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Is science of any value?
To every man is given the key to the gates of heaven.

The same key opens the gates of hell.

Science doesn‘t tell us how to use keys. It finds them or predicts them.
How we use keys is up to us.

— Michael Stevens, sobre Richard Feynman
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R E S U M E N

El desarrollo tecnológico ha sido, y debe ser, el principal aliado de la humanidad a la
hora de afrontar los desafíos presentes y futuros. El cambio climático y sus consecuen-
cias sobre la biosfera se encuentran como el principal reto de este siglo, para la cual
la generación, transporte y almacenamiento de energía (notablemente este último) se
manifiestan como los desafíos tecnológicos más urgentes. En este sentido, la Ciencia
de Materiales toma un papel fundamental en el descubrimiento de nuevos sistemas y
procesos para tal fin. Paralelamente, la mejora en la eficiencia de estos materiales co-
bra una especial importancia, pues es deseable, e incluso vital, que la vida útil de estas
herramientas sea la máxima posible. Por ejemplo, el almacenamiento de hidrógeno co-
mo pilas de combustible es un elemento fundamental en la denominada economía de
hidrógeno. Grandes recursos se destinan a mejorar la capacidad de almacenamiento (y
con ello de energía) de estas baterías. Sin embargo, el deterioro en el tiempo de estas
novedosas tecnologías no sólo altera las propiedades de la pila, sino que pone en pe-
ligro al propio usuario. Además, las tecnologías verdes están basadas en gran medida
en los conocidos como metales raros, los cuales son muy escasos y contaminantes. En
consecuencia, su máximo aprovechamiento es esencial.

En sistemas basados en metal, una interacción omnipresente en la atmósfera terrestre
es la de la corrosión, consistente en el deterioro del metal a consecuencia de la oxidación
y de otros ataques electroquímicos. Se trata de un problema industrial de gran importan-
cia y de alto costo económico: el coste anual de la corrosión a nivel mundial equivale
a un 3,4 % del producto interior bruto global (2013), sin contar sus consecuencias me-
dioambientales. Es por ello que desde el siglo XX se tiene en cuenta las consecuencias
económicas de la corrosión, llevando a cabo políticas industriales a nivel nacional desti-
nadas a su gestión y prevención. De esta manera, varias técnicas como el galvanizado y
las aleaciones inoxidables se emplean de forma sistemática. En el caso del galvanizado
o cincado, el metal a proteger se recubre con una capa de zinc. Además de mejorar su as-
pecto visual, el zinc, al reaccionar con el oxígeno y otros agentes corrosivos como Cl− y
agua, forma una capa de óxido y otros productos derivados de la corrosión que protege
el interior del metal de la oxidación y corrosión. De esta forma, el material funcional
es la propia capa de zinc oxidada. Sin embargo, se ha encontrado que la incorporación
de magnesio para formar una aleación con el zinc resulta en una creación más eficiente
de la capa protectora: la formación de la capa de óxido es más rápida, y es más efectiva
en el aislamiento del exterior. La pérdida de masa por la corrosión es muy notablemen-
te reducida al incorporar magnesio, mostrando que la formación de la capa protectora
basada en Mg mejora su estabilidad frente la corrosión, al mismo tiempo que impide la
formación de productos de la corrosión no protectores como ZnO. De esta manera, los
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productos que en su lugar conforman la capa protectora incluyen simonkolleita, MgO
y Mg(OH)2. En particular, las composiciones Zn11Mg2 y Zn2Mg se encuentran como
las más indicadas para maximizar la eficiencia de la capa protectora según la evidencia
experimental. Las razones de esta cualidad no son, sin embargo, bien conocidas. El pro-
ceso de la corrosión implica procesos físicos, químicos y termodinámicos en diferentes
etapas, que resultan en la capa aislante final. Este proceso intermedio de corrosión es,
en consecuencia, muy complejo de estudiar y de modelizar a escala nanométrica y don-
de, en todo caso, reside la respuesta al interrogante. El objeto de esta tesis consiste en
estudiar detalladamente los mecanismos físico-químicos que determinan el proceso de
corrosión sobre la aleación Zn-Mg, mediante un detallado análisis mecánico-cuántico
empleando métodos ab-initio o de primeros principios basados fundamentalmente en la
Teoría del Funcional de la Densidad (DFT).

Para estudiar el complejo problema de la corrosión, en esta tesis se emplean modelos
basados en agregados atómicos o clústers. La ventaja de estos sistemas son su relativa
sencillez a la hora de modelizar y analizar mediante técnicas computacionales. Además,
pueden mostrar una superficie más fidedigna a los sistemas reales, al menos localmente,
donde la microestructura y los defectos juegan un papel clave en la corrosión, en com-
paración con los sistemas periódicos bidimensionales. Por el contrario, estos últimos
pueden proporcionar una visión complementaria, ya que ofrecen la posibilidad de anali-
zar el perfil de la corrosión según nos adentramos al interior de la corteza oxidada. Por
último, los clústers son relevantes en sí mismos: estos muestran propiedades propias de
la nanoescala, ya que los efectos de confinamiento sobre los electrones proporcionan
unas características a los agregados altamente dependientes tanto de la composición
como del tamaño. Por ello, como etapa previa al análisis directo del problema de la
corrosión, se debe estudiar la nano-aleación Zn-Mg a fin de caracterizar las tendencias
más importantes en los clústers que puedan ser relevantes en el posterior proceso de
corrosión. Por ejemplo, los patrones que determinan la estabilidad y el orden químico
pueden indicar por qué algunas estequiometrías son más favorables de cara a la pro-
tección contra la oxidación. De este modo, en el primer artículo que acompaña la tesis
se caracterizan y discuten las estructuras de mínima energía para el sistema (ZnMg)N,
desde 4 hasta 50 átomos.

El problema de la búsqueda estructural es central en esta tesis, tanto en la localiza-
ción de agregados de energía mínima como en la obtención de productos derivados de la
corrosión. En general, explorar a nivel ab-initio la superficie de energía potencial para
seleccionar las estructuras de interés es computacionalmente prohibitivo. Por ello se de-
be confiar en modelos numéricos que aproximadamente representen las interacciones
atómicas en el sistema. Estos modelos, comúnmente llamados potenciales, represen-
tan el otro área de investigación de esta tesis: el desarrollo de modelos, algoritmos y
protocolos para simular los sistemas nanométricos de interés con el fin de explorar su
superficie de energía ocupa una parte esencial de este trabajo. Así, en el primer artículo
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se desarrolla un potencial empírico (EP) metálico mejorado con interacciones de Cou-
lomb, pues la diferencia de electronegatividad entre el zinc y el magnesio es suficiente
como para que exista una notable transferencia de carga entre ambos, la cual influye
en la descripción del sistema. En el trabajo se compara el desempeño entre el potencial
original y el mejorado, y, mientras que sólo se encuentra un aumento en la precisión de
un 6 %, éste es suficiente como para producir una mejora sustancial en el orden homo-
tópico de los agregados. El potencial numérico resultante se emplea en la búsqueda de
estructuras competitivas sobre la compleja superficie de energía potencial del sistema,
empleando algoritmos de optimización global. Por último, los agregados obtenidos se
optimizan mediante las mencionadas técnicas DFT. Esta estrategia combinada EP/DFT
depende en gran medida de la capacidad del potencial empírico a la hora de representar
de forma precisa la superficie de energía correcta. Las estructuras resultantes de míni-
ma energía encontradas se adscriben a un modelo Jellium de electrones deslocalizados,
con un enlace fundamentalmente de carácter metálico. Más en detalle, los resultados
muestran en general una clara tendencia a maximizar el número de enlaces Zn-Mg, es-
to es, los dos elementos se distribuyen homogéneamente. Esto se atribuye al efecto de
transferencia de carga del magnesio al zinc, proporcionando así una mayor estabilidad
de carácter iónico. Asimismo, se encuentra que el enlace Zn-Zn se fortalece al verse
aumentada su carga y por ello su carácter metálico. Por último, algunos agregados de
mínima energía obtenidos muestran un patrón estructural y orden químico similares al
del estado bulk, reforzando de esta manera el uso de modelos basados en clústers, ya
que esperamos que los resultados obtenidos puedan ser extrapolados a las superficies
extensas más realistas.

El potencial empírico desarrollado en el primer trabajo ofrecía una descripción adicio-
nal de la interacción de Coulomb, que, sin embargo, resulta en una aparentemente esca-
sa mejora en la precisión. Para obtener una mayor precisión se debe considerar también
mejorar la parte metálica del enlace, de mayor importancia en el sistema. Por ello, en
el segundo artículo de la tesis se decide desarrollar un modelo numérico más avanzado
basado en técnicas de Machine Learning: los potenciales basados en redes neuronales.
Estos modelos son puramente numéricos, sin ningún significado físico a priori. De esta
manera, pueden ser aplicados indistintamente a cualquier sistema, independientemen-
te del tipo de interacciones involucradas. Dada su gran flexibilidad, pueden represen-
tar la energía potencial de sistemas muy complejos para los cuales no existe potencial
empírico. En consecuencia, los potenciales basados en redes neuronales surgen como
alternativa a la descripción ab-initio directa, ofreciendo una precisión comparable al
mismo tiempo. En el segundo artículo de la tesis se desarrolla un modelo de redes neu-
ronales para el sistema Zn-Mg, involucrando tanto algoritmos de entrenamiento como
de producción de estructuras, estos últimos confiando principalmente en métodos de
optimización global y local. El modelo obtenido ofrece una descripción muy superior
al potencial empírico desarrollado previamente, alcanzando la precisión química. De
este modo, empleando el potencial de redes neuronales y confiando en la estrategia
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EP/DFT, se caracterizan las estructuras de mínima energía para los sistemas (Zn2Mg)N
y (Zn11Mg2)N, desde 6 hasta 52 átomos. Igualmente, estos agregados siguen en general
el modelo Jellium para sistemas metálicos. Persiste una clara tendencia a la mezcla entre
los dos elementos, pero con una segregación del magnesio hacia la superficie del clúster
ocupando lugares de alta coordinación. Así, se espera que la reactividad del clúster esté
determinada precisamente por el rol que tomen los magnesios, favoreciendo de igual
modo la formación de la capa protectora basada principalmente en productos derivados
de la corrosión sobre el Mg.

Una vez discutidas las propiedades de los agregados de Zn-Mg, se puede avanzar a
analizar su oxidación. Como se ha mencionado previamente, la corrosión es un proce-
so complejo, distribuido en varias etapas. La primera de éstas involucra la formación
inicial de la capa de óxido, siendo el principal interrogante cómo se distribuyen los
oxígenos sobre la superficie prístina de Zn-Mg. El resultado de este crecimiento inicial
determinará de forma crítica la posterior evolución de la capa de óxido. El objetivo del
tercer artículo que acompaña la tesis se centra en el análisis de este primer proceso de
oxidación, a fin de identificar las tendencias más relevantes que expliquen en última
instancia por qué algunas estequiometrías son más favorables para la protección de la
corrosión. Para ello se analiza la oxidación sobre clústers de mínima energía de Zn-Mg
con 20 átomos de diversas composiciones con hasta 6 átomos de oxígeno. Además de
los métodos basados en la DFT, se emplean herramientas de análisis topológico de la
densidad electrónica para caracterizar el enlace químico. Los resultados muestran que
debido a la homogénea distribución del magnesio por la superficie del clúster, estos
actúan como centros de nucleación para el oxígeno. Siendo el magnesio más reactivo
que el zinc, la introducción de magnesio acelera de este modo la formación de la capa
de óxido. Mientras que en agregados ricos en magnesio la distorsión provocada por la
oxidación es intensa debido a la concentración del ataque en regiones específicas, en la
fase rica en zinc la distorsión es mínima. Los magnesios atraen los oxígenos protegien-
do los defectos producidos en la superficie del agregado evitando así la formación de
ZnO, manteniendo el zinc unido al resto de la capa protectora, explicando así la reduc-
ción en la pérdida de masa durante la corrosión. Esta positiva sinergia entre el zinc y el
magnesio produce un crecimiento homogéneo de la superficie oxidada al mismo tiempo
que protege el interior del agregado. En efecto, empleando las técnicas de análisis del
enlace químico se encuentra que, tras incorporar una pequeña cantidad de magnesio, el
interior del clúster está en la práctica aislado químicamente del exterior. En particular,
las composiciones Zn11Mg2 y Zn2Mg se encuentran como las más indicadas para opti-
mizar la protección frente a la corrosión, acorde a la evidencia experimental.

Tras los resultados obtenidos, queda por analizar la corrosión completa del sistema,
tomando agregados más grandes con un interior más desarrollado. Esto permite analizar
cómo se forma la capa de óxido completa, donde el oxígeno puede introducirse hacia la
sub-superficie para formar la capa aislante de un determinado grosor. Realizar esta ex-
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ploración a nivel DFT se vuelve, de nuevo, prohibitivo. Es necesario emplear modelos
que aproximen la interacción del oxígeno con el agregado. Para ello, es muy conve-
niente recurrir a los ya trabajados potenciales de redes neuronales. De este modo, el
desarrollo del modelo de redes neuronales para el proceso de la oxidación conforma el
siguiente paso. Una vez obtenido, mediante una exploración exhaustiva de la superficie
de energía potencial asociada a la corrosión, podemos obtener los productos del mismo
para analizar la formación total de la corteza de óxido. Igualmente, con esta técnica se
puede simular una superficie periódica de cierto grosor para evaluar el perfil de la oxi-
dación hacia el interior de la superficie, donde los oxígenos situados en las capas más
superficiales atraen a los átomos de magnesio, más reactivos, del interior de la aleación.
El objetivo último es comprobar cómo los átomos de magnesio migran hacia las capas
más exteriores, para así formar la capa protectora reaccionando primeramente con el
oxígeno y posteriormente con otros agentes corrosivos. De esta manera, los átomos de
magnesio evitarán que la fase zinc interaccione en gran medida, formando en su lugar
la capa protectora basada en magnesio. En una última etapa, la formación completa de
la capa protectora se estudiaría al incluir moléculas de agua y Cl−, al mismo tiempo que
se analiza las capacidades aislantes de la capa de óxido así como de la capa protectora
final. Este camino queda en todo caso pendiente de explorar.
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I N T RO D U C T I O N

It is wrongly attributed to William Thomson (Lord Kelvin) the quote: “There is nothing
new to be discovered in physics now. All that remains is more and more precise meas-
urement", supposedly said during a lecture at the Royal Institution of Great Britain in
1900. This sentence could regardless summarize the feeling among the youngest—and
naive—generations of scientists by the end of 19th century, who proudly believed that
physics was a dead subject, whilst other scientific fields were thriving instead. The age
of classical physics, at long last, had concluded, and all the important laws of physics
seemed to be discovered already. In fact, Max Planck was advised not to go into physics
by von Jolly: “In this field, almost everything is already discovered, and all that remains
is to fill a few unimportant holes.” However, some other more prudent scientists were
disturbed by some experimental evidence, which did not quite match with the classical
theory. Certainly, Lord Kelvin clearly laid out during the aforementioned lecture in 1900
two significant problems that physicists did not know how to address within the context
of 19th-century classical mechanics. Namely, the results of the Michelson-Morley ex-
periment and the failure of the classical equipartition theorem to explain specific heats
at low temperatures. What came next was a huge revolution in physics, leading into the
foundation of the Theory of Relativity and Quantum Mechanics. We can still hear the
echoes of this event, as the major research fields that can be distinguished nowadays are
Particle and High Energy Physics, Cosmology and Non-Linear Physics and Nanophys-
ics.

The field of Material Science within the realm of Nanophysics has become one of
the most thriving research areas. Indeed, due to its emphasis on practical applications,
it is a decisive ally to face the challenges of the humankind. It is worth mentioning the
invention of the transistor, which triggered a technological revolution itself leading to
the Computer Age. Nowadays, the production and storage of energy represent the key
riddle not only to overcome the climatic change, but ultimately, to be able to reach new
frontiers. The hydrogen energy or fusion power are fascinating research topics to this
aim. Other slightly less captivating problems with large economic and environmental
concerns nonetheless, involve the improvement in the efficiency and lifetime of current
technologies and materials. The LED light technology is a good example, requiring
75% less energy than incandescent lighting whilst lasting 20 times longer. In the same
way, an efficient use of the so-called rare-earth elements is mandatory: the develop-
ment of the green and advanced energies rely on these materials, which unfortunately
are scarce and polluting. When dealing with metals on the other hand, an ubiquitous
degradation of these comes in the form of their interaction with the atmosphere. Oxid-
ation and the attack of several corroding agents imply the loss of the metallic surface.
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This undermines the metallic properties and can result in the collapse of the metallic
structure if nothing is done to stop the electrochemical reaction. The corrosion prob-
lem entails a huge cost for the industry: the global cost of corrosion is estimated to be
3.4 % of the global Gross Domestic Product (2013). Consequently, its economic cost
is addressed through available control practices. Techniques such as galvanization and
stainless-steel alloys to prevent metals from rusting are widely used for such purpose.
The galvanization is the process of applying a protective zinc coating over the metallic
surface. After reacting with the atmospheric oxygen and corroding agents, it is the ox-
idized zinc layer and the related corrosion products the ones that protect the metal from
corroding, either with oxygen or any other corroding agent. This way, the zinc layer
serves as a sacrificial coating which provides barrier and galvanic protection to the steel
substrates employed in industry. It has been found however, that adding magnesium to
the zinc layer to form an alloy improves the protective properties of the coating. Not
only the oxidized protective layer is created faster, but also the time for growing signi-
ficant amounts of rust upon corrosion is longer compared to bare zinc. The weight loss
upon corrosion is decreased sharply after addition of a small fraction of magnesium,
whereas the pure zinc phase corrodes more rapidly if it is not protected by a native
Mg-based shielding layer. Alloying with magnesium favours the formation of this layer
composed of Mg-based corrosion products on the surface of ZnMg alloy, being crucial
for their superior corrosion stability acting as cathodic inhibitors (simonkolleite, MgO
and Mg(OH)2) while preventing the formation of the non-protective corrosion product
ZnO. This Mg-based oxidized surface film becomes more stable than that based on pure
zinc, as it ensures a reduced efficiency of oxygen reduction, and a better passivity un-
der atmospheric weathering conditions in the presence of chloride. More in detail, the
Zn11Mg2 y Zn2Mg stoichiometries have been found to be the most suitable to optimize
the protection against corrosion according to experimental evidence. The reasons for
such quality are, however, not well known. The intricate physical, chemical and thermo-
dynamical processes involved are difficult to understand in depth without a quantum-
mechanical analysis. The objective of this thesis is to unveil the fundamental aspects
that trigger the optimal anticorrosive properties of Zn-Mg coatings. Given the vastness
of the problem, we will focus on the formation of the initial oxidized surface layer, over
which the corrosion products would grow to ultimately conform the protective layer.
To this aim, a detailed quantum-mechanical treatment relying on ab-initio techniques,
particularly Density Functional Theory based methods, is performed.

To study the complex corrosion process, we rely on cluster models. These are simple
yet useful computational models for an initial study of the intricate processes that op-
erate in the real extended surfaces. Conversely, a perfectly periodic slab model would
not necessarily be closer to the realistic situation, as the real materials are granular and
present defects. Indeed, the possibility to tailor the microstructure and the local envir-
onment makes cluster models a sensible choice. Periodic slab models on the other hand
can provide information regarding the oxidation profile towards the interior of the pro-
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tective layer, thus yielding a complementary perspective. Lastly, it is well known that
the physical and chemical properties of a material can be drastically modified at the
nanoscale, due to quantum confinement of the electrons. As such, their properties show
a strong and non-monotonous dependence on both composition and size. One can tune
these degrees of freedom to obtain a cluster with some desired properties, such that
it displays bulk-like characteristics, or even exhibiting an enhanced resistance against
corrosion. Despite being relatively simple models, their description requires a complex
ab-initio treatment. As a full exploration of the associated energy potential landscape is
computationally intractable, one must rely on numerical models. These models, simply
referred to as potentials, conform a relevant research area in this thesis. From empir-
ical potentials consisting in simple parametrized mathematical expressions, to Machine
Learning based potentials capable of describing the oxidation process, during this work
we shall unveil their capabilities and limitations.

However, why modelling and simulating in first place? In any research field which
studies complex dynamical behaviours it may be found that the governing equations
of such systems do not have closed form solutions, namely, they cannot be expressed
finitely using a set of special mathematical functions. These special functions are noth-
ing more than a collection of suitably general and simply-understood functions. The
universe is utterly complex, possesses too much freedom to be depicted in such a
simple way. And in many situations, obstinate enough to not allow for approximations
which would simplify the problem yielding an analytic solution. It is here that simu-
lation comes into play, offering a numerical solution regardless of the complexity of
the problem. Thus, computational simulation offers the essential connection between
theory and experience. It allows us to compare and validate the theories according to
experimental evidence. Simply put, we can prove our comprehension of the nature ex-
pressed my means of equations. And conversely, one can simulate an experience to
retrieve information which would be very difficult (or even impossible) to acquire in
a regular experiment. For instance, the 3-body problem has no general closed-form
solution. This implies we cannot derive an analytical expression to predict where the
celestial bodies in the Solar System will be in 100 years. What is worse: the resulting
dynamical system is chaotic for most initial conditions. We can however, simulate the
coupled differential equations to answer the question, although to specify the motion of
a chaotic system one needs “infinite information", given that an arbitrarily tiny perturb-
ation to the state of the system produces massive deviations in the solution. We shall
now recall the misguided quote from Lord Kelvin, which actually stems from a speech
delivered by Albert Michelson in 1894: “While it is never safe to affirm that the future of
Physical Science has no marvels in store even more astonishing than those of the past,
it seems probable that most of the grand underlying principles have been firmly estab-
lished and that further advances are to be sought chiefly in the rigorous application of
these principles to all the phenomena which come under our notice. It is here that the
science of measurement shows its importance — where quantitative work is more to
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be desired than qualitative work. An eminent physicist remarked that the future truths
of physical science are to be looked for in the sixth place of decimals.” As he actually
proved in his experiment some years before, although he probably did not realise at
that point, a revolution in physics was in its way. A revolution which showed that our
qualitative comprehension of physics is always to be tested. We can proudly claim that
physics shall never be a dead subject. On the other hand, is it really worth finding the
truths of physical science beyond the sixth place of decimals? In sufficiently complex
systems which display chaotic behaviour, to determine the evolution it is required infin-
ite knowledge of the initial conditions. In Quantum Mechanics, the wave nature of the
matter under a measurement prevents to predict its certain evolution after a measure-
ment is performed. We can acknowledge that the universe is deterministic, yet, can we
know the present in all its details? As a matter of fact, the very set of logical rules we
apply to discuss any physical system, namely mathematics, hints that it is not possible.
There are mathematical statements which we might never know whether are true or not.
Simply, because there is no algorithm (and will never be) which can answer whether
a statement within a formal system is derivable from a established set of axioms (the
Church-Turing thesis). And there are indeed mathematical statements which while true,
cannot be proved (Gödel’s incompleteness theorems). The very same foundations of
our physical language display some kind of indeterminacy, a limit to our knowledge:
there must always remain an ineliminable degree of uncertainty about the foundations
of mathematics. To Hilbert’s dismay, we ignoramus et ignorabimus. But in trying to
find out, we can discover tools which can change the world: we can ultimately simulate
today using Turing Machines thanks to the endeavour Turing undertook to answer Hil-
bert’s dream: “We must know. We shall know”.

This thesis is organized as follows. Chapter 1 presents a theoretical introduction to
the treatment of quantum systems, with special focus on the electronic wave function,
leading to the Density Functional Theory. Also, the picture of single-particle states for
the electrons is discussed. In Chapter 2 the first model for the ZnMg nanosystem is
introduced, as well as a detailed description of the main energetic and structural trends
of ZnMg clusters. In Chapter 3 a new model is presented, based on the Machine Learn-
ing techinque: the Neural Network. Its capabilities are put into test in the Zn11Mg2 and
Zn2Mg nanosystems. In Chapter 4 all previous results are considered to address the
initial stages of the oxidation process, a critical part of the overall corrosion evolution.
Lastly, subsequent steps to achieve a sound understanding of the fundamental aspects
that explains the efficiency of ZnMg coatings are hinted.



Part I

T H E O R E T I C A L I N T RO D U C T I O N





1
A N I N T RO D U C T I O N T O Q UA N T U M C H E M I S T RY

When in 1924 de Broglie presented his doctoral thesis along with the wave-particle
duality hypothesis, it provoked a huge enthusiasm in European physics circles. In par-
ticular, Schrödinger was attracted by this idea, who adopted a wave-like behaviour to
explain Bohr’s Hydrogen atom model, displaying stationary states with well defined en-
ergies. This time, Schrödinger’s approach would inherently incorporate the uncertainty
principle, as opposed to the Bohr model. He came up with a linear partial differential
equation, namely the Schrödinger equation [1], which describes how the matter waves
postulated by de Broglie should evolve. Quantization comes in a very similar way as it
used to do in classical mechanics, where waves confined in a region in space find their
wave number values discretized according to boundary conditions, just like strings in a
piano. From the Schrödinger equation, a confined particle properly described as a stand-
ing wave, finds discretized its wave number values and ultimately its energy. What truly
made a difference however, and offered a great philosophical unease, was the fact that
these waves were not matter waves in space, but probability waves. Now, the repres-
entation of a particle in space is a probability distribution. Furthermore, an uncertainty
principle arises for the probability amplitude of the position and the probability amp-
litude of the momentum, interlinked by the Fourier transform and de Broglie’s relation:
a non-zero function and its Fourier transform cannot be both sharply localized at the
same time, leading to the Heisenberg relation. Thus, we are bounded to the uncertainty,
which is transferred to any space in which we consider the Schrödinger wave equation.
To summarize, the behaviour of matter in a measurement can have the attributes of a
wave. We cannot know, by principle, the present in all its details.

The new paradigm provided by the Schrödinger equation answered the remaining
questions concerning small systems like the hydrogen or helium atoms, as it was found
to offer results agreeing with the experimental data, as well as for many other quantum-
related problems. However, in quantum chemistry, an exact solution for any other lar-
ger system was not found possible, which led Dirac to announce that chemistry had
come to an end with the Schrödinger equation: “The fundamental laws necessary for
the mathematical treatment of a large part of physics and the whole of chemistry are
thus completely known, and the difficulty lies only in the fact that application of these
laws leads to equations that are too complex to be solved.”

Ever since, quantum chemists have devoted themselves to develop and apply approx-
imate mathematical procedures to the Schrödinger equation that can provide predictive
capability, that is, first principles methods. As the wave function for the many-body
problem is generally an appallingly complicated object, many of these approaches break
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down the many particle system by considering the behaviour of each particle individu-
ally. That is, one works with single-particle orbitals which together build the total elec-
tronic state. There will be emergent effects in the many-body system due to entangle-
ment that will be absent when one considers the particles as individual entities, detach-
ing this strategy from exactitude.

In this chapter, we firstly present the origin of the impossibility of dealing with many-
body wave functions, followed by one of the most relevant attempts to solve the many-
electron problem: the Hartree-Fock method. We will revision the single-particle approx-
imation in this model. Afterwards, a complementary perspective will be given through
the Density Functional Theory, which is the quantum mechanical model employed in
this dissertation. Similarly, we will inspect the value of the single-particle picture within
this model, and how it compares with the Hartree-Fock approach. Lastly, the numerical
implementations used for this method are presented.

1.1 T H E C O N D E N S E D M AT T E R T H E O RY O F E V E RY T H I N G

Every physical system is represented by its Hamiltonian Ĥ, being its eigenstates Ψ
the mathematical description of the stationary quantum states. As such, the modelling
and resolution of the Hamiltonian is primordial in Quantum Mechanics. In condensed
matter physics, certain systems are reasonably well described by Hamiltonian models
such as the Jellium or the Hubbard models, often considered due to their simplicity and
convenience. However, the most general and accurate expression applicable in every
system composed of Na nuclei each with positive charge +Zae and mass Ma and N
electrons of massm, is described by the following Hamiltonian:

Ĥ = T̂n + T̂e + V̂nn + V̂ee + V̂en

=

Na∑
a=1

ˆ⃗P2a
2Ma

+

N∑
i=1

ˆ⃗p2i
2m

+

NaNb∑
a<b

ZaZbe
2∣∣∣ ˆ⃗Ra − ˆ⃗Rb
∣∣∣ +

N∑
i<j

e2∣∣∣ˆ⃗ri − ˆ⃗rj
∣∣∣ −

Na,N∑
a,i

Zae
2∣∣∣ ˆ⃗Ra − ˆ⃗ri
∣∣∣ (1.1.1)

where ˆ⃗P, ˆ⃗R, ˆ⃗p and ˆ⃗r are the momentum and position operators for the nuclei and the
electrons, respectively. The involved terms from left to right are the kinetic energy
of the nuclei, that of the electrons, the Coulomb interaction between nuclei, electrons,
and between the nuclei and the electrons. We can project this Hamiltonian onto the r-
representation εr to work with the wave function of the system Ψ(r, R, t) = ⟨r, R|Ψ(t)⟩,
which in this basis defines the amplitude of probability to find the electrons at r =

{⃗r1, . . . , r⃗N} and the nuclei at R = {R⃗1, . . . , R⃗Na
} at certain time t. In this space, the

position operators can be replaced by the position coordinates and the momentum op-

erators by ˆ⃗p = −i h∇. The Schrödinger equation
∂ |Ψ(t)⟩
∂t

= Ĥ |Ψ(t)⟩ projected in the

r-space takes the form of a partial differential equation for the wave function Ψ(r, R, t):
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i h
∂Ψ(r, R, t)

∂t
=

[
−

Na∑
a=1

 h2∇2
Ra

2Ma
−

N∑
i=1

 h2∇2
ri

2m
+

NaNb∑
a<b

ZaZbe
2∣∣∣R⃗a − R⃗b∣∣∣

+

N∑
i<j

e2∣∣⃗ri − r⃗j∣∣ −
Na,N∑
a,i

Zae
2∣∣∣R⃗a − r⃗i∣∣∣
]
Ψ(r, R, t)

(1.1.2)

This equation is sometimes called the condensed matter theory of everything, since
as mentioned, any condensed matter system can be formulated in these terms, whose
solution is in principle exact. There are two caveats nonetheless: firstly, this partial
differential equation cannot be solved even numerically, and secondly, the proposed
Hamiltonian Ĥ already has approximations. To see the first claim, let us assume we can
decouple the electronic and nuclear dynamics (the Born-Oppenheimer approximation
which we shall see later), so we can differentiate the electronic and nuclear wave func-
tions. We can represent therefore the electronic wave function in a discrete grid of p
mesh points and store its value at each of these sites. The electronic wave function has
3N degrees of freedom, and considering a system composed of N = 25 electrons, it
becomes a function of 75 coordinates. In order to represent this wave function we need
then to store p3N values in total, and using a very modest grid of p=15, the number of
these values reaches 1088 (for comparison, the number of atoms in the entire universe
is estimated of the order of 1079). One sees then that the resolution of equation (1.1.2)
even considering the Born-Oppenheimer approximation and a moderate number of elec-
trons turns impossible. This observation was termed as the Van Vleck catastrophe by W.
Kohn [2], and make us wonder whether this many-body wave function is a legitimate
scientific concept at all, given the impossibility to even manage such an amount of in-
formation.

The second claim refers for instance to the treatment of the nuclei as point-like
objects, structureless, a fair approximation when considering low-energy physics, in-
volving processes many orders of magnitude lower than those of nuclear physics where
the strong nuclear force comes into play. We also considered in equation (1.1.2) the
particles to be non-relativistic, otherwise the Dirac’s equation should be used instead.
While the relativistic effects are unimportant for light atoms, these become relevant
and necessary to accurately describe heavier systems. For instance, spin-orbit coupling
plays a major role in topological insulators. This way, even when solving the Dirac’s
equation is unfeasible, relativistic corrections to the Schrödinger equation from perturb-
ation theory must be added, which usually provide accurate enough results. We also
ignored in equation (1.1.2) the interactions with external perturbations such as electro-
magnetic fields, which in general are of no interest when dealing with ground state
properties, although necessary when studying excited states, through linear response
theory or time-dependent perturbation theory for instance. Since throughout this work
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we will only study stationary properties, we seek the eigenstates of the proposed time-
independent Hamiltonian (1.1.1) whose physical properties do not vary over time. We
can then separate the time coordinate in the wave function Ψ(r, R, t) = Ψ(r, R)ϕ(t)

with ϕ(t) = e−iEt/ h a global phase factor, and Ψ(r, R) being the wave functions which
diagonalize the conservative Hamiltonian ĤΨ(r, R) = EΨ(r, R) whose eigenvalues are
the energies of the states, constants of motion. Lastly, one must not forget the spin of the
electrons (or even their interaction with the nuclear spin), which impose a critical condi-
tion on the symmetry of the wave function. In any case, we see that approximations on
the correct Hamiltonian are always present and necessary if we are to obtain a solution
for the condensed matter system at hand. Due to the complexity of the multi-electron
problem we are always forced to ignore some fundamental aspects of the physics: all
these approximations make the model Hamiltonian wrong, but useful nonetheless. Find-
ing the appropriate approximation for a particular system can sometimes be very intric-
ate, taking years of development to obtain. As a starting point for most of them, is the
aforementioned Born-Oppenheimer approximation [3].

