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This article introduces the Banzhaf and the Banzhaf–Owen values as novel measures
of risk analysis of a terrorist attack, determining the most dangerous terrorists in a
network. This new approach counts with the advantage of integrating at the same time
the complete topology (i.e., nodes and edges) of the network and a coalitional structure
on the nodes of the network. More precisely, the characteristics of the nodes (e.g.,
terrorists) of the network and their possible relationships (e.g., types of communication
links), as well as coalitional information (e.g., level of hierarchies) independent of the
network. First, for these two new measures of risk analysis, we provide and implement
approximation algorithms. Second, as illustration, we rank the members of the Zerkani
network, responsible for the attacks in Paris (2015) and Brussels (2016). Finally, we
give a comparison between the rankings established by the Banzhaf and the Banzhaf–
Owen values as measures of risk analysis.
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1 INTRODUCTION

Over recent years, new jihadist cells have formed relatively
easily in the Western World with the aim of committing ter-
rorist acts. One of the recruitment organizations most active
and dangerous is known as the Zerkani network.

The Zerkani network was named after Khalid Zerkani, a
Moroccan who was living in the Brussels municipality of
Molenbeek and that was introduced into the network by Reda
Kriket. On November 13, 2015, the Islamic State carried
out simultaneous attacks in several places in France, such as
the Bataclan concert hall, killing more than a hundred peo-
ple and wounding hundreds. Few months later, on March
22, 2016, part of those who were involved behind of the
Paris attacks managed to launch another massive attack in
Brussels, detonating suicide bombs at Zaventem International
Airport and in Maelbeek subway station, killing 32 people

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original

work is properly cited.

© 2023 The Authors. Risk Analysis published by Wiley Periodicals LLC on behalf of Society for Risk Analysis.

and injuring many more. The main figures responsible for
the tactical operations of the Paris and Brussels’ attacks were
Abdelhamid Abaaoud and jihadist recruiter Khalid Zerkani.
The Zerkani network provided personnel, training, planning,
attack, escape, and evasion. Although the individual exact
role of Zerkani is not entirely clear, he was found guilty of
being one of those responsible for perpetrating both attacks
mentioned above.

Due to the increase in both frequency and intensity of these
attacks in recent years, as well as their damage to society,
it is essential to enhance investigations to neutralize poten-
tial attack attempts. For this purpose, one of the key aspects
is to evaluate the risk analysis of a potential terrorist attack
identifying and, immediately thereafter, determining the rel-
evance of each of the key members of the network. However,
since the resources of agencies (for instance, the police or the
national intelligence services, among others) are limited, they
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must be allocated in an optimal way in order to stop potential
terrorist attacks before they occur. Among many other things,
a key issue is to identify the main leaders of a network. It is
well-known that breaking up such a network, by identifying
its members, immediately neutralizes its criminal activity.

From a purely mathematical point of view, the data of
a terrorist network can be studied through the construc-
tion of a graph. The terrorists become the nodes and the
edges represent the interaction between each pair of these
individuals. Once the network structure is built, there are
several ways to rank their members by their relevance in the
organization. The most used methods for ranking are based
on standard network measures, such as degree centrality,
betweenness centrality, and closeness centrality (see, for
details, Koschade, 2006). However, the main drawbacks of
this kind of measures focus on the fact that they only consider
the structure of the network. In this line of research, other
approaches have been considered in literature as alternative.
For instance, the standard social network centrality approach
has been also used in analyzing criminal and terror networks.
See, for instance, Sparrow (1991), Peterson (1994), Klerks
(2001), Carley et al. (2003), or Farley (2003). Over the
years, the interest in the subject is evident, as it is shown in
Calderoni (2012), Berlusconi et al. (2016), Calderoni et al.
(2017, 2020), Grassi et al. (2019), Catino et al. (2022), and
Bertoni et al. (2022), among others, to analyze the creation
of networks as power or crimes organizational instruments.

One common issue to all these proposals is the fact that
not considering valuable information about the communica-
tion between the members of the network. These deficiencies
are solved in Lindelauf et al. (2013) and in Husslage et al.
(2015), by taking into account the heterogeneity of links and
nodes through the use of cooperative game theory. Risk anal-
ysis and game theory are strongly connected (Cox, 2009).
Noncooperative game-theoretical security models have been
used, for example, to improve process plant protection from
terrorist attacks (Zhang & Reniers, 2016). Instead in this arti-
cle, we focus on the perspective of cooperative games with
transferable utility, called TU-games to introduce new risk
analysis measures in networks, in particular, when dealing
with terrorist networks. Usually, TU-games are considered
for the modeling of those multiagent interactive situations, in
which collaboration of involved individuals in groups is a key
aspect to achieve a common goal. When applying them on
terrorist networks, a ranking of the members of the network
according to its relevance can be determined. For instance,
the members of the Zerkani network are ranked in Hamers
et al. (2019) accordingly to the Shapley value (Shapley, 1953)
(see Algaba et al., 2019b, for an updating of results about
this value) for the TU-games considered in Husslage et al.
(2015). However, other coalitional values, as the well-known
Banzhaf value (Banzhaf, 1964) for TU-games, can be used as
a criterion. Although it is originally considered for voting sit-
uations, its usage is extended to general TU-games in Owen
(1975). Besides, it is used in Owen (1986) when restrictions
of communication are represented by graphs, being charac-
terized by Alonso-Meijide and Fiestras-Janeiro (2006), in this

context. Applications of the Banzhaf value also arise in elec-
trical engineering (Chow, 1961), in computation (Ben-Or &
Linial, 1985), in genetic (Lucchetti et al., 2010), and even,
it can be used as a design tool in coalitional control (Muros
et al., 2017). However, the use of the Banzhaf value, that at
first assume that all coalitions can be formed, can certainly
be limited because there exist some situations in real world in
which cooperation among players may be restricted. Namely,
transferable utility games with a priori unions (or TU-games
with a priori unions) are introduced to model these situations,
with multiple applications in fields as political science, logis-
tics, or cost allocation problems, among others. In fact, in
this setting, the Banzhaf–Owen value (Owen, 1982) is intro-
duced generalizing the Banzhaf value for TU-games with a
priori unions.

In practice, the main drawback of these values is com-
putational (see Deng & Papadimitriou, 1994, for details).
However, such solutions can be obtained in polynomial time
for certain classical applications of cooperative game theory.
See, for instance, Littlechild and Owen (1973) for the case of
the Shapley value in airport games; the exact expression the
Banzhaf value for microarray games is obtained in Lucchetti
et al. (2010); and Leech (2002), Algaba et al. (2003), Alonso-
Meijide and Bowles (2005), or Algaba et al. (2007) compute
exactly coalitional values in voting situations. The develop-
ment of heuristics and exact solutions to find voting systems
that generate a power distribution can be found in Kurz and
Napel (2014). For a more general setting, sampling method-
ologies (Cochran, 2007) have become increasingly important
as an alternative solution to the computational issues raised
above. We refer to Fernández-García and Puerto-Albandoz
(2006) and Castro et al. (2009) for the Shapley value esti-
mation, and to Bachrach et al. (2010) for the Banzhaf value
estimation. In settings with a priori unions, Saavedra-Nieves
and Fiestras-Janeiro (2021) use sampling for estimating the
Banzhaf–Owen value. As immediate applications, Saavedra-
Nieves and Saavedra-Nieves (2020) estimate the random
arrival rule (the Shapley value) for bankruptcy games, or
Hamers et al. (2019) rank the members of a terrorist network
by its relevance, estimating the Shapley value.

In this article, we focus on ranking the members of
the Zerkani network considering the existence of different
degrees of relationships among them. With this aim, we
focus on those coalitional values inspired by the approach
of the Banzhaf value (Banzhaf, 1964). Given the natural
interpretation they present in terms of the average marginal
contribution, their application in contexts other than voting
systems is of interest. First, we focus on the Banzhaf value,
following the results obtained by Hamers et al. (2019) for
the Shapley value. In other direction, the possible affinities
among the members of a network can be naturally described
in terms of an a priori coalitional structure, which makes pos-
sible the extension of the Banzhaf value through the definition
of TU-games with a priori unions. This strongly justifies
the introduction of the Banzhaf–Owen value in this context,
as mechanisms of ranking since let enrich the information
about the terrorist network for obtaining the rankings. Due
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to the difficulties in computing, in an exact way, both of
them, we make use of sampling techniques for approximat-
ing these results. Specifically, we consider the procedure in
Bachrach et al. (2010) for estimating the Banzhaf value, and
we vary the proposal in Saavedra-Nieves and Fiestras-Janeiro
(2021), by adding the hypothesis of replacement in sampling,
for approximating the Banzhaf–Owen value. Once they are
obtained, it is possible to rank the terrorists from the Zerkani
network according to the decreasing order of both estimations
with the purpose of achieving a risk analysis on a potential
terrorist attack.

