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The identification of the most potentially hazardous agents in a terrorist organisation helps to prevent 

further attacks by effectively allocating surveillance resources and destabilising the covert network to 

which they belong. In this paper, several mechanisms for the overall ranking of covert networks members 

in a general framework are addressed based on their contribution to the overall relative effectiveness in 

the event of a merger. In addition, the possible organisation of agents outside of each possible merger 

naturally influences their relative effectiveness score, which motivates the innovative use of games in 

partition function form and specific ranking indices for individuals. Finally, we apply these methods to 

analyse the effectiveness of the hijackers of the covert network supporting the 9/11 attacks. 
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. Introduction 

In an increasingly globalised world, communication intercon- 

ections between its components are crucial for the analysis of ex- 

ert or intelligent multi-agent interactive situations. Cooperation 

nsures that not only the decisions of a merger influence in a 

lobal framework, but also the information and the outcomes of 

ther groups of agents around them gain interest in joint decision- 

aking. In a collaborative scheme, considering coalitional external- 

ties of agents in a game theoretical framework can be used to 

odel such cooperation. This provides a considerably more real- 

stic fitting than that given by the well-known transferable utility 

TU) games. Under this scheme, we mention cases of resource allo- 

ation problems, in which factors such as environmental or climate 

hange influence, the data envelopment analysis or the analysis of 

overt networks as representatives of the above. 

The aim of covert network analysis is to identify the key mem- 

ers in an internal organisation, despite being unaware of the 

any links between members. For instance, counterterrorism mea- 

ures taken from intelligence national agencies are increasingly 

ased on sophisticated and realistic techniques that identify dor- 

ant groups capable of causing terror and destruction. Thus, scarce 
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urveillance enables efficient counterterrorism activities. This task 

as received growing interest in recent decades because of the in- 

reasing number of massive attacks committed, such as the 9/11 

ttacks in 2001, the Bali bombing in 2002, and, more recently, 

he attacks in Paris in 2015 and Brussels in 2016 by the Zerkani 

etwork. These have prompted numerous studies being conducted 

o model such situations in practice and serve to endow many of 

hese formulations with realism. Most proposals focus on ranking 

he members of covert networks based on the leadership and in- 

uence they exert. For instance, the degree centrality, the betwee- 

ess centrality and the closeness centrality of the covert network 

tructure are examples of standard network measures that jus- 

ify well-known techniques in social network analysis ( Koschade, 

006 ). However, their practical use is limited, as the results ob- 

ained are not always as realistic as desired. Sparrow (1991) , Klerks 

2001) , Farley (2003) , Guzman, Deckro, Robbins, Morris, & Ballester 

2014) , and McGuire, Deckro, & Ahner (2015) use the standard so- 

ial network centrality approach to identify key agents in this type 

f structures. 

Although covert network is a term often associated with activi- 

ies of an illicit nature, it has many other areas of application in 

ocial network analysis, such as in the emergence of epidemics 

r propagation of information. As Baker & Faulkner (1993) justi- 

es in the energetic field, a covert network generally arises when 

tudying the functioning of any multi-agent organisation in which 
under the CC BY-NC-ND license 

https://doi.org/10.1016/j.ejor.2023.02.023
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ejor
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ejor.2023.02.023&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:alejandro.saavedra.nieves@usc.es
https://doi.org/10.1016/j.ejor.2023.02.023
http://creativecommons.org/licenses/by-nc-nd/4.0/


A. Saavedra–Nieves and B. Casas–Méndez European Journal of Operational Research 309 (2023) 1365–1378 

b

e

H

a

b

c

H

t

t

t

c

t

o

q

b

b

n

p

n

L

b

o

T

c

I

u

B

i

i

(

r

t

a

s

c

t

r

o

L

e

b

r

u

d

b

o

o

t

p

n

p

m

t

f

t

t

w

g

i

(

C

c

a

R

t

t

r

i

a

s

t

c

p

g

t

(

u

a

&  

s

p

b

s

J

k

t

S

S

g

s

f

g

t

t

2

f

t

v

r

d

b

w

l

b

a

i

t

T

G

g

b

w

alance is simultaneously sought between maintaining secrecy and 

nsuring the necessary coordination and control of its members. 

owever, the notion of a covert network can be further gener- 

lised by applying it to any social movement network whose mem- 

ers collectively identify with a particular project of social/political 

hange to achieve. By using this framework, Crossley, Edwards, 

arries, & Stevenson (2012) study the covert network arising from 

he UK suffragette relationships during 1906–1914. Thus, covert 

errorist networks can be considered to be an extreme case of this 

ype of network in which members use violence. When these con- 

epts are applied to the sports field, a team can also be considered 

o be a complex network, in which players interact with the aim 

f overcoming the opponent’s network. For instance, Buldú, Bus- 

uets, Echegoyen, & Seirul.lo (2019) study F.C. Barcelona, coached 

y Guardiola, as a covert network. 

In any of the aforementioned applications, the existence of links 

etween agents justifies the formation of coalitions within a covert 

etwork. The fact of not considering valuable information on the 

ossible existing relationships between the members of the covert 

etwork really limits the usage of more conventional techniques. 

indelauf, Hamers, & Husslage (2013) overcome these drawbacks, 

y incorporating the available information on the heterogeneity 

f links and nodes to assess the effectiveness of each coalition. 

hus, the natural collaboration of agents favoured the use of spe- 

ific tools extracted from cooperative game theory for its analysis. 

n particular, transferable utility games (or TU games) are typically 

sed to model such collaborative situations. For instance, Husslage, 

orm, Burg, Hamers, & Lindelauf (2015) specify a TU game involv- 

ng the links between the members of a given coalition of agents 

n a covert network; van Campen, Hamers, Husslage, & Lindelauf 

2018) analyse the computational problems of ranking them, and 

ecently, Algaba, Prieto, Saavedra-Nieves, & Hamers (2022) assume 

he incorporation of a coalitional structure to model the possible 

ffinities for the cooperation of agents. A common issue is the con- 

ideration of specific mechanisms for ranking the members of a 

overt network taken from cooperative game theory for allocating 

he worth of the cooperation. 

In this paper, we analyse the influence of agents on the overall 

elative effectiveness in the event of a merger from a game the- 

retical approach. For this purpose, we consider the approach in 

indelauf et al. (2013) as a basis to measure the effectiveness of 

ach possible merge of agents based on the weights of their mem- 

ers and their links. The main innovation lies in the fact that such 

elative effectiveness for each possible group of agents is obtained 

nder any possible configuration of the remaining agents. The un- 

erlying idea is that the functioning of a covert network needs to 

e conceived of as a whole , where the profitable character of co- 

peration of a group of its members is relative to the possibilities 

f cooperation of the remainders. Therefore, whether a merger is 

he most effective of all possible mergers to be formed largely de- 

ends on how its outsiders organise themselves. However, these 

atural cooperation structures, if they exist, are rarely made ex- 

licit in covert networks. This perspective allows us to use the 

odel of the partition function form games ( Thrall & Lucas, 1963 ) 

o represent these situations. More specifically, we use partition 

unction form simple games to identify the most effective coali- 

ions as winning among those induced by every coalitional struc- 

ure on the whole set of agents. Various papers in which real- 

orld problems have been addressed by applying the approach of 

eneral partition function form games have been conducted. For 

nstance, Pintassilgo & Lindroos (2008) and Liu, Lindroos, & Sandal 

2016) model the management of fishery issues with externalities; 

sercsik & Kóczy (2017) use games with externalities in an energy 

ontext; Yang, Sun, Hou, & Xu (2019) analyse sequencing situations 

lso from this perspective; Grabisch & Funaki (2012) and Mahdiraji, 

azghandi, & Hatami-Marbini (2021) analyse the coalition forma- 
1366 
ion process, and Basso, Basso, Rönnqvist, & Weintraub (2021) use 

hem in the production and transportation analysis under collabo- 

ation. As in the case of cooperative games with transferable util- 

ty, a central issue in partition function form games is to reason- 

bly split the worth of the grand coalition. However, when con- 

idering simple games, solutions for TU games can be tipically in- 

erpreted as tools for measuring the ability of each agent to make 

oalitions winning. In this paper we will use partition form sim- 

le games and the values derived from classical solutions for TU 

ames, as the Shapley value ( Shapley, 1953 ) and related values, 

he Banzhaf value ( Banzhaf, 1964 ) and the Deegan-Packel index 

 Deegan & Packel, 1978 ), to rank the members of covert networks 

nder these criteria. Prior to the use of these values, following the 

pproaches proposed by Albizuri, Arin, & Rubio (2005) , de Clippel 

 Serrano (2008) , McQuillin (2009) , and Hu & Yang (2010) , we con-

ider TU games associated with the partition function form game 

roposed. Computational problems arise owing to the large num- 

er of partitions that need to be considered. These problems are 

olved using the ideas developed by Saavedra-Nieves & Fiestras- 

aneiro (2022) based on sampling techniques. To the best of our 

nowledge, this is the first study in which games in partition func- 

ion form are used to analyse covert networks. 

The remainder of this paper is organised as follows. 

ection 2 introduces basic concepts of covert networks. 

ection 3 innovatively introduces the class of covert network 

ames under the presence of externalities and presents a discus- 

ion on their properties. Section 4 provides several alternatives 

or ranking the members of a covert network based on values for 

ames in partition function form. Section 5 describes the applica- 

ion of this methodology using data from the covert network of 

he 9/11 attack. Finally, Section 6 presents concluding remarks. 

. On covert networks 

This section introduces preliminaries on graph theory required 

or covert network analysis. Note that the notion of a graph and 

hat of a network can be used interchangeably. For a thorough re- 

ision of graphs, refer to Bollobás (1998) . 

First, we recall the notion of a covert network. Formally, this is 

epresented by a graph, denoted by G = (N, E) . In the following, N

enotes the finite set of vertices of the graph (nodes), which can 

e interpreted as the set of individuals belonging to the covert net- 

ork, and E denotes the set of links or edges that describe all re- 

ationships between the members of the graph. The relationship 

etween members i and j is denoted by i j, where i j ∈ E. Distances 

nd communications between agents reflect this. 

In a natural manner, existing relationships between each pair of 

ndividuals can be assumed to be bidirectional, and thus, the struc- 

ure of a covert organisation is modelled as an undirected graph. 

he following parameters are associated with any covert network 

 = (N, E) : 

• Individual strengths are represented by set I of weights on 

the player set N, i.e., I = { w i } i ∈ N with w i ≥ 0 . For instance, 

special skills of the members of G can be quantified using 

these. 
• The relational strength between the members of G is given 

by a set R of weights on the edges in E, i.e. R = { k i j } i j ∈ E 
with k i j ≥ 0 . In this case, issues concerning the strength of 

the communication between the members in the covert net- 

work are representative. 