1.1.1 The Born-Oppenheimer approximation

Under this approximation, we can solve the nuclear and electronic dynamics separately,
based on the fact that the nuclei are orders of magnitude heavier than the electrons.
Effectively, this means that the total wave function of the system can approximately
be separated into two factors Ψ(r, R) = χ(R)φR(r), with χ(R) a nuclear wave func-
tion and φR(r) an electronic wave function that parametrically depends on the nuclear
positions R. To see this (and why is advantageous), we start defining the electronic
Hamiltonian from (1.1.1) in r-space:

Ĥe = −

N∑
i=1

 h2∇2
ri

2m
+

N∑
i<j

e2∣∣⃗ri − r⃗j∣∣ −
Na,N∑
a,i

Zae
2∣∣∣R⃗a − r⃗i∣∣∣

ĤeφR
s (r) = E

e
s(R)φR

s (r)

(1.1.3)

with R acting as a set of fixed parameters. The eigenfunctions of Ĥe for a fixed atomic
configuration form a complete basis with respect to the electronic coordinates. Further-
more, if R varies,φR

s (r) and its eigenvalue Ees(R) will change continuously, conforming
a family of states in {R}. We can then set a basis for the whole system (nuclei and elec-
trons) from this family of electronic wave functions, which can be used to exactly ex-
pand the total wave function of the system Ψ(r, R), whose R-dependent weights χs(R)

allow the total wave function to vary in R both in terms of its total magnitude and the
relative contributions of different s states:

Ψ(r, R) =
∑
s

χs(R)φR
s (r) (1.1.4)
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There is no approximation so far and both nuclear and electronic dynamics are cor-
related, thus the variation in R could cause a change in the s-family the electrons are in.

We can now solve (1.1.1) expressing the wave function as in (1.1.4) provided we
solved the electronic Hamiltonian (1.1.3) for all possible values of {R}:

Ĥ
∑
s

χs(R)φR
s (r) = E

∑
s

χs(R)φR
s (r)− Na∑

a=1

 h2∇2
Ra

2Ma
+

NaNb∑
a<b

ZaZbe
2∣∣∣R⃗a − R⃗b∣∣∣ + Ĥe

∑
s

χs(R)φR
s (r) = E

∑
s

χs(R)φR
s (r)

(1.1.5)
Considering the following relations:

Ĥe |χs⟩ |φR
s ⟩ = |χs⟩ Ĥe |φR

s ⟩ = Ees(R) |χs⟩ |φR
s ⟩

ˆ⃗P2a
(
|χs⟩ |φR

s ⟩
)
= |φR

s ⟩ | ˆ⃗P2aχs⟩+ 2 | ˆ⃗PaφR
s ⟩ | ˆ⃗Paχs⟩+ |χs⟩ | ˆ⃗P2aφR

s ⟩

we obtain for (1.1.5) multiplying by φ∗R
l (r) and integrating through with respect to r

taking into account that
∫
φ∗R
l (r)φR

s (r)dr = δl,s:

[
−

Na∑
a=1

 h2∇2
Ra

2Ma
+

NaNb∑
a<b

ZaZbe
2∣∣∣R⃗a − R⃗b∣∣∣ + Eel (R)

]
χl(R)

−
∑
s

[Na∑
a=1

∫
 h2

2Ma

{
2φ∗R

l (r)∇Ra
φR
s (r)∇Ra

+φ∗R
l (r)∇2

Ra
φR
s (r)

}
dr
]
χs(R) = Eχl(R)

(1.1.6)
one obtains a set of coupled differential equations for the nuclear wave functions and the
total energy. We see that the dynamics of the nuclei (the ˆ⃗Pa and ˆ⃗P2a operators) couples
the different electronic states inducing transitions between them. This is called vibronic
coupling, and in bulk systems is represented by the electron-phonon interactions. This
equation ultimately shows that electronic and nuclear dynamics are coupled, being very
challenging to solve. However, since electronic and atomic masses differ in orders of
magnitude, we can assume that the electrons react fast and follow instantaneously the
much slower nuclear motion. The adiabatic theorem then guarantees that in regions
of R where the different electronic energy surfaces are sufficiently apart, the nuclear
perturbation on the electronic states will not change the family of states in which they
are when this movement occurs. This way, we can set the off-diagonal terms l ̸= s

in ⟨φR
l |∇Ra

|φR
s ⟩ and ⟨φR

l |∇2
Ra

|φR
s ⟩ to 0, making (1.1.6) diagonal, disregarding any

kind of vibronic effect. This implies that the general eigenstate of the system is given
by Ψ(r, R) = χs(R)φR

s (r). This is termed as the adiabatic approximation.
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We define:

Aa(R) = i h ⟨φR
s |∇Ra

|φR
s ⟩ (1.1.7)

A(R) =
∑Na
a Aa(R) denotes the 3Na-dimensional object that lives in the parameter

space known as the Berry’s connection [4]. This quantity relates to the phase acquired
along the adiabatic evolution of the electronic wave function in the parameter space
between Ri and Rf:

γ =

∫Rf

Ri

A(R)dR (1.1.8)

γ is termed as geometric phase, as the integral (1.1.8) depends only on the path in the
parameter space. Aa(R) is the Berry’s connection associated with atom a. Using this
quantity and considering the adiabatic approximation, from expression (1.1.6) we ob-
tain the Born-Oppenheimer Schrödinger equation for the nuclear wave function χs(R):

[Na∑
a

1

2Ma
(−i h∇Ra

− Aa(R))2 +U(R)

]
χl(R) = Eχl(R)

U(R) =

NaNb∑
a<b

ZaZbe
2∣∣∣R⃗a − R⃗b∣∣∣ + Eel (R) −

Na∑
a

Aa(R)2

2Ma
+

Na∑
a

 h2

2Ma

∫
|∇aφ

R
s (r)|

2dr

(1.1.9)
where U(R) is the effective potential the nuclei are subjected to, referred to as the
diabatic potential energy surface. In the adiabatic approximation, the fast degrees of
freedom induce a vector potential given by Berry’s connection in the Hamiltonian for
the slow degrees of freedom. The last term inU(R) represents the delay of the electrons
with respect to the nuclear movement.

From the normalization condition on the electronic wave function ⟨φR
l |φ

R
l ⟩ = 1

one readily sees that ⟨φR
l |∇R |φR

l ⟩ must be pure imaginary. As such for A(R) to be
non-zero, φR

l (⃗r) must be complex. Bearing in mind that the adiabatic approximation
requires that the different electronic energy surfaces must be sufficiently apart, the
electronic solutions are non-degenerate bound states. Consequently, it follows from the
Kramers theorem [5] that one can always choose a single-valued phase transformation
eif(R) such that the electronic wave function is real for every nuclear configuration R,
hence neglecting the A(R) terms. One finds then that the Berry’s connection is gauge-
dependent Ã(R) = A(R)+∇Rf(R). However, its integral along a closed path is gauge-
invariant, given that the single-valued phase transformation must have the same values
at both ends of the loop (otherwise f(R) is not single-valued). This way, the geometric
phase (1.1.8) over a closed path γ is gauge-invariant, and may be related to physical
observables. γ is the so-called Berry’s phase. Consequently, if A(R) has a non-zero
curl then γ does not vanish [4, 6]. In this situation one obtains a net change in phase
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for χl(R) given by the Berry’s phase on traversing a closed path which encircles a sin-
gular point where ∇× A(R) ̸= 0. Within the Born-Oppenheimer approximation, these
are the points of degeneracy for the electronic Hamiltonian: nuclear configurations {R}

where two or more electronic solutions are degenerate. Taking into account that the nuc-
lear wave function gives an amplitude of probability of being anywhere along this loop
in parameter space, the Berry’s phase introduces interference on the electronic states
before and after a cycle. This interference entails measurable effects for the nuclear
solution.

In any case, one generally works under the assumption that A(R) can be cancelled
out along any path, as well as that

∫
|∇aφ

R
s (r)|2dr can be neglected, resulting in:

[
−

Na∑
a=1

 h2∇2
a

2Ma
+

NaNb∑
a<b

ZaZbe
2∣∣∣R⃗a − R⃗b∣∣∣ + Eel (R)

]
χl(R) = Eχl(R) (1.1.10)

The validity of the adiabatic approximation relies on whether the off-diagonal ele-
ments in ⟨φR

l |∇Ra
|φR
s ⟩ and ⟨φR

l |∇2
Ra

|φR
s ⟩ (1.1.6) are close to 0. Since the former is

usually larger in magnitude than the latter, we shall analyse its off-diagonal coupling
terms:

ˆ⃗Pa ⟨φR
l | Ĥ

e |φR
s ⟩ = ⟨ ˆ⃗PaφR

l | Ĥ
e |φR

s ⟩+ ⟨φR
l | (

ˆ⃗PaĤe) |φR
s ⟩+ ⟨φR

l | Ĥ
e |

ˆ⃗PaφR
s ⟩

= Ees(R) ⟨ ˆ⃗PaφR
l |φ

R
s ⟩+ ⟨φR

l | (
ˆ⃗PaĤe) |φR

s ⟩+ Eel (R) ⟨φR
l |

ˆ⃗PaφR
s ⟩

= 0

(1.1.11)

the last equality is due to the orthogonality of the electronic eigenfunctions. Projecting
this expression onto r-representation and taking into account that ∇† = −∇ and as such
⟨∇aφ

R
l (r)|φ

R
l (r)⟩ = − ⟨φR

l (r)|∇aφ
R
l (r)⟩, one obtains:

⟨φR
l |

ˆ⃗Pa |φR
s ⟩ = −i h

⟨φR
l | (∇aĤ

e) |φR
s ⟩

Ees(R) − Eel (R)
(1.1.12)

From this equation, we see that the motion of the nuclei is coupled to that of the elec-
trons through the electron-nuclei Coulomb interaction, which is the only R-dependent
term in the electronic Hamiltonian (1.1.3). These matrix elements are larger the closer
two diabatic potential energy surfaces are, diverging when degenerate. Note that the
Coulomb interaction between nuclei at fixed R is the same irrespective of the electronic
wave function. The crossing of two or more diabatic energy surfaces is termed as con-
ical intersection. In their vicinity, the adiabatic theorem is not applicable as the coup-
ling between electronic and nuclear motions becomes important and as such, the Born-
Oppenheimer approximation breaks down. The off-diagonal elements introduce coup-
lings between the diabatic surfaces. The diagonalization of the nuclear Hamiltonian
then yields the adiabatic potential energy surfaces, whose crossings are then avoided.
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In molecules and clusters, this situation is encountered in symmetric structures where
several molecular states are spatially degenerate due to the system’s symmetry. If an
open-shell configuration is attained for the electronic ground state such that the orbital
degeneracy is not lifted, a Jahn-Teller geometrical distortion will remove this degener-
acy lowering the overall energy and symmetry of the species.

We shall consider the Born-Oppenheimer approximation throughout this work, with
special attention to Jahn-Teller effects when applicable. Given that we will lay aside the
nuclear degrees of freedom R, for the sake of simplicity we set henceforth ∇ri = ∇i. If
we take a look back to the Schrödinger equation for the nuclei under this approximation
(1.1.10), we realise that in order to solve this equation one needs to know Eel (R) in all
space! That is, in principle it is required to solve the electronic Hamiltonian (1.1.3) for
every possible nuclear configuration. Generally what is done is an estimation of Eel (R)

from a finite number of electronic solutions with fixed nuclear geometries. In this dis-
sertation the nuclei are treated as point-like classical entities nevertheless. The forces
acting on the nuclei are given by the derivative of the nuclear electrostatic interaction
and the electronic potential surface with respect to the nuclear positions. This last contri-
bution to the forces can be obtained through the Hellmann-Feynman theorem [7], which
expresses the derivative of the energy with respect to a continuous parameter λ:

F = −
∂Ees
∂λ

= −
∂ ⟨φR

s | Ĥ
e |φR

s ⟩
∂λ

= − ⟨∂φ
R
s

∂λ
| Ĥe |φR

s ⟩− ⟨φR
s |
∂Ĥe

∂λ
|φR
s ⟩− ⟨φR

s | Ĥ
e |
∂φR

s

∂λ
⟩

= −Ees ⟨
∂φR

s

∂λ
|φR
s ⟩− Ees ⟨φR

s |
∂φR

s

∂λ
⟩− ⟨φR

s |
∂Ĥe

∂λ
|φR
s ⟩

= − ⟨φR
s |
∂Ĥe

∂λ
|φR
s ⟩

(1.1.13)

since ⟨∂φ
R
s

∂λ
|φR
s ⟩ + ⟨φR

s |
∂φR

s

∂λ
⟩ =

∂ ⟨φR
s |φ

R
s ⟩

∂λ
= 0 due to the norm conservation. In

the r-representation and setting λ = R, one finally obtains that the derivative of the
electronic energy with respect to R is equal to the expectation value of the derivative of
the electronic Hamiltonian with respect to R:

F = −
∂Ees
∂R

= −

∫
φ∗R
s (r)

∂Ĥe

∂R
φR
s (r)dr (1.1.14)

Therefore, under the Born-Oppenheimer approximation, once the electronic wave
function has been determined from the electronic Schrödinger equation (1.1.3), all the
forces acting on the nuclei can be obtained.
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1.2 T O WA R D S A N E L E C T RO N I C S O L U T I O N

Now what remains to be solved is the electronic Schrödinger equation (1.1.3). Given
the N-body character of the problem, it is no surprise that a general closed-form solu-
tion cannot be obtained. The classical N-body problem entails the solution of a set of
non-linear coupled differential equations. The non-linearity gives rise to a chaotic beha-
viour, while the interactions between bodies promote a correlation between their dynam-
ics. Similarly, in the quantum electronic counterpart we cannot decouple the dynamics
of the electrons between them to ultimately work with single-electron states, since the

Coulomb interaction spans throughout all space due to its
1∣∣⃗ri − r⃗j∣∣ dependence. The

electrons’ motion is correlated: we are unavoidably stuck with a complex function in the
3N-dimensional configuration space, leading inevitably to the Van Vleck catastrophe.
On the other hand, it is intriguing to ask where the chaotic behaviour of this problem
arises along the line between the classical and quantum limits.

Another fundamental difference between classical and Quantum Mechanics concerns
the concept of indistinguishability of identical particles. In classical mechanics one can
always identify each particle in a group of identical particles by their position in the
phase space. This is not the case in Quantum Mechanics given their probability distri-
bution in space and the Heisenberg relation. Therefore particles characterized by the
same fundamental properties such as mass, charge and spin, are in principle indistin-
guishable. As a consequence, the probability density of the wave function |Φ(r)|2 must
not change in an exchange in positions of two particles in such group. Furthermore,
if these two particles are again interchanged, we end up in the original state function.
These conditions show then that the many-electron wave function must be an eigenstate
of the operator which exchanges two particles, with eigenvalue either 1 or -1. Those
wave functions whose eigenvalue is 1 are said to be symmetric with respect to inter-
change of coordinates (position and spin) of two particles, and are referred to as bosons.
Otherwise, those wave functions whose eigenvalue is -1 are said to be antisymmetric
with respect to interchange, and are called fermions. The latter is the case for the elec-
trons, and immediately leads to the Pauli exclusion principle stating that two fermions
cannot occupy the same quantum state. This way the electrons find their motion cor-
related not only by the Coulomb interaction but also through the indistinguishability
constraint (the Fermi correlation), which prevents parallel-spin electrons to occupy the
same point in space. Now, if we considered a system of non-interacting fermions, we
could naively build the total wave function as a tensor product of the individual states
Φ(r) = ϕs(⃗r1)ϕr(⃗r2) . . . ϕS(⃗rN), known as Hartree product. Instead, a properly an-
tisymmetrized Φ(r) = A (ϕs(⃗r1)ϕr(⃗r2) . . . ϕS(⃗rN)) is the correct expression for the
N-particle state function according to the previous considerations, namely the Slater
determinant [8]:
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Φ(r) =
1√
N!

∥∥∥ ¯̄ϕ
∥∥∥ with ¯̄ϕ =


ϕs(⃗r1) ϕr(⃗r1) . . . ϕS(⃗r1)

ϕs(⃗r2) ϕr(⃗r2) . . . ϕS(⃗r2)
...

... . . .
...

ϕs(⃗rN) ϕr(⃗rN) . . . ϕS(⃗rN)

 (1.2.1)

Note that in ¯̄ϕ, the rows are labelled by electrons and the columns by the orbitals.
Interchanging the coordinates of two electrons corresponds to an interchange of two
rows in the Slater determinant, which changes the sign of the determinant.

We shall now analyse the many-body problem further. Let us consider the following
general Hamiltonian in the N-particle Hilbert space involving 1-body and 2-body op-
erators. The former acts on one-particle states, whereas the latter acts on the space of
two-particle states. Written in the N-particle basis built from accordingly symmetrized
or antisymmetrized Hartree products of single-particle basis states {ϕs(⃗ri)} one gets:

Ĥ =

N∑
j

T̂j +
1

2

N∑
j,k

V̂j,k (1.2.2)

where

T̂j =

S∑
r,s
Ts,r |ϕs(⃗rj)⟩ ⟨ϕr(⃗rj)|

V̂j,k =

S∑
r,s
u,v

Vr,s,u,v |ϕr(⃗rj)⟩ |ϕs(⃗rk)⟩ ⟨ϕu(⃗rj)| ⟨ϕv(⃗rk)|
(1.2.3)

with

Ts,r =

∫
d⃗rjϕ

∗
s (⃗rj)T (⃗rj)ϕr(⃗rj)

Vr,s,u,v =

∫ ∫
d⃗rjd⃗rkϕ

∗
r (⃗rj)ϕ

∗
s (⃗rk)V (⃗rj, r⃗k)ϕu(⃗rj)ϕv(⃗rk)

(1.2.4)

where S is the number of basis states and T (⃗rj) and V (⃗rj, r⃗k) are the 1-body T̂ and
2-body V̂ operators in r-space, respectively. This way of expressing the states and oper-
ators is cumbersome, and provides the unnecessary information of which particle is in
which state, since the particles are not distinguishable. The more convenient way to ex-
press N-particle problems is the occupation-number representation, where we shall only
care about the number of particles in each of the single-particle basis states {ϕs(⃗ri)}.
This way, instead of Slater determinants, now the N-particle states are Fock states, liv-
ing in the Fock space, and expressed like |n1,n2,n3, . . .⟩ where n1 is the number of
particles in the first basis state, n2 the number of particles on the second state and so on.
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Now the symmetry or antisymmetry conditions on the wave functions dwell within the
creation/annihilation operators c†s/cr on the {ϕs(⃗ri)} basis. In this notation, the previous
Hamiltonian is written as follows:

Ĥ =

S∑
r,s

⟨s| T̂ |r⟩ c†scr +
1

2

S∑
r,s
u,v

⟨r, s| V̂ |u, v⟩ c†rc†scvcu (1.2.5)

where

⟨s| T̂ |r⟩ =
∫
d⃗r1ϕ

∗
s (⃗r1)T (⃗r1)ϕr(⃗r1)

⟨r, s| V̂ |u, v⟩ =
∫ ∫
d⃗r1d⃗r2ϕ

∗
r (⃗r1)ϕ

∗
s (⃗r2)V (⃗r1, r⃗2)ϕu(⃗r1)ϕv(⃗r2)

(1.2.6)

One has to take into account the Slater-Condon rules when building the matrix ele-
ments [8, 9]. For instance, the matrix element for single-particle operators is zero if the
two corresponding N-particle states differ in the occupation of more than two single-
particle states. These expressions (1.2.6) are more convenient due to their simplicity,
since we act on the single-particle basis {ϕs(⃗ri)} directly through the creation and an-
nihilation operators, irrespective of who is populating them. A more general expres-
sion can be obtained in terms of the creation and annihilation operators in the r-space
ψ̂†(⃗r1)/ψ̂(⃗r1), called the field operators. These can be written in terms of the cre-
ation/annihilation operators in some other basis such as {ϕs(⃗ri)}:

ψ̂†(⃗r1) =
∑
s

⟨s|⃗r⟩a†s =
∑
s

ϕ∗
s (⃗r1)a

†
s

ψ̂(⃗r1) =
∑
s

⟨⃗r|s⟩as =
∑
s

ϕs(⃗r1)as
(1.2.7)

Expressed like this, they represent all the possible ways one can create/annihilate a
particle at r⃗1 using the {ϕs(⃗ri)} basis set. Taking (1.2.7) into (1.2.5) one gets:

Ĥ =

∫
ψ̂†(⃗r1)T (⃗r1)ψ̂(⃗r1)d⃗r1 +

1

2

∫ ∫
ψ̂†(⃗r1)ψ̂

†(⃗r2)V (⃗r1, r⃗2)ψ̂(⃗r1)ψ̂(⃗r2)d⃗r1d⃗r2
(1.2.8)

In general, an interacting Hamiltonian such as (1.2.5) which contains a quartic term
in creation and annihilation operators, cannot be diagonalized. On the contrary, a 1-
body Hamiltonian is diagonalizable by a unitary transformation U, which transforms
the original single-state basis into S new basis states where the Hamiltonian is diagonal:

Ĥ =

S∑
s

εsa
†
sas (1.2.9)

where εs are the eigenvalues corresponding to the new basis states a†s |0⟩ =
∑S
mUm,sc

†
m |0⟩.

In other words, for 1-body Hamiltonians it is always possible to diagonalize through
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analytical techniques. On the other hand, the interacting Hamiltonian shown in (1.2.5)
cannot be casted into (1.2.9). Thus we must rely on other numerical methods to obtain
approximations to the exact wave function and energies of the system. One of these is
the variational method [10].

1.2.1 The variational method

The aim of this method is to obtain approximate energies and wave functions for the
Hamiltonian, which in principle cannot be solved through analytical methods. This ap-
proach stems from the Variational Theorem, which states that the energy of any trial
wave function E is always an upper bound to the exact ground state energy E0. Fur-
thermore, every extremum of the energy expectation value ⟨Φ| Ĥ |Φ⟩ corresponds to
stationary states of the Hamiltonian, the lowest one corresponding to the ground state.
As such, we can expand the trial wave function in terms of some adjustable parameters
to be optimized until its energy is minimized. This way, the resulting energy and wave
function are variational approximations to the exact ground state wave function and en-
ergy. One has to bear in mind that this method does not guarantee to obtain the ground
state, but a local minimum of the energy expectation value which can correspond to
excited states. On the other hand, if the amount of parameters to optimize is sufficient,
the results are in principle exact. To this end one can expand the trial wave function |Φ⟩
as a linear combination of a complete basis of S states {|Ψi⟩}:

|Φ⟩ =
S∑
i

ci |Ψi⟩ (1.2.10)

This leads to the linear variational method, and the problem becomes that of finding
the optimum set of coefficients {ci}, where only linear variations of the trial wave func-
tion are allowed. Non-linear parametrizations are also possible but more challenging,
as in the Hartree-Fock method. Under this assumption, the problem can be reduced to
a matrix diagonalization of Ĥ in the space spanned by the basis functions. Indeed, we
aim to minimize the energy expectation value of the state (1.2.10) with respect to the
expansion coefficients, with the constraint of being a normalized wave function:

∂L

∂ck,E
= 0 k = 1, 2, . . . ,S

L = ⟨Φ| Ĥ |Φ⟩− E(⟨Φ|Φ⟩− 1)
(1.2.11)

that is, the Lagrange’s method of undertermined multipliers, with E the Lagrange mul-
tiplier assuring the normalization of the solution. Considering that:



1.2 T O WA R D S A N E L E C T RO N I C S O L U T I O N 19

⟨Φ| Ĥ |Φ⟩ =
S∑
ij

cicj ⟨Ψi| Ĥ |Ψj⟩

⟨Φ|Φ⟩ =
S∑
ij

cicj ⟨Ψi|Ψj⟩ =
S∑
i

c2i

(1.2.12)

one reaches an eigenvalue problem for H in the space spanned by the basis functions:

Hcα = Eαcα α = 0, 1, . . . ,S− 1

with c†αcβ =

S∑
i

cα,icβ,i = δα,β
(1.2.13)

being (H)ij = ⟨Ψi| Ĥ |Ψj⟩ symmetric, this eigenvalue equation can be solved to yield S
orthonormal eigenstates cα, each of which is a solution of the Hamiltonian expressed
in the {|Ψi⟩} basis, since the condition (1.2.11) applies for every local minimum in
⟨Φ| Ĥ |Φ⟩ which corresponds to stationary states of the Hamiltonian. The lowest ei-
genvalue E0 corresponds then to the ground state, and if the basis was a complete set,
the results would be exact. However, the Hilbert space is usually very big, even infinite-
dimensional yielding an infinite number of eigenstates as in the electronic problem at
hand (1.1.3). Therefore, we have to limit the basis size for practical purposes, making
the results variational, and therefore the found E0 must be an upper bound to the true
ground state of Ĥ, E1 is an upper bound to the true first excited state of Ĥ, and so on.

1.2.2 Statement of the problem

The variational method allows for an expansion of the exact wave function in a complete
basis whose coefficients would be optimized. We can take advantage of the freedom of
choosing a suitable basis where the electronic Hamiltonian will be expressed, since
if complete, can be used to expand the true wave function correctly. Our main prob-
lem was that the many-body nature of the Hamiltonian imposes an unfeasible expres-
sion for the wave function in terms of 3N variables. On the other hand, the N-particle
eigenstates of a non-interacting Hamiltonian are built from antisymmetrized Hartree
products of N single-particle states of 3 spatial dimensions each (plus the spin dimen-
sion), as previously seen. These N-particle eigenstates conform a complete basis set for
the interacting wave function. As such, the variational method allows for the resolution
of the electronic Hamiltonian in the subspace spanned by these wave functions which
does not suffer from the Van Vleck catastrophe, and consequently becoming feasible
by computers. Of course, there is no free lunch [11] and to get exact results one would
need in principle the complete set of infinite basis states becoming again, unfeasible. In
any case, it is essential to build this N-particle basis set to express the exact interact-
ing wave functions, and solve the electronic problem through a variational procedure.
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We aim to find a suitable 1-body representation for the interacting Hamiltonian (1.1.3),
which can be expressed as (1.2.9) through a unitary transformation, whose eigenstates
define the N-particle basis functions. One answer to this problem is given by the Hartee-
Fock method, which offers the best solution in the form of a single determinant for the
ground state of the electronic Hamiltonian.

1.3 T H E H A RT R E E - F O C K M E T H O D

As mentioned, the Hartree-Fock approximation delivers the variationally best solution
expressible in the form of a single determinant [12–16]. Implicitly, forcing a solution in
this form imposes a condition on the Hamiltonian of which it is an eigenfunction: it must
be a 1-body Hamiltonian. As such, its electronic interacting nature must be non-existent
as the 2-body contributions have been averaged out from the original Hamiltonian. This
is the core idea behind the mean-field theory, where by averaging the two-particle con-
tribution of the electronic Hamiltonian (1.1.3) over a reference single determinant state,
we turn this contribution into an effective one-particle operator and ultimately, decoup-
ling the dynamics of the electrons among them resulting in a single-particle problem.
Thus, the Hartree-Fock method transforms the original two-particle Hamiltonian (1.2.5)
into an one-particle operator, which depends on the reference state:

Ĥmf(U) =

S∑
r,s

(
⟨s| T̂ |r⟩+ ⟨s| V̂mf (|Φ0(U)⟩) |r⟩

)
c†scr (1.3.1)

with U the unitary transformation which defines the reference state of the system:

|Φ0(U)⟩ =
N∏
s

a†s |0⟩ =
N∏
s

S∑
m

Um,sc
†
m |0⟩ (1.3.2)

Being a one-body operator, there exists a unitary transformation U which diagonal-
izes the Hamiltonian (1.3.1) into (1.2.9). However, this is not accessible through ana-
lytical techniques since it depends itself on the solution U, hence being a non-linear
equation and consequently must be solved iteratively. Under this model, we can envi-
sion the electrons occupying single electronic orbitals in the condensed matter system,
as chemists (and physicists) usually do. This is an approximation nonetheless and its
accuracy depends on how the 2-body terms deviate from its averaged value.

Therefore, we apply the variational method on a single Slater determinant of elec-
tronic orbitals. Minimizing the energy expectation value of this single N-particle state
with respect to the single electronic orbitals is what ultimately leads to the so called
Hartree-Fock Hamiltonian, that is the non-interacting mean-field approximation of the
true Hamiltionian for the ground state (1.3.2). Its eigenstates conform a complete N-
particle basis set for the exact interacting wave function, among which the ground state
|Φ0(U)⟩ is the variationally best single determinantal solution for the ground state of
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the true Hamiltonian. Let us see this more in detail. We apply the Lagrange’s method of
undertermined multipliers:

∂L

∂ϕa,εsr
=

∂L

∂ϕ∗
a,εsr

= 0 a, s, r = 1, 2, . . . ,N

L = ⟨Φ0| Ĥe |Φ0⟩−
N∑
s,r
εsr(⟨ϕs|ϕr⟩− δs,r)

(1.3.3)

We minimize the energy expectation value of a Slater determinant |Φ0⟩ =
∏N
s a

†
s |0⟩ =

1√
N!

∥∥∥ ¯̄ϕ
∥∥∥with respect to theN spin orbitals {ϕs(xi)}, subject to the constraint that they

remain orthonormal. Being Ĥe Hermitian, it is indifferent to differentiate with respect to
ϕ∗
a(x1) or ϕa(x1). In addition L is real, and the Lagrange multipliers εsr are elements

of a N ×N Hermitian matrix ε. xi involves position r⃗i and spin projection σ. The
energy expectation value ⟨Φ0| Ĥe |Φ0⟩ is obtained by the Slater-Condon rules, giving
rise to direct and exchange terms for the single-particle orbitals. No other interaction
of higher order is allowed for the one-particle orbitals since we used a single Slater
determinant, and those would be purely 2-body:

⟨Φ0| Ĥe |Φ0⟩ =
N∑
s

∫
ϕ∗
s (⃗r1)h(⃗r1)ϕs(⃗r1)d⃗r1 + e

2
N∑
s<r

∫
|ϕs(⃗r1)|

2 |ϕr(⃗r2)|
2

|⃗r1 − r⃗2|
d⃗r1d⃗r2

− e2
N∑
s<r

δσs,σr

∫
ϕ∗
s (⃗r1)ϕr(⃗r1)ϕs(⃗r2)ϕ

∗
r (⃗r2)

|⃗r1 − r⃗2|
d⃗r1d⃗r2

(1.3.4)

where

h(⃗r1) = −
 h2∇2

1

2m
−

Na∑
a

Zae
2

|R⃗a − r⃗1|
(1.3.5)

is the core-Hamiltonian operator, that is, all the 1-body terms in the original electronic
Hamiltonian (1.1.3), in particular the kinetic energy operator and the Coulomb interac-
tion between electrons and nuclei. The second and third contributions are the direct and
exchange terms, respectively. By performing the

∂L

∂ϕ∗
a(x1)

= 0 operation and consider-

ing:

⟨ϕs|ϕr⟩ = δσs,σr

∫
ϕ∗
s (⃗r1)ϕr(⃗r1)d⃗r1 (1.3.6)

one obtains:
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h(⃗r1)ϕa(⃗r1) + e
2
N∑
r

[∫
|ϕr(⃗r2)|

2

|⃗r1 − r⃗2|
d⃗r2

]
ϕa(⃗r1)

−e2
N∑
r

[
δσa,σr

∫
ϕ∗
r (⃗r2)P12ϕr(⃗r2)

|⃗r1 − r⃗2|
d⃗r2

]
ϕa(⃗r1) =

N∑
r

εarϕr(⃗r1)

(1.3.7)

where we have introduced the operator P12, which acting on the right, interchanges
electron 1 and 2 P12ϕr(⃗r2)ϕa(⃗r1) = ϕr(⃗r1)ϕa(⃗r2). The first term is the aforemen-
tioned core-Hamiltonian operator. The second term is the Hartree operator:

J(⃗r1) = e
2
N∑
r

[∫
|ϕr(⃗r2)|

2

|⃗r1 − r⃗2|
d⃗r2

]
(1.3.8)

which represents the Coulomb local potential at r⃗1 arising from the average charge dis-
tribution, or mean-field, of all the electrons. This field is static and neglects the influence
of the motion of one electron on the motion of theN− 1 electrons and vice versa. This
term therefore ignores the fact that the electrons are correlated, avoiding each other, due
to both the instantaneous Coulomb repulsion and the Fermi correlation, thus overestim-
ating the Coulombic repulsion and consequently the energy. The former is completely
missing in this model but the latter is fully provided by the last exchange term:

K(⃗r1)ϕa(⃗r1) =− e2
N∑
r

[
δσa,σr

∫
ϕ∗
r (⃗r2)P12ϕr(⃗r2)

|⃗r1 − r⃗2|
d⃗r2

]
ϕa(⃗r1)

=− e2
N∑
r

[
δσa,σr

∫
ϕ∗
r (⃗r2)ϕa(⃗r2)

|⃗r1 − r⃗2|
d⃗r2

]
ϕr(⃗r1)

(1.3.9)

which is a non-local operator, since the action of K̂ on ϕa(⃗r1) depends on its value
throughout all space, not just at r⃗1. This term depends on the degree of overlapping
between occupied parallel-spin wave functions and reduces their average Coulomb re-
pulsion given in the Hartree term, in accordance with the Fermi correlation since two
parallel-spin electrons cannot be found at the same point in space. The reason for this
apparently strange behaviour for a single-particle operator can be traced back to the
exchange term from which it is derived in (1.3.4). This term depicts the Coulombic
interaction r−112 between two electrons in states ϕr(⃗r1) and ϕs(⃗r2), located at r⃗1 and
r⃗2 respectively. After the Coulomb interaction takes place, the electrons change their
one-particle states. The electron located at r⃗1 transitions from ϕr(⃗r1) to ϕs(⃗r1), while
the other at r⃗2 from ϕs(⃗r2) to ϕr(⃗r2), that is, an exchange of states takes place. For
this term to be non-zero, both wave functions must be non-negligible at both r⃗1 and
r⃗2, namely they must overlap in space, hence their indistinguishability character comes
into play with a Pauli repulsion. This exchange term has no classical analogue and is
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entirely due to the antisymmetry of the Slater determinant. Condensing this effect in a
single-particle operator becomes necessarily non-local on the acting state, as it looks as
if this state hops from r⃗1 to r⃗2.

