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A B S T R A C T

Background and Objectives: Code-modulated visual evoked potentials (c-VEPs) have marked a milestone in
the scientific literature due to their ability to achieve reliable, high-speed brain–computer interfaces (BCIs)
for communication and control. Generally, these expert systems rely on encoding each command with shifted
versions of binary pseudorandom sequences, i.e., flashing black and white targets according to the shifted code.
Despite the excellent results in terms of accuracy and selection time, these high-contrast stimuli cause eyestrain
for some users. In this work, we propose the use of non-binary 𝑝-ary m-sequences, whose levels are encoded
with different shades of gray, as a more pleasant alternative than traditional binary codes. The performance
and visual fatigue of these 𝑝-ary m-sequences, as well as their ability to provide reliable c-VEP-based BCIs, are
analyzed for the first time.
Methods: Five different m-sequences were evaluated with 16 healthy participants, following the circular
shifting paradigm: base 2 (63 bits), base 3 (80 bits), base 5 (124 bits), base 7 (48 bits), and base 11 (120
bits). Signal processing consisted of a 3-filter bank (1–60 Hz, 12–60 Hz and 30–60 Hz), followed by a canonical
correlation analysis. Raster latency correction and artifact rejection approaches were also applied to compute
command templates. For each m-sequence, users performed a 30-trial calibration stage, followed by an online
spelling task of 32 trials. In addition, qualitative measures regarding visual fatigue and satisfaction were
collected.
Results: Users were able to achieve an average accuracy of over 98% for all 𝑝-ary m-sequences. The differences
between m-sequences were not significant in terms of accuracy, but they were in terms of visual fatigue. The
higher the base, the less eyestrain perceived by users for both presentation rates of 60 Hz and 120 Hz. All
𝑝-ary m-sequences were also significantly less annoying when displayed at 120 Hz compared to 60 Hz.
Conclusion: Results suggest that all 𝑝-ary m-sequences are suitable for achieving high speed and high accuracy
in c-VEP-based BCIs, reducing the visual fatigue as the base increases, without degrading system performance.
It is concluded that the use of high presentation rates and non-binary m-sequences is a promising alternative
to provide user-friendly c-VEP-based BCIs.
1. Introduction

Brain–computer interfaces (BCIs) have shown their ability to replace
or even restore central nervous system outputs by providing a direct
pathway between our brain activity and external devices (Wolpaw &
Wolpaw, 2012). In particular, BCIs that monitor the electroencephalo-
graphic (EEG) signals of the user have traditionally been perceived
as potential alternative and augmentative communication (AAC) tech-
nologies for populations with motor disabilities due to their non-
invasiveness, ease of use, relative low cost and portability (Wolpaw &
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Wolpaw, 2012). From an expert system’s point of view, BCIs employ
signal processing and pattern recognition techniques to decode the
user’s intentions in real-time and translate them into commands that
control applications or external devices (Wolpaw & Wolpaw, 2012).

Over the last decades, the efforts of many research groups have
been devoted to gradually improving BCIs for communication and
control by maximizing performance and user comfort, with the ultimate
goal of becoming a plug-and-play technology. Control signals such
as P300 potentials or steady-state visual evoked potentials (SSVEP)
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have been traditionally used to implement BCI spellers, reaching suit-
able performances in terms of accuracy and information transfer rate
(ITR) (Wolpaw & Wolpaw, 2012).

P300-based BCIs rely on visual oddball paradigms to elicit P300
components as a response to unexpected target stimuli (Martínez-
Cagigal et al., 2017, 2019). Despite having no restrictions regarding
the limit of possible commands, P300-based BCIs require multiple
repetitions of the same stimulus to obtain a reliable potential, as well
as a calibration stage that may last around half an hour (Martínez-
Cagigal et al., 2017, 2019). SSVEP-based BCIs, on the other hand,
do not necessarily require a calibration stage as they rely on the
generation of an oscillatory response in the EEG that mimics the
frequency of the target command, which flickers at a constant fre-
quency (Vialatte et al., 2010). In this case, the number of commands
is limited by the monitor’s refresh rate, and the decoding over certain
bands such as beta can be challenging (Volosyak et al., 2011). Despite
their limitations, these spellers have repeatedly shown their feasibility
for healthy users (HU, P300: >90%, >25 bpm (Martínez-Cagigal et al.,
2017, 2019; Santamaría-Vázquez et al., 2019), SSVEP: >90%, > 40
bpm (Bin et al., 2009; Gembler, Stawicki, Saboor, & Volosyak, 2019))
and motor-disabled users (MDU, P300: >80%, 10–25 bpm (Martínez-
Cagigal et al., 2017, 2019; Santamaría-Vázquez et al., 2020), SSVEP:
>80%, 10–40 bpm (Combaz et al., 2013; Peters et al., 2020)).

In this context, code-modulated visual evoked potentials (c-VEP)
were recently proposed as an alternative control signal to the tra-
ditional P300 or SSVEP approaches (Bin et al., 2009; Sutter, 1992).
In the circular shifting paradigm, commands flicker following uncor-
related shifted versions of a binary pseudorandom code. The identi-
fication of the desired command is determined in real-time by an-
alyzing the correlation between the EEG response and these shifted
templates (Martínez-Cagigal et al., 2021). BCI spellers based on c-VEP
have reached excellent performances for both HU (e.g., 91%, 92.8
bpm (Bin et al., 2009), 94%, 92.7 bpm (Gembler, Rezeika, et al.,
2020)) and MDU (79.3%, 20.3 bpm (Verbaarschot et al., 2021)) with
reduced calibration times (1–3 min Gembler, Rezeika, et al. (2020),
Verbaarschot et al. (2021)) or even without calibration (Thielen et al.,
2021). The advantages of c-VEP-based BCIs over P300-based BCIs are
clear: less calibration time, faster command selection and similar or
even better accuracy (Martínez-Cagigal et al., 2021). Although accuracy
and speed are comparable to SSVEP-based spellers, c-VEP are less
sensitive to non-related basal EEG activity and usually less restrictive
in terms of the number of possible commands than SSVEP (Martínez-
Cagigal et al., 2021). For these reasons, it is not surprising than c-VEP
are establishing themselves as a suitable control signal for reliable,
high-speed state-of-the-art BCIs.

Future plug-and-play BCI systems should ideally be non-invasive,
reliable and comfortable for users. Although most BCI studies have
focused on optimizing the performance of EEG-based BCIs, the scientific
community has paid less attention to ease of use and user comfort.
In fact, some researchers believe that state-of-the-art c-VEP-based BCIs
have already reached such reliability and robustness to make the leap
from laboratories to real environments, but there is still room for
improvement in terms of user convenience (Martínez-Cagigal et al.,
2021). In this regard, it has been reported that c-VEP-based BCIs using
binary pseudorandom codes (i.e., encoding commands using black and
white flashes) may cause eyestrain for some users, especially for low
refresh rates (Martínez-Cagigal et al., 2021). Therefore, making more
efforts to reduce user discomfort caused by the flickering is crucial for
the advancement of real-life BCI applications based on c-VEPs.