The work is organized as follows. Section 2 introduces
the basic notation on TU-games and on coalitional values.
Section 3 deals with the sampling methodologies for esti-
mating the Banzhaf value and the Banzhaf–Owen value as
new measures of risk analysis. Section 4 focuses on ranking
the members of the Zerkani network through the approxi-
mations of the Banzhaf value and the Banzhaf–Owen value.
Four appendices are included in the Online Resource Section.
Appendix A numerically details the ranking obtained under
the estimations of the Banzhaf value. Appendix B depicts
the one obtained under the Banzhaf–Owen value estimation.
Appendix C contains a comparison of several possibilities of
a priori unions system. Appendix D includes the R code used
for obtaining the results.

2 RISK ANALYSIS MEASURES FOR
NETWORKS BASED ON SOLUTIONS FOR
TU-GAMES

This section introduces some basic notions on coopera-
tive game theory and on graph theory to provide a better
understanding of the rest of the manuscript.

Formally, a TU-game is a pair (N, v), where N =
{1, 2, … , n} is the set of players, and v : 2n ⟶ℝ is a map
satisfying that v(∅) = 0. A coalition is a subset of players
S ⊆ N and v(S) denotes the maximum value that players in
S can receive by their cooperation. From now on, N denotes
the set of all TU-games with set of players N.

Here, we mainly follow the ideas in Lindelauf et al. (2013),
through the usage of two specific classes of games, which
take into account both the structure of the network and the
relational and the individual strength of the members of a
network. These two games have already been used to analyze
the Zerkani network, although the first of them was slightly
modified with respect to the original TU-game introduced in
Husslage et al. (2015).

Formally, a network can be represented by an undirected
graph G = (N,E), where N denotes the node set of the graph
that represents the set of members of the network and E is the
set of links, that describes all relationships that exist between
these members. A relationship between member i and j is
denoted by ij, with ij ∈ E. Notice that ij ∈ E if and only if
ji ∈ E.

Thus, if a coalition S ⊆ N forms, the subnetwork GS is
defined by the members of S and its links in E, that is,

GS = (S,ES) where ES = {ij ∈ E : i, j ∈ S}. A coalition S ⊆
N is said to be a connected coalition, if the network GS is
connected, otherwise, S is called disconnected.

Associated to any network G = (N,E), the influence and
the relations of individuals in a network G can be modeled
through two parameters. First, considering the influence of
individuals in G = (N,E), represented by a set of weights on
player set N, that is,  = {wi}i∈N with wi ≥ 0. Second, taking
into account the relational strength between members of the
network, given by a set of weights on the edges E, that is,
 = {kij}ij∈E with kij ≥ 0.

The weighted connectivity TU-game (wconn) (N, vwconn),
and the additive weighted connectivity TU-game (awconn)
(N, vawconn), with respect to G = (N,E) based on  and 

were introduced in Husslage et al. (2015). Let f be a non-
negative function depending on coalition S, the influence
of individuals represented by , and the strength between
them given by . This function is usually a measure of the
effectiveness of coalitions in the network which reflects the
situation and information at hand. An example of function f
used in this context is the one introduced in Lindelauf et al.
(2013), and that is shown below. That is, for each S ⊆ N in a
given network G, we have that

f (S,,) =

{(∑
j∈S wj

)
⋅ maxlh∈ES

klh, if |S| > 1,

wS, if |S| = 1.
(1)

This map assigns to each possible coalition S the sum of the
weights of their members multiplied by the maximum weight
on the set of relationships connecting the subnetwork induced
by S.

Namely, for each S ⊆ N, let ΣS the set of components
(maximal connected coalitions) in GS, the weighted con-
nectivity game, (N, vwconn), and the additive weighted
connectivity game, (N, vawconn), are, respectively, given by
the following expressions in a general framework:

vwconn(S) =

{
f (S,,), if S connected,

maxT∈
∑

S
vwconn(T), if S disconnected,

(2)

vawconn(S). =

{
f (S,,), if S connected,∑

T∈
∑

S
vawconn(T), if S disconnected.

(3)
Observe that the worth of each disconnected coalition,

in the weighted connectivity game, is based on the most
effective component of this coalition whereas in the addi-
tive weighted connectivity game1 all components or maximal
connected subsets of a disconnected coalition S are effective.

1 It is important to emphasize that this definition of game is consistent and it has been
widely used to analyze networks derived from graphs as in communication situations
(Myerson, 1977) or in more general settings reflecting communication properties as
hypergraphs communication situations (van den Nouweland et al., 1992), union stable
systems (Algaba et al., 2001a, Algaba et al., 2001b), or voting structures to describe
problems in which there exists a feedback between the economic influence and the
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4 ALGABA ET AL.

A payoff vector z = (zi)i∈N ∈ ℝn is a vector where zi rep-
resents the payoff associated to player i by its collaboration
in a given TU-game (N, v). In general, a solution concept (a
solution) is a map 𝜙 : N → ℝn that assigns to each TU-game
(N, v) a payoff vector.

A well-known solution concept for TU-games is the
Banzhaf value. It was introduced in Banzhaf (1964) for sim-
ple games and later extended to general TU-games (Owen,
1975). Let (N, v) ∈ N , the Banzhaf value is formally defined
for all i ∈ N as

Bzi(N, v) =
1

2n−1

∑
S⊆N⧵{i}

(v(S ∪ {i}) − v(S)). (4)

This solution can be interpreted as the average of marginal
contributions of a player to those coalitions that not con-
tain it. In fact, the average of the marginal contributions of
each player is indicative of its influence on the overall set of
players, as it is the case in voting situations.

A TU-game with a priori unions is a triplet (N, v,P) where
(N, v) ∈ N and P = {P1, … ,Pm} is a partition of N. In this
case, we assume that P is a coalition structure that restricts the
cooperation among the players in N. The set of all TU-games
with a priori unions with set of players N will be denoted by
 N .

The Banzhaf–Owen value (Owen, 1982) is an extension
of the Banzhaf value for TU-games with a priori unions.
Let (N, v,P) ∈  N , for all i ∈ N, the Banzhaf–Owen value
is given by

BzOi(N, v,P) =
∑

R⊆P⧵Pi

1
2m−1

∑
S⊆Pi⧵{i}

1
2pi−1

(v(∪Pl∈RPl ∪ S ∪ {i})

−v(∪Pl∈RPl ∪ S)), (5)

where Pi ∈ P such that i ∈ Pi and pi = |Pi|. Besides, a coali-
tion T ⊆ N ⧵ {i} is compatible with partition P for a player
i ∈ N, if T = ∪Pl∈RPl ∪ S for a coalition of unions R ⊆ P ⧵ Pi
and a coalition of players S ⊆ Pi ⧵ {i}.

In general, solutions for TU-games with a priori unions
assume that the players in an union act jointly, so only contri-
butions of a player to the coalitions formed by a subset of full
unions and the players in its own union are averaged. How-
ever, if the coalition structure is formed by unitary unions or
only by the grand coalition, the Banzhaf–Owen value and the
Banzhaf value prescribe the same allocation.

Once both approaches of TU-games for modeling networks
are formally introduced, we note that, in line with Husslage
et al. (2015), solution concepts can be applied for the two
games for providing a game-theoretic centrality measure. Let
G = (N,E) be a network based on  and ,and let (N, vwconn)
and (N, vawconn) be the TU-games associated to G. From now
on, we will focus on two new centrality measures arisen of

political power (Algaba et al., 2019a). Another framework is to analyze networks with
hierarchical and communication features, simultaneously, as in Algaba et al. (2018).

considering the Banzhaf and Banzhaf–Owen values for the
two TU-games (N, vwconn) and (N, vawconn).