All the exposed contributions are one-body operators as imposed by the mean-field
theory, and one finally obtains:

[h(⃗r1) + J(⃗r1) +K(⃗r1)]ϕa(⃗r1) =

N∑
r

εarϕr(⃗r1)

F(⃗r1)ϕa(⃗r1) =

N∑
r

εarϕr(⃗r1)

(1.3.10)

where F(⃗r1) = [h(⃗r1) + J(⃗r1) +K(⃗r1)] is called the Fock operator. It is the sum of the
core-Hamiltonian h(⃗r1) plus an effective one-electron potential called the Hartree-Fock
potential vHF(⃗r1) = J(⃗r1) + K(⃗r1). We see that in principle, the spin orbitals of the
Slater determinant are not eigenfunctions of the Fock operator. However, any single
determinant wave function |Φ0⟩ formed by a set of spin orbitals {ϕs(xi)} retains certain
degree of flexibility. Indeed, given a unitary transformation U which transforms {ϕs(xi)}
into

{
ϕ ′
s(xj)

}
:

ϕ ′
a(x1) =

∑
b

ϕb(x1)Uba (1.3.11)

or in matrix notation, defining the row vectors ϕ̄ ′ =
(
ϕ ′
s(x1),ϕ ′

r(x2), . . . ,ϕ ′
S(xN)

)
and

ϕ̄ = (ϕs(x1),ϕr(x2), . . . ,ϕS(xN)):

ϕ̄ ′ = ϕ̄U (1.3.12)

If we consider the electron index as a label, we take both ¯̄ϕ ′ and ¯̄ϕ matrices as in
(1.2.1):

¯̄ϕ ′ = ¯̄ϕU (1.3.13)

since ∥AB∥ = ∥A∥ ∥B∥, the determinant of the transformed spin-orbitals
∥∥∥ ¯̄ϕ ′

∥∥∥ is ex-
pressed as: ∥∥∥ ¯̄ϕ ′

∥∥∥ =
∥∥∥ ¯̄ϕ
∥∥∥ ∥U∥

|Φ ′
0⟩ = ∥U∥ |Φ0⟩

(1.3.14)

where we have used the definition (1.2.1). Now, given that U is unitary, | ∥U∥ | = 1.
Consequently, ∥U∥ = eiθ is any complex number with absolute value 1 and one gets:

|Φ ′
0⟩ = eiθ |Φ0⟩ (1.3.15)
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Therefore, the transformed determinant |Φ ′
0⟩ can only differ from the original de-

terminant |Φ0⟩ by a phase factor, and since any physical observable property depends
on |Φ|2, for all intents and purposes, both wave functions are identical. Consequently,
the spin orbitals can be mixed among themselves without changing any physical prop-
erty, in particular the energy expectation value ⟨Φ0| Ĥe |Φ0⟩. Furthermore, being F̂ the
Fock operator a Hermitian one-body operator, there exists specifically a unitary trans-
formation U which diagonalizes the (Hermitian) matrix of Lagrange multipliers ε in
(1.3.10), in other words, that transforms the original set {ϕs(xi)} into a basis set where
F̂ is diagonal:

F(⃗r1)ϕ̄ = ϕ̄ε

F(⃗r1)ϕ̄
′UT = ϕ̄ ′UTε

F(⃗r1)ϕ̄
′ = ϕ̄ ′UTεU

F(⃗r1)ϕ̄
′ = ϕ̄ ′ε ′

(1.3.16)

with ε ′ = UTεU diagonal. Thus one arrives to the so called integro-differential canon-
ical Hartee-Fock equations:

F(⃗r1)ϕa(⃗r1) = εaϕa(⃗r1) a = 1, 2, . . . ,∞ (1.3.17)

The unique set of spin orbitals {ϕa(xi)} obtained from the solution of this eigenvalue
equation are the canonical spin orbitals, and from the conditions in (1.3.3) they must
remain orthonormal to each other. It is actually termed as pseudo-eigenvalue equation
as the Fock operator has a functional dependence, through the Hartree and exchange op-
erators, on the solutions {ϕa(xi)}. Therefore the Hartree-Fock equations are non-linear,
and need to be solved iteratively. Once the occupied spin-orbitals are self-consistently
obtained the Fock operator becomes a well-defined Hermitian operator nevertheless,
providing with an infinite number eigenstates and eigenvalues. The N first of these
compose the optimized Slater determinant thus building the Hartree and exchange op-
erators, while the remainder orbitals are virtual (unoccupied) states. More precisely, we
have presented the restricted closed-shell Hartree Fock equations, as we assign the same
spatial functionϕa(⃗r1) for both spin projections σ. The unrestricted formalism involves
a separated equation for each channel, hence different spatial solutions.

Lastly, the ground state energy approximation, or Hartree-Fock energy, can be com-
puted from the occupied orbitals and ⟨Φ0| Ĥe |Φ0⟩ from expression (1.3.4). This energy
is an upper bound to the true ground state energy since the Coulomb correlation is com-
pletely missing, and the instantaneous repulsion between electrons forces them to be
more separated than what the mean-field assumes. This fact is ultimately linked to the
use of a single determinant as solution, since the exact wave function must be expanded
as an infinite combination of N-particle states, not just one. Doing so, one would con-
sider higher order interactions between the single-particle states besides the direct and
exchange terms in the energy expectation value, accounting for the Coulomb correla-
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tion. This way, the missing energy (or correlation energy) is variational with respect to
the size of the N-particle basis set used to expand the exact solution. As such, in those
systems where the repulsive interaction between electrons is weaker (it does not deviate
too much from its averaged value as measured by the Hartree term), the single determ-
inantal solution can be a good approximation for the true wave function, being exact if
the electronic repulsion was completely neglected. On the other hand, in strongly cor-
related systems the single determinantal approximation is expected to fail badly, as a
linear combination of these is necessary to approximate the ground state.

One might attempt to solve (1.3.17) numerically. However, there are not available
practical procedures for obtaining general numerical solutions to these integro-differential
equations. Instead, we can introduce a basis set for the single-particle orbitals, so the
Hartree-Fock equations can be reformulated as algebraic equations to be solved by
standard matrix techniques:

ϕa(⃗r1) =

K∑
b

ψb(⃗r1)Uba (1.3.18)

If the set {ψb(⃗ri)} was complete, one would get an exact expansion for the spin-
orbitals and the resulting energy is referred to as the Hartree-Fock limit, since the ad-
dition of more basis functions to increase the flexibility of the spin-orbitals would not
improve the description (as the basis set is already complete). However, that would en-
tail K = ∞ basis functions which is not possible due to computational reasons, and
therefore one uses a finite basis set which makes the Hartree-Fock energy variational
with respect to the basis set, providing an upper bound to the Hartree-Fock limit. As in
the variational method explained previously 1.2.1, placing (1.3.18) in (1.3.17) leads to
an eigenvalue problem for F̂ in the subspace spanned by the {ψb(⃗ri)} basis set, namely
the Roothaan equations:

FUα = EαSUα α = 0, 1, . . . ,K− 1 (1.3.19)

being (F)ij = ⟨ψi| F̂ |ψj⟩ the matrix representation of the Fock operator in this subspace,
yielding K spin-orbitals. In order to put the Roothaan’s equations into the form of a
usual matrix eigenvalue problem, one needs to diagonalize the overlap matrix (S)ij =∫
ψ∗
i (⃗r1)ψj(⃗r1)d⃗r1 if the basis set was not orthogonal in first place. Thus one performs

a basis transformation to shift to an orthogonal basis where S vanishes, and finally:

F(U)Uα = EαUα α = 0, 1, . . . ,K− 1 (1.3.20)

where we explicitly show the dependence of the Fock operator F(U) on the unitary
transformation Uα that takes from the original basis set {ψb(⃗ri)} to the ground state
spin-orbitals {ϕa(⃗ri)}, as illustrated in (1.3.1) and (1.3.2), since the Fock operator de-
pends on the spin-orbitals through the Hartree and exchange terms.
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Now, we have approximated the best single determinantal solution for the exact
wave function of the electronic Hamiltonian (1.1.3). We have not solved the electronic
Hamiltonian, but its non-interacting mean-field approximation for the ground state,
namely the Hartree-Fock Hamiltonian:

ĤHF =

N∑
i=1

F(⃗ri) (1.3.21)

where F(⃗ri) is the Fock operator for the i-th electron, defined in the 1-particle subspace.
Note that conversely ĤHF is defined in the N-particle subspace. Its eigenstates conform
a complete N-particle basis set, comprising the best single determinant approximation
for the true ground state, and excited determinants which in principle do not correspond
to approximate representations of excited states, as the spin-orbitals and consequently
the Hartree-Fock Hamiltonian have been optimized to represent the ground state. How-
ever, now that we have defined a complete set of N-particle states, we can apply the
variational method as exposed in 1.2.1, that is, we can expand the exact wave function
in terms of the eigenstates of (1.3.21), leading to a diagonalization of the electronic
Hamiltonian in the subspace spanned by these Slater determinants. Applying the linear
variational method results in the so-called Configuration Interaction method [16, 17],
and yields exact results for the ground and excited states, provided that the full (infinite)
basis is employed. The Coupled Cluster method on the other hand, uses a non-linear
parametrization for the expansion coefficients of the N-particle states [16, 18]. For non-
degenerate ground state configurations the Hartree-Fock determinant is already a fair
approximation to the exact wave function nonetheless. Interactions with singly-excited
determinants are strictly zero according to Brillouin’s theorem [19, 20], hence the most
important corrections are given by doubly excited determinants. Furthermore, they are
eigenstates of the total spin operator Ŝ hence verifying the spin symmetry of the exact
eigenstates. Conversely, for ground states which are degenerate or near-degenerate with
low-lying excited states or in bond-breaking situations, the single determinantal solution
is notably incorrect. The non-dynamical or static correlation reflects the inadequacy of
a single determinant in describing a given molecular state, thus a linear combination
of these must be taken. In these situations it is advantageous to consider a small set of
configurations and optimize their set of coefficients and their molecular orbitals simul-
taneously. This method is called multi-configurational self-consistent field.

Being (1.3.21) a sum of one-particle Hamiltonians F(⃗ri), each of which diagonal
in the basis of spin-orbitals {ϕa(⃗ri)} with the orbital energies εa as eigenvalues, the
energy of each N-particle eigenstate of ĤHF =

∑N
i=1 F(⃗ri) is simply the sum of the

orbital energies of the single-particle orbitals εa included in the Slater determinant. We
can get an expression for each εa multiplying (1.3.17) by ⟨ϕa|:
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∫
ϕ∗
a(⃗r1)F(⃗r1)ϕa(⃗r1)d⃗r1 =

∫
ϕ∗
a(⃗r1)εaϕa(⃗r1)d⃗r1∫

ϕ∗
a(⃗r1) [h(⃗r1) + J(⃗r1) +K(⃗r1)]ϕa(⃗r1)d⃗r1 = εa

(1.3.22)

placing the Hartree and exchange terms one obtains for εa:

εa =

∫
ϕ∗
a(⃗r1)h(⃗r1)ϕa(⃗r1)d⃗r1 + e

2
N∑
r

∫
|ϕa(⃗r1)|

2 |ϕr(⃗r2)|
2

|⃗r1 − r⃗2|
d⃗r1d⃗r2

− e2
N∑
r

δσa,σr

∫
ϕ∗
a(⃗r1)ϕr(⃗r1)ϕa(⃗r2)ϕ

∗
r (⃗r2)

|⃗r1 − r⃗2|
d⃗r1d⃗r2

(1.3.23)

One might be tempted to say that the Hartree-Fock energy ⟨Φ0| Ĥe |Φ0⟩ is equal to
the ground state eigenvalue of ĤHF, that is:

⟨Φ0| Ĥe |Φ0⟩ ?
= ⟨Φ0| ĤHF |Φ0⟩ =

N∑
a

εa (1.3.24)

but would be mistaken, as one has to cancel the double counting of the electron-electron
repulsion in

∑N
a εa to give the correct Hartree-Fock energy. Certainly:

⟨Φ0| ĤHF |Φ0⟩ =
N∑
a

∫
ϕ∗
a(⃗r1)F(⃗r1)ϕa(⃗r1)d⃗r1 =

N∑
a

εa

=

N∑
a

∫
ϕ∗
a(⃗r1)h(⃗r1)ϕa(⃗r1)d⃗r1 + e

2
N∑
a

N∑
r

∫
|ϕa(⃗r1)|

2 |ϕr(⃗r2)|
2

|⃗r1 − r⃗2|
d⃗r1d⃗r2

− e2
N∑
a

N∑
r

δσa,σr

∫
ϕ∗
a(⃗r1)ϕr(⃗r1)ϕa(⃗r2)ϕ

∗
r (⃗r2)

|⃗r1 − r⃗2|
d⃗r1d⃗r2

(1.3.25)

Making the difference between ⟨Φ0| Ĥe |Φ0⟩ as shown in (1.3.4) one gets:

⟨Φ0| Ĥe |Φ0⟩ = ⟨Φ0| ĤHF |Φ0⟩−
1

2

[
e2

N∑
a

N∑
r

∫
|ϕa(⃗r1)|

2 |ϕr(⃗r2)|
2

|⃗r1 − r⃗2|
d⃗r1d⃗r2

− e2
N∑
a

N∑
r

δσa,σr

∫
ϕ∗
a(⃗r1)ϕr(⃗r1)ϕa(⃗r2)ϕ

∗
r (⃗r2)

|⃗r1 − r⃗2|
d⃗r1d⃗r2

] (1.3.26)

The single-particle energies carry an averaged 2-body interaction energy with the
other electrons in the Hartree and exchange terms. Therefore, summing all the eigenval-
ues counts this interaction twice for each couple of electrons, hence the 1/2 factor.
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Lastly, an intriguing question concerning the meaning of the spin-orbitals and their
eigenvalues arises. If ϕa(x1) is an occupied orbital, we see in expression for εa (1.3.23)
that the Coulomb interaction is cancelled by an equivalent term in the exchange term
when r = a. Thus self-interaction is explicitly removed in Hartree-Fock. The remaining
terms r ̸= a express the averaged Coulomb and exchange interactions of the electron
in ϕa(x1) with each of the other N − 1 electrons in the N − 1 spin-orbitals ϕr(x2).
On the other hand, if ϕa(x1) is an unoccupied orbital, (1.3.23) accounts for the inter-
actions with all the N electrons in the Hartree-Fock ground state, as if an electron was
added to produce an (N+ 1)-electron state. We see then that εa could represent approx-
imated ionization potential or electron affinity values, whether ϕa(x1) is occupied or
unoccupied, respectively. We can define the (N− 1) and (N+ 1)-electron states as the
removal or addition of an electron to the spin-orbital |ϕb⟩ in the Hartree-Fock ground
state |ΦN0 ⟩, while the rest of the spin orbitals are kept identical to those in the original
ground state. These single determinants |ΦN−1

b ⟩ and |ΦN+1
b ⟩ have an expectation energy

value of EN−1
b and EN+1

b , respectively. One can show indeed that the difference between
these expectation values and the Hartree-Fock energy EN0 = ⟨ΦN0 | Ĥe |ΦN0 ⟩ are indeed
the negative of the eigenvalues εa:

I ≈ EN−1
b − EN0 = ⟨ΦN−1

b | Ĥe |ΦN−1
b ⟩− ⟨ΦN0 | Ĥe |ΦN0 ⟩ = −εb b occupied

A ≈ EN0 − EN+1
b = ⟨ΦN0 | Ĥe |ΦN0 ⟩− ⟨ΦN+1

b | Ĥe |ΦN+1
b ⟩ = −εb b unoccupied

(1.3.27)
given that if we simply expand the expectation values as in (1.3.4), one obtains (1.3.23)
with opposite sign. This is the Koopmans’ Theorem [21]. This ‘frozen orbital’ approx-
imation neglects the relaxation of the spin-orbitals after an electron is removed or added
to the reference state |ΦN0 ⟩. This orbital rearrangement is induced by the Coulomb inter-
actions between the electrons, and in a mean-field theory it is regarded as a change in
the averaged one-body Hamiltonian (1.3.1) which depends on the reference state, which
now lacks/exceeds one electron. As such the previous spin-orbitals are not eigenstates
of the posterior Fock operator. Consequently, a separate Hartree-Fock calculation on the
(N− 1) and (N+ 1)-electron systems should be carried out to obtain the ground state
determinants, so as to get more reliable ionization potential or electron affinity values.
In any case, this error tends to cancel with the missing correlation energy, hence the
spin-orbital energies for the occupied states offers a reasonable first approximation to
experimental ionization potentials.

One has to bear in mind that the picture of electrons occupying orbitals in a con-
densed matter system is an approximation one obtains in mean-field theories, and that
single-electron orbitals cannot be used to obtain real physical quantities, but approx-
imated ones. We could wonder if the spin-orbitals are related somehow to the Dyson
orbitals, which while defined as one-particle objects contain real many-body inform-
ation, and are experimentally verifiable through angle resolved photoemission spec-
troscopy experiments [22, 23]. Dyson orbitals are defined as the overlap between the
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initial N-electron and final (N± 1)-electron states where one electron has been added
or removed. This definition does not assume any particular model: approximate Dyson
orbitals can be obtained for any pair of many-electron wave functions. If both exact
(as full Configuration Interaction for instance), they define useful quantities in the pre-
diction and interpretation of many kinds of spectroscopic and scattering experiments.
Hence while being one-electron objects, they carry the information of the many-body
system: one can analyse the properties of the many-electron system in terms of these
one-electron orbitals while rigorously accounting for the effects of electron correla-
tion. That is, exact, correlated total energies can be partitioned into contributions from
Dyson orbitals. Since computationally we cannot obtain the exact wave functions (and
consequently the Dyson orbitals), we approximate them by single Slater determinants.
These determinants must be obtained from separated calculation for the N and N± 1
systems employing Hartree-Fock or any other mean-field theory. The Dyson orbital for
the I-th extracted electron ψDI is defined as follows:

ψDI (x1) =
√
N

∫
Φ∗N−1
I ΦN0 dx2dx3 . . . dxN (1.3.28)

and a similar expression is obtained if an electron is added instead. SinceΦN0 is a Slater
determinant, we can calculate the overlap integral between the N− and the (N − 1)-
electron wave function by expanding this determinant in minors, that is, decomposing
it into a sum of Slater determinants build up byN− 1 orbitals, multiplied by the single
orbital ϕi(x1) that depends on the remaining coordinate:

ψDI (x1) =
N∑
i

ϕi(x1)(−1)i+N
∫
Φ∗N−1
I ΦN−1

0,i dx2dx3 . . . dxN =

N∑
i

wiϕi(x1)

(1.3.29)
where the weighting factors wi are given by the overlaps of ΦN−1

I and the set of de-
terminants ΦN−1

0,i formed by the expansion in minors of ΦN0 . This expression shows
that the Dyson orbitals do not correspond to single-particle orbitals, but a coherent su-
perposition of allN occupied orbitals which build the initial Slater determinantΦN0 . We
can recover the mean-field single orbital picture neglecting the electronic relaxation of
the orbitals upon removal of an electron, i.e. the ‘frozen orbital’ approximation. In this
situation the integral of the (N− 1)-particle determinants is 0 unless i = I, where both
determinants are equal and integrate to 1, thus the Dyson orbital ψDI (x1) is identified
with the molecular orbital ϕI(x1) corresponding to the I-th eigenvector of the Slater de-
terminant. Since the rearrangement of the electrons upon extraction is triggered by the
Coulomb interaction, if it were negligible, then the exact Dyson orbitals would certainly
identify with the single-particle orbitals from the mean-field model, as it also provides
with the exact wave function.

On the other hand, we could ask for an improvement of our model. In the Hartree
model, the electrons are immersed in the repulsive mean field charge distribution given
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by the Hartree operator. This term as seen overestimates the true Coulomb interaction
between electrons, since one has to include the Coulomb and Fermi correlations. That
is, to improve the model’s description the electrons should have a positive density of
charge surrounding them, screening the Hartree potential. These are the Fermi and Cou-
lomb holes for the Fermi and Coulomb correlations respectively, whose overall effect
is to reduce the probability of presence of other electrons around each other, as the av-
erage charge distribution is lowered around them. Thus, the Coulomb and Fermi holes
along with the electron behave together like a single entity, which is said to conform a
quasiparticle. The effective interaction between quasiparticles is screened and consider-
ably weaker than the bare Coulomb interaction between electrons. In fact, the screened
interaction is sufficiently small so that the quasiparticles can be regarded as approxim-
ately independent, which finally justifies the independent-particle approximation and ex-
plains the success of mean-field theories. The Hartree-Fock method for instance, would
be a dressed single-particle theory as it includes the Fermi hole through the exchange
operator which screens the Coulomb interaction. An improvement therefore would be
including the Coulomb correlation effect, at least partially. One could devise addition-
ally an operator which comprises all dynamic many-body effects including both Fermi
and Coulomb holes exactly or the relaxation effects on the spin-orbitals, detaching from
a mean-field formulation. This operator corresponds to the Self-Energy Σ operator, and
builds the Dyson quasiparticle equation, whose eigenstates are the Dyson orbitals and
their eigenvalues are the exact ionization potentials and electron affinities:

h0(⃗r1)ψ
D
k (x1) +

∫
Σ(x1, x2; εk)ψDk (x2)dx2 = εkψDk (x1) (1.3.30)

where we have defined h0(⃗r1) as the Hartree Hamiltonian:

h0(r⃗1) = −
 h2∇2

1

2m
−

Na∑
a

Zae
2

|R⃗a − r⃗1|
+ e2

N∑
r

[∫
|ϕr(⃗r2)|

2

|⃗r1 − r⃗2|
d⃗r2

]
(1.3.31)

and ψDk (x1) the Dyson orbital corresponding to the quasiparticle energy εk with k =

I,A, either exact ionization energy or electron affinity, respectively. The Self-Energy
operator Σ(x1, x2; εk) is an exchange-correlation non-local energy-dependent potential,
thus each Dyson orbital is an eigenfunction of a different operator. Consequently, the
Dyson orbitals do not form a basis of the one-electron space. And since the Self-Energy
operator takes all the dynamic many-electron processes into account, the Dyson equa-
tion despite being a single-particle equation is not a mean-field formulation, as the
obtained orbitals recognize the individual identity of the electrons. These orbitals are
certainly, defined already as properties of the many-electron system. Furthermore, we
can build the exact electronic density from the sum of the squared Dyson orbitals corres-
ponding to the ionization energies. As expected, the Self-Energy expression is unknown,
but it should be very complex and utterly costly to compute since there is no free lunch,
and the Dyson equation provides with an exact solution to the electronic problem while
we already saw that it was computationally unfeasible. Finally, we can see that the Self-
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Energy operator boils down to the exchange operator if only the Fermi correlation is
considered, recovering the Hartree-Fock method.

We could ask however, for a mean-field theory which while not providing the Dyson
orbitals, could offer their best possible approximation. This mean-field formulation
would include both exchange and Coulomb correlation contributions, and could aim
for the exact energy of the system. With all these requirements, only a Nobel-prized
idea could live up to the expectations, as this strategy would be the groundbreaking
Density Functional Theory [24–27].

1.4 T H E D E N S I T Y F U N C T I O N A L T H E O RY

The conventional approaches use the electronic wave function Φ as the central quant-
ity, since it contains the full (electronic) information of the system. However, it is an
intractable quantity that cannot be even probed experimentally, hence the use of mean-
field approximations which ease the problem by removing part of the information. The
Density Functional Theory (or simply DFT) on the other hand, proves that the electronic
density contains all the information of the system!

Let us consider the electronic Hamiltonian (1.1.3) with fixed nuclei positioned at R,
conforming an external potential to the electrons:

Ĥe = T̂e + V̂ee + V̂ext

Ĥe =

∫
ψ̂†(⃗r1)Te(⃗r1)ψ̂(⃗r1)d⃗r1 +

1

2

∫ ∫
ψ̂†(⃗r1)ψ̂

†(⃗r2)Vee(⃗r1, r⃗2)ψ̂(⃗r1)ψ̂(⃗r2)d⃗r1d⃗r2

+

∫
Vext(⃗r1)n̂(⃗r1)d⃗r1

(1.4.1)
with n̂(⃗r1) =

∑N
i δ(⃗r1 − r⃗i) = ψ̂

†(⃗r1)ψ̂(⃗r1) the density operator, which measures the
number of electrons at r⃗1. The original Density Functional formulation was developed
for non-magnetic, non-degenerate ground states of electrons in the presence of an ex-
ternal scalar potential Vext(⃗r1). Spin magnetization densities can be also considered,
which will be assessed in following sections. The first two terms in (1.4.1) (T̂e, kinetic
energy and V̂ee = e2r−112 , electronic interaction) are universal, that is, are independent

of the system. Conversely, the external potential V̂ext =
∑N
i Vext(r⃗i) =

∑Na,N
a,i

Zae
2

|R⃗a−r⃗i|
uniquely determines the characteristics of the Hamiltonian. As such, the ground state
wave function is a functional of the external potential, and similarly the ground state
density, since it is obtained from the wave functionΦ:

n(⃗r1) = ⟨Φ| n̂(⃗r1) |Φ⟩ = N
∫
|Φ(⃗r1, r⃗2, . . . , r⃗N)|

2 d⃗r2, . . . , d⃗rN (1.4.2)
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The Hohenberg-Kohn Theorems show that the relation between ground state wave
function and ground state density can be inverted [28]. Given a ground state density it
is possible, in principle, to calculate the corresponding (non-degenerate) ground state
wave function. More precisely, they prove that the ground state electronic densityn0(⃗r1)
determines the Hamiltonian, hence the ground state electronic wave function or any
property derivable from Ĥe; in particular, it must contain all the information concern-
ing the intricate motions and pair correlations in the many-electron system, condensed
in this 3-variable function!

Theorem I (First Hohenberg-Kohn Theorem) For any system of interacting particles
in an external potential Vext(⃗r1), the potential Vext(⃗r1) is determined uniquely, except
for a constant, by the ground state particle density, n0(⃗r1).

Let us suppose that there were two different external potentials V(1)
ext(⃗r1) and V(2)

ext(⃗r1)

resulting in the same ground state density n0(⃗r1). We would have two Hamiltonians
Ĥ(1) and Ĥ(2) whose ground state densities are the same although their corresponding
non-degenerate ground state wave functions Φ(1)

0 and Φ(2)
0 would be different. Consid-

ering the variational principle and expression (1.4.1), one obtains:

E1 = ⟨Φ(1)
0 | Ĥ(1) |Φ

(1)
0 ⟩ < ⟨Φ(2)

0 | Ĥ(1) |Φ
(2)
0 ⟩

E1 < ⟨Φ(2)
0 | Ĥ(2) |Φ

(2)
0 ⟩+ ⟨Φ(2)

0 | Ĥ(1) − Ĥ(2) |Φ
(2)
0 ⟩

E1 < E2 +

∫ [
V
(1)
ext(⃗r1) − V

(2)
ext(⃗r1)

]
n0(⃗r1)d⃗r1

(1.4.3)

If now however we take Φ(1)
0 as a trial wave function for the Ĥ(2) problem one gets:

E2 < E1 +

∫ [
V
(2)
ext(⃗r1) − V

(1)
ext(⃗r1)

]
n0(⃗r1)d⃗r1 (1.4.4)

Adding both inequalities results in a contradiction. As such, there cannot be two dif-
ferent Vext(⃗r1) that give rise to the same n0(⃗r1) for their ground state. The ground state
electron density uniquely determines the external potential.

Corollary I Since the Hamiltonian is thus fully determined, except for a constant shift
of the energy, it follows that the many-body wave functions for all states (ground and ex-
cited) are determined. Therefore all properties of the system are completely determined
given only the ground state density n0(⃗r1).

In particular, the ground state energy E0 is a functional of the ground state density,
and so are its individual components:
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T [n0] = ⟨Φ0| T̂ |Φ0⟩ , Vee[n0] = ⟨Φ0| V̂ee |Φ0⟩ , Vext[n0] = ⟨Φ0| V̂ext |Φ0⟩
E0[n0] = ⟨Φ0| Ĥe |Φ0⟩ = T [n0] + Vee[n0] + Vext[n0]

=FHK[n0] +

∫
Vext(⃗r1)n0(⃗r1)d⃗r1

(1.4.5)

where FHK[n0] = T [n0] + Vee[n0] is the Hohenberg-Kohn functional, unknown and
universal, because the treatment of the kinetic and electronic interaction energies is the
same for all systems. And given that from the first Hohenberg-Kohn theorem Vext(⃗r1) is
a functional of the ground state density, the ground state energy E0 is then a functional
solely of the ground state density. Similarly, a functional for the excited state energies
En can also be defined, as instead of using the ground state wave functionΦ0 in (1.4.5),
one might use Φn, which by the first Hohenberg-Kohn theorem is a functional of the
ground state density. Therefore En[n0] can be expressed solely in terms of n0, but this
dependency will differ to that of E0[n0].

Theorem II (Second Hohenberg-Kohn Theorem) A universal functional for the ground
state energy E0[n0] of the ground state density can be defined for all electron systems.
The exact ground state energy is the global minimum for a given Vext(⃗r1), and the
density n(⃗r1) which minimizes this functional is the exact ground state density.

Consider a system with ground state density n(1)
0 (⃗r1) and ground state wave function

Φ(1) corresponding to an external potential V(1)
ext(⃗r1) and Hamiltonian Ĥ(1). We can

take Φ(2) as a trial wave function for Ĥ(1), which corresponds to the ground state wave
function of a different Hamiltonian Ĥ(2) and therefore ground state density n(2)

0 (⃗r1).
Considering the variational principle and the expressions in (1.4.5):

⟨Φ(2)| Ĥ(1) |Φ(2)⟩ = E(1)0 [n
(2)
0 ] = F

(1)
HK[n

(2)
0 ] +

∫
V
(1)
ext(⃗r1)n

(2)
0 (⃗r1)d⃗r1

⩾ E(1)0 [n
(1)
0 ] = ⟨Φ(1)| Ĥ(1) |Φ(1)⟩

(1.4.6)

It follows that minimizing the ground state energy of the system written as a func-
tional of n0(⃗r1) yields the total energy of the ground state, where the correct density
that minimizes this functional is then the ground state density.

Corollary II The functional E0[n0] alone is sufficient to determine the exact ground
state energy and density. Excited states of the electrons must be determined by other
means.
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One has to note that the variational principle stated by the second theorem applies
to the exact functional only. Therefore any approximation to the unknown Hohenberg-
Kohn functional FHK[n0] = T [n0] + Vee[n0] implies that the variational principle does
not hold anymore, since it is a property linked to the true Hamiltonian. Another aspect
to be considered is the restriction imposed for densities to be eligible in the variational
procedure. These must be associated to some external potential Vext(⃗r1), and therefore
a ground state wave function. This restriction marks the so-called V-representability
problem of electron densities, as only densities built from ground state wave functions
to some external potential Vext(⃗r1) are allowed, that is, only ground state densities
n0(⃗r1) can be used. This issue of course prevents the use of functional derivatives to
find the global minimum, since any change in the electronic density may result in a non
V-representable density. Fortunately, we can extend the variational principle to any ar-
bitrary trial density obtained from an antisymmetric wave function (N-representability),
through the Levy’s constrained search [29]. Considering the variational principle for the
ground state energy:

E0 = min
Φ→N

⟨Φ| Ĥ |Φ⟩ (1.4.7)

that is, we search over all allowed, antisymmetric N-electron wave functions and the
one that yields the lowest energy, is the ground state wave function. We can expand this
search to include any trial density abiding only to be N-representable:

E0 = min
n→N

{
min
Φ→n

⟨Φ| Ĥ |Φ⟩
}

= min
n→N

{E0[n]} (1.4.8)

We firstly optimize the wave function among the set whose density is n(⃗r1), followed
by a minimization over all N-representable densities. The energy due to the external
potential is determined simply by the density and is therefore independent of the wave
function generating that density. Hence, it is the same for all wave functions integrating
to a particular density:

E0 = min
n→N

{E0[n]} = min
n→N

{
min
Φ→n

⟨Φ| Ĥ |Φ⟩
}

= min
n→N

{
min
Φ→n

⟨Φ| T̂ + V̂ee + V̂ext |Φ⟩
}

= min
n→N

{
min
Φ→n

⟨Φ| T̂ + V̂ee |Φ⟩+
∫
Vext(⃗r1)n(⃗r1)d⃗r1

}
= min
n→N

{
FL[n] +

∫
Vext(⃗r1)n(⃗r1)d⃗r1

}
(1.4.9)

where FL[n] = min
Φ→n

⟨Φ| T̂ + V̂ee |Φ⟩ is the Levy universal functional. Thus, the absolute

minimum of the functional E0[n] is the ground state energy, and the minimizing dens-
ity is the ground state one. Through Levy’s constrained search, the restriction that the
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density has to be associated with an external potential is not imposed, and FL[n] differs
from the Hohenberg-Kohn functional FHK[n0] by the fact that the former is defined for
all densities that originate from an antisymmetric wave function, and not ground state
ones only. The bottom line is that we do not have to worry anymore about the wave
function, and that a variational principle solely on the density can be applied for the
ground state energy functional. Lastly, this procedure can identify all the degenerate
ground state densities if the ground state was degenerate. For each ground state density
n0(⃗r1), only one of the wave functions out of the set of functions connected with this
density is found in the constrained search.