User convenience for c-VEP-based BCIs has been studied from sev-
eral perspectives (Martínez-Cagigal et al., 2021). On the one hand,
the scientific literature agrees that higher stimulation rates are less
fatiguing for the user (Başaklar et al., 2019; Gembler et al., 2018;
Gembler, Stawicki, Rezeika, & Volosyak, 2019; Nezamfar et al., 2011,
2016). Although most of the c-VEP studies use presentation rates of
2

60 Hz (i.e., the standard refresh rate for monitors), many studies
suggest using 120 Hz as it provides shorter selection times while
maintaining an excellent accuracy (Başaklar et al., 2019; Gembler et al.,
2018; Wittevrongel et al., 2017). However, increasing the presentation
rate is not a definitive solution, as several studies reported significant
decreases in performance for rates above 120 Hz (Başaklar et al.,
2019; Gembler et al., 2018), where templates start to become less
orthogonal to each other. This could be explained because the cones
are less responsive to visual stimuli and because the visual system is
nonlinear, so EEG responses maintain the same spectral distribution
even if the presentation rate increases (Martínez-Cagigal et al., 2021).
On the other hand, some studies proposed alternative hand-crafted bi-
nary codes that confine spectral density to high-frequency bands under
the premise of being more comfortable for the user, such as chaotic
codes (Shirzhiyan et al., 2019), 6-target optimum sequences (Behboodi
et al., 2020), or superposition optimized pulses (Yasinzai & Ider, 2020).
More recently, Gembler, Rezeika, et al. (2020) proposed abandoning
the high-contrast stimuli required by binary codes and using a quintary
m-sequence (i.e., an m-sequence with 5 different values) encoded with
different shades of gray. Binary and quintary m-sequences reached
similar performances (99.4% vs. 98.5% at 60 Hz; 97.6% vs. 97.5% at
120 Hz, 97.9% vs. 97.6% at 240 Hz), but the latter was significantly less
annoying for users, especially for the 60 Hz presentation rate (Gembler,
Rezeika, et al., 2020). Nevertheless, to the best of our knowledge,
there are no previous studies that have analyzed how different 𝑝-ary
bases (apart from quintary, i.e. 𝑝 = 5) affect user comfort and system
performance. The influence of the base on users’ c-VEP responses has
also not yet been studied, nor if there are differences between visual
fatigue perceived by different 𝑝-ary m-sequences.

The objective of this study is to quantitatively and qualitatively
analyze the influence of 𝑝-ary m-sequences on (1) the performance of
c-VEP-based BCIs and (2) perceived visual fatigue by users. For the first
time, five different 𝑝-ary m-sequences will be used at a presentation rate
of 120 Hz: base 2 (i.e., binary, 63-bit), base 3 (80-bit), base 5 (124-bit),
base 7 (48-bit), and base 11 (120-bit). How do the new event levels
(bases) affect the orthogonality of templates? Are 𝑝-ary m-sequences
adequate to achieve reliable BCIs? Do users perceive different eyestrain
by varying the base of the m-sequence? This work aims to answer these
questions, which we consider necessary to advance the current state-of-
the-art towards more reliable and comfortable c-VEP-based BCIs for the
end user.

2. Subjects and signals

A total of 16 healthy users participated in this study (mean age:
28.8 ± 5.0 years old, 11 males, 5 females). All of them gave their
informed consent to participate in this study, previously approved by
the local ethics committee. A g.USBamp amplifier (g.Tec, Guger Tech-
nologies, Austria) with 16 channels and a sampling rate of 256 Hz was
used to record EEG signals. According to the International System 10-
10 (Oostenveld & Praamstra, 2001), electrodes were placed on F3, Fz,
F4, C3, Cz, C4, CPz, P3, Pz, P4, PO7, PO8, Oz, I1 and I2; grounded on
AFz and referenced to the earlobe. The equipment was attached to a PC
Intel Core i7-7700 @ 3.6 GHz, 32 RAM. MEDUSA© (www.medusabci.
com), a Python-based general-purpose software ecosystem to develop
BCIs and neuroscience experiments, was used to monitor the data via
lab streaming layer (LSL), display the paradigm and process the stimuli
in real-time (Santamaría-Vázquez et al., 2023). The proposed ‘‘𝑃 -ary c-
VEP Speller’’ was developed in an Unity-based app that communicates
with MEDUSA© via TCP/IP sockets to ensure exact synchronization
between stimuli onsets and EEG registering. This app was displayed in
a LED FullHD @ 144 Hz monitor, capable of running the experiment at
a presentation rate of 120 Hz. Moreover, the refresh rate was monitored
using an external phototransistor. To foster open science, the ‘‘𝑃 -ary c-
VEP Speller’’ app for MEDUSA© is publicly available in the app market
(www.medusabci.com/market/pary_cvep) (Santamaría-Vázquez et al.,

2023).
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Fig. 1. 𝑃 -ary m-sequences used in this study, from top to bottom: 63-bit GF(26), 80-bit GF(34), 124-bit GF(53), 48-bit GF(72), and 120-bit GF(112). For each one, visual encoding (top
left), original sequence (bottom left) and autocorrelation function (right) are shown for a single cycle at a presentation rate of 120 Hz. The periodic autocorrelation function includes
the selected relative shift positions (black points) to encode the 16 different commands. Occasional local minima and maxima correlations were avoided using the deterministic
algorithm detailed in Appendix A.
3. Methods

3.1. P-ary m-sequence generation

Maximal length sequences (i.e., m-sequences) are pseudorandom
periodic time series that are almost orthogonal to circularly shifted
versions of themselves, generated through linear-feedback shift regis-
ters (LFSRs) (Martínez-Cagigal et al., 2021). LFSRs are shift registers
that compute new values using a linear function of the immediate
previous state (Martínez-Cagigal et al., 2021). They are determined
by: (1) the base 𝑝, i.e. number of different levels or events (e.g., for
binary m-sequences, 𝑝 = 2); (2) the order 𝑟, i.e. the number of LFSR
taps; and (3) the arrangement of taps, which can be expressed as a
polynomial whose coefficients are bounded on a Galois Field with
𝑝 elements, GF(𝑝) (e.g., for 𝑝 = 2, coefficients can be either 0 or
1) (Buračas & Boynton, 2002). Thus, the next bit is calculated using
matrix product between the current state and the polynomial, and
subsequently applying the modulo 𝑝 operation (Buračas & Boynton,
2002). Of note, a necessary and sufficient condition for generating m-
sequences is that the polynomial must have maximum degree 𝑟 and be
primitive of GF(𝑝𝑟) (Buračas & Boynton, 2002).

By definition, m-sequences have several restrictions with respect
to their length and base. On the one hand, an m-sequence cannot be
of arbitrary length, but instead consists of exactly 𝑁 = 𝑝𝑟 − 1 bits,
and it is repeated cyclically (Martínez-Cagigal et al., 2021). On the
3

other hand, only finite fields in which 𝑝 is a prime number satisfy
the operations of multiplication, addition, subtraction, and division are
eligible to generate m-sequences. This implies that (1) the base 𝑝 must
be a prime number, and (2) the 𝑝-ary m-sequence can be generated
only if a primitive polynomial of degree 𝑟 over GF(𝑝𝑟) exists (Buračas
& Boynton, 2002). Although primitive polynomials for bases 2, 3 or
5 are common in the literature (Mullen & Panario, 2013), finding
polynomials for higher bases is not a trivial task, often requiring the
use of complex linear numerical algebra algorithms (Di Porto et al.,
1992).

