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• Fungal diversity and community composi-
tion were analysed after helimulching
treatment.

• It was not observed changes in fungal rich-
ness between mulched and non-mulched
plots.

• There was an increase in richness of litter
andwood saprotrophs and plant pathogens.

• Fungal composition at the OTUs level corre-
latedwith pH, organicmatter and soil nitro-
gen content.

• Fungal composition by trophic groups was
correlated with soil potassium content.
Not observed changes in fungal richness between 
mulched and non-mulched plot

Increase in richness of litter and wood saprotrophs
and plant pathogens

Total fungal composition was correlated with pH,
organic matter and soil nitrogen

Fungal guilds were correlated with soil potassium

Conclusions
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Straw helimulching was applied to an area with a high soil erosion risk one month after the Navalacruz megafire (Iberian
Central System, Ávila, Spain) to mitigate soil erosion and to maintain soil quality. To determine whether the soil fungal
community, which is key to soil and vegetation recovery after fire, is altered by straw mulching, we examined the effect
of helimulching one year after its application. Three hillside zoneswere chosenwith two treatments in each zone (mulched
and non-mulched plots), with three replicates of each treatment. Chemical and genomic DNA analyses of soil samples from
mulched and non-mulched plots were performed to assess the soil characteristics and the soil fungal community composi-
tionandabundance. The total fungal operational taxonomic unit richness and abundance didnot differ between treatments.
However, therewas an increase in the richness of litter saprotrophs, plant pathogens andwood saprotrophs associatedwith
the application of strawmulch. The total fungal composition ofmulched and non-mulched plots differed significantly. Fun-
gal composition at the phylum level correlatedwith the soil potassium content andmarginally with the pH and phosphorus
content. The application of mulch promoted the dominance of saprotrophic functional groups. Fungal composition accord-
ing to guilds was also significantly different between treatments. As conclusion, the application of mulch could mean a
faster recovery of saprotrophic functional groups that will be responsible for decomposing the available dead fine fuel.
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1. Introduction

Wildfires, depending on the burn severity and frequency, may drasti-
cally remove the plant cover, cause partial or complete combustion of
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organic matter, alter pH and bulk density, and modify the porosity
(Shakesby, 2011; Agbeshie et al., 2022). They may also alter aggregate sta-
bility or water repellency (e.g., Doerr and Shakesby, 2009; Jordán et al.,
2011; Mataix-Solera et al., 2011; Varela et al., 2015), causing nutrient de-
pletion (Shakesby, 2011), together with marked alterations in the numbers
and composition of soil microbes and soil-dwelling invertebrates (Certini
et al., 2021). Many of these changes potentially make the soil more suscep-
tible to removal bywater erosion and/or less likely to allow infiltration and
more likely to promote overland flow (Shakesby, 2011; Díaz et al., 2022).
In the Mediterranean basin, which has hot, dry summers (when most fires
occur) followed by frequent and intense rainstorms in autumn (70–80 %
of the annual rainfall occurs in autumn), and shallow forest soils with low
levels of organic matter (Díaz et al., 2022), the negative impacts of soil ero-
sion are aggravated following a wildfire (Shakesby, 2011; Panagos et al.,
2015; Lucas-Borja, 2021).

Mulching is one of the most common post-fire management techniques
used to reduce post-fire soil erosion (e.g., Robichaud et al., 2013; Fernández
and Vega, 2014; Prosdocimi et al., 2016; Keizer et al., 2018; Lucas-Borja
et al., 2019; Zituni et al., 2019). Agricultural straw is a particularly useful
mulching material because it is light, has a high soil-covering capacity, is
readily available at relatively low cost and can be applied from the air
(helimulching), thus enabling extensive burned areas to be treated in a rel-
atively short time (Fernández et al., 2016a). Several studies have evaluated
the impact ofmulching on: the understory plant species cover, richness, and
diversity (e.g., Fernández et al., 2016b; Bontrager et al., 2019); soil infiltra-
tion (e.g., Lucas-Borja et al., 2021); nutrient availability, particularly soil
gross nitrogen (N) rates (e.g., Gómez-Rey and González-Prieto, 2015;
Fernández-Fernández et al., 2017); and microbial populations (Fontúrbel
et al., 2012; Barreiro et al., 2015). However, even though the fungal com-
munity is known to play a key role in the post-fire establishment, growth
and survival of vegetation (Smith and Read, 2008), to our knowledge, the
impact of mulching on the fungal diversity and community composition
after a fire has not been studied. In addition, the effect of forest manage-
ment practices on soil-inhabiting fungi has been mostly inferred based on
sporocarp occurrence, which can underestimate the fungal richness and di-
versity (Tomao et al., 2020), whereas studies involving genomic DNA anal-
yses of the soil may be more accurate (Espinosa et al., 2023).