We can then consider the problem of extremizing the ground state functional E0[n]
with Levy’s search, subject to the constraint N[n] =

∫
n(⃗r1)d⃗r1 = Ne, Ne a constant

indicating the fixed number of electrons in the system determined by a given Vext(⃗r1):

∂L

∂n,λ
=
∂L

∂N,λ
= 0

L = E0[n] − λ (N[n] −Ne)

(1.4.10)

with λ the Lagrange multiplier. The ground state energy functional E0[n] evaluated at
the electronic density n(⃗r1) which under this constraint minimizes E0[n], fulfils the
following condition for λ:

µ =

(
∂E0[n]

∂n(⃗r1)

) ∣∣∣∣
n=n0

=

(
∂E0[n]

∂N

) ∣∣∣∣
n=n0

with N[n0] =

∫
n0(⃗r1)d⃗r1 = Ne

(1.4.11)
λ = µ is characteristic of the system and is called the chemical potential. Additionally,
from this relation we see that the chemical potential is nothing but the negative of the
electronegativity χ [30, 31]:

χ = −µ = −

(
∂E0[n]

∂N

) ∣∣∣∣
n=n0

≈ I+A

2
(1.4.12)

with
I+A

2
the finite-difference approximation, with I the ionization potential, and A

the electron affinity. One sees then that the Sanderson’s principle of electronegativity
equalization is exactly satisfied by the ground state electron density n0(⃗r1) [32]. In-
deed, when two or more atoms combine to form a molecule, the electrons distribute
themselves so as to equalize the chemical potential everywhere, thus satisfying relation
(1.4.11) throughout all the system [31]:(

∂E0[n]

∂n(⃗r1)

) ∣∣∣∣
n=n0

= µ(⃗r1) := µ (1.4.13)
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While the energy determines whether a chemical bond will form, chemical potential
differences ∇1µ(⃗r1) drive the electron transfer during the bond formation.

Besides the ground state solution n0(⃗r1), the non-linear equation (1.4.10) may have
multiple solutions for the extrema of E0[n]. According to Levy and Perdew [33], the
remainder of the extremum densities of the ground state functional are in fact, exact
excited state densities, and the value of E0[n] at these extrema yields the energy En of
exact excited states of the system. However, not every stationary density corresponds to
an extremum of E0[n]. Only if the stationary wave functionΦ does deliver the minimum
for its own density during the search in (1.4.8), the variational theorem guarantees this
stationary density is an extremum:

∂E0[n] = ∂ ⟨Φ| Ĥ |Φ⟩ = 0 (1.4.14)

As a consequence, one can tweak the ground state functional to calculate a particu-
lar electronically excited state by the introduction of constraints, such as imposing spin
multiplicity, or a particular spatial symmetry group different to that of the ground state
solution during the minimization of (1.4.10).

The remaining question is how to obtain the unknown universal functional FL[n].
If it were known we would have solved the Schrödinger equation, not approximately,
but exactly for any desired system. One would have the exact ground state energy and
its corresponding electronic density, which contains all the information of the system.
As one may guess, the functional FL[n] is unknown and it will very likely remain in
the dark. As such, approximations are devised. To this aim, we shall expand the FL[n]
functional:

E0[n] = T [n] + Vee[n] +

∫
Vext(⃗r1)n(⃗r)d⃗r1

= T [n] + J[n] + Encl[n] +

∫
Vext(⃗r1)n(⃗r1)d⃗r1

(1.4.15)

where J[n] is the classical electrostatic Hartree energy:

J[n] =
e2

2

∫
n(⃗r1)n(⃗r2)

|⃗r1 − r⃗2|
d⃗r1d⃗r2 (1.4.16)

and Encl[n] accounts for the non-classical effects of self-interaction correction, instant-
aneous Coulomb repulsion and Fermi correlation of the electrons, which the mean-field
Hartree term neglects. One has to devise then a functional form for this term as well
as the kinetic energy T [n]. An historically important attempt would be Thomas-Fermi
model [34], where the expression of the kinetic energy per unit volume for a Jellium
system is used:
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T [n] =
3 h2

10m
(3π2)2/3

∫
n(⃗r1)

5/3d⃗r1 (1.4.17)

While correct in the limit of a uniform electron gas, it fails badly to reproduce molecu-
lar bonding of simple diatomic molecules. The main problem is the simple functional
form on the density, as we do not expect such a trivial relationship between the spatial
distribution of the electrons as provided by the electron density and their velocities. The
Orbital-Free approach aims to find appropriate expressions for the kinetic and Encl[n]
functionals. However, as the kinetic energy is the leading term in (1.4.15), errors asso-
ciated with the approximate T [n] functional are expected to be much greater than those
associated with Encl[n]. We therefore find a more accurate scheme, which consists in
decomposing further (1.4.15):

E0[n] = T [n] + J[n] + Encl[n] +

∫
Vext(⃗r1)n(⃗r1)d⃗r1

= Ts[n] + (T [n] − Ts[n]) + J[n] + Encl[n] +

∫
Vext(r⃗1)n(⃗r1)d⃗r1

= Ts[n] + J[n] + Exc[n] +

∫
Vext(⃗r1)n(⃗r1)d⃗r1

(1.4.18)

where Ts[n] is the non-interacting kinetic energy part of the true kinetic energy of
a system with density n(⃗r). Furthermore, we have defined a more complicated term
Exc[n] = (T [n] − Ts[n]) + Encl[n] containing besides Encl[n] a portion (T [n] − Ts[n])

belonging to the true kinetic energy. This portion is expected to be much smaller com-
pared to Ts[n], and although we do not know how to express Ts[n] explicitly in terms
of the density, we know how it is in terms of single-particle orbitals ϕ(⃗r1). One can
devise a set of single-particle orbitals {ϕi(⃗r1)}, which must be functionals of n(⃗r1), that
provide the required non-interacting kinetic energy for the true density of the system:

Ts[n] = −
 h2

2m

N∑
i

⟨ϕi[n]|∇2
1 |ϕi[n]⟩ (1.4.19)

But now we need to find these orbitals. We can take advantage of the freedom at-
tained from the Levy’s search, and build the exact electronic density from a system of
non-interacting particles within an effective potential: we can set up a mean-field refer-
ence system whose wave function is then a single Slater determinant of single-particle
orbitals, which equal the density of the real system of interacting electrons. Therefore,
one finds the total energy of the interacting real system:
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E0[n] = Ts[n] + J[n] + Exc[n] +

∫
Vext(⃗r1)n(⃗r1)d⃗r1

= −
 h2

2m

N∑
s=1

∫
ϕ∗
s (⃗r1)∇2

1ϕs(⃗r1)d⃗r1 + e
2
N∑
s<r

∫
|ϕs(⃗r1)|

2 |ϕr(⃗r2)|
2

|⃗r1 − r⃗2|
d⃗r1d⃗r2

+ Exc[n] +

N∑
s=1

∫
Vext(⃗r1) |ϕs(⃗r1)|

2 d⃗r1

(1.4.20)

with n(⃗r1) =
∑N
s=1 |ϕs(⃗r1)|

2 the exact electronic density built from the N most stable
single-particle orbitals in this non-interacting reference system. This expression (1.4.20)
is exact, given the correct expression for Exc[n]. Taking back the second Hohenberg-
Kohn theorem, we can then find the ground state energy by applying the variational the-
orem to obtain the global minimum of this expression with respect to the single-particle
orbitals which in turn, build the exact electronic density. With similar considerations as
we did with the Hartree-Fock method, we apply the Lagrange’s method under the usual
constraint ⟨ϕi|ϕj⟩ = δij:

∂L

∂ϕa,εsr
=

∂L

∂ϕ∗
a,εsr

= 0 a, s, r = 1, 2, . . . ,N

L = E0[n] −

N∑
s,r
εsr(⟨ϕs|ϕr⟩− δs,r)

(1.4.21)

where by taking
∂Exc[n]

∂ϕ∗
a(⃗r1)

=
∂Exc[n]

∂n(⃗r1)

∂n(⃗r1)

∂ϕ∗
a(⃗r1)

= Vxc(⃗r1)ϕa(⃗r1), and similar consider-

ations as in the Hartree-Fock method, one obtains the Kohn-Sham equations [35]:

−
 h2

2m
∇2
1ϕa(⃗r1) + e

2
N∑
r

[∫
|ϕr(⃗r2)|

2

|⃗r1 − r⃗2|
d⃗r2

]
ϕa(⃗r1)

+Vxc(⃗r1)ϕa(⃗r1) + Vext(⃗r1)ϕa(⃗r1) = εaϕa(⃗r1)

(1.4.22)

which indeed, this equation has the form of a non-interacting mean-field system as the
one obtained in (1.3.17):

FKS(⃗r1)ϕa(⃗r1) = εaϕa(⃗r1) a = 1, 2, . . . ,∞(
−

 h2

2m
∇2
1 + v

KS(⃗r1)

)
ϕa(⃗r1) = εaϕa(⃗r1) a = 1, 2, . . . ,∞ (1.4.23)

with vKS(⃗r1) = J(⃗r1) +Vxc(⃗r1) +Vext(⃗r1) the one-body local potential which provides
the exact electronic density. As seen in the Hartree-Fock method, one must solve this
equation iteratively as vKS(⃗r1) depends on the solutions {ϕa(⃗r1)} (which must remain
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orthonormal), through the Hartree and exchange-correlation Vxc(⃗r1) operators. Once di-
agonalized, it provides with an infinite number of eigenstantes and eigenvalues, where
the N first of these are occupied and build the ground state electronic density, which
allows to obtain the ground state energy from (1.4.20). At this point, similar considera-
tions are taken to tackle this equation as we had with the Hartree-Fock scheme. Instead
of solving these integro-differential equations, one introduces a basis set for the orbit-
als so the Kohn-Sham equations are reformulated as algebraic equations as in (1.3.20).
This way, one solves FKS(⃗r1) in the subspace spanned by this basis set. In principle, it is
required an infinite basis set to be complete and consequently, to obtain exact results. In
practice, a finite basis set is employed (plane-waves, localized atomic orbitals...), being
then the energy variational with respect to the basis set. Lastly, the use of single-particle
orbitals comes with a cost in exchange to better reproduce the energy functional. Indeed,
while in the Orbital-Free method one iteratively minimizes the energy functional with
respect to the density (a 3-variable quantity), in the Kohn-Sham scheme one needs to
store the orbitals and manipulate them ensuring their orthogonality. As such, the com-
putational requirements are larger in the latter, as more accurate results should be more
expensive to obtain.

Similarly as in the Hartree-Fock model, we have not solved the true electronic Hamilto-
nian but ĤKS =

∑N
i=1 F

KS(⃗ri), whose eigenstates are Slater determinants |Φ⟩ con-
formed by the Kohn-Sham orbitals, and their eigenvalues equal the sum of the energies
εa of the occupied Kohn-Sham orbitals. An important difference between the Kohn-
Sham and Hartree-Fock models must be highlighted. Hartree-Fock, as a mean field
theory, attempts to describe the actual particles as non-interacting particles in an effect-
ive potential, that is, the best 1-body approximation of the many-body problem. Kohn-
Sham instead, maps the real particles to a set of fictitious ones subject to a one-body
local potential vKS(⃗r1) such that the resulting density is exact, hence exact results (in
principle) of the fully interacting system can be reconstructed. Therefore, ⟨Φ0| Ĥe |Φ0⟩,
with |Φ0⟩ the ground state of ĤKS, does not provide the ground state energy E0[n0]. In
fact, given that Hartree-Fock provides the best single Slater determinantal solution for
Ĥe, the Hartree-Fock determinant provides a better approximation for ⟨Φ0| Ĥe |Φ0⟩ to
the ground state energy. What Kohn-Sham provides instead is the Slater determinant
which matches the exact ground state electronic density n0(⃗r1).

Through the same arguments as in Hartree-Fock, ⟨Φ0| ĤKS |Φ0⟩ equals the sum of
the Kohn-Sham orbital energies composing the Slater determinant |Φ0⟩, and does not
match the ground state energy

∑N
a εa ̸= E0[n0]. The ground state energy however can

be expressed in terms of the Kohn-Sham orbital energies. Once reached self-consistency,
by multiplying (1.4.23) with ⟨ϕa| and summing over all occupied Kohn-Sham orbitals
one obtains for the kinetic energy:
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Ts =

N∑
a

∫
ϕ∗
a(⃗r1)

{
εa − v

KS(⃗r1)
}
ϕa(⃗r1)d⃗r (1.4.24)

From the Kohn-Sham equations (1.4.22) and the ground state energy functional (1.4.20),
we can readily see that expressing the kinetic energy as (1.4.24) the ground state energy
E0[n0] becomes:

E0[n0] =

N∑
a

εa −

∫
Vxc(⃗r1)n0(⃗r1)d⃗r1 − J[n0] + Exc[n0] (1.4.25)

This expression compared to the original ground state energy functional (1.4.20) has
the advantage that it is no longer required to evaluate the gradients of the Kohn-Sham
orbitals in the kinetic energy functional. For this reason it is almost exclusively used in
all numerical implementations.

One could ask whether the Kohn-Sham model is a single determinant method, and
if so, if it could suffer from the same weakness as the Hartree-Fock method, where the
single Slater determinant solution could not account for correlation effects notably in
degenerate ground states. However, we have shown that the Kohn-Sham picture is only
a particular rearrangement of the Hohenberg-Kohn theorems and therefore must lead
in principle to the exact energy in all situations. Thus, the question should be whether
a single Slater determinant |Φ⟩ made from Kohn-Sham orbitals can build the exact
electronic density. And there are indeed situations where a non-degenerate interacting
ground state density cannot be represented by a single Slater determinant built from the
N Kohn-Sham orbitals resulting from a simple local vKS(⃗r1) potential, but a statistical
mixture or ensemble of them:

D̂ =
∑
i

ci |Φi⟩ ⟨Φi| ; ci = c
∗
i ⩾ 0;

∑
i

ci = 1 (1.4.26)

where D̂ is the density matrix, and ci the weights of the ensemble for each Slater de-
terminant |Φi⟩ made of Kohn-Sham orbitals. The electronic density corresponding to
this ensemble reads:

n(⃗r1) = tr
{
D̂n̂

}
=

∑
i

ci ⟨Φi| n̂(⃗r1) |Φi⟩ =
∑
k

fk|ϕk(⃗r1)|
2 (1.4.27)

where fk are the weights for the Kohn-Sham orbitals, directly related with ci. The
total Kohn-Sham energy is defined in terms of this density:
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E0[n] =tr
{
D̂T̂s

}
+ J[n] + Exc[n] +

∫
Vext(⃗r1)n(⃗r1)d⃗r1

=−
 h2

2m

∑
s

fs

∫
ϕ∗
s (⃗r1)∇2

1(⃗r1)ϕs(⃗r1)d⃗r1 +
e2

2

∫
n(⃗r1)n(⃗r2)

|⃗r1 − r⃗2|
d⃗r1d⃗r2

+ Exc[n] +

∫
Vext(⃗r1)n(⃗r1)d⃗r1

(1.4.28)

During the self-consistent calculation, the weights are fixed as the correct electronic
density minimizes the ground state energy functional (1.4.28). If the interacting system
is degenerate, several degenerate Kohn-Sham densities and several sets of minimizing
{fk} can exist. Therefore, one can see that an ensemble of Kohn-Sham determinants
provides the exact electronic density in those situations when a single Kohn-Sham de-
terminant cannot.

Regarding the set of equations (1.4.22), a clear similarity with the Hartree-Fock
equations (1.3.7) can be observed. Apparently, the sole difference would be the local
exchange-correlation potential Vxc(⃗r1). This is to be contrasted with the non-local ex-
change contribution that appears in the Hartree-Fock approximation. The result of op-
erating with the Hartree-Fock exchange operator on the orbital ϕs(⃗r1) depends on its
value everywhere. One can conclude that certainly, the Kohn-Sham equations have a
structure formally less complicated than the Hartree-Fock scheme, while being exact!
However, Vxc(⃗r1) has a very complex and non-local dependence on the charge density,
and consequently, it depends on every occupied orbital at every point in space. One must
keep in mind that knowledge of the exact exchange-correlation potential is equivalent
to exactly solving the Schrödinger equation. The value of the Kohn-Sham method is in
making the calculation much quicker than a direct solution, and evaluation of the exact
functional would be as costly as direct solution. Therefore, approximations are actually
desirable, and actively searched.

1.4.1 The exchange-correlation potential

As previously seen regarding the Dyson quasiparticle equation, the exchange-correlation
potential can be seen as the influence of the Coulomb and Fermi holes which reduce the
probability of having other electrons surrounding each other. This way, it keeps the elec-
trons from approaching one another, and effectively reduces the mean-field interaction
given by the Hartree potential. We can therefore consider the Kohn-Sham model as a
dressed single-particle theory, as the electrons are treated as quasiparticles.

Now, the exchange-correlation hole can be interpreted in relation with the joint prob-
ability of finding an electron at point r⃗1 given that another electron exists at point r⃗2. We
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define the pair-density P(⃗r1, r⃗2) as the number of pairs of electrons located at r⃗1 and r⃗2,
excluding the possibility of finding the same electron at both places at the same time:

P̂(⃗r1, r⃗2) =
N∑
i

N∑
j ̸=i
δ(⃗r1 − r⃗i)δ(⃗r2 − r⃗j) = ψ̂

†(⃗r1)ψ̂
†(⃗r2)ψ̂(⃗r1)ψ̂(⃗r2)

P(⃗r1, r⃗2) = ⟨Φ| P̂(⃗r1, r⃗2) |Φ⟩ = N(N− 1)

∫
|Φ(⃗r1, r⃗2, r⃗3, . . . , r⃗N)|

2 d⃗r3, . . . , d⃗rN
(1.4.29)

where the integral gives the probability of simultaneously finding an electron at point
r⃗1 within the volume element d⃗r1, and another electron at r⃗2 within the volume element
d⃗r2, irrespective of where the other N− 2 electrons are located. The N(N− 1) factor
is the number of electron pairs, namely, the McWeeny normalization of the pair dens-
ity [36]. From the expression for P(⃗r1, r⃗2) the electron density n(⃗r1) can be obtained
integrating in d⃗r2:

n(⃗r1) =
1

N− 1

∫
P(⃗r1, r⃗2)d⃗r2 (1.4.30)

As the electron-electron interaction is a two-body operator, we see from (1.4.1) and
(1.4.29) that it can be expressed in terms of the pair-density:

V̂ee =
e2

2

∫ ∫
P̂(⃗r1, r⃗2)
|⃗r1 − r⃗2|

d⃗r1d⃗r2 ⇒ ⟨Φ| V̂ee |Φ⟩ = e2

2

∫ ∫
P(⃗r1, r⃗2)
|⃗r1 − r⃗2|

d⃗r1d⃗r2 (1.4.31)

In the calculation of the complex electron-electron interaction energy responsible for
the electronic correlations there is no need, in principle, for all the details in the many-
body wave functions and the related 3N-integrals: we only need an averaged quantity
given by the 2-body pair-density P(⃗r1, r⃗2). This is of course, a consequence of the 2-
body nature of the electron-electron interaction. The energy is then an exact functional
of the pair-density, since all terms in the Hamiltonian are expressed in terms of either
P(⃗r1, r⃗2) or the electronic density (1.4.30). And through the Hohemberg-Kohn theor-
ems, the pair-density itself must be a functional of the electronic density. However, we
do not know how to obtain P(⃗r1, r⃗2) without the explicit knowledge of the wave func-
tion in first place.

Within the mean-field description, the 2-body interactions are averaged out and con-
sequently the 2-body pair-density, thus an effective 1-body Hamiltonian is obtained. In
particular, in the Hartree approximation the wave function is formed by the product of
individual electron densities, hence no correlation is accounted for. The probability of
finding a pair of electrons at points r⃗1 and r⃗2 is therefore simply given by the product
of the densities at the respective points:

PHartree(⃗r1, r⃗2) = n(⃗r1)n(⃗r2) (1.4.32)
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Placing (1.4.32) in (1.4.31) yields the Hartree energy term. This expression for the
pair-density does not satisfy (1.4.30) as it is not normalized according to the McWeeny
factor. In other words, PHartree(⃗r1, r⃗2) does not exclude the possibility of finding the
same electron at both r⃗1 and r⃗2. As mentioned, the Fermi and Coulomb correlations
dress each electron with a depletion density around them as a direct consequence of
the exchange and correlation effects. This way, the resulting electron density is reduced
with respect to the Hartree mean-field value around r⃗1 due to the instantaneous pos-
ition of the electron located at r⃗1. More formally, given a test electron located at r⃗1,
we define a density nxc(⃗r1, r⃗2) which represents a positive one-electron charge distribu-
tion (a ‘hole’ in the N-electron density n(⃗r2)), that adds self-interaction and exchange-
correlation effects to the classical Hartree interaction between the test electron and the
density n(⃗r2). Considering this density hole, the pair-density can be exactly expressed
as:

P(⃗r1, r⃗2) = n(⃗r1)n(⃗r2) +n(⃗r1)nxc(⃗r1, r⃗2) (1.4.33)

The electronic many-body problem would be solved if the exchange-correlation hole
density nxc(⃗r1, r⃗2) was known exactly. From equations (1.4.33) and (1.4.30), we can
see that nxc(⃗r1, r⃗2) must satisfy an important normalization condition known as the
sum rule: ∫

P(⃗r1, r⃗2)d⃗r2 =
∫
n(⃗r1)n(⃗r2)d⃗r2 +

∫
n(⃗r1)nxc(⃗r1, r⃗2)d⃗r2

n(⃗r1)(N− 1) = Nn(⃗r1) +n(⃗r1)

∫
nxc(⃗r1, r⃗2)d⃗r2∫

nxc(⃗r1, r⃗2)d⃗r2 = −1

(1.4.34)

That is, the exchange-correlation hole must cancel the self-interaction error that ori-
ginates in the Hartree pair-density PHartree(⃗r1, r⃗2) (1.4.32), since an electron cannot
be at r⃗1 if it is already at r⃗2. In particular, it is the Pauli principle (exchange) which
causes to be a hole with exactly one missing electron compared to the average density
of all electrons. The correlation part on the other hand causes a rearrangement of the
electronic density. Placing now (1.4.33) in (1.4.31) provides besides the Hartree term,
the exact exchange-correlation functional:

Exc[n] =
e2

2

∫
n(⃗r1)d⃗r1

∫
nxc(⃗r1, r⃗2)
|⃗r1 − r⃗2|

d⃗r2 (1.4.35)

This way, the exchange-correlation energy is expressed as the Coulomb interaction
energy between the electronic density and the charge distribution designated by the
exchange-correlation hole. One can notice that for each r⃗1 there is a different integra-
tion on r⃗2 due to the non-local exchange-correlation hole, as opposed to the Hartree
term where r⃗1 and r⃗2 variables are independent. Only after integration and derivation
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with respect to the spin-orbitals, a local exchange-correlation potential is obtained.

The exchange-correlation hole can be conveniently separated into a summation of
exchange and correlation contributions, namely Fermi and Coulomb holes, where the
latter also includes the correlation kinetic energy contribution:

nxc(⃗r1, r⃗2) = nx(⃗r1, r⃗2) +nc(⃗r1, r⃗2) (1.4.36)

In Hartree-Fock, due to the imposition of an antisymmetric wave function when ap-
plying the variational principle, the exchange hole is exactly described. Taking a look
back to the exchange term in (1.3.4) and expression (1.4.35), the Fermi hole is expressed
as:

nx(⃗r1, r⃗2) = −
1

n(⃗r1)

∑
σ

[
N∑
i

ϕ∗
i (⃗r1,σ)ϕi(⃗r2,σ)

]2
(1.4.37)

which exactly corrects the self-interaction error from Hartree as seen in section 1.3.

In practice, functionals essentially try to model the exchange-correlation hole. The
double integral form of (1.4.35) makes this term very difficult and computationally
expensive to obtain for approximations maintaining its original six-dimensional expres-
sion. Hence, these approximations are performed with varying degrees of sophistication
depending on the approach taken. All functionals can be written in the following general
form nonetheless:

Exc[n] =

∫
n(⃗r1)εxc(⃗r1)d⃗r1 (1.4.38)

where

εxc(⃗r1) =
e2

2

∫
nxc(⃗r1, r⃗2)
|⃗r1 − r⃗2|

d⃗r2 (1.4.39)

is the exchange-correlation energy per particle, and the quantity to be approximated.
In principle, after integration in r⃗2 this object must have a non-local dependence on
the density, comprising both long and short range effects for the original exchange-
correlation hole. In any case, the first and simplest of these approximations is the Local
Density Approximation (LDA) [35]. It is based on the homogeneous electron gas model,
and given that in this system the electron density is the same everywhere, it can be
expressed solely and exactly in terms of the density at r⃗1:

ELDAxc [n] =

∫
n(⃗r1)ε

LDA
xc (n(⃗r1))d⃗r1 (1.4.40)

where the exchange part was derived analytically by Dirac [37]:
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εLDAx (⃗r1) = −
3

4

(
3

π

)1/3
n(⃗r1)

1/3 (1.4.41)

The correlation contribution can be obtained with high accuracy from an interpolation
formula. This approximation is exact in the limit of a uniform electron gas, and therefore
works well for solid systems. Furthermore, it has been proven to be useful in systems
where the electron distribution detaches from a uniform electron gas, as the exchange
energy is generally underestimated while the correlation contribution is overestimated,
thus these errors tend to cancel out. In molecules however where the electronic density
varies abruptly, this approximation fails badly. As mentioned, εxc(⃗r1) is expected to
depend on the density at every point in space. Consequently, the Local Density Approx-
imation can be considered to be the zeroth order approximation to the semi-classical
expansion of the density matrix in terms of the density and its derivatives. At infinite
order, this expansion basically incorporates information from the whole density, thus
becoming in theory exact. This way the Generalised Gradient Approximation (GGA) is
devised [38]:

EGGAxc [n] =

∫
n(⃗r1)εxc(n(⃗r1),∇n(⃗r1))d⃗r1 (1.4.42)

where εxc now depends also on the gradient of the density at r⃗1. Several parametriz-
ations exist for this functional [38–42]. A natural development of the GGA idea are
the meta-GGA functionals [43], which in addition uses the Laplacian of the density or
the kinetic energy density. These approximations although enforced to fulfil the con-
dition (1.4.34), do not correct the self-interaction error. For such thing, the exchange-
interaction must compensate the Hartree term in (1.4.22) when r = s in the Hartree
sumation. More precisely, it is the exchange contribution that must cancel the self-
energy of the electron. For most approximate functionals this condition is not satisfied,
which results in a self-interaction error in the computed total energies. It mostly affects
finite systems, or systems containing localized electrons coexisting together with delo-
calized band-like states, while its effect is vanishing for delocalized electronic states in
extended bulk systems. Since we know that (1.4.37) exactly corrects the self-interaction
effect, we can use this expression for the exchange hole combined with a correlation
hole from GGA functionals. This at first good idea performs in fact badly, as full ex-
act exchange is incompatible with GGA correlation. The reason is that while the exact
exchange-correlation hole is relatively localized around the electron of reference, the
combination of full exact exchange and GGA correlation fails to model this locality,
since exact exchange is highly delocalized and independent from the position of the
electron. Thus, instead of full exact exchange, it is just combined some fraction of it
with GGA counterparts to form the so-called hybrid functionals [44–46]. These func-
tionals offer significant improvement over GGAs for many molecular properties. This
demonstrates nonetheless the need to incorporate fully non-local information in order
to deliver greater accuracy, instead of setting εxc(⃗r1) as a function of local properties
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defined at r⃗1. Hence, one can try to approximate the exact exchange-correlation func-
tional (1.4.35) through directly modelling the exchange-correlation hole from analytic
functions [47–49]. As mentioned, this approach offers a more realistic non-local dens-
ity dependence for the resulting exchange-correlation energy per particle εxc(⃗r1). The
main disadvantage is the increase in computational expense due to the double integral
form of (1.4.35), as such these functionals are relatively unknown and little explored.

On the other hand, long-range effects are notoriously difficult to capture with local
functionals. Due to their local dependence on the density or its gradients at a given
point in space, these functionals cannot account for exchange-correlation effects from
the presence of electrons in remote parts of a finite system. Consequently, these func-
tionals yield a qualitatively incorrect asymptotic behaviour for the exchange-correlation
potential. This point is of particular physical importance, since a correct long-range be-
haviour is necessary for non-covalent interactions, such as H-bond, Van der Waals and
charge transfer complexes, where weak attractive interactions play an important role.
In particular, the Hartree-Fock exchange interaction does exhibit the correct asymptotic
decay. Within the correlation long-range contribution, Van der Waals dispersion inter-
actions can be incorporated through Van der Waals Density Functionals [50], which
incorporate a non-local correlation hole that approximately accounts for dispersion in-
teractions. Due to the high computational cost to self-consistently evaluate this term
caused by the double integral form of (1.4.35), applications of this functional are still
scarce [51].

1.4.2 Do the Kohn-Sham orbitals mean anything?

It is widely appreciated that in the Kohn-Sham model, the obtained orbitals are intro-
duced as a formal device to ease the treatment of the kinetic energy functional. And
consequently, they have no physical significance and their only connection to the real
system is that the sum of their squares add up to the exact electronic density. We can
however take a look back to the Dyson equation (1.3.30). We could ask how this equa-
tion relates to the Kohn-Sham counterpart (1.4.22). More precisely, we could ask how
the exact exchange-correlation local potential Vxc(⃗r1) approximates the Self-Energy
non-local energy-dependent potential Σ(x1, x2; εk). In this exercise made by Casida
[52, 53], one starts with Dyson equation and finds the variationally best approxima-
tion to Σ(x1, x2; εk) under the constraint that it must be local in both space (locality)
and time (energy independent). The resulting potential is known as the optimized ef-
fective potential (OEP) [54, 55]. The key point is that this 1-body local potential is
exactly the unique exchange-correlation local potential whose orbital charge densities
sum up to the true total charge density. This is precisely, the Kohn-Sham definition for
the exchange-correlation potential Vxc(⃗r1)! Simply put, the consequence of imposing
the locality constraint in the variational many-body energy expression, leads to the ex-
act Kohn-Sham equations and electronic density. This fact then allows the Kohn-Sham
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equations to be interpreted as the variationally best local approximation to the Dyson
quasiparticle equation. So, it is natural then to consider the Kohn-Sham orbitals and
energies as approximate Dyson orbitals and energies, only for the exact local exchange-
correlation potential Vxc(⃗r1). The question then becomes whether this approximation is
good enough to be useful. Since both Dyson and Kohn-Sham orbital densities sum to
the exact total density, then in regions of space dominated only by a single orbital from
each set, Kohn-Sham and Dyson orbitals can differ by no more than a phase factor. In
particular, this must be true for the highest occupied molecular orbital (HOMO) in the
limit of r → ∞, since all other orbitals must die off more quickly [56, 57]. Thus the
Kohn-Sham HOMO orbital densities must equal the Dyson’s counterpart, at least their
asymptotic behaviour. Similarly, the Kohn-Sham HOMO energies become the exact
negative of the first ionization potential. Further comparison for the rest of the occupied
Kohn-Sham energies with the exact ionization potentials must be taken with care. Non-
etheless, one should not disregard the Kohn-Sham energies as mere mathematical tools,
and association with experimental ionization potential energies can be considered [58,
59], for instance.