Table 1 shows the generation details of the 𝑝-ary m-sequences
employed in this study: GF(26), GF(34), GF(53), GF(72), and GF(112).
The computed 𝑝-ary m-sequences are shown in Fig. 1, together with the
color encoding and their circular autocorrelation functions. As shown,
although binary m-sequences always deviate from orthogonality by
−1∕𝑁 , non-binary m-sequences (i.e., 𝑝 > 2) present occasional phase
shifts in which they are highly anti-/correlated (Buračas & Boynton,
2002). As BCI commands are encoded with shifted versions of the m-
sequences, these phase points have been avoided using a deterministic
algorithm, whose pseudocode is detailed in the Appendix A. The rel-
ative lags associated for the 16 commands are also shown in Fig. 1.
Another interesting property of these codes is that combinations of
event subsequences are nearly perfectly counterbalanced up to the
length equal to the order 𝑟; i.e., a single cycle contains all possible
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Table 1
Generation details of the 𝑝-ary m-sequences.

Base Order Length Polynomial Duration (s/cycle)

(bits) 120 Hz 60 Hz

GF(26) 2 6 63 𝑥6 + 𝑥5 + 1 0.525 1.050
GF(34) 3 4 80 𝑥4 + 2𝑥3 + 1 0.667 1.333
GF(53) 5 3 124 3𝑥3 + 2𝑥2 + 1 1.033 2.067
GF(72) 7 2 48 4𝑥2 + 1 0.408 0.800
GF(112) 11 2 120 3𝑥2 + 𝑥 + 1 1.000 2.000

combination of elements except the full-zero one (Buračas & Boynton,
2002).

3.2. Signal processing

The signal processing stage is mainly based on the reference process-
ing pipeline for the c-VEP circular shifting paradigm (refer to Martínez-
Cagigal et al. (2021) for further details). EEG signals were pre-processed
in real-time using a notch filtering at 50 Hz to remove power line
interference; followed by a filter bank composed of 3 bandpass filters
between 1–60 Hz, 12–60 Hz and 30–60 Hz (Martínez-Cagigal et al.,
2021). All of them were 7-th order infinite impulse response (IIR)
Butterworth filters to ensure real-time processing. The underlying
concept of this approach is to enhance the separation between natural
brain activity (e.g., alpha band activity, associated with tiredness) and
stimuli-induced responses (Gembler, Benda, et al., 2020). Thus, the
initial filter (1–60 Hz) encompasses all frequency bands, whereas the
second filter (12–60 Hz) targets the beta and gamma bands, and the
third filter (30–60 Hz) exclusively focuses on the gamma band. The
highest cutoff of 60 Hz is established owing to the maximum frequency
that can be reflected in the EEG by a 120 Hz monitor refresh rate
(i.e., equivalent to the encoding 10101010… ) (Martínez-Cagigal et al.,
2021). Given that none of our m-sequences exhibit transitions from 0
to 1 (or vice versa) within a single bit, 60 Hz would be an unreachable
upper limit for our m-sequences. The lower cutoff of 1 Hz in the first
filter is set to take into account delta and theta bands, which also
contain information regarding the stimuli (e.g., the constant repetition
of GF(26) cycles produces a frequency of 1.90 Hz and its harmonics)
(Martínez-Cagigal et al., 2021). Afterward, canonical correlation anal-
ysis (CCA) is used in each trial to decode the target command the user
wants to select in real-time.

During the calibration stage, the user must look to a command
encoded with the original 𝑝-ary m-sequence (i.e., without any lag) for 𝑘
ycles (i.e., repetitions of the m-sequence), obtaining the pre-processed
EG signal 𝑿 ∈ R𝑁𝑓 ,𝑘,𝑁𝑠 ,𝑁𝑐 , where 𝑁𝑓 = 3 is the number of filters in

the filter bank, 𝑁𝑠 is the number of samples, and 𝑁𝑐 is the number of
hannels. Of note, we have 𝑁𝑠 = ⌈𝑓𝑠 ∗ 𝑁∕𝑓𝑚⌉ samples per cycle, where
𝑓𝑠 = 256 Hz is the EEG sampling rate, 𝑁 is the length of the m-sequence,
and 𝑓𝑚 = 120 Hz is the presentation rate. For each filter 𝑓 in the bank,
a multi-channel response �̂�𝑓 ∈ R𝑁𝑠 ,𝑁𝑐 is obtained by averaging across
cycles. Then, CCA is applied to find the linear projections 𝑾 𝑎,𝑾 𝑏 that
maximize the correlation between projected versions of two signals 𝑨
and 𝑩, by optimizing:

max
𝑾 𝑎 ,𝑾 𝑏

𝑾 𝑇
𝑎𝑨𝑩𝑇𝑾 𝑇

𝑏
√

𝑾 𝑇
𝑎𝑨𝑨𝑇𝑾 𝑎 ⋅𝑾 𝑇

𝑏 𝑩𝑩𝑇𝑾 𝑏

. (1)

In this case, 𝑨 ∈ R𝑘𝑁𝑠 ,𝑁𝑐 is the concatenated version of 𝑿 for a
given filter, whereas 𝑩 ∈ R𝑘𝑁𝑠 ,𝑁𝑐 is �̂�𝑓 duplicated 𝑘 times to match
he dimensions. After training CCA, spatial filters 𝑾 𝑎 ∈ R𝑁𝑐 ,𝑁𝑐 and

𝑏 ∈ R𝑁𝑐 ,𝑁𝑐 are obtained. However, only 𝒘𝑏, the first column of
𝑏, is used afterward to project the averaged response (i.e., �̂�𝑓 ⋅𝒘𝑏)

and get the main template �̃�𝑓0 ∈ R𝑁𝑠 ,1. Templates for the rest of the
commands �̃�𝑓𝑖 are computed by circularly shifting �̃�𝑓0 according to the
lag associated to each command 𝜃𝑖. This procedure is repeated for each
4

filter 𝑓 , so we end up with 𝑁𝑓 = 3 different sets of templates.
To maximize performance, we have also corrected the ‘raster laten-
cies’, as suggested by Nagel et al. (2018). Since pixel lines are refreshed
from top to bottom, a command placed at the bottom of the screen
will have additional latency compared to a command placed at the
top. We have measured the delay between the first top line and the
last bottom line, obtaining 7.92 ms (approximately 95% of the refresh
rate) (Nagel et al., 2018). In order to enhance the estimation of the
calibrated templates, we have delayed each according to the raster
latency of the commands they belong to. Furthermore, we have also
taken care of powerful non-stationary artifacts that can worsen model
performance, such as blinking or electrode-pops. During calibration, the
standard deviation of 𝑨 for each channel is computed, 𝜎𝑨. Artifacts are
detected in a cycle if the standard deviation of that epoch is 3 times
greater than 𝜎𝑨. Only epochs that do not have artifacts on any channel
are selected to be used in model training.