During August 2021, an area of high pressure in the upper troposphere
affected a large part of the Mediterranean basin. This atmospheric configu-
ration induced a severe heat wave over the Mediterranean region (Faranda
et al., 2022). This, combined with the type of Mediterranean ecosystems
that occur in this region, a mosaic of shrublands, woodlands, pastures and
fields that have a great biomass accumulation of dry and flammable vegeta-
tion (Keeley et al., 2011; Moreira et al., 2020), resulted in extensive wild-
fires, including the Navalacruz megafire in Spain (the fire started on
August 14, 2021). This large wildfire in the Navalacruz area (Iberian Cen-
tral System, Ávila) had a perimeter of 90km. The megafire burned approx-
imately 22,000ha of vegetation (approximately 50 % of which belonged to
the Natura 2000 Network, which at the time made it the largest wildfire in
this Autonomous Community (Junta de Castilla y León, 2021). To reduce
the risk of post-fire hydrologic and soil erosion hazards, helimulching
using straw was applied to areas with a high soil erosion potential one
month after the fire. Straw mulching reduces soil post-fire erosion and,
therefore, nutrients are retained in the soil, dampening the negative effect
of fire on the physical, chemical and biochemical characteristics of the
soil (Díaz-Raviña et al., 2012). In addition, the organic matter provided
by the straw (Lucas-Borja et al., 2021; Navidi et al., 2022) and dead matter
created as a result of the effects of the fire may favour the growth of certain
fungal guilds. For example, saprotrophic fungi could benefit from
decomposing dead organic matter, including dead wood, coarse woody de-
bris and litter after the fire. Although the richness and abundance of
ectomycorrhizal (ECM) fungi may be reduced in the short term due to a
lack of hosts, if nutrient retention is sufficient to promote vegetation
regeneration, this would have a positive effect on this guild. On this basis,
we hypothesized that helimulching would significantly improve the rich-
ness and diversity of the fungal community and would contribute to the
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improvement of post-fire soil properties. To test this hypothesis, our spe-
cific objectives were: (i) to analyse whether the soil fungal richness and
abundance were similar in plots with and without mulch; (ii) to identify
edaphic variables that significantly drive the composition of the total
fungi and the different fungal guilds; and (iii) to ascertain the effect of
helimulching on different guilds. Thus, the information generated from
this study should help to guide post-fire management strategies after
large wildfires and supplement our knowledge of postfire management ef-
fects on soil fungal community dynamics.

2. Material and methods

2.1. Study site

The study is located in the municipality of Sotalbo (Iberian Central
System, Ávila), within the boundary of the Natura 2000 network “Sierra
de la Paramera y Serrota”. The coordinates are 40° 29′ 25” N and 004°
59′ 52” W (WGS84) (Fig. 1a). The mean altitude is 1400 m a.s.l. The
mean slope in the area ranges from 25 % to 75 %. The bedrock is com-
posed of siliceous rocks, primarily granites and gneisses that were geo-
morphologically moulded by horst-graben tectonics (Rubiales and
Génova, 2015). In terms of the edaphology, the altitude, topography
and climatic conditions of the Iberian Central System have hindered
the evolution of soils. Steep slopes and anthropological actions also fa-
vour soil erosion. As a result, there is a predominance of poorly devel-
oped soils. The climate is montane Mediterranean, with an intense
summer drought and great seasonal temperature oscillations (Rubiales
and Génova, 2015). The mean annual precipitation is 554 mm, with
most precipitation occurring in spring and in autumn, and with a 2-
month period of hydric deficit (July and August). The mean annual tem-
perature is 11.5 °C (Génova and Moya, 2012).