3 SAMPLING PROCEDURES TO
ESTIMATE THE BANZHAF VALUE AND
THE BANZHAF–OWEN VALUE

Although the notion of marginal contribution of a player is
intuitively clear, computing the Banzhaf and the Banzhaf–
Owen values becomes a computationally difficult task when
the amount of players involved in the TU-game substan-
tially increases. This fact justifies the needing of searching
alternatives for providing good approximations of both
solutions.

Along this section, we formally present those algorithms
used for estimating the two above-mentioned values.

3.1 A sampling procedure to estimate the
Banzhaf value

We want to estimate the Banzhaf value of a TU-game (N, v).
Following Bachrach et al. (2010), we formalize a procedure
for estimating the Banzhaf value when the number of play-
ers involved is sufficiently large. The steps of the sampling
procedure are the ones depicted below:

∙ The sampling population is the set of all coalitions of N ⧵
{i}.

∙ The parameter to be estimated is Bzi(N, v), that is, the
player i’s Banzhaf value.

∙ The characteristic to study in each sampling unit, T ⊆ N ⧵
{i}, is the player i’s marginal contribution to coalition T .
That is,

x(T)i = v(T ∪ {i}) − v(T).

∙ We take with replacement a sample of 𝓁 coalitions in N ⧵
{i}, that is,  = {T1, … ,T𝓁}, with Tj ⊆ N ⧵ {i} for all j =
1, … , 𝓁 and 1 < 𝓁 ≤ 2n−1.

∙ The estimation of Bzi(N, v), for every i ∈ N, is the mean of
the marginal contributions over the sample, that is, Bzi =

1

𝓁

𝓁∑
j=1

x(Tj)i where 𝓁 denotes the sampling size.

Once we apply this procedure for each player, the vec-
tor Bz = (Bz1, … ,Bzn) corresponds to the estimation of the
Banzhaf value of all players in (N, v). A fundamental issue
in the problem focuses in bounding the error in the estima-
tion, which is often not possible to be measured in practice.
For this reason, the following probabilistic bound can be
theoretically provided instead:

ℙ(|Bzi − Bzi| ≥ 𝜀) ≤ 𝛼, with 𝜀 > 0 and 𝛼 ∈ (0, 1].
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Let 𝜀 > 0, 𝛼 ∈ (0, 1), and (N, v) be a TU-game. If ri =
max

R,R′⊆N⧵{i}
(x(R)i − x(R′)i), then it is satisfied that

𝓁 ≥ min

{
1

4𝛼𝜀2
,

ln(2∕𝛼)

2𝜀2

}
r2

i implies that ℙ(|Bzi − Bzi| ≥ 𝜀) ≤ 𝛼.

(6)
Thus, the estimated Banzhaf value usually becomes a
good approximation of the real one when sampling sizes
sufficiently enlarge (see, for details, Bachrach et al., 2010).

Thus, determining the range of the marginal contributions
in this setting plays a fundamental role in the analysis of
the error. Specifically, for the TU-games in (2) and (3), such
range fundamentally depends on the function f considered to
measure the effectiveness of coalitions.

In what follows, we provide results to bound the error in
estimating centrality measures in networks when considering
the effectiveness function f for coalitions given in (1).

Proposition 1. Let (N, vwconn), (N, vawconn) be the weighted
connectivity and the additive weighted connectivity TU-
games associated to a given network G by using the function
in (1). For every i ∈ N, it is satisfied that

ri =

(∑
j∈N

wj

)
⋅ maxlh∈EN

klh. (7)

Proof. This result readily follows from the fact that the
marginal contributions satisfies, for both approaches of
TU-games considered, that

0 ≤ x(S)i ≤

(∑
j∈N

wj

)
⋅ maxlh∈EN

klh

for any agent i and for any coalition S in N. □
The following corollary can be immediately obtained.

Corollary 1. Let 𝜀 > 0, 𝛼 ∈ (0, 1), and
(N, vwconn) or (N, vawconn) the weighted connectivity game
or the additive weighted connectivity game associated to a
given network G by using the function in (1). If 𝓁 satisfies
that

𝓁 ≥ min

{
1

4𝛼𝜀2
,

ln(2∕𝛼)

2𝜀2

}((∑
j∈N

wj

)
⋅ maxlh∈EN

klh

)2

,

(8)
then, ℙ(|Bzi − Bzi| ≥ 𝜀) ≤ 𝛼, for every i ∈ N.

3.1.1 A two-stage sampling procedure to
estimate the Banzhaf–Owen value

Now, we follow the ideas of the two-stage procedure in
Saavedra-Nieves and Fiestras-Janeiro (2021) to approximate

the Banzhaf–Owen value. However, unlike the approach
given in Saavedra-Nieves and Fiestras-Janeiro (2021), we add
the hypothesis of replacement at both steps. Thus, given a
TU-game with an a priori coalitional structure (N, v,P), with
P = {P1, … ,Pm} and a fixed arbitrary player i ∈ N, the pro-
cedure for estimating the Banzhaf–Owen value is described
below:

∙ The sampling population is the set of all compatible
coalitions with P for player i.

∙ The parameter to be estimated is BzOi(N, v,P), for all i ∈
N.

∙ The characteristic to be studied in each sampling unit cor-
responds to i’s marginal contribution for each coalition T
that is compatible with P for i. If we consider T ⊆ N ⧵ {i}
in terms of R = {Pk : Pk ⊂ T} and S = T ∩ Pi, then

x(R, S)i = v(∪Pl∈RPl ∪ S ∪ {i}) − v(∪Pl∈RPl ∪ S).

∙ The sampling procedure involves two steps:
◦ First, we take with replacement a sample  =

{R1, … ,R𝓁r
} of 𝓁r coalitions Rj ⊆ P ⧵ Pi.

◦ After, for every Rj ∈ , we choose with replacement a
sample Rj

= {Sj1, … , Sj𝓁s
} of 𝓁s coalitions Sjk ⊆ Pi ⧵

{i}.
As a result, we obtain a sample of 𝓁r𝓁s compatible coali-
tions, where each element takes the form ∪Pl∈RPl ∪ Sjk for
j = 1, … , 𝓁r, with 1 ≤ 𝓁r ≤ 2m−1, and k = 1, … , 𝓁s, with
1 ≤ ls ≤ 2pi−1.

∙ The mean of the marginal contribution vectors over the
sample corresponds to the estimation of the Banzhaf–
Owen value. That is,

BzOi =
1
𝓁r

𝓁r∑
j=1

(
1
𝓁s

𝓁s∑
k=1

x(Rj, Sjk)i

)
,

where 𝓁r and 𝓁s are the sampling sizes.

By applying this procedure for all i ∈ N, we obtain BzO =

(BzO1, … ,BzOn) which corresponds to the estimation of
the Banzhaf–Owen value for (N, v,P). Besides, we con-

sider BzO
Rj

i =
1

𝓁s

𝓁s∑
k=1

x(Rj, Sjk)i as the unbiased estimator of

BzO
Rj

i =
1

2pi−1

∑
S⊆Pi⧵{i}

x(Rj, S), that is, the theoretical mean

of player i’s marginal contributions using all compatible
coalitions with coalition of unions Rj.

Below, we focus on analyzing the properties of the esti-
mator of the Banzhaf–Owen value of player i, BzOi, from a
statistical perspective. First, according to the definition of this
estimator, it is unbiased because

𝔼(BzOi) = 𝔼1(𝔼2(BzOi)) = BzOi,
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6 ALGABA ET AL.

being 𝔼1(⋅) and 𝔼2(⋅) the mean operators in coalitions of
unions and in coalitions into the union which i belongs
to, respectively.

Besides, if var1(⋅) and var2(⋅) are the operators for vari-
ances with respect to the coalitions of unions and with
respect to the coalitions into the unions which i belongs to,
respectively, then the variance of BzOi is

var(BzOi) = var1(𝔼2(BzOi)) + 𝔼1(var2(BzOi)), (9)

or, equivalently,

var(BzOi) =
1
𝓁r

(
𝜃2

a +
𝜃2

b

𝓁s

)
, (10)

where

𝜃2
a =

1
2m−1 − 1

∑
R⊆P⧵Pi

(
BzOR

i − BzOi

)2
, and

𝜃2
b =

1
2m−1

∑
R⊆P⧵Pi

(
1

2pi−1 − 1

∑
S⊆Pi⧵{i}

(
x(R, S)i − BzOR

i

)2
)
.