In online mode, whenever a trial ends, the same pre-processing
stage is applied to obtain 𝒁 𝑡𝑒𝑠𝑡 ∈ R𝑁𝑓 ,𝑘𝑡 ,𝑁𝑠 ,𝑁𝑐 , where 𝑘𝑡 is the number
of cycles of the test trial. For each filter 𝑓 , the signal is averaged
across cycles and projected using the trained 𝒘𝑏, obtaining the test
response �̃�𝑓 ∈ R𝑁𝑠 ,1. The response is compared with all the templates of
the filter 𝑓 , returning a vector 𝝆𝑓 containing the Pearson’s correlation
coefficients for each command. Finally, correlations are averaged across
the filter bank and the selected command is the one that reached the
maximum coefficient, i.e., 𝑦 = argmax𝑖

∑

𝑓 𝝆𝑓 . The code of this signal
processing pipeline is publicly available in MEDUSA© Kernel as a PyPI
package (pypi.org/project/medusa-kernel) (Santamaría-Vázquez et al.,
2023).

3.3. Evaluation protocol

Participants carried out a single evaluation session, composed by
EEG recordings and subjective questionnaires. First, users were asked
to rate the subjective eyestrain produced by the 𝑝-ary m-sequences. A
total of 5 commands were displayed on the screen, each one encoded
with a different 𝑝-ary m-sequence. Users were asked to pay attention
to each of the commands and rate from 0 to 10 the level of visual
fatigue produced by each stimulus. This process was repeated twice,
using presentation rates of 60 Hz and 120 Hz.

Afterward, users performed 5 blocks of 32 trials each with the c-VEP
speller using a presentation rate of 120 Hz. In each block, a different
m-sequence was calibrated and used to complete spelling tasks. Fig. 2
shows two snapshots of the calibration and evaluation stages. Trials
were made up of 10 stimulation cycles, the duration of which varied
as a function of the m-sequence (see Table 1). In the calibration stage,
users were asked to pay attention to a single command encoded with
the selected 𝑝-ary m-sequence (without lag) during 6 runs of 5 trials
each, so 300 cycles were recorded. After training the decoding model,
users were asked to perform an online spelling task that consisted of
selecting each of the 16 commands in alphabetical order twice. Thus,
a total of 320 test cycles were recorded. To avoid bias, the order of
the blocks was randomized across participants. Furthermore, after each
block, users were asked to re-rate the relative eyestrain of the 𝑝-ary
m-sequence. Of note, users were unaware of which specific 𝑝-ary m-
sequence was displayed to avoid unintentional biases. The analysis
prior to the EEG recording, in which all 𝑝-ary m-sequences are shown
together, along with the eyestrain rating after each block, will allow us
to discern between the perception of eyestrain produced by the stimuli
and the fatigue produced as the session progresses.

After the EEG recordings, users were asked to complete a satisfac-
tion questionnaire, in which they had to assess aspects such as the speed
of the MEDUSA© app, interface, accessibility, motivation, duration of
the session or their expectation, among others. The survey consisted
of 10 items following a 5-point Likert scale. Positive and negative
statements were shuffled to avoid acquiescence bias (Martínez-Cagigal
et al., 2019). Moreover, an open question was added at the end of the
survey to collect personal suggestions for future improvements.

https://pypi.org/project/medusa-kernel/
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Table 2
Grand-averaged online results across users.

No. cycles 1 2 3 4 5 6 7 8 9 10 Mean ± STD

GF(26)
Accuracy (%) 65.43 90.43 96.68 98.05 99.41 99.41 99.61 99.61 99.41 99.61 94.77 ± 10.14
ITR (bpm) 208.06 188.03 141.04 108.91 90.14 75.11 64.65 56.57 50.08 45.25 102.78 ± 55.19
Duration (s) 0.53 1.05 1.58 2.10 2.62 3.15 3.68 4.20 4.73 5.25 2.89 ± 1.51

GF(34)
Accuracy (%) 75.78 92.77 97.27 97.66 98.44 98.83 99.02 99.02 99.02 99.22 95.70 ± 6.89
ITR (bpm) 216.59 154.70 113.27 85.68 69.67 58.54 50.31 44.02 39.13 35.36 86.73 ± 55.97
Duration (s) 0.67 1.33 2.00 2.67 3.33 4.00 4.67 5.33 6.00 6.67 3.67 ± 1.91

GF(53)
Accuracy (%) 83.20 94.14 98.05 98.83 99.02 99.22 99.41 99.41 99.22 99.22 96.97 ± 4.83
ITR (bpm) 163.72 103.05 74.01 56.54 45.47 38.02 32.76 28.66 25.39 22.85 59.05 ± 42.20
Duration (s) 1.03 2.07 3.10 4.13 5.17 6.20 7.23 8.27 9.30 10.33 5.68 ± 2.97

GF(72)
Accuracy (%) 49.80 82.23 93.36 95.90 97.27 97.46 98.05 97.66 98.24 98.05 90.80 ± 14.42
ITR (bpm) 168.14 205.30 174.38 137.45 113.43 95.18 82.46 71.65 64.31 57.72 117.00 ± 49.15
Duration (s) 0.40 0.80 1.20 1.60 2.00 2.40 2.80 3.20 3.60 4.00 2.20 ± 1.15

GF(112)
Accuracy (%) 86.72 97.46 98.05 98.63 98.83 98.63 98.63 98.63 98.63 98.44 97.27 ± 3.54
ITR (bpm) 179.64 113.79 76.79 58.36 46.93 38.99 33.42 29.24 25.99 23.33 62.65 ± 47.10
Duration (s) 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00 10.00 5.50 ± 2.87

Note: Unfolded results for each user are available in the supplementary material. STD: standard deviation.
Fig. 2. Snapshots of the ‘‘𝑃 -ary c-VEP Speller’’ app. (A) Calibration stage, in which
users are asked to pay attention to the central command, which flashes according to
the original 𝑝-ary m-sequence. (B) Online arrangement, in which users pay attention to
the target command to perform spelling tasks. (C) During online mode, command labels
are replaced with a small centered dot that helps users focus on the desired command.
In this snapshot, GF(26) was displayed. (D) Snapshot example of a stimulation using
GF(112).

4. Results

Fig. 3 depicts the obtained participants’ brain responses to each of
the evaluated 𝑝-ary m-sequences, as well as their normalized circular
autocorrelation functions. The number of mistakes made for each en-
coded lags are also shown to detect conflicting time shifts. The average
standard deviation of the autocorrelation functions was 15.3%, 16.8%,
12.8%, 20.7%, and 11.9%; for GF(26), GF(34), GF(53), GF(72), and
GF(112), respectively. Table 2 shows the grand-averaged online results
across users, detailing the reached accuracy, ITR and trial duration as a
function of the number of cycles per trial. The ITR, measured in bits per
minute, was calculated using the original formula proposed by Wolpaw
et al. (2002):

ITR (bpm) = 𝑄 ⋅
[

log2(𝑆) + 𝑃 log2(𝑃 ) + (1 − 𝑃 ) log2
( 1 − 𝑃
𝑆 − 1

)]

, (2)

where 𝑄 denotes the number of selections per minute, 𝑆 represents
the number of commands (here 𝑆 = 16), and 𝑃 is the classification
accuracy. Users reached more than 98% accuracy for all the 𝑝-ary m-
sequences when using 10 cycles, being GF(26) the one that obtained
highest accuracy, whereas GF(112) reached the highest average accu-
racy across cycles. Unfolded results for each participant can be found
in the supplementary material.