Excited states on the other hand, should be taken with caution. First, if we look
back to expression (1.4.11) and we extend the ground state energy functional E0[n]
to fractional particle numbers, one could say that the energy dependence with respect
to the number of electrons is continuous, and similarly the chemical potential. This of
course, makes no sense as electrons cannot be partitioned, and both energy and minim-
izing charge density at fractionary number of electrons are simply a linear interpolation
between the respective ground state values at the end points withN andN± 1 electrons:

E
N±η
0 = (1−η)EN0 +ηEN±1

0 n
N±η
0 (⃗r1) = (1−η)nN0 (⃗r1)+ηn

N±1
0 (⃗r1) (1.4.43)

Consequently, there is a discontinuity in the chemical potential µ(N), namely the
functional derivative ∂E0[n]/∂n(⃗r1) evaluated at the ground state density at integer
N. This way, the chemical potential takes discrete and different values depending on
whether the derivative is performed on the increasing +η or decreasing −η slope of the
energy functional with respect to the number of electrons:

µ(N− η) = EN0 − EN−1
0 =

∂E0[n]

∂N

∣∣∣∣
N−η

=
∂E0[n]

∂n(⃗r1)

∣∣∣∣
N−η

= −I

µ(N+ η) = EN+1
0 − EN0 =

∂E0[n]

∂N

∣∣∣∣
N+η

=
∂E0[n]

∂n(⃗r1)

∣∣∣∣
N+η

= −A

(1.4.44)

where the subscript N± η means the functional derivative is to be evaluated for the
N ± η-electron ground state density. We can see then that µ(N) is discontinuous at
all integer particle numbers, hence one generally defines the chemical potential at N

as a central finite difference
I+A

2
. From these expressions, we can express the so-

called fundamental band gap in terms of the ionization potential and electron affinity.
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It is defined as the difference between the binding energy of the most weakly bound
electron in the ground state of theN electron system and that of the most weakly bound
electron in the ground state of the N+ 1 system:

∆ = −
{
(EN0 − EN−1

0 ) − (EN+1
0 − EN0 )

}
(1.4.45)

Inserting the relations (1.4.44), one obtains for the band gap ∆:

∆ = I−A =
∂E0[n]

∂n(⃗r1)

∣∣∣∣
N+η

−
∂E0[n]

∂n(⃗r1)

∣∣∣∣
N−η

=
∂E0[n]

∂N

∣∣∣∣
N+η

−
∂E0[n]

∂N

∣∣∣∣
N−η

(1.4.46)

In a non-interacting system,∆would be simply given by the energy difference between
the lowest unoccupied orbital (LUMO) and HOMO energies for the ground stateN elec-
tron system. Indeed, the gap is only due to the discontinuous derivative in the kinetic
energy in (1.4.46), simply due to the change on populations of the discrete energy levels
which are not altered under a variation of the number of electrons:

∆non−interacting = I−A = εL − εH (1.4.47)

Considering now the Kohn-Sham system, the addition or removal of an infinitesimal
number of electrons η would entail only an infinitesimal change in the electronic dens-
ity. This would be translated then into an infinitesimal modification of the effective
potential, which would not alter the one-electron energies. Then again, in the Kohn-
Sham system the only discontinuity is due to the discontinuous derivative in the kinetic
energy functional. This is so because of the local, multiplicative effective vKS(⃗r1) poten-
tial, common to all the one-electron states and generating the exact electronic density.
Certainly, from Janak’s theorem [60], it is proved that the derivative of the ground state
energy functional with respect to the occupation of a Kohn-Sham state fi equals its
eigenvalue:

∂E0[n]

∂fi
= εi (1.4.48)

which inserting in equation (1.4.46) one reaches the same expression as (1.4.47), with
the fundamental gap equal to the Kohn-Sham HOMO-LUMO band gap. To see this
note that the derivative of the energy functional with respect to the particle number on
the +η side involves a change in the population fi of the LUMO, while on the −η side
involves a change in the population fi of the HOMO.

This situation cannot represent an interacting system, since the non-interacting kin-
etic energy is just a clever mathematical construct rather than a physical reality. While
the Hartree and external potential yield no discontinuity in the energy functional, the
exact exchange-correlation potential must, since in fact includes a portion of the true
interacting kinetic energy. This way the effective potential on the electrons does in fact
suffer a discontinuity under an infinitesimal change of the electronic density:
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∆ =
∂E0[n]

∂n(⃗r1)

∣∣∣∣
N+η

−
∂E0[n]

∂n(⃗r1)

∣∣∣∣
N−η

=
∂Ts[n]

∂n(⃗r1)

∣∣∣∣
N+η

+
∂Exc[n]

∂n(⃗r1)

∣∣∣∣
N+η

−

[
∂Ts[n]

∂n(⃗r1)

∣∣∣∣
N−η

+
∂Exc[n]

∂n(⃗r1)

∣∣∣∣
N−η

]

= εL − εH −

[
∂Exc[n]

∂n(⃗r1)

∣∣∣∣
N+η

−
∂Exc[n]

∂n(⃗r1)

∣∣∣∣
N−η

] (1.4.49)

One sees then that the exact Kohn-Sham band structure underestimates the funda-
mental gap width by an amount equal to the derivative discontinuity of the exchange-
correlation energy [61, 62]. In order to account for this discontinuity, the exchange-
correlation potential must be energy-dependent Σ(x1; εk), which lies beyond the Kohn-
Sham formalism as stressed above: this potential is local in both space and time. This
way, while the Kohn-Sham HOMO energy is identified with the exact ionization poten-
tial, the Kohn-Sham LUMO is shifted with respect to the electron affinity by a quantity
given by the exchange-correlation discontinuity. In finite systems one can always obtain
the electronic affinity as the Kohn-Sham HOMO of the anionic compound, this way the
fundamental gap ∆ can be evaluated. However in bulk systems it is not possible. This
is why it is referred in the literature as ‘the band gap problem’.

1.4.3 Finite-temperature Kohn-Sham theory

So far we have just cared about minimizing the ground state energy functional, to attain
ground state energy and properties. In certain situations, it is an ensemble of Slater de-
terminants which provides the correct minimizing electronic density. Indeed, the Kohn-
Sham system is found in a mixed state rather than a pure one, and density operators D̂
are necessary. So is the case of a system at some constant finite temperature: there will
be a probability distribution over accessible pure states as expressed in (1.4.26):

D̂ =
∑
i

ci |Φi⟩ ⟨Φi| ; 1 ⩾ ci ⩾ 0;
∑
i

ci = 1 (1.4.50)

with |Φi⟩ the eigenstates of an arbitrary Hamiltonian Ĥ. In this situation, the energy is
not fixed. Instead, the temperature τ will drive the system to an equilibrium configura-
tion where an average energy is reached. While the energy will differ from time to time,
over long periods of time its average will be a constant Ē (ergodic hypothesis). Now, the
weights are not determined by minimizing the energy, but the Helmholtz free energy A:

A = Ē− τS (1.4.51)

The temperature promotes the system to populate higher energy states rather than
seeking the global energy minimum. Consequently, an equilibrium configuration with
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an average energy is achieved. In terms of the density matrix operator, the average
energy and entropy read:

Ē = tr
{
D̂Ĥ

}
S = −kBtr

{
D̂lnD̂

}
(1.4.52)

and thereby the Helmholtz free energy A:

A
[
D̂
]
= tr

{
D̂

(
Ĥ+

1

β
lnD̂

)}
=

∑
i

ci

(
⟨Φi| Ĥ |Φi⟩+

1

β
lnci

) (1.4.53)

with β =
1

τkB
. We seek to determine the weights {ci} which minimize the free energy,

so there is a compromise between the average energy which shall be minimum and the
entropy, which shall be maximum, subject to the constraint that the weights {ci} must
sum to 1:

∂

∂ci,λ

{
A [{ci}] + λ

(∑
i

ci − 1

)}
= 0 (1.4.54)

Solving this set of equations results for D̂0 in the canonical probability distribution:

D̂0 = c
0
i |Φi⟩ ⟨Φi| with c0i =

e−βEi∑
i e

−βEi
(1.4.55)

with Ei the i-th eigenvalue of Ĥ, corresponding to the eigenstate |Φi⟩. One sees that the
larger the temperature τ, the more likely a higher energetic state becomes populated. If
τ → 0, then the only state populated is that of the ground state. Inserting (1.4.55) into
(1.4.53), one obtains the free energy for the minimizing density matrix operator D̂0:

A
[
D̂0
]
=

−1

β
ln

∑
i

e−βEi (1.4.56)

and for any other D̂ the free energy results in a higher value:

A
[
D̂0
]
< A

[
D̂
]

(1.4.57)

For simplification, the states |Φi⟩ of D̂ were taken already as eigenstates of Ĥ. Oth-
erwise, one can never reach A

[
D̂0
]

until these states are indeed those of Ĥ, fulfilling
then a variational principle for both {ci} and {Φi}.

We can now make use of this variational principle and construct the first Hohenberg-
Kohn theorem analogue for the free energy [63–66]. Setting Ĥ := Ĥe the electronic
Hamiltonian (1.4.1) we can suppose that for a fixed temperature τ, two different external
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potentials defining two different Hamiltonians Ĥ(1) and Ĥ(2), with corresponding min-
imizing density matrix operators D̂(1) and D̂(2), share the same equilibrium electronic
density nτ0(⃗r1) = tr

{
D̂(1)n̂

}
= tr

{
D̂(2)n̂

}
. Considering the variational principle for

the free energy (1.4.57) and expressions (1.4.53) and (1.4.1) one gets:

A(1)
[
D̂(1)

]
< A(1)

[
D̂(2)

]
< tr

{
D̂(2)

(
Ĥ(1) +

1

β
lnD̂(2)

)}
<

∫ (
V
(1)
ext(⃗r1) − V

(2)
ext(⃗r1)

)
nτ0(⃗r1)d⃗r1 + tr

{
D̂(2)

(
Ĥ(2) +

1

β
lnD̂(2)

)}
<

∫ (
V
(1)
ext(⃗r1) − V

(2)
ext(⃗r1)

)
nτ0(⃗r1)d⃗r1 +A

(2)
[
D̂(2)

]
(1.4.58)

In the same fashion, one finds:

A(2)
[
D̂(2)

]
< A(2)

[
D̂(1)

]
<

∫ (
V
(2)
ext(⃗r1) − V

(1)
ext(⃗r1)

)
nτ0(⃗r1)d⃗r1 +A

(1)
[
D̂(1)

] (1.4.59)

Adding both inequalities (1.4.58) and (1.4.59) leads into a contradiction. Thus, two
different external potentials always lead to different equilibrium densities at a give tem-
perature τ: the equilibrium density nτ0(⃗r1) defines uniquely Vext(⃗r1), consequently the
Hamiltonian, the equilibrium density matrix operator D̂0 and hence all the properties of
the equilibrium state. Furthermore, we can establish a second Hohenberg-Kohn theorem
analogue, namely a free energy variational principle with respect to the equilibrium elec-
tronic density. From the previous proof, the free energy (and any of its constituents) is a
functional of the electronic density, and in particular it reaches its minimum at the equi-
librium electronic density for each temperature τ. We can set up a constrained search
avoiding the V-representability problem starting from (1.4.57):

A0 = A
[
D̂0
]
= min

D̂
tr

{
D̂

(
Ĥ+

1

β
lnD̂

)}
= min

nτ

{
min
D̂→nτ

tr

{
D̂

(
T̂ + V̂ee +

1

β
lnD̂

)}
+

∫
Vext(⃗r1)n

τ(⃗r1)d⃗r1

}
= min

nτ

{
F[nτ] +

∫
Vext(⃗r1)n

τ(⃗r1)d⃗r1

}
= min

nτ
A [nτ(⃗r1)]

(1.4.60)
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where F[nτ] is a universal functional, since it is independent of the system:

F[nτ] = min
D̂→nτ

tr

{
D̂

(
T̂ + V̂ee +

1

β
lnD̂

)}
= T [nτ] + Vee[n

τ] − τS[nτ] (1.4.61)

for a fixed electronic density nτ(⃗r1) = tr
{
D̂n̂

}
, we minimize over the set of density

matrix operators D̂ whose average density is nτ(⃗r1). Given a temperature and external
potential, if the corresponding equilibrium electronic density nτ0(⃗r1) is provided, the
constrained search reaches the minimum at the equilibrium density matrix operator D̂0.
If we knew the expression for F[nτ], we would be able to obtain the equilibrium free en-
ergy A0 from the minimizing equilibrium electronic density. This universal functional
will have an even more intricate form compared to that of the ground state energy func-
tional, as now we have entropic contributions.

In order to introduce the thermal Kohn-Sham system, we proceed analogously as in
the zero-temperature case. We assume that at temperature τ there exists a system of
non-interacting fermions within an effective local potential, defining a density matrix
operator D̂s conformed of Slater determinants of single-particle states which has the
same average density as the interacting system nτ(⃗r1) = tr

{
D̂sn̂

}
. The corresponding

entropy of this non-interacting system reads:

Ss = −kβ
∑
s

{fτslnf
τ
s + (1− fτs) ln (1− fτs)} (1.4.62)

with fτs the single-particle occupations for the fermions at temperature τ. The equilib-
rium matrix density of this non-interacting ensemble, D̂s,0, must provide the exact equi-
librium electronic density nτ0(⃗r1). This condition will uniquely determine the temperat-
ure dependent one-body Kohn-Sham potential. We expand the free energy functional in
known terms:

A[nτ] = T [nτ] + Vee[n
τ] − τS[nτ] +

∫
Vext(⃗r1)n

τ(⃗r1)d⃗r1

= Ts[n
τ] + J[nτ] − τSs[n

τ] +Aτxc[n
τ] +

∫
Vext(⃗r1)n

τ(⃗r1)d⃗r1

(1.4.63)

where we have defined the exchange-correlation free energy functional Aτxc[n
τ] =

(T [nτ] − Ts[n
τ]) + Encl[n

τ] − τ(S[nτ] − Ss[n
τ]) which is simply the addition of the

correlation entropy to Exc[nτ] defined for the zero-temperature case. If we knew the
form of this functional we would be able to solve the electronic problem at any tem-
perature. The free energy functional (1.4.63) is expressed in terms of single-particle
orbitals, which must build the exact interacting average density:



1.4 T H E D E N S I T Y F U N C T I O N A L T H E O RY 53

A [nτ] =tr
{
D̂sT̂s

}
+
1

2

∫
nτ(⃗r1)n

τ(⃗r2)

|⃗r1 − r⃗2|
d⃗r1d⃗r2 +A

τ
xc[n

τ] +

∫
Vext(⃗r1)n

τ(⃗r1)d⃗r1 − τSs[n
τ]

= −
 h2

2m

∑
s

fτs

∫
ϕ∗
s (⃗r1)∇2

1(⃗r1)ϕs(⃗r1)d⃗r1 + e
2
N∑
s<r

fτsf
τ
r

∫
|ϕs(⃗r1)|

2 |ϕr(⃗r2)|
2

|⃗r1 − r⃗2|
d⃗r1d⃗r2

+Aτxc[n
τ] +

∑
s

fτs

∫
Vext(⃗r1) |ϕs(⃗r1)|

2 d⃗r1 +
1

β

∑
s

{fτslnf
τ
s + (1− fτs) ln (1− fτs)}

(1.4.64)

with the exact average electronic density being expressed as nτ(⃗r1) = tr
{
D̂sn̂

}
=∑

k f
τ
k|ϕk(⃗r1)|

2. In equilibrium, the weights of the non-interacting density matrix D̂s,0
correspond to the canonical distribution. The weights for the single-particle state or-
bitals fτk conform to those in D̂s, as these states build the Slater determinants of the
non-interacting density matrix. Indeed, the canonical ensemble particularized for a sys-
tem of non-interacting fermions which compose the N-particle states, results in the
Fermi-Dirac distribution:

fτk = f(εk) =
1

1+ eβ(ε
τ
k−µ)

(1.4.65)

The weights of the single-particle state orbitals fτk in equilibrium are thus defined
from (1.4.65). One can verify that these weights certainly minimize (1.4.64) under the
constraint of a fixed number of electrons [67], so that the equilibrium configuration
must also satisfy:

µ =

(
∂A [nτ]

∂n(⃗r1)

) ∣∣∣∣
nτ=nτ0

=

(
∂A [nτ]

∂N

) ∣∣∣∣
nτ=nτ0

with N[nτ0] =

∫
nτ0(⃗r1)d⃗r1 = Ne

(1.4.66)
We shall now minimize the free energy functional A [nτ] through the Lagrange’s

method in terms of the single-particle orbitals to obtain an expression for these:

∂L

∂ϕa,ετsr
=

∂L

∂ϕ∗
a,ετsr

= 0 a, s, r = 1, 2, . . . ,N

L = A[nτ] −

N∑
s,r
ετsr(⟨ϕs|ϕr⟩− δs,r)

(1.4.67)

from where one obtains the temperature dependent Kohn-Sham equations, or alternat-
ively Mermin-Kohn-Sham equations, for a given temperature τ:
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FKSτ (⃗r1)f
τ
aϕa(⃗r1) = ε

τ
af
τ
aϕa(⃗r1)

−
 h2

2m
∇2
1(⃗r1)ϕa(⃗r1) + v

KS
τ (⃗r1)ϕa(⃗r1) = ε

τ
aϕa(⃗r1)

with vKSτ (⃗r1) = J[n
τ(⃗r1)] +

∂Aτxc[n
τ]

∂nτ(⃗r1)
+ Vext(⃗r1)

(1.4.68)

and vKSτ (⃗r1) the one-body potential of the non-interacting system which provides the
exact equilibrium electronic density nτ0(⃗r1) = tr

{
D̂s,0n̂

}
=

∑
k f
τ
k|ϕk(⃗r1)|

2. As in the
zero-temperature case, finding the converging Kohn-Sham orbitals in (1.4.68) does not
solve the true interacting system, but the non-interacting (fermionic) system ruled by
ĤKSτ =

∑
i F
KS
τ (r⃗i) at temperature τ. The Slater determinants built from the converged

Kohn-Sham orbitals are eigenstates of ĤKSτ , and together with the canonical distribution
conform the non-interacting density matrix D̂s,0 which minimizes A ′[D̂s]:

A ′
0 = A

′[D̂s,0] = tr
{
D̂s,0

(
ĤKSτ +

1

β
lnD̂s,0

)}
=

∑
k

fτkε
τ
k − τSs (1.4.69)

This equilibrium density matrix neither minimizes the actual free energy A
[
D̂
]
, nor

provides the equilibrium energy Ē. However, it produces the exact equilibrium density
nτ0(⃗r1) = tr

{
D̂s,0n̂

}
which certainly minimizes A[nτ]. As such, the converged Kohn-

Sham orbitals and the Fermi-Dirac distribution at temperature τ minimize A[nτ] via
(1.4.64).

The interest of this approach lies in the fact that we can handle degenerate or nearly
degenerate systems, facilitating in general the electronic convergence in Kohn-Sham
implementations. If a Jahn-Teller distortion is to occur, then setting a small temperat-
ure on the system will ease the geometrical relaxation. This is so because the system
is allowed to partially occupy the degenerate electronic surface energies for the ions,
and consequently small changes in the geometrical structure and electronic density will
not alter in great measure the partial occupations in the Kohn-Sham levels and the total
energy. Likewise, in bulk metals one finds a sharp discontinuity between occupied and
unoccupied states within the highest band. To accurately estimate the Fermi surface, it is
required a dense sampling around it. Thereby, imposing an electronic temperature will
broaden the boundary between occupied and unoccupied states reducing the fineness
needed. This way, Kohn-Sham implementations obtain the free energy from (1.4.64)
computing the Kohn-Sham orbitals at a small temperature (set by the user), and eventu-
ally extrapolate T → 0 to obtain the ground state energy and density. This technique is
called smearing.
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1.4.4 Spin-dependent Kohn-Sham theory

So far we have ignored the spin degree of freedom in the system treating it as non-spin-
polarized, as the original Hohenberg-Kohn theory was developed only for the spinless
case. With similar considerations, one can extend the Density Functional Theory to
electronic ground states including spin magnetism m̂(⃗r1) and external magnetic fields
B⃗ext(⃗r1) [68, 69]:

Ĥe = T̂ + V̂ee +

∫ {
Vext(⃗r1)n̂(⃗r1) − B⃗ext(⃗r1)m̂(⃗r1)

}
d⃗r1 (1.4.70)

where m̂(⃗r1) = (m̂x, m̂y, m̂z) is the vector operator of the magnetization density. This
operator as well as the electronic density operator n̂(⃗r1) are defined in terms of field
operators, now comprising also the spin state space. This space is spanned in terms of
the common eigenvectors of Ŝ2 and one of the components of the spin vector operator Ŝ
(Ŝz as usual choice). Fixing the electronic spin to 1/2, the spin state subspace becomes
two-dimensional as the only possible Ŝz quantum numbers are given by α = {+,−},
from which we define ψ̂†

±(⃗r1) as the field operator which creates an electron at r⃗1 with
± spin quantum number. We therefore have:

n̂(⃗r1) =

N∑
i

δ(⃗r1 − r⃗i) =
∑
α

ψ̂†
α(⃗r1)ψ̂α(⃗r1)

m̂(⃗r1) = −µB

N∑
i

σ̄iδ(⃗r1 − r⃗i) = −µB
∑
α,β

ψ̂†
α(⃗r1)σ̄αβψ̂β(⃗r1)

(1.4.71)

where σ̄ = (σx,σy,σz) is the vector consisting of the 2× 2 Pauli matrices, Ŝi =
 h

2
σ̄i is

the spin angular momentum vector operator for the i-th electron, and µB the Bohr mag-
neton. Now, an analogue for the first Hohenberg-Kohn Theorem can be established,
proving that the ground state electronic density n0(⃗r1) = ⟨Φ0| n̂(⃗r1) |Φ0⟩ and the
ground state magnetization density m0(⃗r1) = ⟨Φ0| m̂(⃗r1) |Φ0⟩ uniquely determine the
electronic Hamiltonian (1.4.70), and hence all the properties of the system. Indeed, as-
sume that the ground states Φ(1)

0 and Φ(2)
0 corresponding to the Hamiltonians Ĥ(1) and

Ĥ(2) yield the same set (n0(⃗r1), m0(⃗r1)). Then considering the variational principle one
gets:

⟨Φ(1)
0 | Ĥ(1) |Φ

(1)
0 ⟩ < ⟨Φ(2)

0 | Ĥ(1) |Φ
(2)
0 ⟩

< ⟨Φ(2)
0 | Ĥ(2) |Φ

(2)
0 ⟩+

∫ [
V
(1)
ext(⃗r1) − V

(2)
ext(⃗r1)

]
n0(⃗r1)d⃗r1

+

∫ [
B⃗
(2)
ext(⃗r1) − B⃗

(1)
ext(⃗r1)

]
m0(⃗r1)d⃗r1

(1.4.72)

If now we take Φ(1)
0 as a trial wave function for the Ĥ(2) problem one gets:
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⟨Φ(2)
0 | Ĥ(2) |Φ

(2)
0 ⟩ < ⟨Φ(1)

0 | Ĥ(1) |Φ
(1)
0 ⟩+

∫ [
V
(2)
ext(⃗r1) − V

(1)
ext(⃗r1)

]
n0(⃗r1)d⃗r1

+

∫ [
B⃗
(1)
ext(⃗r1) − B⃗

(2)
ext(⃗r1)

]
m0(⃗r1)d⃗r1

(1.4.73)

Adding both inequalities result in a contradiction. Consequently, two different non-
degenerate ground states Φ(1)

0 and Φ(2)
0 lead to two different sets of ground state dens-

ities (n0(⃗r1), m0(⃗r1)), that is at least one of the four density components must differ.
Therefore the electronic wave function is a unique functional of the electronic and mag-
netization densities, as well as any property in the system. From this result, ignoring
the issue of V-representability, a ground state energy functional on the electronic and
magnetic density can be defined:

E0[n, m] = F[n, m] +

∫ {
Vext(⃗r1)n(⃗r1) − B⃗ext(⃗r1)m(⃗r1)

}
d⃗r1 (1.4.74)

with F[n, m] = ⟨Φ| T̂ + V̂ee |Φ⟩ a universal functional. E0[n, m] reaches its minimum at
the ground state electronic and magnetization densities (n0(⃗r1), m0(⃗r1)), hence provid-
ing a way to determine these quantities, if F[n, m] was known. In a similar fashion
as in the standard Kohn-Sham scheme, one can devise a system of non-interacting
particles with the same ground state density n0(⃗r1) and ground state magnetization
density m0(⃗r1). This system must have a solution expressed as a single Slater determ-
inant of occupied single-particle states |Φ⟩, now expanded in the {|⃗r,α⟩} basis, namely
spin-orbitals:

ϕ(⃗r1) =

(
ϕ+(⃗r1)

ϕ−(⃗r1)

)
(1.4.75)

withϕα(⃗r1) = ⟨⃗r,α|ϕ⟩ and accordingly normalized
∫ (

|ϕ+(⃗r1)|
2 + |ϕ−(⃗r1)|

2
)
d⃗r1 = 1.

This way the electronic and magnetization densities are expressed as:

n(⃗r1) = ⟨Φ| n̂(⃗r1) |Φ⟩ =
occ∑
i

∑
α

|ϕαi (⃗r1)|
2

m(⃗r1) = ⟨Φ| m̂(⃗r1) |Φ⟩ = −µB

occ∑
i

∑
α,β

ϕ∗α
i (⃗r1)σ̄αβϕ

β
i (⃗r1)

(1.4.76)

where the sum on i includes all occupied orbitals. The ground state energy functional
(1.4.74) can be exactly expressed in terms of known contributions for this non-interacting
frame:
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E0[n, m] = F[n, m] +

∫ {
Vext(⃗r1)n(⃗r1) − B⃗ext(⃗r1)m(⃗r1)

}
d⃗r1

= Ts[n, m] + J[n] + Exc[n, m] +

∫ {
Vext(⃗r1)n(⃗r1) − B⃗ext(⃗r1)m(⃗r1)

}
d⃗r1

(1.4.77)

where J[n] is the usual Hartree energy (1.4.16), Exc[n, m] the exchange-correlation en-
ergy and Ts[n, m] the kinetic energy of the non-interacting system, whose expression is
only known in terms of the spin-orbitals:

Ts[n, m] = −
 h2

2m

occ∑
s

∑
α

∫
ϕ∗α
s (⃗r1)∇2

1ϕ
α
s (⃗r1)d⃗r1 (1.4.78)

resulting for the ground state energy functional:

E0[n, m] = −
 h2

2m

occ∑
s

∑
α

∫
ϕ∗α
s (⃗r1)∇2

1ϕ
α
s (⃗r1)d⃗r1 +

1

2

∫
n(⃗r1)n(⃗r2)

|⃗r1 − r⃗2|
d⃗r1d⃗r2

+ Exc[n, m] +

∫ {
Vext(⃗r1)n(⃗r1) − B⃗ext(⃗r1)m(⃗r1)

}
d⃗r1

(1.4.79)

Minimization of (1.4.79) with respect to the spin-orbitals, subject to their orthonor-
malization, yields the associated spin-dependent Kohn-Sham equations:

∂L

∂ϕα
a ,εsr

=
∂L

∂ϕ∗α
a ,εsr

= 0 a, s, r = 1, 2, . . . ,N

L = E0[n, m] −

N∑
s,r
εsr(⟨ϕs|ϕr⟩− δs,r)

(1.4.80)

where by considering that:

∂Exc[n, m]

∂ϕ∗α
a (⃗r1)

=
∂Exc[n, m]

∂n(⃗r1)

∂n(⃗r1)

∂ϕ∗α
a (⃗r1)

+
∂Exc[n, m]

∂m(⃗r1)

∂m(⃗r1)

∂ϕ∗α
a (⃗r1)

= Vxc(⃗r1)ϕ
α
a (⃗r1) − B⃗xc(⃗r1)µB

∑
β

σ̄αβϕ
β
a (⃗r1)

(1.4.81)

one obtains a set of coupled equations for both +,− channels:
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[(
−

 h2

2m
∇2
1 + v

KS(⃗r1)

)
I − µBσ̄B(⃗r1)

](
ϕ+
a (⃗r1)

ϕ−
a (⃗r1)

)
= εa

(
ϕ+
a (⃗r1)

ϕ−
a (⃗r1)

)

FKS(⃗r1)

(
ϕ+
a (⃗r1)

ϕ−
a (⃗r1)

)
= εa

(
ϕ+
a (⃗r1)

ϕ−
a (⃗r1)

)
with

vKS(⃗r1) = J(⃗r1) + Vxc(⃗r1) + Vext(⃗r1)

B = B⃗xc(⃗r1) + B⃗ext(⃗r1)

(1.4.82)

with I the 2 × 2 identity matrix. The self-consistent solution of this set of equations
provides with the spin-orbitals which, using equations (1.4.76), yield the exact elec-
tronic and spin magnetization densities. Even when the external magnetic field Bext(⃗r1)
is absent, the Hamiltonian FKS(⃗r1) can mix both channels + and − through Bxc(⃗r1),
implying that F̂KSi does not commute with Ŝz,i. The effect of Bxc(⃗r1) is present in a
wide variety of systems, including materials with non-collinear magnetism, open-shell
or spontaneously magnetized systems.

Before analysing the different solutions for (1.4.82) with Bext(⃗r1) = 0, some con-
siderations shall be made. The non-relativistic Hamiltonian Ĥe must commute with the
total spin operator Ŝ =

∑N
i Ŝi given that a global rotation of the electronic spins does

not alter the energy, provided there is no external magnetic field thus the space is iso-
tropic. This way the exact eigenfunctions of the electronic Hamiltonian (1.4.70) are
eigenfunctions of Ŝ2 =

(∑
i Ŝi
)2

and Ŝz =
∑N
i Ŝz,i. One could assume that it would be

desirable that any approximate wave function should be an eigenfunction of Ŝ2, albeit
solutions from (1.4.82) are not in general eigenfunctions of Ŝ2. This is of no concern
for the Kohn-Sham scheme, as opposed to the Hartree-Fock method where the wave
function is a central quantity.

1.4.4.1 Spin-restricted Kohn-Sham

In this situation,
∂Exc[n, m]

∂m(⃗r1)
= B⃗xc(⃗r1) = 0, and F̂KSi := F̂KS(r),i becomes purely orbital,

proportional to the identity matrix, and consequently
[
F̂KS(r),i, Ŝz,i

]
= 0. One obtains

equal equations for both channels, and therefore + and − electrons share the same
spatial orbitals ϕa(⃗r1):

(
−

 h2

2m
∇2
1 + v

KS(⃗r1)

)
ϕa(⃗r1) = εaϕa(⃗r1) a = 1, 2, . . . ,∞ (1.4.83)
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which are the standard Kohn-Sham equations (1.4.23). Since this one-electron Hamilto-
nian does not depend on the spin of the electrons, each energy eigenvalue is two-
fold degenerate. The spatial orbitals are identical for + and − electrons and the res-
ulting Slater determinant is therefore spin-restricted. The non-interacting Hamiltonian
ĤKS =

∑
i F̂
KS
(r),i commutes with Ŝz, so the Slater determinants built from the spin-

orbitals with well-defined spin orientation present Ms as good quantum number. ĤKS

also commutes with the total spin-squared operator Ŝ2, however the eigenstates of ĤKS

(Slater determinants) are not in general eigenstates of Ŝ2. As both operators commute, in
every eigensubspace of ĤKS one can obtain a basis of eigenvectors common to ĤKS and
Ŝ2. Closed-shell determinants where all spatial orbitals are doubly occupied are pure
singlet states, that is, they are eigenfunctions of Ŝ2 with eigenvalue zero. Open-shell
restricted determinants on the other hand are not eigenfunctions of Ŝ2, except when all
the open-shell electrons (those who singly occupy an spatial orbital) have parallel spin.
In this situation the spin summation uniquely leads to S = |Ms|, and the Slater determ-
inant belongs to the coupled Ŝ2 base. Every other open-shell configuration will not be
pure spin states. However, as

[
ĤKS, Ŝ2

]
= 0, by taking appropriate linear combinations

of degenerate determinants (that is, diagonalize Ŝ2 in the corresponding eigensubspace
of ĤKS), one can form spin-adapted configurations which are eigenfunctions of Ŝ2 and
ĤKS. In the Hartree-Fock scheme, these often called configuration state functions com-
prise then an acceptable N-particle basis set for expansion of the exact electronic wave
function.

The solutions obtained from (1.4.83), despite being able to display magnetization in
open-shell configurations, are not spin-polarized as the Hamiltonian ĤKS is indifferent

to the magnetization
∂Exc[n, m]

∂m(⃗r1)
= B⃗xc(⃗r1) = 0. Given that

[
F̂KS(r),i, Ŝz,i

]
= 0, the spin-

orbitals populate either the + or − channels: there is a common spin magnetization axis
for all atoms, implicitly aligned along the z axis m := mz. From equation (1.4.76) one
obtains for the magnetization:

mz(⃗r1) =− µB

occ∑
i

∑
α,β

ϕ∗α
i (⃗r1)σz,αβϕ

β
i (⃗r1) = −µB

occ∑
i

[
|ϕ+
i (⃗r1)|

2 − |ϕ−
i (⃗r1)|

2
]

=µB
[
n−(⃗r1) −n

+(⃗r1)
]

(1.4.84)

Including spin polarization means
∂Exc[n, m]

∂m(⃗r1)
= B⃗xc(⃗r1) ̸= 0, that is minimizing

the energy functional also with respect to the magnetization density. This is required in
order to obtain the spin magnetization density which matches that of the interacting sys-
tem in open-shell configurations. Spin polarization allows for electrons with the same
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spin to interact differently than those with different spin, due to the exchange interac-
tion. This way each channel experience a different effective potential, hence provid-
ing with unequal spatial solutions. Due to the lack of spin-polarization and the multi-
determinantal nature of the open-shell wave functions, spin-restricted calculations are
rarely used in open-shell mean-field theory calculations. Instead, a satisfactory solution
is given by the spin-unrestricted approach which allows for spin polarization.

1.4.4.2 Spin-unrestricted Kohn-Sham: collinear magnetism

In this situation, a global spin magnetization axis exists for all atoms. The z axis can then
be globally chosen along the direction of the magnetization axis m := mz. Any choice
of the quantization axis is possible since would lead to identical results. Now, setting
∂Exc[n, m]

∂mi(⃗r1)
̸= 0 ⇔ i = z implies a different effective potential for each channel:

the spatial orbitals are not restricted to be identical for both + and − electrons. The
magnetization along the z axis takes the same expression as the restricted counterpart
(1.4.84). We see that the set (n+(⃗r1), n−(⃗r1)) is completely equivalent to (n(⃗r1), mz),
as all statements can be equally well formulated in terms of these quantities, which must
match those of the interacting system. Now F̂KSi := F̂KS(u),i is diagonal in the spin space

spanned by Ŝz,i, but separate exchange-correlation operators for each α channel, results
in different Kohn-Sham Hamiltonians:

(
−

 h2

2m
∇2
1 + J(⃗r1) + V

α
xc(⃗r1) + Vext(⃗r1)

)
ϕαa (⃗r1) = ε

α
aϕ

α
a (⃗r1) a = 1, 2, . . . ,∞

(1.4.85)

withVαxc(⃗r1) =
∂Exc[n

+,n−]

∂nα(⃗r1)
. This way, the internal spin-effects included in Exc[n+,n−]

contribute to the difference between the spin up and spin down potentials. The ex-
change stabilizing energy becomes larger when more electrons populate one channel,
as this terms measures the overlap between spin-like electrons. Each of the resulting
+ and − channels form a complete set of orthonormal orbitals ⟨ϕαr |ϕαs ⟩ = δrs, but +
and − orbitals are in general not orthogonal to each other ⟨ϕ+

r |ϕ
−
s ⟩ ̸= 0. The iterat-

ive solution of each equation provides the Kohn-Sham orbitals for each spin compon-
ent, as now they are free to have different spatial orbitals and energies. However, both
equations are coupled through the Hartree operator, which depends on the total density
n(⃗r1) = n

+(⃗r1) +n
−(⃗r1). As such they must be solved simultaneously.