Roughly speaking, 𝜃2
a refers to the variability of the means

of unions with respect to BzOi, 𝜃
2
b denotes the average of

the variances of the marginal contributions with respect to
its theoretical mean BzOR

i , for each R ⊆ P ⧵ Pi.
Notice that the hypothesis of nonreplacement is analyzed

in Saavedra-Nieves and Fiestras-Janeiro (2021). However, the
main properties on the estimator are still satisfied as well
as the main conclusions about the difficulties in obtaining
probabilistic bounds of the incurred error.

4 COMPUTATIONAL ANALYSIS OF
THE RISK IN ZERKANI NETWORK

In this section, we analyze, from a purely computational
point of view, the ranking problem of the terrorists within
the Zerkani network, applying both the approximation of
the Banzhaf value and the one of the Banzhaf–Owen value,
which have not been never used as centrality measures. For
this purpose, we will use the wconn and awconn TU-games,
given in (2) and (3), respectively. In addition to the numer-
ical results associated to these approximations, Appendix D
in the Online Resource Section describes the R code required
for obtaining the results under both approaches.

In particular, for the case of the Zerkani network, the func-
tion f considered is specifically given by the function in (1).
In order to get the rankings, it has been necessary to use the
approximating procedures considered in Section 3, since the
Zerkani network contains 47 individuals. We compare the

rankings obtained and show the analysis computational of
the process.

4.1 The Zerkani network

Now, we briefly describe the structural organization of the
Zerkani network. Figure 1 shows its associated graph, that is
built by using the information of the 47 individuals belonging
to it.

By means of 11 possible relationships, different extra
weights are assigned to the edges of the associated network,
since initially they all have value 1. The same happens with
the members, by adding a weight to their nodes according
to their influence in the network. We consider the weights
given in Hamers et al. (2019) on the links (edges) and on the
members (nodes) of the network that appears in Table 1.

Since there are several individuals who are linked through
two of these links, there are a total of 13 weights corre-
sponding to the different connections between terrorists. For
instance, Abdelhamid Abaaoud (weight equal to 4), Fabien
Clain (4), Khalid Zerkani (5), Miloud F. (2), and Mohamed
Belkaid (3) have associated a weight larger than one.

In our risk analysis, we focus on the top-10 of the rankings,
although we completely rank all 47 individuals. As men-
tioned, the most important task consists of identifying the
most dangerous terrorists.

In order to establish the rankings of terrorists, we con-
sider two quite different schemes, although both of them
are based on the Banzhaf value. First, we studied the prob-
lem from a myopic perspective without taking into account
the possible affinities among members of the network. After
this, we will introduce these features of the terrorists in the
Zerkani network, in terms of an adequate partition, since
adding this interesting information enriches the input data
and it may be fundamental. As the TU-games, wconn and
awconn, already consider network connectivity, as well as
the weights of individuals and their relationships, we have
taken into account in this article the partition describing the
features of the terrorists in the network. More specifically,
the considered partition has 10 unions, P = {P1,P2, … ,P10}.
The first union, P1, groups the high ranks of the network,
that is, majors and those devoted to recruit terrorists. Union
P2 corresponds to the associated to the upper-level charges.
Next, those who have been recruited or who are under the
authority of a major lead to union P3. One of the relationships
to take into account is to travel with, since during travels can
be created strong relationships or it is assumed that can be
discovered hide intentions, it gives way to unions P4, P5, and
P6. Moreover, inside the Zerkani network, there are several
terrorists who also belong to another network, called Kriket
and they form another union, P7. In the same way, there are
also two individuals associated with Forging Ring, grouped
in P8. The two last groups are due to that two individuals
were arrested simultaneously in Forest and they are associ-
ated without having more details about it, giving way to P9
and P10. Table2 specifies the members of each union as a
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RISK ANALYSIS SAMPLING METHODS IN TERRORIST NETWORKS 7

F I G U R E 1 Graph of the Zerkani network.

summary. Different geometrical figures and colors allow for
identifying members of the Zerkani network who belong to a
same element of the partition P in Figure 1.

4.2 The Banzhaf value approximation in
the Zerkani network

As above-mentioned, one of the objectives is to analyze the
top-10 of the ranking according to the risk of the terrorists
imposed by the decreasing order of the components of the
estimated Banzhaf value in the Zerkani network. In general,
the usage of some properties of (N, vwconn) and (N, vawconn),
that would reduce the computational complexity, is not pos-
sible in this setting. Appendix D.3 describes the R code that
specifically implements the procedure in Section 3.1 on the
Zerkani network.

By simplicity, we obtain 1000 estimations of the Banzhaf
value by using the sampling procedure described in Sec-
tion 3.1 with a sample size equal to 𝓁 = 1000 for the
TU-games (N, vwconn) and (N, vawconn), respectively. Besides,
we use the theoretical properties that satisfy the resulting
estimator to obtain a more exact estimation. By the Central
Limit Theorem, when averaging all of these 1000 approxima-
tions, the final result is equivalent to obtain a only estimation
with 𝓁 = 106, in both cases. Table 3 shows the theoretical
errors provided in Corollary 1 for the problem of estimating
the Banzhaf value when ri = 300, as Proposition 1 ensures
for the case of the Zerkani network.

Table 4 depicts the top-10 terrorists belonging to the
Zerkani network according to the Banzhaf value and the cor-
responding results. More details can be found in Appendix A
that enumerates the overall list of the members of Zerkani
network and the Banzhaf value estimations. We remark the
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8 ALGABA ET AL.

TA B L E 1 List of relationships, weights for links, and weights for
starting nodes.

Relationships
Weights
on links

Extra weight for
starting nodes

“Associate of” 2 0

“Brother of” 1 0

“Commander of” 2 2

“Family relationship” 1 0

“Funded” 1 2

“Lived with” 2 0

“Nephew of” 1 0

“Recruiter of” 1 1

“Supporter of” 1 1

“Traveled to Syria with” 2 0

“Traveled with” 2 0

“Associate and traveled with” 4 0

“Traveled and lived with” 4 0

TA B L E 2 Members of unions of the partition P considered.

Union Members

P1 Abdelhamid Abaaoud, Fabien Clain, and Khalid Zerkani.

P2 Chakib Akrouh, Gelel Attar, Hasna Ait Boulahcen, Fatima
Aberkan, Osama Krayem, Souleymane Abrini, Ayoub el
Khazzani, Mehdi Nemmouche, Thomas Mayet, Macreme
Abrougui, Ahmed Dahmani, and Adrien Guihal.

P3 Sid Ahmed Ghlam, Reda Hame, AQI, Ilias Mohammadi,
Soufiane Alilou, Najim Laachraoui, and Khalid El
Bakraoui.

P4 Paris Attacker A, Paris Attacker B, Salzburg Refugee A, and
Salzburg Refugee B.

P5 Mohammed Amri, Hamza Attou, Mohamed Abrini, and Abid
Aberkan.

P6 Mohamed Belkaid, Salah Abdeslam, Mohamed Bakkali, and
Ibrahim El Bakraoui.

P7 Reda Kriket, Rabah M., Y. A., Abderrahmane Ameroud,
Miloud F., Anis Bari, and AQIM.

P8 Khaled Ledjeradi and Djamal Eddine Ouali.

P9 Unknown identity and Tawfik A.

P10 Ibrahim Abdeslam and Ali Oulkadi.

TA B L E 3 Theoretical errors (𝜀) for 𝓁 = 103 and 𝓁 = 106.

𝜶 = 0.1 𝜶 = 0.05 𝜶 = 0.01

𝓁 = 103 1.34069 1.48773 1.78297

𝓁 = 106 0.04240 0.04705 0.05638

first 10 positions and we check some differences when
the Banzhaf value is applied to the weighted connectivity
game (N, vwconn) and the additive weighted connectivity game
(N, vawconn). See more details in Table A.1. Notice that Khalid
Zerkani, who is considered to be the leader of the network,

TA B L E 4 Top-10 of the ranking of terrorists in the Zerkani network,
according to the estimated Banzhaf value for (N, vwconn) and (N, vawconn)
with 𝓁 = 106.