To provide a fair comparison between 𝑝-ary m-sequences, Fig. 4
shows an interpolated accuracy progression as a function of the trial
5

duration, rather than number of cycles. Wilcoxon signed-rank tests
were used to perform the statistical analysis, then the 𝑝-values were
corrected for false discovery rate (FDR) using the Benjamini–Hochberg
procedure. Only the comparisons GF(53) vs. GF(26) and GF(53) vs.
GF(72) yielded significant differences (𝑝-value < 0.05) for early time
windows, which are shown in Fig. 4(B). In these time windows, GF(26)
and GF(72) reached significantly higher accuracy than GF(53). No sig-
nificant differences were found between the accuracy progression of the
rest of the comparisons.

Results of the qualitative analyses are summarized in Fig. 5. Again,
Wilcoxon signed-rank tests and FDR corrections were used to perform
the statistical analysis. On the one hand, normalized ratings (between
0 and 10) of the questionnaire are grouped in relevant aspects such
as session motivation and tiredness; ease of use, utility, and speed; see
Fig. 5(A). Users highlighted the speed (9.4) and ease of use (8.0) of the
application, and reported that they felt motivated (9.3) to carry out the
evaluation session, as well as similar studies in the future. They also
perceived the usefulness (8.4) of this app as an adequate AAC for the
daily life of MDUs. Although above average, the lowest valued aspect
(6.2) was the tiredness produced throughout the evaluation, either by
visual stimuli or by the duration of the session (i.e., 90 min). Unfolded
ratings for each participant are also available in the supplementary
material.

On the other hand, Fig. 5(B, C) analyze the subjective eyestrain
perceived by the users as a function of the 𝑝-ary m-sequence and the
condition: pre-session (PRE 60 Hz, and PRE 120 Hz) and during the
evaluation (TASK 120 Hz), as explained in Section 3.3. As shown in
Fig. 5(B), regarding pre-session conditions, GF(112) was perceived as
significantly less fatiguing at PRE 120 Hz compared to PRE 60 Hz.
Moreover, GF(26), GF(34) and GF(72) m-sequences at PRE 60 Hz were
significantly more annoying than TASK 120 Hz. Fig. 5(C) shows the
distribution of the eyestrain rating and the 𝑝-values of the comparisons
within conditions. For both pre-session conditions (PRE 60 and PRE
120 Hz), most comparisons (15 out of 20) between 𝑝-ary m-sequences
yielded significant differences. As expected, the number of significant
differences decreases (5 out of 10) for the ratings taken during the
evaluation (i.e., between EEG blocks). Anyway, for all conditions, the
ordered 𝑝-ary m-sequences from least to greatest fatigue were GF(112),
GF(72), GF(53), GF(34); and GF(26).

5. Discussion

5.1. The orthogonality of c-VEP templates

The first research question asks to analyze how the bases of different
𝑝-ary m-sequences affect the orthogonality of the templates. Fig. 3
showed the averaged templates across users for each 𝑝-ary m-sequence.
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Fig. 3. Users’ brain responses to the 𝑝-ary m-sequences. Mean values are depicted with solid lines, whereas shaded areas indicate ± standard deviation. (A) Grand-averaged CCA
templates across users (summed along the filter banks). (B) Circular autocorrelation function of the templates, superimposed on the circular autocorrelation of the m-sequence
(gray dashed line). (C) Number of misclassifications and their temporal displacement from the target command as a function of the number of cycles.
Fig. 4. Fair accuracy comparison between 𝑝-ary m-sequences considering trial duration.
(A) Interpolated accuracy of each m-sequence, averaged across users. The dashed and
solid lines indicate the points where the accuracy exceeds 94% and 98%, respectively.
(B) FDR-corrected 𝑝-values for comparisons that yielded significant differences.

Although they may seem chaotic at first glance, the low standard
deviation of their autocorrelation functions indicates that they are
repetitive exogenous brain responses generated each time a new cycle
of the m-sequence is shown; i.e., 15.3% for GF(26), 16.8% for GF(34),
12.8% for GF(53), 20.7% for GF(72), and 11.9% for GF(112). The most
variable response is obtained for GF(72), which is also the shortest m-
sequence (48 bits). This is in agreement with the scientific literature,
where it has typically been found that longer codes generate flatter
autocorrelation profiles (Martínez-Cagigal et al., 2021).

The brain is a nonlinear dynamic system (e.g., bifurcation, period-
doubling, responsiveness of cones, etc.), so templates are not expected
to be orthogonal, even though m-sequences are (Gembler, Rezeika,
et al., 2020; Martínez-Cagigal et al., 2021). However, it is interesting to
see how local minima and maxima of the autocorrelation of the original
m-sequences are somewhat correlated with the steepest peaks of the
autocorrelation of the obtained templates. Besides the nonlinearity of
the brain, templates seem to share some of the autocorrelation prop-
erties of the m-sequences, which allows us to encode the commands
6

with shifted versions of the m-sequences and still obtain high decoding
accuracy (Martínez-Cagigal et al., 2021). This highlights the usefulness
of m-sequences over other codes, since they mathematically offer the
flattest autocorrelation profiles.

It is noteworthy that we have not observed a correlation between
online selection error made by users and local minima or maxima of the
template autocorrelation functions; see Fig. 3(C). The misclassifications
that are present for all number of cycles were infrequent, and the
majority of them did not coincide with local maxima/minima in the
circular autocorrelation functions. Out of the 28 identified misclassifi-
cations, approximately 6 were attributable to local maxima/minima.
Therefore, we contend that most of the errors were not caused by
spurious correlations of the calibrated templates. Even though it is
true that the number of errors made is very low (especially for the
second cycle onwards) and thus the statistical power is limited, the
primary cause of most errors was more related to external artifacts or
user-related factors, such as fatigue or loss of concentration.

5.2. On the reliability of the 𝑝-ary m-sequences

The second research question prompts to determine whether 𝑝-ary
m-sequences are adequate to achieve reliable BCIs. As can be seen
in Table 2 and Fig. 4, the quality of these templates has allowed to
achieve high online decoding accuracy (i.e., >98%) for all the 𝑝-ary m-
sequences. For 10 cycles per trial, GF(26), GF(34) and GF(53) exceeded
99% grand-averaged accuracy; whereas GF(72) and GF(112) exceeded
98%. As expected, no significant differences were found when compar-
ing these accuracy results for 10 cycles between m-sequences, which
shows that all of them are perfectly adequate to provide a reliable
BCI control. In fact, unfolded results (available in the supplementary
material) show that almost all users reached a 100% accuracy for most
m-sequences: 15 for GF(53) and GF(112), 14 for GF(26) and GF(34), and
13 for GF(72), out of 16 participants. However, it would not be fair
to compare the accuracy results without taking into account the time
required to make a selection.