The vegetation includes evergreen and deciduous species: Quercus ilex
subsp. ballota (Desf.) Samp. and Quercus suber L. and pines, mainly Pinus
pinaster Aiton and P. pinea L. The tree line reaches approximately
1800 m a.s.l. with isolated and dispersed stands of Pinus sylvestris L. and
Pinus nigra subsp. salzmannii (Dunal) Franco (Génova et al., 1988; Génova
and Moya, 2012). Ridges are composed by a shrubland of Cytisus
oromediterraneus Rivas Mart. and Juniperus communis subsp. alpina (Suter)
Celak is dominant at the highest altitudes, along with alpine pastures
(Ruiz de la Torre, 2002; Gómez Manzaneque et al., 2009).

2.2. Experimental design

We established three blocks (B1, B2 and B3). In each block, three
mulched and three non-mulched plots of 90 m2 (3 m × 30 m; n = 18
plots) were sampled (Fig. 1b). The plots were representative of the study
area and homogeneous in terms of slope (65–75 %) and exposure (north-
eastern), in an area with a shrub community of Cytisus sp., J. communis
subsp. alpina and alpine pastures. The burn severity of all experimental
plots was characterized as high by the forest service of Castilla y León.
The mean chemical properties of soil samples collected from mulched and
non-mulched plots are shown in Table 1 and Fig. S1.

2.3. Helimulching

Helimulching was conducted by the Forest Service of Castilla y León in
the last week of September 2021 (one month after the wildfire of
Navalacruz) to explore the potential of applying agricultural straw from
the air using a helicopter as a tool to minimize erosive impacts on the soil
in high severity areas (levels higher than 4 in the classification proposed
by Vega et al., 2013). Wheat straw mulching was applied at a rate of
3.0–3.5 Mg ha−1 (Fig. 2) to form a layer of mulch 2 to 3 cm thick. Due to
the expense, helimulching was used as a strategic treatment in areas of
high soil erosion potential andwhere therewas a risk of loss of downstream
values, such as aquatic ecosystems, infrastructure and property. (Fig. 2)
(Robichaud, 2010; Fernández et al., 2016a).



Fig. 1. (a) Location of the study area in the Iberian Central System, Ávila, Spain (1:150000). (b) Location of the three study blocks (B1, B2 and B3) (1:7000).

J. Espinosa et al. Science of the Total Environment 892 (2023) 164752
Fifteen days after the Navalacruz fire started (August 14, 2021), rainfall
occurred for five days in the study area (total precipitation of 6.3 mm). In
addition, prior to the application of helimulching, storms occurred in the
area during the second half of September 2021 (total precipitation of
35.4 mm). The weather during the study year was characterized by a
mean annual temperature of 12 °C, with a mean maximum temperature
of 20 °C and an accumulated precipitation of 211 mm (from August, 14 to
September 30, 2022).

2.4. Soil samples and molecular work

Soil samples were collected from plots (September 24–25, 2022) one
year after the helimulching treatment was applied. Plots were analysed as
independent samples (Ruiz-Almenara et al., 2019). To collect samples
with spatial variability while minimizing the likelihood of repeatedly sam-
pling the same genet, soil cores of topsoil (10–15 cm in depth) taken from
underneath the litter or mulch layer were extracted 5 m apart at 10 sam-
pling points along the centrelines of each plot (250 cm3) (De la Varga
et al., 2012). Litter, twigs and mulch were removed from the surface before
soil samples were taken (Voříšková and Baldrian, 2013). The 10 cores were
pooled to produce a composite soil sample for each plot. The samples were
transported to the laboratory in sterile plastic bags and stored at 4 °C.
Within the following 24 h, samples were air dried, sieved through a
Table 1
Mean chemical properties of soil samples from mulched and non-mulched plots (mean