Ranking Rwconn Ranking Rawconn

Pos. Terrorist Bz Terrorist Bz

1 Abdelhamid
Abaaoud

38.326053 Mohamed
Belkaid

31.411917

2 Salah Abdeslam 35.073561 Salah Abdeslam 26.167231

3 Khalid Zerkani 33.930235 Khalid Zerkani 25.716073

4 Mohamed
Belkaid

33.267557 Abdelhamid
Abaaoud

24.155854

5 Najim
Laachraoui

18.774721 Mohamed
Bakkali

18.297970

6 Mohamed
Bakkali

18.307468 Najim
Laachraoui

17.311352

7 Fabien Clain 11.891287 Fabien Clain 16.512582

8 Reda Kriket 8.316217 Reda Kriket 10.625338

9 Ahmed Dahmani 8.129191 Mohamed
Abrini

6.257625

10 Mohamed
Abrini

6.94882 Miloud F. 5.832491

goes to the third position under both approaches. However,
Abdelhamid Abaaoud occupies the first position under the
weighted connectivity game whereas, he moves to the fourth
position under the additive weighted connectivity game. With
respect to Mohamed Belkaid, we note that he moves up from
the fourth position in the weighted connectivity game to the
first position when considering the additive weighted con-
nectivity game. Analogous comments can be extracted from
the remainder of the list of members in the top-10. However,
a thorough analysis of the similarity between the two rank-
ings can be numerically given by the Spearman’s correlation
coefficient (0.8848) or by the Kendall’s correlation coeffi-
cient (0.7243) on the positions of the terrorists. In both cases,
the correlations are large enough to indicate a high degree of
similarity of the rankings.

Once the Banzhaf value is estimated, we check how the
sampling proposal for approximating the Banzhaf value per-
forms in terms of variability. By construction, we have
obtained the results shown in Table 4, by averaging 1000
estimations of the Banzhaf value for the Zerkani network by
using sample sizes equal to 𝓁 = 103.

Table 5 summarizes, from a purely statistical point of
view, the 1000 obtained results for the 10 more relevant ter-
rorists in Zerkani network by using the estimated Banzhaf
value with 𝓁 = 103 in the weighted connectivity game.
Notice that the order established for the top-10 in Table 4
can be also maintained when using as criteria the main
statistical measures.

Analogous conclusions can be obtained from the case of
the additive weighted connectivity game, in view of the statis-
tical summary for the 1000 estimations of the Banzhaf value
for the 10 terrorists in the top-10 in Table 4. The numerical
results are included in Table 6.
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RISK ANALYSIS SAMPLING METHODS IN TERRORIST NETWORKS 9

TA B L E 5 Statistical summary of the 1000 estimations of the Banzhaf value for the wconn game.

Terrorist Min. First Qu. Median Mean Third Qu. Max. CV

1 Abdelhamid Abaaoud 36.741 37.990 38.323 38.326 38.693 40.209 0.014

2 Salah Abdeslam 32.228 34.490 35.092 35.074 35.637 37.687 0.024

3 Khalid Zerkani 32.044 33.527 33.904 33.9305 34.326 35.867 0.018

4 Mohamed Belkaid 30.890 32.744 33.260 33.268 33.790 35.804 0.024

5 Najim Laachraoui 16.250 18.347 18.794 18.775 19.239 20.773 0.037

6 Mohamed Bakkali 16.361 17.883 18.305 18.308 18.744 20.740 0.036

7 Fabien Clain 10.578 11.648 11.902 11.891 12.132 13.186 0.032

8 Reda Kriket 7.349 8.115 8.315 8.316 8.528 9.269 0.037

9 Ahmed Dahmani 7.390 7.982 8.133 8.129 8.274 8.922 0.027

10 Mohamed Abrini 6.242 6.810 6.943 6.949 7.084 7.730 0.029

Abbreviation: CV, coefficient of variation.

TA B L E 6 Statistical summary of the 1000 estimations of the Banzhaf value for the awconn game.

Terrorist Min. First Qu. Median Mean Third Qu. Max. CV

1 Mohamed Belkaid 29.127 30.907 31.386 31.412 31.896 33.714 0.023

2 Salah Abdeslam 23.860 25.678 26.182 26.167 26.679 28.434 0.028

3 Khalid Zerkani 24.599 25.440 25.727 25.716 25.956 26.857 0.014

4 Abdelhamid Abaaoud 23.080 23.952 24.157 24.156 24.363 25.172 0.013

5 Mohamed Bakkali 16.420 17.873 18.294 18.298 18.726 20.494 0.034

6 Najim Laachraoui 14.940 16.931 17.300 17.311 17.713 19.119 0.037

7 Fabien Clain 15.875 16.395 16.514 16.513 16.619 17.042 0.010

8 Reda Kriket 10.200 10.519 10.624 10.625 10.733 11.132 0.015

9 Mohamed Abrini 5.836 6.186 6.256 6.258 6.324 6.682 0.018

10 Miloud F. 5.492 5.765 5.833 5.833 5.894 6.136 0.017

Abbreviation: CV, coefficient of variation.

TA B L E 7 Statistical summary of the 1000 processing times (in seconds) for the Banzhaf value estimations.

Min. First Qu. Median Mean Third Qu. Max.

User time 5385.142 8715.153 9481.655 9538.363 10,498.958 13,820.818

System time 4.745 6.393 7.842 23.041 14.366 330.296

Elapsed time 5390.902 8721.884 9490.329 9562.124 10,547.094 13,848.808

From these results, we also check the variability of rank-
ings. From a purely quantitative approach, we compute the
coefficient of variation (CV), that is, the ratio of the stan-
dard deviation of the estimations and its mean. The proximity
of their values to zero ensures the low numerical variabil-
ity of the results, as well as the representativeness of the
mean value. From this point of view, Najim Laachraoui and
Mohamed Bakkali, and Reda Kriket and Ahmed Dahmani,
respectively, reverse their positions under the weighted con-
nectivity game when considering the minimum estimations.
Besides, Fabien Clain and Najim Laachraoui also exchange
their positions when considering the minimum values for the
game (N, vawconn).

We complete this analysis measuring the computational
effort required in obtaining these 1000 estimations. Table 7

includes a summary of the processing times (in seconds) for
each of these 1000 repetitions. We distinguish between the
User time, the System time, and the Elapsed time. Focus-
ing on the User time, we see that more than 75% of the
estimations have been obtained in less than 3 hours of real
computing time.

4.3 The Banzhaf–Owen value
approximation in the Zerkani network

Along this subsection, we will determine the top-10 of the
ranking according to the risk of the terrorists given by the esti-
mation of the Banzhaf–Owen value in the Zerkani network.
Appendix D.4 in the Online Resource Section describes the
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10 ALGABA ET AL.

TA B L E 8 Top-10 of the ranking of terrorists in the Zerkani network,
according to the average of 1000 estimations of the Banzhaf–Owen value
for (N, vwconn) and (N, vawconn) with 𝓁r = 102 and 𝓁s = 10.

Ranking Rwconn Ranking Rawconn

Pos. Terrorist BzO Terrorist BzO

1 Khalid Zerkani 39.498143 Mohamed
Belkaid

32.192285

2 Abdelhamid
Abaaoud

35.775328 Khalid Zerkani 27.932848

3 Salah Abdeslam 33.400368 Salah Abdeslam 26.959565

4 Mohamed
Belkaid

33.380580 Abdelhamid
Abaaoud

25.322645

5 Mohamed
Bakkali

22.755968 Mohamed
Bakkali

22.471120

6 Fabien Clain 12.285880 Fabien Clain 15.886888

7 Ahmed Dahmani 9.879967 Reda Kriket 10.833910

8 Reda Kriket 9.176184 Miloud F. 5.906707

9 Najim
Laachraoui

4.701998 Ahmed Dahmani 5.735320

10 Mohamed
Abrini

4.589148 Khaled
Ledjeradi

5.374710

R code specifically built for applying the second procedure,
presented in Section 3.2 and applied to the specific case of
the Zerkani network.

From the data about the members of the Zerkani network,
we recall that the terrorists of the network have been grouped
according to their rank, their function, their direct relationship
with some terrorists, among others, in such a way that it gives
rise to the creation of the partition above described with 10
unions, P = {P1,P2, … ,P10}, as presented in Table 2.