Fig. 4 allows us to analyze the progression of accuracy as the
duration of the time window required to make a command selection
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Fig. 5. Summary of qualitative results. (A) Normalized ratings of the questionnaire
grouped in relevant aspects of the study. Unfolded ratings for each user are available
in the supplementary material. The average is indicated by the solid line, whereas the
shaded area represent the 95% confidence interval of the distribution. (B) Averaged
perceived eyestrain of each m-sequence as a function of the condition: pre-session
at 60 Hz, pre-session at 120 Hz and during tasks at 120 Hz. Significant differences
(𝑝-value < 0.05) between conditions are indicated with asterisks. (C) Left: detailed
eyestrain rating distributions of each m-sequence within conditions. The vertical black
lines denote the median of the distribution, while the length of the box indicates
the interquartile range (i.e., Q3-Q1). Right: Corrected 𝑝-values from the eyestrain
comparison between m-sequences (in scientific notation E-2). Black fonts indicate
significant differences (𝑝-value < 0.05).

increases. Obviously, as the duration of the trial increases, the accuracy
increases for all 𝑝-ary m-sequences. Nevertheless, the slope of this in-
crease varies between m-sequences. While the 94% landmark is reached
between 1.3–2.1 s trial durations; the 98% point is reached between
2.7–3.1 s, except for GF(26), which achieves it at 2.1 s. Although
the increment of GF(34), GF(53), GF(72) and GF(112) behaves simi-
larly; GF(26) presents a steeper slope. Less evident patterns have been
uncovered by the statistical analysis, though. When comparing these
accuracy progressions as a function of the trial duration between all 𝑝-
ary m-sequence combinations, only two yielded significant differences:
GF(53) vs. GF(26) between 1–3 s, and GF(53) vs. GF(72) between 1–
2 s. We can see that these differences were produced because GF(53)
achieved significantly lower accuracy than GF(26) and GF(72) in those
time windows. For instance, GF(53) obtained 94.14% with 2.06 s,
while GF(26) reached 98.05% with 2.1 s, and GF(72) reached 97.27%
with 2.00 s. These differences highlight the importance of analyzing
performance while simultaneously considering accuracy and selection
time. Since the rest of comparisons were not significantly different for
any time window, we can consider that all m-sequences except GF(53)
are similar in terms of accuracy and trial duration.
7

Given that all 𝑝-ary m-sequences have demonstrated their ability to
provide reliable control, it would be worthwhile to briefly analyze other
properties of our system, such as fault tolerance and resilience. Fault
tolerance refers to a system’s ability to continue operating correctly
despite component faults (Koren & Krishna, 2020). Resilience can be
defined as the system’s ability to adapt to unexpected events (Woods,
2018). Additionally, some authors interpret this concept as a post-
damage attribute of a system, characterizing it as the ability to operate
at a desired level despite experiencing partial damage (Zhang & Lin,
2010). In this context, our proposal demonstrates the capability to ad-
dress jitter (i.e., slight latency variations) in stimulus updating and/or
EEG sampling. Additionally, the brain’s broadband response to a c-
VEP-encoded stimulus and the filter bank approach makes the system
capable to handle narrow-band interferences like alpha waves or user
blinks. In the presence of such events, the system retains its ability
to accurately decode user intentions. However, it is expected that an
increase in the required stimulation cycles will occur, consequently
reducing the overall ITR of the system. The multi-channel approach
also facilitates the handling of electrode failures, as long as they do not
occur on the primary visual cortex range (i.e., occipital cortex). On the
other hand, other faults like Bluetooth transceiver failures or software
disruptions exceed the system’s capability to handle.

5.3. Eyestrain differences

After demonstrating the usefulness of all the proposed 𝑝-ary m-
sequences to provide high-speed, reliable c-VEP-based BCIs, the last
research question must be answered. This prompts us to find out if
users’ eyestrain is related to the base of the 𝑝-ary m-sequence.

Firstly, it is interesting to examine the differences between presen-
tation rates; i.e., PRE 60 Hz and PRE 120 Hz before starting the session,
and TASK 120 Hz between EEG recordings. There is a consensus in the
scientific literature that states that the higher the presentation rate,
the less visual fatigue (Başaklar et al., 2019; Gembler et al., 2018;
Gembler, Stawicki, Rezeika, & Volosyak, 2019; Nezamfar et al., 2011,
2016). Similarly, it seems that the higher the presentation rate, the
less orthogonal the templates become (Başaklar et al., 2019; Gembler
et al., 2018); therefore there is a trade-off between performance and
user comfort, as far as the rate of presentation is concerned. As shown
in Fig. 5, our results point in the same direction. Eyestrain ratings
were higher for the 60 Hz presentation rate than for 120 Hz (both pre-
and during session). In particular, these differences were significant
for GF(26), GF(34) and GF(72) in PRE 60 Hz vs. TASK 120 Hz; and
for GF(112) in PRE 60 Hz vs. PRE 120 Hz. These results show that, in
general, the presentation rate of 60 Hz is significantly more annoying
than 120 Hz for most 𝑝-ary m-sequences, probably because in the latter
the contrast changes are faster and less noticeable.

The available studies on c-VEP (Başaklar et al., 2019; Gembler et al.,
2018; Gembler, Stawicki, Rezeika, & Volosyak, 2019; Nezamfar et al.,
2011, 2016) and SSVEP (Chen et al., 2023; Ladouce et al., 2022)
provide evidence that a higher stimulation frequency results in less
visual discomfort. However, none of these studies have provided an
explanation for this phenomenon in terms of the neural mechanisms
involved in visual perception. A plausible explanation for this phe-
nomenon may be related to the critical flicker fusion frequency (CFFF),
which is the minimum frequency at which a flickering light source
appears steady (Ladouce et al., 2022). Young adults’ CFFF averages at
60 Hz, ranging from 40 to 80 Hz (Ladouce et al., 2022). When a visual
stimulus flickers at a constant rate of 120 Hz, it generates an SSVEP
tone at 60 Hz and its harmonics. However, for many individuals, this
flicker is not perceptible as it falls outside the CFFF threshold. Simi-
larly, an m-sequence operating at 120 Hz would generate a broadband
response that is limited to the range up to 60 Hz, and the spectral
distribution of the same m-sequence at a rate of 60 Hz would produce
a response up to 30 Hz (Martínez-Cagigal et al., 2021). Due to the
proximity of the former to the CFFF value, visual stimuli presented at
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a higher refresh rate are expected to produce more continuous visual
stimulation, which in turn would limit the perceived differences in
contrast between adjacent stimuli. This perspective is in line with the
literature which posits that visual stimuli are perceived as unpleas-
ant when their spatial and temporal characteristics deviate from the
statistics of natural environment (Gentile & Aguirre, 2020). Hence,
we hypothesize that a lower presentation rate would produce visual
stimulation that is less natural and therefore more likely to cause visual
discomfort.