To identify key players in a covert network, the formation of 

roups under cooperation is essential. These joint actions should 

e based on the principle of coordination, to maintain secrecy 

hile ensuring success. Consequently, we are interested only in 
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nalysing connected graphs that provide an overview of the organ- 

sation of the members. Thus, if a certain coalition S ⊆ N forms, 

ubnetwork G S = (S, E S ) is naturally defined by the members of S

nd its links in E that connect them, i.e., 

 S = { i j ∈ E : i, j ∈ S} . 
oalition S ⊆ N is said to be a connected coalition in (N, E) , if sub-

etwork G S is connected; otherwise, coalition S is called discon- 

ected. 

Under this scheme, quantitative models can be considered to 

valuate the characteristics of each possible merge. In general, all 

f these use the available information on the members (on individ- 

als and their links) of a covert network in social network analy- 

is. This allows the definition of a context-specific and tailor-made 

onnegative function f , namely the effectiveness function depend- 

ng on I and R , to worth the effectiveness of each possible coali- 

ion, S ⊆ N, is in covert network G . In the remainder of this pa-

er, we denote a multi-agent covert network problem by (G, f ) = 

N, E, f ) , 1 where (N, E) denotes the graph underlying the covert 

etwork, and f is the effectiveness function considered. 

As previously considered, only the effectiveness of connected 

oalitions may be of interest in covert network analysis. This al- 

ows the definition of specific models to be used for analysing co- 

peration in covert networks, for instance, establishing rankings for 

embers of a covert network (see Husslage et al., 2015 ). Note that 

lthough disconnected coalitions are not formally covered by most 

f the functions f considered, their cooperative schemes describ- 

ng these situations involve them. For example, the monotonic ap- 

roach considers that the effectiveness of a non-connected coali- 

ion corresponds to the worth of its most effective component. 

. On cooperation in covert networks under externalities 

In this section, we analyse the problem of cooperation in a 

overt network from an innovative perspective with respect to 

hose considered by Lindelauf et al. (2013) , Husslage et al. (2015) ,

r even Algaba et al. (2022) , that assume the existence of a specific

oalitional structure on the set of agents. Naturally, the overall ef- 

ectiveness of the merger of a group of members of the covert net- 

ork is influenced by the organisation of the remaining members 

nd their possible mergers. In this sense, Thrall & Lucas (1963) in- 

roduce the model of games in partition function form to describe 

uch situations in which the worth of a coalition substantially 

epends on how the remaining agents are organised. In this frame- 

ork the basic organisation of agents is called an embedded coali- 

ion , which is a pair whose first component is an element of a 

artition and whose second component contains the remaining 

lements of the partition (sometimes, the whole partition). 

Let N be a set of agents and �(S) the set of partitions of S

or every S ⊆ N. Formally, an embedded coalition is given by a pair 

S; P ) with S ⊆ N and P ∈ �(N \ S) . Note that if S = N, then we ob-

ain the embedded coalition (N; ∅ ) . Moreover, if S = ∅ , we obtain

mbedded coalitions of the form (∅; P ) for every P ∈ �(N) . The

amily of embedded coalitions is denoted by 

C N = { (S; P ) : P ∈ �(N \ S) and S ⊆ N } . (1) 

 partition function form game or a game with externalities is for- 

ally defined by a function v : EC N −→ R such that v (∅; P ) = 0 , for

very P ∈ �(N) . We denote the family of all games with externali- 

ies with player set N by P G (N) . 

Next, a game with externalities associated with any multi-agent 

overt network problem (G, f ) is defined as follows. 
1 To simplify the notation, whenever possible we avoid explicit mention of sets I
nd R considered in the definition of f , to represent the multi-agent covert network 

roblem, (G, f ) . 

t

a

1367 
efinition 3.1. Let (G, f ) = (N, E, f ) be a multi-agent covert net- 

ork problem. The associated partition function form game v G, f is 

efined as follows: 

 G, f (S; P ) = 

⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

1 , if max T ∈ �S 
f (T , I, R ) ≥ max T ∈ �

S 
′ f (T , I, R ) , 

for all S 
′ ∈ P, 

with ∅ 	 = S ⊆ N, P ∈ �(N \ S) , 
0 , otherwise, 

here �S is the set of components (maximal connected coalitions) 

n G S , for all S ⊆ N, and f is the considered context specific and

ailor-made nonnegative function depending on T , I , and R . Thus, 

 G, f is called a covert network game . 

Roughly speaking, v G, f assigns a worth of 1 to each (S; P ) ∈ EC N 

f S is the most effective coalition among all the elements of the 

oalitional structure determined by (S; P ) . Otherwise, if the most 

ffective coalition is formed by the outsiders of S (i.e., an element 

f P ), with P ∈ �(N \ S) , S obtains a worth of zero. Note that the

efinition of covert network games acceptably ensures that more 

han one disjoint coalition in a certain coalitional structure for N

an be recognized as the most efficient coalition by v G, f as long as 

ts relative efficiency is the maximum and equal (in case of ties). 

In particular, a covert network game v G, f ∈ P G (N) is said to be

 simple game with externalities if it satisfies (i) v G, f (S; P ) ∈ { 0 , 1 } ,
or all (S; P ) ∈ EC N ; (ii) v G, f (N; ∅ ) = 1 ; and (iii) v G, f is monotonic,

hat is, v G, f (S; P ) ≤ v G, f (T ; Q ) , for all (S; P ) , (T ; Q ) ∈ EC N such that

S; P ) � (T ; Q ) . 2 For a more in-depth analysis of simple games in

artition function form, refer to Alonso-Meijide, Álvarez-Mozos, & 

iestras-Janeiro (2017) . Evidently, (i) and (ii) hold; however, the ful- 

lment of (iii), and therefore that covert network games are sim- 

le, depends on function f being considered. 

In the remainder of the paper, we will use the following nota- 

ion. For a given coalition S ⊆ N, � S denotes set {{ i } : i ∈ S} . It rep-

esents that all agents in S act individually. On the other hand, � S� 
ndicates that coalition S is a whole element in the sense that all 

ts members cooperate to act as a whole block. That is, � S� = {{ S}} .
Next, we check the fulfilment of the most basic properties of 

ames with externalities that covert network games can satisfy. 

mong others, superadditivity, efficiency, or the sense of externali- 

ies of partition function form games are some of the most natural 

roperties studied in this setting. For more details, refer to Hafalir 

2007) . Previously, we introduce notation for the order relations 

etween partitions. Recall that �(N) can be considered an ordered 

et with the following order relation. Given partitions P, Q ∈ �(N) , 

 precedes Q (or P is finer than Q ), P � Q , if for every S ∈ P , there

xists T ∈ Q such that S ⊆ T . That is, the elements in Q are ob-

ained from unions of the elements in P . 

A partition function form game v ∈ P G (N) has positive external- 

ties if for every S ⊆ N, P, Q ∈ �(N \ S) such that P � Q , v (S; P ) ≤
 (S; Q ) . This means that the earnings of coalition S do not decrease 

ccording to ordering � on �(N \ S) . The following example illus- 

rates that a covert network game generally has no positive exter- 

alities. 

xample 3.2. Let (G, f ) = (N, E, f ) be a multi-agent covert net- 

ork situation such that N is the set of agents, with N = 

 1 , 2 , 3 , 4 , 5 } . Fig. 1 displays its associated graph. Table 1 presents

he set of weights of agents in N, and the weights of the links that

ndicate the relational strength between members of the covert 

etwork are 1. 

To worth the effectiveness of any coalition, we consider func- 

ion f , as proposed in Lindelauf et al. (2013) . That is, map 
2 Recall that if (S; P) ∈ EC N and (T ; Q ) ∈ EC N , (S; P) � (T ; Q ) if and only if S ⊆ T 

nd for all T ′ ∈ Q , there exists S ′ ∈ P such that T ′ ⊆ S ′ . 



A. Saavedra–Nieves and B. Casas–Méndez European Journal of Operational Research 309 (2023) 1365–1378 

Fig. 1. Graph of covert network G . 

Table 1 

List of weights for nodes in G . 

Agent i w i 

1 2 

2 3 

3 3 

4 1 

5 4 
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f : 2 N −→ R is specifically defined for every connected coalition 

 ⊆ N in G = (N, E) as 

f (S, I, R ) = 

{
( 
∑ 

i ∈ S w i ) · max i j ∈ E S k i j , if | S| > 1 , 

w S , if | S| = 1 . 
(2) 

Consider coalition S = { 1 , 2 } and the partitions for N \ S given

y P = 

{{ 3 } , { 4 } , { 5 } } and Q = 

{{ 3 , 5 } , { 4 } } that satisfy P � Q . In

ddition, consider f as the function in (2) , which measures the 

ffectiveness of each connected coalition T ⊆ N. Thus, we have 

 G, f (S; P ) = 1 because 

 = f ( { 1 , 2 } , I, R ) = max 
T ∈ �S 

f ( T , I, R ) 

> max 
T ∈ �

S 
′ : S ′ ∈ P 

f (T , I, R ) = f ({ 5 } , I, R ) = 4 . 

owever, v G, f (S; Q ) = 0 because 

 = f ( { 1 , 2 } , I, R ) = max 
T ∈ �S 

f (T , I, R ) 

< max 
T ∈ �

S 
′ : S ′ ∈ Q 

f (T , I, R ) = f ({ 3 , 5 } , I, R ) = 7 . 

hen, we immediately obtain v G, f (S; P ) > v G, f (S; Q ) . 

Reasonably, this example shows that the relative effectiveness 

f a coalition S with respect to a partition P of N \ S may be re-

uced if the outsiders of S merge. Formally, a partition function 

orm game v ∈ P G (N) has negative externalities if for every S ⊆ N,

, Q ∈ �(N \ S) such that P � Q , it satisfies v (S; P ) ≥ v (S; Q ) . That

s, the earnings of coalition S decrease according to ordering � on 

(N \ S) . Analogous to Example 3.2 , determining counterexamples 

hat illustrate that covert network games do not have negative ex- 

ernalities is generally straightforward. 