Block Treatment pH Organic matter (%)

B1 Mulching 4.74 ± 0.06 7.72 ± 0.55
B1 Non-mulching 5.04 ± 0.17 6.17 ± 0.12
B2 Mulching 4.74 ± 0.33 11.78 ± 1.91
B2 Non-mulching 4.64 ± 0.30 9.96 ± 0.82
B3 Mulching 4.47 ± 0.01 10.26 ± 0.94
B3 Non-mulching 4.86 ± 0.32 9.41 ± 1.01
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1 mm2 mesh, and then ground to a fine powder using a mortar and pestle
(Martín-Pinto et al., 2021; Alem et al., 2022). Each soil composite sample
was subjected to chemical and genomic DNA analyses. Soil samples for se-
quencingwere frozen (−80 °C) to conserve themuntil ready for processing.

Chemical analyses were performed to determine soil pH using
potentiometry method (1:2.5 soil water ratio); dry matter (%) using a
105 °C heater; total nitrogen (N, %) using a modified Kjeldahl methodol-
ogy; phosphorus (P, mg kg−1) content using Olsen's method (Olsen,
1954).; potassium (K, mg kg−1) content using ICP-OES (inductively
coupled plasma-optical emission spectrometry); and organic matter (%)
using the modified Walkley-Black method.

Available phosphorus (P) was determined using Olsen's sodium bicar-
bonate extraction method (Olsen, 1954).

The internal transcribed spacer 2 (ITS2) region (ca. 250 bp) of the nu-
clear ribosomal DNA repeat was PCR amplified using the forward primer
fITS7 (GTGARTCATCGAATCTTTG) (Ihrmark et al., 2012) and the reverse
primer ITS4 (TCCTCCGCTTATTGATATGC) (White et al., 1990). Amplifica-
tion was performed using the following amplification program: a first cycle
of 95 °C for 5min, followed by 37 cycles of 95 °C for 20 s, 56 °C for 30 s, and
72 °C for 1.5 min, and a final cycle of 72 °C for 7 min (Alem et al., 2022).
Afterwards, a second PCR was performed to generate barcoded amplicons
for sequencing using the Illumina MiSeq platform at BaseClear B.V.
company (The Netherlands) BaseClear (Naturalis).
± standard deviation).

Nitrogen (%) Potassium (mg kg−1) Phosphorus (mg kg−1)

0.35 ± 0.03 27.13 ± 1.91 163.67 ± 26.31
0.30 ± 0.03 23.40 ± 7.28 79.67 ± 13.58
0.56 ± 0.10 33.63 ± 12.71 98.67 ± 30.89
0.49 ± 0.09 22.23 ± 4.93 41.00 ± 17.09
0.47 ± 0.04 23.23 ± 7.22 110.67 ± 46.48
0.46 ± 0.06 27.07 ± 3.52 48.00 ± 14.14



Fig. 2. (a) Application of aerial mulching in the study plots during the last week of September 2021, one month after the Navalacruz fire. (b) Mulching applied in block B of
the study area; (c) detail of the mulch applied in a study plot.
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2.5. Bioinformatic analysis

Primers and poor-quality ends were removed using Cutadapt, which
was set with a quality score of 5 and a minimum sequence length of
200 bp. Primer pairs were trimmed and sequences with an expected error
4

of>1were removed. The remaining sequencesweremerged into unique se-
quence types on a per-sample basis using USEARCH v.8.0 (Edgar, 2010)
while preserving read counts. High-quality sequences were grouped with
USEARCH at 97 % sequence similarity to generate operational taxonomic
units (OTUs) while simultaneously excluding sequences representing
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OTUs with <70 % similarity or < 200 bp pairwise alignment to a fungal se-
quence. Sequences were assigned to taxonomic groups based on pairwise
similarity searches against the curated UNITE+ INSD fungal ITS sequence
database (version v.8.0), which contains identified and unidentified se-
quences assigned to species hypothesis groups defined based on dynamic
sequence similarity thresholds (Kõljalg et al., 2013). Functional groups
were assigned to each OTU using Fungal Traits (Põlme et al., 2020).

