tricluster and all the other 𝑁-1 solution triclusters
searches. The first one is produced with a random subset of all
three data coordinates. For the next solution triclusters, some
individuals are also randomly generated, and the other ones
are created considering not to overlap the previously founded
solutions.

• The evaluation operator is very useful in promoting the best indi-
viduals to continue in the next generation and selecting the final
solution tricluster. TriGen offers three different fitness function:
the mean square residue measure (𝑀𝑆𝑅) (Gutiérrez-Avilés and

Rubio-Escudero, 2014), the least square lines (𝐿𝑆𝐿) (Gutierrez-
Aviles and Rubio-Escudero, 2014), and the multi slope measure
(𝑀𝑆𝐿) (Gutiérrez-Avilés and Rubio-Escudero, 2015). For this
particular case, the 𝑀𝑆𝐿 fitness function is selected. In gen-
eral, the 𝑀𝑆𝐿 function is based on the resemblances of the
slope angles formed by the expression values of the tricluster
coordinates.

• The selection operator is the first operator computed in the loop
of 𝐺 generations. The tournament selection is implemented, and
so the selected individual is promoted to the next generation.

5| Publications 151

Computers and Geosciences 150 (2021) 104736

6

J.L. Amaro-Mellado et al.

Fig. 4. TriGen algorithm overview.

• The crossover operator applied is the one point crossing tech-
nique. In particular, two selected individuals (by a probability
of crossover parameter 𝑝𝑐) mix their coordinates randomly and
generate two new individuals (their children).

• The mutation operator also considers a probability of mutation
parameter 𝑝𝑚 that if it is satisfied, applies one of the six possible
actions: add or remove one of the three coordinates of data. The
goal of the mutation operator is to guarantee variability for the
next generations.

The algorithm ends when all the best solution triclusters are found.
The produced tricluster solution set represents a partition of the 3𝐷
input dataset, whereas each tricluster is a subset of 𝑥 coordinates, 𝑦
coordinates, and 𝑓 coordinates. Therefore, as it is represented in the
example in Fig. 4(b), a tricluster 𝑇 𝑟𝑁 of the solution set is a dataset
subset composed by the 𝑥 coordinates from 7 to 11, the 𝑦 coordinates
from 27 to 34 and, the {2, 3, 4, 5} features, that is, the 𝑀2.9, 𝑀3.3, 𝑀3.7
and 𝑀4.1 features. To yield the zonation discovered by the algorithm,
for each tricluster, its 𝑥 and 𝑦 coordinates will be an area of the
complete analyzed grid.

5. Results and discussion

In this section, the experimental workflow carried out in this re-
search is explained, as well as an analysis of the obtained results.
For this purpose, the experimental setup of the TriGen algorithm, fol-
lowed to produce the zonation, is described in Section 5.1. Finally, the
discovered zone and a critical discussion are addressed in Section 5.2.

5.1. TriGen experimental setup

The TriGen algorithm has been executed four times. As there is a
component of randomness in each execution, different executions can
lead to different solutions. From each tricluster solution set of each
TriGen run, the non-overlapping zones are selected to yield the final
zonation presented in the next Section 5.2. As can be seen in Table 1,
for each run (from 𝑅1 to 𝑅4), a particular parameter configuration has
been used as the input dataset described in Section 4.2, in order to
obtain tricluster solutions in the widest range possible.

For all runs, TriGen has been set up to find ten solutions (𝑁) to
guide the algorithm to cover the 𝑋 − −𝑌 space. The number of gen-
erations (𝐺) and the number of individuals in the first population (𝐼)
has been {20, 30}, and {15, 20} respectively. This is considered a proper

152 5.1. Journal and conferences articles

Computers and Geosciences 150 (2021) 104736

7

J.L. Amaro-Mellado et al.

Fig. 5. Zonation proposal (eight zones). The size of all the events is given as moment magnitude (𝑀𝑤). Source zone #1: Atlantic Pyrenees; #2 Arudy–Arette–Bagnères de Bigorre;
#3: Central Pyrenees; #4: Andorra; #5: Easternmost Pyrenees; #6: Eastern Catalonia; #7: Central Iberian System; #8: Northeast Iberian System.

Table 1
TriGen parameters setup.

Parameter 𝑅1 𝑅2 𝑅3 𝑅4

𝑁 10 10 10 10

𝐺 20 30 20 30

𝐼 15 20 20 15

𝑝𝑐 0.2 0.2 0.8 0.8

𝑝𝑚 0.5 0.5 0.1 0.1

balance between intensification and diversification of the evolutionary
process. This fact has been taken into account when the crossover and
mutation parameters were set. Firstly, 𝑝𝑐 varies in {0.2, 0.8} to obtain
high intensified and low diversified solutions in the 𝑝𝑐 = 0.2 runs and
low intensified and high diversified solutions in the 𝑝𝑐 = 0.8 runs. In
a similar way, with 𝑝𝑚 varying in {0.1, 0.5}, to get solutions with high
and low variability.

5.2. Zonation obtained and its representation

With the solutions obtained by the application TriGen, following
the procedure described in Section 5.1, the zones with less than 25
events have been ruled out, according to Bender (1983) and Skordas
and Kulhánek (1992). The use of a GIS (QGIS, https://www.qgis.org,
last accessed November 2020) allows a rigorous representation, and the
data can be handled for further analysis. The resulting zonation, as well
as the epicenters distribution, is shown in Fig. 5.

5.2.1. Seismic parameters of the obtained zones
Once the zones have been delineated according to solutions pro-

vided by TriGen, the next step is to seismically characterize each
zone, in which some seismic parameters must be uniform, namely,
the 𝑏-value, or the annual rate, as well as the maximum magnitude.
Therefore, they must be estimated for the proposed zones.

Thus, the Gutenberg–Ritcher law (Gutenberg and Richter, 1944,
1954) holds:

𝑙𝑜𝑔10𝑁(𝑀) = 𝑎 − 𝑏𝑀 (1)

where the b-value estimates the relationship between small and large
earthquakes, and it is related to the physics of the source. The lower
its value is, the more energy can be accumulated. N is the number of
events with a magnitude larger than or equal to a cut-off magnitude M,
and a refers to the seismic productivity.

The Maximum-Likelihood-Estimate proposed by Bender (1983) and
Aki (1965) for binned data (𝛥) has been considered, in terms of 𝑏-value.

𝑏 = 1
ln (10)(�̄� −𝑀𝑚𝑖𝑛 −

𝛥
2)

(2)

where �̄� is the average magnitude; 𝑀𝑚𝑖𝑛 is the magnitude of complete-
ness, which means all the events of magnitude larger than or equal to
this value have been recorded from the reference date;

In this work, 𝑀𝑚𝑖𝑛 has been set as 3.0, and the corresponding
year of completeness is 1978, as stated in Section 4.1, and the 𝛥
value for this work is 0.1. Besides, it is interesting to give uncertainty
parameters in geology (Bárdossy and Fodor, 2001). In this case, the
b-value uncertainty (Sigma b) has been calculated by the approach
suggested by Kijko and Smit (2012).

Another relevant parameter is the annual rate referred to a unit area
(𝑘𝑚2). It means the number of events exceeding a threshold per year
and related to 𝑘𝑚2.

𝜆(𝑀𝑚𝑖𝑛) =
𝑁
𝑡

(3)

where 𝑡 is the time-lapse. In this research, from the beginning of 1978
until the end of 2019, i.e., 42 years.

When this value is normalized with the surface, by 𝑘𝑚2, and multi-
plied by 10,000, it is called 𝐴𝑅3, in this paper.

𝐴𝑅3 = 10, 000
𝜆(𝑀𝑚𝑖𝑛)
𝑘𝑚2 (4)

Finally, the maximum magnitude 𝑀𝑚𝑎𝑥 is calculated for each zone.
The resulting values can be found in Table 2.

5| Publications 153

Computers and Geosciences 150 (2021) 104736

8

J.L. Amaro-Mellado et al.

Table 2
Obtained zones. Seismic parameters.

Zone Name Area (km2) 𝑏-value 𝐴𝑅3 𝑀𝑚𝑎𝑥 𝐷𝑒𝑝𝑡ℎ𝑚𝑒𝑎𝑛 Sigma b

1 Atlantic
Pyrenees

8157 1.01 5.43 5.2 8.4 0.07

2 Arudy–
Arette–
Bagnères de
Bigorre

8157 0.99 14.54 6.7 6.0 0.04

3 Central
Pyrenees

5478 1.20 3.30 6.2 5.7 0.14

4 Andorra 3287 1.32 3.19 5.0 5.7 0.20

5 Easternmost
Pyrenees

4388 1.17 3.91 6.5 5.8 0.14

6 Eastern
Catalonia

6931 1.34 1.89 5.8 6.3 0.18

7 Central
Iberian
System

6709 1.13 0.50 5.2 8.6 0.30

8 Northeast
Iberian
System

6630 1.40 0.61 5.7 8.0 0.34

Fig. 6. AR3 vs b-value.

5.3. Discussion

After calculating some of the most relevant seismic parameters, the
analysis of the results is driven.

First, in order to check that the zones are seismically different
from one another, a graphical representation of the AR3 and b-value is
presented in Fig. 6. In addition, to support this discrimination, different
color maps have been deployed. Herein, Fig. 7 shows the b-value
variation; 𝑀𝑚𝑎𝑥; in Fig. 8 the 𝐴𝑅3 is depicted; Fig. 9 represents the
𝑀𝑚𝑎𝑥; and finally, the mean depth is illustrated in Fig. 10.

Second, the analysis of each zone is undertaken.
Zone 1 is located in the Atlantic Pyrenees and presents one of the

lowest b-values and the highest annual rate. However, the maximum
magnitude is one of the smallest of the proposed zones (5.2), so the
seismic hazard can be considered low to moderate in the Pyrenees
region.

The most seismically hazardous zone is undoubtedly the number 2,
which runs from the Arudy–Arette region to the Bagnères de Bigorre
environment. This is due to the combination of the minimum b-value,
and both maximum annual rate (the highest in the Iberian Peninsula)
and 𝑀𝑚𝑎𝑥. Therefore, this zone deserves special attention when a PSHA
is driven in the Pyrenees.

Zone 3 is situated in the Central Pyrenees, in the Axial Zone. This
area, which includes the Maladetta Massif, has been shocked by some of
the strongest events in the Pyrenees (M6.2). Besides, it presents medium
values in both annual rate and b-value. Herein, the seismic hazard can
be defined as moderate; it might be even said moderate to high.

The smallest zone, numbered 4, is located in the Andorra environ-
ment, and not significant earthquakes have been taken place in it. Its
b-value is high, and the annual rate is medium.

Like Zone 3, the 5 one, in the easternmost Pyrenees, is characterized
by a medium b-value and annual rate but has suffered the second most
energetic earthquake in the whole belt. Therefore, the seismic hazard
can be estimated as moderate to high.

In zone 6, fully contained in eastern Catalonia (Spain), although the
𝑀𝑚𝑎𝑥 is not relatively high, four events with a magnitude exceeding 5.5
have occurred. Besides, it shows a high b-value, and the annual rate is
low to moderate so that the seismicity can be rated as moderate. The
epicenter distribution may indicate that this zone could be extended
along the Catalonian Coastal Range to the southwest or consider a new
one.

The following zones, 7 and 8, could not be closely related to the
Pyrenees, but in its environment, in the Iberian System. Besides, both
zones are in the limit to be seen as a seismic zone, individually. Both
zones have the lowest annual rate by far, and the maximum magnitude
is not notably high (5.7 and 5.2). Regarding the b-value, zone 7
(Central) shows an average value, and zone 8 (Northeast) the highest
in the region. Given the few events available for b-value calculations,
these are not entirely meaningful. The epicenter distribution points out
that both zones could correspond to the same seismic zone if a proper
rotation were to be carried out.

Although it is a debated topic, the highest seismic potential of
source zone #2 (Arudy–Arette-Bagenères de Bigorre) can be related to
the presence of several major faults. For example, the 25–30 km-long
Herrère right lateral fault (Arudy) or the Lourdes reverse faults (60 km
in three segments). Besides, the relevant seismicity of source zone #3 is
related to the North Maladetta normal fault (30 km long) or Coronas
normal fault (10 km) (Lacan and Ortuño, 2012). It is also remarkable
that in zone 5 (Easternmost Pyrenees), the more destructive earthquake
could be caused by the Vallfogona or Ribes–Camprodon thrusts or the
Amer normal fault. The latter fault generated the major 1428 Queralbs
earthquake (in zone 6) (Perea, 2009).

Regarding the method limitations, one of them would be that it only
produces ‘‘rectangular zones’’ along parallels and meridians arches, as
the original TriGen algorithm works that way. Thus, to overcome this
issue, the results could be improved using rotated polygons, which
could have been useful to extend zone 6, or join zones 7 and 8. Another
method limitation is related to the fact that conceptually, an active fault
should not be cut by a source zone boundary (Hamdache and Peláez,
2019), so it could be considered in further research.

6. Conclusions

In this research, a seismic zonation has been proposed for the
Pyrenees mountain range. The zoning is purely based on the application
of the TriGen algorithm to an earthquake catalog and a grid division.
Herein, a GIS has been used to manage and represent both the input and
the output data. The method aims to be as objective as possible, seeking
patterns for the best considered seismic indicators and minimizing
human interaction.

The triclustering methodology has been the primary procedure to
yield the zonation and applied to a pre-processed 3𝐷 dataset using the
TriGen algorithm. It is based on the genetic algorithm model. Thus,
from an initial population of potential solutions, by applying genetic
operators (crossovers, mutations), it evolves to optimal solutions based
on the 𝑀𝑆𝐿 fitness function.

The starting point is an updated, reliable, homogeneous, extensive,
and with independent events earthquake catalog, coupled with a geo-
graphical grid defined by the GIS. This grid cell size has been set out as
a nearly square shape in 16.7 km ×16.4 km, a trade-off between the cov-
erage and the low to moderate Pyrenees seismicity. Then, as a previous
step to run the evolutionary algorithm, the suggested best indicators
have been adapted to the Pyrenean seismicity. Finally, the algorithm

154 5.1. Journal and conferences articles

Computers and Geosciences 150 (2021) 104736

9

J.L. Amaro-Mellado et al.

Fig. 7. Color map showing the b-value for the obtained source zones. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version
of this article.)

Fig. 8. Color map showing the 𝐴𝑅3 for the obtained source zones. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version
of this article.)

has generated the eight seismogenic zones, and their geometries have
been integrated into a GIS.

The following step is characterizing the zones seismically. To this
end, the most relevant seismic parameters have been calculated for
each source zone by a GIS to further analysis. This analysis reveals
that the source zone covered by the Arudy–Arette–Bagnères de Bigorre
region is the most relevant seismically by far, due to its minimum b-
value, the maximum annual rate, and the highest 𝑀𝑚𝑎𝑥. Therefore,

this zone deserves special attention when a PSHA is driven in the
Pyrenees. The seismic hazard is also remarkable in both the Axial Zone,
that includes the Maladetta Massif, and in the easternmost Pyrenees,
along the Spain–France border, including M6+ events over time. In
the Catalonian Coastal Range, the zone rated as medium seismicity
could be extended through this range to the southwest. In the Atlantic
Pyrenees and the Andorra environment, the seismic activity is less
pronounced. Finally, in the southwest of the studied region (even

5| Publications 155

Computers and Geosciences 150 (2021) 104736

10

J.L. Amaro-Mellado et al.

Fig. 9. Color map showing the 𝑀𝑚𝑎𝑥 for the obtained source zones. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version
of this article.)

Fig. 10. Color map showing the mean depth for the obtained source zones. (For interpretation of the references to colour in this figure legend, the reader is referred to the web
version of this article.)

outside the Pyrenees environment), the seismic activity is significantly
lower, and the two obtained zones should be merged into one.

The method has shown to be efficient as the delineated zones are
different from one another and cover the vast majority of the region’s
epicenter. Besides, the most relevant point is that the procedure is
almost human-free-action.

CRediT authorship contribution statement

José L. Amaro-Mellado: Conceive and design the experiments,
Retrieve and analyze the data, Writing - original draft, Contribution
to the writing of the manuscript, Agreement with manuscript results
and conclusions. Laura Melgar-García: Contribution to the writing

156 5.1. Journal and conferences articles

Computers and Geosciences 150 (2021) 104736

11

J.L. Amaro-Mellado et al.

of the manuscript, Agreement with manuscript results and conclu-
sions. Cristina Rubio-Escudero: Contribution to the writing of the
manuscript, Agreement with manuscript results and conclusions, De-
velopment of the structure and arguments of the paper, Revision and
approbation of the final manuscript. David Gutiérrez-Avilés: Conceive
and design the experiments, Retrieve and analyze the data, Writing -
original draft, Contribution to the writing of the manuscript, Agreement
with manuscript results and conclusions.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgments

The authors want to thank the financial support given by the Eu-
ropean Commission 0313-PERSISTAH project, the Spanish Ministry of
Economy and Competitivity project TIN2017-88209-C2, and the Junta
de Andalucía US-1263341 project.

Computer code availability

TriGen 3.5, GPL v3 license, https://github.com/davgutavi/trlab-
trigen.

References

Aki, K., 1965. Maximum likelihood estimate of b in the formula 𝑙𝑜𝑔𝑁 = 𝑎 − 𝑏𝑀 and
its confidence limits. Bull. Earthq. Res. Inst. 43, 237–239.

Amaro-Mellado, J.L., Morales-Esteban, A., Asencio-Cortés, G., Martínez-Álvarez, F.,
2017. Comparing seismic parameters for different source zone models in the Iberian
Peninsula. Tectonophysics 717 (July), 449–472.

Amaro-Mellado, J.L., Tien Bui, D., 2020. GIS-based mapping of seismic parameters for
the pyrenees. ISPRS Int. J. Geo-Inf. 9 (7), 452.

Baize, S., Cushing, E.M., Lemeille, F., Jomard, H., 2013. Updated seismotectonic zoning
scheme of Metropolitan France, with reference to geologic and seismotectonic data.
Bull. Soc. Geol. France 184 (3), 225–259.

Barani, S., Mascandola, C., Riccomagno, E., Spallarossa, D., Albarello, D., Ferretti, G.,
Scafidi, D., Augliera, P., Massa, M., 2018. Long-range dependence in earthquake-
moment release and implications for earthquake occurrence probability. Sci. Rep.
8 (1), 1–11.

Bárdossy, G., Fodor, J., 2001. Traditional and new ways to handle uncertainty in
geology. Nat. Resour. Res. 10 (3), 179–187.

Bender, B., 1983. Maximum likelihood estimation of b values for magnitude grouped
data. Bull. Seismol. Soc. Am. 73 (3), 831–851.

Bernal, A., 2011. Anexo I del informe técnico IGN-PSE. ZF. P03. IGN-PSE. ZF. P03.
Bhar, A., Haubrock, M., Mukhopadhyay, A., Wingender, E., 2015. Multiobjective

triclustering of time-series transcriptome data reveals key genes of biological
processes. BMC Bioinformatics 16, 200.

Cabañas, L., Rivas-Medina, A., Martínez-Solares, J.M., Gaspar-Escribano, J.M., Ben-
ito, B., Antón, R., Ruiz-Barajas, S., 2015. Relationships between M w and other
earthquake size parameters in the spanish IGN seismic catalog. Pure Appl. Geophys.
172 (9), 2397–2410.

Cheng, Y., Church, G.M., 2000. Biclustering of expression data. In: International
Conference on Intelligent Systems for Molecular Biology. pp. 93–103.

Cornell, C.A., 1968. Engineering seismic risk analysis. Bull. Seismol. Soc. Am. 58,
1583–1606.

Corral, Á., 2006. Dependence of earthquake recurrence times and independence of
magnitudes on seismicity history. Tectonophysics 424 (3–4), 177–193.

Das, R., Sharma, M.L., Wason, H.R., Choudhury, D., Gonzalez, G., 2019. A seismic
moment magnitude scale. Bull. Seismol. Soc. Am. 109 (4), 1542–1555.

Drouet, S., Ameri, G., Le Dortz, K., Secanell, R., Senfaute, G., 2020. A probabilistic
seismic hazard map for the metropolitan France. Bull. Earthq. Eng. 18 (5),
1865–1898.

Gallart, J., Banda, E., Daignieres, M., 1981. Crustal strucutre of the Paleozoic Axial
Zone of the Pyrenees and transition to the North Pyrenean Zone. Ann. Géophys.
37 (3), 457–480.

Gallart, J., Dainières, M., Banda, E., Suriñach, E., Hirn, A., 1980. The eastern Pyrenean
domain: lateral variations at crust-mantle level. Ann. Geophys. 36 (2), 141–158.

García-Mayordomo, J., 2015. Creación de un modelo de zonas sismogénicas para el cál-
culo del mapa de peligrosidad sísmica de España. In: Riesgos Geológicos/Geotecnia
n◦ 5, Instituto Geológico y Minero de España, p. 125.

García-Mayordomo, J., Insua-Arévalo, J.M., Martínez-Díaz, J.J., Jiménez-Díaz, A.,
Martín-Banda, R., Martín-Alfageme, S., Álvarez-Gómez, J.A., Rodríguez-Peces, M.,
Pérez-López, R., Rodríguez-Pascua, M.A., Masana, E., Perea, H., Martín-González, F.,
Giner-Robles, J., Nemser, E.S., Cabral, J., 2012a. The quaternary active faults
database of iberia (QAFI v.2.0). J. Iberian Geol. 38 (1), 285–302.

García-Mayordomo, J., Martínez-Díaz, J.J., Capote, R., Martín-Banda, R., Insua-
Arévalo, J.M., Álvarez-Gómez, J.A., Perea, H., González, A., Lafuente, P.,
Martínez-González, F., Pérez-López, R., Rodríguez-Pascua, M.A., Giner-Robles, J.,
Azañón, J., Masana, E., Moreno, X., Benito, B., Rivas, A., Gaspar-Escribano, J.G.,
Cabañas, L., Vilanova, S., Fonseca, J., Nemser, E., Baize, S., 2012b. Modelo de
zonas sismogénicas para el cálculo de la peligrosidad sísmica en España. In: Actas
de la 7 Asamblea Geodesia y GeofÍSica. pp. 23–28.

Gardner, J.K., Knopoff, L., 1974. Is the sequence of earthquakes in Southern California,
with aftershocks removed, Poissonian. Bull. Seismol. Soc. Am. 64 (5), 1363–1367.

Gnatyshak, D., Ignatov, D., Semenov, A., Poelmans, J., 2012. Gaining insight in social
networks with biclustering and triclustering. In: Perspectives in Business Informatics
Research. In: Lecture Notes in Business Information Processing, vol. 128, pp.
162–171.

González, Á., 2017. The Spanish National Earthquake Catalogue: Evolution, precision
and completeness. J. Seismol. 21 (3), 435–471.

Gutenberg, B., Richter, C.F., 1944. Frequency of earthquakes in California. Bull.
Seismol. Soc. Am. 34, 185–188.

Gutenberg, B., Richter, C.F., 1954. Seismicity of the Earth. Princeton University.
Gutierrez-Aviles, D., Rubio-Escudero, C., 2014. LSL: A new measure to evaluate triclus-

ters. In: 2014 IEEE International Conference on Bioinformatics and Biomedicine.
BIBM, IEEE, pp. 30–37.

Gutiérrez-Avilés, D., Rubio-Escudero, C., 2014. Mining 3D patterns from gene expression
temporal data: A new tricluster evaluation measure. Sci. World J. 2014, 1–16.

Gutiérrez-Avilés, D., Rubio-Escudero, C., 2015. MSL: A measure to evaluate
three-dimensional patterns in gene expression data. Evol. Bioinform. 11, 121–135.

Gutiérrez-Avilés, D., Rubio-Escudero, C., Martínez-Álvarez, F., Riquelme, J.C., 2014.
TriGen: A genetic algorithm to mine triclusters in temporal gene expression data.
Neurocomputing 132, 42–53.

Hamdache, M., Peláez, J.A., 2019. Comment on the paper ‘‘seismic hazard analysis
of surface level, using topographic condition in the northeast of Algeria’’ by
Mouloud Hamidatou, Mohammedi Yahia, Abdelkrim Yelles-Chaouche, Itharam
Thallak, Dietrich Stromeyer, Saad Lebdioui, Fabrice Cotton. Pure Appl. Geophys.

Hanks, T., Kanamori, H., 1979. Moment magnitude scale. J. Geophys. Res. 84 (B5),
2348–2350.

Henriques, R.U.I., Madeira, S.C., 2018. Triclustering algorithms for three-dimensional
data analysis : A comprehensive survey. ACM Comput. Surv. 51 (5).

Holland, J.H., 1992. Genetic algorithms. Sci. Am. 267 (1), 66–73.
IGN-UPM-WorkingGroup, 2013. Actualización de mapas de peligrosidad sísmica 2012.

Instituto Geográfico Nacional, p. 267.
Insitituto Geográfico Nacional, 2020. Catálogo de terremotos. Instituto Geográfico

Nacional, URL: http://www.ign.es/web/ign/portal/sis-catalogo-terremotos.
Kijko, A., Smit, A., 2012. Extension of the Aki–Utsu b-value estimator for incomplete

catalogs. Bull. Seismol. Soc. Am. 102 (3), 1283–1287.
Lacan, P., Ortuño, M., 2012. Active Tectonics of the Pyrenees: A review. J. Iberian

Geol. 38 (1), 9–30.
Li, A., Tuck, D., 2009. An effective tri-clustering algorithm combining expression data

with gene regulation information. Gene Regul. Syst. Biol. 3, 49–64.
Liu, J., Li, Z., Hu, X., Chen, Y., 2008. Multi-objective evolutionary algorithm for mining

3D clusters in gene-sample-time microarray data. In: 2008 IEEE International
Conference on Granular Computing. pp. 442–447.

Marin, S., Avouac, J.P., Nicolas, M., Schlupp, A., 2004. A probabilistic approach to
seismic hazard in metropolitan France. Bull. Seismol. Soc. Am. 94 (6), 2137–2163.

Martín, A.J., 1984. Riesgo sísmico en la península Ibérica (Ph.D.). Instituto Geográfico
Nacional.

Martin, C., Secanell, R., Combes, P., Lignon, G., 2002. Preliminary probabilistic
seismic hazards assessment of France. In: 12th European Conference in Earthquake
Engineering. London. p. 870.

Martínez-Álvarez, F., Asencio-Cortés, G., Torres, J.F., Gutiérrez-Avilés, D., Melgar-
García, L., Pérez-Chacón, R., Rubio-Escudero, C., Riquelme, J.C., Troncoso, A.,
2020. Coronavirus optimization algorithm: A bioinspired metaheuristic based on
the COVID-19 propagation model. Big Data 8 (4), 308–322.

Martínez-Álvarez, F., Gutiérrez-Avilés, D., Morales-Esteban, A., Reyes, J., Amaro-
Mellado, J., Rubio-Escudero, C., 2015. A novel method for seismogenic zoning
based on triclustering: Application to the iberian peninsula. Entropy 17 (12),
5000–5021.

McGuire, R.K., 1976. FORTRAN Computer Program for Seismic Risk Analysis. Technical
Report 76-67, US Geological Survey ope-File Report, p. 90.

Melgar-García, L., Gutiérrez-Avilés, D., Rubio-Escudero, C., Troncoso, A., 2020. High-
content screening images streaming analysis using the STriGen methodology. In:
Proceedings of the 35th Annual ACM Symposium on Applied Computing. SAC ’20,
Association for Computing Machinery, pp. 537–539.

Mezcua, J., Rueda, J., García Blanco, R.M., 2011. A new probabilistic seismic hazard
study of Spain. Nat. Hazards 59 (2), 1087–1108.

Ministerio de Fomento (Gobierno de España), 2002. Norma de la Construcción
Sismorresistente Española (NCSE-02). Boletín Oficial del Estado.

5| Publications 157

Computers and Geosciences 150 (2021) 104736

12

J.L. Amaro-Mellado et al.

Molina, S., 1998. Sismotectónica y peligrosidad sísmica del área de contacto entre Iberia
y África. Universidad de Granada, Spain.

Morales-Esteban, A., Martínez-Álvarez, F., Scitovski, S., Scitovski, R., 2014. A fast
partitioning algorithm using adaptive Mahalanobis clustering with application to
seismic zoning. Comput. Geosci. 73, 132–141.

Njike-Kassala, J.D., Souriau, A., Gagnepain-Beyneix, J., Martel, L., Vadell, M., 1992.
Frequency-magnitude relationship and Poisson’s ratio in the Pyrenees, in relation
to earthquake distribution. Tectonophysics 215 (3–4), 363–369.

Pearson, K., Filon, L.N.G., 1898. Mathematical contributions to the theory of evolution.
IV. On the probable errors of frequency constants and on the influence of random
selection on variation and correlation. Phil. Trans. R. Soc. Lond. Ser. A 229–311,
Containing Papers of a Mathematical or Physical Character.

Pecker, A., Faccioli, E., Gurpinar, A., Martin, C., Renault, P.L.A., 2017. An Overview of
the SIGMA Research Project: A European Approach to Seismic Hazard Analysis. In:
Geotechnical, Geological and Earthquake Engineering, vol. 42, Springer, p. 172.

Perea, H., 2009. The Catalan seismic crisis (1427 and 1428; NE Iberian Peninsula):
Geological sources and earthquake triggering. J. Geodyn. 47 (5), 259–270.

Pontes, B., Giráldez, R., Aguilar-Ruiz, J.S., 2015. Biclustering on expression data: A
review. J. Biomed. Inform. 57, 163–180.

Reyes, J., Cárdenas, V.H., 2010. A Chilean seismic regionalization through a Kohonen
neural network. Neural Comput. Appl. 19 (7), 1081–1087.

Rigo, A., Souriau, A., Sylvander, M., 2018. Spatial variations of b-value and crustal
stress in the Pyrenees. J. Seismol. 22 (1), 337–352.

Rigo, A., Vernant, P., Feigl, K.L., Goula, X., Khazaradze, G., Talaya, J., Morel, L.,
Nicolas, J., Baize, S., Chery, J., Sylvander, M., 2015. Present-day deformation of
the Pyrenees revealed by GPS surveying and earthquake focal mechanisms until
2011. Geophys. J. Int. 201 (2), 947–964.

Scitovski, S., 2018. A density-based clustering algorithm for earthquake zoning. Comput.
Geosci. 110, 90–95.

Scitovski, R., Scitovski, S., 2013. A fast partitioning algorithm and its application to
earthquake investigation. Comput. Geosci. 59, 124–131.

Secanell, R., Bertil, D., Martin, C., Goula, X., Susagna, T., Tapia, M., Dominique, P.,
Carbon, D., Fleta, J., 2008. Probabilistic seismic hazard assessment of the Pyrenean
region. J. Seismol. 12 (3), 323–341.

Secanell, R., Martin, C., Goula, X., Susagna, T., Tapia, M., Bertil, D., 2007. Evaluación
probabilista de la peligrosidad sísmica de la región pirenaica. In: 3◦ Congreso
Nacional de Ingeniería Sísmica, no. 1. Asociación Española de Ingeniería Sísmica,
pp. 1–17.

Skordas, E., Kulhánek, O., 1992. Spatial and temporal variations of Fennoscandian
seismicity. Geophys. J. Int. 111 (3), 577–588.

Souriau, A., Rigo, A., Sylvander, M., Benahmed, S., Grimaud, F., 2014. Seismicity
in central-western Pyrenees (France): A consequence of the subsidence of dense
exhumed bodies. Tectonophysics 621, 123–131.

Spearman, C., 1910. Correlation calculated from faulty data. Br. J. Psychol., 1904–1920
3 (3), 271–295.

Stucchi, M., Rovida, A., Gomez Capera, A.A., Alexandre, P., Camelbeeck, T., Demir-
cioglu, M.B., Gasperini, P., Kouskouna, V., Musson, R.M.W., Radulian, M.,
Sesetyan, K., Vilanova, S., Baumont, D., Bungum, H., Fäh, D., Lenhardt, W.,
Makropoulos, K., Martinez Solares, J.M., Scotti, O., Živčić, M., Albini, P., Batllo, J.,
Papaioannou, C., Tatevossian, R., Locati, M., Meletti, C., Viganò, D., Giardini, D.,
2013. The SHARE European earthquake catalogue (SHEEC) 1000-1899. J. Seismol.
17 (2), 523–544.

Sylvander, M., Souriau, A., Rigo, A., Tocheport, A., Toutain, J.P., Ponsolles, C.,
Benahmed, S., 2008. The 2006 November, M L = 5.0 earthquake near Lourdes
(France): new evidence for NS extension across the Pyrenees. Geophys. J. Int. 175
(2), 649–664.

Talbi, A., Nanjo, K., Satake, K., Zhuang, J., Hamdache, M., 2013. Comparison of
seismicity declustering methods using a probabilistic measure of clustering. J.
Seismol. 17 (3), 1041–1061.

Vissers, R.L.M., Meijer, P.T., 2012. Iberian plate kinematics and Alpine collision in the
Pyrenees. Earth-Sci. Rev. 114 (1–2), 61–83.

Woessner, J., Danciu, L., Kästli, P., Monelli, D., 2011. Grant agreement no. 226967
seismic hazard harmonization in Europe project acronym: SHARE. pp. 1–23,
SHARE, 226967.

Zhao, L., Zaki, M., 2005. TRICLUSTER: an effective algorithm for mining coherent
clusters in 3D microarray data. In: Proc. of the 2005 ACM SIGMOD International
Conference on Management of Data. pp. 694–705.

158 5.1. Journal and conferences articles

5| Publications 159

5.1.7 | "Nearest neighbors-based forecasting
for electricity demand time series in
streaming"

Authors: Melgar-García L., Gutiérrez-Avilés D., Rubio-Escudero C., Troncoso
A.

Publication type: Conference article.

Conference: XIX Conference of the Spanish Association for Artificial
Intelligence (CAEPIA 20/21).

Publication: Advances in Artificial Intelligence, Springer International
Publishing, Cham.

Year: 2021.

Volume: 12882 LNAI

Pages: 185-195

DOI: 10.1007/978-3-030-85713-4_18

Nearest Neighbors-Based Forecasting
for Electricity Demand Time Series

in Streaming

L. Melgar-Garćıa1(B), D. Gutiérrez-Avilés2, C. Rubio-Escudero2,
and A. Troncoso1

1 Data Science and Big Data Lab, Pablo de Olavide University, 41013 Seville, Spain
{lmelgar,atrolor}@upo.es

2 Department of Computer Science, University of Seville, Seville, Spain
{dgutierrez3,crubioescudero}@us.es

Abstract. This paper presents a new forecasting algorithm for time
series in streaming named StreamWNN. The methodology has two well-
differentiated stages: the algorithm searches for the nearest neighbors to
generate an initial prediction model in the batch phase. Then, an online
phase is carried out when the time series arrives in streaming. In par-
ticular, the nearest neighbor of the streaming data from the training
set is computed and the nearest neighbors, previously computed in the
batch phase, of this nearest neighbor are used to obtain the predictions.
Results using the electricity consumption time series are reported, show-
ing a remarkable performance of the proposed algorithm in terms of fore-
casting errors when compared to a nearest neighbors-based benchmark
algorithm. The running times for the predictions are also remarkable.

Keywords: Forecasting · Nearest neighbors · Streaming time series ·
Electricity demand

1 Introduction

The explosive increase of global data, based on technology improvements, has
led to the gathering of information as an automatic and relatively inexpensive
task [16], taking us to the big data era. Data science offers a solution to gain
knowledge from these enormous amounts of data, by means of adapting the
existing models to the big data paradigm. This adaptation is a challenge for the
research community.

There are several fields in which the application of the new big data anal-
ysis techniques represent a great improvement in problem solving, such as the
energy consumption forecasting [17,25]. Governments and private companies are
focusing on this topic as the improvement in the prediction levels will have both
economic and environmental positive consequences [22]. In this sense, some clas-
sifiers have already been successfully applied to electricity consumption forecast

c© Springer Nature Switzerland AG 2021
E. Alba et al. (Eds.): CAEPIA 2021, LNAI 12882, pp. 185–195, 2021.
https://doi.org/10.1007/978-3-030-85713-4_18

160 5.1. Journal and conferences articles

186 L. Melgar-Garćıa et al.

[24], such as the weighted k-nearest neighbors classifier (WKNN). The WKNN
[4] is a generalization of the k-nearest neighbors method (KNN) [2] that assigns
weights to the neighbors based on their distance from the element to predict.

The direct application of these methods to the big data domain is not feasible
due to the computational needs, in terms of time and memory. Several proposals
have adapted nearest neighbor proposals to the big data paradigm using the
Apache Spark distributed computation framework [16,21,22].

Data streams are generated in many practical applications as temporally
ordered, fast changing and massive flows of data [13]. Mining these data streams
is concerned with extracting knowledge structures represented in models and
patterns in non-stopping streams of information [6], and the research on this
area has gained a high attraction. In this proposal, we go a step further and
propose a general purpose forecasting algorithm based on nearest neighbors for
big volumes of streams of data, to create a method capable to be integrated in
real-world systems in which data are constantly generated as streams, such as
the demand prediction in the electricity market.

In this work, we propose the StreamWNN algorithm for streaming time series
forecasting based on nearest neighbors. This algorithm consists of two phases: a
batch phase to generate an initial model, and an online phase for forecasting in
real time by using the model previously created in the batch phase. The proposal
has been applied to a dataset of 497,832 samples of electrical energy consumption
in Spain.

The rest of the paper is structured as follows. Section 2 describes a review of
the state of the art approaches related to data streaming and forecasting analysis
int the electricity market. Section 3 presents the methodology applied for time
series forecasting in streaming. The experimental setup along with the results
obtained using electricity demand time series can be found in Sect. 4. Finally, in
Sect. 5, the final considerations extracted from this work are presented.

2 Related Works

A wide range of approaches for data streaming analysis is currently emerging.
The primary trend of this research field is the development of machine learning
methodologies to the streaming environments. From this perspective, the authors
in [26] presented an online version of the support vector machine model to predict
air pollutant levels from the monitored air pollutant in Hong Kong. An online
version of the linear discriminant analysis algorithm for dimension reduction
was presented in [14]. On the other hand, it has carried out research efforts
to develop frameworks for adaptation of standard machine learning methods to
streaming [10]. Another streaming framework is SAMOA presented in [1], where
the authors developed an API to apply machine learning algorithms to streams
of data in a big data context. Different algorithms to analyze data streams from
the Internet of Things (IoT) networks are also currently being developed. In [5],
the authors presented a streaming linear regression method to forecast streams
data generated by IoT networks. Finally, several surveys have been published

5| Publications 161

Nearest Neighbors-Based Forecasting for Electricity Time Series in Streaming 187

about the streaming analysis. In this sense, the authors in [20] analyzed the
difference between the real-time processing and the stream processing of big
data, and by contrast, a survey of the open-source technologies that support big
data in a real-time/near real-time environments was introduced in [15].