In the following, we formally prove that covert network games, 

f the considered function f is monotonic, have negative or pos- 

tive externalities depending on the sense of such monotonicity. 

iven a multi-agent covert network problem (G, f ) , the effective- 

ess function f : 2 N −→ R is monotonically increasing if it satisfies 

f (S, I, R ) ≤ f (T , I, R ) for all S ⊆ T ⊆ N. Otherwise, f is said to be

onotonically decreasing if it satisfies f (S, I, R ) ≥ f (T , I, R ) for all

 ⊆ T ⊆ N. 

roposition 3.3. Let (G, f ) = (N, E, f ) be a multi-agent covert net- 

ork problem and v G, f be the associated covert network game. Then, 

he following two statements hold. 
1368 
(a) If effectiveness function f is monotonically increasing, v G, f has 

negative externalities. 

(b) If effectiveness function f is monotonically decreasing, v G, f has 

positive externalities. 

roof. Let S ⊆ N and P, Q ∈ �(N \ S) such that P � Q . We show

hat v G, f (S; P ) ≥ v G, f (S; Q ) . 

First, we prove (a). It readily follows that 

max 
 ∈ �T : T ∈ P 

f (W, I, R ) ≤ max 
W ∈ �

T 
′ : T ′ ∈ Q 

f (W, I, R ) (3) 

ecause of the increasing monotonicity of f , which ensures that 

f (T , I, R ) ≤ f (T 
′ 
, I, R ) for all T ⊆ T 

′ ⊆ N, and of the ordering re-

ation P � Q , that ensures that for every T ∈ P there exists T ′ ∈ Q

ith T ⊆ T ′ . 
Now, consider covert network game v G, f . We distinguish two 

ossibilities. 

Case 1. First, we consider the case in which 

max W ∈ �S 
f (W, I, R ) < max W ∈ �T : T ∈ P f (W, I, R ) . The 

inequality in (3) and Definition 3.1 ensure that 

v G, f (S; P ) = v G, f (S; Q ) = 0 . 

Case 2. Second, we consider the case in which 

max 
W ∈ �S 

f (W, I, R ) ≥ max 
W ∈ �T : T ∈ P 

f (W, I, R ) . 

Then, we distinguish two subcases. 

Subcase 2.1. If 

max 
W ∈ �S 

f (W, I, R ) < max 
W ∈ �

T 
′ : T ′ ∈ Q 

f (W, I, R ) 

is satisfied, we have 1 = v G, f (S; P ) > v G, f (S; Q ) = 0 . 

Subcase 2.2. If 

max 
W ∈ �S 

f (W, I, R ) ≥ max 
W ∈ �

T 
′ : T ′ ∈ Q 

f (W, I, R ) 

holds, we have v G, f (S; P ) = v G, f (S; Q ) = 1 . 

herefore, we can conclude that v G, f has negative externalities. 

The scheme of the proof for (b) is similar. Now, we must con- 

ider the monotonically decreasing character of f , which ensures 

hat 

max 
 ∈ �T : T ∈ P 

f (W, I, R ) ≥ max 
W ∈ �

T 
′ : T ′ ∈ Q 

f (W, I, R ) , 

ecause of f (T , I, R ) ≥ f (T 
′ 
, I, R ) for all T ⊆ T 

′ ⊆ N and the order-

ng relation P � Q . �

Based on the definition of f given in (2) and the previous result, 

he following corollary immediately follows. 

orollary 3.4. Let (G, f ) = (N, E, f ) be a multi-agent covert network 

roblem. If effectiveness function f is defined as in (2) , the associated 

overt network game v G, f has negative externalities. 

From the covert network perspective, the negative externalities 

nsure that, for any coalition S ⊆ N, its relative effectiveness with 

espect to a partition P of N \ S decreases as the elements of such 

 partition progressively merge (i.e., the outsiders of S form larger 

locks with elements of P ). 

In addition, we study the profitable character of cooperation in 

overt network games. To achieve this, we consider the following 

roperty. A partition function form game v is superadditive ( Hafalir, 

007 ) if for every S, T ⊆ N with S ∩ T = ∅ and P ∈ �(N \ (S ∪ T )) ,

he following holds: 

 (S ∪ T ; P ) ≥ v (S; P ∪ � T � ) + v (T ; P ∪ � S� ) . 
his property ensures that the joint relative effectiveness of merg- 

ng increases with respect to the sum of the relative effectiveness 

f each coalition involved. Alternatively, a game with externalities 



A. Saavedra–Nieves and B. Casas–Méndez European Journal of Operational Research 309 (2023) 1365–1378 

v
P

v

T

t

v

i

t

n

E

(  

a  

c

1

a  

h

1

H

p

a

f

v

w  

i  

P  

a

c

t

E

n

g

b  

r

v

H

1

c

d

T

v

4

o

t

I

t

c

i

n

t  

s  

G

T  

w  

c

 

w

e

v

B

s

c

o

t

s

t

v

n

t

t

t

C

p

f

 

a  

i

t

i

u

s

t

v  

p

v

H

t

t  

e

 is said to be subadditive if, for every S, T ⊆ N with S ∩ T = ∅ and 

 ∈ �(N \ (S ∪ T )) , the following holds: 

 (S ∪ T ; P ) ≤ v (S; P ∪ � T � ) + v (T ; P ∪ � S� ) . 
his implies that the joint relative effectiveness of merging is less 

han the sum of the relative effectiveness of each coalition in- 

olved. Note that these notions of superadditivity and subadditiv- 

ty are immediate extensions of the analogous notions in classical 

ransferable utility cooperative games. 

Example 3.2 shows that covert network games are generally 

either superadditive nor subadditive. 

xample 3.5. We revisit the multi-agent covert network situation, 

G, f ) = (N, E, f ) , considered in Example 3.2 . Let S = { 3 , 4 } , T = { 5 } ,
nd P = {{ 1 } , { 2 }} be partitions of N \ { 3 , 4 , 5 } and v G, f be the

overt network game associated with (G, f ) . Thus, we have 

 = v G, f ( { 3 , 4 , 5 }; {{ 1 } , { 2 }} ) 
< v G, f ( { 3 , 4 }; {{ 1 } , { 2 } , { 5 }} ) + v G, f ( { 5 }; {{ 1 } , { 2 } , { 3 , 4 }} ) 
= 1 + 1 . 

Hence, v G, f is not superadditive. However, v G, f is also not sub- 

dditive. Consider S = { 2 } , T = { 3 } , and P = {{ 1 } , { 4 , 5 }} . Thus, we

ave 

 = v G, f ( { 2 , 3 }; {{ 1 } , { 4 , 5 }} ) 
> v G, f ( { 2 }; {{ 1 } , { 3 } , { 4 , 5 }} ) + v G, f ( { 3 }; {{ 1 } , { 2 } , { 4 , 5 }} ) 
= 0 + 0 . 

ence, v G, f is not subadditive. 

Moreover, we can study if covert network games satisfy the 

roperty of efficiency or cohesiveness (cf. Hafalir, 2007 ). Formally, 

 partition function form game v is said to be efficient (cohesive) if 

or every P ∈ �(N) , 

 (N; ∅ ) ≥
∑ 

S∈ P 
v (S; P −S ) , 

here P −S denotes the partition induced by P on N \ S. That is,

f P ∈ �(N) , then a partition for N \ S induced by P is given by

 −S = { T \ S : T ∈ P } for every S ⊆ N. Let now (G, f ) = (N, E, f ) be

 multi-agent covert network problem and v G, f be the associated 

overt network game. Again, Example 3.2 can be used as a coun- 

erexample to this property. 

xample 3.6. Again, (G, f ) = (N, E, f ) is the multi-agent covert 

etwork situation in Example 3.2 and v G, f is the covert network 

ame associated with (G, f ) . Consider the partition of N given 

y P = {{ 1 } , { 2 } , { 3 , 4 } , { 5 }} . Thus, we have v G, f (N; ∅ ) = 1 and, by

eusing the calculations from Example 3.5 , it satisfies 

 G, f ( { 3 , 4 }; {{ 1 } , { 2 } , { 5 }} ) = 1 and v G, f ({ 5 }; {{ 1 } , { 2 } , { 3 , 4 }} ) = 1 . 

ence, 

 = v G, f (N; ∅ ) < v G, f ({ 1 }; {{ 2 } , { 3 , 4 } , { 5 }} ) 
+ v G, f ({ 2 }; {{ 1 } , { 3 , 4 } , { 5 }} ) + v G, f ({ 3 , 4 }; {{ 1 } , { 2 } , { 5 }} ) 
+ v G, f ({ 5 }; {{ 1 } , { 2 } , { 3 , 4 }} ) = 2 . 

Note that the efficiency property is unsatisfied, in general, as a 

onsequence of the construction of v G, f . Given a partition in N, two 

isjoint coalitions can have the same associated global efficiency. 

herefore, v G, f can assign a value of 1 to both, which prevents the 

erification of the efficiency property. 

. On coalition formation, allocations and rankings 

In the presence of externalities, the analysis of the formation 

f coalitions and the allocation of the joint benefits derived from 
1369
heir cooperation from a game theoretical approach is of interest. 

n this section, we consider allocations for games with externali- 

ies to rank the members of a covert network according to their 

ontribution to the overall effectiveness. 

For this purpose, we use some proposals in the literature that 

nvolve games with transferable utility. Before, we first recall the 

otion of a game with transferable utility. Formally, a game with 

ransferable utility or TU game is a pair (N, w ) , where N is the finite

et of agents and w is a map from 2 N to R satisfying w (∅ ) = 0 (cf.

onzález-Díaz, García-Jurado, & Fiestras-Janeiro, 2010 ). The class of 

U games with a set of agents N is denoted by G 

N . Given a game

ith externalities v ∈ P G (N) , the following TU games can be asso-

iated intuitively. 

Formally, the TU games (N, v max ) and (N, v min ) in G 

N associated

ith any partition function form game v are respectively given, for 

very S ⊆ N, by: 

 

max (S) = max 
P∈ �(N\ S) 

v (S; P ) and v min (S) = min 

P∈ �(N\ S) v (S; P ) . 

y definition, v max and v min assign the maximum (optimistic per- 

pective) and minimum (pessimistic perspective) worth to each 

oalition S ⊆ N that the members of S can obtain through their co- 

peration, among all possible structures of N \ S. 

Although these games have been presented in the literature, 

hey show a peculiarity in the partition function form games con- 

idered in this setup. For a covert network game v G, f , note that 

he expressions for optimistic and pessimistic TU games v max 
G, f 

and 

 

min 
G, f 

, respectively, can be explicitly provided for specific effective- 

ess functions. Moreover, the expressions obtained are computa- 

ionally useful. From Proposition 3.3 , which ensures the sense of 

he externalities of any covert network game v G, f under the mono- 

onicity of f , the following corollary can be readily established. 

orollary 4.1. Let (G, f ) = (N, E, f ) be a multi-agent covert network 

roblem and let v G, f be the associated covert network game. Then, the 

ollowing two statements hold. 