In accordance with the scheme followed for the estima-
tion of the Banzhaf value, we rank the members of the
Zerkani network according to the decreasing order of the
estimated Banzhaf–Owen value. By simplicity, we obtain
1000 estimations of the Banzhaf–Owen value for the TU-
games (N, vwconn) and (N, vawconn), by using the two-stage
sampling procedure, described in Section 3.1, with 𝓁r =
min{102, 2m−1} and 𝓁s = min{10, 2pi−1}. Note that sam-
ple sizes are taken to ensure that they are always smaller
than the corresponding population sizes, that is, 2m−12pi−1,
for each i ∈ N. Despite dealing with finite populations, we
estimate the Banzhaf–Owen value as the average of these
1000 approximations. Table 8 enumerates the top-10 of
the most relevant members of the Zerkani network, when
ordering according to the estimated Banzhaf–Owen value.
A detailed list containing all ranked members is depicted
in Table B.2 of Appendix B in the Online Resource Sec-
tion. Note that Khalid Zerkani is the most influential terrorist
under the weighted connectivity approach, when applying the
Banzhaf–Owen value, and the second one under the addi-
tive weighted connectivity approach. Abdelhamid Abaaoud
occupies the second position under the weighted connectivity
approach and he goes to the fourth one under the additive
one. Now, Salah Abdeslam is in the third position under

both approaches. Similar conclusions can be obtained for the
remainder of terrorists. From a purely numerical comparative
approach, the Spearman’s correlation coefficient (0.9092) and
the Kendall’s correlation coefficient (0.7502) ensure a high
degree of similarity between the positions obtained for each
terrorist in each of the two rankings considered.

After the Banzhaf–Owen value estimation, we check the
variability of our sampling proposal, in this practical situa-
tion, through a small simulation study. By focusing only on
the 10 most influential network members given by Table 8,
we analyze the 1000 obtained results for their estimated
Banzhaf–Owen value. Table 9 summarizes these 1000 results
for the estimated Banzhaf–Owen value for the case of the
weighted connectivity game.

Table 10 summarizes, from a statistical point of view, the
1000 estimations of the Banzhaf–Owen value for the individ-
uals in the top-10 when considering the additive approach.

In view of the results, the rankings obtained generally hold
even over the maximum and minimum values of the esti-
mated components of the Banzhaf–Owen value under the
two approaches considered. The exception is the exchange
of Abdelhamid Abaaoud and Mohamed Bakkali’s posi-
tions when considering the maximum estimations of the
Banzhaf–Owen value for the game (N, vawconn). Regarding
to the CV, we observe smaller values, in general, under the
additive approach.

Similar as for the Banzhaf value, we analyze the pro-
cessing times (in seconds) required in the Banzhaf–Owen
value estimation as a measure of the effort for this purpose.
They are described in Table 11 which includes a summary of
these amounts.

4.4 Assessing the influence of the a priori
unions system

Hereby, we make a brief discussion on the rankings obtained
under the estimations of the Banzhaf value and the Banzhaf–
Owen value. To this purpose, we use the sampling procedures
considered. For the case of the Banzhaf value, we consider
the average of 100 estimations by taking 𝓁 = 1000 coalitions
of N ⧵ {i}, for each i ∈ N, and the average of 100 estima-
tions of the Banzhaf–Owen value with 𝓁r = 102 and 𝓁s = 10.
Table 12 illustrates the top-10 of the rankings obtained.

Below, we briefly comment the resulting rankings of the
members of the Zerkani network. In general, no drastic
changes are remarkable in the list of individuals belonging to
the top-10 in the obtained rankings, which indicates that both
are useful tools for this purpose. However, we can empha-
size the fact that most of the positions change when using
the different approaches considered in this article. Proba-
bly, this may be due to the organizational and logistical role
played by such terrorists, in such a way that their weight will
change with the approach under consideration. Notice that,
others, as the ones who carry out the suicide and, therefore,
the action (Salzburg Refugee A or B, among others) usually
appear from 11th position onward. Again, the Spearman’s
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RISK ANALYSIS SAMPLING METHODS IN TERRORIST NETWORKS 11

TA B L E 9 Statistical summary of the 1000 estimations of the Banzhaf–Owen value for the wconn game.

Terrorist Min. First Qu. Median Mean Third Qu. Max. CV

1 Khalid Zerkani 33.050 38.069 39.425 39.498 40.956 47.903 0.056

2 Abdelhamid Abaaoud 30.618 34.709 35.761 35.775 36.833 41.350 0.045

3 Salah Abdeslam 27.026 32.232 33.344 33.400 34.560 39.090 0.054

4 Mohamed Belkaid 27.204 32.280 33.386 33.381 34.467 38.894 0.049

5 Mohamed Bakkali 14.74 21.052 22.688 22.756 24.503 32.908 0.117

6 Fabien Clain 9.54 11.753 12.278 12.286 12.803 15.095 0.064

7 Ahmed Dahmani 6.385 9.192 9.861 9.880 10.518 12.970 0.100

8 Reda Kriket 5.792 8.658 9.161 9.176 9.734 11.516 0.092

9 Najim Laachraoui 3.659 4.478 4.708 4.702 4.925 6.117 0.071

10 Mohamed Abrini 3.660 4.370 4.580 4.589 4.814 5.610 0.073

Abbreviation: CV, coefficient of variation.

TA B L E 1 0 Statistical summary of the 1000 estimations of the Banzhaf–Owen value for the awconn game.

Terrorist Min. First Qu. Median Mean Third Qu. Max. CV

1 Mohamed Belkaid 28.020 31.270 32.131 32.192 33.158 37.035 0.043

2 Khalid Zerkani 23.765 27.077 27.896 27.933 28.790 32.045 0.045

3 Salah Abdeslam 22.468 25.942 26.945 26.960 27.949 31.808 0.053

4 Abdelhamid Abaaoud 22.575 24.647 25.353 25.323 25.976 28.408 0.039

5 Mohamed Bakkali 15.015 20.814 22.424 22.471 24.100 31.750 0.112

6 Fabien Clain 14.413 15.548 15.889 15.887 16.183 17.803 0.031

7 Reda Kriket 9.648 10.579 10.835 10.834 11.077 12.056 0.035

8 Miloud F. 5.501 5.813 5.906 5.907 5.998 6.297 0.023

9 Ahmed Dahmani 4.200 5.435 5.720 5.735 6.040 7.380 0.079

10 Khaled Ledjeradi 4.640 5.240 5.370 5.375 5.510 6.050 0.040

Abbreviation: CV, coefficient of variation.

TA B L E 1 1 Statistical summary of the 1000 processing times (in seconds) for the Banzhaf–Owen value estimations.

Min. First Qu. Median Mean Third Qu. Max.

User time 4610.515 7658.268 8223.145 8359.013 9203.457 11,959.200

System time 2.790 4.208 5.298 17.124 8.905 260.98

Elapsed time 4614.003 7662.244 8235.254 8376.096 9217.770 12,170.890

TA B L E 1 2 Top-10 of terrorists in Zerkani network, according to the average of 100 estimations of the Banzhaf value with 𝓁 = 1000, and of the average
of 100 estimations of the Banzhaf–Owen value with 𝓁r = 102 and 𝓁s = 10.

Ranking Rwconn Ranking Rawconn

Terrorist Bz Terrorist BzO Terrorist Bz Terrorist BzO

Ab. Abaaoud 38.372 Khalid Zerkani 39.328 Mohamed Belkaid 31.333 Mohamed Belkaid 32.274

Salah Abdeslam 34.993 Ab. Abaaoud 35.702 Salah Abdeslam 26.114 Khalid Zerkani 27.854

Khalid Zerkani 33.992 Salah Abdeslam 33.639 Khalid Zerkani 25.752 Salah Abdeslam 27.010

Mohamed Belkaid 33.144 Mohamed Belkaid 33.400 Ab. Abaaoud 24.206 Ab. Abaaoud 25.426

Najim Laachraoui 18.827 Mohamed Bakkali 22.473 Mohamed Bakkali 18.360 Mohamed Bakkali 22.181

Mohamed Bakkali 18.367 Fabien Clain 12.298 Najim Laachraoui 17.381 Fabien Clain 15.892

Fabien Clain 11.903 Ahmed Dahmani 9.900 Fabien Clain 16.538 Reda Kriket 10.830

Reda Kriket 8.316 Reda Kriket 9.166 Reda Kriket 10.620 Miloud F. 5.916

Ahmed Dahmani 8.111 Najim Laachraoui 4.740 Mohamed Abrini 6.242 Ahmed Dahmani 5.712

Mohamed Abrini 6.924 Mohamed Abrini 4.621 Miloud F. 5.833 Khaled Ledjeradi 5.379
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12 ALGABA ET AL.

correlation coefficient and the Kendall’s correlation coeffi-
cient can be used numerically to summarize the degree of
similarity between the positions of terrorists in each pair of
rankings. The first coefficient is 0.9547 and 0.9609 when,
respectively, comparing the rankings based on the Banzhaf
value and the Banzhaf–Owen value for the TU-games
(N, vwconn) and (N, vawconn). With respect to the Kendall’s
correlation coefficient is equal to 0.8390 for the TU-game
(N, vwconn), and equal to 0.8504 when using the TU-game
(N, vawconn).