Concerning researches focused on forecasting for the electricity demand time
series data, in addition to the nearest neighbors for a big data environment pro-
posed in [22] and the new big data-based multivariate and multi-output forecast-
ing approach in [21], other approaches have been published. In [7], the authors
applied decision gradient boosted trees and random forest ensemble methods to
the electricity demand problem. Also, deep learning techniques have been applied
to predict energy power consumption in big data environments [23]. A Temporal
Convolutional Network has been used in [11] for demand energy forecasting. A
complete review of deep learning architectures for time series forecasting was
published in [12]. On the other hand, several streaming techniques have been
applied to this problem. In [3], the authors presented an incremental pattern
characterization algorithm to mine data streams from smart meters of RMIT
University for the purpose of applying it to electricity consumption analysis
and forecasting. The authors in [8] proposed a complete data streaming analysis
system combining an online clustering model and neural-networks to predict in
real-time the electricity load demand from sensor networks.

Besides the forecasting, other problems related to energy have been
addressed. The authors in [19] presented a methodology to extract electric energy
consumption patterns in big data time series based on the application of the dis-
tributed version of the k-means algorithm. In [9] the authors presented a big
data system to classify fraudulent behaviors of the leading electricity company
in Spain. Regarding the streaming environment, an incremental ensemble learn-
ing method is developed for the on-line classification of the electricity pricing in
Australia in [18]. Furthermore, in [27], the authors presented the DStreamEPK
algorithm, a new streaming clustering method applied to electric power data.

3 Methodology

This Section presents the proposed algorithm, named StreamWNN, for stream-
ing time series forecasting based on nearest neighbors.

The time series forecasting problem consists in predicting the next h values
from the historical past values. The StreamWNN forecasting algorithm has of
two phases: a batch phase to generate an initial model, and an online phase for
forecasting in real time by using the model created in the batch phase.

A time series Xt is defined as a set of ordered chronologically values
{x1, ..., xt} and can be always transformed into N instances formed by features
and class as follows:

Xt = {(x1, y1), ..., (xN , yN)} xi ∈ Rw yi ∈ Rh (1)

where xi are the features of the i− th instance, representing the past w values to
the class yi formed by the next h values. For the batch phase, the time series Xt

162 5.1. Journal and conferences articles

188 L. Melgar-Garćıa et al.

from Eq. (1) is divided into training set and test set. Then, the prediction method
based on nearest neighbors searches for the k closest neighbors to a window
composed of the past w values to the h values to be predicted. Afterwards, a
weight is calculated for each neighbor depending on its distance to the past
values window. Thus, the initial model M consists of the pairs of the features
of the instances from the test set and a list of the classes corresponding to the
neighbors of theses features from the training set. That is:

M = <xi, <y(n1(x
i)), ..., y(nK(xi))>> (2)

where K is the number of neighbors, xi are the w features of the i − th instance
of the test set, nj(x

i) is the j − th neighbor of the xi and y(nj(x
i)) is the class

corresponding to the j − th neighbor.
When a time series is received in streaming, a temporal data stream dst can

be a chunk of the time series of length w, that is, dst = <xt, xt+1, ..., xt+w−1>.
For the online phase, once the dst data stream is received, the nearest neighbor
of the dst from test set is obtaining by this equation:

x∗ = arg min
xi∈Test

d(xi, dst) (3)

Then, the prediction is obtained using the K neighbors of x∗ and weights already
computed in the M model from Eq. (2). In particular, the prediction is made by
applying a weighted average of the h samples following those k closest neighbors.
Thus, the StreamWNN algorithm predicts by means of the following equation:

ŷ(dst) =
1

∑K
j=1 w∗

j

K∑

j=1

w∗
j y(nj(x

∗)) (4)

where nj(x
∗) is the j − th neighbor of x∗, y(nj(x

∗)) is the class corresponding to
the j − th neighbor, and w∗

j is the weight associated to the j − th neighbor. This
weight depends on the distance, with a greater weight to the closest neighbors
and a smaller weight to the farthest neighbors according to a distance d. In this
work, the Euclidean distance has been chosen, and the weights are defined by:

w∗
j =

1

d2(x∗, nj(x∗))
(5)

Consequently, it is possible to obtain forecasts in real time as the prediction
consists of making an average with neighbors and weights previously computed
in the batch phase using the historical data.

4 Experimental Results

This section specifies the dataset used in the experimentation and reports the
results obtained after the application of the proposed streaming algorithm. In
particular, Sect. 4.1 describes the dataset and the experiments carried out, speci-
fying in each case the parameters of the algorithm. Finally, in Sect. 4.2 the results
of the experimentation are shown and discussed.

5| Publications 163

Nearest Neighbors-Based Forecasting for Electricity Time Series in Streaming 189

4.1 Dataset and Experimental Setup

The experimentation uses a dataset of 497,832 samples of electrical energy con-
sumption in Spain. Each sample has 12 attributes related to electricity. For this
work, only two attributes are used: the energy demand in megawatt (MW) and
the date and time of the measured value.

In particular, the dataset contains 1 sample for every 10 min during 9 years
and 6 months, starting the 1 January 1st 2007 and finishing June 21st 2016.
The whole dataset is chronologically divided into 3 sets of data: training, test
and streaming sets. The training and test sets are approximately a 70% of the
dataset: the training set contains data from January 1st 2007 to August 23rd

2011 and the test set contains data from August 24th 2011 to August 19th 2013.
The algorithm predicts almost 3 years, i.e., the streaming set is from August
20th 2013 to June 21st 2016.

In this study, the experiments are carried out with the same parameters
and prediction horizons established in [22]. Each of the four experiments has a
different horizon: 4, 8, 12 and 24 hours. As the dataset contains 1 sample each
10 min, the prediction horizons are 24, 48, 72 and 144 samples, respectively. The
goal is to analyze the behaviour of the algorithm for different prediction horizons
considering the optimal parameters of [22].

The parameters for each experiment are listed below, where h is the predic-
tion horizon, w corresponds to the number of past values used for predicting the
next h values and K is the number of nearest neighbors of the training set to
consider when creating the M model, as defined in Sect. 3:

– For the prediction horizon h = 24, optimal parameters are w = 144 and K = 4.
– For the prediction horizon h = 48, optimal parameters are w = 288 and K = 2.
– For the prediction horizon h = 72, optimal parameters are w = 576 and K = 4.
– For the prediction horizon h = 144, optimal parameters are w = 864 and

K = 4.

4.2 Results

The four experiments are run on a cluster located at the Data Science and
Big Data Laboratory in Pablo de Olavide University. The cluster is formed by
4 nodes: 3 slaves and 1 master. The whole cluster has 4 Processors Intel(R)
Core(TM) i7-5820K CPU with 48 cores, 120 GB of RAM memory. It uses Ubuntu
16.04.1 LTS, Apache Spark 2.3.4, HDFS on Hadoop 2.7.7 and Apache Kafka 2.11.

The metrics used to evaluate the performance of the algorithm are the
mean absolute percentage error (MAPE), expressed as a percentage, and the
mean absolute error (MAE), expressed in MW [24]. Table 1 presents the above-
mentioned metrics of error when forecasting the streaming set of data for the
different prediction horizons. Moreover, the maximum, minimum and standard
deviation (st. dev.) of the MAPE for the streaming set are depicted. It can be
noticed that both MAPE and MAE increase with higher values of the prediction
horizon. Considering that in this work the offline summary model is not updated,

164 5.1. Journal and conferences articles

190 L. Melgar-Garćıa et al.

the standard deviation and values of MAPE and MAE lead to think that the
offline summary model represents in an accurate way the streaming data.

Table 1. Metrics of errors for different prediction horizons

h w k Maximum MAPE Minimum MAPE St. dev. MAPE MAPE MAE

24 144 4 33.0031 0.2464 2.0745 2.4288 670.1298

48 288 2 31.2719 0.4101 2.0842 2.7617 766.8640

72 576 4 34.3861 0.6002 2.8199 3.3535 933.9924

144 864 4 29.3277 0.6548 3.6136 3.8465 1072.8357

Figures 1 and 2 show the worst forecasts (the maximum MAPE) and the
best ones (the minimum MAPE) for each prediction horizon, respectively. They
both show the real and forecasted electricity demand values in the vertical axis
and the hours of the day in the horizontal axis. Each sub-figure includes the
day (in format day/month/year) and the horizon of the maximum or minimum
MAPE. All worst days correspond to public holidays in Spain: in summer for
the prediction horizons 24 and 48 and, in winter for the prediction horizons
72 and 144. For prediction horizons 24, 48 and 72, it can be observed abrupt
changes at the last time sample of the horizon as the following forecasted values
correspond to the next prediction horizon on the same day. On the other hand,

20000

25000

30000

35000

40000

00
:0

0
06

:0
0

12
:0

0
18

:0
0

00
:0

0

Hours

W
o

rs
t

D
ay

D

em
an

d
 V

al
u

e
(M

W
)

Energy Demand Forecast Real

20000

25000

30000

35000

40000

00
:0

0
06

:0
0

12
:0

0
18

:0
0

00
:0

0

Hours

W
o

rs
t

D
ay

D

em
an

d
 V

al
u

e
(M

W
)

Energy Demand Forecast Real

20000

25000

30000

35000

40000

00
:0

0
06

:0
0

12
:0

0
18

:0
0

00
:0

0

Hours

W
o

rs
t

D
ay

D

em
an

d
 V

al
u

e
(M

W
)

Energy Demand Forecast Real

20000

25000

30000

35000

40000

00
:0

0
06

:0
0

12
:0

0
18

:0
0

00
:0

0

Hours

W
o

rs
t

D
ay

D

em
an

d
 V

al
u

e
(M

W
)

Energy Demand Forecast Real

Fig. 1. Days with the worst forecasts for each h horizon

5| Publications 165

Nearest Neighbors-Based Forecasting for Electricity Time Series in Streaming 191

Fig. 2 shows that, in these days, the data used in the offline phase represents
well the online data because even without any update of the summary offline
model, the forecasted values are quite accurate.

20000

25000

30000

35000

40000

00
:0

0
06

:0
0

12
:0

0
18

:0
0

00
:0

0

Hours

B
es

t
D

ay

D
em

an
d

 V
al

u
e

(M
W

)

Energy Demand Forecast Real

20000

25000

30000

35000

40000

00
:0

0
06

:0
0

12
:0

0
18

:0
0

00
:0

0

Hours

W
o

rs
t

D
ay

D

em
an

d
 V

al
u

e
(M

W
)

Energy Demand Forecast Real

20000

25000

30000

35000

40000

00
:0

0
06

:0
0

12
:0

0
18

:0
0

00
:0

0

Hours

W
o

rs
t

D
ay

D

em
an

d
 V

al
u

e
(M

W
)

Energy Demand Forecast Real

20000

25000

30000

35000

40000

00
:0

0
06

:0
0

12
:0

0
18

:0
0

00
:0

0

Hours

W
o

rs
t

D
ay

D

em
an

d
 V

al
u

e
(M

W
)

Energy Demand Forecast Real

Fig. 2. Days with the best forecasts for each h horizon

Table 2 shows the MAE obtained when applying the algorithm recently pub-
lished in [22] and the proposed StreamWNN algorithm using the same set of
data and the same parameters for comparison purposes. It can be observed that
the error of the proposed algorithm is higher just for h = 24. However, the
MAEs of the StreamWNN are quite smaller than the ones in [22] for all the
other prediction horizons.

Table 2. The MAE (in MW) for the StreamWNN and the algorithm in [22].

h [22] StreamWNN

24 524.14 670.13

48 920.87 766.86

72 1313.40 933.99

144 1514.92 1072.84

Figure 3 represents the mean values for each hour, both of the forecasted and
of the real energy demand values of the h = 24 prediction horizon setup. The

166 5.1. Journal and conferences articles

192 L. Melgar-Garćıa et al.

representation of the other three forecast horizons is very similar. It confirms
that the forecast results have behave very similar to the ones of the real data.

Besides the good performance, a streaming algorithm has to provide timely
results during the online phase. Even if the offline phase of the streaming algo-
rithm is not limited in execution time, the offline phase of the proposed algorithm
is fast considering the huge amount of data, both in training and test sets. The
offline phase of the proposed algorithm for h = 24 takes 222.09 s, 167.16 s for
h = 48, 153.47 s for h = 72 and 122.50 s for h = 144.

The online execution time for all four prediction horizons is presented in
Fig. 4. This figure shows for every 200 iterations of the algorithm, the time in
seconds from the beginning of the online phase. The number of iterations for
each experiment is different as w and h changes. In addition, as smaller these
values are, less time is taken to compute the iterations (as in the offline phase).
It can be observed that the algorithm increases linearly the execution time as
more iterations have been previously made, which is very important in streaming
algorithms. Considering these results, a forecast of h values is made in an average
of 1.4 s for h = 24, 1.6 s for h = 48, 1.9 s for h = 72 and 2.3 s for h = 144. These
results are presented in Table 3.

20000

25000

30000

0 4 8 12 16 20

Hours

D
em

an
d

 V
al

u
e

Demand Predictions: Mean Real: Mean

Fig. 3. Hourly average of the actual
and forecasted energy demand

0

2500

5000

7500

0
20

00
40

00
60

00

Number iterations

E
x
e
c
u

ti
o

n
 t

im
e
 (

s
e
c
o

n
d

s
)

Forecast Horizons h=24 h=48 h=72 h=144

Fig. 4. Execution time of the online
phase versus number of iterations

Table 3. Computation times (in seconds) for different prediction horizons

h Offline phase time Online prediction time of h values

24 222.09 1.4

48 167.16 1.6

72 153.47 1.9

144 122.50 2.3

5 Conclusions

The StreamWNN algorithm for time series forecasting in the streaming environ-
ment has been proposed. The StreamWNN consists of two stages: an offline or

5| Publications 167

Nearest Neighbors-Based Forecasting for Electricity Time Series in Streaming 193

batch phase and an online phase. The first stage creates a summary prediction
model with the K nearest neighbors for each window of w samples and their
next h samples of the training set. Afterwards, in the second stage, the time
series of the streaming set are processed satisfying the streaming requirements.
When streams arrive, the model predicts the h next values with a weighted
average using the selected K nearest neighbor from the batch prediction model.
The algorithm has been applied to an electricity demand time series dataset
containing records over nine years. The performance of the algorithm has been
evaluated with the MAPE and MAE error metrics for each prediction horizon.
A good performance has been shown when comparing these errors with a bench-
mark algorithm, that used the same dataset and parameters.

The future works will be focused on some characteristics of the algorithm
such as updating the summary batch model considering the knowledge of the
previous time series streams, detecting novelties and outliers in the streams or
studying the process to select the optimal values of the parameters.

Acknowledgements. The authors would like to thank the Spanish Ministry of Sci-
ence, Innovation and Universities for the support under project TIN2017-88209-C2.

References

1. Bifet, A., Morales, G.F.: Big data stream learning with SAMOA. In: Proceedings
of the IEEE International Conference on Data Mining Workshop (ICDM), pp.
1199–1202 (2015)

2. Cover, T., Hart, P.: Nearest neighbor pattern classification. IEEE Trans. Inf. The-
ory 13(1), 21–27 (1967)

3. De Silva, D., Yu, X., Alahakoon, D., Holmes, G.: Incremental pattern characteri-
zation learning and forecasting for electricity consumption using smart meters. In:
Proceedings of the IEEE International Symposium on Industrial Electronics, pp.
807–812 (2011)

4. Dudani, S.A.: The distance-weighted k-nearest-neighbor rule. IEEE Trans. Syst.
Man Cybern. 6(4), 325–327 (1976)

5. Fernández, A.M., Gutiérrez-Avilés, D., Troncoso, A., Mart́ınez-Álvarez, F.: Real-
time big data analytics in smart cities from LoRa-based IoT networks. In: Mart́ınez
Álvarez, F., Troncoso Lora, A., Sáez Muñoz, J.A., Quintián, H., Corchado, E. (eds.)
SOCO 2019. AISC, vol. 950, pp. 91–100. Springer, Cham (2020). https://doi.org/
10.1007/978-3-030-20055-8 9

6. Gaber, M.M., Zaslavsky, A., Krishnaswamy, S.: Mining data streams: a review.
ACM SIGMOD Rec. 34(2), 18–26 (2005)

7. Galicia, A., Talavera-Llames, R., Troncoso, A., Koprinska, I., Mart́ınez-Álvarez, F.:
Multi-step forecasting for big data time series based on ensemble learning. Knowl.
Based Syst. 163, 830–841 (2019)

8. Gama, J., Rodrigues, P.P.: Stream-based electricity load forecast. In: Kok, J.N.,
Koronacki, J., Lopez de Mantaras, R., Matwin, S., Mladenič, D., Skowron, A. (eds.)
PKDD 2007. LNCS (LNAI), vol. 4702, pp. 446–453. Springer, Heidelberg (2007).
https://doi.org/10.1007/978-3-540-74976-9 45

168 5.1. Journal and conferences articles

194 L. Melgar-Garćıa et al.

9. Gutiérrez-Avilés, D., et al.: SmartFD: a real big data application for electrical
fraud detection. In: de Cos Juez, F., et al. (eds.) HAIS 2018. LNCS, vol. 10870, pp.
120–130. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-92639-1 11

10. He, H., Chen, S., Li, K., Xu, X.: Incremental learning from stream data. IEEE
Trans. Neural Networks 22(12), 1901–1914 (2011)

11. Lara-Beńıtez, P., Carranza-Garćıa, M., Luna-Romera, J.M., Riquelme, J.C.: Tem-
poral convolutional networks applied to energy-related time series forecasting.
Appl. Sci. 10(7), 2322 (2020)

12. Lara-Beńıtez, P., Carranza-Garćıa, M., Riquelme, J.C.: An experimental review on
deep learning architectures for time series forecasting. Int. J. Neural Syst. 31(03),
2130001 (2021)

13. Li, Y., Li, D., Wang, S., Zhai, Y.: Incremental entropy-based clustering on cate-
gorical data streams with concept drift. Knowl. Based Syst. 59, 33–47 (2014)

14. Liu, L.P., Jiang, Y., Zhou, Z.H.: Least square incremental linear discriminant anal-
ysis. In: Proceedings of the IEEE International Conference on Data Mining, pp.
298–306 (2009)

15. Liu, X., Iftikhar, N., Xie, X.: Survey of real-time processing systems for big data.
In: Proceedings of the International Database Engineering and Applications Sym-
posium, pp. 356–361 (2014)

16. Maillo, J., Ramı́rez, S., Triguero, I., Herrera, F.: kNN-IS: an iterative spark-based
design of the k-nearest neighbors classifier for big data. Knowl. Based Syst. 117,
3–15 (2017)

17. Mart́ınez-Álvarez, F., Troncoso, A., Riquelme, J.C., Aguilar-Ruiz, J.S.: Energy
time series forecasting based on pattern sequence similarity. IEEE Trans. Knowl.
Data Eng. 23(8), 1230–1243 (2010)

18. Ng, W.W.Y., Zhang, J., Lai, C.S., Pedrycz, W., Lai, L.L., Wang, X.: Cost-sensitive
weighting and imbalance-reversed bagging for streaming imbalanced and concept
drifting in electricity pricing classification. IEEE Trans. Ind. Inform. 15(3), 1588–
1597 (2019)

19. Pérez-Chacón, R., Luna-Romera, J.M., Troncoso, A., Mart́ınez-Álvarez, F.,
Riquelme, J.C.: Big data analytics for discovering electricity consumption patterns
in smart cities. Energies 11(3), 683 (2018)

20. Shahrivari, S.: Beyond batch processing: towards real-time and streaming big data.
Computers 3(4), 117–129 (2014)

21. Talavera-Llames, R., Pérez-Chacón, R., Troncoso, A., Mart́ınez-Álvarez, F.: MV-
kWNN: a novel multivariate and multi-output weighted nearest neighbours algo-
rithm for big data time series forecasting. Neurocomputing 353, 56–73 (2019)

22. Talavera-Llames, R., Pérez-Chacón, R., Troncoso, A., Mart́ınez-Álvarez, F.: Big
data time series forecasting based on nearest neighbours distributed computing
with spark. Knowl. Based Syst. 161, 12–25 (2018)

23. Torres, J.F., Galicia, A., Troncoso, A., Mart́ınez-Álvarez, F.: A scalable approach
based on deep learning for big data time series forecasting. Integr. Comput. Aided
Eng. 25(4), 335–348 (2018)

24. Troncoso, A., Riquelme-Santos, J.M., Gómez-Expósito, A., Mart́ınez-Ramos, J.L.,
Riquelme-Santos, J.C.: Electricity market price forecasting based on weighted near-
est neighbors techniques. IEEE Trans. Power Syst. 22(3), 1294–1301 (2007)

25. Troncoso, A., Riquelme, J.C., Aguilar-Ruiz, J.S., Riquelme-Santos, J.M.: Evolu-
tionary techniques applied to the optimal short-term scheduling of the electrical
energy production. Eur. J. Oper. Res. 185(3), 1114–1127 (2008)

5| Publications 169

Nearest Neighbors-Based Forecasting for Electricity Time Series in Streaming 195

26. Wang, W., Men, C., Lu, W.: Online prediction model based on support vector
machine. Neurocomputing 71(4–6), 550–558 (2008)

27. Zhang, X., Qian, Z., Shen, S., Shi, J., Wang, S.: Streaming massive electric power
data analysis based on spark streaming. In: Li, G., Yang, J., Gama, J., Natwichai,
J., Tong, Y. (eds.) DASFAA 2019. LNCS, vol. 11448, pp. 200–212. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-18590-9 14

170 5.1. Journal and conferences articles

5| Publications 171

5.1.8 | "A new big data triclustering approach
for extracting three-dimensional
patterns in precision agriculture"

Authors: Melgar-García L., Gutiérrez-Avilés D., Godinho M. T., Espada R.,
Brito I. S., Martínez-Álvarez F., Troncoso A.., Rubio-Escudero C.

Publication type: Journal article.

Journal: Neurocomputing.

Year: 2022.

Volume: 500

Pages: 268-278

DOI: 10.1016/j.neucom.2021.06.101

IF: 5.719 30/139 Computer Science, Artificial Intelligence.

Quartil: Q1.

A new big data triclustering approach for extracting three-dimensional
patterns in precision agriculture

Laura Melgar-García a, David Gutiérrez-Avilés b, Maria Teresa Godinho c,d, Rita Espada e, Isabel Sofia Brito f,g,
Francisco Martínez-Álvarez a,⇑, Alicia Troncoso a, Cristina Rubio-Escudero b

aData Science & Big Data Lab, Pablo de Olavide University, ES-41013 Seville, Spain
bDepartment of Computer Science, University of Seville, Avda. Reina Mercedes s/n, Seville 41012, Spain
cDepartment of Mathematical and Physical Sciences, Polytechnic Institute of Beja, Portugal
dCenter for Mathematics, Fundamental Applications and Operations Research, University of Lisboa, Portugal
eAssociação dos Agricultores do Baixo Alentejo, Beja, Portugal
fDepartment of Engineering, Polytechnic Institute of Beja, Portugal
g Instituto de Desenvolvimiento de Novas Tecnologias – Centre of Technology and Systems, Lisboa, Portugal

a r t i c l e i n f o

Article history:
Received 28 February 2021
Revised 27 May 2021
Accepted 12 June 2021
Available online 25 May 2022

Keywords:
Big data triclustering
Precision agriculture
Spatio-temporal patterns

a b s t r a c t

Precision agriculture focuses on the development of site-specific harvest considering the variability of
each crop area. Vegetation indices allow the study and delineation of different characteristics of each field
zone, generally invisible to the naked-eye. This paper introduces a new big data triclustering approach
based on evolutionary algorithms. The algorithm shows its capability to discover three-dimensional pat-
terns on the basis of vegetation indices from vine crops. Different vegetation indices have been tested to
find different patterns in the crops. The results reported using a vineyard crop located in Portugal depicts
four areas with different moisture stress particularities that can lead to changes in the management of
the vineyard. Furthermore, scalability studies have been performed, showing that the proposed algorithm
is suitable for dealing with big datasets.

� 2022 Published by Elsevier B.V.

1. Introduction

It is a well-established fact that the era of Big Data [1] has chan-
ged the way in which data are generated, stored and processed, to
the extent that 90% of the data that exist in the world has been
generated during the last years [2]. These vast amount of data
can be difficult to understand or even to analyze, and therefore
the need for techniques to process this information arises. In this
sense, new tools have been developed under the title of Data
Science [3].

One of the areas that benefits from these developments is Pre-
cision Agriculture (PA), that can be defined as the application of
technologies and principles to manage spatial and temporal vari-
ability associated to all aspects of agricultural production for the
purpose of improving crop performance and environmental quality
[4]. It is a fact that shortage of natural resources endangers our
future. Public awareness of these problems urges local authorities
to intervene and impose tight regulations on human activity. In
this environment, reconciling economic and environmental objec-

tives in our society it is mandatory. PA has an important role in the
pursuit of such aspiration, as the techniques used in PA permit to
adjust resource application to the needs of soil and crop as they
vary in the field. In this way, specific-site management (that is
the management of agricultural crops at a spatial scale smaller
than the whole field) is a tool to control and reduce the amount
of fertilizers, phytopharmaceuticals and water used on site, with
both ecological and economic advantages. Indeed, being able to
characterize how crops behave over time, extracting patterns and
predicting changes is a requirement of utmost importance for
understanding agro-ecosystems dynamics [5].

One of the major concerns associated to the shortage of natural
resources is the enormous consumption of water associated to
farming activities. Water is a scarce resource worldwide and this
problem is particularly acute in the South of Europe, where the
Alentejo (Portugal) and Andalusia (Spain) regions are located. Both
regions are mainly agriculture-dependent and thus, farmers and
local authorities are apprehensive about the future.

In this paper, a new algorithm, hereinafter called bigTriGen, is
proposed to delineate management zones by measuring the vari-
ability of crop conditions within the field. For this purpose, bigTri-
Gen analyzes time series of geo-referenced vegetation indices,

https://doi.org/10.1016/j.neucom.2021.06.101
0925-2312/� 2022 Published by Elsevier B.V.

⇑ Corresponding author.
E-mail address: fmaralv@upo.es (F. Martínez-Álvarez).

Neurocomputing 500 (2022) 268–278

Contents lists available at ScienceDirect

Neurocomputing

journal homepage: www.elsevier .com/locate /neucom

172 5.1. Journal and conferences articles

obtained from satellite imagery. Thus, the bigTriGen algorithm,
based on the evolutionary strategy introduced in the TriGen algo-
rithm [6], is a triclustering method capable to analyze a set of satel-
lite images indexed over time in addition to the ability to analyze
vast three-dimensional datasets in a big data environment. It has
been applied to a vineyard crop located in Baixo Alentejo, Portugal,
with different experimental datasets in order to test its scalability.

The rest of the paper is structured as follows. In Section 2, the
recent and related works are reviewed. In Section 3 our proposal
is described. In Section 4 the results obtained using the vineyard
crop dataset are presented and discussed. Finally, in Section 5,
the conclusions of this work and point directions for future works
are presented.

2. Related works

Interest in precision agriculture methods applied to viticulture
has had a tremendous growth in the last decade: at the research
level, the number of papers published has increased from 20 in
2011 [7] to 517 hits in response to googling ‘‘vineyard precision
agriculture” in Google Scholar, in spite of having restricted the
search to the current year. In fact, generally, vineyards meet the
three classical conditions that are required in order to site specific
management methods to be justified: (1) significant spatial vari-
ability within field exists (2) the causes of this variability can be
identified and measured, and (3) the information from these mea-
surements can be used to modify crop-management practices to
increase profit and quality and decrease environmental impact
[8]. These three conditions define themselves three important lines
of research that complement each other. This paper addresses the
first one, that is, we aim at identifying areas within the field with
different behaviors as to grape quality and productivity. This objec-
tive involves both gathering data and extracting information from
data. In the following, some of the proposed methods to deal with
these topics are reviewed.

Vineyards are often planted in irregular/steep terrains resulting
in difficult and expensive direct inspection tasks for wine growers.
Thus, discrete point sampling, which is the most traditional mean
of data collection on soil conditions and/or plant growth and devel-
opment, is very difficult to implement on this type of crop [8,9]. On
the other hand, aerial remote sensors have proven to be very effec-
tive means of collecting data as they can provide, at a relatively low
cost, a fairly detailed, spatially referenced measure of almost all the
same features. Both satellite and airborne imaging systems,
namely unmanned aerial vehicles (UAV), with multispectral and
hyperspectral cameras have been used for gathering crop related
data for a few decades. Several papers have reviewed the use of
aerial remote sensors and compared the quality of the information
extracted from both means in accessing vineyard variability [10–
13]. Satellite imagery is affordable and easily available, but inferior
with regard to resolution and more vulnerable to atmospheric
interference. Nevertheless, although it is widely accepted that
UAV imagery provides a more complete view of the field [10–
12], it has also been shown that good correlation exists between
Normalized Difference Vegetation Index (NDVI) data from Sentinel
2 and NDVI unfiltered data from UAV [13]. Additionally, [14] shows
that by complementing aerial data with information gathered by
ground-based sensors, high-resolution management zones can be
delineated.

Rather comprehensive reviews on methods for data analysis in
precision agriculture are presented in [15,16]. The identification of
site-specific management zones is achieved mostly through clus-
tering techniques. Twenty of those techniques are compared in
[17]. The comparison was conducted with data obtained between
2010 and 2015 from three commercial agricultural fields cultivated

with soya bean and maize in Brazil. Then, the divisions suggested
by the results of a one-way ANOVA performed on the yields were
compared to the divisions obtained using the various algorithms.
The results showed that 17 out of the 20 produced quite good
results, although McQuitty’s Method and Fanny were considered
to be the best choices. [18] presents a smaller study on four unsu-
pervised methods applied to vineyard canopy segmentation in
three different scenarios, with both RGB (Red-Green–Blue) and
NRG (Near Infrared-Red-Green) imagery. The k-means algorithm
has proven to be the more stable over the identification in the
orthomosaic and sub-regions regarding the RGB acquisitions,
whereas the HSV-RGN algorithm is the more stable over the iden-
tification in the orthomosaic and sub-regions regarding the NRG
acquisitions. Many other studies are available, where a given
method is proposed to define management zones in vineyards,
based in various characteristics of the crop (disease detection,
berry composition and sanitary status under humid conditions,
among others) but we are not aware of the existence of a wider
recent comparison on that matter.

Clustering tools to determinate time space patterns in precision
agriculture can also be found in the literature: the evapotranspira-
tion of a Pinot noir commercial vineyard in California was charac-
terize through the unsupervised fuzzy c-means algorithm in [19]
and, in [20], NDVI spatio-temporal patterns were obtained for a
corn field in the Alentejo, Portugal, by means of a triclustering
methodology.

Triclustering methodology has become a very researched area
in the last years [21]. Some algorithms are based on genetic oper-
ators as [6] that included different evaluation measures [22–25] or
[26] which used COVID-19 propagation model to optimize multi-
objective functions. The characteristic of mining spatio-temporal
patterns can be applied to different study areas as: medical [27],
seismic [28] or even in environmental sensors in online learning
[29]. Regarding the big data characteristic, [30] introduced a new
parallel batch algorithm based on k-means providing speed results.
[31] presented a parallel and scalable validation model for simple
clusters in big data using Apache Spark. However, there is still
much research to conduct in the development of big data triclus-
tering algorithms.

3. Methodology

In this section, the methodology in order to obtain triclusters
that enclose patterns from crops images is presented. Firstly, the
triclustering that models the problem is described in Section 3.1,
and finally, the way in which triclustering is applied, that is, the
bigTriGen algorithm is presented in Section 3.2.

3.1. Problem modeling: triclustering

The triclustering techniques emerge as an evolution of cluster-
ing techniques applied over three-dimensional (3D) datasets. Tri-
clustering aims at obtaining a set of triclusters (3D clusters) from
the input dataset, with the values of each tricluster representing
a pattern of behavior.

To formalize the triclustering concepts, firstly a three-
dimensional dataset D3D composed of the three sets DI;DF and
DTP is defined as follows:

D3D ¼ DI;DF ;DTP
n o

ð1Þ

where DI ¼ i1; i2; . . . ; iIf g represents the I instances,
DF ¼ f 1; f 2; . . . ; f Ff g the F features and DTP ¼ t1; t2; . . . ; tTPf g the TP
time points of the dataset.

L. Melgar-García, D. Gutiérrez-Avilés, Maria Teresa Godinho et al. Neurocomputing 500 (2022) 268–278

269

5| Publications 173

Each pair instance-feature of the dataset represents a time ser-
ies DTS, that is, a sequence of time-indexed values from the time
instant t1 to tTP as shown in the following equation:

DTSði; f Þ ¼ v t1 ;v t2 ; . . .v tTP

� �
; 8i 2 DI; 8f 2 DF ; 8t 2 DTP ð2Þ

In conclusion, D3D is typically arranged as a data cube where the
rows are the instances, the columns are the features and the depths
are the time points of the time series.

Secondly, a tricluster T is a subset of instances TI , features TF

and time points TTP of D3D defined by the following equation:

T ¼ TI; TF ; TTP
n o

withTI � DI TF � DF TTP � DTP ð3Þ

The time points in TTP for a particular instance and feature of the
tricluster make up a continuous and ordered sub-sequence of val-
ues of the entire sequence of the dataset, that is, a time series TTS

from initial time ts (first tricluster time point) to final time tTS (last
tricluster time point) defined as follows:

TTSði; f Þ ¼ v ts ; v tsþ1 ; . . .v tTS

� �
; 8i 2 TI; 8f 2 TF ; 8t 2 TTP ð4Þ

Thus, the behavior patterns (BP) depicted by each time series of
the tricluster will present similar behavior regarding the values or
tendency. To summarize, a tricluster is a subset of instances, fea-
tures, and time points of a three-dimensional dataset,with time
series that depict a similar behavior pattern.

BPðTTSðiA; f AÞÞ � BPðTTSðiB; f BÞÞ; 8iA; iB 2 TI; 8f A; f B 2 TF ð5Þ
Finally, a triclustering model of a three-dimensional dataset,

MD3D , is a set of N triclusters defined as:

MD3D ¼ T1; T2; . . . ; TNf g ð6Þ

3.2. The bigTriGen algorithm

bigTriGen is applied to obtain a triclustering model providing a
set of behavior patterns from the input dataset. bigTriGen is based
on the paradigm of genetic algorithms. In that sense, a complete
evolutionary process is performed for each tricluster to be
obtained, i.e., T1; T2; . . . ; TN . First, each evolutionary process applies
the genetic operators described in Section 3.2.1 over a population
of individuals. Then, the process presented in Section 3.2.2 makes
the population evolve based on the optimization of a fitness func-
tion during a specific number of generations.

bigTriGen receives a three-dimensional dataset, D3D, as an
input. Each slice of time represents an image of a crop, where each
pixel ðx; yÞ is a space point representing the value of a particular
vegetation index collected at a given instant ti 2 ft1; t2; . . . ; tTPg.
Therefore, the DF set corresponds to the X coordinates of the image
and the DI set to the Y coordinates. Fig. 1a shows the NDVI index
represented on the images. That is, the point ð200;81Þ at t1 is the
NDVI value of the pixel in the row 81 and column 200 at the time
instant t1.

An individual of the evolutionary process corresponds to a tri-
cluster, Ti, being a particular area from the whole input space at
a given time window. Thus, Ti is a subset of X and Y coordinates
and a continuous subset of time points. Fig. 1b shows an individual
represented by the subspace limited by the coordinates
Y ¼ 87;88;89;90;91;92;93;94f g and
X ¼ 200;201;202;203;204f g, and containing the index values for
the time series from t8 to t11.

The output of the bigTriGen algorithm is a set of triclusters that
correspond to a triclustering model MD3D of the input dataset D3D.
Each tricluster of this model is a sub-area of an original image of
the input dataset, as shown in Fig. 1d. Fig. 1c depicts the behavior
patterns for each of the time series that make up a tricluster. Each

ðx; yÞ point corresponds to a time series of the specific vegetation
index.

Therefore, the aim of the bigTriGen algorithm is to discover a
triclustering model, MD3D , from a three-dimensional dataset, D3D,
where each tricluster determines a sub-area of the original image
of the dataset and the time series associated to the tricluster pre-
sent patterns with similar behavior.

3.2.1. Genetic operators
Several updates have been carried out in bigTriGen with respect

to TriGen to deal with satellite imagery related to the precision
agriculture. These updates are mainly focused on the genetic oper-
ators, which are described below.

Initial population In this phase, the initial individuals of the pop-
ulations are built. A subset of X and Y coordinates are randomly
selected from the input dataset. The ðx; yÞ points resulting from
the combination of both subsets is a subspace of the original image
of the input dataset. Each new individual’s time points are ran-
domly selected from the input dataset, forming a continuous
sequence. The number of individuals built in the initial population
is determined by the control parameter In.

Selection A tournament algorithm is chosen for this operator.
The individuals of the population are firstly separated into three
groups, then they are ordered by fitness. A percentage of the pop-
ulation is selected from these three ordered groups. These selected
individuals are directly promoted to the next generation and will
be the parents suitable for reproduction by applying the crossover
operator. The percentage of selected individuals is defined by the
control parameter Sel.

Crossover Two individuals are randomly chosen for the repro-
duction from the individuals selected by the selection operator.
From these two parent individuals P1 and P2, two new children
CH1 and CH2 will be obtained as shown in Eqs. (7) and (8). The first
new individual CH1 is composed of the X coordinates of the P1, the
Y coordinates of the P2, and the time points of the P1. The second
one CH2 is composed of the X coordinates of the P2, the Y coordi-
nates of the P1, and the time points of P2.

P1 ¼ PX
1 ; P

Y
1 ; P

TP
1

n o
and P2 ¼ PX

2 ; P
Y
2 ; P

TP
2

n o
ð7Þ

CH1 ¼ PX
1 ; P

Y
2 ; P

TP
1

n o
and CH2 ¼ PX

2 ; P
Y
1 ; P

TP
2

n o
ð8Þ

The number of children to obtain is In� ðIn� SelÞ, considering
Sel as a percentage of selected parents. In order to get them,
numcross crossovers are made, where numcross is the quotient plus
the remainder of the division by two of the number of children
to obtain. As previously mentioned, from one crossover, two chil-
dren are obtained. Once all crossovers are computed, the specified
number of children are selected from all children considering the
best fitness function.

Mutation The new individuals obtained by means of the cross-
over operator are elegible to be altered by mutation. An individual
can be altered by removing or adding a random X or Y coordinate
or a random time point. The probability of mutation of an individ-
ual is set by the control parameter Mut. The operations are con-
trolled by specific parameters referring to maximum and
minimum number of coordinates that an individual must have.

3.2.2. Fitness function
As a genetic algorithm, the core of bigTriGen is the fitness func-

tion to be optimized. In this work, a fitness function based on the
MSL measure [23] has been used. MSL measures the similarity of
the behavior patterns contained in a tricluster and it is based on
the differences between the angles that every two points of a series
form with the X-axis (the slope of a straight line). Thus, this algo-
rithm provides an accurate measure of how similar the behavior

L. Melgar-García, D. Gutiérrez-Avilés, Maria Teresa Godinho et al. Neurocomputing 500 (2022) 268–278

270

174 5.1. Journal and conferences articles

patterns inside a tricluster are. The MSL measure is widely
explained and discussed in [23]. Moreover, the fitness function
includes a control mechanism to balance the size of the triclusters
and the overlapping among them.