(a) For each S ⊆ N, if effectiveness function f is monotonically in- 

creasing, the following holds: 

v max 
G, f (S) = v G, f (S; � N \ S ) and v min 

G, f (S) = v G, f (S; � N \ S� ) . 
(4) 

(b) For each S ⊆ N, if effectiveness function f is monotonically de- 

creasing, it satisfies that 

v max 
G, f (S) = v G, f (S; � N \ S� ) and v min 

G, f (S) = v G, f (S; � N \ S ) . 
Recall that for a given coalition T ⊆ N, � T  denotes {{ j} : j ∈ T } ,

nd � T � means that T is an element of the partition, that is, act-

ng as a block. In particular, if effectiveness function f is mono- 

onically increasing, the maximum worth of the cooperation of S

s reached when the partition of N \ S is formed by the individ- 

al agents, whereas the minimum worth is reached when the out- 

iders act as a whole block. 

Alternatively, we can consider procedures based on averages 

hat are particularly suitable in the presence of uncertainty. Let 

 ∈ P G (N) be a game with externalities. Albizuri et al. (2005) pro-

osed to assign the TU game (N, ̄v ) ∈ G 

N , given by 

¯
 (S) = 

1 

| �(N \ S) | 
∑ 

P∈ �(N\ S) 
v (S; P ) , for each coalition S ⊆ N. (5) 

ere, coalition S obtains the expected value of the cooperation of 

heir members in v , that is, the average over the whole set of 

he embedded coalitions (S; P ) with P ∈ �(N \ S) , when they are

qually likely. 
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Table 2 

TU games (N, v min 
G, f 

) , (N, ̄v G, f ) , (N, ̄̄v G, f ) , and (N, v max 
G, f 

) . 

S v min 
G, f 

(S) v̄ G, f (S) v G, f (S) v max 
G, f 

(S) 

∅ 0 0 0 0 

{ 1 } 0 0 0 0 

{ 2 } 0 0 0 0 

{ 3 } 0 0 0 0 

{ 4 } 0 0 0 0 

{ 5 } 0 0.26667 0.32692 1 

{ 1 , 2 } 0 0.60000 0.71154 1 

{ 1 , 3 } 1 1 1 1 

{ 1 , 4 } 0 0 0 0 

{ 1 , 5 } 0 0.60000 0.71154 1 

{ 2 , 3 } 1 1 1 1 

{ 2 , 4 } 0 0 0 0 

{ 2 , 5 } 0 0.60000 0.71154 1 

{ 3 , 4 } 0 0.60000 0.71154 1 

{ 3 , 5 } 1 1 1 1 

{ 4 , 5 } 0 0.60000 0.71154 1 

{ 1 , 2 , 3 } 1 1 1 1 

{ 1 , 2 , 4 } 0 0.50000 0.71154 1 

{ 1 , 2 , 5 } 1 1 1 1 

{ 1 , 3 , 4 } 1 1 1 1 

{ 1 , 3 , 5 } 1 1 1 1 

{ 1 , 4 , 5 } 0 0.50000 0.71154 1 

{ 2 , 3 , 4 } 1 1 1 1 

{ 2 , 3 , 5 } 1 1 1 1 

{ 2 , 4 , 5 } 1 1 1 1 

{ 3 , 4 , 5 } 1 1 1 1 

{ 1 , 2 , 3 , 4 } 1 1 1 1 

{ 1 , 2 , 3 , 5 } 1 1 1 1 

{ 1 , 2 , 4 , 5 } 1 1 1 1 

{ 1 , 3 , 4 , 5 } 1 1 1 1 

{ 2 , 3 , 4 , 5 } 1 1 1 1 

{ 1 , 2 , 3 , 4 , 5 } 1 1 1 1 
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Finally, we mention the approach of Hu & Yang (2010) , which 

onsiders the TU game (N, v ) ∈ G 

N given by 

 (S) = 

1 

| �(N) | 
∑ 

P∈ �(N) 

v (S; P −S ) , for each S ⊆ N , (6) 

here P −S denotes the partition induced by P on N \ S. Thus, v (S)

s, for each S ⊆ N, the expected worth of S in v over the set of

mbedded coalitions induced by any partition in �(N) , assuming 

hat all partitions P ∈ �(N) are equally likely. 

The following example illustrates the obtaining of the TU games 

N, v max 
G, f 

) , (N, v min 
G, f 

) , (N, ̄v G, f ) , and (N, ̄̄v G, f ) associated with a covert

etwork game v G, f . 

xample 4.2. Let (G, f ) = (N, E, f ) be the multi-agent covert net-

ork situation considered in Example 3.2 . Thus, from the associ- 

ted covert network game v G, f , we obtain the TU games (N, v min 
G, f 

) , 

N, ̄v G, f ) , (N, ̄̄v G, f ) , and (N, v max 
G, f 

) . Table 2 presents these results. 

Note that although the analysis of the properties of these four 

U games may be of interest, it is beyond the scope of this pa-

er. Nonetheless, we note that, in this example, the games v min 
G, f 

nd v max 
G, f 

are simple and that v min 
G, f 

is not a proper game because 

 

min 
G, f 

({ 1 , 3 } ) = v min 
G, f 

({ 2 , 4 , 5 } ) = 1 and { 1 , 3 } and { 2 , 4 , 5 } are dis-

oint coalitions. The same occurs for v max 
G, f 

. In addition, v̄ G, f does not 

atisfy monotonicity as v̄ G, f ({ 1 , 5 } ) > v̄ G, f ({ 1 , 4 , 5 } ) and { 1 , 5 } ⊂
 1 , 4 , 5 } . 

Below, we address the main task of ranking agents in multi- 

gent covert network problems based on the concept of coopera- 

ion considered in this paper. For this purpose, tools from cooper- 

tive game theory, such as the values and solutions for TU games, 

re used. They assign a vector in R 

N to every TU game (N, w ) ∈ G 

N 

nd are typically inspired by the concept of the marginal contribu- 

ion of an agent. That is, with a fixed i ∈ N, a TU game (N, w ) ∈ G 

N 
1370 
nd a coalition S that does not contain it, the marginal contribu- 

ion of agent i to S ⊆ N \ { i } is specified as follows: 

 (S ∪ { i } ) − w (S) . (7) 

ne of the most important values is the Shapley value ( Shapley, 

953 ), which uses a marginalist approach and is defined, for every 

 ∈ N and every TU game (N, w ) ∈ G 

N , by 

h i (N, w ) = 

∑ 

S⊆N\{ i } 

| S| ! (| N| − | S| − 1)! 

| N| ! (w (S ∪ { i } ) − w (S)) . (8)

Under the presence of externalities, this value can be naturally 

xtended to this new context. In analysing covert networks, the 

hapley value can be interpreted as a measure of the ability of 

gents to modify the relative effectiveness of merging under co- 

peration. 

Based on this solution, many extensions are justified according 

o different criteria. For instance, we mention the case of the gen- 

ralization of the Shapley value in Choudhury, Borkotokey, Kumar, 

 Sarangi (2021) , which seeks balance between the Shapley value 

nd the Equal Division rule as representatives of marginalism and 

galitarianism, respectively. Let α = (α1 , α2 , . . . , αn ) be a collection 

f values in the interval [0 , 1] such that 0 = α0 ≤ α1 ≤ α2 ≤ · · · ≤
n = 1 . The Generalized Egalitarian Shapley value (or α-GES value) 

or every i ∈ N and every (N, w ) ∈ G 

N is formally given by 

h 

α−GES 
i 

(N, w ) 

= 

∑ 

S⊆N\{ i } 

| S| ! (| N| − | S| − 1)! 

| N| ! (α| S∪{ i }| w (S ∪ { i } ) −α| S| w (S)) . (9) 

The α-GES value generalises other existing values studied in the 

iterature, such as the Solidarity value for a TU game (N, w ) ∈ G 

N .

his is first considered in Nowak & Radzik (1994) and is based 

n a marginalist approach. This corresponds to Expression 9 , when 

| S| = 

1 
| S| +1 

for every S ⊂ N such that 1 < | S| < n . We denote this 

s Sh s (N, w ) . 

Handling simple games (with externalities) justifies the use of 

ery popular solutions in these settings, such as the Banzhaf value 

nd the Deegan-Packel index for a TU game (N, w ) ∈ G 

N , which

re based on different criteria. The Banzhaf value for a TU game 

N, w ) ∈ G 

N ( Banzhaf, 1964 ), denoted by Bz(N, w ) , is defined under

he marginalist approach as 

z i (N, w ) = 

1 

2 

| N|−1 

∑ 

S⊆N\{ i } 
(w (S ∪ { i } ) −w (S)) , for every i ∈ N. (10)

he Deegan-Packel index ( Deegan & Packel, 1978 ) for a simple game 

N, w ) ∈ G 

N is based on the idea that only minimal winning coali-

ions matter when assessing the power of agents. In the follow- 

ng, for a simple game (N, w ) ∈ G 

N , W denotes the subset of coali-

ions of N that are winning, i.e., those coalitions S ⊆ N satisfying 

 (S) = 1 . A winning coalition is minimal if all its members are

ritical. The Deegan-Packel index of player i , with i ∈ N, for a sim-

le game (N, w ) is given by 

P i (N, w ) = 

1 

|M| 
∑ 

S∈M i 

1 

| S| , (11) 

here M = { S ∈ W : ∀ T ⊂ S, T / ∈ W} is the set of minimal winning

oalitions and M i = { S ∈ M : i ∈ S} denotes the subset of those

hat contain player i . 

Let v ∈ P G (N) be a game with externalities. In the following, we

ist a collection of those solutions originally proposed for games 

n partition function form, which we use to rank the members 

f a covert network according to the decreasing order of their 

omponents. First, we discuss those based on the Shapley value 
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Table 3 

Ranking of agents based on the Shapley value (SH), the Generalized Egalitarian Shapley value (GES), the Solidarity value (S), the Banzhaf 

value (BZ) and the Deegan-Packel index (DP). 