2.6. Statistical analysis

All statistical analyses were carried out using the sequence count for
each OTU as an abundance value (Danzeisen et al., 2011) of non-
singleton fungal communities. Data used for statistical analyses were not
transformed because they achieved the parametric criteria of normality
and homoscedasticity. Differences in fungal and soil variables across the
treatments were assessed using linear mixed-effects (LME) models
(Pinheiro et al., 2016), where the plot was defined as random and the
mulching treatment was defined as a fixed factor. A Tukey test was
5

subsequently performed to check significant differences (p ≤ 0.05) be-
tween treatments. Data were analysed using R, version 2.13.2 (R Core
Team, 2020). Krona charts were used to visualize the taxonomic distribu-
tion of all fungi and guilds based on OTU richness following Tedersoo
et al. (2020).

The fungal community structures of mulched and non-mulched soils
were compared similarities in the fungal community structure between
the two treatments were analysed using a permutational multivariate
ANOVA (PerMANOVA) based on 999 permutations and Bray–Curtis dis-
tance using the adonis2 function in the vegan package.

Relationships between soil chemical variables and soil fungal commu-
nity composition were determined based on the Bray–Curtis dissimilarity
after excluding singleton OTUs and were visualized using Non-metric Mul-
tidimensional Scaling (NMDS) based on a Hellinger transformed OTU
abundance data matrix and environmental scaled data. The correlation of
NMDS axes scores with explanatory variables was assessed using the envfit
function in R (R Core Team, 2020). NMDS analyses were performed for
total fungi and trophic groups.



Fig. 3. Krona charts showing the relative abundance of: (a) the total fungal taxa in each division, class, order, family and genus; and (b) each fungal guild based on sequence
abundance.
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An analysis of similarity percentages (SIMPER) was also performed to
identify fungal OTUs that were most responsible for the observed commu-
nity patterns and to determine the percentage contributions of these
OTUs to significant dissimilarities between treatments (Parravicini et al.,
2010). The analysis was conducted using PAST software (Hammer et al.,
2001).

3. Results

3.1. Taxonomic composition of fungal communities

Between 14,914 and 23,308 high-quality reads were obtained from
each sample. In total, 19,520 high-quality sequences were grouped into
933 OTUs, which were assigned to 15 fungal phyla (Fig. 3). Taxonomic
classification revealed that the majority of OTUs belonged to Ascomycota
6

(46.6 %) or Basidiomycota (21.3 %). In total, 419 OTUs (44.9 %) were re-
solved to genus level andwere assigned to 231 different genera. In addition,
418 OTUs were assigned to 21 trophic groups, of which 0.64 % were ECM
fungi. Unidentified fungi were classified down to kingdom level and repre-
sented 12.6 % of the total OTUs. The relative abundance of fungal taxa in
each division, class, order, family and genus and in each guild is shown in
Fig. 3.

3.2. Impact of straw helimulching on fungal richness

Total fungal OTU richness and abundance values in mulched and
non-mulched plots were not significantly different (F = 1.705; p =
0.210; F = 1.849; p = 0.193; Fig. 4), suggesting that fungal richness and
abundance were not affected by the mulching treatment one-year after
the treatment.



Fig. 4. Total richness (left) and abundance (right) of operational taxonomic units in soil collected in mulched and non-mulched plots. Means and the interval distribution of
the data are shown.
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At the phylum level, Ascomycota and Basidiomycota were considered
the dominant phyla (Fig. 3). Only marginally significant differences
(p < 0.1) were detected in the richness of basidiomycetes following the
mulching treatment (p = 0.053; Table S1). No significant differences
were found in the richness and abundance of the other phylum (Table S1).

Analysis of specific guilds revealed that the richness of litter
saprotrophs, plant pathogens and wood saprotrophs were marginally af-
fected by mulching (p < 0.1; Table 2), which was higher after mulching.
No differences between treatments were observed for animal parasites,
dung saprotrophs, mycoparasites, lichenized fungi or root endophytes.