The fitness function of a tricluster T is defined by a weighted
average as follows:

FitnessðTÞ ¼ wmsl �MSLðTÞ þws � SðTX ; TYÞ þwo � OðT;MD3DÞ
wmsl �ws �wo

ð9Þ

where MSLðTÞ is the MSL index of the tricluster T; SðTX ; TY Þ is the
size of the area demarcated by the X and Y coordinates of the tri-
cluster T;OðT;MD3D Þ is the overlapping degree of the tricluster T
with the remaining triclusters of the model MD3D , and wmsl;ws and
wo are the weights of each component, respectively [23].

3.3. Big data implementation remarks

The bigTriGen algorithm has been developed in a big data envi-
ronment to provide it with the ability to analyze big three-
dimensional datasets. Therefore, a model with bigger triclusters
(more X and Y coordinates and time points) will be discovered from
datasets with more significant time points and/or more significant
areas (X;Y). bigTriGen has been implemented in Scala 2.12 [32]
with Apache Spark 2.3.4 [33]. Its implementation is based on the
DataFrame object of Apache Spark. The main feature of this data
structure is to be distributed through the nodes of the cluster
where the application is deployed [34].

For the bigTriGen algorithm, the input dataset D3D is loaded into
a DataFrame, where each row represents a point
(instance; feature; time) and its associated value.

The population is also implemented using a DataFrame. An
example of the structure can be found in Table 1. In this case, each
row represents a time series for the particular coordinates ðy; xÞ of
a tricluster individual. Therefore, a row will be composed of an
individual numerical identifier (INDid), a time series identifier
(TSid), the associated Y and X coordinates, the time point list (TPs)
and, the time series values (TS). The justification of these imple-
mentation decisions is due to two aspects, both related to the
application of the Spark DataFrame API actions and transforma-

tions to the population. On the one hand, this structure leads the
Spark’s actions and transformations to execute the genetic opera-
tors in a best-optimized way in a big data environment. On the
other hand, this structure boosts the application of the Spark Data-
Frame API actions and transformations to the population and,
therefore, maximizes the distribution of it through the nodes of
the Spark cluster where bigTriGen was deployed. In conclusion,
with this implementation, the bigTriGen algorithm’s scalability,
regarding the execution time against the size of the input dataset,
is reached. As explained in the above paragraphs, bigTriGen is a
novel algorithm with an own design and implementation. A sum-
mary of the new features of the bigTriGen is shown in Table 2
where it can be confirmed that bigTriGen differs in the implemen-
tation, characteristics and results comparing with TriGen. The orig-
inal TriGen and the new bigTriGen keep the control parameters of
the algorithm, the evolutionary work-flow, and the selection oper-
ator in common. In contrast, as discussed above, the bigTriGen
allows for the analysis of input datasets and triclusters with sizes
impossible to manage on a single machine. Furthermore, it adds
the space and time series modeling (presented in Section 3.2)
and, therefore, new initial population, crossover and, mutation
operators. A detailed description of the original TriGen algorithm
can be found in [6,23].

3.4. Validation of the triclusters

In this work, the triclusters of the model MD3D will be validated
in three ways. Firstly, the TRIQ quality measure [24] that provides

Fig. 1. TriGen overview.

Table 1
DataFrame example for the population.

INDid TSid Y X TPs TS

1 0 2 3 f2;3;4;5g f0:05;0:58; 0:23;0:22g
1 1 2 4 f2;3;4;5g f0:15;1:82;0:38;0:25g
1 2 3 3 f2;3;4;5g f0:54;2:84;1:25;0:15g
1 3 3 4 f2;3;4;5g f0:23;0:38;2:23;1:01g
2 0 20 21 f19;20;21;22;23g f0:08;0:81;0:09;0:12;2:24g
2 1 20 22 f19;20;21;22;23g f0:01;1:12;0:01;0:09;1:25g
2 2 21 21 f19;20;21;22;23g f0:02;1:20;0:02;0:14;3:12g
2 3 21 22 f19;20;21;22;23g f0:03;1:25;0:25;0:15;5:02g

L. Melgar-García, D. Gutiérrez-Avilés, Maria Teresa Godinho et al. Neurocomputing 500 (2022) 268–278

271

5| Publications 175

an index to determine the similarity of the patterns of the triclus-
ters and the correlation level of the time series associated to the
tricluster will be used. In particular, TRIQ combines weighted Pear-
son and Spearman correlation values with a weighted normaliza-
tion of MSL angle value. It has been shown as a valid measure for
representing and summarizing the quality of the triclusters.

Secondly, a visual analysis of the discovered patterns will be
carried out. This analysis will determine the coherence of the dis-
covered triclusters in relation to the input dataset. The time series
plots will be graphed, and the average of the time series will assess
the cohesion of the values of the tricluster. Furthermore, an analy-
sis of the behavior observed will be performed by an expert.

Finally, a global study of the located areas will be also made.
The demarcated areas for each tricluster of the model will be also
analyzed by an expert. That is necessary to determine any intra-

relation between the selected zones for the different triclusters
of the model.

4. Results and discussion

This section reports the analysis of the results obtained by the
bigTriGen algorithmwhen applying to a crop image dataset. In par-
ticular, the dataset and the vegetation indices typically used in the
crops are described in Section 4.1, the experimentation process is
explained in Section 4.2, the discussion of the patterns is presented
in Section 4.3 and the scalability analysis to show the ability of the
proposed algorithm to deal with big data is in Section 4.4.

4.1. Dataset and vegetation indices

The bigTriGen algorithm is tested in a vineyard crop located in
Baixo Alentejo, in Portugal. The study area has 5.15 hectares and its
center at the coordinates 37�56’43.62”N 7�52’15.06”W. In particu-
lar, the field is monitored during three years (2018, 2019 and 2020)
selecting the months that correspond to vineyard season. Data is
extracted from Sentinel-2 imagery with high spatial resolution at
the defined coordinates using the QGIS software and its Semi-
Automatic Classification Plugin. The calculation of the vegetation
indices of each image is also made with this software.

Vegetation indices allow the quantitative and qualitative evalu-
ation of different measures of crops, as cover, vigor, growth, type or

Table 2
Similarities and differences between TriGen and bigTriGen.

Common features New features of bigTriGen

Control parameters Bigger input datasets
Bigger triclusters

Evolutionary process ðX; YÞ space modeling for instances and features
Time series modeling (consecutive instant points)

Selection operator Initial population operator
Crossover operator
Mutation operator

Fig. 2. Triclusters using the NDVI index for the vineyard crop.

L. Melgar-García, D. Gutiérrez-Avilés, Maria Teresa Godinho et al. Neurocomputing 500 (2022) 268–278

272

176 5.1. Journal and conferences articles

quality. They are based on the measured canopy reflectance of dif-
ferent wavelength bands [35]. This canopy reflectance can be
detected remotely using satellite imagery as the one provided by
Sentinel-2. In this particular study, measuring leads to monitor
fruit ripening to develop a site-specific harvesting of each zone of
the vineyard crop; it is known as Precision Agriculture or more
specifically in this case, Precision Viticulture [36].

One of the most used vegetation indices is the NDVI index. This
index is very related to the content of the vegetation and varies
from 1.0 to �1.0, where 1.0 corresponds to the denser and health-
ier areas. NDVI includes in its calculation the near-infrared band
(NIR) and the band for the red (visible) regions (Red). NDVI formula
is NDVI ¼ NIR�Red

NIRþRed. NDVI is a very useful index, for example, to deter-
mine areas of a corn crop that behaves differently [20].

Other indices used in this study that improve NDVI are the Soil-
Adjusted Vegetation Index (SAVI) and the Enhanced Vegetation
Index (EVI) used to determine grapevine phenology in [37]. The
first one introduces L as a correction factor for soil brightness
and the second one adds two C1 and C2 coefficients to the atmo-
spheric resistance and the Blue band, respectively. SAVI is defined
as SAVI ¼ NIR�Red

NIRþRedþL � ð1þ LÞ and EVI as

EVI ¼ 2:5� NIR�Red
NIRþC1�Red�C2�BlueþL. In this study, L is 0.5, C1 is 6 and C2

is 7.5; they are used values for this kind of crop.
The Moisture Stress Index (MSI) and the Green Normalized Dif-

ference Vegetation Index (GNDVI) include two different bands:

Green and middle-infrared (MIR), respectively. GNDVI is sensible
to the variation of chlorophyll in the crop. On its side, MSI is used
to analyze the water stress and it usually varies from 0.4 to 2
where higher values mean higher water stress and so, less soil
moisture. Both indices are, as the above-mentioned ones, very
studied in vine crops. For example, [38] concludes their vineyard
crop study identifying the MSI as the only vegetation index directly
related to the content of the vegetation. GNDVI is represented as
GNDVI ¼ NIR�Green

NIRþGreen and MSI as MSI ¼ MIR
NIR

4.2. Experimental setup

The experiments are run on a cluster located at the Data Science
and Big Data Laboratory in Pablo de Olavide University. The cluster
is made up of four nodes: one master and three slaves. It has four
Processors Intel(R) Core (TM) i7-5820 K CPU with 48 cores, 120 GB
of RAM memory. The cluster uses Ubuntu 16.04 LTS, Apache Spark
2.3.4 and HDFS file system on Hadoop 2.7.7. The bigTriGen algo-
rithm is implemented in Scala programming language.

Considering the work published in [20] that discovered three
dimensional patterns in a maize plantation area in Baixo Alentejo
and after several experimental tests with the bigTriGen algorithm,
the selected control parameters for the experimentation are: N = 4,
G = 10, In = 200, Sel = 0.8 and Mut = 0.1. The fitness function used

Fig. 3. Triclusters using SAVI, EVI and GNDVI for the vineyard crop.

L. Melgar-García, D. Gutiérrez-Avilés, Maria Teresa Godinho et al. Neurocomputing 500 (2022) 268–278

273

5| Publications 177

is described in Section 3.2.2 and the validation of the triclusters is
made considering the remarks in Section 3.4.

4.3. Pattern discovery

The process of discovering three-dimensional patterns using the
proposed algorithm is performed from two points of view: spatial
and temporal.

4.3.1. Spatial patterns
The goal of this analysis is to find behavior patterns that identify

spatial zones on the vineyard crop with different characteristics.
This analysis is carried out for the 2018 growing season.

Fig. 2 represents the triclusters found by the bigTriGen algo-
rithm using the NDVI index. It shows a great uniformity between
all the areas of each sub-figure, as the discovered patterns show
very similar behavior curves. In order to confirm this uniformity,
more vegetation indices that consider corrections of the NDVI
and more environmental factors are used.

Fig. 3 depicts the behavior patterns of the field with SAVI, EVI
and GNDVI indices during 2018. The analyses carried out using
these indices confirm the assessment made with the NDVI index,
i.e., triclusters curves represent an uniform behavior for vegetative
growth and development of the crop throughout its extension.

To further study the water stress to which the crop is subjected,
an additional analysis is carried out with the MSI index, which
introduces MIR band in its calculation. Areas of the crop with dif-
ferent trends in the value of water stress are identified, although

this stress does not imply effects on the crop that are perceptible
when the rest of indices are used.

Fig. 4 illustrates the different behavior patterns of the four tri-
clusters obtained by the proposed bigTriGen algorithm when using
the MSI. Fig. 4a represents, unlike the other three, an area with
higher soil moisture during the initial period of the growing sea-
son. The trend is similar in the other behavior patterns, tending
towards an increase in water stress as the growing season pro-
gresses. However, in the final phase, close to harvest time, is where
the greatest differences among the different triclusters identified
can be seen. While water stress is maintained in the area repre-
sented in Fig. 4a, a clear increase in stress is observed in Fig. 4c
and d, in contrast to an increase in soil moisture in Fig. 4b, consid-
ering that lower MSI values correspond to lower water stress and
so, higher soil moisture or water content. The quality of the found
triclusters has been measured with the TRIQ measure described in
Section 3.4. For values that move in the [0–1] interval, the first tri-
cluster has a TRIQ value of 0.8799, the second of 0.9365, the third
of 0.9153 and the forth of 0.8321, thus ensuring accurate patterns
for all cases.

This information may be relevant for the analysis of productiv-
ity in each field zone. It is necessary to identify the causes of the
different behavior in order to determine whether they are due to
productive factors (irrigation inequality, pests, etc.) or to specific
factors of the terrain (inclines, type and quality of the terrain, etc.).

Fig. 5 identifies the geographic areas in the field map repre-
sented by the found triclusters when using the MSI index.

Fig. 4. Triclusters using the MSI for the vineyard crop.

L. Melgar-García, D. Gutiérrez-Avilés, Maria Teresa Godinho et al. Neurocomputing 500 (2022) 268–278

274

178 5.1. Journal and conferences articles

4.3.2. Temporal patterns
In this Section, the search of different behavior patterns

between different growing seasons is considered. Years 2018,
2019 and 2020 have been analyzed, in particular, the analyses
were limited to the months between May and November, which
correspond to the vine growing season in its different phases.

The results obtained from the determination of triclusters for
the NDVI data in the different growing seasons confirm the unifor-
mity of the patterns in terms of crop behavior, i.e., patterns identi-
fied each year are very similar to the others found in the same year.
However, there is a clear difference between one year and another.
The patterns of 2018 are in Fig. 2 and a representation of the ones
of 2019 and 2020 in Fig. 6.

The patterns of the last months of the vineyard period for the
years 2018 and 2020 are very similar and correspond to the theory
of what the NDVI trend should be over the course of a growing sea-
son. Nevertheless, the triclusters for 2019 show a different behav-
ior during the month of August. In that period, the crop suffered a
drop in NDVI index indicating a loss of quality of the plantation,
which has managed to recover in the following months. This inci-
dence coincides with the period of severe forest fires in the area
where the field is located. It is very likely that this is the cause of
the temporary deterioration of the crop.

The bigTriGen algorithm demonstrates with this analysis that it
is suitable for discovering anomalous behavior in a temporal
sequence of historical events. Its use with current data can be a
good tool to detect indications of anomalies at an early stage, even
not perceptible to the naked eye in the crop, allowing corrective
measures to be taken as soon as possible to mitigate the effects
of these occurrences.

4.4. Scalability analysis

Once the found patterns have been evaluated, the next step is to
study the scalability of the proposed bigTriGen algorithm. The evo-
lution of the execution times is analyzed in two parts: in the first
one, considering the effect of the number of nodes used and in
the second one, considering the influence of the size of the dataset
used. These tests are executed with a base dataset with the same
characteristics as the one defined in Section 4.1 and the optimal
parameters described in Section 4.2.

First, the scalability in terms of resources is analyzed by chang-
ing the number of nodes used when executing the bigTriGen algo-
rithm. As explained in Section 4.2, the cluster used is made up of
four nodes with twelve cores in each node. This analysis is made
with 12 cores, 24 cores, 36 cores and 48 cores.

To analyze the effects of the dataset size, a base dataset of a size
of 65 MiB has been used. This characteristic of the scalability anal-
ysis is studied by multiplying the length of the base dataset by 1, 2,
4, 6, 16 and 32. It corresponds to six experiments with datasets of
65 MiB, 130 MiB, 260 MiB, 520 MiB, 1040 MiB and 2080 MiB,
respectively.

Results of twenty-four scalability experiments are shown in
Table 3 and in Fig. 7, where the execution times are presented in

Fig. 5. Geographic location of the triclusters using the MSI index in the vineyard
crop.

Fig. 6. Triclusters using the NDVI in the years 2019 and 2020.

Table 3
Execution times (in minutes) according to number of cores and size of datasets.

Multiplier 12 cores 24 cores 36 cores 48 cores

x 1 19.7759 19.6475 20.3361 20.8268
x 2 25.1146 26.7812 25.9973 26.5552
x 4 42.2082 39.5204 38.5376 40.4623
x 8 76.0349 68.0430 69.9858 64.0017
x 16 141.9072 120.7762 120.9260 125.3108
x 32 278.6696 270.0996 232.3536 239.3660

L. Melgar-García, D. Gutiérrez-Avilés, Maria Teresa Godinho et al. Neurocomputing 500 (2022) 268–278

275

5| Publications 179

minutes. The computing time is not very influenced by the number
of cores used when the size of the dataset is small, i.e., x1, x2, x4 or
x8, but when the size increases, the execution time is smaller for
36 and 48 cores.

The behavior of the bigTriGen leads to express its scalability fac-

tor as Factori ¼ sizei
size i

2

, where size represents the dataset size and i

varies from 2 to 32. This factor is usually smaller than 2 which is
better than linear scalability. It is important to considering that
the bigTriGen algorithm is influenced by chance, for example by
means of the mutation operation, among others. However, in order
to get a comparable scalability analysis, these operators have been
controlled.

5. Conclusions

In this paper the new bigTriGen triclustering algorithm has
been introduced to mine three-dimensional patterns from big
datasets. In particular, this algorithm has used specific genetic
operators to find triclusters in addition to control the overlapping
with the previously found tricluster solutions. The bigTriGen has
been applied to a vineyard crop in southern Portugal to find a pre-
cision viticulture solution. The accuracy of the algorithm has been
shown with respect to two different features: the quality measure
of the found patterns and the scalability of the algorithm. On the
one hand, different vegetation indices have been calculated using
Sentinel-2 images downloaded from QGIS software. The found pat-
terns using these vegetation indices have shown that the index
that best fits this field is the MSI. In this way, the algorithm has
been able to find four different areas of the vineyard crop that
behave differently in terms of their soil moisture. In addition, the
algorithm has found different behaviors of the crop during 2018,
2019 and 2020. On the other hand, the scalability of the algorithm
has been studied considering the number of nodes used and the
size of the dataset. In both cases, the scalability factor of the bigTri-
Gen has been proven to be even better than linear scalability.

The future works will be focused on developing more character-
istics of the algorithm such as detecting anomalies in streams, cre-
ating methods to select the optimal values of the parameters or
using other type of data.

CRediT authorship contribution statement

Laura Melgar-García: Validation. David Gutiérrez-Avilés: Con-
ceptualization, Methodology. Maria Teresa Godinho: Writing –
review & editing. Rita Espada: Data curation, Validation. Isabel
Sofia Brito: Visualization, Investigation. Francisco
Martínez-Álvarez: Supervision, Investigation. Alicia Troncoso:

Supervision. Cristina Rubio-Escudero: Conceptualization,
Methodology.

Declaration of Competing Interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Acknowledgement

The authors would like to thank the Spanish Ministry of Science
and Innovation for the support under the project PID2020-
117954RB and the European Regional Development Fund and Junta
de Andalucía for projects PY20-00870 and UPO-138516. The
authors also thank the Portuguese Agency ‘‘Fundação para a Ciên-
cia e a Tecnologia” (FCT), in the framework of the project
UIDB/00066/2020. This work could not have been done without
the support and help of the Farmer’s Association of Baixo Alentejo
and Francisco Palma during the whole project. Finally, the authors
thank António Vieira Lima and Moragri S. A. for giving access to
data.

References

[1] N. Khan, I. Yaqoob, I.A.T. Hashem, Z. Inayat, W.K. Mahmoud Ali, M. Alam, M.
Shiraz, A. Gani, Big Data: Survey, Technologies, Opportunities, and Challenges,
Scientific World J. 2014 (2014) 712826.

[2] A. Galicia, J.F. Torres, F. Martínez-Álvarez, A. Troncoso, A novel spark-based
multi-step forecasting algorithm for big data time series, Inf. Sci. 467 (2018)
800–818.

[3] C.C. Aggarwal, Data Mining: The Textbook, Springer Publishing Company,
Incorporated, 2015.

[4] F.J. Pierce, P. Nowak, Aspects of precision agriculture, Adv. Agron. 67 (1999) 1–
85.

[5] J. Tan, P. Yang, Z. Liu, W. Wu, L. Zhang, Z. Li, L. You, H. Tang, Z. Li, Spatio-
temporal dynamics of maize cropping system in Northeast China between
1980 and 2010 by using spatial production allocation model, J. Geog. Sci. 24 (3)
(2014) 397–410.

[6] D. Gutiérrez-Avilés, C. Rubio-Escudero, F. Martínez-Álvarez, J. Riquelme,
TriGen: A genetic algorithm to mine triclusters in temporal gene expression
data, Neurocomputing 132 (2014) 42–53.

[7] L. Santesteban, S. Guillaume, J. Royo, B. Tisseyre, Are precision agriculture tools
and methods relevant at the whole-vineyard scale?, Precision Agric 14 (2012)
2–17.

[8] R. Plant, Site-specific management: The application of information technology
to crop production, Comput. Electron. Agric. 30 (2001) 9–29.

[9] J. Costa, M. Vaz, J. Escalona, R. Egipto, C. Lopes, H. Medrano, M. Chaves, Modern
viticulture in southern Europe: Vulnerabilities and strategies for adaptation to
water scarcity, Agric. Water Manag. 164 (2016) 5–18.

[10] A. Khaliq, L. Comba, A. Biglia, D. Ricauda Aimonino, M. Chiaberge, P. Gay,
Comparison of Satellite and UAV-Based Multispectral Imagery for Vineyard
Variability Assessment, Remote Sens. 11(4)..

[11] A. Matese, P. Toscano, S.F. Di Gennaro, L. Genesio, F.P. Vaccari, J. Primicerio, C.
Belli, A. Zaldei, R. Bianconi, B. Gioli, Intercomparison of UAV, Aircraft and
Satellite Remote Sensing Platforms for Precision Viticulture, Remote Sens. 7 (3)
(2015) 2971–2990.

[12] S.F. Di Gennaro, R. Dainelli, A. Palliotti, P. Toscano, A. Matese, Sentinel-2
Validation for Spatial Variability Assessment in Overhead Trellis System
Viticulture Versus UAV and Agronomic Data, Remote Sens. 11(21)..

[13] L. Pastonchi, S. Di Gennaro, P. Toscano, A. Matese, Comparison between
satellite and ground data with uav-based information to analyse vineyard
spatio-temporal variability, XIIIth International Terroir Congress, OENO One
54 (2020) 919–934.

[14] C. von Hebel, S. Reynaert, K. Pauly, P. Janssens, I. Piccard, J. Vanderborght, J.
Kruk, H. Vereecken, S. Garre, Toward high-resolution agronomic soil
information and management zones delineated by ground-based
electromagnetic induction and aerial drone data, Vadose Zone J..

[15] P. Janrao, H. Palivela, Management zone delineation in Precision agriculture
using data mining: A review, in: 2015 International Conference on Innovations
in Information, Embedded and Communication Systems (ICIIECS), 2015, pp. 1–
7..

[16] B.I. Evstatiev, K.G. Gabrovska-Evstatieva, A review on the methods for big data
analysis in agriculture, IOP Conference Series: Materials Science and
Engineering 1032 (2021) 012053.

[17] A. Gavioli, E.G. de Souza, C.L. Bazzi, L.P.C. Guedes, K. Schenatto, Optimization of
management zone delineation by using spatial principal components, Comput.
Electron. Agric. 127 (2016) 302–310.

Fig. 7. Scalability analysis.

L. Melgar-García, D. Gutiérrez-Avilés, Maria Teresa Godinho et al. Neurocomputing 500 (2022) 268–278

276

180 5.1. Journal and conferences articles

[18] P. Cinat, S.F. Di Gennaro, A. Berton, A. Matese, Comparison of Unsupervised
Algorithms for Vineyard Canopy Segmentation from UAV Multispectral
Images, Remote Sens. 11(9)..

[19] N. Ohana-Levi, K. Knipper, W.P. Kustas, M.C. Anderson, Y. Netzer, F. Gao, M. d.
M. Alsina, L.A. Sanchez, A. Karnieli, Using Satellite Thermal-Based
Evapotranspiration Time Series for Defining Management Zones and Spatial
Association to Local Attributes in a Vineyard, Remote Sensing 12 (15)..

[20] L. Melgar-García, M.T. Godinho, R. Espada, D. Gutiérrez-Avilés, I.S. Brito, F.
Martínez-Álvarez, A. Troncoso, C. Rubio-Escudero, Discovering spatio-
temporal patterns in precision agriculture based on triclustering, in: 15th
International Conference on Soft Computing Models in Industrial and
Environmental Applications, Springer, Cham, 2021, pp. 226–236.

[21] R.U.I. Henriques, S.C. Madeira, Triclustering Algorithms for Three-Dimensional
Data Analysis: A Comprehensive Survey, ACM Comput. Surv. 51 (5) (2018) 43.

[22] D. Gutiérrez-Avilés, C. Rubio-Escudero, Mining 3D patterns from gene
expression temporal data: A new tricluster evaluation measure, Scientific
World J. 2014 (2014) 1–16.

[23] D. Gutiérrez-Avilés, C. Rubio-Escudero, MSL: A measure to evaluate three-
dimensional patterns in gene expression data, Evol. Bioinformatics 11 (2015)
121–135.

[24] D. Gutiérrez-Avilés, R. Giráldez, F.J. Gil-Cumbreras, C. Rubio-Escudero, TRIQ: a
new method to evaluate triclusters, BioData Mining 11 (2018) 15.

[25] D. Gutiérrez-Avilés, C. Rubio-Escudero, LSL: A new measure to evaluate
triclusters, in: Proceedings of the IEEE International Conference on
Bioinformatics and Biomedicine, 2014, pp. 30–37..

[26] F. Martínez-Álvarez, G. Asencio-Cortés, J.F. Torres, D. Gutiérrez-Avilés, L.
Melgar-García, R. Pérez-Chacón, C. Rubio-Escudero, J.C. Riquelme, A. Troncoso,
Coronavirus Optimization Algorithm: A Bioinspired Metaheuristic Based on
the COVID-19 Propagation Model, Big Data 8 (4) (2020) 308–322.

[27] L. Melgar-García, D. Gutiérrez-Avilés, C. Rubio-Escudero, A. Troncoso, High-
content screening images streaming analysis using the strigen methodology,
in: Proceedings of the 35th Annual ACM Symposium on Applied Computing,
Association for Computing Machinery, 2020, pp. 537–539.

[28] F. Martínez-Álvarez, D. Gutiérrez-Avilés, A. Morales-Esteban, J. Reyes, J.L.
Amaro-Mellado, C. Rubio-Escudero, A novel method for seismogenic zoning
based on triclustering: Application to the Iberian Peninsula, Entropy 17 (7)
(2015) 5000–5021.

[29] L. Melgar-García, D. Gutiérrez-Avilés, C. Rubio-Escudero, A. Troncoso,
Discovering three-dimensional patterns in real-time from data streams: An
online triclustering approach, Inf. Sci. 558 (2021) 174–193.

[30] R.M. Alguliyev, R.M. Aliguliyev, L.V. Sukhostat, Parallel batch k-means for big
data clustering, Comput. Ind. Eng. 152 (2021) 107023.

[31] C.-E. Ben Ncir, A. Hamza, W. Bouaguel, Parallel and scalable dunn index for the
validation of big data clusters, Parallel Comput. 102 (2021) 102751.

[32] M. Odersky, L. Spoon, B. Venners, Programming in Scala: Updated for Scala
2.12, third ed., Artima Incorporation, Sunnyvale, CA, USA, 2016.

[33] B. Chambers, M. Zaharia, Spark: The Definitive Guide Big Data Processing Made
Simple, first ed., O’Reilly Media Inc, 2018.

[34] M. Zaharia, R.S. Xin, P. Wendell, T. Das, M. Armbrust, A. Dave, X. Meng, J. Rosen,
S. Venkataraman, M.J. Franklin, A. Ghodsi, J. Gonzalez, S. Shenker, I. Stoica,
Apache Spark: A Unified Engine for Big Data Processing, Commun. ACM 59 (11)
(2016) 56–65.

[35] X. Jinru, B. Su, Significant Remote Sensing Vegetation Indices: A Review of
Developments and Applications, J. Sens. 2017 (2017) 1–17.

[36] A. Martínez, V.D. Gomez-Miguel, Vegetation index cartography as a
methodology complement to the terroir zoning for its use in precision
viticulture, OENO One 51 (3) (2017) 289.

[37] H. Fraga, M. Amraoui, A. Malheiro, J. Moutinho Pereira, J. Eiras-Dias, J. Silvestre,
J. Santos, Examining the relationship between the enhanced vegetation index
and grapevine phenology, Eur. J. Remote Sens. 47 (2014) 753–771.

[38] E. Laroche-Pinel, M. Albughdadi, S. Duthoit, V. Chéret, J. Rousseau, H. Clenet,
Understanding vine hyperspectral signature through different irrigation plans:
A first step to monitor vineyard water status, Remote Sens. 13 (3) (2021) 31.

Laura Melgar-García is a PhD student in Computer
Science at the Pablo de Olavide University with a pre-
doctoral researcher grant (FPU) from the Ministry of
Science and Innovation of Spain. Before starting her
doctoral studies, she earned a Biomedical Engineering
Degree in 2017 and a Master in Software Engineering in
2018. Her major fields of research are the modeling and
analysis of massive data, focusing on batch and
streaming/online processing. The object of her research
seeks to obtain both descriptive and predictive models
with applications in real problems as precision agri-
culture, energy consumption or biomedical solutions.

David Gutiérrez-Avilés received the PhD degree in
computer engineering from the University of Seville. He
has been with the Department of Computer Science at
the Pablo de Olavide University since 2016, where he is
currently an assistant teacher. His primary areas of
interest are bioinformatics, machine learning, data
mining, and big data analytics.

Maria Teresa Godinho received the PhD degree in
Operations Research from the University of Lisbon. She
has been with the Department of Mathematical and
Physical Sciences at the Instituto Politecnico de Beja,
Portugal, since 2001, where she holds a position as an
Adjunct Professor. Her primary areas of interest are
integer programming and optimization algorithms.

Rita Isabel Espada has a degree and a master’s degree
in Agronomy from Escola Superior Agraria de Beja. She
has been with AABA- Alentejo Farmers Association in
Beja, Portugal, since 2018, where I am a technician in
integrated production. Where I am responsible for
agricultural advice and support for farmers. She has a
special interest in precision farming and new tech-
nologies.

Isabel Sofia Brito is a Coordinator Professor at
Polytechnic Institute of Beja, Portugal, and a member of
the Centre of Technology and Systems (CTS-UNINOVA).
Her main research interests are Requirements Engi-
neering and Sustainability Requirements, Model and
Data-Driven Development, Multi-Criteria Decision
Making and, Big Data where she has published several
papers on these topics in journals, international and
national conferences, and workshops.

Francisco Martínez-Álvarez received the MSc degree in
telecommunications engineering from the University of
Seville, and the PhD degree in computer engineering
from the Pablo de Olavide University. He has been with
the Department of Computer Science at the Pablo de
Olavide University since 2007, where he is currently a
full professor. His primary areas of interest are time
series analysis, data mining, and big data analytics.

L. Melgar-García, D. Gutiérrez-Avilés, Maria Teresa Godinho et al. Neurocomputing 500 (2022) 268–278

277

5| Publications 181

Cristina Rubio-Escudero received the Ph.D. degree in
Computer Science from the University of Granada,
Spain. She has been with the Department of Computer
Science at the University of Seville since 2007, where
she is currently an associate professor. Her primary
areas of interest are bioinformatics, machine learning
and big data.

Alicia Troncoso received the Ph.D. degree in Computer
Science from the University of Seville, Spain, in 2005.
She has been with the Department of Computer Science
at the Pablo de Olavide University since 2005, where she
is currently a full professor. Her primary areas of
interest are time series forecasting, machine learning
and big data.

L. Melgar-García, D. Gutiérrez-Avilés, Maria Teresa Godinho et al. Neurocomputing 500 (2022) 268–278

278

182 5.1. Journal and conferences articles

5| Publications 183

5.1.9 | "Streaming big time series forecasting
based on nearest similar patterns with
application to energy consumption"

Authors: Jiménez-Herrera P., Melgar-García L., Asencio-Cortés G., Troncoso
A.

Publication type: Journal article.

Journal: Logic Journal of the IGPL.

Year: 2022.

Pages: 1367-0751

DOI: 10.1093/jigpal/jzac017

IF: 0.931 3/21 Logic.

Quartil: Q1.

Streaming big time series forecasting based
on nearest similar patterns with application
to energy consumption

P. JIMÉNEZ-HERRERA, Division of Computer Science, Universidad Pablo de
Olavide, ES-41013 Seville, Spain.

L. MELGAR-GARCÍA, Division of Computer Science, Universidad Pablo de
Olavide, ES-41013 Seville, Spain.

G. ASENCIO-CORTÉS, Division of Computer Science, Universidad Pablo de
Olavide, ES-41013 Seville, Spain.

A. TRONCOSO∗, Division of Computer Science, Universidad Pablo de Olavide,
ES-41013 Seville, Spain.

Abstract
This work presents a novel approach to forecast streaming big time series based on nearest similar patterns. This approach
combines a clustering algorithm with a classifier and the nearest neighbours algorithm. It presents two separate stages: off line
and online. The off line phase is for training and finding the best models for clustering, classification and the nearest neigh-
bours algorithm. The online phase is to predict big time series in real time. In the off line phase, data are divided into clusters
and a forecasting model based on the nearest neighbours is trained for each cluster. In addition, a classifier is trained using the
cluster assignments previously generated by the clustering algorithm. In the online phase, the classifier predicts the cluster
label of an instance, and the proper nearest neighbours model according to the predicted cluster label is applied to obtain the
final prediction using the similar patterns. The algorithm is able to be updated incrementally for online learning from data
streams. Results are reported using electricity consumption with a granularity of 10 minutes for 4-hour-ahead forecasting and
compared with well-known online benchmark learners, showing a remarkable improvement in prediction accuracy.

Keywords: Time series forecasting, real time, streaming data, energy consumption.

1 Introduction

The current technological context has two main aspects of research and development. On the one
hand, an industrial aspect, where the boom in advanced connection of devices or Internet of things
(IoT) is changing the means of production and service management systems, leads our society to a
new industrial revolution known as Industry 4.0. And on the other hand, the data, as a consequence
of the enormous amount of data that is generated daily in our society, come from many different
sources, including IoT between them, and lead us to a new technological revolution based on the
analysis of large scale data known as big data [31, 32].

Of the three Vs that initially defined big data (volume, velocity and variety), volume is perhaps
the characteristic in which researchers have made the greatest effort. Almost all the technology

∗E-mail: ali@upo.es
Vol. 00, No. 0, © The Author(s) 2022. Published by Oxford University Press. All rights reserved.
For permissions, please e-mail: journals.permission@oup.com.
This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model
(https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model)
https://doi.org/10.1093/jigpal/jzac017

D
ow

nloaded from
 https://academ

ic.oup.com
/jigpal/advance-article/doi/10.1093/jigpal/jzac017/6534493 by N

ew
 York U

niversity user on 19 April 2022

184 5.1. Journal and conferences articles

2 Streaming Big Time Series Forecasting

developed in recent years allows to obtain approximate solutions to problems derived from the
dimensionality of the data. However, velocity, despite being a feature present in many problems
of data analysis, has not had the same impact, or rather, it is beginning to have it at present. Although
the analysis of streaming data has been studied in the last decade, in very few cases forecasting
techniques have been developed, which allow to have an updated model that is capable of giving a
response in real time to obtain forecasts.

In this work, a new forecasting algorithm based on the nearest similar patterns for streaming big
time series, named StreamNSP, is proposed. First, the StreamNSP algorithm determines different
patterns in historical data. Once the data stream is received, the algorithm predicts the pattern to
which the data stream just arrived belongs. Then, the prediction is obtained applying the nearest
neighbours to the data with the same pattern to data stream. Despite that a naive use of the k-
means clustering, Naive–Bayes classifier and the nearest neighbour to predict time series was
presented in [19], the StreamNSP includes a methodology to obtain the optimal configuration
of the clustering, classification and nearest neighbours models to be used. The sensitivity of the
StreamNSP with respect to models involved to detect patterns, predict the label of the cluster and
predict the values of the time series is also analyzed in order to study the robustness of the proposed
method. The performance of the StreamNSP has been tested on a real-world dataset related to energy
consumption. Finally, the results have been compared to that of the well-known prediction algorithms
for streaming data.

The rest of the paper is structured as follows. Section 2 reviews of the existing literature related
to the forecasting algorithms for streaming data. In Section 3, the proposed methodology to forecast
streaming big time series is explained. Section 4 presents the experimental results corresponding
to the prediction of the energy consumption. Finally, Section 5 closes the paper giving some final
conclusions.

2 Related work

Time series forecasting is a broad field of study. The proposed methodology focuses on one of the
areas that is gaining more importance in recent years, although it has not been widely studied yet:
real-time forecasting and its application in electricity solutions.

The intrinsic characteristics of high-speed streams lead to different options for approaching the
real-time learning problem. Assuming that basic requirements of this type of data such as single-pass,
bounded memory, real-time decision making or concept drift detection are met, there are different
ways to process as well as to model them. The data processing can be made by means of feature
transformations, feature selections, reduction of the dimensionality or usage of time windows [14],
while the model can be based on incremental learning or online–off line learning [21].

In particular, a review of forecasting algorithms for streaming data from year 2000 to 2015 was
presented in [39]. Some of the researches carried out in the past years concerning the different ways
of modeling time series prediction problems in real time are discussed below.

Regarding the incremental learning, authors in [2] integrated an ARIMA model, which is one of
the most known classical methods for time series prediction, with an online information network
called OLIN. The OLIN was modelled with incremental streaming learning using sliding windows
for short-term forecasting of hourly electricity load. A double incremental learning algorithm for
time series prediction was introduced in [23]. In particular, a support vector machine (SVM)
was proposed as base learner and the incremental learning was performed by a combination of
the existing base models and the ones induced by the new data. Another algorithm using two

D
ow

nloaded from
 https://academ

ic.oup.com
/jigpal/advance-article/doi/10.1093/jigpal/jzac017/6534493 by N

ew
 York U

niversity user on 19 April 2022

5| Publications 185

Streaming Big Time Series Forecasting 3

components in incremental streaming learning was proposed in [30]. First, an online clustering
process was applied and then, an incremental neural network to predict electrical sensor networks.
In addition, authors in [4] introduced an adaptive algorithm for forecasting data streams in traffic
f low, which was able to identify how much the ongoing and past f lows should contribute to the
predictions.

However, there are real-time forecasting algorithms that use off line–online learning instead of
incremental learning. An algorithm for streaming time series prediction related to solar particle
events was introduced in [8]. It is an embedded approach that combines an online phase for
monitoring and predicting in real time with an off line phase for the training and establishment of
the prediction model using historical data. In [29], an ARIMA algorithm was modeled in streaming
mode with different phases. In the first phase, the best configuration of the model is selected. Then,
the forecasting is made based on the previously selected model, and finally, the decision of whether
to train a new model with recent streaming data or not is made. A new algorithm for forecasting
data streams using an off line stage and an online one was proposed in [19]. In particular, data are
divided into clusters with k-means in the off line phase, and afterwards, the nearest neighbour and
the Naive–Bayes algorithm are applied in online phase.