Numerical results Positions 

Ag. 1 Ag. 2 Ag. 3 Ag. 4 Ag. 5 Ag. 1 Ag. 2 Ag. 3 Ag. 4 Ag. 5 

(SH) (N, v min 
G, f 

) 0.1167 0.2000 0.4500 0.0333 0.2000 4 2-3 1 5 2-3 

(N, ̄v G, f ) 0.1367 0.1783 0.3367 0.0533 0.2950 4 3 1 5 2 

(N, ̄̄v G, f ) 0.1478 0.1718 0.3032 0.0644 0.3128 4 3 2 5 1 

(N, v max 
G, f 

) 0.1333 0.1333 0.2167 0.0500 0.4667 3–4 3–4 2 5 1 

(GES) (N, v min 
G, f 

) 0.1533 0.2033 0.3200 0.1200 0.2033 4 2-3 1 5 2-3 

(N, ̄v G, f ) 0.1707 0.1957 0.2673 0.1373 0.2290 4 3 1 5 2 

(N, ̄̄v G, f ) 0.1785 0.1929 0.2503 0.1452 0.2330 4 3 1 5 2 

(N, v max 
G, f 

) 0.1833 0.1833 0.2167 0.1500 0.2667 3–4 3–4 2 5 1 

(S) (N, v min 
G, f 

) 0.1778 0.1986 0.2750 0.1500 0.1986 4 2-3 1 5 2-3 

(N, ̄v G, f ) 0.1728 0.1832 0.2325 0.1450 0.2665 4 3 2 5 1 

(N, ̄̄v G, f ) 0.1733 0.1793 0.2211 0.1455 0.2808 4 3 2 5 1 

(N, v max 
G, f 

) 0.1444 0.1444 0.1722 0.1167 0.4222 3–4 3–4 2 5 1 

(BZ) (N, v min 
G, f 

) 0.1875 0.3125 0.6875 0.0625 0.3125 4 2-3 1 5 2-3 

(N, ̄v G, f ) 0.1958 0.2583 0.4958 0.0708 0.3667 4 3 1 5 2 

(N, ̄̄v G, f ) 0.2115 0.2476 0.4447 0.0865 0.3774 4 3 1 5 2 

(N, v max 
G, f 

) 0.1875 0.1875 0.3125 0.0625 0.4375 3–4 3–4 2 5 1 

(DP) (N, v min 
G, f 

) 0.1667 0.2333 0.3000 0.0667 0.2333 4 2-3 1 5 2-3 

(N, v max 
G, f 

) 0.2000 0.2000 0.3000 0.1000 0.2000 2-3-4 2-3-4 1 5 2-3-4 
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f those TU games that can be associated with v . Albizuri et al.

2005) propose the Shapley value for the TU game (N, ̄v ) as a so-

ution for v , that is, Sh (N, ̄v ) . For v , Pham Do & Norde (2007) and

e Clippel & Serrano (2008) propose the Shapley value for the TU 

ame (N, v min ) , i.e., Sh (N, v min ) , the externality-free Shapley value.

cQuillin (2009) considers the Shapley value for (N, v max ) as an 

llocation, that is, Sh (N, v max ) . Finally, we discuss the proposal of

u & Yang (2010) , which is based on the Shapley value for (N, v ) . 
However, the aforementioned solutions for TU games, based or 

ot on the Shapley value, can be naturally applied in this setting. 

hese solutions are listed as follows. 

• The Generalized Egalitarian Shapley value, the α-GES value 

given in (9) , can be considered for the TU games (N, v min ) ,

(N, v ) , (N, v ) , and (N, v max ) . 
• Similarly, the Solidarity value for (N, v min ) , (N, v ) , (N, v ) , and

(N, v max ) , given by the expression in (9) with α| S| = 

1 
| S| +1 

for 

every S ⊂ N such that 1 < | S| < n , can be considered. 
• Alternatively, the Banzhaf value (10) is of interest, i.e., by 

ranking the members of the covert network according to 

Bz(N, v min ) , Bz(N, v ) , Bz(N, v ) , and Bz(N, v max ) . 
• Finally, the Deegan-Packel index can be considered for the 

TU games (N, v min ) and (N, v max ) because they are simple 

games. 

Next, Example 4.3 illustrates the performance of all possible 

ankings on covert network games. 

xample 4.3. Consider the multi-agent covert network situation 

G, f ) = (N, E, f ) in Example 3.2 . Example 4.2 presents the four 

onsidered TU games derived from v G, f . 

Table 3 presents the rankings based on the Shapley value 

SH), the Generalized Egalitarian Shapley value (GES), the Solidar- 

ty value (S), and the Banzhaf value (BZ) for (N, v min 
G, f 

) , (N, ̄v G, f ) ,

N, ̄̄v G, f ) , and (N, v max 
G, f 

) and the Deegan-Packel index (DP) for 

N, v min 
G, f 

) and (N, v max 
G, f 

) . 

As indicated by (SH) (rows 1–4), Agent 3 is in position 1 when 

sing v min 
G, f 

and v̄ G, f . Otherwise, Agent 5 rises to this position. As 

 common aspect of all four approaches, Agent 4 always occupies 

osition 5 and Agent 1 is usually at position 4. 
1371 
Similar conclusions can be extracted using (GES) (rows 5–8) 

ith α| S| = 

| S| 
| N| for all S ⊆ N. The clearest difference is that under 

pproach 

¯̄v G, f , Agent 3 remains in position 1. Proposals based on 

BZ) (rows 13–16) provide the same rankings. 

As indicated by (S) (rows 9–12), Agent 3 occupies only position 

 when using the TU game v min 
G, f 

. For the other ranking options, 

gent 3 is second, and Agent 5 becomes first. 

Besides, (DP) only for (N, v min 
G, f 

) and (N, v max 
G, f 

) (rows 17–18) as- 

igns positions 1 and 5 to Agents 3 and 4 in both rankings. More- 

ver, Agent 1 occupies position 4 when using v min 
G, f 

. In the remain- 

ng cases, the positions are indistinguishable (ties occur). 

To conclude, we highlight that Agent 3 is typically in position 1 

ecause of the critical position of its associated node in the graph 

n Fig. 1 , which ensures the connectivity of many coalitions. In ad- 

ition, Agent 4 has the lowest weight within the covert network. 

To conclude this section, we focus on determining the best 

layer of a team in a football match using the ranking proposals 

resented in this paper. In this sense, the term “covert” here refers 

o those pre-rehearsed tactics, moves and passes that should be 

nknown to the opposing team. The aim of this example is to es- 

entially generalise the use of these techniques to all types of sit- 

ations that can be modelled in terms of a covert network and 

hose in which ordering its members according to their relevance 

n its operations is of interest. 

xample 4.4. Consider now the multi-agent covert network situ- 

tion (G, f ) = (N, E, f ) from the organisation and performance of 

ootball teams. A team is considered as a complex network whose 

odes (players) interact with the aim of overcoming the opponent 

etwork. Besides, the associated graph is derived from the net- 

orks of football passes, denoting the edges of those interactions 

etween nodes. 

We consider the football match between Portugal and Spain 

t the 2018 World Cup in Russia, which ended in a three-goal 

raw. Fig. 2 shows the passing pattern among the 11 players of the 

panish national football team. On the right, we list the players 

nvolved, as well as the number of passes in which a player is 

nvolved, and the number of goals he scored in the match (in 

rackets). The set of individual weights for each player in N is 

etermined by the average of the proportion of passes that he is 
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Fig. 2. Graph of covert network G associated with the Spanish national team in the Portugal-Spain match at the 2018 World Cup in Russia. 

Table 4 

Positions of players using the Shapley value (SH), the Generalized Egalitarian Shapley value (GES), the Solidarity value (S), the Banzhaf value 

(BZ), and the Deegan-Packel index (DP). 

Players (a) (b) (c) (d) (e) (f) (g) (h) (i) (j) (k) 

(SH) (N, v min 
G, f 

) 6 10 11 1 8 4 3 7 5 9 2 

(N, ̄v G, f ) 6 10 11 4 8 3 2 7 5 9 1 

(N, v max 
G, f 

) 4 3 11 1 9 4 10 4 4 4 2 

(GES) (N, v min 
G, f 

) 6 10 11 1 8 4 3 7 5 9 2 

(N, ̄v G, f ) 6 10 11 2 8 4 3 7 5 9 1 

(N, v max 
G, f 

) 4 3 11 1 9 4 10 4 4 4 2 

(S) (N, v min 
G, f 

) 6 10 11 1 8 4 3 7 5 9 2 

(N, ̄v G, f ) 6 10 11 4 8 2 3 7 5 9 1 

(N, v max 
G, f 

) 4 3 11 1 9 4 10 4 4 4 2 

(BZ) (N, v min 
G, f 

) 6 10 11 1 8 4 3 7 4 9 2 

(N, ̄v G, f ) 6 10 11 2 8 4 3 7 5 9 1 

(N, v max 
G, f 

) 4 3 11 1 9 4 10 4 4 4 2 

(DP) (N, v min 
G, f 

) 3 10 11 1 9 4 6 7 5 8 2 

(N, v max 
G, f 

) 7 2 10 11 6 3 9 3 7 3 1 
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nvolved in relative to the total passes and proportion of goals he 

cores. In addition, the weights on the links that indicate the rela- 

ional strength between members of the network account for the 

umber of passes between each pair of connected players. Table 

.1, in Appendix A in the Online Resource Section, contains all the 

nformation regarding the passes. 

Using the effectiveness function of Lindelauf et al. in (2) , we 

ake v G, f a covert network game. Table 4 lists the positions in the 

ankings of players based on the Shapley value (SH), the General- 

zed Egalitarian Shapley value (GES), the Solidarity value (S), and 

he Banzhaf value (BZ) for (N, v min 
G, f 

) , (N, ̄v G, f ) , and (N, v max 
G, f 

) , and

he Deegan-Packel index (DP) for (N, v min 
G, f 

) and (N, v max 
G, f 

) . Table A.2 

n Appendix A in the Online Resource Section presents the nu- 

erical results. From Corollary 4.1 , (N, v min 
G, f 

) and (N, v max 
G, f 

) are the 

U games in (4) . We highlight the case of the TU game (N, ̄̄v G, f ) ,

hich cannot be obtained in feasible time because, with 11 play- 

rs, we must evaluate 678,570 partitions per coalition. 

Based on the results, Diego Costa (d) is typically in position 1 

he is responsible for two of the goals). Positions 2 and 3 are typ- 

cally occupied by Sergio Ramos (k) and Jordi Alba (g), except for 

N, ̄̄v G, f ) , where David Silva (b) moves to position 3 (in general, in

osition 10). Isco (f) is typically in position 4, except under (SH) 

nd (S) for (N, ̄̄v G, f ) , where Andrés Iniesta (a) moves up to this
1372
osition. This indicates the key roles of defenders and strikers in 

he bid to win the match. The other players generally remain in 

he same positions (with differences of one or two). Notably, David 

e Gea (c) is placed at the bottom of the ranking, which may be- 

ause of his responsibility to safeguard the goal posts, even under 

P (N, v max 
G, f 

) , which yields different results. 