The phenomenon may also be explained by the widely accepted
theory of ‘‘visual stress’’, which posits that visual discomfort arises
from the overactivation of the visual cortex (Wilkins, 1995). This
phenomenon is particularly pronounced when stimulus power is con-
centrated at frequencies falling within the midrange of human percep-
tion (Fernandez & Wilkins, 2008); e.g., frequencies between 12–18 Hz,
which are thought to generate the strongest SSVEPs (Kuś et al., 2013).
From this perspective, a higher refresh rate would reduce the power of
these low frequencies responsible for visual discomfort. However, fur-
ther research is necessary to determine the precise neural mechanisms
involved in this phenomenon, which remain incompletely understood.

Interestingly, eyestrain ratings were lower in PRE 120 Hz vs. TASK
120 Hz except for GF(53), although not significant. In the PRE con-
dition, all m-sequences were displayed at once, so users could make
relative comparisons among them, even though they were unaware of
the duration of each m-sequence (no spelling task had been performed
yet). In contrast, the order of presentation of each m-sequence in
TASK condition was random, so users were unaware of which m-
sequence encoding they were paying attention to. For these reasons,
a slight variation between these ratings was expected. Of course, it is
important to analyze whether the order of presentation of each of the
m-sequences biases the results. Since this order was counter-balanced
and randomized across participants, we took the users’ ratings for each
block regardless of the m-sequence shown; i.e., ratings of the first block,
for the second block, and so on. Then, a Friedman test for repeated
samples was computed to check if the distributions between blocks
are significantly similar. No significant differences were found (𝑝-value
= 0.34), so we can state that the order of display of the m-sequences did
not bias our results. This implies that the distribution of ratings for both
120 Hz conditions were consistent across users, and that the perception
of visual fatigue is not influenced by the evaluation protocol, but that
the ratings reliably represent users’ comfort among 𝑝-ary m-sequences.

Since the order of presentation does not influence the perception of
visual fatigue, it is time to analyze the differences between the proposed
𝑝-ary m-sequences. The detailed 𝑝-values of the comparisons between
m-sequences of Fig. 5(C) let us infer some interesting conclusions. On
the one hand, for all conditions, users generally reported that the higher
the base, the less visual fatigue, especially for prior 60 Hz and 120 Hz
conditions. On the other hand, significant differences between these rat-
ings were generally found for nonadjacent m-sequences. For instance,
GF(26) and GF(34) were not significantly different for any condition,
but GF(26) vs. GF(72) or GF(112) yielded significant differences for all
conditions. This shows that the ability to discern between m-sequences
with a slightly different number of shades of gray is not trivial, and that
differences between perceived eyestrain are enhanced as the variation
between the number of levels (i.e., base) increases. This phenomenon
was expected, since several users reported that they were not able to
discern between different sequences; e.g., user U16 between GF(72)
and GF(112), or user U12 between GF(53) and GF(72). With respect
to the common binary sequences of the scientific literature, we have
found that GF(72) and GF(112) were significantly less annoying for all
conditions, and GF(53) for the 60 Hz condition.

The direct relation between the base increment with the reduc-
tion of visual fatigue may be also explained by the theory of ‘‘visual
stress’’ (Wilkins, 1995). In our case, shades of gray are mainly processed
by the LMS (luminance) postreceptoral pathway, which is though to
8
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elicit stronger VEP responses than the other pathways, i.e., L-M (red-
green) and S (blue-yellow) (Gentile & Aguirre, 2020). On the other
hand, primary visual cortex is more sensitive to high-contrast stim-
uli (Wandell et al., 2007), which activate a large number of neurons and
lead to a stronger response in the foveal region of the retina (Baseler
et al., 1994). It is then hypothesized that high-contrast stimuli that
stimulate the LMS pathway (e.g., black/white changes) may result in
overstimulation of the visual cortex, leading to an increased experience
of visual discomfort. This is consistent with the findings of Ladouce
et al. (2022) and Gembler, Rezeika, et al. (2020) who observed in-
creased visual fatigue for high-contrast stimuli in SSVEP and c-VEP
paradigms, respectively.

The contrast variations in our shades of gray can be measured
using depth amplitude, which is the difference in luminance between
the stimulus’s maximum and minimum values (Ladouce et al., 2022).
Maximal depth amplitude of 100% is caused by a change from black to
white or vice versa. The binary m-sequence GF(26) presents maximal
depth amplitude for all stimulus changes, whereas the percentage
of maximal stimulus changes in the 𝑝-ary m-sequences decreases as
the base increases: 33.96% for GF(34), 10.10% for GF(53), 4.88% for

F(72), and 1.83% for GF(112). It is suggested that higher base m-
equences may lead to reduced visual discomfort as a result of the
isual cortex being less stimulated by the greater number of non-
aximal amplitude depths present in such 𝑝-ary m-sequences. Once
ore, it is our belief that additional research is necessary to evaluate

his hypothesis and provide a deeper understanding of the specific
echanisms at play.

Finally, we would like to analyze the satisfaction of the participants
ith the final c-VEP-based BCI concerning the questionnaire. All posi-

ive statements were rated above the neutral rating, and all negative
tatements were rated below it. Particularly, users were positively
urprised by the speed of command selection and the reliability of
he BCI. Some of them reported to be familiarized with P300-based
CIs, which require longer calibration times (around half an hour),
s well more time to perform a selection (approx. 10–30 s depending
n the number of repetitions) (Martínez-Cagigal et al., 2017, 2019;
antamaría-Vázquez et al., 2019). Users were also satisfied with the
ase of use of the app, they reported to be motivated to carry out
he evaluation, and that they felt that this app could be an AAC for
DUs. Noteworthy, they also reported slight tiredness throughout the

ssessment, a fact that must be considered in future studies to design
horter evaluation sessions.

.4. Comparison with other studies

Only Gembler, Rezeika, et al. (2020) tested a c-VEP-based BCI
peller with a GF(53) apart from the common binary m-sequences. Sim-
larly to our results, Gembler, Rezeika, et al. (2020) found that GF(53)
as significantly less annoying to users than GF(26), especially for a
resentation rate of 60 Hz. They did not find significant differences
etween GF(25) and GF(53) in terms of accuracy: 99.4% and 98.5%
60 Hz), 97.6% and 97.5% (120 Hz), and 97.9% and 97.6% (240 Hz),
espectively (Gembler, Rezeika, et al., 2020). A direct comparison
etween our accuracy and theirs is not appropriate, since there are
ubstantial differences in experiment design. For instance, they used
n 8-target speller, 6 evaluation sessions with 18 HU, and a fixed trial
uration of 2.06 s. However, what is comparable are the differences
etween sequences in terms of precision and visual fatigue. Recalling
ur results, we found that GF(53) was significantly less fatiguing than
F(26) for the 60 Hz condition, and less fatiguing but not significant for
20 Hz conditions. Similarly, differences in accuracy were generally
ot significant, except for trial duration of 1–3 s, where we found
hat GF(53) had significantly lower accuracy than GF(26). We cannot
ompare the results for other m-sequences with bases other than 2 or
, since their performance was not evaluated in their study (Gembler,

ezeika, et al., 2020). In general, we claim that the results of Gembler,
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Rezeika, et al. (2020) are similar to ours, showing that non-binary
sequences are also able to achieve high accuracy and are less obtrusive
to the end user.