The development of streaming algorithms for real applications is expanding to different areas. In
[38], the real-time forecasting of two datasets, web traffic and temperature streaming flows, was
obtained using a deep neural network. The prediction of clinical records in real time is obtained
using a hybrid support system in [11]. This system contains a hierarchical temporal predictor and a
LSTM classifier. Moreover, streaming is beginning to be present in other types of machine learning
algorithms as triclustering applied to the environmental and medical field [27, 28] or streaming
classification algorithms applied to language and temperature data [33].

With respect to the forecasting in the electricity environment, there are more studies on the batch
mode than on the streaming mode. For example, authors in [25] reviewed the data mining algorithms
published in the literature dealing with electricity series time. Electricity consumption in Spain was
used to make predictions with several big data methods in [13] and with deep learning in [34, 35].
Another area of interest for leading electricity utilities is the classification of fraudulent behaviours
among customers using big data systems as proposed in [15]. However, there are not many studies
on the streaming mode for this type of data. Energy forecasting in smart buildings using IoT sensors
for near real-time applications was presented in [16]. In addition, electricity load forecasting using
online adaptive recurrent neural networks was proposed in [12]. In [22], clustering techniques were
applied in order to identify outlier consumers in smart grids using energy streams.

After this review, it can be concluded that there is still a lot of research to do in the prediction of
electricity time series in real time using machine learning algorithms.

3 Methodology

This section presents the proposed methodology divided into two phases and the description of the
StreamNSP algorithm, which can be applied to time series of any nature. First, a general overview
is provided in Section 3.1. Data preparation is described in Section 3.2. Finally, the off line phase of
StreamNSP is described in Section 3.3 and its online phase in Section 3.4.

3.1 Overview

The StreamNSP algorithm has been developed for streaming of time series data, and it is based on
a combination of a clustering algorithm along with both a classifier and the k-nearest neighbours
(KNN) algorithm [1] for regression.

D
ow

nloaded from
 https://academ

ic.oup.com
/jigpal/advance-article/doi/10.1093/jigpal/jzac017/6534493 by N

ew
 York U

niversity user on 19 April 2022

186 5.1. Journal and conferences articles

4 Streaming Big Time Series Forecasting

FIGURE 1. Overview of the processes within the proposed methodology.

The general idea behind the proposed forecasting algorithm is to take a training set in an off line
phase and firstly divide it in clusters using a clustering algorithm. Then, the KNN algorithm is
applied for each cluster providing a list of trained prediction models, one per each cluster. Finally,
a classifier is trained for predicting the cluster label of an instance using as training the cluster
assignments previously generated by the clustering algorithm.

Once the model of StreamNSP is generated in the off line phase, it is tested and then updated
online using data streams. The methodology carried out to train, test and compare StreamNSP with
a set of benchmark algorithms is graphically described in Figure 1.

In first place, a previous process of data preparation is performed from the historical time series
data. After the preparation of data has been carried out, a model is generated for each forecasting
horizon, using both the StreamNSP algorithm and a set of benchmark algorithms. Each model
is evaluated using a prequential or interleaved test-then-train evaluation. Finally, a comparison of
error metrics was performed. The same evaluation procedure is carried out for both StreamNSP and
benchmark algorithms. The benchmark algorithms are described in Section 4.3.

The algorithm StreamNSP was implemented in the Java programming language (Oracle Java
1.8.0_152-b16 SE for 64 bits) and adapted to be compatible for the MOA framework [6]. All
experiments for testing and benchmarking of the StreamNSP were automated using the API of the
MOA framework (version 19.04).

3.2 Data preparation

The proposed forecasting algorithm is based on attributes (features) and a single numeric class to
predict. However, time series data in a streaming context are a sequence of numeric values. For
this reason, the following data preparation process was made prior to training, obtaining the best
hyperparameters and testing the model. Figure 2 describes visually the procedure carried out to
transform the time series data into a set of training, validation and test for each prediction horizon.

Specifically, a set of w lagged variables, a1, . . . , aw, was extracted from a time series x1, . . . , xn.
These values ref lect lagged windows of size w from the time series, as it can be seen in Figure 2.
These variables will act as input attributes for the model. Along with these attributes, a last column
y representing the class was added to the so called propositional tables for each forecasting horizon
from 1 to h, where h is the number of future values to predict. These column is a future value, in the
time series, with respect to the past values window.

Finally, for each horizon, training, validation and test subsets were taken from propositional tables,
maintaining the original temporal order. In the off line phase, the training set will be used to train the
model and the validation set will be used to find the best models along with their parameters for the

D
ow

nloaded from
 https://academ

ic.oup.com
/jigpal/advance-article/doi/10.1093/jigpal/jzac017/6534493 by N

ew
 York U

niversity user on 19 April 2022

5| Publications 187

Streaming Big Time Series Forecasting 5

Time Series
Data

Propositional Tables

Horizon

Horizon

 (offline phase)

Test set
(online phase)

Test set
(online phase)

Training set

Validation set

 (offline phase)

Training set

Validation set

FIGURE 2. Data preparation process.

clustering, classification and the KNN algorithm making up the StreamNSP algorithm. On the other
hand, the test set will be used to test and update the model in its online phase.

3.3 Off line phase

The procedure carried out by the StreamNSP algorithm in order to train the models in its off line
phase is illustrated in Figure 3. It can be seen that given a training set, each instance composed by
the attributes a1, . . . , aw and the numeric class y is extracted one by one according to its temporal
order. Then, each instance from training set is stored in an internal training buffer.

Once the buffer is completed (i.e. when the number of instances i is equal to the training size
trainSize), it is the input data for the clustering algorithm. In this work, the k-means [24] and canopy
[26] clustering algorithms have been used.

As a result of the clustering, each instance is stored separately according to its assigned cluster.
Then, a regression model is trained and stored for each cluster. In this work, KNN regression models
[1] are stored.

A table containing the attributes a1, . . . , aw of all training instances along with the cluster
assignments (the cluster label) is also generated and stored (table coloured in orange in Figure 3).
Finally, a classification model is trained using such table, with the aim to predict the cluster label of
further test instances. In this work, three classifiers have been tested, in particular, the Naive–Bayes
classifier [20], a decision tree [36] and an SVM model [37].

Once the models have been trained, a validation set is also used to obtain the best models together
with their best parameters for the various clustering, classification and KNN algorithms tested in the
off line phase. This entire process is shown in Figure 4. The parameters are the number of clusters for
the k-means clustering, the minimal number of instances of a leaf in the decision tree model in order

D
ow

nloaded from
 https://academ

ic.oup.com
/jigpal/advance-article/doi/10.1093/jigpal/jzac017/6534493 by N

ew
 York U

niversity user on 19 April 2022

188 5.1. Journal and conferences articles

6 Streaming Big Time Series Forecasting

Training set
(offline phase)instance

Training Buffer

if ,
then add to the
Training Buffer

if
 Clustering

Model

Cluster Cluster

 Classification
Model

 Regression
Model R

 Regression
Model R

Model Generation

FIGURE 3. Training phase of the StreamNSP algorithm.

Validation set
(offline phase) instance

Estimated Cluster

Classification
Model

Regression
Model R

Regression
Model R

Tuning Process

Regression
Model R

Predict:

error = -

FIGURE 4. Optimal models for the StreamNSP algorithm.

to obtain the best stop criterion for tree building, the kernel for the SVM model and the number of
neighbours for the KNN regression model. The mean absolute error is the error to be minimized to
find the optimal configuration of both models and parameters for the StreamNSP approach.

Once the optimal models are obtained, these models are again trained using as training set the
union of the training and validation sets.

3.4 Online phase

The procedure carried out by the StreamNSP algorithm in its online phase is described in Figure 5.
Each instance is extracted one by one in online streaming from a test set. Such instance is composed
of the attributes a1, . . . , aw and the numeric class y.

D
ow

nloaded from
 https://academ

ic.oup.com
/jigpal/advance-article/doi/10.1093/jigpal/jzac017/6534493 by N

ew
 York U

niversity user on 19 April 2022

5| Publications 189

Streaming Big Time Series Forecasting 7

Test set
(online phase) instance

Estimated Cluster

Classification
Model

Regression
Model R

Regression
Model R

Prediction Process

Regression

Estimated Cluster

Classification
Model

Regression
Model R

Regression
Model R

Model Updating Process

Regression
Model R

Predict: Update with:

FIGURE 5. Online phase of the StreamNSP algorithm.

Due to the prequential evaluation performed, the online phase is divided in two steps. First is the
step of predicting and, after, the step of updating the model.

The prediction step consists in receiving online the attributes a1, . . . , aw of the instance and use the
optimal classification model previously obtained in the validation phase. This classification model
returns the estimated cluster to which the test instance could belong (let be the cluster j). Then, the
optimal KNN model for the cluster j (the model j) is used to predict the numeric class ŷi of the
instance.

The model updating step consists in receiving both the attributes a1, . . . , aw and the actual class y
of the instance. Using the optimal classification model, an estimated cluster is predicted (the same
cluster as the prediction step because the instance attributes are the same). Finally, the optimal KNN
model for the cluster j is updated using both the attributes and class of the instance.

4 Experimentation and results

This section presents and discusses the experiments carried out to assess the StreamNSP’s
performance for the dataset described in Section 4.1. The different error metrics used to evaluate the
accuracy of the predictions are described in Section 4.2. In Section 4.3, the benchmark algorithms
for comparison purposes are presented. Finally, an analysis of the results is carried out in Section 4.4.

4.1 Dataset

The time series considered in this study is related to the electricity consumption in Spain from 1
January 2007 at 00:00 to 21 June 2016 at 23:50. It is a time series of 9 years and 6 months with a
high sampling frequency (10 minutes), resulting in 497832 measures in total. This dataset is available
at https://github.com/gualbe/datasets/tree/main/electric-consumption-spain.

The time series was processed as described in Section 3.2 for a window of 144 lagged values
corresponding to one day and a horizon of 24 values corresponding to 4 hours. Thus, the past day
is used to predict the next 4 hours. After the preprocessing, we have removed the first 144 rows and
the last 24 rows, in order to avoid empty values in the instances.

D
ow

nloaded from
 https://academ

ic.oup.com
/jigpal/advance-article/doi/10.1093/jigpal/jzac017/6534493 by N

ew
 York U

niversity user on 19 April 2022

190 5.1. Journal and conferences articles

8 Streaming Big Time Series Forecasting

4.2 Evaluation metrics

The MAE, RMSE and MAPE errors have been used to evaluate the results of the proposed
StreamNSP algorithm and the benchmark algorithms.

The MAE is the mean absolute error, which is the average of the absolute differences between
actual and predictions. The MAE is defined in Equation (1), where yi are the actual values, ŷi are the
predicted values and n is the number of predicted samples.

MAE = 1

n

n∑

i=1

|yi − ŷi| (1)

The RMSE is the root mean square error, which represents the square root of the second sample
moment of the differences between predicted values and observed values or the quadratic mean of
these differences. The RMSE metric is defined in Equation (2).

RMSE =
√√√√1

n

n∑

i=1

(yi − ŷi)2 (2)

Finally, the third evaluation metric is the MAPE, which is calculated as the mean of the absolute
error in percentage, i.e. the average of actual values minus predicted values divided by actual values
as shown in Equation (3).

MAPE = 100

n

n∑

i=1

∣∣∣∣
yi − ŷi

yi

∣∣∣∣ (3)

4.3 Benchmark algorithms

In order to compare the forecasting results of the algorithm StreamNSP with other suitable
approaches in the literature, four regression algorithms for online learning from data streaming were
selected.

The algorithm FIMTDD [18] learns a regression tree and it is able to address time-changing data
streams. The algorithm has mechanisms for drift detection and model adaptation, which enable it to
maintain accurate and updated regression models at any time. The algorithm observes each example
only once at the speed of arrival and maintains at anytime a ready-to-use tree model. The tree leaves
contain linear models induced online. The number of instances a leaf should observe between split
attempts was set to 200. The threshold below which a split will be forced to break ties was set
to 0.05.

The algorithm AdaGrad [10] is an online optimizer for learning linear regression from data
streams that incorporates knowledge of the geometry of the data observed in earlier iterations to
perform more informative gradient-based learning. The adaptation feature of this algorithm derives
into strong regret guarantees, which for some natural data distributions achieve high performance.
No regularization was used for the linear regression model and the learning rate was set to 0.01.

The algorithm AMRulesReg [3] is an adaptive model that is able to generate decision rules for
regression from data streams. In this model, the antecedent of a rule is a conjunction of conditions
on the attribute values, and the consequent is a linear combination of attribute values. Each rule uses
a Page-Hinkley test [5] to detect changes in the process generating data and react to changes by
pruning the rule set.

D
ow

nloaded from
 https://academ

ic.oup.com
/jigpal/advance-article/doi/10.1093/jigpal/jzac017/6534493 by N

ew
 York U

niversity user on 19 April 2022

5| Publications 191

Streaming Big Time Series Forecasting 9

TABLE 1. Errors obtained for StreamNSP and the benchmark algo-
rithms.

Algorithm MAE RMSE MAPE (%)

AdaGrad 3242.434 3872.137 12.052
FIMTDD 1332.544 1751.836 4.911
Perceptron 612.676 986.839 2.297
AMRulesReg 590.401 944.853 2.211
StreamNSP 461.750 690.500 1.682

TABLE 2. Comparison of StreamNSP with other approaches published
previously.

Algorithm MAPE (%) Algorithm MAPE (%)

NDL 1.51 RF 2.22
StreamNSP 1.68 FFNN 2.32
CNN 1.71 EV 3.15
LSTM 1.78 GBM 4.49
ENSEMBLE 1.94 ARIMA 7.63
NN 2.16 DT 8.86

Finally, the algorithm Perceptron [7] is based on the algorithm Hoeffding Trees [17], but instead of
using Naive–Bayes models at the leaf nodes it uses perceptron regressors. The perceptron regressors
use the sigmoid activation function instead of the threshold activation function and optimize the
mean squared error.

4.4 Results

The forecasting results for StreamNSP and the benchmark algorithms using the electricity time series
data streams are presented and discussed in this section.

Table 1 shows a comparison of StreamNSP, AdaGrad, FIMTDD, Perceptron and AMRulesReg, in
terms of MAE, RMSE and MAPE. These errors have been calculated and averaged for all predicted
horizons. As it can be seen, our StreamNSP algorithm achieved better results in MAE, RMSE and
MAPE than the other four benchmark learners. The MAE obtained by the StreamNSP has been
compared with the best MAE result of the other four benchmark learners, in this case AMRulesReg.
The StreamNSP approach provides an error improvement of 128.651 MW. The difference between
the RMSE for AMRulesReg and StreamNSP algorithms is also high, in particular 254.353 higher for
AMRulesReg. In addition, AMRulesReg obtained a MAPE of 0.529% worse than StreamNSP. Note
that AdaGrad algorithm seems to be not suitable for predicting energy consumption data because of
its high errors for all the metrics.

Table 2 shows a comparison of the MAPE achieved by StreamNSP with other results published
previously [9]. The algorithms were ascending sorted according to its MAPE value. In [9], a new
method, named NDL, for time series forecasting based on neuroevolution was proposed for off line
learning and tested with the same data as in this work. Specifically, results were reproduced for the
same window size (144 values).

As it can be seen in Table 2, StreamNSP achieved better results than the other algorithms except
for the NDL method. The reason could be that NDL is designed for off line learning, its model

D
ow

nloaded from
 https://academ

ic.oup.com
/jigpal/advance-article/doi/10.1093/jigpal/jzac017/6534493 by N

ew
 York U

niversity user on 19 April 2022

192 5.1. Journal and conferences articles

10 Streaming Big Time Series Forecasting

1

2

3

4

5

6

7

8

9

10

11

12

13

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Predicted Horizon

M
A

P
E

 (
%

)

Algorithms

AdaGrad
AMRulesReg
FIMTDD
Perceptron
StreamNSP

FIGURE 6. MAPE for the StreamNSP and the benchmark algorithms along all prediction horizons.

is more sophisticated and its training implies around five days, as it is explained in [9]. However,
StreamNSP was designed for efficiency as it is required for online learning and its initial training
(off line phase) took around 15 minutes.

Figure 6 shows the MAPE obtained by all algorithms for each prediction horizon. The errors
were averaged on all the days of the test part of the streaming. It can be observed that StreamNSP
achieved the most accurate predictions for longer forecast horizons, in particular greater than 10.
Both Perceptron and AMRulesReg algorithms perform better for shorter horizons (those lower
than 7). StreamNSP has shown the lowest difference of the MAPE along the horizons (0.83%),
while Perceptron and AMRulesReg obtained a higher difference of MAPE (3.46% and 3.21%,
respectively). The algorithms FIMTDD and AdaGrad achieved the worst prediction performance
for all horizons.

Table 3 shows the errors for the StreamNSP algorithm, when using an internal tuning in order to
find the best methods composing of the StreamNSP along with the best hyperparameters, and for
a naive version of the StreamNSP with a fixed-setting. This setting consists of the k-means with
the number of clusters set to 3 as the clustering algorithm, Naive–Bayes as the classifier and the
nearest neighbours for the prediction models for each cluster. The errors are presented for each
predicted horizon. It can be observed that errors were reduced for all horizons when StreamNSP
used the optimal configuration of the methods and hyperparameters instead of using the prefixed
setting. However, the differences are not excessively large as shows the average of the errors. This
fact shows the robustness of StreamNSP with respect to the chosen clustering, classification or
regression methods or its parameters. These results are very promising because frees the user from
having to select the optimal parameters of the proposed algorithm.

Figure 7 shows the actual and predicted values obtained by the StreamNSP for each hour of the
day. Both values were averaged for each hour of all the test days of the streaming. The x-axis is the
hour of the day and the y-axis is the energy consumption in MW (target variable). It can be seen that
the predicted values fit very well and they did not show significant errors for any particular hour.

In order to find the best algorithms and hyperparameters to be part of the StreamNSP, a validation
process is carried out. For this purpose, k-means and canopy clustering algorithms have been
considered, Naive–Bayes, decision tree and SVM as classifiers and KNN as possible predictors for
each cluster. The number of clusters from 2 to 10 has been tested for the k-means algorithm, the
minimal number of instances of a leaf in the decision tree model has been set to 2 and 4, linear and
quadratic polynomial kernel and radial basis function (RBF) kernel have been considered for the

D
ow

nloaded from
 https://academ

ic.oup.com
/jigpal/advance-article/doi/10.1093/jigpal/jzac017/6534493 by N

ew
 York U

niversity user on 19 April 2022

5| Publications 193

Streaming Big Time Series Forecasting 11

TABLE 3. Errors for the StreamNSP including tuning and a naive StreamNSP with fixed-setting.

StreamNSP StreamNSP
Horizon (fixed setting) (including tuning)

MAE RMSE MAPE MAE RMSE MAPE

1 421.57 568.97 1.52 353.65 471.65 1.28
2 428.81 578.61 1.55 361.45 480.24 1.31
3 435.30 590.44 1.57 364.45 488.43 1.32
4 443.16 604.72 1.60 375.37 503.87 1.36
5 454.04 621.03 1.64 382.56 514.79 1.37
6 466.11 635.74 1.67 395.42 531.13 1.43
7 470.07 640.12 1.69 400.47 537.66 1.44
8 473.15 644.66 1.70 404.42 541.64 1.46
9 477.32 650.28 1.71 411.61 550.07 1.49
10 483.94 660.73 1.74 418.01 565.64 1.51
11 492.64 682.34 1.78 429.87 586.57 1.56
12 510.16 722.87 1.85 454.12 629.07 1.65
13 527.45 753.94 1.91 470.20 655.74 1.71
14 534.72 776.12 1.94 474.23 673.48 1.73
15 544.48 798.65 1.98 484.65 695.43 1.77
16 552.46 823.93 2.01 496.15 721.57 1.81
17 560.64 854.28 2.05 507.23 749.97 1.86
18 580.30 915.05 2.12 524.46 800.55 1.92
19 593.59 959.36 2.17 539.37 840.07 1.98
20 604.59 996.63 2.21 550.38 871.34 2.02
21 614.68 1031.44 2.25 561.04 901.01 2.06
22 622.03 1051.80 2.27 568.35 917.75 2.08
23 627.83 1063.40 2.29 572.89 922.87 2.10
24 643.61 1129.54 2.34 581.63 971.40 2.12
Average 523.44 781.44 1.90 461.75 671.75 1.68

SVM, and 1 and 3 neighbours have been taken into account for the KNN algorithm (named KNN1
and KNN3, respectively). The algorithm canopy obtains the number of clusters automatically; in this
case, 6 clusters were obtained.

Table 4 shows the best methods and hyperparameters obtained by the internal validation of
StreamNSP for each horizon. The value of the parameters for each method is shown in brackets.
The KNN algorithm with 3 neighbours (KNN3) was selected as the best predictor for all clusters
and for all the horizons. It is also noticeable that 2 clusters were automatically selected for short
horizons (lower than 12), while 3 clusters were selected for the highest ones (from horizon 12 to 24,
except 14). It seems that SVM with RBF as kernel is the best classifier when 3 clusters are selected,
and Naive–Bayes when selected 2 clusters for horizons 5 to 11 and 14.

Table 5 shows the MAE obtained by the StreamNSP to find the best methods and to adjust the
hyperparameters in the internal validation. These errors were classified depending on the clustering
algorithm (by columns) and the classifier used (by rows). The value of the parameters for each
method is shown in brackets. Since there is one predictor for each cluster, the values were averaged
for all predictors. Excepting the configurations composed of the canopy clustering algorithm and

D
ow

nloaded from
 https://academ

ic.oup.com
/jigpal/advance-article/doi/10.1093/jigpal/jzac017/6534493 by N

ew
 York U

niversity user on 19 April 2022

194 5.1. Journal and conferences articles

12 Streaming Big Time Series Forecasting

22000

23000

24000

25000

26000

27000

28000

29000

30000

31000

32000

23:00 00:00 01:00 02:00 03:00 04:00 05:00 06:00 07:00 08:00 09:00 10:00 11:00 12:00 13:00 14:00 15:00 16:00 17:00 18:00 19:00 20:00 21:00 22:00 23:00
Hour of the day

E
ne

rg
y

co
ns

um
pt

io
n

ACTUAL

PRED

FIGURE 7. Actual and predicted values for each hour of the day.

TABLE 4. Best configurations found by StreamNSP in its internal
validation for each horizon.

Horizon Clustering Classifier Regressors

1 k-Means(2) SVM(RBF) KNN3,KNN3
2 k-Means(2) SVM(RBF) KNN3,KNN3
3 k-Means(2) SVM(RBF) KNN3,KNN3
4 k-Means(2) SVM(RBF) KNN3,KNN3
5 k-Means(2) Naive–Bayes KNN3,KNN3
6 k-Means(2) Naive–Bayes KNN3,KNN3
7 k-Means(2) Naive–Bayes KNN3,KNN3
8 k-Means(2) Naive–Bayes KNN3,KNN3
9 k-Means(2) Naive–Bayes KNN3,KNN3
10 k-Means(2) Naive–Bayes KNN3,KNN3
11 k-Means(2) Naive–Bayes KNN3,KNN3
12 k-Means(3) SVM(RBF) KNN3,KNN3,KNN3
13 k-Means(3) SVM(RBF) KNN3,KNN3,KNN3
14 k-Means(2) Naive–Bayes KNN3,KNN3
15 k-Means(3) SVM(RBF) KNN3,KNN3,KNN3
16 k-Means(3) SVM(RBF) KNN3,KNN3,KNN3
17 k-Means(3) SVM(RBF) KNN3,KNN3,KNN3
18 k-Means(3) SVM(RBF) KNN3,KNN3,KNN3
19 k-Means(3) SVM(RBF) KNN3,KNN3,KNN3
20 k-Means(3) SVM(RBF) KNN3,KNN3,KNN3
21 k-Means(3) SVM(RBF) KNN3,KNN3,KNN3
22 k-Means(3) SVM(RBF) KNN3,KNN3,KNN3
23 k-Means(3) SVM(RBF) KNN3,KNN3,KNN3
24 k-Means(3) SVM(RBF) KNN3,KNN3,KNN3

SVM, which obtain a MAE lower than 551.27, the rest of configurations achieved similar values of
MAE with a mean of 660.92 and a standard deviation of 8.77. These results seem to point to the
robustness of the StreamNSP algorithm, which can be able to be applied using different clustering,
classifier and regressor algorithms with no significant penalization in the error.

D
ow

nloaded from
 https://academ

ic.oup.com
/jigpal/advance-article/doi/10.1093/jigpal/jzac017/6534493 by N

ew
 York U

niversity user on 19 April 2022

5| Publications 195

Streaming Big Time Series Forecasting 13

TABLE 5. MAE obtained by the StreamNSP in the internal validation depending on the clustering
and the classifier.

Classifier Canopy(6) k-Means(2) k-Means(3) k-Means(4) k-Means(5)

J48(2) 670.42 657.66 658.23 665.52 672.27
J48(4) 668.08 658.19 658.76 664.32 673.83
Naive–Bayes 692.42 651.66 654.73 659.93 661.67
SVM(Linear) 548.85 651.89 656.82 660.4 657.04
SVM(quadratic) 546.94 651.62 656.96 661.29 658.54
SVM(RBF) 551.27 651.65 653.39 661.41 656.27

TABLE 6. MAE obtained by the StreamNSP in
the internal validation depending on the clustering
and the predictor.

Cluster KNN1 KNN3

Canopy(6) 702.59 593.62
k-Means(2) 703.50 604.06
k-Means(3) 707.73 605.24
k-Means(4) 713.70 610.59
k-Means(5) 715.41 611.13

Table 6 shows the MAE obtained by the StreamNSP to adjust the best configuration, classified for
the clustering and predictor algorithms used and averaged for all the classification algorithms. As it
can be concluded, KNN3 performed notably best in terms of MAE for all the clustering algorithms,
and therefore, 3 neighbours are recommended to obtain the final prediction by the StreamNSP.

5 Conclusion

In this work, a new forecasting algorithm named StreamNSP has been proposed for online learning
on streaming big time series data. The StreamNSP algorithm is composed of a clustering technique,
a classifier and the KNN algorithm. StreamNSP has an off line phase to obtain the prediction model
using the historical data and to find the best models and parameters for the clustering, classification
and KNN algorithm. This phase consists of splitting the training data into clusters using a clustering
algorithm. Then, a KNN algorithm is applied for each cluster providing a list of trained regression
models, one per each cluster. In addition to that, a classifier is trained for predicting the cluster
label of an instance using as training the cluster assignments previously generated by the clustering
algorithm. The algorithm can be updated incrementally for online learning from data streams
including new instances into the model corresponding to its estimated cluster. StreamNSP has been
tested using the electricity consumption with a granularity of 10 minutes for predicting a horizon of 4
hours. The algorithm widely overcame other four online learners, such as AMRulesReg, Perceptron,
FIMTDD and AdaGrad, achieving an average MAPE of 1.68% versus 2.21%, 2.29%, 4.91% and
12.05% obtained by the other algorithms, respectively. Moreover, the StreamNSP has obtained the
most accurate predictions for large forecasting horizons (11 or more values ahead). Results achieved
by the StreamNSP algorithm varying its clustering, classifier and regressor internal algorithms seem

D
ow

nloaded from
 https://academ

ic.oup.com
/jigpal/advance-article/doi/10.1093/jigpal/jzac017/6534493 by N

ew
 York U

niversity user on 19 April 2022

196 5.1. Journal and conferences articles

14 Streaming Big Time Series Forecasting

to point to the robustness of the algorithm, which can be able to be applied using different internal
algorithms with no significant error penalization.

As future work, other internal algorithms will be tested for the inner regression component of the
StreamNSP, such as different architectures of deep neural networks. Furthermore, a sensitivity study
of the length of window used in StreamNSP will be performed. Since KNN3 performed better than
KNN1 for all the experiments, higher values of the number of neighbours will be tested. Finally,
other optimization techniques will be applied to adjust the methods and hyperparameters of the
StreamNSP, such as Bayesian optimization or bioinspired metaheuristics.

Funding

The authors would like to thank the Spanish Ministry of Science and Innovation and Junta de
Andalucía for the support under the projects PID2020-117954RB-C21, PY20-00870 and UPO-
138516, respectively.

References

[1] D. Aha and D. Kibler. Instance-based learning algorithms. Machine Learning, 6, 37–66, 1991.
[2] D. Alberg and M. Last. Short-term load forecasting in smart meters with sliding window-based

arima algorithms. Vietnam Journal of Computer Science, 5, 241–249, 06 2018.
[3] E. Almeida, C. Ferreira and J. Gama. Adaptive model rules from data streams. In Proceedings

of the Machine Learning and Knowledge Discovery in Databases, pp. 480–492. Springer,
Berlin, Heidelberg, 2013.

[4] M. A. C. Alves and R. L. F. Cordeiro. Effective and unburdensome forecast of highway traffic
f low with adaptive computing. Knowledge-Based Systems, 212, 106603, 2021.

[5] M. Basseville. Detecting changes in signals and systems—a survey. Automatica, 24, 309–326,
1988.

[6] A. Bifet, G. Holmes, R. Kirkby and B. Pfahringer. MOA: massive online analysis. Journal of
Machine Learning Research, 11, 1601–1604, 2010.

[7] A. Bifet, G. Holmes, B. Pfahringer and E. Frank. Fast perceptron decision tree learning from
evolving data streams. In Proceedings of the Advances in Knowledge Discovery and Data
Mining, pp. 299–310. Springer, Berlin, Heidelberg, 2010.

[8] J. Chen, T. Lange, M. Andjelkovic, A. Simevski and M. Krstic. Prediction of solar particle
events with SRAM-based soft error rate monitor and supervised machine learning. Microelec-
tronics Reliability, 114, 113799, 2020.

[9] F. Divina, J. F. Torres, M. García-Torres, F. Martínez-Álvarez and A. Troncoso. Hybridizing
deep learning and neuroevolution: application to the Spanish short-term electric energy
consumption forecasting. Applied Sciences, 10, 1–14, 2020.

[10] J. Duchi, E. Hazan and Y. Singer. Adaptive subgradient methods for online learning and
stochastic optimization. Journal of Machine Learning Research, 12, 2121–2159, 2011.

[11] N. O. El-Ganainy, I. Balasingham, P. S. Halvorsen and L. A. Rosseland. A new real time clinical
decision support system using machine learning for critical care units. IEEE Access, 8, 185676–
185687, 2020.

[12] M. N. Fekri, H. Patel, K. Grolinger and V. Sharma. Deep learning for load forecasting with
smart meter data: online adaptive recurrent neural network. Applied Energy, 282, 116177,
2021.

D
ow

nloaded from
 https://academ

ic.oup.com
/jigpal/advance-article/doi/10.1093/jigpal/jzac017/6534493 by N

ew
 York U

niversity user on 19 April 2022

5| Publications 197

Streaming Big Time Series Forecasting 15

[13] A. Galicia, J. F. Torres, F. Martínez-Álvarez and A. Troncoso. A novel spark-based multi-step
forecasting algorithm for big data time series. Information Sciences, 467, 800–818, 2018.

[14] H. M. Gomes, J. Read, A. Bifet, J. P. Barddal and J. Gama. Machine learning for streaming
data: state of the art, challenges, and opportunities. ACM SIGKDD Explorations Newsletter,
21, 6–22, 2019.

[15] D. Gutiérrez-Avilés, J. A. Fábregas, J. Tejedor, F. Martínez-Álvarez, A. Troncoso, A. Arcos
and J. C. Riquelme. Smartfd: a real big data application for electrical fraud detection. In
Hybrid Artificial Intelligent Systems, pp. 120–130. Springer International Publishing, Cham,
2018.

[16] S. Hadri, Y. Naitmalek, M. Najib, M. Bakhouya, Y. Fakhri and M. Elaroussi. A comparative
study of predictive approaches for load forecasting in smart buildings. Procedia Computer
Science, 160, 173–180, 2019.

[17] G. Hulten, L. Spencer and P. Domingos. Mining time-changing data streams. In Proceed-
ings of the Knowledge Discovery on Databases, pp. 97–106. Springer, Berlin, Heidelberg,
2001.

[18] E. Ikonomovska, J. Gama and S. Džeroski. Learning model trees from evolving data streams.
Data Mining and Knowledge Discovery, 23, 128–168, 2011.

[19] P. Jiménez-Herrera, L. Melgar-García, G. Asencio-Cortés and A. Troncoso. A new forecasting
algorithm based on neighbors for streaming electricity time series. In Hybrid Artificial
Intelligent Systems, pp. 522–533. Springer International Publishing, Cham, 2020.

[20] G. H. John and P. Langley. Estimating continuous distributions in bayesian classifiers. In
Proceedings of the 11th Conference on Uncertainty in Artificial Intelligence, pp. 338–345.
Morgan Kaufmann Publishers Inc, 1995.

[21] P. Larrañaga, D. Atienza, J. Diaz Rozo, A. Ogbechie, C. Puerto-Santana and C. Bielza.
Industrial Applications of Machine Learning. CRC Press, 2018.

[22] P. Laurinec and M. Lucká. Interpretable multiple data streams clustering with clipped streams
representation for the improvement of electricity consumption forecasting. Data Mining and
Knowledge Discovery, 33, 413–445, 2019.

[23] J. Li, Q. Dai and R. Ye. A novel double incremental learning algorithm for time series
prediction. Neural Computing and Applications, 31, 6055–6077, 10 2019.

[24] J. MacQueen. Some methods for classification and analysis of multivariate observations. In
Proceedings of the 5th Berkeley Symposium on Mathematical Statistics and Probability, vol. 1,
pp. 281–297, 1967.

[25] F. Martínez-Álvarez, A. Troncoso, G. Asencio-Cortés and J. C. Riquelme. A survey on data
mining techniques applied to electricity-related time series forecasting. Energies, 8, 13162–
13193, 2015.

[26] A. McCallum, K. Nigam and L. H. Ungar. Efficient clustering of high-dimensional data
sets with application to reference matching. In Proceedings of the 6th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, pp. 169–178. Association
for Computing Machinery, New York, NY, United States, 2000.

[27] L. Melgar-García, D. Gutiérrez-Avilés, C. Rubio-Escudero and A. Troncoso. Discovering
three-dimensional patterns in real-time from data streams: an online triclustering approach.
Information Sciences, 558, 174–193, 2021.

[28] L. Melgar-García, D. Gutiérrez-Avilés, C. Rubio-Escudero and A. Troncoso. High-content
screening images streaming analysis using the strigen methodology. In Proceedings of the
35th Annual ACM Symposium on Applied Computing, SAC ‘20, pp. 537–539. Association for
Computing Machinery, 2020.

D
ow

nloaded from
 https://academ

ic.oup.com
/jigpal/advance-article/doi/10.1093/jigpal/jzac017/6534493 by N

ew
 York U

niversity user on 19 April 2022

198 5.1. Journal and conferences articles

16 Streaming Big Time Series Forecasting

[29] Y. NaitMalek, M. Najib, M. Bakhouya and M. Essaaidi. Embedded real-time battery state-of-
charge forecasting in micro-grid systems. Ecological Complexity, 45, 100903, 2021.

[30] P. P. Rodrigues and J. Gama. Online prediction of streaming sensor data. In Proceedings of the
3rd International Workshop on Knowledge Discovery from Data Streams (IWKDDS 2006), in
Conjuntion with the 23rd International Conference on Machine Learning, p. 12. Association
for Computing Machinery, New York, NY, United States, 2006.

[31] R. L. Talavera-Llames, R. Pérez-Chacón, M. Martínez-Ballesteros, A. Troncoso and F.
Martínez-Álvarez. A nearest neighbours-based algorithm for big time series data forecasting.
In Proceedings of the International Conference on Hybrid Artificial Intelligent Systems (HAIS),
pp. 174–185. Springer, Cham, 2016.

[32] R. L. Talavera-Llames, R. Pérez-Chacón, A. Troncoso and F. Martínez-Álvarez. Big data time
series forecasting based on nearest neighbours distributed computing with spark. Knowledge-
Based Systems, 161, 12–25, 2018.

[33] H. Tavasoli, B. J. Oommen and A. Yazidi. On utilizing weak estimators to achieve the online
classification of data streams. Engineering Applications of Artificial Intelligence, 86, 11–31,
2019.

[34] J. F. Torres, A. Galicia, A. Troncoso and F. Martínez-Álvarez. A scalable approach based on
deep learning for big data time series forecasting. Integrated Computer-Aided Engineering, 25,
335–348, 2018.

[35] J. F. Torres, A. Troncoso, I. Koprinska, Z. Wang and F. Martínez-Álvarez. Deep learning for
big data time series forecasting applied to solar power. In Proceedings of the 13th International
Conference on Soft Computing Models in Industrial and Environmental Applications (SOCO),
pp. 123–133, 2018.

[36] L. Vanfretti and V. S. N. Arava. Decision tree-based classification of multiple operating
conditions for power system voltage stability assessment. International Journal of Electrical
Power & Energy Systems, 123, 106251, 2020.

[37] P. Vijayaragavan, R. Ponnusamy and M. Aramudhan. An optimal support vector machine based
classification model for sentimental analysis of online product reviews. Future Generation
Computer Systems, 111, 234–240, 2020.

[38] S. Wambura, J. Huang and H. Li. Long-range forecasting in feature-evolving data streams.
Knowledge-Based Systems, 206, 106405, 2020.

[39] Z. M. Yaseen, A. El-shafie, O. Jaafar, H. A. Afan and K. N. Sayl. Artificial intelligence based
models for stream-flow forecasting: 2000-2015. Journal of Hydrology, 530, 829–844, 2015.

Received 20 February 2021

D
ow

nloaded from
 https://academ

ic.oup.com
/jigpal/advance-article/doi/10.1093/jigpal/jzac017/6534493 by N

ew
 York U

niversity user on 19 April 2022

5| Publications 199

200 5.1. Journal and conferences articles

5.1.10 | "Nearest neighbors with incremental
learning for real-time forecasting of
electricity demand"

Authors: Melgar-García L., Gutiérrez-Avilés D., Rubio-Escudero C., Troncoso
A.

Publication type: Conference article.

Conference: IEEE International Conference on Data Mining (ICDM 2022).

Publication: IEEE Computer Society Press.

Year: 2022.

Ranking: GGS class (rating): 1 (A++)

Nearest neighbors with incremental learning for
real-time forecasting of electricity demand

Laura Melgar-Garcı́a
Data Science & Big Data Lab

Pablo de Olavide University
Seville, Spain

lmelgar@upo.es

David Gutiérrez-Avilés
Department of Computer Science

University of Seville
Seville, Spain

dgutierrez3@us.es

Cristina Rubio-Escudero
Department of Computer Science

University of Seville
Seville, Spain

crubioescudero@us.es

Alicia Troncoso
Data Science & Big Data Lab

Pablo de Olavide University
Seville, Spain
atrolor@upo.es

Abstract—Electricity demand forecasting is very useful for
the different actors involved in the energy sector to plan the
supply chain (generation, storage and distribution of energy).
Nowadays energy demand data are streaming data coming from
smart meters and has to be processed in real-time for more
efficient demand management. In addition, this kind of data can
present changes over time such as new patterns, new trends,
etc. Therefore, real-time forecasting algorithms have to adapt
and adjust to online arriving data in order to provide timely
and accurate responses. This work presents a new algorithm
for electricity demand forecasting in real-time. The proposed
algorithm generates a prediction model based on the K-nearest
neighbors algorithm, which is incrementally updated as online
data arrives. Both time-frequency and error threshold based
model updates have been evaluated. Results using Spanish
electricity demand data with a ten-minute sampling frequency
rate are reported, reaching 2% error with the best prediction
model obtained when the update is daily.