As can be gathered from the previous example, computational 

roblems pose when determining some of the TU games associ- 

ted with any games with externalities v . Evidently, obtaining v̄ 
nd 

¯̄v requires a large computational effort because the number of 

artitions to be evaluated increases dramatically with the number 

f players involved. To address this drawback, Saavedra-Nieves & 

iestras-Janeiro (2022) provide as solution two specific procedures 

ased on sampling techniques (cf. Cochran, 2007 ) to approximate 

oth TU games for any game with externalities v involving a large 

mount of agents. These problems are in addition to those known 

n the exact computation of, for example, the Shapley value or the 

anzhaf value of a general TU game. Such drawbacks prompted 

he works of Fernández-García and Puerto-Albandoz (2006) , Castro, 

ómez, & Tejada (2009) and Maleki (2015) to estimate the Shap- 

ey value, and Bachrach et al. (2010) for the Banzhaf value approx- 

mation. However, Saavedra-Nieves & Fiestras-Janeiro (2022) also 
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ddress the specific case of estimating the Shapley value of the TU 

ames of Albizuri et al. (2005) and Hu & Yang (2010) . 

. An application: the 9/11 attacks 

In this section, we apply the proposed ranking methodologies 

o analyse the covert network of hijackers that supported the 9/11 

ttacks. 

The September 11, attacks, more commonly referred to as 9/11, 

re considered among the most devastating in recent history. The 

umber of deaths they have caused was dramatic, as well as the 

conomic and social impact they had on the world. This chain of 

ttacks was executed by 19 members of the Islamist terrorist group 

l Qaeda. On the morning of Tuesday 11 September 2001, four 

ommercial airliners travelling from the north-eastern parts of the 

nited States to California were hijacked mid-flight by 19 terrorists. 

wo of these planes were flown into the Twin Towers of the World 

rade Center in New York. A third plane was flown into the west 

ide of the Pentagon, and a fourth plane crashed in Pennsylvania. A 

etailed description of these events was provided by Kean, Hamil- 

on, & Ben-Veniste (2002) . The attack on the United States was not 

 new idea, as several years earlier, Osama Bin Laden had declared 

 fight against Americans and their collaborators’ interests because 

f what they considered intrusions and humiliations to the Islamic 

ommunity. Bin Laden declared jihad against the United States in 

996. The base of this chain of attacks follows the existing pro- 

osal from other Islamic leaders and involved training pilots to fly 

nto buildings and eventually motivated the 9/11 attack. Bin Laden, 

ith his collaborators, selected hijackers who attacked the United 

tates, trained them, and managed the logistics of the attack in 

erms of accommodation and funding. 

The data considered for the analysis from a game theoretical 

pproach were extracted from the studies conducted by Kean et al. 

2002) and Krebs (2002) . First, we consider the resulting covert 

etwork that can be built from the available information in Fig. 3 . 

Thus, N = { 1 , . . . , 19 } denotes the set of nodes representing each

ijacker involved. In this sense, the game theoretical analysis of 

overt networks adds additional information. For this purpose, ac- 

ording to the report of the 9/11 commissions in Kean et al. (2002) ,
Fig. 3. Graph of covert network G responsible for the 9/11 attacks. 
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ijackers can be characterised according to their affiliation and de- 

ree of radicalisation, as accomplished in Lindelauf et al. (2013) . 

Table 5 summarises this information by assigning an initial 

eight of 1; however, this is increased according to the most rele- 

ant associated indicators. We highlight the case of Mohamed Atta 

with a weight of 4), which is typically considered the leader of the 

ttacks. However, no information on relational strength is avail- 

ble; therefore, we take k i j = 1 for all i j ∈ E, as in Husslage et al.

2015) . 

In the following, we analyse the influence of the hijackers in- 

olved in achieving their objective of perpetrating the attacks. For 

his purpose, we consider the cooperative approach described in 

his study. The formation of coalitions under cooperation in this 

etting naturally increases the chances of a “successful” operation, 

ith success being understood as an attack on certain previously 

esignated objectives. However, the effectiveness of a given merger 

s clearly influenced by the organisation of its outsiders, as another 

erger may exist that is much more effective and that relegates it 

o the background. Based on its ability to increase the overall effec- 

iveness in the event of a merger, we rank the 19 hijackers belong- 

ng to the covert network associated with the 9/11 attacks using 

overt network games. Therefore, this tool can be considered use- 

ul for surveillance services, as its effectiveness under cooperation 

s equivalent to a real threat in terrorism. Once a potential dan- 

er is identified, its neutralisation would be easier for intelligence 

ervices. 

Let v G, f be the covert network game associated with this situa- 

ion, with function f of Lindelauf et al. (2013) given in (2) . In par-

icular, we obtain the rankings of the hijackers based on the Shap- 

ey value ( Shapley, 1953 ), on the Generalized Egalitarian Shapley 

alue ( Choudhury et al., 2021 ), with α| S| = 

| S| 
| N| for all S ⊆ N, on the

olidarity value ( Nowak & Radzik, 1994 ), and also on the Banzhaf 

alue ( Banzhaf, 1964 ) of such TU game. They will be denoted again,

or the sake of simplicity, by (SH), (GES), (S) and (BZ), respectively. 

ecause the TU games (N, v min 
G, f 

) and (N, v max 
G, f 

) are simple games, 

sing the Deegan-Packel index (11) is justified and it will be de- 

oted by (DP). Tables B.3 and B.4 in Appendix B in the Online Re- 

ource Section present all the numerical results. 

First, we comment on the associated TU games that can be ex- 

ctly obtained within a feasible time. Corollary 4.1 ensures that 

N, v min 
G, f 

) and (N, v max 
G, f 

) are, also in this case, the TU games in (4) . 

he total number of coalitions required to compute both charac- 

eristic functions is relatively small; thus, they can be obtained 

xactly, thereby avoiding the use of sampling. Table 6 provides 

he rankings obtained when considering the pessimistic TU game 

N, v min 
G, f 

) . Salem Alhazmi occupies position 1 in the four rankings, 

halid Al-Mihdhar occupies position 2, and Ziad Jarrah, occupies 

osition 3. Mohamed Atta, which is typically considered the leader 

f the group, occupies position 4, and Hani Hanjour ranks position 

. Ahmed Al-Haznawi and Majed Moqed occupy positions 6 and 7, 
able 5 

ist of individual weights for the members of the covert network responsible for 

he 9/11 attacks. 

Hijacker w i Hijacker w i 

Ahmed Alghamdi 1 Nawaf Alhazmi 2 

Hamza Alghamdi 1 Khalid Al-Mihdhar 3 

Mohand Alshehri 1 Hani Hanjour 1 

Fayez Ahmed 1 Majed Moqed 1 

Marwan Al-Shehhi 3 Mohamed Atta 4 

Ahmed Alnami 1 Abdul Aziz Al-Omari 1 

Saeed Alghamdi 1 Waleed Alshehri 1 

Ahmed Al-Haznawi 1 Satam Suqami 1 

Ziad Jarrah 4 Wail Alshehri 1 

Salem Alhazmi 1 
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Table 6 

Rankings based on (SH), (GES), (S), (BZ), and (DP) for (N, v min 
G, f 

) . 

(SH) (GES) (S) (BZ) (DP) 

1 Salem Alhazmi Salem Alhazmi Salem Alhazmi Salem Alhazmi Salem Alhazmi 

2 Khalid Al-Mihdhar Khalid Al-Mihdhar Khalid Al-Mihdhar Khalid Al-Mihdhar Khalid Al-Mihdhar 

3 Ziad Jarrah Ziad Jarrah Ziad Jarrah Ziad Jarrah Ziad Jarrah 

4 Mohamed Atta Mohamed Atta Mohamed Atta Mohamed Atta Mohamed Atta 

5 Hani Hanjour Hani Hanjour Hani Hanjour Hani Hanjour Hani Hanjour 

6 Ahmed Al-Haznawi Ahmed Al-Haznawi Ahmed Al-Haznawi Majed Moqed Ahmed Al-Haznawi 

7 Majed Moqed Majed Moqed Majed Moqed Ahmed Al-Haznawi Majed Moqed 

8 Marwan Al-Shehhi Marwan Al-Shehhi Marwan Al-Shehhi Marwan Al-Shehhi Marwan Al-Shehhi 

9 Hamza Alghamdi Hamza Alghamdi Hamza Alghamdi Hamza Alghamdi Nawaf Alhazmi 

10 Nawaf Alhazmi Nawaf Alhazmi Nawaf Alhazmi Nawaf Alhazmi Hamza Alghamdi 

11 Saeed Alghamdi Saeed Alghamdi Saeed Alghamdi Saeed Alghamdi Saeed Alghamdi 

12 Fayez Ahmed Fayez Ahmed Fayez Ahmed Fayez Ahmed Fayez Ahmed 

13 Mohand Alshehri Mohand Alshehri Mohand Alshehri Mohand Alshehri Ahmed Alnami 

14 Ahmed Alnami Ahmed Alnami Ahmed Alnami Ahmed Alnami Mohand Alshehri 

15 Abdul Aziz Al-Omari Abdul Aziz Al-Omari Abdul Aziz Al-Omari Abdul Aziz Al-Omari Satam Suqami 

16 Satam Suqami Satam Suqami Satam Suqami Satam Suqami Abdul Aziz Al-Omari 

17 Ahmed Alghamdi Ahmed Alghamdi Ahmed Alghamdi Ahmed Alghamdi Ahmed Alghamdi 

18 Wail Alshehri Wail Alshehri Waleed Alshehri Waleed Alshehri Waleed Alshehri 

19 Waleed Alshehri Waleed Alshehri Wail Alshehri Wail Alshehri Wail Alshehri 

Table 7 

Rankings based on (SH), (GES), (S), (BZ), and (DP) for (N, v max 
G, f 

) . 