3.3. Effect of straw helimulching treatment on fungal composition

The perMANOVA analyses indicated that the total fungal composition
differed significantly between mulched and non-mulched plots (F =
1.859, R2 = 0.104, p=0.013). Chemical properties of soil such as pH, or-
ganic matter and N were significantly correlated with the composition of
total fungal OTUs and P was marginally correlated as well (Fig. 5; Table 3).

The perMANOVA analysis also indicated that the fungal composition at
the phylum level was significantly different between treatments (F =
4.300, R2 = 0.211, p = 0.002). Furthermore, K and marginally pH and P
(Fig. 6; Table 3) were significantly correlated with the composition of the
fungal community at the phylum level.

The SIMPER analysis identified fungal OTUs that were responsible for
differences in fungal composition under the different treatments. The cu-
mulative contribution of the most influential OTUs for the dissimilarity be-
tween sampling treatments is shown in Table S2. Some fungi that form
Table 2
Influence of themulching treatment on the richness of specific fungal guilds. Values
in bold indicate marginally significant differences (p < 0.1). Coeff.: a positive coef-
ficient indicates an increase in the richness associatedwith the application ofmulch.

Guilds Richness

Mulching Non-mulching Coeff. F p-value

Arbuscular mycorrhizae 0.0 0.1 0.111 1.000 0.332
Animal parasites 3.4 3.7 0.222 0.059 0.811
Dung saprotrophs 1.2 1.2 0.000 0.000 1.000
Ectomycorrhizal fungi 1.3 1.4 0.111 0.087 0.772
Mycoparasites 5.4 5.2 −0.222 0.085 0.774
Lichenized fungi 0.6 0.6 0.000 0.000 1.000
Litter saprotrophs 8.0 12.6 4.555 4.366 0.053
Plant pathogens 10.4 15.4 5.000 4.451 0.051
Root endophytes 0.9 0.8 −0.111 0.085 0.774
Unspecified saprotrophs 20.9 22.1 1.222 0.869 0.365
Soil saprotrophs 38.8 46.7 7.888 2.026 0.174
Wood saprotrophs 6.0 8.6 2.555 3.785 0.069
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characteristic mycorrhizal associations withmembers of the Ericaceae fam-
ily were identified: Helotiales sp. and Oidiodendron griseum. The
saprotrophic fungi were mainly Umbelopsis changbaiensis, Pleosporaceae
sp.,Mortierella humilis or Rhodotorula sp. Some saprotrophs that may be as-
sociated with damp straw were identified as Cladosporium sp., as well as
rare parasites, such as Saitoella coloradoensis, and tree pathogens, such as
Coniochaeta decumbens. We also distinguished fungi associated with char-
coal remnants (Pyronema domesticum) and some directly associated with
grass (Naganishia cerealis).

4. Discussion

Straw mulch is an emergency treatment that has been recognized as an
effective method of mitigating post-fire soil erosion (Robichaud et al.,
2013; Fernández et al., 2016a; Fernández et al., 2020a).Mulching practices
can alter microbial community composition and diversity by improving the
soil chemical environment (Wang et al., 2020), favouring fungal growth
(Rousk and Bååth, 2007). However, this is the first study to assess the im-
pact of a straw mulch layer applied to burned soils on soil microbial com-
munity composition. However, under the environmental conditions
experienced in the study plots, one year was not sufficient for the straw
mulch to decompose completely and improve the soil conditions to en-
hance changes in the diversity of the fungal community. In this regard,
the mulch depth was still >2 cm thick one year after application, as was
also observed in NW Spain one year after helimulching at an application
rate of 3.5–4.0 Mg ha–1 (Fernández et al., 2020b). Similarly, Liu et al.
(2021) did not detect changes in the richness and abundance of the fungal
community after applying strawmulch to a one-year abandoned pasture in
a mid-temperate continental monsoon climate zone.