Index Terms—real time forecasting, incremental learning,
streaming time series, electricity demand.

I. INTRODUCTION

Nowadays more and more attention is being paid to the
topic of time series forecasting, especially because of its in-
terdisciplinary nature. Almost all scientific disciplines consist
of data sampled over time, which makes forecasting a task of
utmost importance and complexity. Participants in electricity
markets (both demand and prices) are particularly interested
in forecasting, as obtaining forecasts is critical for many
areas in order to increase profits or reduce costs. In addition,
climate change is one of the most concerning topics of recent
decades. Energy efficiency is the main mitigation factor to
slow down the growth of energy consumption and is crucial
in sustainable development [1]. In this context, the current
progress of Internet of Things (IoT) devices is leading to the
possibility of monitoring energy consumption. Furthermore,
IoT devices provide extensive amounts of high-dimensional
data in streaming [2]. This type of data opens up a huge field

of study in the big data streaming paradigm with the aim of
obtaining real time solutions that lead to energetic efficiency.

In this way, big data streaming is becoming one of most
widely used trends in big data in recent years. The most
important feature for big data streaming is the velocity referred
to large continuous flows of data, called streams, and for
algorithms dealing with big data streaming is to offer results in
real time. For this reason, streams need to be processed and
modeled in a special way considering specific requirements
[3]. The real-time decision making process contributes to the
challenge of developing safe and efficient smart cities with
timely responses [4].

In addition to obtaining fast results when working in stream-
ing mode, it is important to develop a model that must be
always ready to give responses. However, streaming flows
usually variate and suffer transformations which could lead
to a non-accurate response if the model does not adapt to
them [5]. Thus, prediction models for streaming data must be
updated as the data arrives in real time to best match its new
behavior. This update must be in real time, so the re-training of
the model should be discarded in favor of incremental learning.

In this work, we propose an algorithm to predict in real
time electricity demand time series that are received in stream-
ing. This algorithm, named StreamWNN, uses the K-nearest
neighbors to compute the final prediction and the neighbors are
updated over time through incremental learning. In particular,
the StreamWNN algorithm is made up of two phases: a
batch phase in which a historical model based on the nearest
neighbors is created and an online phase to forecast and update
the model. Therefore, the online phase keeps the model always
adjusted to the current data. Results using energy consumption
data in Spain from 2007 to 2016 are evaluated to show the
accuracy of the predictions, the response time of the algorithm
and the improvements obtained when the model is updated.
The aim of this research paper is to show how the proposed
incremental learning for the nearest neighbor method improves

5| Publications 201

the online predictions.
The rest of the paper is structured as follows. Section II

presents a review of forecasting algorithms for energy time
series focusing on real-time and data received in streaming. In
Section III the methodology of the StreamWNN algorithm is
described, including how the updating of the prediction model
is performed. Section IV defines the electricity demand dataset
used and presents the discussion of the results. The paper ends
with some final conclusions and ideas for future approaches
in Section V.

II. RELATED WORK

Times series forecasting has been a widely researched field
in big data. However, most of the published prediction models
for big data time series work in batch mode. There is still a lot
of research to do in relation to streaming environments. The
challenges of high-dimensional massive data mining in real-
time are related to storage, processing and obtaining useful
knowledge. Understanding and analyzing data in streaming is
necessary to assist in the decision making process [6].

Thanks to the increasing amount of massive data from
electronic devices, there are lots of applications for this type
of data. In terms of streaming time series forecasting, authors
in [7] presented several models to predict the evolution of
the COVID-19 pandemic in real-time. In [8] a forecasting
model for streaming taxi demand was presented. Other types
of algorithms are starting to have more influence in streaming
environments. A triclustering algorithm [9] was developed
for the real-time processing in [10], [11]. Three-dimensional
patterns from environmental sensor and medical streaming
data were obtained.

With respect to the electricity demand, the study of its
prediction has been made mostly in the batch or traditional
mode. In [12] a review of the current methods for electricity
price forecasting was presented. Authors in [13] presented a
big data approach for electricity consumption in smart cities.
Predictions for electricity demand using nearest neighbors
from Apache Spark framework for big data were made in [14].

In the real-time environment, a review of forecasting al-
gorithms for streaming data from year 2000 to 2015 was
presented in [15]. In [16] a new algorithm for streaming
energy demand data forecasting was proposed. It used three
different algorithms adapted for streaming data: k-means,
nearest neighbors and Naive Bayes. In [17] a randomized
version of neural network with a incremental learning using
the electric load datasets from Australian energy market was
proposed to improve both efficiency and accuracy.

Streaming data can variate and change its behavioral pat-
terns while time passes. It is important to have a streaming
model that adapts to the new streams of data.

Many of the approaches in the literature for model updating
in streaming environment are based on external algorithms as
the Kalman filter. Authors in [18] presented a coupled method-
ology of the k-nearest neighbor algorithm with a Kalman filter
for real-time flood forecasting. The state transition matrix
of the Kalman filter was recalculated using the forecasting

method to improve the performance of the model and obtain
accurate results. In [19] concepts of ensemble Kalman filter
were used to update a rainfall runoff model for forecasting
large floods in real-time. Another ensemble Kalman filter was
also used in [20]. The ensemble was used as a data assimilation
algorithm to update water temperature forecasting considering
sensor instances.

Recently, deep neural networks have been used to predict
streaming data by taking into account the changes that the
data may undergo over time. A wavelet-neural network with
an error-updating scheme was proposed in [21] for meteoro-
logical predictions in streaming. The need of systematic error-
updating for stream flows was proven. Authors in [22] pro-
posed an incremental update method based on support vector
machine (SVM) and gate recurrent unit (GRU) considering
concept drift for forecasting in real-time. Training models were
updated based on the error between batch test results and real
values. A combination of a real time autoregression and a
deep Long Short-Term Memory (LSTM) recurrent network to
predict streaming data from industrial processes was proposed
in [23]. The deep LSTM found temporal relationships in data
while the autoregression model addressed overlap and transfer
between different recurring concepts drifts thus improving the
accuracy.

III. METHODOLOGY

The StreamWNN streaming algorithm [24] is based on the
K-nearest neighbors [25] which main idea is that nearest data
share similar properties or characteristics.

The goal of this time series forecasting problem is to predict
the next values considering past ones. The time series used is
divided into N instances where the i− th instance consists of
xi representing its w past features and yi representing its h
next classes, i.e., next h values to predict:

Xt = {(x1, y1), ..., (xN , yN)} xi ∈ Rw yi ∈ Rh (1)

The dataset is divided into three chronologically or-
dered sets: setneighbors, setpatterns and setstreaming . The
StreamWNN algorithm uses the offline-online learning ap-
proach to model data streams [26]. The first two data sets
are used in the batch or offline phase of the algorithm and
the last set in the streaming or online phase. Big data streams
requirements have to be fulfilled only in the online phase.
These requirements are: only a limited set of past data can
be stored; the model has to adapt to concept drift quickly
and has to be always ready to make predictions; the model
has to work in distributed computational environments so
that its computation is fast [27]. In this work, an innovative
incremental learning approach during the online phase is
presented. In this way, the algorithm is always up to date.

The proposed algorithm is built on Apache Spark 2.3.4
and uses HDFS file system on Hadoop 2.7.7 and the Kappa
Architecture on Apache Kafka 2.11 as streaming platform, i.e.,
a single pipeline is specifically designed for the job.

202 5.1. Journal and conferences articles

The methodology of this algorithm is defined in three
sections. Section III-A describes the offline phase, Section
III-B presents the online phase and how real time forecasting
is performed and Section III-C focuses on the incremental
learning approach of the StreamWNN algorithm.

A. Offline learning model

The creation of the offline learning model is the first task of
the algorithm. It is a very important part as it is the base model
for the online phase where streaming data start to arrive. This
first phase is based on batch processing but using distributed
programming, which allows to get a good model computed in
a short time.

The offline phase uses the setneighbors and the setpatterns

representing approximately 70% and 30% of the chronologi-
cally ordered data used for the offline stage. The batch model
associates each feature instance of the setpatterns with its
K closest instances of the setneighbors. The offline model is
represented as:

M =< xi, < y(neighbor1(x
i)), ..., y(neighborK(xi)) >>

(2)
where xi ∈ Rw are the features of the i − th instance of
the setpatterns and y(neighborj(x

i)) ∈ Rh are the classes of
the instance of the setneighbors selected as the j − th closest
neighbor of xi.

In this work, the euclidean distance is the metric selected to
measure the proximity between the attributes of two instances,
one from the set of patterns setpatterns and the other from the
set of neighbors setneighbors. It can be represented as d(xi, xj)
where xi refers to the features of the i − th instance of the
set of patterns and xj to the features of the j− th instance of
the set of neighbors.

Once the offline model is generated, predictions of the next
h values are made and its performance is tested by calculating
an error metric. In the offline phase, predictions for each value
l in the prediction horizon of length h are computed by:

ŷl =
1

∑K
j=1 αj

K∑

j=1

αjy(neighborj(x
i))l 1 ≤ l ≤ h (3)

where αj represents the distance of d(xi, xj) defined as
follows:

αj =
1

d(xi, xj)2
(4)

Closest data will have a greater αj distance. Finally, the error
of the predictions made in the offline phase is computed. For
this work, Mean Absolute Percentage Error (MAPE) and
Mean Absolute Error (MAE) metrics are used. Thus, in the
offline stage, the final errors MAPEoffline and MAEoffline

are the mean of all MAPEi and MAEi, respectively, where
MAPEi and MAEi are the errors of the predictions for each
i− th instance of the setpatterns and they are defined as:

MAPEi =
1

h

h∑

l=1

∣∣∣∣
yl − ŷl

yl

∣∣∣∣× 100 1 ≤ l ≤ h (5)

MAEi =
1

h

h∑

l=1

|yl − ŷl| 1 ≤ l ≤ h (6)

where yl corresponds to the l class of the i− th instance and
ŷl is the offline prediction defined by Equation (3).

B. Real-time forecasting

Once the offline model has been computed from the Equa-
tion (2) the online phase of the StreamWNN algorithm starts.
Data are received in streaming and collected in instances of
w features, these data can be called xstreaming . For each
xstreaming , the euclidean distances between it and all xi

instances of the model M are calculated. Note that the number
of distances calculated is the number of instances of the set
of patterns setpatterns. The one with the minimum distance
dmin is selected as the nearest xi, called xmin from now on.

Once xstreaming is associated with its nearest xmin, predic-
tions are computed. In this case, online predictions consider
not only the K-nearest neighbors of xmin but also xmin itself
as a neighbor for each value l to predict in the prediction
horizon of length h. That is:

ŷl =
1

α

⎛
⎝

⎛
⎝

K∑

j=1

αjy(neighborj(x
min))l

⎞
⎠ + αminy(xmin)l

⎞
⎠

(7)
where α and αmin are defined as:

α =

⎛
⎝

K∑

j=1

αj

⎞
⎠ + αmin (8)

αmin =
1

d(xmin, xstreaming)2
(9)

Then, the MAPEstreaming and MAEstreaming error metrics
for each i− th instance of the setstreaming can be calculated
using Equations (5) and (6) when the real class of stream
data xstreaming is received. Thus, in the online stage, the
final errors MAPEonline and MAEonline are the mean of
all MAPEstreaming and MAEstreaming , respectively.

Therefore, real-time forecast is performed considering the
historical data stored in the model M obtained in the offline
phase. However, the StreamWNN algorithm includes the pos-
sibility of incrementally updating the model during the online
phase. This novel update is explained in Section III-C.

C. Incremental learning

The goal of online incremental learning is to keep the model
up to date. This is a very important task in data streaming
algorithms, as new data patterns may appear and need to be
included in the model. Without this incremental update, the
model may age and not be suitable for real-time forecasting.

The incremental learning is performed by updating the
neighbors of xmin, i.e., neighborj(x

min) with j = 1, ..., K.

5| Publications 203

For this reason, it is said that the model is internally updated,
since the dimensions of the model M are maintained but the
components are updated considering the new patterns in the
streaming data.

The update of neighbors uses a buffer B of possible updates.
Let dmin be the distance between xstreaming and its nearest
pattern xmin, and let dK be the distance between xmin and
its farthest neighbor in the model neighborK(xmin). That is,

dmin = d(xmin, xstreaming) (10)
dK = d(xmin, neighborK(xmin)) (11)

Therefore, once the real-time forecast is performed, if dmin

is less than dK it means that the actual xstreaming is a more
accurate neighbor of the xmin than its current neighbors in
the model M . If it occurs, xstreaming is added to the possible
update buffer with its corresponding xmin as follows:

B = {(xmin, xstreaming, dmin)} (12)

The buffer is filled as many times as necessary by adding
instances meeting the condition dmin < dK for each instance
xstreaming in the setstreaming .

The buffer of possible updates is checked at a specific
time and therefore, the model is updated at that specific
moment. In this work, this so-called specific time is one of
the following five options: there are three temporal possibilities
and two possibilities based on threshold errors. The temporal
update can be performed: every day, every month or every
three months. The other type of update can be performed
when the error of the actual forecast is higher than a defined
threshold. In this work, two thresholds have been considered:
the MAPEoffline made when obtaining the offline model or
the MAPEoffline plus its standard deviation.

When the so-called specific moment occurs, the K nearest
instances of xmin in the current model M are selected along
with all the xstreaming associated to xmin in the buffer. Then,
all neighbors both from the current model and from the buffer
are sorted by distance and the K smallest ones are kept. All
neighbors selected are the updated neighbors of the xmin in
the model M . It is possible that all K neighbors of a xmin

are updated in the model with data streaming instances.
An example of an update of the model when considering

three neighbors (K = 3) is illustrated in the following
equation:

M =< xmin, < y(xstreaming1), y(neighbor1(x
min)),

y(xstreaming2) >>
(13)

It can be seen that the nearest and furthest neighbors are
updated with two streaming instances of the setstreaming and
the neighbor one of the offline model is still considered a good
neighbor, more specifically, it is the second closest neighbor.

Figure 1 represents graphically an example of the incremen-
tal updating where ni is the abbreviation of neighbori and xsi

is the abbreviation of xstreamingi .

IV. RESULTS

A. Description of the dataset

The time series used in this experimentation consists of the
electrical energy consumption in megawatt (MW) in Spain.
The time series has 497832 samples measured every 10
minutes. The historical data contain all samples from January
1st 2007 to June 21st 2016, after a pre-processing step (e.g.:
adjustment of time shift days data) [24]. The whole dataset
is divided in 3 sets: 70% for the offline part (70% for the
setneighbors and 30% for the setpatterns, respectively) and
30% for the online data (setstreaming). Thus, the offline set
consists of data from January 2007 to mid August 2013 and
the streaming set from mid August 2013 to mid June 2016.

B. Experimental setting

The parameters used are the ones considered optimal after
a validation process in [24] in order to make a comparison
between a non-updating streaming model and an updating
streaming model:

• 4 hours prediction horizon (h=24): w=144 and K=4.
• 8 hours prediction horizon (h=48): w=288 and K=2.
• 12 hours prediction horizon (h=72): w=576 and K=4.
• 24 hours prediction horizon (h=144): w=864 and K=4.
The experimentation is made on a machine cluster which

is made up of 1 master node and 3 slaves. It has 4 Processor
Intel(R) Core(TM) i7-5820K CPU with 48 cores and 120 GB
of RAM memory.

C. Discussion of results

Table I shows the MAPE and standard deviation of the
MAPE (std. dev. column) in percentage and the MAE in MW
obtained when predicting the streaming set for each prediction
horizon. Results are provided for each type of online neighbor
update, depending on the time or depending on a threshold
value. In particular, a daily, monthly and every three months
update and an update based on two thresholds are tested. The
threshold based updates are performed when the forecasting
error is bigger than the MAPE obtained in the offline phase
and when the forecasting error is bigger than the offline MAPE
plus its the standard deviation, abbreviated as MAPEoffl and
MAPEoffl + σMAPEoffli

respectively in Table I.
It can be observed in Table I that the lowest errors, both

MAPE and MAE, are obtained when the daily update is used
for all the prediction horizons. The update when using the
MAPEoffline as threshold provides as well very good results.
The forecast errors obtained in the prediction of the streaming
set when the model is updated using any type of update are
always smaller than the errors obtained when the model is not
updated. Regarding the temporal updating, it is clear that the
model updates its neighbors in a more accurate way when the
update time frequency is smaller. In other words, forecasting
improves as more model updates are made from the new data
streaming series, i.e., when the update is performed every day.
This statement can also be applied when updating the model
according to a certain threshold. The model is updated more

204 5.1. Journal and conferences articles

Fig. 1: Graphic representation of the neighbor update process

TABLE I: Metrics of errors depending on the type of updating
for all prediction horizons

Updating MAPE
(%)

Std. dev.
(%)

MAE
(MW)

No update 2.4288 2.0745 670.1298
Day 2.1982 2.0138 605.7047

Month 2.2513 2.0269 620.5407
3 months 2.2710 2.0326 626.0198

MAPEoffl 2.1996 2.0132 606.1430
MAPEoffl + σMAPEoffl

2.2056 2.0117 607.8910

(a) Metrics of errors for h=24
Updating MAPE

(%)
Std. dev.

(%)
MAE
(MW)

No update 2.7617 2.0842 766.8640
Day 2.5499 2.0878 706.0045

Month 2.5958 2.0938 719.2312
3 months 2.6150 2.0972 724.4448

MAPEoffl 2.5529 2.0866 706.9218
MAPEoffl + σMAPEoffl

2.5671 2.0860 710.8549

(b) Metrics of errors for h=48
Updating MAPE

(%)
Std. dev.

(%)
MAE
(MW)

No update 3.3535 2.8200 933.9925
Day 3.1350 2.8039 872.1266

Month 3.1769 2.8285 883.6385
3 months 3.1920 2.8299 887.8336

MAPEoffl 3.1358 2.8036 872.3208
MAPEoffl + σMAPEoffl

3.1511 2.7982 876.3704

(c) Metrics of errors for h=72
Updating MAPE

(%)
Std. dev.

(%)
MAE
(MW)

No update 3.8466 3.6137 1072.8347
Day 3.5741 3.5292 998.0618

Month 3.6257 3.5659 1011.7691
3 months 3.6509 3.5558 1018.8665

MAPEoffl 3.5872 3.5247 1001.6575
MAPEoffl + σMAPEoffl

3.6236 3.5186 1011.9063

(d) Metrics of errors for h=144

regularly using the MAPEoffline as a threshold than using
the MAPEoffline + σMAPEoffline

, as the latter threshold is
more difficult to reach.

Figure 2 shows the worst forecasts for each prediction
horizon. They represent the real and forecasted electricity
demand values in the vertical axis and the hours of the day
in the horizontal axis. Each sub-figure includes the day and
the horizon of the maximum MAPE. The worst forecasts do

not improve when the model is updated. In particular, the
worst forecasts are obtained for the same date and at the same
time and have the same value of MAPE for each prediction
horizon whether the model is updated or not, unless for h=144.
Figure 2a depicts the worst forecasting for h=24 with a MAPE
of 33.0031%. Figure 2b refers to h=48 and has a MAPE
of 31.2720%. The worst MAPE for h=72 is 24.3860%, as
illustrates Figure 2c. The worst day predicted with h=144
without updating is in Figure 2d with 29.3278% of MAPE.
All the streaming update options for h=144 coincide on the
day with the worst forecast during December 25th 2013 with
a MAPE of 27.0207%. All worst days correspond to public
holidays in Spain: in summer for the prediction horizons 24
and 48 and, in winter for the prediction horizons 72 and 144.
This is due to the fact that the proposed StreamWNN is a
general-purpose approach and the prediction of holidays or
special days requires the design of specific methods [28], [29].
For prediction horizons 24, 48 and 72, it can be observed
abrupt changes at the last time sample of the horizon as the
following forecasted values correspond to the next prediction
horizon on the same day.

On the other hand, the MAPE value of the best forecasts for
all prediction horizons decreases when updating is performed,
comparing to not updating. The MAPE values obtained for the
best forecasts when the model is not updated are 0.2464% for
h=24, 0.4101% for h=48, 0.6002% for h=72 and 0.6548%
for h=144. Figure 3 shows the best prediction made for
each prediction horizon along with the days corresponding
to the lowest MAPE value among all the different updates. In
particular, Figure 3a represents the best forecasting for h=24,
which is achieved only with daily update obtaining a MAPE
of 0.2198%. Figure 3b is obtained for h=48 using both a daily
and monthly update as well as an update with either of the two
defined thresholds and getting A MAPE of 0.3208%. Figure 3c
shows the best prediction for h=72, which is obtained whether
the model is updated daily or using either of the two defined
thresholds, and corresponds to a MAPE of 0.4493%. Figure
3d depicts the best forecasting for h=144, which is achieved
only with daily update and has a MAPE of 0.6267%.

One very important aspect in streaming algorithms is to
obtain results as fast as possible. Offline-online learning algo-
rithms have to accomplish this requirement only in the online

5| Publications 205

20000

25000

30000

35000

40000

00
:0

0
06

:0
0

12
:0

0
18

:0
0

00
:0

0

Hours

W
o

rs
t

D
ay

D

em
an

d
 V

al
u

e
(M

W
)

Energy Demand Forecast Real

(a) h=24. Horizon: from 08:00AM to 11:50AM. Day: 16/08/2015

20000

25000

30000

35000

40000

00
:0

0
06

:0
0

12
:0

0
18

:0
0

00
:0

0

Hours

W
o

rs
t

D
ay

D

em
an

d
 V

al
u

e
(M

W
)

Energy Demand Forecast Real

(b) h=48. Horizon: from 08:00AM to 15:50PM. Day: 16/08/2014

20000

25000

30000

35000

40000

00
:0

0
06

:0
0

12
:0

0
18

:0
0

00
:0

0

Hours

W
o

rs
t

D
ay

D

em
an

d
 V

al
u

e
(M

W
)

Energy Demand Forecast Real

(c) h=72. Horizon: from 00:00AM to 11:50AM. Day: 25/12/2013

20000

25000

30000

35000

40000

00
:0

0
06

:0
0

12
:0

0
18

:0
0

00
:0

0

Hours

W
o

rs
t

D
ay

D

em
an

d
 V

al
u

e
(M

W
)

Energy Demand Forecast Real

(d) h=144. Horizon: The whole day. Day: 25/12/2014

Fig. 2: Days with the worst forecasts in terms of MAPE for
each prediction horizon h

20000

25000

30000

35000

40000

00
:0

0
06

:0
0

12
:0

0
18

:0
0

00
:0

0

Hours

B
es

t
D

ay

D
em

an
d

 V
al

u
e

(M
W

)

Energy Demand Forecast Real

(a) h=24. Horizon: from 08:00AM to 11:50AM. Day: 15/01/2015

20000

25000

30000

35000

40000

00
:0

0
06

:0
0

12
:0

0
18

:0
0

00
:0

0

Hours

 D
ay

 D
em

an
d

V

al
u

e
(M

W
)

Energy Demand Forecast Real

(b) h=48. Horizon: from 08:00AM to 15:50PM. Day: 23/01/2014

20000

25000

30000

35000

40000

00
:0

0
06

:0
0

12
:0

0
18

:0
0

00
:0

0

Hours

 D
ay

 D
em

an
d

V

al
u

e
(M

W
)

Energy Demand Forecast Real

(c) h=72. Horizon: from 00:00AM to 11:50AM. Day: 10/07/2015

20000

25000

30000

35000

40000

00
:0

0
06

:0
0

12
:0

0
18

:0
0

00
:0

0

Hours

 D
ay

 D
em

an
d

V

al
u

e
(M

W
)

Energy Demand Forecast Real

(d) h=144. Horizon: The whole day. Day: 31/05/2013

Fig. 3: Days with the best forecasts in terms of MAPE for
each prediction horizon h

206 5.1. Journal and conferences articles

0

5000

10000

15000

0
20

00
40

00
60

00

Number of iterations

E
xe

cu
ti

o
n

 t
im

e
(s

ec
o

n
d

s)

Forecast Horizons h=24 h=48 h=72 h=144

Fig. 4: Execution time versus number of iterations for daily
neighbor updating in the online phase.

phase [26]. The historical model generated in the batch phase
takes approximately 222 seconds for h=24, 167 seconds for
h=48, 153 seconds for h=72 and 122 seconds for h=144.
Figure 4 presents the execution time spent for the prediction
of the streaming set for each forecast horizon when a daily
update is carried out. It can be noted that the number of
iterations for each prediction horizon is different as w and
h values are different. The execution time increases linearly
versus iterations for all prediction horizons, but the shorter the
prediction horizon, the higher the scalability of the proposed
prediction algorithm, as a line with a smaller slope can be seen
in the Figure. The other updates have a similar behaviour.

As mentioned in Section III-C, during incremental learning
the current model is updated using closer online data, consider-
ing closer a smaller distance between features. Therefore, each
time the model is incrementally updated, the distance between
the instances in the model and their new neighbors decreases,
i.e., closer data are found, as Figure 5 illustrates. Figure 5d
depicts the average distance of the model at each iteration for
the prediction horizon h=144. It shows that when the model
is not incrementally updated, the average distance remains
the same during all the iterations. The monthly and every
3-month incremental update present a decrease in distance
in a step-wise manner with a regular frequency, not like the
MAPEoffline + σMAPEoffline

updates which can occur at
any time. The daily and MAPE options update the model more
times and thus the distance decreases more regularly. This is
also evidenced by lower errors as also presented in Table I.
The behaviour of the rest of the prediction horizons is similar,
taking into account that the number of iterations is different
for each prediction horizon.

V. CONCLUSIONS

In this paper, a new forecasting algorithm has been pro-
posed to predict electricity demand time series in real time.
As previous step to the prediction, the K-nearest neighbors
algorithm to obtain an initial forecasting model has been
applied using historical electricity consumption data. This
model is composed of a set of patterns along with its k
corresponding nearest neighbors. Thus, the final prediction has
been computed using the K-nearest neighbors of the nearest

6600

6800

7000

0
20

00
40

00
60

00

Number of iterations

D
is

ta
n

ce
s

Updating No update
Day

Month
3 Months

MAPE
MAPE + std. dev.

(a) h=24

10500

10800

11100

11400

0
10

00
20

00
30

00

Number of iterations

D
is

ta
n

ce
s

Updating No update
Day

Month
3 Months

MAPE
MAPE + std. dev.

(b) h=48

20500

21000

21500

22000

0
50

0
10

00
15

00
20

00

Number of iterations

D
is

ta
n

ce
s

Updating No update
Day

Month
3 Months

MAPE
MAPE + std. dev.

(c) h=72

29000

30000

0
25

0
50

0
75

0
10

00

Number of iterations

D
is

ta
n

ce
s

Updating No update
Day

Month
3 Months

MAPE
MAPE + std. dev.

(d) h=144

Fig. 5: Evolution of the average distance between neighbors
for each update

5| Publications 207

pattern to the streaming data. In this way, predictions can be
obtained in real time because it is not necessary to compute
the K-nearest neighbors each time a prediction is performed
as these K neighbors are already computed. The algorithm has
been successfully applied, obtaining accurate predictions over
time by incrementally updating the model. This update consists
of updating the neighbors in real time with the new data
received in streaming. Different neighbor updates have been
tested and the runtimes for calculating the real-time prediction
show that the algorithm is efficient as well as scalable with
respect to the number of iterations.

The future works will be focused on detecting and differen-
tiating novelties and outliers in the data streams. The novelties
will be added to the model and the outliers will raise an alarm.

ACKNOWLEDGEMENTS

The authors would like to thank the Spanish Ministry of
Science and Innovation for the support under the project
PID2020-117954RB-C21, the European Regional Develop-
ment Fund and Junta de Andalucı́a for projects PY20-00870
and UPO-138516 and the US-Spain Fulbright grant.

REFERENCES

[1] M. González-Torres, L. Pérez-Lombard, J. Coronel, and I. Maestre, “A
cross-country review on energy efficiency drivers,” Applied Energy, vol.
289, p. 116681, 2021.

[2] N. Shivaraman, S. Saki, Z. Liu, S. Ramanathan, A. Easwaran, and
S. Steinhorst, “Real-Time Energy Monitoring in IoT-enabled Mobile
Devices ,” in Proceedings of the 23th Design, Automation Test in Europe
Conference Exhibition (DATE), 2020, pp. 991–994.

[3] R. Sahal, J. G. Breslin, and M. I. Ali, “Big data and stream process-
ing platforms for Industry 4.0 requirements mapping for a predictive
maintenance use case,” Journal of Manufacturing Systems, vol. 54, pp.
138–151, 2020.

[4] F. Yao and Y. Wang, “Towards resilient and smart cities: A real-time
urban analytical and geo-visual system for social media streaming data,”
Sustainable Cities and Society, vol. 63, p. 102448, 2020.

[5] A. Bifet, B. Hammer, and F. Schleif, “Recent trends in streaming data
analysis, concept drift and analysis of dynamic data sets,” in 27th
European Symposium on Artificial Neural Networks (ESANN), 2019,
pp. 421–430.

[6] E. Alothali, H. Alashwal, and S. Harous, “Data stream mining tech-
niques: a review,” Telecommunication Computing Electronics and Con-
trol, vol. 17, no. 2, pp. 728–737, 2019.

[7] K. Roosa, Y. Lee, R. Luo, A. Kirpich, R. Rothenberg, J. Hyman, P. Yan,
and G. Chowell, “Real-time forecasts of the COVID-19 epidemic in
China from February 5th to February 24th, 2020,” Infectious Disease
Modelling, vol. 5, pp. 256–263, 2020.

[8] L. Moreira-Matias, J. Gama, M. Ferreira, J. Mendes-Moreira, and
L. Damas, “Predicting Taxi–Passenger Demand Using Streaming Data,”
IEEE Transactions on Intelligent Transportation Systems, vol. 14, pp.
1393–1402, 2013.

[9] L. Melgar-Garcı́a, M. T. Godinho, R. Espada, D. Gutiérrez-Avilés,
I. S. Brito, F. Martı́nez-Álvarez, A. Troncoso, and C. Rubio-Escudero,
“Discovering Spatio-Temporal Patterns in Precision Agriculture Based
on Triclustering,” in Proceedings of the 15th International Conference
on Soft Computing Models in Industrial and Environmental Applications
(SOCO). Cham: Springer International Publishing, 2021, pp. 226–236.

[10] L. Melgar-Garcı́a, D. Gutiérrez-Avilés, C. Rubio-Escudero, and A. Tron-
coso, “Discovering three-dimensional patterns in real-time from data
streams: An online triclustering approach,” Information Sciences, vol.
558, pp. 174–193, 2021.

[11] L. Melgar-Garcı́a, D. Gutiérrez-Avilés, C. Rubio-Escudero, and A. Tron-
coso, “High-Content Screening Images Streaming Analysis Using the
STriGen Methodology,” in Proceedings of the 35th Annual Association
for Computing Machinery Symposium on Applied Computing (SAC),
2020, p. 537–539.

[12] R. Weron, “Electricity price forecasting: A review of the state-of-the-
art with a look into the future,” International Journal of Forecasting,
vol. 30, no. 4, pp. 1030–1081, 2014.

[13] R. Perez-Chacón, R. L. Talavera-Llames, F. Martı́nez-Álvarez, and
A. Troncoso, “Finding electric energy consumption patterns in big time
series data,” in Proceedings of the 13th International Conference on
Distributed Computing and Artificial Intelligence (DCAI), 2016, pp.
231–238.

[14] R. Talavera-Llames, R. Pérez-Chacón, M. Martı́nez-Ballesteros, A. Tron-
coso, and F. Martı́nez-Álvarez, “A nearest neighbours-based algorithm
for big time series data forecasting,” in Proceedings of the 11th Interna-
tional Conference on Hybrid Artificial Intelligent Systems (HAIS), 2016,
pp. 174–185.

[15] Z. M. Yaseen, A. El-shafie, O. Jaafar, H. A. Afan, and K. N. Sayl, “Artifi-
cial intelligence based models for stream-flow forecasting: 2000–2015,”
Journal of Hydrology, vol. 530, pp. 829–844, 2015.

[16] P. Jiménez-Herrera, L. Melgar-Garcı́a, G. Asencio-Cortés, and A. Tron-
coso, “A New Forecasting Algorithm Based on Neighbors for Streaming
Electricity Time Series,” in Proceedings of the 15th International
Conference on Hybrid Artificial Intelligent Systems (HAIS). Cham:
Springer International Publishing, 2020, pp. 522–533.

[17] X. Qiu, P. N. Suganthan, and G. A. Amaratunga, “Ensemble incremental
learning random vector functional link network for short-term electric
load forecasting,” Knowledge-Based Systems, vol. 145, pp. 182–196,
2018.

[18] K. Liu, Z. Li, C. Yao, J. Chen, K. Zhang, and M. Saifullah, “Coupling
the k-nearest neighbor procedure with the Kalman filter for real-time
updating of the hydraulic model in flood forecasting,” International
Journal of Sediment Research, vol. 31, no. 2, pp. 149–158, 2016.

[19] J. Komma, G. Blöschl, and C. Reszler, “Soil moisture updating by
Ensemble Kalman Filtering in real-time flood forecasting,” Journal of
Hydrology, vol. 357, no. 3, pp. 228–242, 2008.

[20] R. Q. Thomas, R. J. Figueiredo, V. Daneshmand, B. J. Bookout,
L. K. Puckett, and C. C. Carey, “A Near-Term Iterative Forecasting
System Successfully Predicts Reservoir Hydrodynamics and Partitions
Uncertainty in Real Time,” Water Resources Research, vol. 56, no. 11,
p. 20, 2020.

[21] T. Nanda, B. Sahoo, and C. Chatterjee, “Enhancing real-time streamflow
forecasts with wavelet-neural network based error-updating schemes and
ECMWF meteorological predictions in Variable Infiltration Capacity
model,” Journal of Hydrology, vol. 575, pp. 890–910, 2019.

[22] L. Yan, J. Feng, Y. Wu, and T. Hang, “Data-Driven Fast Real-Time Flood
Forecasting Model for Processing Concept Drift,” in Cloud Computing,
Smart Grid and Innovative Frontiers in Telecommunications. Cham:
Springer International Publishing, 2020, pp. 363–374.

[23] L. Sun, Y. Ji, M. Zhu, F. Gu, F. Dai, and K. Li, “A new predictive
method supporting streaming data with hybrid recurring concept drifts
in process industry,” Computers & Industrial Engineering, vol. 161, p.
107625, 2021.

[24] L. Melgar-Garcı́a, D. Gutiérrez-Avilés, C. Rubio-Escudero, and A. Tron-
coso, “Nearest neighbors-based forecasting for electricity demand time
series in streaming,” in Advances in Artificial Intelligence. Cham:
Springer International Publishing, 2021, pp. 185–195.

[25] J. Jeffers, J. Reinders, and A. Sodani, “Chapter 24 - Machine learning,”
in Intel Xeon Phi Processor High Performance Programming (Second
Edition). Morgan Kaufmann, 2016, pp. 527 – 548.

[26] P. Larranaga, D. Atienza, J. D. Rozo, A. Ogbechie, C. Puerto-Santana,
and C. Bielza, Industrial Applications of Machine Learning. CRC
Press, 2018.

[27] A. A. Benczúr, L. Kocsis, and R. Pálovics, “Online machine learning al-
gorithms over data streams,” in Encyclopedia of Big Data Technologies.
Springer International Publishing, 2019, pp. 1199–1207.

[28] O. Trull, J. C. Garcı́a-Dı́az, and A. Troncoso, “Application of discrete-
interval moving seasonalities to spanish electricity demand forecasting
during easter,” Energies, vol. 12, no. 6, p. 1083, 2019.

[29] O. Trull, J. C. Garcı́a-Dı́az, and A. Troncoso, “One-day-ahead electricity
demand forecasting in holidays using discrete-interval moving season-
alities,” Energy, vol. 231, p. 120966, 2021.

208 5.1. Journal and conferences articles

5| Publications 209

5.1.11 | "A novel distributed forecasting
method based on information fusion
and incremental learning for
streaming time series"

Authors: Melgar-García L., Gutiérrez-Avilés D., Rubio-Escudero C., Troncoso
A.

Publication type: Journal article. Under review.

A novel distributed forecasting method based on
information fusion and incremental learning for

streaming time series

Laura Melgar-Garćıaa,∗, David Gutiérrez-Avilésb, Cristina Rubio-Escuderob,
Alicia Troncosoa

aData Science & Big Data Lab, Pablo de Olavide University, ES-41013 Seville, Spain.
bDepartment of Computer Science, University of Seville, Avda. Reina Mercedes s/n,

Seville, 41012, Spain.

Abstract

Real-time algorithms have to adapt and adjust to new incoming patterns to pro-
vide timely and accurate responses. This paper presents a new distributed fore-
casting algorithm for streaming time series called StreamWNN. StreamWNN
starts with an offline stage in which a forecasting model based on tuples of
information fusion is created with historical data. In particular, this model
consists of the fusion of patterns composed of past values of the time series
with the future values of their k-nearest neighbors. Afterwards, streaming data
starts to arrive. The model is incrementally updated in the online stage using
a buffer with streaming data that more accurately matches the current model
patterns. The model can be updated daily, monthly, quarterly or based on
error thresholds. The methodology has been applied to Spanish electricity de-
mand time series providing more accurate results when the model is updated
incrementally. The best results are obtained with the daily update of the model,
resulting in an error between 2% and 3.5% depending on the prediction horizon.
The model provides better results than other algorithms.

Keywords: real-time forecasting, incremental learning, streaming time series,
electricity demand.

1. Introduction

Nowadays, researchers and companies are paying more and more attention to
time series forecasting, due to the large number of existing applications based on
time-indexed data. Moreover, as this data is mostly from electronic devices, the
time series are usually very long and are measured in minutes or even seconds,5

resulting in big data time series. These characteristics open up a huge field of

∗Corresponding author
Email address: atrolor@upo.es (Alicia Troncoso)

Preprint submitted to Elsevier January 10, 2023

210 5.1. Journal and conferences articles

study in the big data paradigm with the aim of obtaining more accurate and
efficient predictive models.

Big data streaming is becoming one of the most widely used big data trends
in recent years. Of the three ”Vs” that define big data, namely variety, volume10

and velocity, the most important characteristic in this type of algorithm is ve-
locity. Velocity refers to large continuous flows of data, called streams. Streams
need to be processed and modeled in a special way considering specific require-
ments [1]. The real-time decision making process contributes to the challenge
of developing safe and efficient smart cities with timely responses [2].15

In addition to the condition of providing fast results when working in stream-
ing mode, it is important to develop a model that must be always ready to give
responses. However, streaming flows usually variate and suffer transformations
which could lead to a non-accurate response if the model does not adapt to
them [3]. For this reason, some streaming models include the option to update20

themselves taking into account the data arriving online in order to fit as best as
possible to their new behavior. It is worth mentioning that even if the streaming
model updates, it has to provide, as well, timely results.