(SH) (GES) (S) (BZ) (DP) 

1 Ziad Jarrah Mohamed Atta Ziad Jarrah Ziad Jarrah Hamza Alghamdi 

2 Mohamed Atta Ziad Jarrah Mohamed Atta Mohamed Atta Salem Alhazmi 

3 Khalid Al-Mihdhar Khalid Al-Mihdhar Khalid Al-Mihdhar Khalid Al-Mihdhar Saeed Alghamdi 

4 Marwan Al-Shehhi Marwan Al-Shehhi Marwan Al-Shehhi Marwan Al-Shehhi Majed Moqed 

5 Salem Alhazmi Salem Alhazmi Salem Alhazmi Salem Alhazmi Ahmed Al-Haznawi 

6 Hamza Alghamdi Hamza Alghamdi Hamza Alghamdi Hamza Alghamdi Ahmed Alnami 

7 Ahmed Alnami Ahmed Alnami Ahmed Alnami Ahmed Alnami Mohand Alshehri 

8 Majed Moqed Majed Moqed Majed Moqed Majed Moqed Hani Hanjour 

9 Ahmed Al-Haznawi Ahmed Al-Haznawi Nawaf Alhazmi Ahmed Al-Haznawi Khalid Al-Mihdhar 

10 Nawaf Alhazmi Hani Hanjour Ahmed Al-Haznawi Saeed Alghamdi Fayez Ahmed 

11 Hani Hanjour Nawaf Alhazmi Hani Hanjour Hani Hanjour Ahmed Alghamdi 

12 Saeed Alghamdi Saeed Alghamdi Satam Suqami Mohand Alshehri Marwan Al-Shehhi 

13 Satam Suqami Mohand Alshehri Saeed Alghamdi Fayez Ahmed Nawaf Alhazmi 

14 Mohand Alshehri Fayez Ahmed Mohand Alshehri Nawaf Alhazmi Satam Suqami 

15 Fayez Ahmed Satam Suqami Fayez Ahmed Ahmed Alghamdi Ziad Jarrah 

16 Ahmed Alghamdi Ahmed Alghamdi Ahmed Alghamdi Satam Suqami Mohamed Atta 

17 Wail Alshehri Abdul Aziz Al-Omari Waleed Alshehri Abdul Aziz Al-Omari Abdul Aziz Al-Omari 

18 Waleed Alshehri Waleed Alshehri Wail Alshehri Waleed Alshehri Waleed Alshehri 

19 Abdul Aziz Al-Omari Wail Alshehri Abdul Aziz Al-Omari Wail Alshehri Wail Alshehri 

r

s

p

m

S

(

f

r

i

K

t

A

8

O

W

t

o

9

p

(

H

(

(

a

(

f

I

d

t

t

A

i

U

A

d

d

c

a

l

a  

N

S

t  

o

espectively, except in terms of (BZ), for which they exchange po- 

itions. From position 8 onwards, the hijackers occupy the same 

ositions. 

Analogously, Table 7 provides the rankings, based on the afore- 

entioned criteria, for the TU game (N, v max 
G, f 

) . Recall that the 

hapley value for this game is the solution proposed by McQuillin 

2009) for v G, f . Regarding the rankings based on v max 
G, f 

, more dif- 

erences are easily observed. However, from positions 1 to 8, the 

esulting rankings are identical. Ziad Jarrah and Mohamed Atta tie 

n position 1 (note that they have the highest individual weights). 

halid Al-Mihdhar occupies position 2; Marwan Al-Shehhi, posi- 

ion 4; Salem Alhazmi, position 5; Hamza Alghamdi and Ahmed 

lnami, positions 6 and 7, respectively; and Majed Moqed, position 

. In addition, Wail Alshehri, Waleeed Alshehri and Abdul Aziz Al- 

mari occupy the last three positions in the four rankings (tied). 

e now list the main changes in the rankings. Ahmed Al-Haznawi 

ypically occupies position 9, except in terms of (S). Nawaf Alhazmi 

ccupies position 10 using (SH), position 11 under (GES), position 

 under (S), and position 14 when (BZ). Hani Hanjour occupies 

osition 11 using (SH), (S), and (BZ) and position 10 in terms of 

GES). Saeed Alghamdi occupies position 12 under (SH) and (GES). 

owever, he moves to position 13 with (S) and to position 10 with 

BZ). Satam Suqami occupies position 13 for (SH); position 15 for 
1374 
GES); position 12 for (S); and position 16 for (BZ). Using (SH) 

nd (S), Mohand Alshehri occupies position 14, position 13 under 

GES), and position 12 under (BZ). Similar conclusions are drawn 

or Fayez Ahmed. He occupies position 15 in terms of (SH) and (S). 

f (GES) is considered, he occupies position 14, and position 13 un- 

er (BZ). Finally, we mention the case of Ahmed Alghamdi, who 

ypically occupies position 16, except for (BZ), for which he moves 

o position 15. In terms of (DP), we highlight the case of Mohamed 

tta who, despite being considered the leader, the Deegan-Packel 

ndex relegates him to the last position (tied with other agents). 

nder (N, v max 
G, f 

) , the first three positions are occupied by Hamza 

lghamdi, Salem Alhazmi and Saeed Alghamdi. A more thorough 

iscussion concerning the results can be conducted; however, the 

ifferences are now clearer than those with the other rankings 

onsidered. 

Finally, we analyse the results using the TU games (N, ̄v G, f ) 

nd (N, ̄̄v G, f ) . As the number of partitions involved is excessively 

arge, sampling techniques are required to approximate the char- 

cteristic functions of both TU games. Take v ∈ P G (N) . Saavedra-

ieves & Fiestras-Janeiro (2022) propose that, for a fixed coalition 

 ⊆ N, the estimation of v̄ (S) ( Albizuri et al., 2005 ) corresponds 

o the sample mean of v (S; P ) , with P an element of a sample

f partitions in �(N \ S) obtained under simple random sampling 
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Table 8 

Rankings based on (SH), (GES), (S), and (BZ) for the estimation of (N, ̄v G, f ) . 

(SH) (GES) (S) (BZ) 

1 Salem Alhazmi Salem Alhazmi Salem Alhazmi Salem Alhazmi 

2 Khalid Al-Mihdhar Khalid Al-Mihdhar Khalid Al-Mihdhar Khalid Al-Mihdhar 

3 Ziad Jarrah Ziad Jarrah Ziad Jarrah Ziad Jarrah 

4 Mohamed Atta Mohamed Atta Mohamed Atta Mohamed Atta 

5 Hani Hanjour Hani Hanjour Hani Hanjour Hani Hanjour 

6 Ahmed Al-Haznawi Ahmed Al-Haznawi Ahmed Al-Haznawi Majed Moqed 

7 Majed Moqed Majed Moqed Majed Moqed Ahmed Al-Haznawi 

8 Marwan Al-Shehhi Marwan Al-Shehhi Marwan Al-Shehhi Marwan Al-Shehhi 

9 Hamza Alghamdi Hamza Alghamdi Hamza Alghamdi Hamza Alghamdi 

10 Nawaf Alhazmi Nawaf Alhazmi Nawaf Alhazmi Nawaf Alhazmi 

11 Saeed Alghamdi Saeed Alghamdi Saeed Alghamdi Saeed Alghamdi 

12 Fayez Ahmed Fayez Ahmed Fayez Ahmed Fayez Ahmed 

13 Mohand Alshehri Mohand Alshehri Mohand Alshehri Mohand Alshehri 

14 Ahmed Alnami Ahmed Alnami Ahmed Alnami Ahmed Alnami 

15 Abdul Aziz Al-Omari Abdul Aziz Al-Omari Abdul Aziz Al-Omari Abdul Aziz Al-Omari 

16 Satam Suqami Satam Suqami Satam Suqami Satam Suqami 

17 Ahmed Alghamdi Ahmed Alghamdi Ahmed Alghamdi Ahmed Alghamdi 

18 Waleed Alshehri Waleed Alshehri Waleed Alshehri Waleed Alshehri 

19 Wail Alshehri Wail Alshehri Wail Alshehri Wail Alshehri 
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ith replacement. Alternatively, the estimation of ¯̄v (S) ( Hu & Yang, 

010 ) is the average of the worth of the game in partition func- 

ion form over partitions for N \ S of the form P −S , induced by a

ample of partitions in �(N) . To obtain these, we take samples of 

0 partitions per coalition using simple random sampling with re- 

lacement whenever the size of the target partitions’ population 

s larger. Otherwise, as for some components of the characteristic 

unction of the TU game of Albizuri et al. (2005) , we consider the

ntire sampling population. 

In addition, the analysis of the estimation error is a task cov- 

red by Saavedra-Nieves & Fiestras-Janeiro (2022) , which provide a 

robabilistic bound of the incurred error depending on the sample 

ize, confidence level, maximum desired error, and range of values 

f v . In our setting, this range is 1 for all S ⊆ N. Thus, as we take

amples of 50 partitions per coalition in both cases, we have en- 

ured a maximum error of 0.192, with a probability of 95%, in the 

stimation of each of the components of both TU games. Note that 

e use sampling methods only when the number of partitions re- 

uired to obtain the exact TU game of Albizuri et al. (2005) ex- 

eeds 50. Otherwise, the exact worth is obtained. Although the 

ample size may appear small, evaluating the effectiveness of all 

onnected coalitions in a given partition is a nontrivial computa- 

ional task. 

Table 8 lists the rankings based on the estimation of the TU 

ame (N, ̄v G, f ) . Verifying that (SH), (GES), (S) and (BZ) prescribe 

he same hijacker rankings under this approach is easy. Only nu- 

erical differences exist; however, they are based on the basis 

hat justifies each of the solutions for the TU games considered 

ere. Again, we mention the case of Mohamed Atta, who is typi- 

ally considered the leader of the group and now ranks position 4. 

alem Alhazmi occupies position 1, Khalid Al-Mihdhar, position 2, 

nd Ziad Jarrah, position 3. Although comments can also be made 

n the hijackers placed in the intermediate zone of the ranking 

ithout changes, we focus on those considered less influential un- 

er this approach: Abdul Aziz Al-Omari, Satam Suqami, Ahmed Al- 

hamdi, Waleed Alshehri and Wail Alshehri, who occupy the last 

ve positions. 

Finally, Table 9 presents the rankings of the hijackers support- 

ng 9/11, based on the solutions considered for the estimated 

¯̄v G, f . 

n brief, we draw some conclusions. Ziad Jarrah and Mohamed 

tta rank positions 1 and 2, except under (BZ) for which they ex- 

hange positions. Khalid Al-Mihdhar always ranks position 3. Mar- 

an Al-Shehhi and Salem Alhazmi occupy positions 4 and 5 un- 

er (SH), (GES), and (S). However, they exchange positions when 

BZ) is used. Hamza Alghamdi always ranks position 6. In addition, 
1375 
ani Hanjour occupies position 7 under (SH), (GES), and (S), and 

ccupies position 8 under (BZ). Majed Moqed ranks position 8 un- 

er (SH) and (S), position 9 under (GES), and position 10 under 

BZ). Ahmed Al-Haznawi typically occupies position 9, except un- 

er (GES), which moves him to position 10. Ahmed Alnami ranks 

osition 10 under (SH), position 8 under (GES), position 11 under 

S), and position 7 under (BZ). Nawaf Alhazmi moves to position 

1 under (SH) and (GES), to position 10 under (S), and to position 

2 under (BZ). Similarly, Saeed Alghamdi occupies position 12 un- 

er (SH) and (GES), position 13 under (S), and position 11 under 

BZ). Satam Suqami ranks position 13 under (SH), position 15 un- 

er (GES), position 12 under (S), and position 17 under (BZ). Mo- 

and Alshehri and Fayez Ahmed occupy positions 14 and 16 under 

SH) and (S), respectively; however, they occupy positions 13 and 

4 under (GES) and (BZ), respectively. Abdul Aziz Al-Omari typi- 

ally occupies position 15, except under (GES), which moves him 

o position 16. Finally, Ahmed Alghamdi typically occupies position 

7, except under (BZ), and Waleed and Wail Alshehri are always in 

he final two positions. 