Khalid Zerkani is leading the ranking of risk when an a
priori unions system exists under the weighted connectivity
approach. Recall that this man was who directed a recruit-
ment network in the Brussels area. He was not present or
coordinated the attacks of Paris and Brussels, but he had a
high influence on all those who were related to him. He is
currently imprisoned on terrorism-related charges. In general,
we check that Khalid Zerkani moves up positions in the top-
10 under the presence of an a priori union system. In the
additive approach, the person who always occupies the first
position in all rankings is Mohamed Belkaid, even without an
a priori union system. Najim Laachraoui did not belong to
the top-10 under the usage of the Banzhaf–Owen value when
the additive approach is assumed.

In general, these results are in line with the reality of
the Zerkani network. Along with Khalid Zerkani and Abdel-
hamid Abaaoud, the role of Mohamed Bakkali is also
important since he was alleged intellectual author of the
attack of Paris. It is believed that he selected those who were
going to be in the war zones or in Europe. He died in a
police raid, when Chakib Akrouh detonated his explosives
belt. Another individual in the ranking is Salah Abdeslam.
He was the most wanted man in Europe after the Paris attack.
Fabien Clain was one planner of Paris attack and explored
the different places where to perform the blows. Then, Reda
Kriket was a recruiter for the network and provided money to
it. Meanwhile, Khaled Ledjeradi was someone very required
in the network, since he was the leader of an organization
that created fake documents for the members of the network,
allowing them to travel. Finally, about Miloud F. not much
information is available, but he was arrested in Turkey in
2005 and this allowed for arresting Reda Kriket later. About
Salzburg Refugee A and Salzburg Refugee B, barely there is
information about them, but they are the points of union of
the attackers Paris A and B to the network, so the supervi-
sion of the last two subjects mentioned may have been key
to the cessation of the attack. The decision not to increase
police surveillance on them, even if it was not a good one, it
can be justified from our results since only under the additive
perspective, these individuals move high in the ranking.

4.5 On the robustness of the
Banzhaf–Owen value

From the definition of the Banzhaf–Owen value, it seems
clear that the choice of the partition to be considered for its

computation will largely condition the final ranking. More-
over, when dealing with networks, it is clear that the task of
obtaining information about the affinities between agents is
not trivial, as they usually refer to illicit activities that are
unknown to the vast majority. This section aims to analyze
the effect of a system of a priori unions on the final rank-
ings of terrorists belonging to the Zerkani network under the
Banzhaf–Owen value.

Following the topology of the graph of the Zerkani net-
work in Figure 1, we consider those partitions for the Zerkani
network Pa, Pb, and Pc that are, respectively, represented
in Figure 2. Again, we use as criterion different geomet-
rical figures and colors to identify those members of the
Zerkani network who belong to a same element of each
partition considered.

Finally, we make a brief discussion on the rankings
obtained by considering a single estimation of the Banzhaf
value and the Banzhaf–Owen value with P, Pa, Pb, and Pc for
(N, vwconn) and (N, vawconn), respectively. For both analysis,
we take 𝓁 = 1000, 𝓁r = 102, and 𝓁s = 10. The overall rank-
ings based on these estimations are included in Appendix C
in the Online Resource Section.

First, we comment some relevant issues for the ranking
based on (N, vwconn). As above, Table 13 only shows the
top-10 of the rankings. In view of these results, we see that
the 10 most influential terrorists in Zerkani network mostly
coincide, although the fact of considering different partitions
makes their positions vary according to their affinities. Recall
that the Banzhaf–Owen value is reduced to the Banzhaf
value, when the partition is formed only by the individual
elements. The main difference among the rankings lies in
Najim Laachraoui, who is the only one that does not appear
in the ranking based on partition P. Although they are less
influential, in the rest of the ranking, there are more marked
differences between the terrorists’ positions.

Similar conclusions can be extracted from the rankings
based on (N, vawconn). Again, we only consider the top-10 of
the rankings, that are shown in Table 14. As before, most of
the individuals in these lists coincide, although, with the par-
tition under consideration, their positions change. The main
difference is the absence of Ahmed Dahmani when con-
sidering the Banzhaf value, which makes Mohamed Abrini
appears in such ranking. Besides, Najim Laachraoui also does
not appear when using the Banzhaf–Owen value with P, and
Khaled Ledjeradi enters the top-10.

Although we have stuck to the 10 most influential terror-
ists under the different criteria used, the comparison between
rankings should be done in a more comprehensive and
not merely in a visual way. Thus, the degree of similarity
of all terrorist rankings is studied through the computa-
tion of Spearman’s correlation coefficient and of Kendall’s
correlation coefficient on their positions.

Tables 15 (upper triangular matrix) shows the Spearman’s
correlation coefficients obtained when the weighted connec-
tivity approach is considered. In view of these results, we
observe that the estimation of Banzhaf–Owen value by using
P provides the most different ranking for the members of
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RISK ANALYSIS SAMPLING METHODS IN TERRORIST NETWORKS 13

(A) (B)

F I G U R E 2 Elements P1, … ,Pm of partitions Pa, Pb, and Pc.

TA B L E 1 3 Top-10 of terrorists in Zerkani network, according to an estimation of the Banzhaf value with 𝓁 = 1000 for (N, vwconn), and of an estimation
of the Banzhaf–Owen value for (N, vwconn), with 𝓁r = 102 and 𝓁s = 10 by using P, Pa, Pb, and Pc.

P Pa Pb Pc

Terrorist Bz Terrorist BzO Terrorist BzO Terrorist BzO Terrorist BzO

Ab. Abaaoud 37.837 Khalid Zerkani 39.475 Khalid Zerkani 40.400 Mohamed
Belkaid

39.288 Ab. Abaaoud 40.499

Salah Abdeslam 35.412 Ab. Abaaoud 36.583 Mohamed
Belkaid

38.700 Ab. Abaaoud 37.150 Khalid Zerkani 35.529

Khalid Zerkani 33.564 Mohamed
Belkaid

34.493 Salah Abdeslam 36.200 Salah Abdeslam 34.550 Salah Abdeslam 35.492

Mohamed
Belkaid

32.873 Salah Abdeslam 34.253 Ab. Abaaoud 33.909 Khalid Zerkani 31.453 Mohamed
Belkaid

33.013

Najim
Laachraoui

19.387 Mohamed
Bakkali

21.141 Mohamed
Bakkali

25.563 Najim
Laachraoui

23.269 Najim
Laachraoui

19.937

Mohamed
Bakkali

19.254 Fabien Clain 11.155 Najim
Laachraoui

25.413 Mohamed
Bakkali

21.534 Mohamed
Bakkali

19.388

Fabien Clain 11.659 Ahmed Dahmani 10.200 Ahmed Dahmani 9.925 Fabien Clain 13.931 Fabien Clain 11.128

Reda Kriket 8.758 Reda Kriket 9.342 Fabien Clain 7.938 Reda Kriket 11.506 Reda Kriket 9.482

Ahmed Dahmani 8.009 Ilias
Mohammadi

4.651 Reda Kriket 7.469 Ahmed Dahmani 8.553 Ahmed Dahmani 8.013

Mohamed
Abrini

6.712 Mohamed
Abrini

4.610 Mohamed
Abrini

6.047 Mohamed
Abrini

6.144 Mohamed
Abrini

5.783

Khaled
Ledjeradi

5.012 Khaled
Ledjeradi

4.490 Khaled
Ledjeradi

5.122 Khaled
Ledjeradi

4.763 Khaled
Ledjeradi

4.513

the Zerkani network since it has associated the shortest coef-
ficients. We can even assert that the ranking based on the
estimation of the Banzhaf value is more similar to those based
on Pa, Pb, and Pc (it has slightly larger correlations). Since
these partitions are clearly different, this shows the robustness
of our methodology to identify the most influential terrorists.
Similar conclusions can be extracted from the consideration
of the Kendall’s correlation coefficients (see Table 16).