In this research, a new forecasting algorithm for time series in streaming
named StreamWNN is proposed. The algorithm is made up of two phases: a25

batch phase and an online phase. In the batch phase, a model from historical
data is created, and in the online phase the forecasts are made and the model
is updated in real time. Therefore, the online phase fits the model to current
streaming data. Both phases are based on the fusion of relevant information
for the time series such as patterns and the classes of their k-nearest neighbors.30

The main innovation of StreamWNN compared to models in the literature is
the use of a data structure that merges information of different nature. This
information fusion from historical data allows both the real-time prediction and
the online incremental learning to adapt the model to new incoming patterns
in the streaming data. StreamWNN is applied to electrical energy consumption35

data in Spain from 2007 to 2016. The results show that the fusion of information
related to patterns and their nearest neighbors is adequate to be able to incre-
mentally update the model as well as to make predictions in a computationally
efficient way.

The rest of the article is structured as follows. Section 2 presents a review of40

streaming time series forecasting algorithms. In Section 3 the whole methodol-
ogy of the StreamWNN is introduced, including the incremental updating of the
prediction model based on nearest neighbors. Section 4 defines the time series
used and includes the discussion of the forecasting and execution time results.
The paper finishes with some final conclusions and ideas for future approaches45

in Section 5.

2. Related work

Currently, all the topics related to streaming data are being widely inves-
tigated. The concept of streaming data is part of the big data environment
and therefore, the challenges related to distributed computation, fault-tolerant50

2

5| Publications 211

computing paradigms, and architectures are still open. These technologies al-
low researchers to develop streaming data processing and analysis techniques to
obtain accurate knowledge [4]. Concretely, understanding streaming events and
their behavior is a critical task to accomplish [5].

Time series forecasting is crucial for streaming data analytics due to the55

large amount of existing massive time series data from different sources and its
multiple applications. A wide variety of proposals for forecasting of data streams
can be found in the literature. In [6], an Apache Spark framework based on the
Lambda big data architecture was proposed. The authors implemented a vector
auto-regression algorithm using that architecture to achieve better adaptabil-60

ity and efficiency of the model. The authors in [7] proposed a new method
for time series forecasting based on a dynamic ensemble selection framework.
This framework consisted of a set of baseline regressors trained offline and a
set of meta learners that predicted the errors of the first ones. The proposal in
[8] described a hybrid model that combined statistical learning methods such65

as ARIMA with machine learning models as the gradient descent optimization
algorithm, obtaining promising results. The authors stated that the statisti-
cal and machine learning techniques, correctly combined, provide better results
than separately, since the hybrid system will have the adaptability character-
istic of machine learning models and the accuracy of the statistical ones. The70

authors in [9] presented a methodology for time series data modeling and pre-
diction. They proposed a double sliding window as a data-driven model and
a combination of gene expression programming and a colony climbing meta-
heuristic. The benchmark results obtained better results than the hierarchical
temporal memory algorithm [10] used as a baseline. Time series forecasting75

has also various real-life applications, as in [11] where the authors presented an
Android-based mobile application that predicts the physical activity of the user
based on the steps taken and calorie consumption. In [12], the authors applied a
long-short term memory deep learning architecture using the Coronavirus based
optimization algorithm [13] to calculate the optimal hyper-parameters in order80

to predict the deformation of the Hoa Binh hydropower dam in Vietnam.
Fusion of the data from variables of different sources or the fusion of differ-

ent methods to improve the prediction is also a state-of-the-art strategy [14].
The authors in [15] presented a hybrid algorithm to predict both univariate and
multivariate time series based on a fusion of clustering, classification models85

and a regressor that makes the final prediction. An adaptation of this proposal
to the streaming environment can be found in [16]. In [17] fusion methods are
proposed for the aggregation of emergent patterns obtained by an evolutionary
fuzzy system applied on each data stream. In [18] a Hoeffding adaptive tree is
combined with an ensemble of C4.5 decision trees from massive data streams90

without increasing the time to obtain the model. In this context, statistical
methods are also widely used. A comparative study of several well-known sta-
tistical methods such as Vector Autoregressive (VAR), Vector Moving Average
(VMA), Vector Autoregressive Moving Average (VARMA), and Theta are com-
pared with recurrent neural network models in [19]. Explainable models are95

trendy in the machine learning research field. Focusing on time series forecast-

3

212 5.1. Journal and conferences articles

ing, a proposal of a linear regression-based forecasting method that explains the
predictions through regression trees can be found in [20].

Pattern recognition is also a relevant topic in the streaming environment
for a direct application such as anomaly and novelty detection and it is also100

the core of a comprehensive collection of streaming time series forecasting algo-
rithms. In [21] the authors presented an online triclustering algorithm to detect
three-dimensional behavior patterns from streams. The particularity of this pro-
posal was the high dimensionality of the streams as they were formed by several
variables indexed over time. This approach has been successfully applied to real105

problems such as precision agriculture [22], and the online analysis of cellular
high-content screening images [23]. In addition, streaming data can variate and
change its behavior patterns as time passes. It is crucial to have a streaming
model that adapts to the new data flows. A wavelet-neural network with an
error-updating scheme was proposed for meteorological predictions in streaming110

in [24]. The need for systematically updating the errors of data streams was
shown. In order to reduce the computational cost of the optimization algorithm
used in transductive support vector machine to deal with big data classification
an incremental learning is proposed in [25]. Authors in [26] proposed an incre-
mental update method based on Support Vector Machines (SVM) and Gated115

Recurrent Unit (GRU), considering concept drift for forecasting in real-time.
Training models were updated based on the error between batch test results
and real values. [27] proposed a novel incremental learning approach to identify
individuals of interest from streaming face data. This approach fed with stream
data, simultaneously predict and update classifiers, combining a deep features120

encoder with ensembles of SVM. Concept drift is also addressed through adap-
tive decision forest in [28]. The authors used three parallel forests to keep his-
torical knowledge and the classification is made with the forest which achieves
the best classification accuracy. In [29] an algorithm to enable incremental class
learning in hierarchical classification was presented. In particular, a structure125

that grows horizontally and vertically in an online way when online data arrives
is proposed, showing a better performance when comparing with other algo-
rithms trained using offline data. In [30], the authors developed an incremental
online multi-label classification method. This method is based on a weighted
clustering model and the weights of the samples decrease to adapt to the change130

of data. Many literature approaches for model updating in the streaming envi-
ronment are based on external algorithms such as the Kalman filters. Authors
in [31] presented a coupled methodology of the k-nearest neighbor algorithm
with a Kalman filter for real-time flood forecasting. The state transition matrix
of the Kalman filter was recalculated using the forecasting method to improve135

the performance of the model and obtain accurate results. Another ensemble
Kalman filter was used in [32]. The ensemble was used as a data assimilation
algorithm to update water temperature forecasting considering sensor instances.

The proposed algorithm is applied to electrical energy forecasting. This ap-
plication field has been studied mainly in the batch or traditional time series140

forecasting mode. On this matter, the authors in [33] presented a big data
approach for electricity consumption of the sensors in smart cities. Several pro-

4

5| Publications 213

posals have adapted nearest neighbor proposals to the big data paradigm using
the Apache Spark distributed computation framework [34, 35] for electricity
demand forecasting. In the real-time environment, in [36] a new algorithm to145

predict energy demand time series in streaming was introduced. It used three
different algorithms in streaming: k-means, nearest neighbors and naive Bayes.
Deep learning models variants have been applied to the electric field, even in a
real-time scenario [37]. In [38], the authors developed an innovative deep learn-
ing architecture for real-time forecasting of highly volatile and high-frequency150

electricity price time series. Furthermore, in [38] the authors proposed a multi-
scale convolutional and long-short term hybrid neural network for short-term
electricity price prediction. In [39] a recurrent neural model to predict the elec-
tricity demand in Cambodia was presented. A post-processing consisting of
searching for correlated climate variables was carried out to improve the predic-155

tions. Finally, in [40] the authors developed a new streaming k-nearest neighbor
algorithm for electricity demand in streaming. The algorithm was successfully
tested using Spanish electricity demand data. A complete and updated review
of the machine learning applications to electrical load forecasting was presented
in [41].160

3. Material and methods

The StreamWNN methodology is based on a data structure fusing informa-
tion related to the k-nearest neighbors, which is based on the idea that nearest
data share similar properties or characteristics.

The goal of this time series forecasting problem is to predict the next values165

considering past ones. The time series used are in N instances where the i− th
instance consists of xi representing its w past features and yi representing its h
next classes, i.e., next h values to predict:

Xt = {(x1, y1), ..., (xN , yN)} xi ∈ Rw yi ∈ Rh (1)

The dataset is divided into three chronologically ordered sets: setneighbors,
setpatterns and setstreaming. The StreamWNN algorithm uses the offline-online170

learning approach to model data streams. In the first phase, the requirements
for streaming models must not be met. However, in order to consider the
StreamWNN as an algorithm that can work in real-time, all requirements for
such algorithms must be fulfilled in the streaming or online phase. These req-
uisites are described in [42]: only a limited set of past data can be stored; the175

model has to adapt to concept drift quickly and has to be always ready to make
predictions; the model has to work in distributed computational environments
so that its computation is fast. In this research work, an incremental learning
approach during the online phase is presented. In this way, the algorithm is
always up to date.180

The proposed algorithm is built on Apache Spark 2.3.4 and uses HDFS file
system on Hadoop 2.7.7 and the Kappa Architecture on Apache Kafka 2.11 as
streaming platform, i.e., a single pipeline is specifically designed for the job.

5

214 5.1. Journal and conferences articles

The methodology of this algorithm is defined in three phases. Section 3.1
describes the offline phase, Section 3.2 the online phase and how forecasting is185

made in real time and the incremental learning of the algorithm is presented in
Section 3.3.

3.1. Offline learning model

The first task of the algorithm is to create an offline learning model in
distributed batch processing. This model is the basis for the online phase where190

streaming data starts to arrive.
The offline historical data is divided chronologically into setneighbors and

setpatterns with around 70% and 30% of the data respectively. The batch model
consists of the fusion of each feature instance of the setpatterns with its K closest
instances of the setneighbors. Thus, the offline model M is represented by tuples195

of information as follows:

M =< xi, < y(neighbor1(xi)), ..., y(neighborK(xi)) >> (2)

where xi are the features of the i−th instance of the setpatterns and y(neighborj(x
i))

are the classes of the instance of the setneighbors selected as the j − th closest
neighbor of xi.

The distance used to measure the nearness between the attributes in order200

to generate the model is the euclidean distance. This distance is represented as
d(xi, xj) where xi refers to the features of the i− th instance of the setpatterns
and xj to the features of the j − th instance of the setneighbors.

After the creation of the offline model, the next h are predicted. In the
offline phase, predictions for each value l in the prediction horizon of length h205

are computed by:

ŷl =
1

∑K
j=1 αj

K∑

j=1

αjy(neighborj(x
i))l 1 ≤ l ≤ h (3)

where αj is the distance of d(xi, xj) defined as:

αj =
1

d(xi, xj)2
(4)

The error between predictions and actual data is computed to evaluate the
performance of the offline model. In this research, the selected error metrics
are the MAPE Mean Absolute Percentage Error and the MAE Mean Absolute210

Error.
Errors MAPEi and MAEi are calculated for each i − th instance pre-

dicted of the set of patterns. Finally, the offline phase gets MAPEoffline and
MAEoffline that are the mean value of each error. These error metrics are
defined as:215

6

5| Publications 215

MAPEi =
1

h

h∑

l=1

∣∣∣∣
yl − ŷl

yl

∣∣∣∣× 100 1 ≤ l ≤ h (5)

MAEi =
1

h

h∑

l=1

|yl − ŷl| 1 ≤ l ≤ h (6)

where yl is the l class of the i − th instance and ŷl corresponds to the offline
prediction defined by Equation 3.

In brief, the offline model is generated from the Algorithm 1.

Algorithm 1: Offline phase

Result: Offline model M , MAPEoffline, MAEoffline

w ← Window of past features
h ← Prediction horizon or next values to predict
K ← Number of neighbors to select
distances ← []
M ← []
for each xi in setpatterns do

for each xj in setneighbors do
distances ← add(distances, d(xi, xj));

end
{neighbors1(xi), ..., neighborsK(xi)} ← K smallest(distances, K)
M ← add(M , < xi, y(neighborsj(x

i)) >)
ŷl ← predict(M ,xi)
MAPEi ← MAPE(yl, ŷl)
MAEi ← MAE(yl, ŷl)

end
MAPEoffline ← mean(MAPEi)
MAEoffline ← mean(MAEi)

3.2. Real-time forecasting220

The second phase of the StreamWNN algorithm is the online phase. This
phase starts once the offline model from Equation 2 is computed. This model
is the base of the online phase. Streaming or online data is received in real-
time and collected in groups of features (of length w), this data can be called
xstreaming. For each xstreaming, the euclidean distances between it and all xi

225

features of the model M are calculated. The one with the minimum distance
dmin is selected as the nearest xi, called xmin from now on.

Real-time forecasts are calculated when xstreaming is associated with its
nearest xmin. In this case, online predictions take into account not only the K
nearest neighbours of xmin but also xmin itself as a neighbor for each value l to230

7

216 5.1. Journal and conferences articles

forecast in the prediction horizon of length h:

ŷl =
1

(
∑K

j=1 αj) + αmin

K∑

j=1

αjy(neighborj(x
min))l

+ αminy(xmin)l

(7)
where αmin is represented as:

αmin =
1

d(xmin, xstreaming)2
(8)

Subsequently, the actual class of the online data xstreaming arrives and the
metric errors are calculated. This metrics use the Equation 5 and 6 to obtain
the MAPEstreaming and MAEstreaming for each i − th instance of the set of235

streaming. Therefore, at the end of the online stage, the final MAPEonline

and MAEonline errors can be calculated. These errors are the average of all
MAPEstreaming and MAEstreaming, respectively.

Up to this stage, the offline or historical data of the model M is the only data
that the real-time forecasting takes into account [40]. Section 3.3 presents the240

incremental learning approach of the StreamWNN. This innovative methodology
focuses on obtaining more accurate predictions in real-time by updating the
model with new streaming patterns.

3.3. Incremental learning

The goal of online incremental learning is to keep the model up to date to245

prevent the model from aging and becoming unsuitable for real-time predictions.
This step is very important as new streaming patterns may appear and need to
be added to the model.

The incremental learning is performed by updating the neighbors of xmin,
i.e., neighborj(x

min) with j = 1, ...,K. This is the reason why the model is250

said to be internally updated. The dimensions of the M model are conserved,
however, the components are updated in real-time taking into account new
incoming patterns.

The update of neighbors uses a possible update buffer B. Let dmin be the
distance between xstreaming and its nearest pattern xmin, and let dK be the255

distance between xmin and its farthest neighbor in the model neighborK(xmin).
That is,

dmin = d(xmin, xstreaming) (9)

dK = d(xmin, neighborK(xmin)) (10)

Real-time prediction is performed and dmin and dK are compared. In the
case where dmin is less than dK , the actual xstreaming is considered to be a
more accurate neighbor of the xmin than its current neighbors in the model260

M . If it happens, xstreaming is added to the possible update buffer with its
corresponding xmin as follows:

B = {(xmin, xstreaming, dmin)} (11)

8

5| Publications 217

The buffer is filled as many times as necessary by adding instances meeting
the condition dmin < dK for each instance xstreaming in the setstreaming.

To perform the model update there are five options to choose from: three265

based on time and two based on exceeding an error threshold. The update
for the time-based options can be conducted on a daily, monthly or very three
months basis. The threshold-base options can be performed when the error
of the actual forecast is higher than a defined threshold. In this research, the
MAPEoffline obtained when the offline model is computed is the first threshold-270

based incremental learning option. The second one is the MAPEoffline plus
its standard deviation.

When the so-called specific moment occurs, the K nearest instances of xmin

in the current model M are selected along with all the xstreaming associated
to xmin in the buffer. Then, all neighbors both from the current model and275

from the buffer are sorted by distance and the K smallest ones are kept. All
neighbors selected are the updated neighbors of the xmin in the model M . It
is possible that all K neighbors of a xmin are updated in the model with data
streaming instances.

The new equation presents an example of updating of the model when the280

parameter K, used to refer to the number of neighbors, is K=3:

M =< xmin, < y(xstreaming1), y(neighbor1(xmin)), y(xstreaming2) >> (12)

In this example the nearest and farthest neighbors are updated with two stream-
ing instances of the set of the streaming. The neighbor one of the offline model
is still considered a good neighbor.

A graphical representation of the incremental learning approach of the StreamWNN285

is illustrated in Figure 1, where ni is the abbreviation of neighbori and xsi is
the abbreviation of xstreamingi .

The general online phase is represented in Algorithm 2 including the neigh-
bors updating described in Algorithm 3.

9

218 5.1. Journal and conferences articles

Figure 1: Graphic representation of the neighbor updating process

Algorithm 2: Online phase including neighbor updating

Result: updated M model, forecasts ŷstreaming and MAPEonline and
MAEonline errors of the setstreaming

M ← Offline model from Algorithm 1
distances ← []
for each xstreaming that arrives do

for each xi in M do
distances ← add(distances, d(xi, xstreaming))

end
xmin ← K smallest (distances, 1)
dmin ← d(xmin, xstreaming)
ŷstreaming ← predict (M ,xstreaming)
MAPEstreaming ← MAPE(ystreaming, ŷstreaming)
MAEstreaming ← MAE(ystreaming, ŷstreaming)
M ← Update neighbors from Algorithm 3

end
MAPEonline ← mean(MAPEstreaming)
MAEonline ← mean(MAEstreaming)

290

10

5| Publications 219

Algorithm 3: Neighbor Updating

Result: updated M model
updatemoment ← select(day, month, three-months, MAPEoffline,
MAPEoffline + σMAPEoffline

)
B ← []
distancesM∪B ← []
if dmin < d(xmin, neighborK(xmin)) then

B ← add(B, < xmin, xstreaming, dmin) >
if updatemoment and B not empty then

neighbors(xmin) ← {neighbor1(xmin), ..., neighborK(xmin))
distancesM∪B ← add(distancesM∪B ,d(xmin,neighbors(xmin))
distancesM∪B ← add(distancesM∪B ,dmin)
new neighbors(xmin) ← K smallest(distancesM∪B ,K)
neighbors(xmin)← new neighbors(xmin)
M ← update(M , < xmin, neighbors(xmin) >)

end

end

4. Results and Discussion

The dataset used in this research work is a time series of the electrical energy
consumption in megawatt (MW) in Spain. The time series has 497,832 samples
measured every 10 minutes and preprocessed following the considerations in295

[40]. The time series starts in January 1st 2007 and ends in June 21st 2016.
The first 70% of the dataset is used for the offline phase as historical data. The
rest of the dataset is used for the online or streaming phase.

The parameters values used in this experimentation are the optimal ones in
[40] with the idea of comparing the results of the streaming model without up-300

dates and the results obtained from the incremental learning updates developed
in this research:

• For prediction horizon of 4 hours (h=24): w=144 and K=4.

• For prediction horizon of 8 hours (h=48): w=288 and K=2.

• For prediction horizon of 12 hours (h=72): w=576 and K=4.305

• For prediction horizon of 24 hours (h=144): w=864 and K=4.

The experimentation is performed on the cluster of the Data Science and Big
Data Laboratory in Pablo de Olavide University which is made up of 1 master
node and 3 slaves. It has 4 Processor Intel(R) Core(TM) i7-5820K CPU with
48 cores and 120 GB of RAM memory.310

11

220 5.1. Journal and conferences articles

4.1. Discussion of results

Table 1 presents the errors for each prediction horizon after forecasting the
streaming set for each type of update. The errors are reported with the following
metrics: MAPE in percent, standard deviation of the MAPE in the column
Std. dev. MAPE and the MAE in MW. The time-dependent update types315

are the daily, monthly and quarterly updates. The threshold-based updates
are performed when the forecast error is larger than the MAPE obtained in
the offline phase (MAPEoffline) and when the forecast error is larger than the
offline MAPE plus its the standard deviation (MAPEoffline + σMAPEoffline

).
Considering the results in Table 1, the lowest MAPE and MAE errors are320

reached for the daily update at all the prediction horizons. The update using
the MAPEoffline threshold also achieves very good results. Forecast errors
when the model is not updated are larger than those obtained when any type of
incremental learning update is performed on the model. The streaming forecasts
become more accurate as more updates are performed on the online model. For325

example, the monthly update provides better results than the quarterly update,
since the first one updates the model more and, therefore, the model adjusts
more to the new incoming data. Similarly, results are more accurate for the
MAPEoffline threshold than the MAPEoffline + σMAPEoffline

threshold, as
the latter threshold is more difficult to reach and thus the model is updated330

fewer times.
The worst forecasts do not improve when the model is updated. For each

prediction horizon, the worst forecasts coincide in date and time and provide
the same MAPE value regardless of whether the model is updated or not, except
for h=144. The worst prediction for h=24 is August 16th 2015 from 8:00AM335

to 11:50AM with a MAPE of 33.003%. For h=48 it is August 16th 2014 from
8:00AM to 15:50PM with a MAPE of 31.272%. For h=72 it is December 25th

2013 from 00:00AM to 11:50AM with a MAPE of 24.386%. The worst predicted
day with h=144 with no update is the whole December 25th 2014 with 29.328%
as MAPE and the December 25th 2013 with a MAPE of 27.021% for all different340

streaming updates.
The daily MAPE when the model is updated every day for each prediction

horizon is shown in Figure 2. The smallest error is achieved when the prediction
horizon is 24 (Figure 2a). In this case, the maximum MAPE is 10.161% and
occurs on August 16th 2015, i.e. the day when the worst prediction is obtained345

for the next 4 hours. For the rest of the prediction horizons, the highest MAPE
is also reached on the day with the worst forecast for the next 4 hours.

The MAPE value of the best forecasts decreases when any type of update is
performed on the model. The error MAPE metrics for the best predictions of
the model without update are 0.246%, 0.411%, 0.601% and 0.655% for h=24,350

h=48, h=72 and h=144, respectively. The best predictions achieved for each
prediction horizon are represented in Figure 3. For h=24 the best prediction is
obtained with the daily update providing a MAPE of 0.219%. This evolution
throughout the day is in Figure 3a. For h=48 the best MAPE is reached forthe
daily, monthly and the two threshold-dependent types of update. The MAPE355

12

5| Publications 221

Table 1: Error metrics for each update and prediction horizon

Update type MAPE (%) Std. dev.
MAPE

MAE (MW)

No update 2.428 2.074 670.129
Daily 2.198 2.014 605.705
Monthly 2.251 2.027 620.541
Quarterly 2.271 2.033 626.019
MAPEoffline 2.199 2.013 606.143
MAPEoffline + σMAPEoffline

2.206 2.012 607.891
(a) Errors for h=24

Update type MAPE (%) Std. dev.
MAPE

MAE (MW)

No update 2.762 2.084 766.864
Daily 2.550 2.088 706.004
Monthly 2.596 2.094 719.231
Quarterly 2.615 2.097 724.445
MAPEoffline 2.553 2.087 706.922
MAPEoffline + σMAPEoffline

2.567 2.086 710.855
(b) Errors for h=48

Update type MAPE (%) Std. dev.
MAPE

MAE (MW)

No update 3.354 2.820 933.992
Daily 3.135 2.804 872.127
Monthly 3.177 2.828 883.638
Quarterly 3.192 2.830 887.834
MAPEoffline 3.136 2.804 872.321
MAPEoffline + σMAPEoffline

3.151 2.798 876.370
(c) Errors for h=72

Update type MAPE (%) Std. dev.
MAPE

MAE (MW)

No update 3.847 3.614 1072.835
Daily 3.574 3.529 998.062
Monthly 3.626 3.566 1011.769
Quarterly 3.651 3.556 1018.866
MAPEoffline 3.587 3.528 1001.657
MAPEoffline + σMAPEoffline

3.624 3.519 1011.906
(d) Errors for h=144

is 0.321% and it is illustrated in Figure 3b. For h=72, the best prediction has a
MAPE of 0.449% and is achieved for the daily and for both of the two threshold
updates. It is depicted in Figure 3c. The best forecast for h=144 is in Figure
3d. It is obtained only with the daily update and has a MAPE of 0.627%.

The incremental learning approach implemented in the StreamWNN offers360

13

222 5.1. Journal and conferences articles

0

5

10

15

20

25

2
0
1
4

2
0
1
5

2
0
1
6

Dates

M
A

P
E

 i
n

 p
e

rc
e

n
t

(a) h=24

0

5

10

15

20

25

2
0
1
4

2
0
1
5

2
0
1
6

Dates

M
A

P
E

 i
n

 p
e

rc
e

n
t

(b) h=48

0

5

10

15

20

25

2
0
1
4

2
0
1
5

2
0
1
6

Dates

M
A

P
E

 i
n

 p
e

rc
e

n
t

(c) h=72

0

5

10

15

20

25

2
0
1
4

2
0
1
5

2
0
1
6

Dates

M
A

P
E

 i
n

 p
e

rc
e

n
t

(d) h=144

Figure 2: Daily MAPE for each h prediction horizon

20000

25000

30000

35000

40000

00
:0

0

06
:0

0

12
:0

0

18
:0

0

00
:0

0

Hours

D
e

m
a

n
d

 V
a

lu
e

 i
n

 M
W

Energy Demand Forecast Real

(a) h=24. Horizon: from 08:00AM to
11:50AM. Day: 15/01/2015

20000

25000

30000

35000

40000

00
:0

0

06
:0

0

12
:0

0

18
:0

0

00
:0

0

Hours

D
e

m
a

n
d

 V
a

lu
e

 i
n

 M
W

Energy Demand Forecast Real

(b) h=48. Horizon: from 08:00AM to
15:50PM. Day: 23/01/2014

20000

25000

30000

35000

40000

00
:0

0

06
:0

0

12
:0

0

18
:0

0

00
:0

0

Hours

D
e

m
a

n
d

 V
a

lu
e

 i
n

 M
W

Energy Demand Forecast Real

(c) h=72. Horizon: from 00:00AM to
11:50AM. Day: 10/07/2015

20000

25000

30000

35000

40000

00
:0

0

06
:0

0

12
:0

0

18
:0

0

00
:0

0

Hours

D
e

m
a

n
d

 V
a

lu
e

 i
n

 M
W

Energy Demand Forecast Real

(d) h=144. Horizon: The whole day. Day:
31/05/2013

Figure 3: Days with the best forecasts for each h prediction horizon

14

5| Publications 223

the possibility to add new patterns from streaming data to the model. This
innovative k-nearest neighbor based technique improves online predictions. Fig-
ure 4 illustrates the evolution of the average euclidean distance between model
neighbors as iterations pass for h=144. When this learning technique is not
performed, i.e., no model update is conducted, this distance remains the same365

for all the iterations. However, when the incremental learning update is per-
formed this distance decreases. The updates that achieves the lowest average
distance is the daily update. This assumption is also confirmed with the type
of update that reaches the lowest errors. Time-dependent updates reduce this
average distance in a stepwise fashion. The representations of the mean distance370

between neighbors and the number of iterations follow the same distribution for
the remaining prediction horizons.

29000

30000

0
25

0
50

0
75

0
10

00

Iterations

D
is

ta
n

c
e

 b
e

tw
e

e
n

 n
e

ig
h

b
o

rs
 i

n
 m

o
d

e
l

Update No update
Daily

Monthly
Quarterly

MAPE
MAPE + std. dev.

Figure 4: Evolution of mean euclidean distance between neighbors in the model as iterations
pass for h=144

Streaming algorithms must always be ready to make predictions. These
predictions have to be computed as fast as possible in order to provide near
real-time results during the online phase. Figure 5 illustrates the evolution of375

the execution time needed to predict the whole streaming set using the daily
update. This evolution is presented for each prediction horizon. The number
of iterations each horizon has to perform to predict the online set is different
since the values of w and h are different for each of them. The execution time
increases linearly with iterations for all prediction horizons, demonstrating the380

scalability of the algorithm. The shorter the prediction horizon, the higher the
scalability, i.e., the represented line has a smaller slope. The evolution of the
execution time versus iterations is similar for the rest of the update types.

4.2. Comparison with other methods

In this Section, the best result obtained by the proposed algorithm is com-385

pared with other studies that used the same dataset [15, 43, 36]. The works

15

224 5.1. Journal and conferences articles

0

5000

10000

15000

0

2
0
0
0

4
0
0
0

6
0
0
0

Iterations

E
x
e

c
u

ti
o

n
 t

im
e

 i
n

 s
e

c
o

n
d

s
Forecast Horizons h=24 h=48 h=72 h=144

Figure 5: Execution time versus number of iterations for daily neighbor updating in the online
phase.

in [15, 43] are not data streaming algorithms, but traditional machine learn-
ing algorithms. However, they are used in order to obtain a comparison of the
accuracy of the forecasts obtained by the proposed method.

All these benchmark algorithms were trained using the data that the stream-390

ing method proposed in this work used in the offline stage. The algorithms were
evaluated using the streaming set of this work as the test set.

In [15], the authors presented a hybrid model for time series forecasting
based on a combination of clustering, classification and forecasting techniques.
The k-means algorithm with the optimal number number of clusters (k=7)395

and different prediction and classification methods were used. In particular,
classifiers such as a basic classifier based on the distance to the nearest centroid,
SVM and Naive Bayes were tested, and the prediction methods evaluated were
different ARIMA models, different Holt-Winter models and a deep Long Short-
Term Memory (LSTM) recurrent neural network.400

Table 2 presents the MAPE obtained for each prediction and classification
method used in the hybrid model published in [15] and for the StreamWNN
proposed algorithm updating the model on a daily basis when predicting the
streaming set for the 24-value forecast horizon, i.e., 4-hour forecast (h = 4). It
can be observed that the StreamWNN algorithm obtains a much more accurate405

error than that of the other methods.
In summary, our StreamWNN method provides better results comparing

with traditional machine learning algorithms. Although it works with additional
requirements as forecasts must be made as soon as new data arrives and in
the shortest possible time. None of the cited articles included information on410

execution time.
The benchmark study introduced in [43] included different prediction meth-

ods applied to the same time series dataset as this work. In particular, NDL,
FFNN, DT and GBM methods were evaluated. The NDL is a deep learning

16

5| Publications 225

Table 2: MAPE obtained by the proposed method using daily updating and the methods
published in [15]

Algorithm
MAPE (%)

Classifier Update
Basic Naive Bayes SVM Random Daily

ARIMA(3,0,1) 4.6 4.6 4.5 5.9 -
ARIMA(5,0,1) 4.3 4.1 4.0 5.8 -
ARIMA(7,0,1) 4.7 4.8 4.75 5.8 -
ARIMA combinations 4.1 4.2 4.0 6.0 -
LSTM 3.0 3.0 3.2 4.5 -
StreamWNN - - - - 2.19

neural network which used a genetic algorithm to find the sub-optimal hyper-415

parameters of the network, FFNN is a feed-forward neural network, DT a deci-
sion tree algorithm and GBM an algorithm based on gradient boosting.

Table 3 presents the MAPE obtained by the NDL, FFNN, DT, GBM meth-
ods and the StreamWNN proposed forecasting method to predict next 4 hours
from the previous 24 hours, i.e. 144 values (w = 144). It can be seen that420

the StreamWNN method is more accurate in terms of MAPE error compared
to most of the approaches. However, it is not better than the NDL model.
Authors state that the computational time required is high while the aim of
StreamWNN is to forecast in real-time.

Table 3: MAPE obtained by the proposed method using daily updating and the methods
published in [43]

Algorithm MAPE (%)
NDL 1.51
FFNN 2.32
DT 8.86
GMB 4.49
StreamWNN + daily updating 2.19

A forecasting algorithm for streaming time series, named StreamNSP was425

presented and compared with benchmark forecasting algorithms for data streams
such as the FIMTDD, AdaGrad and AMRulesReg in [36]. StreamNSP combines
clustering with a classifier and the nearest neighbor algorithm. The FIMTDD
algorithm, which stands for Fast Incremental Model Trees with Drift Detection,
models data streams using regression tree. The algorithm detects drift changes430

in incoming data and adapts the model incrementally. The AdaGrad performs
an online gradient-based learning. The model adapts dynamically by adding
geometry information from the previous data. The AMRules, i.e., Adaptive
Model Rules, is an incremental model for learning rules in streaming for regres-
sion problems. Each rule contains a linear model and is trained with incremental435

gradient descent. The update is performed using a delta rule. It detects online

17

226 5.1. Journal and conferences articles

changes using a Page-Hinkley test.
Table 4 shows the MAPE obtained by the FIMTDD, AdaGrad, AMRulesReg,

StreamNSP and the StreamWNN when predicting the streaming set for a pre-
diction horizon of 24 values. It is important to consider that MAPE errors are440

the average of the results for a prediction horizon of 1 value up to a prediction
horizon of 24 values. The result for the StreamNSP is the one corresponding to
the 24-value prediction horizon. Authors do not mention execution times even
though it is a real-time algorithm.

Table 4: MAPE obtained by the proposed method using daily updating and the methods
published in [36]

Algorithm MAPE (%)
AdaGrad 12.05
FIMTDD 4.91
AMRulesReg 2.21
StreamNSP 2.34
StreamWNN + daily updating 2.19

5. Conclusions445

In this work a new streaming forecasting model has been proposed. In
particular, the StreamWNN is a forecasting algorithm based on the offline-online
learning approach for streaming time series. Firstly, in the offline stage, the
StreamWNN creates an initial prediction model based on the fusion of patterns
and their k-nearest neighbors. Afterwards, in the online phase, streaming data450

flows start arriving and online predictions are obtained considering the nearest
neighbors of the most similar pattern in the current model generated in the
offline phase. The method to update the model is an internal updating, as the
model changes internal neighbor instances of a pattern by streaming data but
does not add any additional new pattern to the model. The model is updated455

when a specific moment is achieved: every day, every month, every three months
or each time the MAPE of the streaming predictions are higher than a threshold.
In this work, the error threshold is the MAPE obtained for the prediction of the
test set in the offline phase or the MAPE of the offline phase plus its standard
deviation. The MAPE and MAE obtained with the neighbor update are lower460

than those obtained when the offline model update is not performed. The best
results have been obtained using a daily updating of the prediction model. The
online execution time requirement has been accomplished getting timely results.

The results show that the fusion of information related to patterns and their
nearest neighbors is adequate to be able to incrementally update the model as465

well as to make predictions in a computationally efficient way. This incremental
learning approach demonstrates its effectiveness by comparing the results with
some benchmark algorithms. These are the main contributions that differentiate

18

5| Publications 227

the algorithm from those that can be found in the literature that do real-time
prediction.470

The future works will be focused on detecting and differentiating novelties
and outliers in the streams. The novelties will be added to the model and the
outliers will raise an alarm.

Acknowledgements

The authors would like to thank the Spanish Ministry of Science and Innova-475

tion for the support under the projects PID2020-117954RB-C21 and TED2021-
131311B-C22 and the European Regional Development Fund and Junta de An-
dalućıa for projects PY20-00870 and UPO-138516.

References

[1] R. Sahal, J. G. Breslin, M. I. Ali, Big data and stream processing platforms480

for Industry 4.0 requirements mapping for a predictive maintenance use
case, Journal of Manufacturing Systems 54 (2020) 138–151.

[2] F. Yao, Y. Wang, Towards resilient and smart cities: A real-time urban an-
alytical and geo-visual system for social media streaming data, Sustainable
Cities and Society 63 (2020) 102448.485

[3] A. Bifet, B. Hammer, F. Schleif, Recent trends in streaming data analysis,
concept drift and analysis of dynamic data sets, in: Proceedings of the 27th
European Symposium on Artificial Neural Networks (ESANN), 2019, pp.
421–430.

[4] T. Dubuc, F. Stahl, E. B. Roesch, Mapping the big data landscape: Tech-490

nologies, platforms and paradigms for real-time analytics of data streams,
IEEE Access 9 (2021) 15351–15374.

[5] I. Souiden, M. N. Omri, Z. Brahmi, A survey of outlier detection in high
dimensional data streams, Computer Science Review 44 (2022) 100463.

[6] A. Pandya, O. Odunsi, C. Liu, A. Cuzzocrea, J. Wang, Adaptive and effi-495

cient streaming time series forecasting with lambda architecture and spark,
in: Proceedings of the IEEE International Conference on Big Data, 2020,
pp. 5182–5190.

[7] D. Boulegane, A. Bifet, H. Elghazel, G. Madhusudan, Streaming time series
forecasting using multi-target regression with dynamic ensemble selection,500

in: Proceedings of the IEEE International Conference on Big Data, 2020,
pp. 2170–2179.

[8] M. A. Mochinski, J. P. Barddal, F. Enembreck, Improving multiple time se-
ries forecasting with data stream mining algorithms, in: Proceedings of the
IEEE International Conference on Systems, Man, and Cybernetics (SMC),505

2020, pp. 1060–1067.

19

228 5.1. Journal and conferences articles

[9] X. Ma, G. Ma, Research on modeling and forecasting driven by time series
stream data, in: Proceedings of the 14th IEEE Conference on Industrial
Electronics and Applications (ICIEA), 2019, pp. 413–417.

[10] J. Wu, W. Zeng, Z. Chen, X.-F. Tang, Hierarchical temporal mem-510

ory method for time-series-based anomaly detection, in: Proceedings
of the IEEE 16th International Conference on Data Mining Workshops
(ICDMW), 2016, pp. 1167–1172.

[11] E. Çiçek, S. Gören, G. Memik, Physical activity forecasting with time series
data using android smartphone, Pervasive and Mobile Computing 82 (2022)515

101567.

[12] K. T. Bui, J. F. Torres, D. Gutiérrez-Avilés, V. Nhu, D. T. Bui,
F. Mart́ınez-Álvarez, Deformation forecasting of a hydropower dam by hy-
bridizing a long short-term memory deep learning network with the coro-
navirus optimization algorithm, Computer-Aided Civil and Infrastructure520

Engineering (2022).

[13] F. Mart́ınez-Álvarez, G. Asencio-Cortés, J. F. Torres, D. Gutiérrez-Avilés,
L. Melgar-Garćıa, R. Pérez-Chacón, C. Rubio-Escudero, J. C. Riquelme,
A. Troncoso, Coronavirus optimization algorithm: A bioinspired meta-
heuristic based on the covid-19 propagation model, Big Data 8 (2020)525

308–322.

[14] S. Ramı́rez-Gallego, A. Fernández, S. Garćıa, M. Chen, F. Herrera, Big
data: Tutorial and guidelines on information and process fusion for analyt-
ics algorithms with mapreduce, Information Fusion 42 (2018) 51–61.

[15] M. Castán-Lascorz, P. Jiménez-Herrera, A. Troncoso, G. Asencio-Cortés,530

A new hybrid method for predicting univariate and multivariate time series
based on pattern forecasting, Information Sciences 586 (2022) 611–627.

[16] P. Jiménez-Herrera, L. Melgar-Garćıa, G. Asencio-Cortés, A. Troncoso,
Streaming big time series forecasting based on nearest similar patterns with
application to energy consumption, Logic Journal of the IGPL (2022).535

[17] A. M. Garćıa-Vico, C. J. Carmona, P. González, M. J. del Jesus, A dis-
tributed evolutionary fuzzy system-based method for the fusion of descrip-
tive emerging patterns in data streams, Information Fusion 91 (2023) 412–
423.