The rest of studies aimed at improving user comfort in c-VEP-based
BCIs did not propose the use of 𝑝-ary m-sequences, but instead focused
on other aspects. On the one hand, several studies proposed to increase
the presentation rate from 60 Hz to 120 Hz, stating that the latter
presentation rate was more comfortable for users (Başaklar et al., 2019;
Gembler et al., 2018; Wittevrongel et al., 2017). In this regard, our
comparison between 60 Hz and 120 Hz conditions has also shown that
120 Hz is significantly less annoying to users than 60 Hz for most of the
proposed 𝑝-ary m-sequences. On the other hand, some studies proposed
to use hand-crafted binary codes that confine spectral density to high-
frequency bands (Behboodi et al., 2020; Gembler, Rezeika, et al., 2020;
Shirzhiyan et al., 2019; Yasinzai & Ider, 2020). It would be interesting
to apply the same concept to the 𝑝-ary m-sequences in the future and
evaluate whether differences between eyestrain ratings are found.

In addition to supporting the conclusions of previous studies, in this
work we have also analyzed, for the first time, the influence of different
𝑝-ary m-sequences on system performance and user comfort. We have
also analyzed how the base affects the orthogonality of the c-VEP
templates, which are responsible for achieving high decoding accuracy
in real-time. Finally, the qualitative analysis between the sequences and
the presentation frequencies of 60 Hz and 120 Hz has given insight
into the perceived visual fatigue in different conditions, an interesting
dissection that could drive the development of more user-friendly c-VEP
systems.

5.5. Limitations and future work

After this discussion, we consider we have answered all the research
questions posed in the introduction section, showing that all 𝑝-ary m-
sequences are viable to provide high-speed, high-accuracy c-VEP-based
BCIs. Nevertheless, there are aspects that can be improved in future
studies.

First, the 𝑝-ary m-sequences have been tested with HUs. However, it
would be interesting to increase the sample size with MDUs, the typical
target users of BCIs. Since MDUs tend to achieve lower performance
than HUs, it would be appropriate to analyze system performance with
this population (Martínez-Cagigal et al., 2021). Second, command lags
have been placed using the autocorrelation function of the original
m-sequences. Instead, it would be also interesting to place command
lags based on the correlation between brain responses (Thielen et al.,
2015). Third, some users reported having difficulty keeping focus on
target commands and that blurring their eyes helped them focus on
the target command and avoid distractions from surrounding stimuli.
Some of them also reported that they were aware of the cyclic rep-
etition of commands and saw vertical or horizontal patterns between
stimuli, which distracted them. This is probably because the shifts used
to encode each command were placed sequentially on the command
grid. An improved version of the c-VEP speller could be achieved by
further separating the commands and/or optimizing the lags to prevent
cross-talk between neighboring cells (Thielen et al., 2015).

The success of this study also suggests several future lines of re-
search. For instance, analyzing the effect of using color encodings
instead of gray tones would be an interesting research line. In fact,
color stimuli have been shown to affect EEG responses in both c-VEP
and SSVEP-based BCIs (Martínez-Cagigal et al., 2021). Studying how to
implement an asynchronous stage (i.e., non-control detection) and/or
early stopping algorithms (i.e., to dynamically detect the required
number of cycles for each epoch) for these 𝑝-ary m-sequences would
be interesting as well. Also, the extra dimension provided by the base
(i.e., number of levels) opens up new possibilities for further analyses.
How these levels affect the individual VEP response? Could EEG tem-
plates be predicted by overlapping individual events or using regression
algorithms? Could these 𝑝-ary m-sequences be encoded with variations
in stimuli sizes, apparent motions or changing images? These exciting
open questions still remain unanswered in the current literature on
9

c-VEPs. ‘
6. Conclusion

In this study, we analyzed the ability of non-binary (i.e., 𝑝-ary,
> 2) m-sequences to provide less obtrusive c-VEP-based BCIs to end
sers, while maintaining high speed and accuracy. We generated for
he first time five different 𝑝-ary m-sequences to encode a 16-target BCI
peller under the circular shifting paradigm: base 2, 63-bit GF(26); base
, 80-bit GF(34); base 5, 124-bit GF(53); base 7, 48-bit GF(72); and base
1, 120-bit GF(112). For non-binary bases, levels were encoded using
lashing commands with different shades of gray. A quantitative and
ualitative evaluation was performed with 16 healthy participants in a
ingle session.

Users were able to reach more than 98% grand-averaged accuracy
ith 10 cycles using all the proposed 𝑝-ary m-sequences, and even 94%
ith 3 s of trial duration. We found that the higher the base (i.e., num-
er of levels), the less eyestrain users perceive. The differences in
yestrain were significant between most of 𝑝-ary m-sequences, and be-
ween presentation rates of 60 Hz and 120 Hz, the latter being the most
omfortable condition. In general, the differences in accuracy were not
ignificant between the 𝑝-ary m-sequences, although they presented
ifferent slopes of progression when the number of cycles increased.
ased on these results, we encourage the use of 𝑝-ary m-sequences
o encode c-VEP-based BCI commands, as they achieve performance
imilar to common binary codes, but are significantly more comfortable
o the user.
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Appendix A. Avoiding local maximum correlations

Given a 𝑝-ary m-sequence 𝒙 ∈ R𝑁,1 with 𝑝 > 2 and the number
of commands to be encoded, 𝑚 (where 𝑁 > 𝑚), the objective of the
algorithm is to avoid local minima and maxima in the autocorrelation
function when assigning lags to different commands:

1. Compose a vector containing the circular autocorrelation values
of the m-sequence, i.e. 𝒓 = [𝑅𝑥𝑥(0),… , 𝑅𝑥𝑥(𝑁 −1)], where 𝑅𝑥𝑥(𝜏)
denotes the circular autocorrelation value for a relative lag 𝜏 in
samples.

2. Determine the indexes 𝒊 in which 𝒓 shows a local maximum or
minimum:

2.1. Calculate the standard autocorrelation value using 𝛾 =
mode(𝒓), or 𝛾 = −min(|𝒓|).

2.2. Find indexes whose value in 𝒓 is different from 𝛾, i.e. 𝒊 =
arg𝑗≠𝛾 (𝑟𝑗 )

3. Create a zero-vector 𝒛 of length 𝑁 − 𝑏, where 𝑏 is the length of
𝒊.

4. Put ones in evenly sampled positions, 𝒛(𝑗) = 1 for 𝑗 = ⌊𝑢(𝑁 −
1)∕𝑚⌉, where 𝑢 = 1,… , 𝑚 and ⌊⋅⌉ denotes rounding.

5. Extend the length of 𝒛 to 𝑁 by inserting zeros at the positions
indexed in 𝒊.

6. Lags for the encoding commands 𝒍 are found in the indexes
where the vector 𝒛 equals one, i.e. 𝑙𝑗 = 𝑗 if 𝑧𝑗 = 1 for 𝑗 = 1,… , 𝑁 .

Appendix B. Supplementary data

Supplementary material related to this article can be found online
at https://doi.org/10.1016/j.eswa.2023.120815.
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