Besides, Table 15 (lower triangular matrix) shows the
Spearman’s correlation coefficients obtained when the addi-
tive approach of the TU-game is considered. Similarly, we

can extract some conclusions. With its lower Spearman’s cor-
relation values, we can be sure that the ranking based on the
Banzhaf–Owen value with P is the most different of all, even
more than the ranking itself provided by the Banzhaf value
of the considered TU-game. Even so, the values of the cor-
relations are larger than 0.9 in all the comparisons made,
indicating that, despite considering very different partitions,
the rankings they induce are very similar. In this line, the
same conclusions can be drawn from Table 16, when con-
sidering the Kendall’s correlation coefficients in the lower
triangular matrix.
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14 ALGABA ET AL.

TA B L E 1 4 Top-10 of terrorists in Zerkani network, according to an estimation of the Banzhaf value with 𝓁 = 1000 for (N, vawconn), and of an
estimation of the Banzhaf–Owen value for (N, vawconn), with 𝓁r = 102 and 𝓁s = 10 by using P, Pa, Pb, and Pc.

P Pa Pb Pc

Terrorist Bz Terrorist BzO Terrorist BzO Terrorist BzO Terrorist BzO

Mohamed
Belkaid

31.098 Mohamed
Belkaid

33.008 Mohamed
Belkaid

38.675 Mohamed
Belkaid

38.456 Mohamed
Belkaid

33.266

Salah Abdeslam 26.797 Salah Abdeslam 27.130 Khalid Zerkani 29.641 Salah Abdeslam 28.006 Khalid Zerkani 27.148

Khalid Zerkani 25.672 Khalid Zerkani 27.020 Salah Abdeslam 28.606 Ab. Abaaoud 26.028 Salah Abdeslam 25.672

Ab. Abaaoud 23.994 Ab. Abaaoud 24.870 Mohamed
Bakkali

25.719 Khalid Zerkani 23.678 Ab. Abaaoud 24.687

Mohamed
Bakkali

19.210 Mohamed
Bakkali

20.805 Najim
Laachraoui

24.006 Najim
Laachraoui

22.969 Mohamed
Bakkali

20.282

Najim
Laachraoui

17.776 Fabien Clain 15.445 Ab. Abaaoud 22.656 Mohamed
Bakkali

22.038 Najim
Laachraoui

19.546

Fabien Clain 16.454 Reda Kriket 10.854 Fabien Clain 15.084 Fabien Clain 17.841 Fabien Clain 16.640

Reda Kriket 10.698 Ahmed Dahmani 6.200 Reda Kriket 11.103 Reda Kriket 11.272 Reda Kriket 11.145

Mohamed
Abrini

6.306 Miloud F. 6.115 Ahmed Dahmani 6.831 Ahmed Dahmani 6.056 Miloud F. 5.800

Miloud F. 5.639 Khaled
Ledjeradi

5.300 Miloud F. 5.934 Miloud F. 5.997 Ahmed Dahmani 5.792

TA B L E 1 5 Spearman’s correlation matrix for the rankings of the
Zerkani network under the weighted connectivity (upper triangular matrix)
and additive (lower triangular matrix) approaches.

Bz BzO, P BzO, Pa BzO, Pb BzO, Pc

Bz - 0.9431 0.9725 0.9702 0.9813

BzO, P 0.9624 - 0.9226 0.9137 0.9176

BzO, Pa 0.9844 0.9529 - 0.9757 0.9762

BzO, Pb 0.9816 0.9433 0.9899 - 0.9775

BzO, Pc 0.9838 0.9452 0.9864 0.9768 -

TA B L E 1 6 Kendall’s correlation matrix for the rankings of the
Zerkani network under the weighted connectivity (upper triangular matrix)
and additive (lower triangular matrix) approaches.

Bz BzO, P BzO, Pa BzO, Pb BzO, Pc

Bz - 0.9075 0.8205 0.9130 0.8945

BzO, P 0.8538 - 0.7817 0.7687 0.7724

BzO, Pa 0.8982 0.8335 - 0.8797 0.8723

BzO, Pb 0.8908 0.8150 0.9334 - 0.8853

BzO, Pc 0.9075 0.8205 0.9130 0.8945 -

5 CONCLUSIONS

Until now, the usage of game-theoretical solutions for the risk
analysis of terrorist networks was limited to the approach
given by the Shapley value (Shapley, 1953). Another very
interesting and well-known value in the literature is the
Banzhaf value (Banzhaf, 1964). In this article, we focus on
the Banzhaf value and its extension for the case in which a
coalitional structure, that restricts the affinities among their
members, is given: the Banzhaf–Owen value (Owen, 1982).

These values cannot be obtained in an exact way when the
number of players increases, so sampling methods have been
provided and implemented for their computation. Then, these
values have been innovatively applied to obtain rankings
of the most important terrorist of the Zerkani network. In
fact, these measures applied in these networks may offer
new tools to analyze the risk of an attack to the intelligence
services.

As in any multiagent organization, the members of a ter-
rorist network are hierarchical within. Although all are part
of the same network, each of them will perform a function,
and it will be related to nearby members of those of the
same rank. It makes sense, therefore, to consider the mem-
bers of the network in groups according to their features.
This directly implies the existence of a partition, as the one
considered along this article. Thus, the construction of two
rankings has been carried out through the approximation of
the Banzhaf–Owen value, for the two approaches of TU-
games under study. Both take into account the characteristics
of the network, the individuals as well as their relationships.
In order to choose the proper partition, a deep analysis of each
terrorist’s contributions to the network has been made, having
divided them according to their facets. In this sense, the char-
acteristics of the most realistic partition can be enhanced by
those responsible of the security services, since they usually
manage relevant information on the organization of this kind
of terrorist structures.

Focus on the partition considered, notice that the comman-
ders and recruiters within the network will be those who
manage, order, and coordinate all the movements that the
group carries out. However, they will avoid getting involved
in compromised issues due to their status. For this situa-
tion, they have associates or recruits who will obey them
and serve as a connection with the attackers (which would
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RISK ANALYSIS SAMPLING METHODS IN TERRORIST NETWORKS 15

be in a lowest level in the network). Meanwhile, lower-level
groupings will carry out the hard work of exposing them-
selves to intelligence agencies, traveling throughout Europe
with false documentation or carrying out the killing actions
of hundreds of people. Unlike of the Banzhaf value, all this
information about the partition is taken into account in the
Banzhaf–Owen value. Therefore, the results integrate this
additional information, which can be key in determining who
are the most dangerous or influential members within each
union or group considered in the partition. Specifically, the
Banzhaf–Owen value introduces a coalitional structure that,
respectively, enriches the results provided by the Banzhaf
value when extra information about relationships is consid-
ered. It distributes first among unions (teams) and then among
the members of each team. Therefore, when considering the
terrorists according to their facets, the most dangerous in
each team may be obtained and, in particular, not only the
most influential of the organization or recruitment as the
Banzhaf value does, but also the most important among those
who carry out the action, which may be essential to neutral-
ize it. The choice of the most suitable coalitional structure
describing the reality of the network ensures that the rankings
obtained accurately reflect the hierarchy of its members. As
empirically checked, an appropriate choice, while not leading
to major changes in overall ranking trends, does give way to
small changes in the attackers’ positions, which can be key
to make an efficient use of the usually scarce surveillance
resources. Further research will include the usage of more
technical mechanisms to determine the partition used in the
Banzhaf–Owen value as well as the analysis of the Zerkani
Network with other risk analysis measures as the position
value used as a solution concept in the literature of TU-games
(see, for instance, Borm et al., 1992; van den Nouweland
et al., 1992; or Algaba et al., 2000).
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