[18] A. I. Weinberg, M. Last, Enhat — synergy of a tree-based ensemble with540

hoeffding adaptive tree for dynamic data streams mining, Information Fu-
sion 89 (2023) 397–404.

[19] V. Tessoni, M. Amoretti, Advanced statistical and machine learning meth-
ods for multi-step multivariate time series forecasting in predictive main-
tenance, Procedia Computer Science 200 (2022) 748–757.545

20

5| Publications 229

[20] I. Ilic, B. Görgülü, M. Cevik, M. G. Baydoğan, Explainable boosted lin-
ear regression for time series forecasting, Pattern Recognition 120 (2021)
108144.

[21] L. Melgar-Garćıa, D. Gutiérrez-Avilés, C. Rubio-Escudero, A. Troncoso,
Discovering three-dimensional patterns in real-time from data streams: An550

online triclustering approach, Information Sciences 558 (2021) 174–193.

[22] L. Melgar-Garćıa, M. T. Godinho, R. Espada, D. Gutiérrez-Avilés, I. S.
Brito, F. Mart́ınez-Álvarez, A. Troncoso, C. Rubio-Escudero, Discovering
Spatio-Temporal Patterns in Precision Agriculture Based on Triclustering,
in: Proceedings of the 15th International Conference on Soft Computing555

Models in Industrial and Environmental Applications (SOCO), 2021, pp.
226–236.

[23] L. Melgar-Garćıa, D. Gutiérrez-Avilés, C. Rubio-Escudero, A. Troncoso,
High-Content Screening Images Streaming Analysis Using the STriGen
Methodology, in: Proceedings of the 35th Annual Association for Comput-560

ing Machinery Symposium on Applied Computing (SAC), 2020, p. 537–539.

[24] T. Nanda, B. Sahoo, C. Chatterjee, Enhancing real-time streamflow
forecasts with wavelet-neural network based error-updating schemes and
ECMWF meteorological predictions in Variable Infiltration Capacity
model, Journal of Hydrology 575 (2019) 890–910.565

[25] H. Chen, Y. Yu, Y. Jia, B. Gu, Incremental learning for transductive sup-
port vector machine, Pattern Recognition 133 (2023) 108982.

[26] L. Yan, J. Feng, Y. Wu, T. Hang, Data-Driven Fast Real-Time Flood Fore-
casting Model for Processing Concept Drift, in: Proceedings of the Cloud
Computing, Smart Grid and Innovative Frontiers in Telecommunications,570

2020, pp. 363–374.

[27] E. Lopez-Lopez, X. M. Pardo, C. V. Regueiro, Incremental learning from
low-lab elle d stream data in open-set video face recognition, Pattern Recog-
nition 131 (2022) 108885.

[28] M. G. Rahman, M. Z. Islam, Adaptive decision forest: An incremental575

machine learning framework, Pattern Recognition 122 (2022) 108345.

[29] J.-Y. Park, J.-H. Kim, Online incremental hierarchical classification reso-
nance network, Pattern Recognition 111 (2021) 107672.

[30] T. T. Nguyen, M. T. Dang, A. V. Luong, A. W.-C. Liew, T. Liang, J. Mc-
Call, Multi-label classification via incremental clustering on an evolving580

data stream, Pattern Recognition 95 (2019) 96–113.

[31] K. Liu, Z. Li, C. Yao, J. Chen, K. Zhang, M. Saifullah, Coupling the k-
nearest neighbor procedure with the Kalman filter for real-time updating of
the hydraulic model in flood forecasting, International Journal of Sediment
Research 31 (2) (2016) 149–158.585

21

230 5.1. Journal and conferences articles

[32] R. Q. Thomas, R. J. Figueiredo, V. Daneshmand, B. J. Bookout, L. K.
Puckett, C. C. Carey, A Near-Term Iterative Forecasting System Success-
fully Predicts Reservoir Hydrodynamics and Partitions Uncertainty in Real
Time, Water Resources Research 56 (11) (2020) 20.

[33] R. Pérez-Chacón, R. L. Talavera-Llames, F. Mart́ınez-Álvarez, A. Tron-590

coso, Finding electric energy consumption patterns in big time series data,
in: Procceeding of the 13th International Conference on Distributed Com-
puting and Artificial Intelligence, 2016, pp. 231–238.

[34] R. Talavera-Llames, R. Pérez-Chacón, A. Troncoso, F. Mart́ınez-Álvarez,
MV-kWNN: A novel multivariate and multi-output weighted nearest neigh-595

bours algorithm for big data time series forecasting, Neurocomputing 353
(2019) 56–73.

[35] R. L. Talavera-Llames, R. Pérez-Chacón, M. Mart́ınez-Ballesteros, A. Tron-
coso, F. Mart́ınez-Álvarez, A nearest neighbours-based algorithm for big
time series data forecasting, in: Proceedings of the 11th Hybrid Artificial600

Intelligent Systems (HAIS), 2016, pp. 174–185.

[36] P. Jiménez-Herrera, L. Melgar-Garćıa, G. Asencio-Cortés, A. Troncoso, A
New Forecasting Algorithm Based on Neighbors for Streaming Electric-
ity Time Series, in: Proceedings of the 15th Hybrid Artificial Intelligent
Systems (HAIS), 2020, pp. 522–533.605

[37] J. F. Torres, A. Troncoso, I. Koprinska, Z. Wang, F. Mart́ınez-Álvarez,
Deep learning for big data time series forecasting applied to solar power,
in: International Joint Conference SOCO’18-CISIS’18-ICEUTE’18, 2019,
pp. 123–133.

[38] H. Yang, K. R. Schell, GHTnet: Tri-branch deep learning network for real-610

time electricity price forecasting, Energy 238 (2022) 122052.

[39] K. Chreng, H. S. Lee, S. Tuy, Electricity demand prediction for sustain-
able development in cambodia using recurrent neural networks with era5
reanalysis climate variables, Energy Reports 8 (2022) 76–81.

[40] L. Melgar-Garćıa, D. Gutiérrez-Avilés, C. Rubio-Escudero, A. Troncoso,615

Nearest neighbors-based forecasting for electricity demand time series in
streaming, in: Advances in Artificial Intelligence, Springer International
Publishing, Cham, 2021, pp. 185–195.

[41] A. Azeem, I. Ismail, S. M. Jameel, V. R. Harindran, Electrical load fore-
casting models for different generation modalities: A review, IEEE Access620

9 (2021) 142239–142263.

[42] A. A. Benczúr, L. Kocsis, R. Pálovics, Online Machine Learning in Big
Data Streams: Overview, Springer International Publishing, Cham, 2019,
Ch. 1, pp. 1207–1218.

22

5| Publications 231

[43] F. Divina, J. F. Torres Maldonado, M. Garćıa-Torres, F. Mart́ınez-Álvarez,625

A. Troncoso, Hybridizing deep learning and neuroevolution: application to
the spanish short-term electric energy consumption forecasting, Applied
Sciences 10 (16) (2020) 5487.

23

232 5.1. Journal and conferences articles

5| Publications 233

5.1.12 | "Identifying novelties and anomalies
for incremental learning in streaming
time series forecasting"

Authors: Melgar-García L., Gutiérrez-Avilés D., Rubio-Escudero C., Troncoso
A.

Publication type: Journal article. Under review.

Identifying novelties and anomalies for incremental
learning in streaming time series forecasting

Laura Melgar-Garćıaa, David Gutiérrez-Avilésb, Cristina Rubio-Escuderob,
Alicia Troncosoa,∗

aData Science & Big Data Lab, Pablo de Olavide University, ES-41013 Seville, Spain.
bDepartment of Computer Science, University of Seville, Avda. Reina Mercedes s/n,

Seville, 41012, Spain.

Abstract

Performing real-time forecasting offers the possibility to consider new types of
patterns in the incoming streaming data, which is not possible when working
with historical or batch data. This paper presents a new approach to detect
novelties and anomalies in real-time using a nearest-neighbors based forecasting
algorithm. The algorithm works with an offline base model that is updated
as stream data arrives following an incremental learning approach. It detects
unknown patterns called novelties and anomalies. Novelties are included in
the model in an online way and anomalies trigger an alarm as they present
unexpected behaviors that need to be specifically analyzed. The algorithm has
been tested with Spanish electricity demand data. Results show that the model
adjusts in real-time to the new patterns of data providing accurate and fast
results.

Keywords: real-time forecasting, online incremental learning, novelties and
anomalies, streaming time series, electricity demand.

1. Introduction

Nowadays, most of the data generated from fields as diverse as medicine,
industry or renewable energies are streaming time series. Time series data
received in streaming have its own particularities as streams need to be processed
and modelled in a particular way considering specific requirements [25]. One of
the most important characteristics for this type of data is the need to obtain
timely responses and therefore, obtaining real-time predictions is crucial in order
to predict behaviour in the near future for decision making such as cost-saving
or optimization of system performance [29].

A streaming time series is a time series that arrives continuously at high
speed and has a data distribution that may change over time. In this scenario,

∗Corresponding author
Email address: atrolor@upo.es (Alicia Troncoso)

Preprint submitted to Elsevier January 9, 2023

234 5.1. Journal and conferences articles

new patterns in the data may appear and known patterns may disappear or
evolve into new patterns. These new patterns can be classified into novelties,
which indicate emerging patterns that need to be incorporated as new normal
patterns in the prediction model or anomalies, which are undesired patterns [12].
Thus, a novelty will be a new recurring pattern over time while an anomaly is
a new pattern that does not repeat over time because it is due to an exception.

In addition to prediction models always being ready to provide real-time
predictions, they must also adjust to new patterns that appear in the data
when dealing with streaming time series, otherwise the prediction results would
not be accurate [4]. Because of this, forecasting algorithms must incorporate
incremental learning mechanisms so that they can adapt to take into account
the data coming online, as it is not feasible to provide answers in time if the
algorithm has to be re-trained every time new patterns appear.

This paper proposes a methodology based on a real-time prediction algo-
rithm to detect both novelties and anomalies in the data. This prediction al-
gorithm, called StreamWNNov, is based on the nearest neighbors and learns
incrementally as the temporal data is streamed. This incremental learning is
carried out in two distinct ways: internal and external learning. One is an in-
ternal incremental learning in which the prediction model updates the nearest
neighbors of known patterns with streaming patterns, and an external learn-
ing in which new patterns such as novelties are incorporated into the model
as normal patterns. Results using electric power data in Spain are reported to
assess the proposed algorithm performance, showing remarkable results when
compared to other algorithms recently published in the literature. The results
show that the incorporation of the novelties improves the accuracy of the pre-
diction algorithm and furthermore the prediction algorithm is computationally
efficient, which makes it suitable to obtain real-time predictions.

The rest of the paper is structured as follows. Section 2 presents a review
of novelties detection algorithms and forecasting approaches for streaming time
series. In Section 3 the methodology to detect novelties and anomalies is intro-
duced along with the StreamWNNov algorithm and how its incremental learning
is carried out. Section 4 defines the electricity dataset used and includes the dis-
cussion of the forecasting results for different type of updating of the prediction
model and execution time results for different prediction horizons. The paper
finishes with some final conclusions and ideas for future approaches in Section
5.

2. Related work

The research field of streaming time series forecasting has made significant
progress in the last ten years. The efforts can be divided into two aspects:
developing efficient algorithms to forecast data streams and methodologies for
novelty and anomaly detection from these data streams.

Regarding forecasting algorithms for data streaming, finding patterns in the
stream and matching them with the newly arriving data emerge as an effective
strategy. The authors in [16] proposed a methodology for streaming time series

2

5| Publications 235

forecasting based on finding similar patterns along the data streams. First,
they combined a k-means clustering model with a Naive-Bayes classifier in an
offline phase to determine the different patterns from historical data. Then, the
forecast is obtained by applying a nearest similar patterns-based methodology
in the online phase. In order to evaluate the performance of the framework a
comparative study was applied to electricity demand consumption in a big data
scenario. To deal with a time variable, the pattern recognition can be extended
to the third dimension as made in [20], where the authors developed the STriGen
triclustering algorithm to discover 3D patterns from data streams in real time.
The proposal applies an ad-hoc genetic algorithm to build an initial model in an
offline phase. When streaming data arrives, the model is updated by applying
genetic operators systematically. The algorithm is exhaustively evaluated using
synthetic and real-world datasets from environmental sensors and compared to
a batch triclustering algorithm. Also, in [23], specific structures to find patterns
were developed, presenting an incremental methodology to label forecasting in
real time. It is based on a data structure, called online incremental hierarchical
classification resonance network (OIHCRN), which scales online according to
the classes, thus allowing real-time classification. This structure was tested
in several problems, such as text and image categorization, protein function
prediction, and a multimedia recommendation system. Results were compared
to another online classification algorithm, showing the efficiency of the proposed
structure to find patterns.

Ensemble models show a well-known outstanding performance in the time
series forecasting domain. Focusing on the data streaming scenario, an effort
to adapt and improve the dynamic ensemble selection approach for data stream
time series forecasting can be found in [6]. The authors presented a new system,
called MTR-DES, to enhance the selection of the ensemble model as the data
stream arrives. MTR-DES takes into account the dependencies of the model
pool and applies an incremental multi-target regression approach to make the
selections. The proposal was tested using several real scenarios, such as hospital
energy loads, solar radiation, or river flow streaming data. Its efficiency was
compared to a collection of other dynamic ensemble selection solutions in terms
of prediction accuracy and computational costs.

Streaming forecasting algorithms are also closely linked to the big data envi-
ronment. In [22], the authors claim the improvement of Vector Autoregression
(VAR) for time series forecasting, making it online and concept-drift sensible
through a big data Lambda architecture. They used the Apache Spark frame-
work to develop a batch-stream combining system to manage data streams and
outperform the VAR algorithm. The batch-stream framework performance was
compared separately to the batch and streaming base architectures that Apache
Spark provides. Experiments were conducted in four different streaming sce-
narios: without, gradual, abrupt, and mixed concept drifts data, showing the
proposal the best performance.

Not only strict machine learning approaches can be found, but statistical and
meta-heuristics-based solutions also provide good performance. The authors in
[21] stated that combining statistical methods with machine learning ones out-

3

236 5.1. Journal and conferences articles

performs the isolated solutions in the streaming time series forecasting scenario.
They showed that fact by conducting several experiments. In particular, they
applied their hybrid proposal to data streams from the International Institute
of Forecasters, combining the ARIMA statistical method with well-known ma-
chine learning ones, such as AdaGrad and AmRules Regressor. Furthermore,
in [18], a new streaming time series data modeling and forecasting method was
presented. The data modeling is based on dividing the streams in a double-
sliding window and, in a second step, a gene expression algorithm was applied
to mine the model from the data composing of these windows of variable length.
Furthermore, the colony climbing algorithm was used to improve the adaptation
of the model to concept-drift. The proposal was compared to the hierarchical
temporal memory algorithm using synthetic data.

For novelty and anomaly detection, there are a plethora of approaches to
accomplish this problem in many application domains [12]. Focusing on both
machine learning approaches and data streaming scenarios, several strategies
emerge such as neighbor-based approaches, ensemble, and neural network mod-
els.

Neighbor-based strategies model the novelty detection problem as a k-nearest
neighbor problem using different similarity measures to detect a new pattern
from the stream. In that sense, the authors in [1] developed an anomaly de-
tection algorithm using a k-nearest neighbor graph. The performance of the
method was evaluated using synthetic and real-world datasets, outperforming
the methods to which it was compared. In [8], the authors proposed a sophis-
ticated novelty detection algorithm for streaming data based on a mixture of
Gaussian distributions. In order to update the model with the newly discov-
ered patterns, they implemented an Expectation Maximization algorithm along
with a meta-regression model based on random forest and a k-nearest neighbor
algorithm. A comparative experimental study using real-world datasets showed
outstanding results.

The ensemble approach also stands out as a competitive strategy to deal
with novelties and anomalies. On this matter, the ensemble solution presented
in [7] is remarkable, which proposed an architecture that maintains a fixed-size
pool of updated classifiers. The classifier pool is combined with the ADWIN
drift detector [5] to adapt the system to incoming novelties and update the mod-
els if these novelties mean a change in the data stream. The ensemble solution
proposed in [14] adds the distributed characteristic to the implementation of
the ensemble. The authors combined Random Forest, Logistic Regression, and
Support Vector Machines as a stacking ensemble learner. To deal with anomaly
detection, a k-means clustering algorithm was applied. The system was im-
plemented using the Apache Spark framework and was tested in different big
data streaming scenarios, being its application domain the network intrusion
detection.

Neural networks have been used as a promising approach due to their adap-
tation capability to the problem domain. Thus, the authors in [17] presented
a solution for a specific situation with novelties, the malicious injection of false
novelties in the data stream. A system based on a restricted Boltzmann machine

4

5| Publications 237

combined with online gradient calculation and extended energy function was
developed to accomplish this problem, providing robustness against adversarial
novelties. The proposal was tested using a data stream benchmark, showing its
effectiveness in terms of novelty detection and poisoning data filtering.

Finally, an exhaustive updated literature review of novelty detection can be
found in [26]. The authors point out the particular characteristics of the data
streaming environment: concept drift, limited time and space requirements,
and the curse of dimensionality in high dimensional space, combining these
four concepts to present a state-of-the-art analysis. Furthermore, in [10], a
discussion of different algorithms for novelty management was presented. The
authors provided a detailed overview of evaluation measures and datasets used
for evaluating these algorithms.

3. Methodology

Let be a time series’ dataset consisting of N instances that can be represented
as:

Xt = {(x1, y1), ..., (xN , yN)} xi ∈ Rw yi ∈ Rh (1)

where xi are the features of the i− th instance corresponding to w past values
of the time series and yi are the classes of the i− th instance corresponding to
h following values of the time series. Considering (xi, yi), the goal is to forecast
the next h classes (yi) of the w streaming incoming features (xi) in real-time.
The proposed methodology for streaming data is composed of two phases. In
a first offline phase, an initial prediction model is built and in a second online
phase, this model is updated incrementally in real time as predictions are made
in real time. The proposed algorithm StreamWNNov predicts streaming data
using K weighted nearest neighbors and updates the model based on novelty
detection. In particular, the incremental updating consists of both updating the
nearest neighbors and detecting novelties and adding them to the model. The
algorithm includes the parameter K that refers to the number of neighbors, or
time series, associated with each instance in the model. Neighbors contribute
both in the offline and online forecasting process. One of the main problems
of the traditional K-nearest neighbors is the required time to build the model.
However, in StreamWNNov the model is created only once, during its first phase
or offline phase, and in a distributed and efficient way. The second phase or
online phase forecasts in real-time, keeps the model updated with incremental
learning considering streaming data, identifies anomalies and adds novelties to
the model.

Figure 1 presents an overview of the methodology. First, the model M
is created in an offline way from historical data and from the stream xst the
forecasting ŷst along with its error MAPEst is obtained in real time. This
prediction ŷst is based on the nearest neighbors of the closest pattern to xst

called xmin. Depending on the magnitude of the error, the stream is considered
normal or unknown pattern, concretely novelty or anomaly. If the stream xst

is normal but is a closer neighbor to xmin than the nearest neighbors of xmin

5

238 5.1. Journal and conferences articles

stored in the model M , i. e. if d(xst, xmin) < d(xmin, nK), the stream is stored
in a buffer B in order to update the nearest neighbors. If the stream is a
novelty, it is incorporated as a new pattern into the model, and if the stream is
an anomaly an alarm is raised. As shown in the Figure, the algorithm continues
to run the online phase until there is no more incoming streaming data. Figure
2 illustrates a general outline of the online phase only.

These steps of the methodology are described in detail in the following sec-
tions. The process for computing the offline model and the online forecast is in
Section 3.1. Section 3.2 explains the methodology developed to detect stream-
ing time series novelties and to identify streaming anomalies in real-time. In
addition, this Section presents the procedure to update the model in real-time
using incremental learning based on neighbors and novelties.

3.1. StreamWNNov algorithm

This Section presents the StreamWNNov algorithm for streaming time series
forecasting. The offline phase to build an initial prediction model is described
in Section 3.1.1 and how real-time forecasting is performed in Section 3.1.2.

3.1.1. Offline stage

Historical offline data is divided into two sets: neighbors and patterns, de-
noted setn and setp from now on. These sets correspond to 70% and 30% of the
chronologically ordered offline data respectively. Both sets of time series follow
the above definition (see Equation 1). For each feature instance of the setp
pattern set, the algorithm searches for the K closest instances from the setn
neighbors’ set. In this study, the distance metric used is the euclidean distance
between features. The offline model with t instances of the setp is represented
as:

M =<< x1, < y(n1(x1)), ..., y(nK(x1)) >>,

..., < xt, < y(n1(xt)), ..., y(nK(xt)) >>>
(2)

where xi corresponds to the features of the i − th instance of the setp and
y(nj(x

i)) is the class of the j − th closest neighbor of xi from the setn.
The last step of the offline phase consists of calculating the error obtained in

the learning process of the model M known as training error. For this purpose,
the error obtained by the model M when predicting the setp is computed.

For each i− th instance xi in the model M and for each l − th value in the
prediction horizon h, the prediction based on the K nearest neighbors [27, 28]
is defined by:

ŷi(l) =
1

∑K
j=1 αj

×
K∑

j=1

αjy(nj(x
i))(l) 1 ≤ l ≤ h (3)

where αj is the inverse squared euclidean distance d2j between the xt pattern

feature and the nj(x
t) neighbor feature, i. e. αj = 1

d2
j
.

6

5| Publications 239

Set of patterns (setp) and
set of neighbors (setn)

from historical offline data

Creation of the offline model

Current model: MContinuous streaming
data arriving

Find closest pattern to xst in M: xmin
Farthest neighbor of xmin in M: nK

xst

Real-time forecasting: yst

Error of the forecast: MAPEst

No

yst

Yes
No

Instant of time t
 has passed

M is updated incrementally
with data in B

Yes

No

MAPEst > lowthr

Unknown pattern

NoYes

MAPEst > upthr

Anomaly
detected

M is updated

xst, yst added to M
as novelty

Novelty
detected

Yes

d(xst, xmin)
<

d(xmin, nK)

Add xst to the
online buffer: B

Alarm is triggered

Continue receiving
data streams

^

Annotations:
- Offline model is the base model
- upthr and lowthr are error thresholds
- Time t can be daily/monthly/quarterly
- Algorithm finishes when there are not
more streams of data

Figure 1: Overview of StreamWNNov

Thus, the mean absolute percentage error for each i − th instance in the
model M , MAPEi, considering the forecast ŷi(l) and the real yi(l) classes is

7

240 5.1. Journal and conferences articles

Continuous streaming
data arriving

xst

Real-time forecasting: yst

Error of the forecast: MAPEst
yst

M is updated

Anomaly Novelty

Unknown pattern

M is updated temporally

Incremental learning
based on neighbors
 using online buffer

^

Incremental learning
based on detection of

novelties

A real-time alarm is
triggered

Normal pattern

Yes

No xst is a
closer neighbor

Current model: M

Figure 2: Summary of the online stage of StreamWNNov

computed by the equation:

MAPEi = 100× 1

h

h∑

l=1

∣∣∣∣
yi(l)− ŷi(l)

yi(l)

∣∣∣∣ (4)

and the training error, MAPEoffline, is obtained by averaging all the MAPEi

as follows:

MAPEoffline =
1

t

t∑

i=1

MAPEi (5)

Figure 3 illustrates a graphical representation of the offline phase considering
that there are t instances in the setp and K is two, i.e., each pattern of the setp
is associated with its two nearest neighbors from the setn in the model M .
Forecasts ŷi and the MAPEi metric for each i − th streaming instance xi in
the setp are computed following the Equations (3) and (4), respectively, and the
MAPE of the offline phase is calculated from the Equation (5).

3.1.2. Real-time forecasting

Once the offline base model is computed and the MAPE value of the offline
stage is obtained, StreamWNNov is ready to start receiving real-time data. In
the online phase all streaming requirements are fulfilled [3].

The general procedure consists of associating each streaming data xst to
the closest pattern feature instance xi in the model M , named xmin. In other
words, it can be said that the nearest neighbor of xst is the instance xmin. Then,

8

5| Publications 241

Figure 3: Representation of the offline phase where the setp is made up of t instances and K
is two.

the K nearest neighbors of the xmin are recovered from the model M and are
considered as the nearest neighbors of the streaming xst. Thus, the online
forecast of the classes of the xst, yst, for each l − th value in the prediction
horizon h can be computed as:

ŷst(l) =
1

∑K
j=1 αj + αmin

×

K∑

j=1

αjy(nj(x
min))(l) + αminy(xmin)(l)

 (6)

where αmin = 1
d2
min

and dmin is the euclidean distance between xst and xmin.

The strategy of using the K nearest neighbors of my nearest neighbor in the
model M as nearest neighbors ensures that the prediction can be computed in
real time as neighbors are already stored in the model and do not need to be
calculated. This online forecast ŷst takes into consideration the nearest neighbor
xmin of the xst and the K nearest neighbors of xmin in the current model. In
particular, the classes of xmin are y(xmin) and the classes of the neighbors of
xmin are y(nj(x

min)) in Equation 6.
Finally, the MAPE metric for ŷst, called MAPEst, is calculated each time

the real values yst are received in the stream, i.e., a real-time error value is
obtained for each h predicted data.

3.2. Detection of novelties and anomalies in real-time

StreamWNNov adds the possibility to incorporate novelties into the model
and identify anomalies in the streaming data during the online phase of the
algorithm. The detection of novelties and anomalies is explained in Section
3.2.1. The process for updating the model adding novelties to the model as well
as updating the K closest neighbors in the model M is described in Section
3.2.2.

3.2.1. Identifying and differentiating unknown streaming patterns

Novelties and anomalies are highly correlated terms that identify a different
pattern from the known concepts of the model. However, each of them implies

9

242 5.1. Journal and conferences articles

its own meaning and treatment. Ont he one hand, novelties in streaming flow
of data represent new and emergent behaviors. Novelties must be incorporated
into the model for the algorithm to produce results considering these new pat-
terns. On the other hand, anomalies do not conform to expected behaviors
and therefore do not need to be added to the model. Anomalies usually re-
quire a particular analysis [12]. This identification in online data presents many
challenges considering, in addition, that it has to provide timely responses.

In StreamWNNov a xst is considered an unknown pattern if its MAPEst,
computed after receiving the real yst class, is higher than a defined threshold.
In particular, the process of distinguishing unknown patterns between novelties
and anomalies is based on two thresholds, an upper threshold (upthr) and a lower
threshold (lowthr). These two thresholds must be defined after an analysis of
the errors obtained in the offline stage.

In [9] authors reviewed some anomaly detection techniques used in nearest
neighbors-based models. They concluded with the assumption that anoma-
lies occur far away from their closest neighbors. This idea is the basis of the
StreamWNNov algorithm for anomaly detection. Thus, if the MAPEst ob-
tained when predicting the streaming class yst is greater than the upthr thresh-
old, the specific incoming feature xst is considered as an anomaly. When an
anomaly is detected, the StreamWNNov triggers a real-time alert.

On the other hand, when the error MAPEst is lower than the upthr thresh-
old but higher than the lowthr threshold, online feature data xst are considered
as novelties. In this case, the model M is updated by incorporating the new
streaming pattern identified as novelty with its corresponding K closest neigh-
bors from historical data. Therefore, it can be said that the model is updated
externally. Section 3.2.2 describes in detail the whole process of adding novelties
to the model.

For this research work, if the prediction error when predicting yst is greater
than the training error, xst will be considered as an unknown pattern. Thus, the
lower threshold is the MAPE of the offline phase, i. e. MAPEoffline. On the
other hand, the upper threshold is defined as the MAPEoffline plus three times
its standard deviation. The pseudocode for identifying anomalies and novelties
in real-time is described in Algorithm 1.

3.2.2. Incremental learning

This Section describes the procedure for updating the model with data
streams using incremental learning, which consists of both updating the neigh-
bors of the patterns that form the model and incorporating new patterns.

The incremental learning based on neighbors consists of replacing nearest
neighbors of the pattern xi in the model M by streaming patterns xst when
these streaming patterns are closer to xi than their neighbors. In this way,
the distances of the nearest neighbors to the pattern xi will decrease as the
incremental learning is carried out and therefore the nearest neighbors will be
closer and closer to the pattern xi [20].

Right after finding the nearest pattern to xst in the model M , xmin, if the
distance between xmin and xst is lower than the distance between xmin and its

10

5| Publications 243

Algorithm 1: Unknown patterns identification

Result: updated M model and identification of unknown patterns
M ← Current model
lowthr ← MAPEoffline

upthr ← MAPEoffline + 3·std(MAPEoffline)
for each xst that arrives do

ŷst ← predict(M, xst) (see Equation 6)
MAPEst ← MAPE(yst, ŷst)
if MAPEst > lowthr then

xst is an unknown pattern
if upthr > MAPEst then

xst is a novelty
M ← Add novelty to the model (see Equation 7)

else
Anomaly identification
Alert created by the model

end

end

end

current farthest neighbor nK(xmin) in the current model, then xst is added as a
new potential nearest neighbor of xmin in an online buffer. In order to comply
all data streaming requirements, only a few real-time instances can be kept in
a buffer.

The online buffer is checked temporarily, in particular daily, monthly or
quarterly. Each pattern feature instance xi in the model can be updated by
changing its K nearest neighbors with online incoming data xst from the online
buffer. In such a case, the K nearest neighbors are selected from the nearest
neighbors of xi from the current model and the streaming patterns whose nearest
neighbour is xi from the buffer.

Figure 4 represents an example of this online update of the model where nj

are the j − th nearest neighbors of xi from historical offline data. The online
buffer contains the closest pattern instance xmin of each xst and the distance
between them d(xmin, xst). All the instances in this buffer have to meet the
requirement that d(xmin, xst) is less than the distance between xmin and its
farthest neighbor in the model nK . In Figure 4, after the update process, the
nearest neighbors of x6 are the two data streams instances xst80 and xst21 and
the neighbor instance n1.

Incremental learning based on the incorporation of new patterns consists of
the detection of novelties. The model follows an incremental learning procedure
to discover new patterns in the incoming real-time data. These new patterns
have to be added to the model to keep it always up to date. This is a very
important task in online algorithms [4].

During the online phase, the proposed methodology identifies online feature

11

244 5.1. Journal and conferences articles

Figure 4: Representation of an example of the incremental learning based on neighbors

data xst as novelty when the MAPEst metric is greater than the defined lowthr

threshold but lower than the upthr threshold. In particular, for each online data
identified as novelty xst, the K nearest neighbors are searched from the offline
historical data (both setp and setn) and added to the model M . In this way, the
online model increases in external dimension each time a streaming instance is
identified as novelty. The idea behind this is that new streaming patterns may
include neighbors that were not selected as K nearest neighbors for any of the
patterns from setp in the offline phase.

A representation of the update process with the xst streaming feature as a
novelty is as follows:

M =<< x1, < y(n1(x1)), ..., y(nK(x1)) >>,

..., < xt, < y(n1(xt)), ..., y(nK(xt)) >>,

< xst, < y(n1(xst)), ..., y(nK(xst)) >>>

(7)

where y(nj(x
st)) corresponds to the class of the j − th closest feature to xst

from the offline historical data. The Algorithm 2 represents the updating of the
model M with the feature xst identified as a novelty.

Figure 5 represents a graphical example of the online update of the model.
The example shows a case where the streaming instance xst8 has to be included
into the current model because its error metric MAPEst8 is lower than the
defined upper threshold upthr but larger than the defined lower threshold lowthr.
The current model before the novelty update is made up of t patterns instances.
The first nearest neighbor of the t − th instance xt of the current model is
updated by the streaming data xst2 and the novelty is added including a new
pattern xst8 into the model. This new pattern includes as neighbors the two
closest instances from the whole offline historical data. Next, the forecast ŷst8

and its MAPEst8 can be computed.

12

5| Publications 245

Algorithm 2: Model update with novelties

Result: updated M model with novelty
M ← Current model
distances ← []
setoffline ← setn ∪ setp
xst ← Novelty
for each xi in setoffline do

distances ← add(distances, d(xst, xi))
end
{n1(xst), ..., nK(xst)} ← K smallest(distances, K)
M ← add(M , < xst,< y(n1(xst)), ..., y(nK(xst)) >>

Figure 5: Representation of an example of the incremental learning based on novelties

4. Results

This Section reports the forecasts obtained by StreamWNNov for different
prediction horizons using an electricity consumption time series as well as a
comparative analysis between several forecasting algorithms. In particular, Sec-
tion 4.1 describes the division of the data and the parameters selected for the
experimentation. The results are presented and discussed in Section 4.2. The
analysis of the anomalies and novelties identified can be found in Section 4.3.
Finally, the execution times of the online phase is presented in Section 4.4.

4.1. Dataset and experimental setting

The proposed methodology is tested using a dataset of electrical energy
demand (in megawatt) of Spain from 2007 to 2016. The data is recorded every
10 minutes and also contains the date and time. This dataset is split into two
sets, offline and stream or online data, which correspond to approximately 70%
and 30% of the whole data. As explained in Section 3, the offline data is also
separated in 70% and 30% of the data resulting in the above-mentioned setn
and setp, respectively.

13

246 5.1. Journal and conferences articles

In this work, four prediction horizons have been analyzed, in particular
h=24, h=48, h=72 and h=144. The optimal size of the w window and the
optimal number of nearest neighbors for each horizon used are exactly the same
as in [19, 20] with the objective of making a comparison between the results. The
four groups of parameters are: (1) h=24, w=144 and K=4, (2) h=48, w=288
and K=2, (3) h=72, w=576 and K=4 and (4) h=144, w=864 and K=4.

The experiments are carried out on a cluster with 1 master node and 3 slaves,
with 4 Processor Intel(R) Core(TM) i7-5820K CPU with 48 cores and 120 GB
of RAM memory.

4.2. Discussion of the results

The experimentation is performed with the four different sets of parameters
presented in Section 4.1. Table 1 presents the MAPE error metric results in
percent of the forecasts obtained by the StreamWNNnov when predicting the
stream data during the online phase. The four types of updates of the model
refer to the following:

• No update: Forecasting algorithm without online updates or identification
of novelties or anomalies [19].

• Online daily: When only an incremental learning based on neighbors is
applied, being the buffer checked every day. Worse results are obtained if
the buffer is checked monthly or quarterly [20].

• Novelties: When only an incremental learning based on novelties is ap-
plied.

• Online daily + novelties: The above two updates together, depicted in
Figure 1.

The metrics in the columns of Table 1 correspond to the mean value, the stan-
dard deviation and the best and worst errors achieved when predicting the
stream data during the online phase. As shown in Table 1, the best forecast-
ing metrics are achieved, for all h prediction horizons, with the updating of
the model using incremental learning that includes both the daily updating of
neighbors and the detection and incorporation of novelties. This means that the
model is able to find different types of patterns in the online incoming data and
forecasts are improved by considering all of them. The most accurate results
are achieved with a horizon of 24 values, i.e. 4 hours, which suggests that the
more times the model is updated, the best results are achieved.

In addition, results in Table 1 show that the online daily update of neighbors
is more accurate than just updating the model by incorporating the novelties.
The explanation behind this is that the goal of the first-mentioned type of update
is to keep the model up to date, i.e., to change the model’s own patterns. As
showed in [20], with this online daily update of neighbors, the distance between
the patterns and their neighbors decreases each time the model is updated. In
other words, the patterns found in the online incoming data represent the model

14

5| Publications 247

better than the patterns in the offline phase. The goal of the novelties detection
and incorporation is to increase the accuracy of the forecasting model and to
include in it patterns that did not exist before. When both updates are used
together, the StreanWNNov algorithm takes advantage of both, achieving the
best results.

Table 1: MAPE error metric (in percentage) obtained by the StreamWNNov for each type of
update

Type of update Mean Std Best Worst
No update 2.4288 2.0745 0.2464 33.0031

Online daily 2.1982 2.0138 0.2198 33.0031
Novelties 2.3139 2.1403 0.2464 21.5966

Online daily
+ novelties 2.0703 1.9974 0.2463 22.8013

(a) Mean metrics of errors for h=24

Type of update Mean Std Best Worst
No update 2.7617 2.0842 0.4101 31.2720

Online daily 2.5499 2.0878 0.3207 31.2720
Novelties 2.6486 2.0339 0.4101 31.2720

Online daily
+ novelties 2.4296 2.0886 0.2685 31.2720

(b) Mean metrics of errors for h=48

Type of update Mean Std Best Worst
No update 3.3535 2.8200 0.6002 33.3860

Online daily 3.1350 2.8039 0.4493 33.3860
Novelties 3.2692 2.7467 0.6002 33.3860

Online daily
+ novelties 2.9914 2.7813 0.4493 33.3860

(c) Mean metrics of errors for h=72

Type of update Mean Std Best Worst
No update 3.8466 3.6137 0.6548 29.3278

Online daily 3.5741 3.5292 0.6267 27.0206
Novelties 3.7585 3.5271 0.6548 29.3278

Online daily
+ novelties 3.4099 3.4238 0.6302 29.3278

(d) Mean metrics of errors for h=144

Finally, StreamWNNov provides the best results when comparing to other
streaming techniques using the same distribution of the Spanish electricity de-
mand data [15]. Table 2 presents the results of the different models for the pre-
diction horizon of 4 hours or 24-values. AdaGrad is an adaptative gradient algo-
rithm that adjust dynamically the current model considering the previous data
[11]. FIMTDD uses regression trees to identify drift changes in the streaming
data [13]. AMRulesReg approaches the streaming forecast with learning rules

15

248 5.1. Journal and conferences articles

based on linear models [2]. StreamNSP clusters the data in different groups and
forecasts the demand value using an algorithm based on the traditional nearest
neighbor [15].

Table 2: Comparison with other streaming models published in [15]

Algorithm MAPE in percent
AdaGrad 12.05
FIMTDD 4.91

AMRulesReg 2.21
StreamNSP 2.34

StreamWNNov (online daily) 2.19
StreamWNNov (online daily + novelties) 2.07

4.3. Analysis of anomalies and novelties found

As explained in Section 3.2, the main objective of identifying new patterns
in the incoming data that are not in the model, i.e., novelties, is to adjust to the
evolution of patterns in the incoming data. The main objective of the anomaly
detection carried out by the StreamWNNov is to trigger a real-time alarm to
adjust the energy demand in the next few seconds. Anomalies are expected to
be identified right at the really alarming moments.

This anomaly and novelty identification process follows an unsupervised ap-
proach, since the dataset does not include the ground-truth about the type of
each incoming data, which could be identified as normal, anomaly or novelty.
To evaluate the accuracy of this process, some particular cases are discussed in
this Section.

4.3.1. Novelties in July 2015

Figure 6 depicts the average electrical energy demand per month along with
forecasts by the StreamWNNnov algorithm using only online daily update of
neighbors, forecasts using only online novelties update and forecasts with the two
previous ones together for the whole dataset used in the online phase. Figure
6 corresponds to a prediction horizon of one day (h=144) and a past data
window of one week (w=864). Results for the other parameters follow the
same pattern and therefore the same conclusions can be drawn. In the entire
dataset used for the streaming forecast, the month with the highest number of
novelties is July 2015. Figure 6 shows how the average demand value in July
2014 differs tremendously compared to the average demand value in July 2015.
Specifically, the average real demand were 28375.6622 MW and 31544.5781 MW,
respectively.