.1. A brief comparison with other standard centrality measures 

The results presented there considerably differ those obtained 

tudies using standard tools or other game theoretical methods, 

nderlining the relevance of the use of games in the form of par- 

ition function. In this section, we revisit some well-known stan- 

ard centrality measures to compare the performance of our rank- 

ng proposal. 

Given a network G = (N, E) , we briefly list some classical in-

ices, used in standard network analysis, that also provide rankings 

ccording to their decreasing order. 

• If d(i ) is the number of the direct connections of i , the nor-

malized degree centrality ( Proctor & Loomis, 1951 ) of agent i 

is given by 

C deg (i ) = 

d(i ) 

| N| − 1 

. (12) 

• The normalized betweenness centrality of agent i is defined as 

C bet (i ) = 

2 

(| N| − 1)(| N| − 2) 

∑ 

k, j∈ N\{ i } : k< j 

s ki j 

s k j 

, (13) 

where s k j is the total number of shortest paths between 

agents k and j, and s ki j the number of shortest paths be- 

tween k and j containing agent i . 
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Table 9 

Rankings based on (SH), (GES), (S), and (BZ) for the estimation of (N, ̄̄v G, f ) . 

(SH) (GES) (S) (BZ) 

1 Ziad Jarrah Ziad Jarrah Ziad Jarrah Mohamed Atta 

2 Mohamed Atta Mohamed Atta Mohamed Atta Ziad Jarrah 

3 Khalid Al-Mihdhar Khalid Al-Mihdhar Khalid Al-Mihdhar Khalid Al-Mihdhar 

4 Marwan Al-Shehhi Marwan Al-Shehhi Marwan Al-Shehhi Salem Alhazmi 

5 Salem Alhazmi Salem Alhazmi Salem Alhazmi Marwan Al-Shehhi 

6 Hamza Alghamdi Hamza Alghamdi Hamza Alghamdi Hamza Alghamdi 

7 Hani Hanjour Hani Hanjour Hani Hanjour Ahmed Alnami 

8 Majed Moqed Ahmed Alnami Majed Moqed Hani Hanjour 

9 Ahmed Al-Haznawi Majed Moqed Ahmed Al-Haznawi Ahmed Al-Haznawi 

10 Ahmed Alnami Ahmed Al-Haznawi Nawaf Alhazmi Majed Moqed 

11 Nawaf Alhazmi Nawaf Alhazmi Ahmed Alnami Saeed Alghamdi 

12 Saeed Alghamdi Saeed Alghamdi Satam Suqami Nawaf Alhazmi 

13 Satam Suqami Mohand Alshehri Saeed Alghamdi Mohand Alshehri 

14 Mohand Alshehri Fayez Ahmed Mohand Alshehri Fayez Ahmed 

15 Abdul Aziz Al-Omari Satam Suqami Abdul Aziz Al-Omari Abdul Aziz Al-Omari 

16 Fayez Ahmed Abdul Aziz Al-Omari Fayez Ahmed Ahmed Alghamdi 

17 Ahmed Alghamdi Ahmed Alghamdi Ahmed Alghamdi Satam Suqami 

18 Waleed Alshehri Waleed Alshehri Waleed Alshehri Wail Alshehri 

19 Wail Alshehri Wail Alshehri Wail Alshehri Waleed Alshehri 

Table 10 

Spearman correlations between the rankings. 

v min 
G, f 

v max 
G, f 

v min 
G, f 

v max 
G, f 

(SH) (GES) (S) (BZ) (SH) (GES) (S) (BZ) (DP) (DP) 

C deg 0.328 0.328 0.342 0.326 0.344 0.381 0.358 0.316 0.335 -0.019 

C bet 0.137 0.137 0.158 0.144 0.089 0.163 0.123 0.089 0.135 -0.293 

C close 0.616 0.616 0.619 0.611 0.549 0.607 0.551 0.542 0.612 0.107 

C L 0.163 0.163 0.188 0.174 0.086 0.170 0.114 0.121 0.142 -0.212 

v̄ G, f 
¯̄v G, f 

(SH) (GES) (S) (BZ) (SH) (GES) (S) (BZ) 

C deg 0.342 0.342 0.342 0.326 0.439 0.447 0.442 0.421 

C bet 0.158 0.158 0.158 0.144 0.209 0.223 0.226 0.198 

C close 0.619 0.619 0.619 0.611 0.642 0.661 0.644 0.660 

C L 0.188 0.188 0.188 0.174 0.254 0.254 0.265 0.225 
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• The normalized closeness centrality of agent i is defined by 

C close (i ) = 

| N| − 1 ∑ 

j∈ N l i j 

, (14) 

where l i j is the shortest distance between agents i and j. 

These three measures have already been computed by Lindelauf 

t al. (2013) for the covert network depicted in Fig. 3 . Table 6 in

hat work provides the associated rankings and the ranking in- 

uced by their game theoretical proposal (denoted by C L ). For each, 

pearman correlations are obtained among the rankings to com- 

are the degree of similarity. Table 10 lists these values. 

These results reveal that the greatest similarities originate from 

he rankings obtained under the normalised closeness centrality 

in bold). However, note that in the ranking given by the Deegan- 

ackel index, correlations are typically negative. This indicates that 

he positions in this ranking are generally opposite to those com- 

ared. Because the correlations are not considerably high in the 

emaining cases, the results shown are not invalidated but empha- 

ize the effort required by investigation teams when determining 

he criteria to be used in each case. The chosen criteria largely de- 

ermine the resulting rankings. As observed, this decision is key 

hen deciding where to centralise terrorist surveillance resources 

o control the most potentially active and dangerous terrorists. 

Our results contribute to a more comprehensive analysis of 

he covert network responsible for the 9/11 attacks that can be 

ompared with the results previously obtained by Lindelauf et al. 

2013) and Husslage et al. (2015) , among others. Note that one of 

he most relevant differences is that, here, Salem Alhazmi was de- 
1376 
ermined to rank in the first five positions with all games and val- 

es considered. Although this agent has a weight of 1, its position 

n the associated graph favours Nawaf Alhazmi (weight of 2), Ziad 

arrah (4), and Marwan Al-Shehhi (3), who are three of the most 

elevant agents, to be part of the same connected coalition. In ad- 

ition, Waleed Alshehri and Wail Alshehri are always ranked in the 

nal five positions. This result considerably differs from that ob- 

ained in the literature when network centrality was studied us- 

ng standard tools or other game theoretical methods, which un- 

erlines the relevance of using games in the form of partition 

unction. 

. Concluding remarks 

Recently, covert network analysis has been attracting in- 

reasing attention because of its usefulness in handling global 

roblems such as social movements, terrorism, and more day-to- 

ay events such as the analysis of sports teams. Classic techniques 

n social network analysis have been used to identify the most rel- 

vant members of covert networks without considering the possi- 

le cooperation of their members. This problem is partially solved 

y using an approach based on cooperative game theory that con- 

iders possible links between them. In this paper, we have anal- 

sed the impact of the cooperation between members of a covert 

etwork on their overall effectiveness. In this framework, such a 

alue can be influenced by the organisation of the outsiders to the 

overt network of any formed coalition, allowing us to consider 

artition function games ( Thrall & Lucas, 1963 ) to model these sit- 

ations. 
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Starting from a covert network and a system of weights de- 

ned on the nodes and arcs that integrate it, we introduced a 

ame in partition function form to model the covert network in 

he presence of externalities. Besides, we formally study the game 

heoretical properties that satisfy this new class of games. Based 

n a thorough review of the literature, we use some values de- 

ned for games in partition function form to rank the mem- 

ers of a covert network according to their contribution to the 

verall effectiveness. In particular, some of these proposals are 

ased on the Shapley value ( Shapley, 1953 ); however, we also use 

thers well-known solutions reported in the literature, such as 

he Banzhaf value ( Banzhaf, 1964 ) and the Deegan-Packel index 

 Deegan & Packel, 1978 ), along with some associated TU games 

or any game in partition function form, by applying the ap- 

roaches proposed in the literature ( Albizuri et al., 2005; de Clip- 

el & Serrano, 2008; Hu & Yang, 2010; McQuillin, 2009 ). These 

U games, given a merger of agents, assume different structures 

or the remaining agents: their union, the formation of all indi- 

idual coalitions, or an equiprobable distribution of the different 

ossible partitions, particularly suitable in situations of increased 

ncertainty. 

The complexity of the calculations performed should be noted. 

n this framework, the role of the sampling techniques used to ap- 

roximately obtain some rankings is crucial, being all computation 

imes achieved considerably diminished by using a supercomput- 

ng centre. Comparative studies on the performance of other ef- 

ectiveness functions for any merge and those on new formula- 

ions of partition function form games to describe the reality of 

ach covert network more reliably should be conducted in the 

uture. In addition, the application of these techniques to differ- 

nt covert networks, which were not considered here, may be 

aluable. 

As an application, we use these methods to analyse the covert 

etwork supporting the 9/11 attacks to determine, under the pro- 

osed approach, the degree of involvement of each member in 

chieving their objectives. Naturally, different rankings are ob- 

ained depending on the aforementioned assumptions inherent in 

he models used. The most appropriate results can be selected ac- 

ording to the information available and depending on the coun- 

erterrorism agents and potential users of the tool created. All 

ankings can be used simultaneously, allowing for the considera- 

ion of different scenarios. 

Although we demonstrated the performance of our proposal us- 

ng the effectiveness function proposed by Lindelauf et al. (2013) , 

he method is easily extensible to any general framework with a 

ultiagent covert network scheme, in which establishing rankings 

f its members is of interest. The usage of such a function is jus- 

ified as it is a function that encompasses more information about 

he members of each coalition, such as their connectivity and hier- 

rchy and communication between them. Naturally, a general fam- 

ly of covert network games arises if any effectiveness function f

s considered. 
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