Post-fire mulching also did not significantly affect phylum diversity
and only basidiomycete richness responded positively to the treatment.
This indicates that straw mulch, which has a high cellulose, hemicellulose
and lignin content (Rousk and Bååth, 2007; Niu et al., 2014), could enhance
the growth of basidiomycetes, many of which are effective decomposers
(Semenova-Nelsen et al., 2019). Saprotrophic fungi are sensitive to fire
and may decline in richness and abundance after a fire (Semenova-Nelsen
et al., 2019). However, as mentioned, mulch may enhance the growth con-
ditions of this functional group. In this study, we observed a significant in-
crease in litter saprotrophs and wood saprotrophs. This might temporarily
increase fine fuel decomposition and reduce the amount of available fuel
for future fires (Semenova-Nelsen et al., 2019). In addition, since the
mulch cover is described to retain soil moisture (Fernández, 2021) and de-
crease soil temperature variations (Yin et al., 2023), this could improve soil
properties for these functional groups at long-term. Another key guild re-
sponsible for the resilience of Mediterranean ecosystems is ECM fungi



Fig. 5. Non-metric multidimensional scaling (NMDS-stress 0.1522) ordination graph of the soil fungal community composition of the total operational taxonomic units
(OTUs) in mulched (green polygon) and non-mulched (brown polygon) plots. Soil chemical properties that were significantly correlated with OTU composition are
shown in blue. OM: organic matter.
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(Izzo et al., 2006; Buscardo et al., 2012). Although we expected straw
mulching to improve the ECM fungal richness of treated plots, this did
not occur in this study. This could be partly because the fire completely
destroyed host plant biomass and the existing functional roots in the
study area. In addition, the dominance of non-ECM hosts, Cytisus and
Juniperus, and alpine pastures in the study area could also explain this re-
sult. A longer-term study could help to establish the time needed for ECM
fungi from nearby plantations to invade an area treated with mulch follow-
ing a vegetation-replacing fire. Conversely, a significant increase in plant
pathogenswas detected in plots where strawmulchwas added. Therefore,
straw mulch could increase plant pathogens in soils that have been
completely devastated by wildfire and then treated immediately with
straw mulch. This increase in plant pathogens could also be due to changes
in the functional characteristics of the guild, which can respond to changes
in the environment (Albornoz et al., 2022). In this sense, many plant path-
ogens possess facultative saprotrophic traits (Zanne et al., 2020) which
would be enhanced by the availability of straw and lack of host vegetation
to parasitize after a high severity fire.
Table 3
Significance of soil chemical properties on total operational taxonomic unit (OTU)
and guild community composition using envfit function in R. Values in bold indicate
significant differences (p < 0.05). Italicized values showed marginal differences.

Chemical properties Total OTUs Guilds

R2 p R2 p

pH 0.533 0.003 0.298 0.064
Organic matter 0.497 0.006 0.002 0.991
Nitrogen 0.434 0.017 0.024 0.843
Phosphorus 0.281 0.084 0.330 0.055
Potassium 0.061 0.622 0.581 0.003
Carbon-to‑nitrogen ratio 0.156 0.266 0.115 0.403
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The addition of mulch did not significantly change the pH, organic mat-
ter, carbon (C), macronutrients, or C:N ratio of the soil. Mulching only sig-
nificantly affected the soil K levels, which is likely to be because it is rapidly
liberated during the decomposition process (Aponte et al., 2012). The ab-
sence of short-term effects on soil chemical and biochemical properties
after using straw as a stabilization treatment on burned soil has already
been noted by Díaz-Raviña et al. (2012) and by Liu et al. (2021) after the
application of straw to pasture that had been abandoned for a year. Neither
Lucas-Borja et al. (2021) found long-term significant differences in the pH
between plots treated with straw mulch and non-treated plots. Although
the use of mulch is effective for reducing soil loss in severely burned
areas, it did not seem to have any effects on the soil physicochemical prop-
erties (Norland, 2000). However, other authors describe changes in soil
chemical after mulching (Prats et al., 2022).