Electricity demand increases with temperature in urban areas [24]. The
Meteorological Space Agency (AEMET) recorded 26.5 degree Celsius as the
average temperature for the month of July 2015 in Spain, 2.5 degree Celsius
higher than the mean temperature for this month for the reference period from
1981 to 2010. The AEMET classified July 2015 as the warmest July in the

16

5| Publications 249

26000

28000

30000

20
13

−1
0

20
14

−0
2

20
14

−0
6

20
14

−1
0

20
15

−0
2

20
15

−0
6

20
15

−1
0

20
16

−0
2

20
16

−0
6

Dates

M
o

n
th

ly
 m

e
a
n

d

e
m

a
n

d
 v

a
lu

e
 (

M
W

)

Type of update

Real
No update

Daily update
Novelties

Daily+novelties

Figure 6: Monthly value of electricity demand for the prediction horizon h=144

historical series. This characteristic means that the model does not have many
similar patterns in the historical data. Therefore, the update of the model with
the novelties carried out by the StreamWNNov is key to get accurate results.
Figure 6 shows that the update of the prediction model that achieves a demand
value closest to the actual in July 2015 is the daily + novelties update. Table 3
represents the average of the daily MAPE metric for July 2015 for each update
type of the model. The best results are always achieved for the model update
including both neighbors and novelties performed by the StreamWNNov.

Table 3: Mean of the daily MAPE (in %) for July 2015

Updating h=24 h=48 h=72 h=144
No update 3.2451 4.0598 5.2845 5.5693

Online daily 3.0544 3.9487 5.2256 5.5740
Novelties 3.1273 3.5282 4.0773 4.3776

Online daily
+ novelties 2.5284 3.1622 3.5613 3.1257

Figure 7 depicts the two days in July 2015, July 20th and July 21st, with
the worst forecast when no model update is applied. On both days, the forecast
for the model without update and with online daily update of neighbors is the
same. In the case of July 20th 2015, the worst prediction coincides for the option
without update of the model, for daily update of the neighbors in the model
and for update based on novelties only, as shown in Figure 7a. The average
MAPE error achieved is above 8.3%. However, the MAPE error value of the
online daily + novelties update is 4.0017% and 2.9% for July 20th and 21st

respectively, which corresponds to a very good improvement of the error and
much more accurate forecast values.

17

250 5.1. Journal and conferences articles

25000

30000

35000

40000

00
:0

0

06
:0

0

12
:0

0

18
:0

0

00
:0

0

Hours − July 20th 2015

D
e

m
a

n
d

 V
a

lu
e

 (
M

W
)

Type of update

Real
No update, online daily and novelties

Online daily+novelties

(a) Worst forecast day

25000

30000

35000

40000

00
:0

0

06
:0

0

12
:0

0

18
:0

0

00
:0

0

Hours − July 21st 2015

D
e

m
a

n
d

 V
a

lu
e

 (
M

W
)

Type of update

Real
No update and online daily

Novelties
Online daily+novelties

(b) Second worst forecast day

Figure 7: Worst day forecasts in July 2015 for h=144 with no model update

4.3.2. Anomalies

By definition of the anomaly detection procedure, anomalies are the worst
forecast of the StreamWNNov algorithm. They occur occasionally. In this case,
the goal of finding anomalies in real-time is to manually correct the energy
demand in the next seconds. Figure 8 shows four anomalies detected when
using w=288 and h=48, i.e., a window composed of the two past days values
and eight hours to predict in real-time, respectively. The rest of experiments
with different parameters have similar behavior. In general, weekdays present
higher energy demand than weekends.

The incoming actual data for Tuesday June 24th 2014 from 8:00 am to 3:50
pm has an energy demand lower than expected as can be seen in Figure 8b. The
discussion on the correct classification of this incoming pattern as an anomaly
is similar to that in Figure 8a since this same day is not classified as an anomaly
neither for 2015 nor for 2016.

Figure 8c depicts an anomaly on December 27th from 8:00 am to 3:50
pm. Both the actual and anomaly demand follow a similar behaviour but the
anomaly detected has a lower value. The main reason could be that it was a
Sunday and three days after Christmas holidays.

The behaviour of the actual demand on January 4th, 2016 between 10:00 am
and 2:00 pm and between 6:30 pm and 9:30 pm maintain an almost constant
value. This performance is not very usual during the working hours of a Monday.
The anomaly detected between 8:00 am and 3:50 pm would have helped adjust
the demand to a nearly stable value for the remaining business hours of the day
and for the following day.

4.4. Discussion of execution time

The execution times of the online phase are very important since the StreamWN-
Nov is a streaming algorithm and therefore one of its main goals is to provide
accurate results in near real-time.

Figure 9 shows the scalability of the StreamWNNov when applying incre-
mental learning based on the improvement of the nearest neighbors and the
incorporation of novelties. It can be seen that StreamWNNov is scalable as as

18

5| Publications 251

20000

25000

30000

35000

13
−0

9−
09

00
:0

0

13
−0

9−
10

00
:0

0

13
−0

9−
11

00
:0

0

13
−0

9−
12

00
:0

0

Dates

D
e

m
a

n
d

 v
a

lu
e

 (
M

W
)

Real Forecast as anomaly

(a) September 2013

20000

25000

30000

14
−0

6−
22

00
:0

0

14
−0

6−
23

00
:0

0

14
−0

6−
24

00
:0

0

14
−0

6−
25

00
:0

0

Dates

D
e

m
a

n
d

 v
a

lu
e

 (
M

W
)

Real Forecast as anomaly

(b) June 2014

17500

20000

22500

25000

27500

15
−1

2−
25

00
:0

0

15
−1

2−
26

00
:0

0

15
−1

2−
27

00
:0

0

15
−1

2−
28

00
:0

0

Dates

D
e

m
a

n
d

 v
a

lu
e

 (
M

W
)

Real Forecast as anomaly

(c) December 2015

20000

25000

30000

35000

16
−0

1−
02

00
:0

0

16
−0

1−
03

00
:0

0

16
−0

1−
04

00
:0

0

16
−0

1−
05

00
:0

0

16
−0

1−
06

00
:0

0

Dates

D
e

m
a

n
d

 v
a

lu
e

 (
M

W
)

Real Forecast as anomaly

(d) January 2016

Figure 8: Sample of anomalies for the prediction horizon h=48

the execution time increases linearly with iterations for all prediction horizons.
The number of iterations to compute for each prediction horizon is different
because both the window and horizon (w and h) are different. This also in-
fluences the time difference between h=72 and 144 compared to h=48 and 24,
since when the model is updated a larger set of nearest neighbors or novelties
has to be modified or added to the model, respectively. The average time for
an iteration to be performed is approximately 6,66 seconds for h=24 and h=48.
For the other two horizons it is approximately 10 seconds. It is important to
consider that h values are being predicted for each iteration taking into account
w values that have to arrive in real-time. For example, for h=72, the average
time to compute the prediction of one of these 72 values is 0.138 seconds.

5. Conclusions

In this research paper, a streaming time-series forecasting model based on
the nearest-neighbors algorithm has been introduced. The algorithm begins
with an offline stage to create a base model, followed by an online stage where
streams start arriving and forecasting is performed. During the online phase,
the model is updated in real-time by modifying the neighbors of the model itself
following an incremental learning approach. In addition, the model can identify
anomalies and novelties in the new incoming data. The distinction between
novelties and anomalies in the online data has been addressed by considering
two thresholds of the error metric. In this way, each time the actual data stream
arrives, the error metric between it and its forecast is calculated. Afterwards, if

19

252 5.1. Journal and conferences articles

0

10000

20000

30000

40000

0

2
0
0
0

4
0
0
0

6
0
0
0

Iterations

E
x
e
c
u

ti
o

n
 t

im
e

 i
n

 s
e
c
o

n
d

s

Forecast Horizons h=24 h=48 h=72 h=144

Figure 9: Execution time versus number of iterations for each horizon

this error metric is higher than the upper threshold, it is identified as an anomaly
that should be analyzed. On the other hand, if the error metric is between the
lower and the upper threshold, the algorithm considers it as an stream novelty.
The novelties found are new patterns different from those already in the model.
Novelties are added to the model with historical data as neighbors. Results
have shown that the model performs better when the model uses incremental
learning updating the nearest neighbors and including novelties compared to
the case when the model is not updated with novelties during the online phase.
In addition, the comparison of the results obtained with StreamWNNov have
been more accurate than that of other benchmark algorithms.

Acknowledgements

The authors would like to thank the Spanish Ministry of Science and In-
novation for the support under the projects PID2020-117954RB-C21/C22 and
TED2021-131311B-C22 and the European Regional Development Fund and
Junta de Andalućıa for projects PY20-00870 and P18-RT-2778 and UPO-138516.

References

[1] Al-Falouji, G., Gruhl, C., Neumann, T., Tomforde, S.: A heuristic for an
online applicability of anomaly detection techniques. pp. 107–112. IEEE (9
2022)

[2] Almeida, E., Ferreira, C., Gama, J.: Adaptive model rules from data
streams. In: Proceedings of the Machine Learning and Knowledge Dis-
covery in Databases. pp. 480–492 (2013)

[3] Benczúr, A.A., Kocsis, L., Pálovics, R.: Online Machine Learning Algo-
rithms over Data Streams, pp. 1199–1207. Springer International Publish-
ing, Cham (2019)

20

5| Publications 253

[4] Bifet, A., Hammer, B., Schleif, F.: Recent trends in streaming data analy-
sis, concept drift and analysis of dynamic data sets. In: Proceedings of the
27th European Symposium on Artificial Neural Networks (ESANN). pp.
421–430 (2019)

[5] Bifet, A., Gavaldà, R.: Learning from time-changing data with adaptive
windowing. In: Proceedings of the 2007 SIAM International Conference on
Data Mining (SDM). pp. 443–448 (2007)

[6] Boulegane, D., Bifet, A., Elghazel, H., Madhusudan, G.: Streaming time
series forecasting using multi-target regression with dynamic ensemble se-
lection. In: Proceedings of the IEEE International Conference on Big Data.
pp. 2170–2179 (12 2020)

[7] Cano, A., Krawczyk, B.: Rose: robust online self-adjusting ensemble for
continual learning on imbalanced drifting data streams. Machine Learning
111, 2561–2599 (7 2022)

[8] Carreno, A., Inza, I., Lozano, J.A.: Sndprob: A probabilistic approach for
streaming novelty detection. IEEE Transactions on Knowledge and Data
Engineering pp. 1–1 (2022)

[9] Chandola, V., Banerjee, A., Kumar, V.: Anomaly detection: A survey.
ACM Computing Surveys 41(3) (2009)

[10] Din, S.U., Shao, J., Kumar, J., Mawuli, C.B., Mahmud, S.M.H., Zhang,
W., Yang, Q.: Data stream classification with novel class detection: a
review, comparison and challenges. Knowledge and Information Systems
63, 2231–2276 (9 2021)

[11] Duchi, J., Hazan, E., Singer, Y.: Adaptive subgradient methods for on-
line learning and stochastic optimization. Journal of Machine Learning Re-
search 12, 2121–2159 (2011)

[12] Faria, E.R., Gonçalves, I.J.C.R., de Carvalho, A.C.P.L.F., Gama, J.: Nov-
elty detection in data streams. Artificial Intelligence Review 45, 235–269
(2 2016)

[13] Ikonomovska, E., Gama, J., Džeroski, S.: Learning model trees from evolv-
ing data streams. Data Mining and Knowledge Discovery 23(1), 128–168
(2011)

[14] Jain, M., Kaur, G.: Distributed anomaly detection using concept drift de-
tection based hybrid ensemble techniques in streamed network data. Cluster
Computing 24, 2099–2114 (9 2021). https://doi.org/10.1007/s10586-021-
03249-9

[15] Jiménez-Herrera, P., Melgar-Garćıa, L., Asencio-Cortés, G., Troncoso, A.:
A New Forecasting Algorithm Based on Neighbors for Streaming Electricity
Time Series. In: Hybrid Artificial Intelligent Systems. pp. 522–533. Springer
International Publishing, Cham (2020)

21

254 5.1. Journal and conferences articles

[16] Jiménez-Herrera, P., Melgar-GarćIa, L., Asencio-Cortés, G., Troncoso, A.:
Streaming big time series forecasting based on nearest similar patterns with
application to energy consumption. Logic Journal of the IGPL (2 2022)

[17] Lukasz Korycki, Krawczyk, B.: Adversarial concept drift detection under
poisoning attacks for robust data stream mining. Machine Learning (6 2022)

[18] Ma, X., Ma, G.: Research on modeling and forecasting driven by time series
stream data. In: Proceedings of the 14th IEEE Conference on Industrial
Electronics and Applications (ICIEA). pp. 413–417 (6 2019)

[19] Melgar-Garćıa, L., Gutiérrez-Avilés, D., Rubio-Escudero, C., Troncoso, A.:
Nearest neighbors-based forecasting for electricity demand time series in
streaming. In: Advances in Artificial Intelligence. pp. 185–195. Springer
International Publishing, Cham (2021)

[20] Melgar-Garćıa, L., Gutiérrez-Avilés, D., Rubio-Escudero, C., Troncoso, A.:
Discovering three-dimensional patterns in real-time from data streams: An
online triclustering approach. Information Sciences 558, 174–193 (5 2021)

[21] Mochinski, M.A., Barddal, J.P., Enembreck, F.: Improving multiple time
series forecasting with data stream mining algorithms. In: Proceedings
of the IEEE International Conference on Systems, Man, and Cybernetics
(SMC). pp. 1060–1067 (10 2020)

[22] Pandya, A., Odunsi, O., Liu, C., Cuzzocrea, A., Wang, J.: Adaptive and
efficient streaming time series forecasting with lambda architecture and
spark. In: Proceedings of the IEEE International Conference on Big Data.
pp. 5182–5190 (12 2020)

[23] Park, J.Y., Kim, J.H.: Online incremental hierarchical classification reso-
nance network. Pattern Recognition 111, 107672 (2021)

[24] Romitti, Y., Wing, I.S.: Heterogeneous climate change impacts on electric-
ity demand in world cities circa mid-century. Scientific Reports 12(1) (3
2022)

[25] Sahal, R., Breslin, J.G., Ali, M.I.: Big data and stream processing plat-
forms for Industry 4.0 requirements mapping for a predictive maintenance
use case. Journal of Manufacturing Systems 54, 138–151 (2020)

[26] Souiden, I., Omri, M.N., Brahmi, Z.: A survey of outlier detection in high
dimensional data streams. Computer Science Review 44, 100463 (5 2022)

[27] Talavera-Llames, R., Pérez-Chacón, R., Troncoso, A., Mart́ınez-Álvarez,
F.: MV-kWNN: A novel multivariate and multi-output weighted nearest
neighbors algorithm for big data time series forecasting. Neurocomputing
353, 56–73 (2019)

22

5| Publications 255

[28] Talavera-Llames, R.L., Pérez-Chacón, R., Mart́ınez-Ballesteros, M., Tron-
coso, A., Mart́ınez-Álvarez, F.: A nearest neighbours-based algorithm for
big time series data forecasting. In: Hybrid Artificial Intelligent Systems.
pp. 174–185 (2016)

[29] Wang, X., Yao, Z., Papaefthymiou, M.: A real-time electrical load forecast-
ing and unsupervised anomaly detection framework. Applied Energy 330,
120279 (2023)

23

256 5.1. Journal and conferences articles

257

Part IV

Final remarks

259

6| Conclusions and future

developments

The last part of this dissertation is addressed in this Chapter. The conclusions
obtained during the research are presented in Section 6.1 in English and in Section

6.2 in Spanish in order to be eligible for the International Doctorate Mention. In addition,
new directions to be developed in future research are discussed in Section 6.3 in English
and in Section 6.4 in Spanish.

260 6.1. Conclusions

6.1 | Conclusions
As general conclusions, significant advances have been achieved by providing new big

data and big data streaming algorithms. To the best of our knowledge, these algorithms
have covered techniques that have been poorly investigated so far. Moreover, these
techniques are easy to apply and have proven their usefulness on real Smart City and
medicine data with which they have been tested.

The specific conclusions that can be drawn from each of the solutions implemented
from scratch during the PhD Thesis are addressed in this Section.

Triclustering in big data . The most relevant contributions in the field of three-
dimensional data clustering or triclustering in batch or offline mode using historical
datasets are detailed below:

• The new bigTriGen algorithm that mines patterns in three dimensional datasets
has been introduced. This algorithm has been developed for large datasets, proving
to be a big data algorithm with no algorithmic scalability limitation. It has been
demonstrated that the algorithm finds areas in the data with different patterns and
that its scalability factor is even better than linear scalability.

• The bigTriGen method has been applied to agricultural fields and seismic data. In
both real applications, patterns identifying areas with special characteristics have
been discovered using vegetation indices and an earthquake catalog, respectively.

• The triclusters discovered in these applications have obtained high quality
measurements demonstrating the good performance of the model. Due to the fact
that triclustering techniques address learning in an unsupervised mode and therefore
the ground-truth is not known, agricultural and seismic experts have validated the
triclusters to provide an extra quality measure.

• The bigTriGen algorithm works with static or historical data. The following
discussed algorithm, known as STriGen, discovers patterns in three-dimensional
data in real-time.

Triclustering in big data streams . The following conclusions have been obtained
with regard to triclustering in real-time:

• The new STriGen algorithm that finds three-dimensional data clusters in real-time
has been introduced. This algorithm has been developed using an adapted version

6| Conclusions and future developments 261

of the bigTriGen as a base model. Incremental learning has been implemented for
the STriGen allowing the triclusters to be updated in real-time incorporating, if any,
concept drift. In this manner, it has been shown that areas with similar patterns
can be found providing accurate and real-time responses. The execution times of
each iteration are in the order of seconds.

• The STriGen method has been applied to real data from environmental sensors and
medical imaging. In both cases, areas with similar patterns have been discovered in
real-time.

• The quality of the triclusters found in real-time has been analyzed with a measure
specifically developed for the algorithm called GRQ. In addition, the performance
of STriGen has been compared with a baseline algorithm. The results of STriGen
have been superior to those of the baseline algorithm in all runs, thus demonstrating
its good performance.

• The STriGen has been able to find concept drift and adjust the model in real-time.
It has also detected minor component changes. However, it has not been applied
for the moment to detect outliers or anomalies in real-time considering the current
triclusters.

Forecasting in big data streams . With respect to real-time prediction, the following
conclusions can be drawn:

• The new StreamWNN algorithm that performs real-time predictions has been
introduced. The algorithm has been implemented to cope with continuous data
flow or streams in two phases. First, a model based on the traditional k nearest
neighbors algorithm is created in batch or offline mode. Then, the online phase
starts and all the streaming requirements are satisfied using Apache Kafka. In the
online phase the model has been developed to be updated incrementally taking
into account also the novelties and anomalies that may be received in real-time. In
addition, it has been demonstrated that the model behaves in an scalable way which
allows it to be identified in the big data streaming paradigm.

• The StreamWNN has been applied to the electricity energy demand of Spain and has
demonstrated a good performance of the model both in terms of error metrics and
in execution time. Results improve when the model is updated online considering
an incremental learning approach, including novelties and identifying anomalies.

• A full comparison of the results with some benchmark algorithms for the same
dataset have shown that the best results are achieved with StreamWNN.

262 6.1. Conclusions

• In this application the algorithm has been tested with univariable data. The
algorithm can be easily applied to multivariable datasets. Another interesting
remark is that the model does not take into account any calendar information.
It is a pattern-based algorithm, which has proven to provide accurate results.

• The StreamWNN can be easily applied to any time series. For example, it has
been applied to gas and electricity demand datasets from a Spanish Hospital.
This project was part of a collaboration with the company "Sevilla Futura". The
model demonstrated a very accurate performance also with this type of data. If
the time series is not stationary, it would be interesting to perform a time series
decomposition. This procedure was followed for the application of the algorithm to
the New York City taxi demand in real-time using the StreamWNN.

6| Conclusions and future developments 263

6.2 | Conclusiones
Como conclusiones generales, se han logrado avances significativos al proporcionar

nuevos algoritmos de big data y big data streaming. Estos algoritmos se han enfocado en
técnicas poco investigadas hasta la fecha. Además, estos métodos son fáciles de aplicar y
han demostrado su gran utilidad en datos reales de ciudades inteligentes o Smart Cities
y medicina con los que se han probado.

En esta Sección se presentan las conclusiones específicas que pueden extraerse de
cada una de las soluciones desarrolladas durante la Tesis Doctoral.

Triclustering en big data . A continuación, se detallan las contribuciones más
relevantes en el campo de la agrupación de datos tridimensionales o triclustering en modo
batch u offline utilizando conjuntos de datos históricos:

• Se ha propuesto el nuevo algoritmo bigTriGen que extrae patrones en conjuntos de
datos tridimensionales. Este algoritmo se ha desarrollado para grandes conjuntos
de datos, probándose que es un algoritmo de big data sin limitación de escalabilidad
algorítmica. Se ha demostrado que el algoritmo encuentra áreas con patrones
diferentes en los datos y que su factor de escalabilidad es incluso mejor que la
escalabilidad lineal.

• El método bigTriGen se ha aplicado a campos de cultivo y a datos sísmicos.
En ambas aplicaciones reales, se han descubierto patrones que identifican zonas
con características especiales utilizando índices de vegetación y un catálogo de
terremotos, respectivamente.

• Los triclusters descubiertos en estas aplicaciones han conseguido medidas de alta
calidad que demuestran el buen rendimiento del modelo. Debido a que las técnicas
de triclustering abordan el aprendizaje de un modo no supervisado y, por tanto, no
se conoce la verdad fundamental o ground truth, expertos agrícolas y sísmicos han
validado los triclusters para proporcionar una medida de calidad adicional.

• El bigTriGen funciona con datos en estático o históricos. El siguiente algoritmo
comentado, conocido como STriGen, descubre patrones en datos tridimensionales
en tiempo real.

Triclustering en big data streams . Se han obtenido las siguientes conclusiones con
respecto al triclustering en tiempo real:

264 6.2. Conclusiones

• Se ha presentado el nuevo algoritmo STriGen que encuentra clusters de datos
tridimensionales en tiempo real. Este algoritmo se ha desarrollado utilizando
como modelo base una versión adaptada del bigTriGen. Se ha implementado un
aprendizaje incremental para el STriGen que permite actualizar los triclusters en
tiempo real incorporando, si existe, el cambio de deriva o concept drift. De esta
forma, se ha demostrado que se pueden encontrar áreas con patrones similares
proporcionando respuestas precisas y en tiempo real. Los tiempos de ejecución
de cada iteración son del orden de segundos.

• El método STriGen se ha aplicado a datos reales procedentes de sensores
medioambientales y de imágenes médicas. En ambos casos, se han descubierto
áreas con patrones similares en tiempo real.

• La calidad de los triclusters encontrados en tiempo real se ha analizado con una
medida desarrollada específicamente para el algoritmo denominada GRQ. Además,
se ha comparado el rendimiento de STriGen con un algoritmo de referencia. Los
resultados de STriGen han sido superiores a los del algoritmo de referencia en todas
las ejecuciones, demostrando así su buen rendimiento.

• El STriGen ha sido capaz de detectar los concept drift y ajustar el modelo en tiempo
real. También ha identificado cambios menores en los componentes. Sin embargo,
no se ha aplicado por el momento para detectar valores atípicos o anomalías en
tiempo real teniendo en cuenta los triclusters actuales.

Predicción en big data streams . En cuanto a la predicción en tiempo real, se extraen
las siguientes conclusiones:

• Se ha presentado el nuevo algoritmo StreamWNN que realiza predicciones en tiempo
real. El algoritmo trata los flujos de datos continuos en dos fases. En primer lugar,
se crea un modelo basado en el algoritmo tradicional k-vecinos cercanos o KNN en
modo batch u offline. Seguidamente, se inicia la fase online donde se satisfacen todos
los requisitos del paradigma streaming utilizando Apache Kafka. Durante la fase
online el modelo se actualiza de forma incremental teniendo en cuenta también las
novedades y anomalías que se puedan recibir en el flujo continuo o stream. Además,
se ha demostrado que el modelo se comporta de forma escalable lo que permite
identificarlo dentro del paradigma de big data streaming.

• El StreamWNN se ha aplicado a la demanda de energía eléctrica en España y se
ha demostrado un buen rendimiento del modelo tanto en términos de métricas de
error como en tiempos de ejecución. Los resultados mejoran cuando el modelo

6| Conclusions and future developments 265

se actualiza de forma online considerando un enfoque de aprendizaje incremental,
incluyendo novedades e identificando anomalías.

• Una comparación completa de los resultados con algunos algoritmos de referencia
para el mismo conjunto de datos ha demostrado que los mejores resultados se
obtienen con StreamWNN.

• En la aplicación presentada en la Tesis Doctoral, se ha probado el algoritmo con
datos univariables. El algoritmo puede aplicarse fácilmente a conjuntos de datos
multivariables. Otra particularidad interesante es que el modelo no tiene en cuenta
ninguna información relacionada con el calendario. Se trata de un algoritmo basado
en patrones que ha demostrado que se obtienen resultados precisos.

• El StreamWNN puede aplicarse fácilmente a cualquier serie temporal. Por ejemplo,
se ha aplicado a conjuntos de datos de demanda de gas y electricidad de un hospital
español. Este proyecto forma parte de una colaboración con la empresa "Sevilla
Futura". El modelo demostró un rendimiento preciso también para estos datos. Si
la serie temporal que se quiere usar para el StreamWNN no es estacionaria, sería
interesante realizar una descomposición de dicha serie. Este procedimiento se siguió
para la aplicación del algoritmo a la demanda de taxis de la ciudad de Nueva York
en tiempo real utilizando el StreamWNN.

266 6.3. Future works

6.3 | Future works
Based on the analysis of the results obtained in this dissertation, the following future

work studies are suggested:

• Anomaly or outlier detection with real-time microtriclusters by implementing a new
version of STriGen.

To the best of our knowledge, there is very little research on the detection of
anomalous three-dimensional patterns in real-time. We propose to use as a basis
the modeling idea of the StreamWNN for anomaly detection, taking into account
that the type of learning for triclusters is unsupervised.

• Real-time parallel prediction models for spatio-temporal datasets by implementing
a new version of StreamWNN where the bigTriGen triclusters are used in advance.

Starting with the triclusters found from an execution of the bigTriGen with
historical spatio-temporal data, it is proposed to run the StreamWNN in parallel
for each of those triclusters. In this way a problem will be divided into sub-models
thus providing a more specific modeling for each of the zones of each tricluster.
This approach has been started to be developed with taxo demand data in New
York during the predoctoral stay at NYU.

• Review of the state of the art of models that work with continuous data flows or
data streams.

During the development of the PhD program, different approaches have been found
to address the issue of data streaming. However, to the best of our knowledge,
there is no current comprehensive review of the subject. We propose to address
the detection of patterns, concept drift, anomalies and novelties in online mode or
real-time. As well as to establish a conceptual foundation of data streaming after
what has been learned during the dissertation.

• Research on current lines of traditional machine learning for data streaming.

To the best of our knowledge, there are not many contributions of algorithms
working in real-time or online mode for batch or traditional machine learning
approaches that are currently in vogue. For example, meta-learning or transfer
learning.

Overall, during this dissertation it has been found that the number of contributions

6| Conclusions and future developments 267

and research for real-time or streaming data is limited. However, the current trend in
companies is to work with and get answers from real-time or streaming data. Therefore,
the future of research is oriented in this paradigm in which it is expected to contribute
with scientific improvements.

268 6.4. Trabajos futuros

6.4 | Trabajos futuros
A partir del análisis de los resultados obtenidos en esta Tesis Doctoral, se sugieren

los siguientes trabajos futuros:

• Detección de anomalías o outliers con microtriclusters en tiempo real mediante la
implementación de una nueva versión del algoritmo STriGen.

En la actualidad existe muy poca investigación sobre la detección de patrones
tridimensionales anómalos en tiempo real. Se propone utilizar como base la idea
de modelado del StreamWNN para la detección de anomalías, teniendo en cuenta
que el tipo de aprendizaje para los triclusters es no supervisado.

• Modelos de predicción paralela en tiempo real para conjuntos de datos espacio-
temporales mediante la implementación de una nueva versión de StreamWNN en
la que se utilicen los triclusters generados previamente por bigTriGen.

Partiendo de los triclusters encontrados a partir de una ejecución del bigTriGen

con datos espacio-temporales históricos, se propone ejecutar el StreamWNN en
paralelo para cada uno de esos triclusters. De esta forma, el problema se dividirá
en submodelos, proporcionando así un modelado más específico para cada una de
las zonas enmarcadas en los triclusters. Este enfoque se ha empezado a desarrollar
con datos de demanda de taxis en Nueva York durante la estancia predoctoral en
la NYU.

• Revisión del estado del arte de los modelos que trabajan con flujos continuos de
datos o data streams.

Durante el desarrollo del Programa de Doctorado, se han encontrado diferentes
enfoques para abordar el tema del flujo continuo de datos. Sin embargo, hasta donde
sabemos, no existe en la actualidad una revisión exhaustiva del tema. Se propone
abordar la detección de patrones, deriva de conceptos o concept drift, anomalías y
novedades en modo online o en tiempo real. Así como establecer una base conceptual
del streaming de datos tras lo aprendido durante la Tesis Doctoral.

• Investigación sobre las líneas actuales del aprendizaje automático tradicional para
el flujo de datos continuo o data streaming.

A día de hoy, no hay muchas contribuciones de algoritmos que trabajen en tiempo
real o en modo online para los enfoques de machine learning en batch o tradicionales

6| Conclusions and future developments 269

que están actualmente más en tendencia. Por ejemplo, el meta-aprendizaje (meta-
learning) o el aprendizaje por transferencia (transfer learning).

En general, a lo largo de esta Tesis Doctoral se ha constatado que el número de
contribuciones e investigaciones para datos en tiempo real o streaming es limitado. Sin
embargo, la tendencia actual en las empresas es trabajar y obtener respuestas a partir de
este tipo de datos continuos en tiempo real. Por lo tanto, el futuro de la investigación se
orienta en este paradigma en el que se espera contribuir con mejoras científicas.

271

Bibliography

[1] S. Agrahari and A. K. Singh. Concept drift detection in data stream mining : A
literature review. Journal of King Saud University - Computer and Information
Sciences, 2021. ISSN 1319-1578.

[2] J. L. Amaro-Mellado, L. Melgar-García, C. Rubio-Escudero, and D. Gutiérrez-
Avilés. Generating a seismogenic source zone model for the pyrenees: A gis-assisted
triclustering approach. Computers and Geosciences, 150:104736, 2021.

[3] V. Chandola, A. Banerjee, and V. Kumar. Anomaly detection: A survey. ACM
Computing Surveys, 41(3), 2009.

[4] Databricks. Project lightspeed: Faster and simpler stream processing
with apache spark. https://www.databricks.com/blog/2022/06/28/

project-lightspeed-faster-and-simpler-stream-processing-with-apache-spark.

html, 2022. Accesed: 2023-13-01.

[5] D. Gutiérrez-Avilés and C. Rubio-Escudero. Msl: A measure to evaluate three-
dimensional patterns in gene expression data. Evolutionary Bioinformatics, 11:
121—135, 2015.

[6] D. Gutiérrez-Avilés, R. Giráldez, F. J. Gil-Cumbreras, and C. Rubio-Escudero.
TRIQ: a new method to evaluate triclusters. BioData Mining, 11(1):15, 2018.

[7] IBM. Fast data. https://www.ibm.com/uk-en/analytics/fast-data, 2022.
Accessed: 2023-13-01.

[8] P. Jiménez-Herrera, L. Melgar-García, G. Asencio-Cortés, and A. Troncoso. A
new forecasting algorithm based on neighbors for streaming electricity time series.
In E. A. de la Cal, J. R. Villar Flecha, H. Quintián, and E. Corchado, editors,
Hybrid Artificial Intelligent Systems, volume 12344, pages 522–533, Lecture Notes in
Computer Science, 2020. Springer International Publishing, Cham.

[9] P. Jiménez-Herrera, L. Melgar-García, G. Asencio-Cortés, and A. Troncoso.

https://www.databricks.com/blog/2022/06/28/project-lightspeed-faster-and-simpler-stream-processing-with-apache-spark.html
https://www.databricks.com/blog/2022/06/28/project-lightspeed-faster-and-simpler-stream-processing-with-apache-spark.html
https://www.databricks.com/blog/2022/06/28/project-lightspeed-faster-and-simpler-stream-processing-with-apache-spark.html
https://www.ibm.com/uk-en/analytics/fast-data

272 | Bibliography

Streaming big time series forecasting based on nearest similar patterns with
application to energy consumption. Logic Journal of the IGPL, 02 2022. jzac017.

[10] A. Kafka. Apache kafka introduction. https://kafka.apache.org/intro, 2022.
Accessed: 2023-13-01.

[11] P. Larranaga, D. Atienza, J. D. Rozo, A. Ogbechie, C. Puerto-Santana, and C. Bielza.
Industrial Applications of Machine Learning. CRC Press, 2018.

[12] F. Martínez-Álvarez, G. Asencio-Cortés, J. F. Torres, D. Gutiérrez-Avilés, L. Melgar-
García, R. Pérez-Chacón, C. Rubio-Escudero, J. C. Riquelme, and A. Troncoso.
Coronavirus optimization algorithm: A bioinspired metaheuristic based on the covid-
19 propagation model. Big Data, 8(4):308–322, 2020. doi: 10.1089/big.2020.0051.

[13] L. Melgar-García, D. Gutiérrez-Avilés, C. Rubio-Escudero, and A. Troncoso. High-
content screening images streaming analysis using the strigen methodology. In
Proceedings of the 35th Annual ACM Symposium on Applied Computing, SAC ’20,
page 537–539, New York, NY, USA, 2020. Association for Computing Machinery.
ISBN 9781450368667.

[14] L. Melgar-García, M. T. Godinho, R. Espada, D. Gutiérrez-Avilés, I. S. Brito,
F. Martínez-Álvarez, A. Troncoso, and C. Rubio-Escudero. Discovering spatio-
temporal patterns in precision agriculture based on triclustering. In Á. Herrero,
C. Cambra, D. Urda, J. Sedano, H. Quintián, and E. Corchado, editors, 15th
International Conference on Soft Computing Models in Industrial and Environmental
Applications (SOCO 2020), pages 226–236, Cham, 2021. Springer International
Publishing.

[15] L. Melgar-García, D. Gutiérrez-Avilés, C. Rubio-Escudero, and A. Troncoso. Nearest
neighbors-based forecasting for electricity demand time series in streaming. In
E. Alba, G. Luque, F. Chicano, C. Cotta, D. Camacho, M. Ojeda-Aciego, S. Montes,
A. Troncoso, J. Riquelme, and R. Gil-Merino, editors, Advances in Artificial
Intelligence, pages 185–195, Cham, 2021. Springer International Publishing.

[16] L. Melgar-García, D. Gutiérrez-Avilés, C. Rubio-Escudero, and A. Troncoso.
Discovering three-dimensional patterns in real-time from data streams: An online
triclustering approach. Information Sciences, 558:174–193, 2021.

[17] L. Melgar-García, D. Gutiérrez-Avilés, M. T. Godinho, R. Espada, I. S.
Brito, F. Martínez-Álvarez, A. Troncoso, and C. Rubio-Escudero. A new big
data triclustering approach for extracting three-dimensional patterns in precision
agriculture. Neurocomputing, 500:268–278, 2022.

https://kafka.apache.org/intro

6| BIBLIOGRAPHY 273

[18] L. Melgar-García, D. Gutiérrez-Avilés, C. Rubio-Escudero, and A. Troncoso. Nearest
neighbors with incremental learning for real-time forecasting of electricity demand.
IEEE International Conference on Data Mining (ICDM 2022), 2023. In press.

[19] T. G.-G.-S. G. C. Rating. Explore the gii-grin-scie (ggs) conference rating, 2023.
Accesed: 2023-13-01.

[20] H. y. N. P. Sociedad Española de Gastroenterología. Seghnp, libros
de trabajos 2020. https://www.seghnp.org/sites/default/files/2020-09/

trabajosSEGHNP2020_0.pdf, 2020. Accesed: 2023-13-01.

https://www.seghnp.org/sites/default/files/2020-09/trabajosSEGHNP2020_0.pdf
https://www.seghnp.org/sites/default/files/2020-09/trabajosSEGHNP2020_0.pdf

	Declaration
	I Summary of the dissertation
	Introduction
	Structure of the dissertation
	Research motivation
	Research goals
	Contributions

	Research context
	The streaming paradigm
	Data streaming requirements
	Data streaming computational approaches

	Streaming pattern evolution discovery
	Concept drift
	Novelties in streams
	Anomalies in streams

	Apache Kafka

	II Research methodology
	Methodology
	Triclustering
	Problem statement
	bigTriGen
	Fitness function
	Genetic operators
	Validation of the yielded triclusters

	STriGen
	Offline phase
	Online phase
	Incremental learning
	Concept drift

	Validation of the yielded triclusters

	Forecasting
	Problem statement
	Offline phase
	Online phase
	Incremental learning
	Novelties and anomalies

	Applications
	Triclustering applications to Smart Cities and medicine
	Precision agriculture
	Datasets description
	Parameter tuning
	Model performance

	Seismogenic
	Dataset description
	Parameter tuning
	Model performance

	Environmental sensors
	Dataset description
	Parameter tuning
	Model performance

	Medical images
	Dataset description
	Parameter tuning
	Model performance

	Forecasting applications to energy electricity demand
	Dataset description
	Parameter tuning
	Model performance
	Incremental learning
	Novelties and anomalies
	Scalability and timely results

	III List of publications
	Publications
	Journal and conferences articles
	"Discovering spatio-temporal patterns in precision agriculture based on triclustering"
	"High-content screening images streaming analysis using the STriGen methodology"
	"Coronavirus Optimization Algorithm: A Bioinspired Metaheuristic Based on the COVID-19 Propagation Model"
	"A new forecasting algorithm based on neighbors for streaming electricity time series"
	"Discovering three-dimensional patterns in real-time from data streams: an online triclustering approach"
	"Generating a seismogenic source zone model for the Pyrenees: a GIS-assisted triclustering approach"
	"Nearest neighbors-based forecasting for electricity demand time series in streaming"
	"A new big data triclustering approach for extracting three-dimensional patterns in precision agriculture"
	"Streaming big time series forecasting based on nearest similar patterns with application to energy consumption"
	"Nearest neighbors with incremental learning for real-time forecasting of electricity demand"
	"A novel distributed forecasting method based on information fusion and incremental learning for streaming time series"
	"Identifying novelties and anomalies for incremental learning in streaming time series forecasting"

	IV Final remarks
	Conclusions and future developments
	Conclusions
	Conclusiones
	Future works
	Trabajos futuros

	Bibliography