As F̂KS(u),i is diagonal in the spin space, it commutes with Ŝz,i and its eigenstates can-

not mix those of Ŝz,i: they have a well defined spin orientation. Thus, the populations
for each channel are conserved and the z-component of the total spin operator Ŝz is a
constant of motion:
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Ŝz =

N∑
i

Ŝz,i =
 h

2

N∑
i

σz,i =
 h

2

∑
α,β

∫
ψ̂†
α(⃗r1)σz,αβψ̂β(⃗r1)d⃗r1

=
 h

2

∫ [
ψ̂

†
+(⃗r1)ψ̂+(⃗r1) − ψ̂

†
−(⃗r1)ψ̂−(⃗r1)

]
d⃗r1 =

 h

2

∫ [
n̂+(⃗r1) − n̂

−(⃗r1)
]
d⃗r1

=
 h

2

[
N̂+ − N̂−

]
(1.4.86)

Furthermore, the total magnetization of the system can be obtained in terms of the
population difference between channels:

mz =

∫
mz(⃗r1)d⃗r1 = µB

∫ [
n−(⃗r1) −n

+(⃗r1)
]
d⃗r1 = µB

[
N− −N+

]
= −

2µB
 h

⟨Φ| Ŝz |Φ⟩ = −2µBMs

(1.4.87)

where we considered (1.4.84) and (1.4.86), and we set the eigenvalue of Ŝz as Ms =
N+ −N−

2
. As seen the non-interacting Hamiltonian ĤKS =

∑
i F̂
KS
(u),i commutes with

Ŝz, therefore the Slater determinants built from the spin-orbitals with well-defined spin
orientation present Ms as good quantum number. However, ĤKS does not commute in
general with the total spin-squared operator Ŝ2. The reason lies in the different treat-
ment for the electrons depending on which channel they populate, that would otherwise
occupy the same spatial orbital. One has to bear in mind that we aim to find the single
Slater determinant which provides the exact electronic and magnetic densities. The vari-
ational freedom in (1.4.80) allows for a different treatment of + and − electrons, so that
given the exact exchange-correlation potential, both Kohn-Sham electronic and mag-
netization densities agree with those of the fully interacting system. Hence, spin con-
tamination is allowed since we do not seek that the Slater determinant of Kohn-Sham
orbitals should be an approximation to the true wave function in first place [70, 71].
A similar conclusion can be drawn in the unrestricted Hartree-Fock method where in
general, allowing for relaxation of the restricted single determinant to an unrestricted
determinant provides a more reliable wave function. Indeed, the unrestricted scheme
lowers the Hartree-Fock energy proving that the solution is more accurate, at the ex-
pense of breaking the spin symmetry of the exact wave function.

One can obtain the expectation value of Ŝ2 from the Slater determinant built from the
Kohn-Sham spin-orbitals [72]:

⟨Ŝ2⟩ =Ms(Ms + 1) h
2 +  h2N− −  h2

N+∑
s

N−∑
r

∣∣∣∣∫ ϕ∗+
s (⃗r1)ϕ

−
r (⃗r1)d⃗r1

∣∣∣∣2 (1.4.88)
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with N− set as the minority channel. In the spin-restricted case, we forced both spin
orientations to have the same spatial orbital. As such,

[
ĤKS, Ŝ2

]
= 0 since there is

no difference between the effective Hamiltonians for + and − electrons. Certainly, a
spin-restricted Slater determinant is an eigenstate of Ŝ2 if it is either a closed-shell con-
figuration S = 0 or an open-shell high spin determinant S = |Ms|, hence from (1.4.88)
the integral equals  h2N− resulting in ⟨Ŝ2⟩ = Ms(Ms + 1) h

2. In the unrestricted case,
this cancellation is only partial and a larger expectation value is obtained, indicating
that the determinant has other higher spin states mixed in. This is referred to as spin
contamination. This way, the spin-unrestricted Slater determinant is expanded as a lin-
ear combination of eigenstates of Ŝ2 of higher multiplicity with the same Ms, |S,Ms⟩
(the contaminants).

Despite the spin contamination, an unrestricted determinant is generally used as a first
approximation to the eigenstate of Ŝ2 with S = |Ms|. In the unrestricted Hartree-Fock
method, spin contamination might yield a significant error on the calculated ground-
state wave functions and energies, as such one should check the amount of spin con-
tamination present from (1.4.88). On the other hand, it is found that in Kohn-Sham
calculations in general |S =Ms,Ms⟩ is consistently the predominant term in the ex-
pansion in eigenstates of Ŝ2. Therefore only a modest spin contamination is obtained
[73].

1.4.4.3 Spin-unrestricted Kohn-Sham: non-collinear magnetism

Lastly, if
∂Exc[n, m]

∂m(⃗r1)
= B⃗xc(⃗r1) ̸= 0, then F̂KSi mixes both spin orientations as B⃗xc(⃗r1)

presents non-diagonal elements in the Ŝz,i basis. Consequently one cannot establish a
common magnetization axis, and the Kohn-Sham states result in spin-orbitals without a
well defined spin orientation. The eigenstates of F̂KSi mix those of Ŝz,i. This is the case
of non-collinear magnetism, canted or spiral magnetization, frustrated spins or Spin-
Orbit coupling. However, in the absence of the Spin-Orbit effect the system is invariant
under a general common rotation of all spins (provided there is no external magnetic
field), as the total spin operator Ŝ commutes with the non-relativistic Hamiltonian Ĥe.
As such the total wave function would be an eigenfunction of Ŝz and Ŝ2. The relativistic
effects have been disregarded since the beginning, but we can approximate this term
from Dirac’s equation which accounts for relativistic phenomena. The physical meaning
of the Spin-Orbit coupling is the interaction between the spin magnetic moment of the
electron, and the Lorentz-transformed magnetic field from the potential nuclear gradient
∇ϕ. Therefore, if the Spin-Orbit interaction is present, the spin and orbital angular
momenta are linked:

ĤSO = αŜ (∇ϕ× p⃗) (1.4.89)
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with α a constant. Since this relativistic correction acts predominantly in the immediate
vicinity of the nuclei, one can estimate that the nuclear gradient ∇ϕ is predominantly
that of the single atom, hence purely radial:

ĤSO = αŜ
(
∂ϕ

∂r

r⃗

r
× p⃗
)

= α
1

r

∂ϕ

∂r

(
ŜL⃗
)

(1.4.90)

with L⃗ = r⃗× p⃗, the angular orbital momentum operator. As a consequence, the elec-
tronic spin and angular momentums are coupled. Due to this coupling between the
atomic potential landscape and the electron spin, the orientation of the magnetization is
no longer arbitrary but certain directions are preferred, giving rise to a magnetic aniso-
tropy: the total spin operator Ŝ no longer commutes with Ĥe. It is required in any case
a noticeable angular orbital momentum for the electrons to interact with its spin. An
orbital magnetic moment must jointly surge. The orbital magnetic moment results, in a
classical picture, from the orbital motion of the electron around the nucleus, and in the
free atom becomes notably important from its quasi-spherical symmetry. However, in
the formation of molecules or bulk systems the crystal field averages out the individual
nuclear attraction and the electron belongs to the whole system, thus quenching its or-
bital angular moment. The Spin-Orbit terms gives rise to a finite orbital momentum in
the vicinity of an atom, larger with increasing strength of the Spin-Orbit coupling:

mL = −
µB
 h

atoms∑
ν

⟨Φ| L⃗ν |Φ⟩ (1.4.91)

with L⃗ν =
∑N
i r⃗i × p⃗i.

1.5 K O H N - S H A M I M P L E M E N TAT I O N S

Several DFT Kohn-Sham based codes exist, which allow the simulation of both periodic
and isolated systems, from a few up to thousands of atoms. Most of them rely on the
pseudopotential approach. Accounting for all the electronic structure is expensive and
inefficient, since many electrons will not participate in the chemical bonding. Further-
more, the single-particle wave functions for the valence electrons tend to make rapid
oscillations near the nucleus, due to the orthogonalization condition with respect to the
core electrons. As such, their description becomes expensive. One can approximate the
innermost (core) electrons as being chemically inert, considering only the remainder
valence electrons in the calculation. These then would be subject to an effective ionic
potential, which comprises now both the nuclei and core ‘frozen’ electrons, removing
the orthogonalization requirement and softening the wave functions for the valence elec-
trons. This effective potential is termed as pseudopotential. Different schemes have been
proposed in the literature, but overall conforming to a general strategy. One starts by
computing the all-electron wave function of a reference atom through the Kohn-Sham
equations. Given the spherical symmetry, the single particle wave functions are products
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of radial and angular components (spherical harmonics)φ(⃗r) = ϕnl(r)Yml (θ,ϕ). Then,
one replaces the radial wave function inside a specified radius by a suitable pseudo wave
function, which must fulfil some continuity condition:

ϕ̃nl(r) =


∑
i αiβi(r), r < rc,l

ϕnl(r), r >= rc,l,
(1.5.1)

with rc,l the l-dependent pseudization radii, and αi the coefficients of the expansion in a
given base {βi(r)}; commonly polynomials [74] or spherical Bessel-functions [75] are
employed. One then attempts to replace the exact wave function by a node-less pseudo-
wave function inside the pseudization, or core radius. The condition imposed on this
process determines the type of pseudopotential. From the resulting pseudo wave func-
tion, one inverts the Schrödinger equation to obtain the radial potential which would
produce such wave function agreeing with the exact eigenvalue, after removing the
screening effects from the valence electrons:

Vanl(r) = εnl −
l(l+ 1)

2r2
+

1

2rϕ̃nl(r)

d2

dr2

[
rϕ̃nl(r)

]
V
ps
nl (r) = V

a
nl(r) − VH[nv(⃗r)] − Vxc[nv(⃗r)]

(1.5.2)

with nv(⃗r) the valence electron charge. For each angular momentum l, a different
pseudopotential is obtained. One has to note that, while the Hartree term is a linear
functional of the electron density, that is, can be separated in core and valence density
contributions, the same is not true for the exchange-correlation energy: the exchange-
correlation energy cannot be exactly partitioned. Consequently, the actual electronic cal-
culation of the exchange-correlation energy one includes a fraction of the core charge
nc(⃗r) in those regions where the core and valence charges overlap. This technique is
called non-linear core correction [76].

The resulting pseudopotential is usually divided into two components: a local poten-
tial that can be described by a radial function Vloc(r), and a non-local part [77] which
constitutes the deviation from the all-electron potential inside the core region, for each
angular momentum channel:

Vps(r) = Vloc(r) +
∑
l

|χl⟩Vl(r) ⟨χl| (1.5.3)

with |χl⟩ ⟨χl| a projector localized inside the cut-off radius for the angular momenta l.
Outside the core region, the local potential dominates with the correct asymptotic beha-
viour.

Now, depending on how the wave function was tuned in first place, one obtains dif-
ferent types of pseudopotentials. Imposing the same norm as the exact wave function
results in norm-conserving pseudopotentials [78]:
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∫ rc,l

0
|ϕnl(r)|

2r2dr =

∫ rc,l

0
|ϕ̃nl(r)|

2r2dr (1.5.4)

That is, the pseudo wave function integrates to the all-electron charge inside the cut-
off region. However, one can obtain smoother pseudo wave functions releasing this cri-
terion. Ultrasoft pseudopotentials [79] are obtained from valence wave functions which
do not fulfil the norm conservation criterion inside the core radius, hence a charge de-
ficit is generated. This way, core augmentation charges are devised as the difference
between the all-electron and the pseudo wave functions norms:

Qnm = ⟨ϕn|ϕm⟩− ⟨ϕ̃n|ϕ̃m⟩ =
∫
ϕ∗
n(r)ϕm(r)dr−

∫
ϕ̃∗
n(r)ϕ̃m(r)dr (1.5.5)

Once tuned the pseudo wave functions, after inversion of the Schrödinger equation
and descreening procedure, the Ultrasoft pseudopotential is defined:

VUS(r) = Vloc(r) +
∑
nm

|βn⟩Dnm ⟨βm| (1.5.6)

with
∑
nm |βn⟩ ⟨βm| projectors strictly localized inside the cut-off region for the wave

functions, and:

Dnm = ⟨ϕ̃n|
(

 h2

2m
∇− Vloc(r)εm

)
|ϕ̃m⟩+ εmQnm (1.5.7)

If we insert (1.5.5) in (1.5.7), one readily sees that this term just replaces the pseudo
energy contribution by the all-electron counterpart inside the core region:

Dnm = − ⟨ϕ̃n|
(
−

 h2

2m
∇+ Vloc(r)

)
|ϕ̃m⟩+ ⟨ϕn|

(
−

 h2

2m
∇+ VAE(r)

)
|ϕm⟩

(1.5.8)
thus leading to the all-electron eigenvalues for the pseudo wave functions.

Lastly, the projector augmented wave method (PAW) can be regarded as a generaliza-
tion of the Ultrasoft pseudopotential [80–82]. In this approach, it is obtained a more re-
liable description for the pseudo wave functions as it attempts to recover the all-electron
behaviour inside the core regions. For the valence electrons, a transformation from the
pseudo to the all-electron wave function is defined:

|ϕn⟩ = |ϕ̃n⟩− |ϕ̃n⟩sphere + |ϕn⟩sphere (1.5.9)

with |ϕ̃n⟩ the pseudized wave function, identical to the all-electron in the interstitial
region between the PAW spheres, which define the core atomic zones. Inside the spheres
the pseudo orbitals are only a computational tool and an inaccurate approximation to the
true orbitals nonetheless. Hence the operation illustrated in (1.5.9), where the pseudo
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wave function |ϕ̃n⟩sphere is replaced by the all-electron one |ϕn⟩sphere inside the PAW
sphere. This is performed in terms of atom-centred localized functions |φ̃i⟩, |φ⟩i and
|p̃i⟩:

|ϕn⟩ = |ϕ̃n⟩−
∑
i

|φ̃i⟩ ⟨p̃i|ϕ̃n⟩+
∑
i

|φi⟩ ⟨p̃i|ϕ̃n⟩ (1.5.10)

with |p̃i⟩ the projector function in the PAW sphere and |φ̃i⟩, |φi⟩ a basis set of partial
waves. The all-electron partial waves |φi⟩ are solutions to the radial Schrödinger equa-
tion with the all-electron potential VAE(r). The pseudo partial waves |φ̃i⟩ are solutions
of a pseudopotential described as in (1.5.6), with PAW strength parameters Dnm and
augmentation chargesQnm defined similarly as in the Ultrasoft approach. This way the
pseudo wave function can display a softer shape in the PAW spheres, not bounded to
have the same norm as the all-electron wave functions. Both pseudo and all-electron
partial waves display the exact eigenvalue spectrum.

The PAW method is employed in the VASP (Vienna Ab initio Simulation Package)
code [83–85], where a plane wave basis set is used for the pseudo orbitals |ϕ̃n⟩. These
become the variational quantities during the Kohn-Sham self-consistent calculation.
Consequently, the PAW method is helpful in limiting the number of plane waves re-
quired to represent the wave functions, hence reducing the computational effort. Atom-
centred functions correct for the difference in shape of the pseudo orbitals with respect
to the all-electron orbitals inside the PAW spheres. This decomposition in three contri-
butions is performed for all other relevant quantities, such as densities and energies.

The SIESTA (Spanish Initiative for Electronic Simulations with Thousands of Atoms)
[86] method relies on the other hand in norm-conserving pseudopotentials. The nu-
merical solution of the Kohn-Sham Hamiltonian for the isolated pseudoatom (1.5.3)
provides the atomic orbitals which conform the localized basis set. This basis set is em-
ployed to expand the Kohn-Sham orbitals, and can be enlarged including more radial
basis functions for each angular momentum l. This localized atomic basis has the ad-
vantage that comprises atomic information, thus the number of basis functions is greatly
reduced compared to the plane wave alternative.

1.6 T H E J E L L I U M M O D E L

The Jellium model is a model Hamiltonian for the electronic structure of metallic bulk
systems, where the nuclear potential is smeared out to form a homogeneous and static
positive charge density [87]. Any interaction or phenomena coming from the discrete
nature of the lattice such as lattice vibrations and their influence on the valence elec-
trons is neglected. This model is particularly suited for valence electrons in a metallic
system. Indeed, these electrons tend to have a delocalised wave function across the
whole system in the form of Bloch states, characterised by a lengthscale larger than the
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interatomic lattice distance. Therefore, the Jellium approximation consists of neglecting
this interatomic distance and averaging the nuclear attraction with the valence electrons.
This assumption simplifies the problem because the resulting system is invariant to all
translations, instead of being just invariant to lattice translations. The solution must in-
deed reflect this symmetry.

One starts with the system Hamiltonian:

Ĥ = T̂e + V̂ee + V̂nn + V̂en (1.6.1)

Now, we replace the discrete nuclear lattice by a homogeneous background of pos-
itive charge density n = N/V . One can prove that the Jellium nuclear background
interactions with the electrons and itself V̂nn + V̂en neutralize exactly with the homo-
geneous part of the electron-electron interaction V̂ee, namely the Hartree term, having
the same electronic density n = N/V . Indeed, one can show that V̂nn + V̂en + Ĵ = 0

resulting:

Ĥ = T̂e + V̂ee − Ĵ (1.6.2)

neglecting the non-homogeneous part of the electron-electron interaction V̂ee − Ĵ one
obtains the uniform electron gas, or Jellium model. The single-particle electronic states
are designated by plane waves, reflecting the continuous symmetry of the system. The
energy is that of the kinetic energy evaluated on the Slater determinant |Φ0⟩ conformed
by the lowest-lying energy states:

E0 = ⟨Φ0| T̂e |Φ0⟩ =
∑
k

 h2k2

2m
⟨Φ0| n̂k |Φ0⟩ =

V

4π3

 h2

2m

∫ |k|<kF
0

k2dk⃗ =
V

5π2

 h2

2m
k5F

(1.6.3)
with kF the last occupied k-state in the Fermi sphere of states. From this equation and
knowing that k3F = 3π2n, the kinetic energy expression per unit volume (1.4.17) is
obtained. If we define the energy in terms of rs, the average radius of a sphere containing
exactly one electron, one obtains for the energy per particle:

E0
N

≈ 2.211
r2s

Ry (1.6.4)

One sees that in principle, the electrons are not bounded to the Jellium background
unless we confine them. However, the non-homogeneous part of the electron-electron
interaction will help to stabilize the electronic system. As V̂ee ∝ r−1, it will scale
like the inverse of the average electron-electron separation and hence as r−1s . We can
expect that the non-homogeneous part of the electron-electron interaction acts as a small
correction to the kinetic energy ∝ r−2s for lower rs values, that is, higher densities. We
can evaluate V̂ee − Ĵ in first order of perturbation theory, and since the N-electron state
is a Slater determinant |Φ0⟩, the only contribution is the exchange term:
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E1
N

=
⟨Φ0| V̂ee − Ĵ |Φ0⟩

N
≈ −

0.916
rs

Ry (1.6.5)

which lowers the energy, as the Pauli repulsion between electrons reduces the average
Hartree repulsive contribution between electrons which over-estimate the energy. There
exists then an optimal density n which minimizes the energy and furthermore yields a
bonded configuration for the electrons. The negative exchange energy overcomes the
positive kinetic energy, hence the system is stable when the repulsive Coulomb interac-
tion is turned on. No external confinement potential is needed to hold the electron gas
in the ion Jellium together.

The Jellium model can be used in the description of metallic clusters, employing
the same arguments [88, 89]. The valence electrons are assumed to be delocalized and
moving freely in the background of a homogeneously distributed positive charge of ion
cores. As opposed to the bulk counterpart, the cluster is limited in size and the shape
of the ionic background determines the distribution of the electronic density, as well as
the single-particle states if a mean-field theory is considered. For instance, if a spher-
ical ionic Jellium background is assumed, the symmetry is imposed on the effective
potential of the single-particle states. These states will therefore have good angular mo-
mentum numbers, and are expressed as the product of radial functions and the spherical
harmonics. Consequently, an essential degeneracy is attained for the single-particle or-
bitals, which translates into electronic shells: 1S2, 1P6, 1D10, 2S2, 1F14, 2P6, 1G18,
2D10, 3S2, 1H22, 2F14, 3P6, 1I26, 2G18 . . . As the electrons fill these energy levels,
spherical shell closings occur for total electron numbers (magic numbers) of 2, 8, 18, 20,
34, 40, 58, 68, 70, 92, 106, 112, 138, 156 . . . On the other hand, when major electronic
shells are only partially filled the effective mean field potential tends to be deformed.
Indeed, in these situations the electronic density is not spherical, and a Jahn-Teller ef-
fect distorts the ionic background to maximize the overlap with the occupied orbitals
stabilizing them, at the expense of the unoccupied orbitals in the same shell. As such, in
these situations the background ionic density relaxes to another more stable ellipsoidal
shape, with lower symmetry and new minor electronic gaps. The bottom line is that in
this model, the electronic potential energy dominates the overall stability, and the nuclei
take the positions accordingly to stabilize the electronic contribution.
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E N H A N C E D G U P TA P OT E N T I A L B Y C O U L O M B I C
I N T E R AC T I O N S

In this chapter, we describe the first improvement to our nanoalloy interatomic poten-
tial. Locating the Global Minimum (GM) structure of a nanoparticle is a laborious task,
particularly so when dealing with nanoalloys. Certainly, the GM structure depends not
only on the cluster size but also on the chemical composition. And given a size and com-
position, not only the geometrical structure of the atomic skeleton has to be determined,
but also the preferred homotop, which increases the complexity of the potential energy
surface to be scanned as compared to homoatomic clusters. There may be situations
where the GM is a deep, well-defined minimum in the potential energy surface, while
in other cases the GM may be just slightly more stable as compared to a large number
of nearly degenerate clusters. In any case, in order to obtain good candidates to work
with during this dissertation, a combined Empirical Potential/ab-initio scheme is de-
vised. The Potential Energy Surface is thoroughly explored with a Global Optimization
algorithm using the Empirical Potential. This procedure must provide with reasonable
candidates for the global minimum structure, which in a second step are optimized at
the ab-initio level. The success of this method therefore relies mostly on the aptitude of
the Empirical Potential to provide sensible atomic configurations.

One sees then that the choice of the Empirical Potential is critical. Metallic systems
are normally well described by the Gupta potential [90, 91], often employed in nanoal-
loy research. However, there are subtle electronic effects that are not explicitly accoun-
ted by this potential, which reduces the predictive power of the combined EP-DFT ap-
proach. One of these would be the charge-transfer phenomenon, which becomes partic-
ularly significant for the Zn-Mg system as the two elements have sufficiently different
electronegativities [92]. As such a substantial electrostatic energy is present, which in
turn significantly affects the chemical ordering and the overall stability of the alloy. This
effect has been assessed in a previous work [93], where the magnitude of charge transfer
was found to be very large and indeed more typical of ionic solids than of usual metals,
although the nature of the bonding remains predominantly of metallic type. Further-
more, it is shown that the charge distribution for the Zn-Mg system can be expressed
in terms of the local chemical and geometrical environments of each atom. From these
results we can build a Coulomb-improved metallic Empirical Potential, accounting for
these effects.
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Figure 1: The Basin-Hopping transformed energy surface.

2.1 C O M P U TAT I O N A L D E TA I L S

2.1.1 The Basin-Hopping method

In the Basin-Hopping method [94], the Potential Energy Surface is transformed into
a stepped landscape with plateaus corresponding to the set of local minima configura-
tions obtained after local optimization (see figure 1). This way, the transformed energy
surface display the same minima with decreased energy barriers between them. On
the transformed energy landscape a Monte-Carlo exploration is conducted by perform-
ing random moves. Each move is then accepted or rejected according to a Metropolis
criterion. If the energy is lowered the movement is always accepted. Otherwise the
probability of acceptance is proportional to e−β∆E with β = 1/kBT . The larger the
temperature, the more likely the movement would be accepted. For instance, setting a
temperature equal to 0 for the Metropolis criterion entails a Monte-Carlo exploration
allowing only downhill moves. In the Basin-Hopping method, the effect the barriers
between minima have on the exploration over the original Potential Energy Surface is
removed, speeding up the sampling process and promoting the discovery of narrow and
confined basins.

2.1.2 Enhanced Gupta potential by Coulombic interactions

We start by defining the atomic charges acquired upon bond formation according to
the DFT-calculated Bader charges in [93]. These will be expressed in terms of bond
order parameters depending on their chemical and geometrical environments. We firstly
define the number of A-B bonds, being A and B Zn or Mg atoms, as a continuous real
variable by using a hyperbolic tangent function, as opposed to the original work where
a linear interpolation was used instead [93]:

N(A-B) =
1

2

[
−tanh

(
4.1
(
rij −

d1(AB) + d2(AB)
2

))
+ 1

]
(2.1.1)
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The hyperbolic function is constrained so that the coordination number is equal to
one for A-B distances shorter than d1(AB), and equal to zero for A-B distances longer
than d2(AB). These values depend on the two elements involved and are shown in
Appendix A. The bond order parameters accounting for the chemical and geometrical
environments of the atoms take the following expressions in terms of the number of
A-B bonds:

β(Zn) = N(Zn-Mg) − 0.2[N(Zn-Zn) +N(Zn-Mg)] + 1.08
β(Mg) = N(Mg-Zn) + 0.2[N(Mg-Mg) +N(Mg-Zn)] − 0.68,

(2.1.2)

Lastly, these bond order parameters are used to express the DFT-calculated Bader
charges. A quadratic polynomial fitting in terms of these parameters is performed to
obtain a functional expression for the atomic charges:

Q(Zn) =


AZn +BZnβ(Zn) +CZnβ(Zn)2 β(Zn) < 4.58

DZnβ(Zn) + EZn(β(Zn) − 4.58)2 + FZn 4.58 ⩽ β(Zn) ⩽ 8.08

GZnβ(Zn) +HZn 8.08 < β(Zn)

Q(Mg) = AMg +BMgβ(Mg) +CMgβ(Mg)2
(2.1.3)

where AZn = 0.0078, BZn = −0.1436, CZn = 0.0405, DZn = −0.5143, EZn =

0.0734, FZn = 0.8565, GZn = −0.0016, HZn = −2.3863, AMg = −0.1343, BMg =

0.4509 and CMg = −0.040. The piecewise function adjusted for Q(Zn) emerges to
prevent charge divergence when β(Zn) becomes larger, so it converges to −2.4e for
increasing β(Zn) instead. For a given atomic configuration (a set of atomic coordin-
ates), the order parameters of equation (2.1.2) can be readily obtained as they are ex-
plicit functions of the interatomic distances (2.1.1). Then, equation (2.1.3) provides the
Bader charges with an average error of ±0.03e without the need for their explicit and
expensive calculation.

Once the atomic charges are properly characterized, the ionic contributions to the
Empirical Potential can be implemented:

Eelec =
∑
(iα)

∑
j>i

Ji,jQiQj + Eself,(iα)

 , (2.1.4)

where Qi is the net charge on atom i, Ji,j is a screening function to prevent instabilities
associated with possible divergences and the α label distinguishes the species. The self-
energy Eself,(iα) is expressed as a power series expansion in terms of the atomic charges.
Now, given a parameterisation for the expansion coefficients, the atomic charges can
be obtained through the electronegativity equalization method [95–99]. This method
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relies on the fact that upon bond formation, the electronic charge distribute itself so
as to equalize the electronegativity over the whole system [32]. We have direct access
to the atomic charges nonetheless, so we shall attempt an alternate way to implement
(2.1.4) into a practical method. In the following article we develop further the approach
employed.

2.2 R E S U LT S A N D D I S C U S S I O N

After derivation of the enhanced Gupta potential, the resulting model is then applied
to locate the global minima structures of equiatomic Zn–Mg nanoalloys with up to
50 atoms in size through the combined EP-DFT approach. The Basin-Hopping Global
Search algorithm within the GMIN code [100] is employed. The DFT calculations were
performed using the SIESTA [86] package. The putative global minima structures ob-
tained conform to a Jellium picture of delocalized electrons. The chemical ordering
is explained by a competition of factors, among which the noticeable charge transfer
stands out.

Concerning its performance, the obtained enhanced Gupta potential greatly improves
the energetic ordering of homotops, allowing finding much more stable chemical order
patterns than the bare Gupta potential. While the bare Gupta potential could correctly
capture the main structural features of these nanoalloys, it was not able to locate the
most stable homotops [93]. This failure was then tentatively traced back to the omis-
sion of the strong Coulombic interactions originating from charge transfer. The Gupta
potential improved with Coulombic interactions in turn offers a substantial upgrade in
the description of chemical order in Zn–Mg nanoalloys. This is evaluated by means
of its capability to locate the correct global minima structures in a homotopic Basin-
Hopping search. It is found that for every ratio on a test system the chances to locate
the correct global minimum structure substantially increase when using the improved
potential.

Lastly, the ionic contribution only amounts to 6% of the total binding energy, indic-
ating that charge transfer effects do not seem to be the main quantitative correction in
the search for a very accurate potential for the Zn-Mg system. A more advanced model
will be devised in the following chapter, which will greatly improve the description of
this system.
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3
A N E W M O D E L F O R T H E P OT E N T I A L E N E R G Y S U R FAC E

In this chapter we present a novel method to characterize the Potential Energy Surface
of atomic interactions in nanostructures based on the Machine Learning technique: the
Neural Network Potential (NNP).

Machine Learning is a relatively new field in Computer Science, closely related to
computational statistics. The objective is to develop algorithms which, by analysing a
data sample of a given phenomenon, are capable of generalizing and making predic-
tions or decisions in situations not covered by the data, that is without being explicitly
programmed to do so. Based on the patterns found on the data set, these programs al-
low the computer to answer questions without having in advance the answer: they learn
from the data, they find the logic that lies beneath and provide a response based on that
logic. Thus, one can easily grasp the current interest in such models and why Machine
Learning is a hot topic in a wide variety of areas like bioinformatics, physics or finances.

Machine Learning tools can be classified in several categories depending on the type
of problem they are intended to tackle and how they are implemented. Here, we focus in
the so called supervised learning, in which the computer is fed with a set of inputs and
the desired outputs, so that it can find the logic or rule that connects both. Depending
on the output, we have two different categories:

• Classification: The prediction is a category. The tool will produce a model that
sorts the given inputs into classes. For example, identification of digits based on
hand-written pictures.

• Regression: The prediction is a number. The tool will find the functional relation-
ship between numerical inputs and targets, thus obtaining a continuous function.
This is the kind of problem that we will face in the present work.

One of the most well known techniques in supervised learning are the Neural Net-
works (NN), whose main idea is described in the following section.
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3.1 T H E N E U R A L N E T W O R K A P P RO AC H

Figure 2: Scheme of a Perceptron with four input
values.

Artificial Neural Networks are compu-
tational algorithms inspired in the bio-
logical neural networks [101]. Despite
its recent popularity, this concept is not
new. Neural Networks and Artificial In-
telligence notions can be traced back to
the mid-20th century in the form of the
Perceptron by Rosenblatt [102]. The Per-
ceptron presents a simple model con-
sisting of a single artificial neuron unit,
which receives an input signal from sev-
eral sources weighted by the strength of
each connection. Then the neuron sums
up all the signals to provide either a 1 or
a 0, depending on a threshold (the result
of the Heaviside step function). See figure 2. With this model one can perform simple
binary linear classification tasks, capable of discriminating between two sets of entities.
Every entity is expressed as a vector of features X, conforming the input signal for the
Perceptron. Then the Perceptron acts as a binary linear classifier arranging every entity
according to the value of its associated linear combination of features:

y =

1, XW > 0.5

0, XW < 0.5,
(3.1.1)

As we see, every entity expressed as a vector of features is labelled with either a 1 or
a 0. The Perceptron can learn the rule which discriminates each group by adjusting the
parameters of the model W.

This idea whilst an important breakthrough faced great criticism, as it was quite lim-
ited in its capabilities [103]. The main reason is that single Perceptrons, being linear
classifiers, are only able of learning linearly separable patterns. A pattern is said to be
separable if the two sets of entities can be delimited by a hyperplane (called decision
boundary) in the space spanned by the features. If this is the case, the Perceptron can
decide to which group an entity belongs by evaluating on which side of the hyperplane
resides (see figure 3a). For the Perceptron illustrated in 2, the decision boundary corres-
ponds to those features associated with the threshold value of 0.5 (equation (3.1.1)). If
the pattern is not linearly separable, the Perceptron will fail to successfully differenti-
ate between both groups, as it is required a non-linear decision boundary in the feature
space (figure 3b). In the following section we will address this issue further.
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(a) A linearly separable pattern. One can draw
a linear decision boundary between the two
groups.