In this study, we found that the soil properties had a significant effect on
the overall composition of fungal OTUs. The analysis showed that soil pH,
organic matter, C and N were correlated with the overall composition of
fungal OTUs. Among these, pH is known to be themost important soil char-
acteristic affecting fungal community composition and structure (Zhang
et al., 2016), as also observed in this study. This may be due to the soil
pH directly affects fungal community composition by providing a physio-
logical constraint on fungal survival and growth as some fungal taxa cannot
grow or survive when the soil pH is outside a certain range. Although fungi
generally grow well under acidic conditions, some fungi also grow well
under neutral to slightly alkaline conditions (Yamanaka, 2003). Our analy-
sis also showed that the soil organic matter correlated with the overall fun-
gal composition in the study area. This might be explained by the mulching
increases the amount of decomposable material (Marinari et al., 2015), as
the application of mulch increases the soil organic C content (Saroa and
Lal, 2003) and improves soil moisture retention (Ji and Unger, 2001), al-
though this was not measured in this study. Thus, mulching could affect



Fig. 6.Non-metricmultidimensional scaling (NMDS-stress 0.1530) ordination graph of the soil fungal community composition of guilds inmulched (green polygon) and non-
mulched (brown polygon) plots. Soil chemical properties that were significantly correlated with guilds are shown in blue.
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mycelial growth, especially of saprophytic fungal species. The soil N
content was also correlated with the total fungal OTU composition.
This finding is consistent with the findings of Reverchon et al. (2010),
who reported that fungal composition may increase along soil N gradi-
ents because N can affect mycelial growth in soil (Trudell, 2004). In ad-
dition, many fungal species can adapt to more N-rich sites (Toljander
et al., 2006).

The SIMPER analysis revealed that the first eleven species listed in
Table S2, including Helotiales sp., Calyptrozyma sp., Oidiodendron griseum,
Umbelopsis changbaiensis, Naganishia cerealis, Saitoella coloradoensis,
Coniochaeta decumbens, Solicoccozyma terrea, and Holtermanniella wattica,
contributed to>50% of the dissimilarity between the two treatments. Gen-
era of these species are known to be saprotrophic and include ecologically
diverse species specialized in using carbon from cellulose in organic matter
(Boekhout et al., 1995; Meyer and Walter, 2003; Andrew et al., 2016; Rice
and Currah, 2005; Gladieux et al., 2011; Wuczkowski et al., 2011;
Harrington et al., 2019; Müller et al., 2020; Čadež et al., 2021). Thus,
they are heavily involved in the decomposition of dead plant materials,
which could explain their contribution to the dissimilarity between the
two treatments (Štursová et al., 2012). Furthermore, the dead organic ma-
terial in the form of straw in the mulching treatment, in addition to the
available materials left after the fire or dead woody materials could serve
as a carbon source (Barnhill et al., 2023), which may have attracted these
9

saprophytic species and could explain the observed dissimilarity in terms
of species abundance between the two treatments in the study area.

5. Conclusions

One year after helimulchingwas applied on three hillside zones affected
by a severe wildfire, we did not observe changes in fungal diversity (rich-
ness and abundance) between treated and non-treated plots, which does
not confirm our initial hypothesis. Under this type of montane Mediterra-
nean climate, one year is unlikely to be sufficient for the straw to decom-
pose. Thus, a longer-term study should be contemplated. The application
of mulch could mean a faster recovery of saprotrophic functional groups
that will be responsible for decomposing the available dead fine fuel. The
straw mulching was not improving the ECM fungal community of treated
plots. Partly because the fire completely destroyed the host plant biomass
and also by the dominance of non-ECM host in the study area. Conversely,
an increase in the number of plant pathogens in soils that have been se-
verely burned was expected. Although the use of a mulch is prescribed in
severely burned areas to reduce soil erosion after fire, it did not seem to
have a positive impact on soil chemical properties in the short-term; thus,
a longer-term study could help to better assess the effects on the soil chem-
ical properties. However, the total OTU and guild composition of mulched
and non-mulching plots differed significantly.
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