(b) A non-linearly separable pattern. Two linear
decision boundaries are required to discrimin-
ate between the two groups.

Figure 3: Comparison between a linearly and non-linearly separable patterns.

However, the major concern was the misguided belief that Multilayer Perceptrons
could not either learn non-linearly separable patterns, which caused a significant de-
cline in interest on Neural Network research. It was after more advancements in com-
puting power that in the late 20th century we retook Rosenblatt’s Perceptron idea in a
multilayer form. Hence, Multilayer Perceptrons were devised. Also simply referred as
Artificial Neural Networks, they are conformed by an ensemble of interconnected artifi-
cial neurons, each of which receives a signal that propagates to the subsequent neurons
through a non-linear function σ(x). The Neural Network has the following general struc-
ture: an input layer of nodes from where the signal is created in first place, followed by
one or more layers of nodes (called hidden layers) through which the signal evolves,
and lastly one output layer where the signal dies providing the user with a result. How
one arranges the hidden layers and let the propagating signal to move determines the
kind of Neural Network, thus offering a wide variety of architectures. In particular, the
feed-forward Neural Network (figure 4) is the simplest kind.

In a feed-forward Neural Network the information evolves only in one direction, from
the input to the output layer passing through each hidden layer once. Here, each node
in a given layer is connected to every node in the subsequent layer, so the output of a
layer conforms the input for the following one. One can readily see that this architec-
ture conforms to a set of multiple layers of Perceptrons chained through a non-linear
function σ(x), hence the name. The mathematical expression which condenses this idea
in matrix form is as follows:

Xk+1 = σ(XkWk,k+1 + Bk+1) (3.1.2)
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Figure 4: Scheme of a feed-forward Neural Network with two hidden layers.

where Xk is the output signal of the k-layer, Wk,k+1 is the matrix of weights that con-
nects the nodes between layers k and k + 1, Bk+1 is a bias term (used to shift the
argument of σ) in the k+ 1 layer and σ the non-linear function (commonly known as
activation function) which builds the output of the k+1 layer Xk+1. All weight matrices
and bias vector arrays (from now on, simply weights) are real-valued, and should be
such that the output layer provides accurate predictions. In regression problems, we
want the Neural Network to fit a target function. This goal is achieved through the train-
ing process employing the so called ‘Backpropagation’ procedure, and although strictly
speaking is a parametric model since it has a fixed number of weights, this number is
unbounded thus becoming virtually non-parametric [104].

Despite its simplicity, it encloses a very powerful potential. According to the Univer-
sal Approximation Theorem [105], any continuous multidimensional function can be
approximated to any desired degree of accuracy by increasing the number of neurons
in a single hidden layer of a feed-forward Neural Network. The only requirement is
to use a non-polynomial, bounded and monotonically-increasing continuous activation
function. In practice, the accuracy is always limited by the size of the input data set
and the appropriateness of the descriptive features chosen for the input layer. Thus, one
can readily understand why these techniques are being employed in such a wide spec-
trum of applications. One could wonder if it is possible to fit the energy of a quantum
system with absolute accuracy using this method, provided that the Universal Approx-
imation Theorem guarantees any desired degree of accuracy. Unfortunately, this is not
the case due to a simple reason. We need to provide suitable feature descriptors to the



3.1 T H E N E U R A L N E T W O R K A P P RO AC H 81

feed-forward Neural Network so that it can find the correct relationship between these
inputs and the targets. In other words, the lack of a deterministic relationship between
inputs and targets avoids, in the end, the possibility of achieving infinite accuracy. Our
systems under study and in general any quantum system, are well too complicated to
be described by a limited number of numerical inputs, although one could in principle
devise a series of inputs of increasing size which could actually provide a fair enough
accuracy. This is not the aim of this work nonetheless, but much effort is put nowadays
in finding an optimal set of descriptors for quantum chemistry purposes. Later on, we
will describe the inputs used in this work, and discuss whether it is always convenient
to achieve a high accuracy in the model.

3.1.1 The activation function

The question now is why stacking hidden layers between the input and output nodes
provides the ability to learn non-linearly separable patterns, as opposed to a single Per-
ceptron. The answer resides in the interaction terms within the model. For instance, the
outcome of a single Perceptron despite being passed through a non-linear function, al-
ways depends on the sum of the products between inputs and weights. The non-linear
transformation is placed after the linear reduction to a single value is performed, hence
the resulting model is still linear in both weights and inputs. On the one hand, there
are no interactions between the inputs of the model, that is, non-linear combinations of
features. As such the decision boundary is linear in the space spanned by the inputs,
the feature space. On the other hand, being linear with respect to the weights implies
that it is a linear statistical model, which may be estimated using linear least squares
for instance. As an example, placing a logistic curve in the output neuron implements a
logistic regression model (which is a generalized linear model).

Due to the same reasons, if a Neural Network presents linear activation functions one
finds that irrespective of the number of hidden layers, the resulting model is linear. For
simplicity, imagine we had a feed-forward Neural Network with one single layer and
an activation function σ(x). From expression (3.1.2), the output would be:

y = σ(W2σ(W1X + B1) + B2) (3.1.3)

If σ(x) is a non-linear function, then y cannot be rewritten as a single linear operation
on X. This introduces non-linear relationships between the weights and inputs in the
model. Otherwise, if σ(x) were linear (we take σ(x) = x for simplicity) one obtains:

y = W2(W1X + B1) + B2
= W2W1︸ ︷︷ ︸

W

X + W2B1 + B2︸ ︷︷ ︸
B

= WX + B

(3.1.4)
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We can do the last step because any combination of linear transformations can be re-
placed with one transformation and a combination of several bias terms is just a single
bias. This way this model can be rewritten as a linear model in terms of both inputs
and weights, that is, is linearizable. Having a linear activation function behaves as if the
hidden layers were not there at all, as the input layer X connects directly with the output
layer y. Simply put, the output is a linear function on the inputs in the same way as the
single Perceptron model: placing a Heaviside step function in the output node results in
the same scheme illustrated in 2 (ignoring the bias term). The model becomes a binary
linear classifier whose decision boundary in feature space is linear. Hence, one needs at
least one hidden layer with non-linear activation functions if one demands the Neural
Network to be able to learn non-linearly separable patterns, namely, to fit an arbitrary
non-linear continuous function. The activation function’s main purpose then is to allow
non-linear relationships within the model, between inputs and weights, yielding a non-
linear decision boundary. The wider the hidden layer, the more non-linear relationships
can manage the Neural Network, resulting in a more complex decision boundary. Or
expressed in terms of a regression problem, more flexibility is granted to the model to
fit an arbitrary non-linear function. One sees then, as stated by the the Universal Ap-
proximation Theorem, that the accuracy of the model is only a matter of the number
of neurons in the hidden layer. In our example in the figure 3, the single Perceptron
could not find the decision boundary which discriminates both groups (figure 3b). Sim-
ilarly, the decision boundary of a Neural Network with one hidden layer composed of a
single node comprises just a single plane. However, adding a second node incorporates
a second linear-like decision boundary, being able then to classify the pattern. The com-
bination of both planes is seen as a non-linear decision boundary in the feature space.

Being (3.1.4) a linear model, a linear regression can be performed to obtain the weight
parameters. The Ordinary Least Squares (OLS) cost function in Ordinary Linear Regres-
sions is always convex regardless of the input dataset. This means that the cost function
has a unique minimum being naturally the global minimum. Conversely, a non-linear
model is generally non-convex, and many local minima can be present over the Least
Squares cost function surface. One has to note that a non-linear model is that which
cannot be written as linear in the weights of the model. For instance, a polynomial re-
gression fits a non-linear model to the data, but is a linear model since is linear in the
unknown parameters. As such, the estimation of the polynomial regression coefficients
using Ordinary Least Squares is a convex problem. A Neural Network with non-linear
activation function will present non-linear interaction terms between the weights, res-
ulting in a non-linear model.

The first activation functions used were sigmoids, since they fulfill all the condi-
tions imposed by the Universal Approximation Theorem. And for many problems they
perform sufficiently well. However, several other activation functions with interesting
properties have been developed ever since, although they do not satisfy all of the men-
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tioned requirements. These are the rectifiers, whose main difference as compared with
the sigmoids is that they are not bounded. Examples of both kinds of activation func-
tions are illustrated in figure 5.

logistic function σ(x) =
1

1+ e−x

hyperbolic tangent σ(x) = tanh(x)

Relu σ(x) = max(0, x)

Swish σ(x) =
x

1+ e−x

Figure 5: Examples of activation functions. Note the difference between sigmoids (bounded)
and rectifiers (not bounded).

The first two activation functions are sigmoids while the other two are rectifiers. The
sigmoids present a drawback which is the ‘vanishing gradient problem’, due to precisely
being bounded. We will see later reviewing the Backpropagation algorithm, that in the
training process the rate of change of the Neural Network’s weights depends on the de-
rivative of the activation function. This way large derivatives of the activation function
would drive large changes in the weights’ values and similarly, minor gradients will
not produce a noticeable change in the weights. One can see in 5 that the sigmoids’
derivative evaluated at large positive or negative x values becomes 0, and as a result the
Neural Network stops learning (in other words, the training process halts). On the other
hand, rectifiers suffer from the opposite flaw: the ‘exploding gradient problem’. This
may happen when these gradients become too large instead, a situation likely to happen
if the activation function is not bounded, so that the optimization of the weights during
the training process may potentially blow up.

Therefore, the choice of a suitable activation function is crucial since it will notably
affect the training process. Despite being argued that the rectifiers are superior com-
pared to the sigmoids, one cannot ensure in advance which one is better. One has to
check which activation function performs the best for the problem at hand.

3.1.2 What does the Neural Network learn?

In the previous section, we have assessed the role the activation function plays in the
Neural Network. It is not quite clear yet however, what and how the Neural Network
learns. We might now take some perspective by comparing this method with a related
Machine Learning technique: the Support Vector Machines or more commonly known
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as Kernel Regressions.

Kernel methods are a class of algorithms used in supervised learning to fit non-linear
models, by reformulating the non-linear problem into a convex optimization one. Gener-
ally, the set of observed predictor variables cannot be accurately fitted by a linear regres-
sion, given that the model is expected to be non-linear with respect to these predictors.
In classification terms, the problem is not linearly separable in the feature space, and as
such the decision boundary is not linear. A non-linear transformation defined by the Ker-
nel function is used to map the observed predictor variables onto a higher-dimensional
space, where it is more likely that the transformed data becomes linearly separable.
The number of new features is always larger than the number of original predictors,
thus the features span a higher-dimensional space as compared to the raw input data.
In this space therefore an Ordinary Linear Regression can be successfully performed,
hence resulting in a convex optimization problem. Simply put, the Kernel regression
is a linear method operating on the feature space induced by the Kernel function over
the original features. Considering a non-linear Kernel, it replaces the original set of pre-
dictors by a more complex set of features comprising interaction terms between them.
As a simple example, we shall imagine that we have two original predictor variables:
{X1,X2}. Instead of performing an Ordinary Linear Regression on these variables, we
could use as predictors their polynomial expansion so as to obtain the following array
of features:

{
X1,X2,X1X2,X21,X

2
2

}
. Now an Ordinary Linear Regression on these new

features would result in a non-linear model (a polynomial regression) in terms of the
original predictor variables X1,X2.

Let us see how it is generally done. Starting with an Ordinary Linear Regression:

y = Xβ+ ϵ

β̂ = (XTX)−1XTy
ŷ = X′β̂

(3.1.5)

where X is the matrix of row-vectors xi of predictor variables (that is, our input data), β̂
is the parameter vector whose elements are the estimator coefficients of β by Ordinary
Least Squares, y is the vector of observed values for the dependent variable (our targets)
involving some error ϵ and ŷ are the values predicted by the model for some query input
X′. In those situations where some predictive variables xi are linearly dependent (the
data provided exhibits multi-collinearity), we find a singular XTX matrix that cannot
be inverted. In that case, one adds a Tikhonov or Ridge regularization to perform the
Ordinary Ridge Regression:

β̂ = (XTX + λI)−1XTy (3.1.6)

so that we can solve the linear regression problem by inverting (XTX + λI) whose
dimensions are the number of predictors. Now, let us imagine that we know that the
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functional dependence of y is not linear with respect to the input X but polynomial. We
could apply a non-linear transformationφ on X to find the predictors Z whose Ordinary
Least Squares estimate of β would provide the desired functional form of ŷ (that which
fits the observed y). In this case, φ is a polynomial expansion. This is the first essential
idea behind Kernel Regressions: we perform a linear regression with respect to some
more involved predictors through a feature space mapping. The new set of features are
simply non-linear functions of the predictors, and will be very often overcomplete, thus
the need for Ridge regularization. Now, in order to obtain the fitting parameters of the
model β̂, an Ordinary Ridge Regression is performed in this higher-dimensional space
of features. If this non-linear transformation of the initial predictors takes the form
Z = φ(X) and Z′ = φ(X′), doing some algebra the regression on these Z features
takes the form:

β̂ = (ZTZ + λI)−1ZTy = ZT (K + λI)−1y = ZT α̂

α̂ = (K + λI)−1y
ŷ = Z′β̂ = K′α̂

(3.1.7)

We define κ(a, b) = φ(a) ·φ(b) the Kernel function, which takes two vectors a and
b of the input space (i.e. vectors of features computed from training or test samples), and
returns their inner product in a new feature space based on some mappingφ. Taking the
polynomial example, the polynomial Kernel κ(a, b) = (aT · b)n defines a feature space
through the polynomials over the original predictors. Taking as the original predictor
variables {X1,X2} and n = 2 one obtains:

κ(a, b) = (aT · b)2 = (a1b1 + a2b2)
2

= a21b
2
1 + a

2
2b
2
2 + 2a1b1a2b2

= (a21,a
2
2,
√
2a1a2)

T · (b21,b22,
√
2b1b2)

= φ(a) ·φ(b)

(3.1.8)

One sees then that the new set of features transformed by φ is
{
X21,X

2
2,X1X2

}
: the

(implicit) feature space of a polynomial kernel is equivalent to that of polynomial re-
gression of degree 2. K′ = Z′ZT and K = ZZT are the Kernel matrices whose elements
represent the inner products in the transformed feature space kij = κ(xi, xj). Note
that K represents the inner products between input data while K′ represent the inner
products between input data and some query input. Lastly, α̂ is the estimator coeffi-
cients vector obtained through linear regression of y = Kα̂. The second crucial idea is
the so-called ‘Kernel trick’. We see that K+λI whose dimensions are the number of ob-
servations, is normally smaller in size than ZTZ+ λI whose dimensions are the number
of transformed features. This way it is computationally cheaper to invert K = ZZT and
to obtain the model’s coefficients α̂, which are in fact elements of an array of dimen-
sions equal to the number of observations. Through the Kernel function, we do not have



86 A N E W M O D E L F O R T H E P OT E N T I A L E N E R G Y S U R F AC E

to explicitly apply the transformation φ to represent the input data in the transformed
higher-dimensional feature space, so as to perform the linear regression to obtain α̂.
The Kernel function already returns the inner product in the transformed feature space
given by φ to build the required Kernel matrix K. And since φ is a non-linear function
of the initial predictors, we end up fitting a non-linear model on the original predictors.

Lastly, let us show explicitly the prediction of ŷ in equation (3.1.7) taking as query
input xs:

ŷ(xs) =
∑
i

α̂iκ(xs, xi) (3.1.9)

The Kernel function measures the similarity between the query xs and the training
points xi in the higher-dimensional space, that is, implicitly projecting onto a basis set
on the high-dimensional feature space through the Kernel function, without explicitly
computing it in first place. That is the aforementioned ‘Kernel trick’. The solution is
therefore a weighted sum of the projection of the query input onto the feature space,
being as many basis Kernel functions as training points xi, whose importance on the
expansion is defined by the weight α̂i. We similarly see that Kernel Regressions are
non-parametric, since the number of optimizable parameters α̂ grows with the amount
of training data. As stated by the Representer Theorem [106], Kernel-based learning
aims at finding a non-linear relationship which can be expressed as (3.1.9), namely as a
sum of Kernel functions. If for instance, the Kernel function were the commonly used
Gaussian Kernel, then one would expand the solution ŷ in terms of Gaussian functions
centred around each training point xi. And given a test point xs, the predicted value will
depend mostly on those terms where the query input projects the most, which normally
is given by the difference between test point xs and training point xi (as in the Gaussian
Kernel).

Now, how this relates to the Neural Network approach? While the Kernel function
transforms the inputs to a feature space where hopefully the problem is linearly separ-
able, the Neural Network will find by itself the adequate feature transformation which
linearises the problem. The non-linear activation functions in a multi-layer neural net-
work produce a new representation of features for the original data allowing for a non-
linear decision boundary. We see then that the main difference is that in Kernel regres-
sions the feature transformation must be given, while the Neural Network model finds
out the Kernel transformation. The Neural Network takes the input layer, transforms
it into a higher dimensional space of features through the hidden layers, and then per-
forms a linear classification (or regression) on these new features. There is one caveat
however. The Kernel Regression is always a convex problem as guaranteed by Mercer’s
theorem [107], whose solution is expressed in equation (3.1.7): is linear with respect to
the model’s parameters α̂. Therefore, once selected a Kernel function and performed
the optimization correctly, you are guaranteed to get to the global optimal solution. The
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Neural Network on the other hand, presents non-linear interactions between the weights
through the activation functions. It is a non-linear model, hence a non-convex optimiz-
ation problem for the weights. The determination of the appropriate parameters poses
a serious challenge, which certainly delayed the extensive use of this method for some
time. We will assess the problem of finding the satisfactory weights in the following
section.

We can compare the Kernel Ridge Regression and Neural Network methods with the
following example. In figure 6 is shown a non-linearly separable pattern in the feature
space spanned by X1,X2. There is a feature space where the pattern becomes linearly
separable, and the Kernel which provides this transformation is the polynomial Kernel
with degree 2 (equation (3.1.8)). Then in the transformed feature space a linear decision
boundary can be drawn between both groups. This way a linear regression in terms of
X21,X

2
2 can be successfully performed to obtain the parameters of the model α̂ (figure

7a). In the same way, we can train a Neural Network to find the feature transformation
which linearises the problem: it will find the representation of features where the pat-
tern becomes separable by a hyperplane. For such thing at least 3 or more hidden units
are required to enclose the group of blue points (figure 7b). The price to pay is the use
of a non-linear model, implying an intricate numerical optimization to determine the
best-fitting parameters.

Figure 6: A non-linearly separable pattern in
X1,X2.

The considerable flexibility offered by
Neural Networks has been argued to be
a drawback, since exploiting its full po-
tential needs many training data, typ-
ically requiring way more data com-
pared to linear regressions, Kernel Re-
gressions or Gaussian Processes meth-
ods to reach the desired accuracy. How-
ever, the fundamental difference is that
the Neural Network model finds out the
adequate representation for the features,
while for Kernel Regressions or Gaus-
sian Processes the Kernel function must
be given. The search for the feature trans-
formation urges for training data in the
Neural Network model. This way, they
can be regarded as a generalization of the
other methods, and as such can be para-
metrised to perform as Linear, Kernel or
Gaussian Processes regressions.
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(a) The polynomial Kernel maps the input to the
feature space where the pattern is linearly sep-
arable.

(b) Each node in the Neural Network’s hidden layer
can be seen as drawing a decison boundary in
the input space. The output node splits the res-
ult into red and blue areas. More nodes would
grant more flexibility to the non-linear decision
boundary.

Figure 7: Comparison between Kernel Ridge Regression (left) and Neural Network (right) meth-
ods to approach the problem.

The Gaussian Process is a Bayesian technique where one obtains a probability dis-
tribution over possible functions which fits the observed data, and any finite sample
of these functions is jointly Gaussian distributed. More in detail, it is defined in first
place a k-dimensional normal distribution X ∼ Nk(µ,Σ), where X is a k-dimensional
random vector X = [x1, x2, ..., xk], being each dimension xi a random variable defin-
ing a uni-variate Gaussian distribution (in fact, any linear combination y =

∑
i aixi

is normally distributed). µ defines a k-dimensional mean vector for each random vari-
able, and Σ is a k × k covariance matrix (referred as Kernel). Hence for a given xi,
one obtains a Gaussian distribution with a mean value given by µi and a standard de-
viation given by Σii. The non-diagonal elements of Σ defines the correlation between
random variables. From this correlation, one can define a k-dimensional random vec-
tor f = [f(x1), f(x2), ..., f(xk)], with f a random function across the random variables,
which is nothing but the probability density function of the k-variate normal distribu-
tion. The key point is that we can define this function f across the random variables
since there is a correlation between them, as such given a x1 value, the subsequent
xk−1 values are delimited, drawing a function (simply put, the notion of continuity is
imposed by the Kernel function). This way we can take random samples generated by
the multi-variate normal distribution to define a set of smoothen functions, whose shape
is characterized by the Kernel Σ. If we now set k → ∞, then these functions become
continuous, and we can take a set of functions f defined at any point to build a pre-
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dicting model. The number of functions previous to any observed data can be infinite
(resulting in a non-parametric model), defining a prior multivariate normal distribution.
Implicitly, if infinite functions are considered, it means that no prior information is in-
corporated into the model assuming that every function is equally likely. Now, including
training data filters out the number of possible functions delivering a posterior distribu-
tion, which is also multivariate Gaussian distributed as any finite sample of functions is
multivariate Gaussian distributed. Therefore, the Gaussian process model is a probabil-
ity distribution over possible functions, where at any point xs the associated uni-variate
Gaussian distribution define a mean value µs used to predict, and a variance Σss, used
as an uncertainty measure.

Interestingly, being a Kernel-relying method, the predicted mean of the posterior dis-
tribution is expressed as (3.1.9) as stated by the Representer Theorem, that is, as a linear
combination of the Kernel function each one centred on a training point. Therefore one
can see that the predictions for Kernel Ridge Regressions and the mean of the Gaussian
Process regression are equal, as long as the same Kernel function and hyperparamet-
ers (namely, all the fixed parameters which determine the training process) are used in
both cases. And what is more, Gaussian Processes can be seen as equivalent to a feed-
forward Neural Network with a single infinite layer [108–110]. Indeed, regarding every
setting of a Neural Network’s weights as a specific function computed by the Neural
Network, we can consider a distribution over functions as a distribution over weights
instead. The weights in the Neural Network are set as independent and identically dis-
tributed (i.i.d.) random variables with known mean and non zero variance, conforming
a Bayesian Neural Network. Since from equation (3.1.2) one sees that the output of
the Neural Network would be the sum of i.i.d. terms, it follows from the Central Limit
Theorem that in the limit of an infinite layer’s width, the output Y(xs) = NN(xs) will
be Gaussian distributed. That is, at any point xs one finds an associated uni-variate
Gaussian distribution for Y(xs) with a defined mean and variance values. Therefore,
similarly to the Gaussian Process model, any finite collection of functions (settings of
the Neural Network’s weights) is multivariate Gaussian distributed (for any point xs
there is a uni-variate Gaussian distribution). Hence, besides a prediction for each xs
given by the mean of the uni-variate Gaussian distribution, one attains an uncertainty
measure given by its variance.

The standard Neural Network described so far, after training, would represent one of
the possible functions which fits the data. While for trained points xs both approaches
would yield the same result, for untrained points the mean of the Bayesian Neural Net-
work distribution does not necessarily match the standard Neural Network’s prediction.
One could build a Bayesian Neural Network from standard ones by training several
Neural Networks. Each of these Neural Networks would in principle depict different
possible functions within the Bayesian model. As such their outputs can be devised as
independent random variables, and considering the Central Limit Theorem, for a suffi-
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cient number of trained Neural Networks their properly normalized sum tends toward
a normal distribution. This way, one obtains a collection of possible functions which
fits the data, and at any point xs they define a mean and variance values reproducing a
Gaussian distribution.

3.1.3 The training process

The training step is a central part in the Neural Network technique. It consists essentially
in a minimization problem: we have to find the weights (both matrices and bias terms)
of the Neural Network which provide the best fit for the function we are trying to ap-
proximate. And according to the Universal Approximation Theorem we already know
there should be a set of weights that leads to a perfect fit for the function, at least for the
given data set, as long as there exists a deterministic relationship between inputs and
targets (and the training is performed correctly). This can be achieved by minimizing a
cost function Γ (such us the mean-square error) with respect to the given data (array of
dimension N) to fit y as in an Ordinary Least Squares method. The cost function can
take any form, as long as it measures the discrepancy between the outputs of the model
and the target values:

Γ =
1

N

N∑
i

(yi − ŷi)
2 (3.1.10)

As explained in previous sections, the minimization of Γ in a linear model results in
a convex problem: Γ presents a positive semi-definite Hessian. It depicts only one min-
imum whose weights are those in equation (3.1.5). However, a non-linear model such
as the Neural Network entails a non-convex high-dimensional problem, which prevents
in practice from finding the global minimum and the desired accuracy. The search for
the global minimum of the cost function becomes intractable. And given the complexity
of the minimization and the vast number of local minima, one could ask whether it is
possible to even reach a reasonable local minimum at all! Fortunately, the answer to
this dilemma is that in fact, we do not have to take much care about the accuracy of the
model to reproduce a given data set. We should care instead about how the model would
perform with data which was not fed with (a test data set), that is, how well it generalizes
to provide a response to the unknown. And among all minima on this high-dimensional
surface, it turns out that most of them are equivalent and yield similar performance on
a test set [111]. Besides, even if we try to fit the model with higher accuracy for the
training data (we really try to locate the global minimum), we will in fact worsen the
generalization capabilities or in other words, its transferability. This is a very important
issue, because Machine Learning techniques even if they promise unlimited accuracy,
their aim is not to provide with a model that perfectly fits the data set. Their goal is to
find the model that generalizes the best, the model which ‘imagines’ best how the rest
of the function to approximate looks like. And it will perform better as we enlarge the
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data set, since the Neural Network has more information about the function. Later on
we will get back to this idea in subsection 3.1.3.4.

It is now pertinent to address the minimization problem and to develop useful al-
gorithms and strategies. It is important to note that this discipline is thriving and very
likely new algorithms and protocols will appear in the near future that will set aside the
current ones.

3.1.3.1 The optimization algorithm

In order to tackle this complex minimization problem, several algorithms and schemes
have been developed, most of them relying on gradient descent methods since the use of
classical second-order methods is not practical. The reason is that Newton and Quasi-
Newton methods while being more computationally demanding, do not provide a no-
ticeable improvement to be considered in general, although there might be situations
in which they outperform gradient descent ones. Furthermore, the high-dimensional
space we explore tends to be plenty of saddle points, to which those second-order meth-
ods could converge [112]. Therefore, researchers currently rely on gradient descent
algorithms when training a Neural Network. Note that in any case our aim is to locate a
local minimum, the closest and deepest the algorithm finds given some initialization of
the problem.

Gradient descent algorithms have the following general update rule:

θk+1 = θk − ηf(∇θk
Γ(θ)) (3.1.11)

where the θk represent the weights θ (either matrix elements or bias) at step k and η
is the so-called ‘Learning rate’. This parameter is of great importance since it tunes
f(∇θk

Γ(θ)), the length of the step taken in k during the optimization in any of the
directions on the minimization surface. f(∇θk

Γ(θ)) is a function of the gradient of the
cost function error with respect to the weights. A simple gradient descent algorithm
would be f(∇θk

Γ(θ)) = ∇θk
Γ(θ). Several algorithms have been developed in the field

of Machine Learning to provide a more suitable update rule for the weights, such as the
Momentum algorithm [113, 114] which accelerates the motion downhill by adding up
the current and previous gradients (although Nesterov update rule [115, 116] is similar
and more popular). Other kind of algorithms adapts the learning rate for every weight,
thus executing larger or smaller updates depending on their importance. These are the
adaptive learning rate algorithms, and use the past gradients of each weight to tune
its learning rate. A sample of those algorithms are AdaGrad, AdaDelta, RMSprop and
Adam [117–120].

The question is, which one should I use? There is no general answer to this question,
although adaptive learning rate methods are found to be more robust. Particularly, Adam
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has been proven to outperform in general the other optimization methods. One should
nonetheless test which optimizer works best for the problem at hand. In this work we
used an upgrade of Adam called Nadam (Nesterov-accelerated Adaptive Moment Es-
timation [121]) which improves the estimation of the learning rate obtained by Adam.
This algorithm like Adam, exploits the first-order and second-order moments of the
gradients, estimated from the average of past raw and squared gradients, respectively.
The difference relies on how the first moment estimation is done, taking Nesterov’s idea
to update the gradient one step ahead. The algorithm is written as follows:

θk+1 = θk −
η√

v̂k + ϵ

(
β1m̂k +

1−β1

1−βk1
∇θk

Γ(θ)

)

m̂k =
β1mk−1 + (1−β1)∇θk

Γ(θ)

1−βk1

v̂k =
β2vk−1 + (1−β2)

[
∇θk

Γ(θ)
]2

1−βk2

(3.1.12)

with v and m initialized to 0, β1=0.9, β2=0.999, ϵ=1e−8, and η=0.005 the initial learn-
ing rate, which can be tuned. For instance, an annealing can be applied to η as the
training evolves, forcing smaller weights’ updates as we approach towards convergence
to prevent overshooting the local minima.

Let us now envisage how to apply this algorithm. One could calculate the update rule
using any of the mentioned optimizers from ∇θk

Γ(θ) computed over the whole data
set. One evaluation of the whole data set is called an epoch. One could accumulate all
the gradients obtained on every training sample, and update the weights after one epoch.
This strategy is called batch gradient descent. The advantage is that the obtained gradi-
ent is averaged over the whole dataset, offering a robust update rule. The downside is
that the training speed may become very slow for large data sets. On the other hand, one
could simply update the weights for each training example instead, namely, a stochastic
gradient descent. While faster, it could take longer to reach a minimum, and the frequent
updates with very different examples result in a noisy gradient. However this noise is
not completely harmful, given that it allows the algorithm to escape from shallow min-
ima. The midpoint is depicted by the mini-batch gradient descent, which computes the
weights using a small subset (a number between 64-256) of examples. After one epoch,
these subsets (or mini-batches) are redefined randomly from the whole data set. This
way the gradients are more robust compared to stochastic gradient descent while having
some white noise, being additionally faster than batch gradient descent. This approach
is the usual choice in the community, and so is ours.
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3.1.3.2 The Backpropagation algorithm

Now the only obstacle is how to compute the derivatives of the cost function with re-
spect to the weights, ∇θ[Γ(θ)]. The process to obtain an efficient way to do so was truly
a milestone, and was finally achieved through the Backpropagation algorithm [122].
Despite its simplicity (it is the chain rule for derivatives), it left wide open the way to
successfully train a Neural Network, which as mentioned, posed a serious problem due
to the non-convexity of the problem. Let us see how we compute ∇θΓ(θ) taking into
account equation (3.1.2), the figure 4 and setting Zk+1 = XkWk,k+1 + Bk+1. If our
Neural Network has L hidden plus output layers (we set the input as the zeroth layer),
the gradient due to the last matrix WL−1,L of weights is obtained as:

∂Γ

∂WL−1,L
=
∂Γ

∂XL
∂XL
∂ZL

∂ZL
∂WL−1,L

(3.1.13)

where we applied the chain rule. The first term
∂Γ

∂XL
is the derivative of the cost function

with respect to the output of the Neural Network (ŷ in equation (3.1.10)). The second
term:

∂XL
∂ZL

=
∂σ(ZL)
∂ZL

= σ ′(ZL) (3.1.14)

is the derivative of the activation function evaluated at ZL. Lastly, for the third term,
taking into account that ZL = XL−1WL−1,L + BL, we get:

∂ZL
∂WL−1,L

= XL−1 (3.1.15)

Putting all together:

∂Γ

∂WL−1,L
=
∂Γ

∂XL
σ ′(ZL)︸ ︷︷ ︸
δL

XL−1

∂Γ

∂WL−1,L
= δLXL−1

(3.1.16)

where δL is the gradient at this layer L, an auxiliary quantity interpreted as the error at
this layer. Certainly, applying the chain rule to compute the gradient with respect to the
last array of bias weights BL leads to:

∂Γ

∂BL
=
∂Γ

∂XL
∂XL
∂ZL

∂ZL
∂BL

∂Γ

∂BL
= δL

(3.1.17)
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since
∂ZL
∂BL

= 1, the gradient with respect to BL is indeed the gradient at this layer.

Now, what remains is to examine how the gradients look like deep further in the Neural
Network. The gradients due to WL−2,L−1 would be:

∂Γ

∂WL−2,L−1
= δL

∂ZL
∂WL−2,L−1

= δL
∂ZL
∂XL−1

∂XL−1
∂ZL−1

∂ZL−1
∂WL−2,L−1

= δLWL−1,Lσ
′(ZL−1)︸ ︷︷ ︸

δL−1

XL−2

= δL−1XL−2

(3.1.18)

and similarly as before, one obtain for the gradients due to BL−2:

∂Γ

∂BL−1
= δL

∂ZL
∂XL−1

∂XL−1
∂ZL−1

∂ZL−1
∂BL−1

= δL−1 (3.1.19)

Looking back at the equations, one see that in this scheme we simply compute the er-
ror vectors δl backwards, starting from the final layer, hence the name of the algorithm.
We can summarize the whole protocol as follows:

δL =
∂Γ

∂XL
σ ′(ZL)

δl = (Wl,l+1δl+1)σ
′(Zl) if l ̸= L

∂Γ

∂Wl−1,l
= δlXl−1

∂Γ

∂Bl
= δl

(3.1.20)

with L the total number of layers. We see that, being the Neural Network a non-linear
model, the partial derivatives of the cost function with respect to each weight involve
the other unknown parameters.

3.1.3.3 Initialization of parameters

We shall now get into more technical but relevant details. Neural Networks as seen are
very flexible, not only due to their mathematical properties through the Universal The-
orem, but also because we can tune almost every parameter which governs the training
process (the hyperparameters) to perfectly fit our problem, including the minimizing
algorithm. We can also initialize the weights of the Neural Network in a certain way in
order to ease the training, or even to achieve better results.

As a general recommendation, it is advisable to initialize the matrix weights W ran-
domly with a 0 mean distribution and set to 0 the bias B arrays. However, it is found
that some probability distributions for the W weights are preferred when using deep
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Figure 8: The bias-variance tradeoff.

(many hidden layers) Neural Networks to prevent the vanishing gradient problem, such
as Xavier initialization [123]. Other alternatives, such as He initialization [124], are fo-
cused on deep Neural Networks with rectifier activation functions. In any case, when
training a not very deep Neural Network, using a random Gaussian distribution with
small variance works satisfactorily in general. This variance is normally set with Xavier
or He rules.

Furthermore, we should normalize the inputs due to the very same reason. Too large
input values will promote vanishing or exploding gradients. Besides, it is not advisable
to use inputs having different length scales, since the Neural Network will concentrate
on those having large values and variances, instead of fitting all inputs equally. Even
if, as it is usually the case, some inputs are particularly important (more relevant to
describe the targets), the Neural Network will find out on its own and will work accord-
ingly. Therefore, it is highly recommended to normalize the inputs. It can be done, for
instance, by rescaling the original range of data so that all input values lie between -1
and 1. Other option is to standardize the data set by rescaling the distribution of the
observed data, so that the average of each input channel is 0 and the standard deviation
is 1.

3.1.3.4 The bias-variance tradeoff

As explained in the introduction of subsection 3.1.3, the aim of these tools is not to
accurately describe the data set, but to provide a model with the best possible general-
izing ability, or transferability. Thus, we must focus on reducing as much as possible
the error of the model with respect to unseen data, that is, the generalization (or test)



96 A N E W M O D E L F O R T H E P OT E N T I A L E N E R G Y S U R F AC E

error. This error can be decomposed into three main contributions, as illustrated in fig-
ure 8. The bias error is due to oversimplifying model assumptions: the model is not
complex enough to capture all the relationships between predictors and targets. The
variance error is due to overcomplex model assumptions: the model is sensitive to small
fluctuations in the training set which are not generalizable. The third contribution is the
irreducible error, which involves the inherent noise of the problem, for instance due to
a poor data quality or more importantly, due to the non-existence of a deterministic re-
lationship between inputs and targets.

The effect of a large test error due to a too simple model is called underfitting, while
the effect of the increased generalizing error due to a too complex model is called over-
fitting. The optimum model is obtained when its complexity is such that it balances the
bias and variance errors: the model is capable of learning enough meaningful relation-
ships between inputs and targets without being too much misguided by the nuances of
the data. The size of the Neural Network is imposed by this condition. If the data set is
small and noisy, then a simple model is needed. On the other hand, large and noiseless
data sets can be well modelled by a sizeable Neural Network, providing a small test
error. In any case, the larger the data set the better, since it allows for an increase of the
complexity of the model and thus, to reduce the overall test error. There are, however,
situations in which it is not possible to enlarge the data set of information. Hence, some
methods are devised to tackle the overfitting problem under these circumstances. These
are the regularization techniques such as L1 regularization [125], weight decay or L2
regularization [126] or dropout [127]. Since L1 and L2 regularization are more com-
monly used, we will briefly describe them. These methods introduce an extra penalty
term in the original cost function Γ0, adding either the sum of the absolute value (L1) or
the sum of the squared value (L2) of the weights W:

L1 Γ = Γ0 + λ
∑
i

|wi|

L2 Γ = Γ0 + λ
∑
i

w2i

(3.1.21)

where λ is a tunable parameter, which depends inversely on the size of the Neural Net-
work. The underlying idea is that the regularization term will drive the values of the
weight matrices down, penalizing overcomplex models and promoting simpler ones. A
subtle distinction shall be remarked between L2 regularization and weight decay. The
latter adds the penalty during the weights’ update rule. This way the regularization
becomes independent of the learning rate value, which can in fact drop during the op-
timization process switching off the regularization term otherwise.
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3.2 N E U R A L N E T W O R K P OT E N T I A L S

In this section we describe how to apply the Neural Network approach to accurately
describe the Potential Energy Surface of clusters and solids by fitting data obtained
through quantum mechanical calculations. We aim at obtaining a model which lies in
between ab-initio and simple empirical potential models in terms of speed and accuracy.
To that end, we introduce the Behler-Parrinello method [128–130].

3.2.1 The Behler-Parrinello method

In the Behler-Parrinello method, we build the energy of the system as a sum ofN atomic
energy contributions Ei, which are given by the output of the feed-forward Neural Net-
works:

E =

N∑
i

Ei (3.2.1)

The atomic energy of atom i (Ei) is expressed in terms of its structural and chemical
environments, described by adequate symmetry functions. This way one has to train a
single feed-forward Neural Network for each chemical element in the system, whose
single output is Ei, the auxiliary quantity used to build the total energy of the system,
independently on whether it is a nano-alloy, a surface, or an unit-cell of a solid. This
additivity approximation is the key assumption that allows to generate a single force-
field able to describe systems of arbitrary size and composition. Basically, the NN is
calculating the energy of a single atom at a time. The only thing that changes when one
considers different sizes and compositions is the total number of calls to the NN routine
that is needed to reconstruct the total energy, whose accuracy may be judged a posteriori
by the quality of the training fit. Besides this strategy to describe the PES, one has to
set the architecture of the Neural Network and design the symmetry functions for input
layer.

3.2.1.1 The functional form of the symmetry functions

These symmetry functions will conform the input layer of our feed-forward Neural Net-
works, and are tailored for every chemical element. Raw cartesian coordinates cannot be
used, because their numerical values are not invariant with respect to translations and
rotations of the system. Also, the descriptors must remain indifferent to an exchange
of atoms of the same element. As such, one sees the suitability of atom-centred ap-
proaches such as the Behler-Parrinello method, where we separate the energy in atomic
contributions. This way those atoms with the same surroundings will provide with the
same energy contribution. The symmetry functions then characterize the structural and
chemical environments of each atom, constructed by taking into account the interatomic
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distances between the atom and its neighbours up to some cutoff radius. Hence, we con-
vert the cartesian coordinates of all its neighbours to a predefined sequence of values,
obtaining a symmetry vector which conforms the input array of the Neural Network.
Additionally, all atoms of the same chemical species will share a single NN and the
same functional form for the symmetry functions. If {rij} = {ri1, ri2, .., riN} is the array
containing the interatomic distances of i with the rest of the atoms, we can write down
this idea as follows:

NN[G({rij})] = Ei (3.2.2)

being G the symmetry vector.

R A D I A L S Y M M E T R Y F U N C T I O N S

In first place, we have to define the cutoff function fc around atom i which defines
the size of its atomic environment and the radial extension of the symmetry functions.
We have defined it as follows:

fc(rij) =


1

2

[
cos

(
πrij

rc

)
+ 1

]
, rij ⩽ rc

0, rij > rc,
(3.2.3)

which smoothly decays to zero in value and slope at the cutoff radius rc. This way,
neighbouring atoms located further than rc will not be considered as part of the neigh-
bourhood of i. To describe the radial arrangement of atoms in the surroundings of i,
radial symmetry functions are defined as a sum of products of Gaussians times the
cutoff function:

Gri =
∑
j

e−η(rs−rij)
2
fc(rij) (3.2.4)

with rs a shifting parameter, which displaces the Gaussians to improve the sensitivity at
specific radii, and η a width parameter that determines their radial extension. A selec-
tion of these radial functions are displayed in figure 9.

A N G U L A R S Y M M E T R Y F U N C T I O N S

Describing just the radial distribution of the atoms might not be sufficient to obtain
a suitable fingerprint of the atomic environments. Including the angular distribution of
the atoms with respect to each other improves the structural and chemical description.
This is accomplished by defining the following angular symmetry functions:

Gθi = 2
(1−ζ)

∑
j,k ̸=j

(1+ λcosθijk)
ζe−η(r

2
ij+r

2
ik+r

2
jk)fc(rij)fc(rik)fc(rjk) (3.2.5)
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Figure 9: A selection of symmetry functions devised in the Behler-Parrinello method. On the
left, a set of radial symmetry functions. On the right, a selection of angular symmetry
functions.

The angular symmetry function on i is defined as a sum over all cosines of angles
θijk conformed by any possible triplet (i, j,k), multiplied by Gaussians of the three
interatomic distances and the respective cutoff functions. The Gaussians have a width
determined by η. λ equals either +1 or −1, and is used to invert the shape of the co-
sine function for a better sampling at different values of θijk. Some of these angular
functions are shown in figure 9. All those parameters, along with the ones used in the
radial symmetry functions, must be customized beforehand to accurately characterize
the atoms in the system. Using too few of these functions would result in an incomplete
description of the structural and chemical environment, and consequently to a poor rela-
tionship between descriptors and targets. On the other hand, the set of symmetry func-
tions should also be kept as small as possible to increase the computational efficiency of
the training and testing stages. One should not employ symmetry functions which are
not meaningful or which are correlated with other symmetry functions, since these will
not contribute with new information. Although the Neural Network would eventually
realise and fix this issue by itself, it is always recommended to ease the training process.
Lastly, if two or more atomic elements are present in the system, these radial and an-
gular functions must describe each kind of bonding separately, that is, for each Gi the
sums in (3.2.4) and (3.2.5) are performed on fixed atomic species. This way some sym-
metry functions would describe the A-A interactions, while others the A-B interactions
and so on, being A, B, ... the different atomic species.

Other strategies beyond the additivity approximation (3.2.1) would imply the predic-
tion of the structure’s properties as a whole, thus relying on global descriptors [131–
133]. The price to pay is the need to train a separate Machine Learning force-field for
each specific system size and composition. This global description would be in prin-
ciple complete, as it incorporates full radial and angular information. Conversely, in
an atom-centred approach one has to add that information independently through local
descriptors, which are not necesarily complete. For instance, the symmetry functions de-
scribed above amount to 3-body interactions in a cluster expansion, as they are given by
triplets of atoms. However, the non-linearity of the Neural Network on the three-body
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descriptors can in principle capture well also higher-order interactions [134]. There-
fore these suffice to satisfactorily describe the system given enough flexibility of the
Neural Network. Other atomic-centred descriptors can be based on Gaussian-type orbit-
als (GTOs) [134, 135], which build density scalar values on each atomic site to feed the
Neural Network. In any case, it is shown that their approach is equivalent to the 2 and
3-body terms described in the symmetry functions. On the other hand, a well-known
alternative called Deep Tensor Neural Networks (DTNN) and SchNet [136, 137] impli-
citly learns the suitable atom-centred basis with respect to the property to be predicted.
Starting the description with the nuclear charges and interatomic distances solely, each
atomic representation is refined trough a loop of pair-wise interactions with the sur-
rounding atoms (up to some cutoff distance). This approach is able to adapt to the
problem at hand in a data-driven fashion, instead of having to design the appropriate
descriptors for the data. However, as we saw in previous sections, a Neural Network
learns on its own the adequate representation of features where the problem becomes
linearly separable. Hence while DTNN/SchNet methods would ease the training process
by providing with meaningful descriptors, the results offered should not differ in great
measure from other implementations with a (sufficiently) complete set of descriptors. It
is important to emphasize the use of a complete selection of descriptors, as otherwise
the appropriate feature transformation cannot be performed, irrespective of the number
of hidden layers. For instance, taking the example in figure 6, it would be impossible to
separate the pattern without either the X1 or X2 variables.

Lastly, from (3.2.3) one sees that interactions between atoms separated by more than
the cutoff radius are truncated. There might be however interactions beyond this radius
that should be included, like long-ranged electrostatic interactions. This is the downside
of atom-centred approaches. One can then enhance the Neural Network short-ranged de-
scription with an auxiliary long-ranged interaction energy to account for these phenom-
ena [138]. One has to note that all electrostatic interactions within the cutoff region can
be described as well by the short-ranged Neural Network, which does not distinguish
between electrostatic and non-electrostatic interactions. This way this scheme does only
marginally improve the description of the PES for most systems. Furthermore, given
the flexibility of the Neural Network model, ignoring a long-ranged description will
force the Neural Network to cast these long-ranged interactions as short-ranged, so as
to rigorously fit the target energy. One then attains a model which partially accounts for
long-ranged interactions, although through an incorrect description.

3.2.1.2 Cost function and training process

In order to train the Neural Network, a suitable cost function must be set, which aims
for accurately describing both energies and forces of the system. If we use ab-initio data
such as DFT (Density Functional Theory) results, we must train the Neural Network to
fit the sum of the atomic energy outputs (which conforms the energy of the system Ê)
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with the DFT counterparts EDFT . Similarly, we can train the forces on the system to
match DFT forces FDFT . We can compute the changes in energy due to variations in the
atomic positions through the symmetry functions. The force of atom i in the cartesian
direction α is:

F̂i,α = −
∂E

∂ri,α
= −

N∑
k

∂Ek
∂ri,α

= −

N∑
k

Ms∑
s

∂Ek
∂Gk,s

∂Gk,s

∂ri,α
, (3.2.6)

where N is the number of atoms conforming the system, and Ms the number of sym-

metry functions for the k atom. Thus the force on atom i depends on
∂Ek
∂Gk,s

, the de-

rivative of the output with respect to the input layer and
∂Gk,s

∂ri,α
, the derivatives of the

symmetry functions with respect to the cartesian directions. Both terms can be obtained
analytically, and are shown in the Appendix B. Then, we can set the cost function as:

Γ =
1

2M

M∑
i

(EDFTi − Êi
N

)2
+α

3N∑
j

(
FDFTij − F̂ij

3N

)2 , (3.2.7)

where M is the training set size, and α a scale factor since energies and forces have
different magnitudes. In the end, we have a Neural Network potential which describes
not only the energy at some specific points of the PES (the data set), but also the gradi-
ents around these points. During the training process however, training all the forces on
every structure in the training set may be quite costly due to the evaluation of equation
(3.2.6). A good alternative to reduce the computational fitting effort is to use only a
random subset of forces in each structure of the training set.

3.3 O U R N E U R A L N E T W O R K P OT E N T I A L I M P L E M E N TAT I O N

Using the Behler-Parrinello approach, we have developed a Neural Network potential
with training and testing algorithms in Fortran90 code, particularly suited for atomic
clusters. The properties of nano-structures ranging from 10 to 100 atoms generally ex-
hibit a strong and non-monotonous dependence of their structural and electronic prop-
erties on cluster size, mainly due to quantum confinement effects. Those phenomena
undermine the quality of the fit, since these are difficult to unveal without an expli-
cit ab-initio calculation. Thus, developing a Neural Network potential to represent the
PES of small nanostructures is quite challenging as opposed to the bulk counterpart,
where the absence of such important electronic and geometric changes occurring in the
cluster regime allows for a simpler and successful training. Furthermore, solids benefit
from the imposition of periodic boundary conditions, reducing the configuration space.
So far, many efforts have been devoted in employing the NN technique in bulk systems
[139–141], but not so much with small nanostructures [142]. And when applied to small
nanostructures [143, 144], in most cases the employed approaches extrapolate from the
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bulk limit in the training stage. Our Neural Network potential implementation to date is
tailored to successfully train and test finite nanostructures comprising a wide range of
sizes, specifically nano-alloys with 1, 2 or 3 different elements. Also bulk systems can
be considered both in training and testing algorithms.

Our Neural Network training scheme employs the Backpropagation algorithm with
equation (3.2.7) as cost function, where a single random atom from every structure is
taken to fit the forces. We have tested several training algorithms, and concluded that
the adaptive learning rate algorithms are better suited for this problem, being Adam and
Nadam the optimizers currently implemented. Similarly, various activation functions
were tested and we found that Swish activation function [145] works particularly well
in most situations, showing the best performance regarding both training and testing
errors. This way we used Swish as the activation function for all hidden layers, while
in the output layer a linear activation function was used, to avoid any constraint on
the possible range of output values. Other activation functions are implemented non-
etheless. The size of the Neural Network depends on the system and its complexity,
although in general a Neural Network with 3 hidden layers works sufficiently well. The
width of these layers should be tested as well, depending on the size of the data set, to
prevent both underfitting and overfitting. L2 regularization is implemented to prevent
the latter nonetheless. The weights W in the system are initialized as a random normal
distribution with Xavier variance rule, while the initial biases B are all set to 0. The
input layer is standardized as well. A correlation analysis is performed at the start of the
training process to provide the user with some feedback concerning the input functions
employed, and whether they should be filtered out or conversely increased. Regarding
the training process, the data set is divided into two subsets beforehand. A large training
set comprising 90 % of the data and the remainder 10 % being the test data (this ratio
can be changed by the user), are created. The Neural Network will be trained using the
first set of structures and after every epoch, both training and testing errors (the errors
obtained on these two differentiated sets of structures) are computed and displayed. Fur-
thermore, an analysis of importance of the inputs is also shown, based on the relevance
of the derivatives of the output with respect to the input layer. An input is regarded
to be important if the mean absolute value of its derivative is large, evaluated on a set
of representative structures. Since we aim to reduce the generalization error, we keep
training until the test error is minimum. The training can keep running, but the weights
are not saved if there is no improvement in the test error. Lastly, OpenMP is used to
parallelize loops within the code. Thus, our implementation is highly efficient in terms
of computational speed.

One of the main reasons for developing the Neural Network scheme from scratch, is
the certain knowledge of all the processes involved. For instance, the training proced-
ure can be modified at will, to optimize the hyperparameters implicated to every extent
possible. In the same way, we have implemented a set of three descriptors which aims
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to capture the electronic structure of the cluster through its global shape, consiting of
the normalized three principal moments of inertia. When included in our Neural Net-
work model, it provided an improvement of 30% on the training set error for the gold
cluster nanosystem. Similarly, the production stage can involve any intricate method
desired. For instance, our test strategy relies on the Basin Hopping (BH) global optim-
ization algorithm, as we have implemented the Neural Network potential into a module
of the freely available GMIN code [100]. During the training stage, we used this pro-
gram to dynamically enlarge the size of our data set “on-the-fly”, by feeding the current
(partially optimized) Neural Network with the new structures it predicts. This is partic-
ularly important in cases where the initial data pool of ab initio data is of limited size,
and it involves single-point ab initio calculations on the NN-predicted structures. Also,
a local optimizer program, based on gradient descent algorithm and coded in Fortran90,
has been produced to quickly test our Neural Network potential. Both programs are par-
allelized using OpenMP and once compiled, require solely the weights and biases of the
Neural Network and the normalization array of the input layer. Once the final NN po-
tential is ready, the GMIN code is used in production BH runs to locate putative global
minimum structures of clusters. To this end, several algorithms and protocols are em-
ployed in order to locate competitive structures, relying on the Basin-Hopping method.
For instance, for homonuclear systems an algorithm is developed to search within the
subspace spanned by a specific symmetry group (Cn and Cs symmetry groups). For
heteronuclear clusters, the protocols are focused on locating competitive homotops by
performing homotopic searches on a fixed skeleton. On the other hand, for bulk systems
atomic and cell configurations can be optimized (both locally and globally), thus the en-
thalpy is minimized instead. As we see, the value of our Neural Network scheme does
not only rely on its inherent aptitude to model any function, but also in the flexibility
granted by the fact that we created from zero this tool, instead of relying on previous
implementations [137, 140–142, 146].

Regarding the Neural Network as a predicting model for quantum chemistry, we
see that its virtues are twofold. Firstly, the accuracy offered lies between ab-initio and
simple empirical potential models. Consequently, Neural Network Potentials are valu-
able in those systems where interatomic potentials do not provide the required accuracy.
Secondly, one can develop a Neural Network Potential for any desired system, irre-
spective of the kind of interactions. As such this method becomes the sole alternative
to ab-initio methods in those situations where empirical potentials are not available.
This way we have devised a Neural Network Potential to simulate the intricate corro-
sion process. The complexity of this problem resides in the need for simultaneously
describing the interaction between the corroding agents and the metallic counterpart,
and the metal-metal bonding. These two completely different chemical interactions can
be accurately depicted using the Neural Network approach. Once successfully trained,
the Neural Network Potential can provide with very valuable information regarding the
corrosion channels, the distribution of the corroding agents over the metallic surface, or
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clues on how to optimize the protection against corrosion. As a first step, a pure metallic
Neural Network Potential is devised for the Zinc-Magnesium nanoalloy.

3.3.1 Results and discussion

A Neural Network Potential for the determination of the global minimum structures of
Zinc-Magnesium nanoalloys with up to 52 atoms and stoichiometries corresponding to
MgZn2 and Mg2Zn11 is reported. These compositions are chosen due to their special
interest in the context of anticorrosive coatings. The resulting Neural Network Potential
clearly outperforms Empirical Potentials such us the previously developed Coulomb
improved model. In fact, it is capable of reproducing the ab-initio values of cluster en-
ergies and forces within chemical accuracy.

The obtained global minima of Zn-Mg nanoalloys are found to maximize mixing,
but with a slight natural segregation of Mg atoms towards the cluster surface. This
shows that Mg atoms will be largely but evenly distributed over the cluster surface, thus
playing a major role in determining its reactivity properties. It is expected therefore that
the Mg atoms will fix the external agents, precisely at those sites where the surface is
more resistant due to the strengthening of the Zn-Mg bonds from the charge transfer.
On the other hand, this tendency of Mg to segregate to the surface could imply that
the precise amount of Mg atoms needed in Zn clusters to improve their anticorrosive
properties is actually lower than in the macroscopic regime. In any case, the analysis of
the electronic structure and stability suggests that Zn-Mg nanoalloys overall conform
to a Jellium picture of delocalized electrons. The following paper reports on this part of
our work, and the main results obtained.
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In this chapter, we focus on one of the main aspects of this dissertation, the corrosion
process. We start our study evaluating the initial stages of the oxidation process. As the
functional material which protects the rest of the system is the oxidized metallic surface,
the initial formation of the oxide layer is a critical step, given that it will condition the
next stages of the process. Furthermore, until the full crust of oxide is formed, the metal-
lic surface itself must act as sacrificial protective layer, preventing from absorption of
the corroding agents deep inside the system. Zn-coatings serve well in this task, but the
addition of Mg improves notably its protective properties. While experimentally it has
been observed that specific compositions, namely MgZn2 and Mg2Zn11, are best suited,
a sound understanding of the physico-chemical properties behind such quality is still far
from being achieved. Indeed, the physical and chemical mechanisms that determine the
corrosion process along the different stages are triggered by fundamental structural and
electronic properties of the system which are difficult to understand in depth without a
quantum mechanical analysis. A special focus on the microstructure of the coating must
be taken since penetration and fast diffusion of the corroding agents are easier through
local defects. Certainly, defects or cracks associated with the microstructure have been
found to be essential for corrosion. This is one of the main reasons of the use of cluster
models, which allow for a more realistic description of the local features in a realistic
situation.

To this end, we analyse the structural and electronic properties of the oxidation pro-
cess up to 6 oxygen atoms on ZnMg clusters of 20 atoms, obtained in a previous work
[93]. We study different ratios so as to distinguish the main trends which explain why
certain compositions are best suited as sacrificial layers. It is expected that the addition
of Mg atoms would promote a faster and more homogeneous protective surface oxide
layer, being more stable than the oxide surface that pure Zn would form. It is necessary
to assess and measure this qualities nonetheless, at least from a computational perspect-
ive. The main results from this work will provide relevant information concerning the
subsequent analysis of the full oxidized crust.

4.0.1 Computational details

The ab-initio calculations were performed at DFT level, using the SIESTA [86] and
VASP [83–85] codes. The dissociative chemisorption channel is studied as the oxygen
molecule is found to readily dissociate. Combined with a low oxidation rate, it means
that each oxygen atom finds its most stable configuration before the subsequent atom is
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considered. This is also guaranteed by the low diffusion barriers, analysed through the
Nudged Elastic Band method [147, 148] within the Quantum Expresso package [149,
150], which provided with barriers of 0.3-0.6 eV. This energy is 5 to 10 times smaller
than the adsorption energy, which is evaluated by means of a multi-linear fitting on the
data set of oxidized configurations. An important caveat of this process is that previ-
ous oxygen atoms in the cluster are not relocated when adding a new O atom. Doing
so would imply a paramount number of calculations, larger with increasing O content.
As such the true Global Minimum for the adsorption process with a given number of
O will not necessarily be provided in our protocol. However, for 2 oxygen atoms and
a given composition we checked whether we could find a better configuration if both
O atoms were allowed to move over the cluster’s surface. As we did not find a better
structure compared to the explained channel, we therefore obtained evidence that while
this protocol might not provide in every case the true Global Minimum configuration,
will at least deliver competitive and meaningful structures, sufficient to assess the main
trends we want to analyse.

The energetic and geometric trends are evaluated once the most stable configurations
are located according to the oxidation channel considered. The electronic properties
are analysed by means of the Fukui function, which assess the reactivity of the cluster.
Other indicators employed relied on the topological analysis of the electron density and
electron localisation function [151]. In first place, examination of the critical points of
the electronic density allows for a classification of the interactions between atoms in the
system according to Matta’s classification [152]. On the other hand, the electron local-
isation function quantifies the amount of Pauli repulsion at each point of the molecular
space. Using this indicator one can partition the electronic density into bonding and non
bonding basins, evaluating this way the degree of connectivity (and hence the bonding)
between atoms.

4.0.2 Results and discussion

The obtained results shed light on the improved efficiency against corrosion for MgZn2
and Mg2Zn11 ratios. The geometric indicators prove that the Mg-rich substrates are
much more disrupted by the oxidation process, being therefore less capable of properly
protecting the core against oxygen attack. In fact, the oxygen atoms tend to attack a
specific local region over the cluster, inducing strong distortions. On the other hand, the
Zn-pure composition is more efficient dissolving the oxide, reducing the induced stress.
In fact, a self-healing effect is observed, as square defects are sealed when an oxygen
atom is adsorbed. This is to be expected as Zn-based coatings are more suited than Mg
for sacrificial oxide layers. An improved situation is attained when alloying with Mg
the Zn-pure cluster, as the Mg atoms, well mixed over the surface, act as evenly distrib-
uted nucleation centers for the oxide as observed. Given that the charge transfer effect
strengthen the Zn-Mg bondings, the O atoms attack particularly resistant areas of the
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cluster. As the oxide-metal is 5 times stiffer than metallic bonding, the stress is stored
in the metal-oxide interface within the cluster, which is found to be minimal for Zn-rich
compositions. These factors contribute to promote the growth of a uniform oxide crust
whilst protecting the core. In summary, there is an optimal synergy that increases the
reactivity while reducing the induced stress.

The electronic indicators show the degree of isolation of the core atom with respect to
the surface. We aim for a disconnected core atom, which is unaffected by the oxidation
process. This is particularly true for the Zn-pure case, where the electronic structure of
the cluster is distributed mainly across the cluster shell, being the space between the
surface and core completely depleted of electrons [153]. Adding a small amount of Mg
(Mg2Zn11 ratio) does not imply connections with the surface. The further inclusion of
Mg induces the bonding of the core atom with the surface, although mainly with Zn
atoms, with even cancellation with Mg atoms for the MgZn2 composition. One has to
bear in mind that the Mg atoms are those who will mostly interact with the corroding
agents. Therefore despite the increased interactions with the surface, the core atom will
remain unaffected by the oxidation. For the Mg rich case however, particularly if a Mg
core atom is considered, it will largely interact with the surface, increasing with the oxy-
gen content. The following paper reports on this part of our work, and the main results
obtained.

Lastly, our results will guide the subsequent study of the fully oxidized crust, in order
to thoroughly address the corrosion problem. Also larger clusters should be considered,
presenting a bigger core. To this end, we would require a potential model which can
provide with a sensible representation of the oxidation, as an exhaustive DFT evalu-
ation of the potential energy surface would be prohibitive. We will find convenient the
potential model developed previously, namely the Neural Network approach.
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Through the present dissertation we have witnessed the complexity of the corrosion
problem from an ab initio perspective. In particular, we have focused on the initial
stages of the corrosion process involving the oxidation of the ZnMg surface layer. This
ab initio approach allowed a profound analysis of the intricate processes involved, un-
veiling the most relevant trends which support the improved efficiency of ZnMg alloys
against corrosion, as shown by the experiments. To this end, an extensive comprehen-
sion of the Density Functional Theory is desirable, to understand and properly exploit
the DFT codes to perform the simulations. Subsequently, calculations primarily based
on the Density Functional Theory as implemented in the SIESTA, VASP and QE pack-
ages have been performed. The use of cluster models has been motivated by the pos-
sibility to tailor the local features of their surfaces, so as to analyse the different beha-
viours the corroding agents display on distinct environments. Despite being comparat-
ively simple, clusters present a sufficiently complex energy landscape, more so when
considering the oxidation reaction. To successfully address this problem, we have relied
on numerical models as a fully ab initio exploration of the associated energy landscape
is intractable. This way, the development of potential models to depict the interactions
between atoms conforms a pivotal part in this thesis: a sound knowledge of the state-
of-the-art of the empirical potentials is needed. Hence, in this work we have developed
and used standard and novel numerical models to preliminarily explore the energetics
of the problem.

This way, in Chapter 1 we introduced an empirical potential for metallic clusters,
improved with Coulombic interactions, for the ZnMg system. After derivation and im-
plementation of the numerical model, its 19 free parameters were fixed so as to fit the
ab initio DFT energies and forces of over 100 structures. Despite the noticeable charge
transfer between both elements, accounting for the Coulomb interaction resulted in a
modest 6% improvement of the overall description. Yet this suffices to notably improve
the energetic ordering of homotops, allowing to locate much more stable chemical or-
der patterns than the bare metallic potential. From a combined EP/DFT approach a set
of putative global structures is obtained for the equiatomic ZnMg ratio. These clusters
largely conform to a Jellium picture of delocalised electrons. Furthermore, both zinc
and magnesium are maximally mixed, yielding an ionic contribution to the global sta-
bilization of the cluster. Also, bulk-like structural and chemical ordering with a clear
compositional layering was found for specific sizes. We therefore expect the results
obtained in these models can be extrapolated to a great extent to extended surfaces, re-
inforcing this way the use of cluster models.
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As seen, the charge transfer effect does not seem to be the main quantitative cor-
rection in the search for a very accurate potential for the ZnMg nanosystem. Con-
sequently, a new model is devised in Chapter 2, based on the Neural Network approach.
These Neural Network potentials, being purely numerical models without any phys-
ical bias, are used to accurately depict the energy landscape of any system irrespect-
ive of the chemical interactions. As such, Neural Network potential training and test-
ing algorithms are developed, including structure production protocols based on local
and global optimization methods. A Neural Network potential for the ZnMg system is
therefore obtained, whose parameters are fit with almost 50000 structures, involving
both DFT energies and forces. The resulting accuracy greatly outperforms that of the
previously developed empirical potential, reaching chemical accuracy. In any case, the
larger contribution to the error of the Neural Network potential comes from the smallest
clusters, where the electronic effects are considerable. This way the model’s accuracy
could improve by including descriptors for the global features of the cluster so as to
capture its electronic properties. Relying on the combined EP/DFT approach using the
Neural Network model, a set of global minima structures for the Zn11Mg2 and Zn2Mg
nanosystems is obtained. The clusters still show a clear trend to maximize the mixing
between zinc and magnesium. However, magnesium atoms tend to occupy surface sites:
there is a natural segregation of magnesium towards the surface due to size mismatch.
This way, the reactivity of the cluster will be markedly determined by the role played
by the magnesium atoms. Certainly, it is expected that the magnesium atoms will attract
and fix the external agents at those sites where the surface is more resistant due to the
strong Zn-Mg bonds. This will favour the formation of Mg-based corrosion products
which conform the protective layer.

Once the main properties of the ZnMg system are distinguished, we undertook the
analysis of the corrosion problem. In Chapter 3, the initial formation of the oxidized pro-
tective layer is addressed. This stage is of great importance, as the observed trends will
influence the subsequent steps of the oxidation process culminating in the fully oxidized
Mg-based shielding layer. To this end, the behaviour upon oxidation of small clusters
of 20 atoms with different stoichiometries is studied. Besides the aforementioned DFT
methods, tools based on the topological analysis of the electron density and the electron
localization function are used to examine the progressive oxidation of the ZnMg nanoal-
loys. This way, the structural and electronic properties are analysed in detail, as well as
the observed bonding patterns, in order to explain why small amounts of magnesium
create a very positive synergy between zinc and magnesium. The results show that the
homogeneous distribution of magnesium over the surface promote an even distribution
of the oxygen atoms. As remarked from previous results, the magnesium atoms indeed
will drive and fix the oxygen atoms as they are more reactive than zinc ones. In the same
way, the growth of the oxidized layer is faster compared to bare zinc. The stoichiometry
plays a role in the stress induced in the cluster by the oxygen. Clusters rich in mag-
nesium display a large distortion, given that the oxygen atoms concentrate on specific
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areas. Ultimately, this does not restrain the oxide from eventually percolating towards
the interior. On the other hand, zinc rich clusters show a minimal distortion, where mag-
nesium atoms protect local defects on the zinc rich sides by attracting and fixing the
oxygen, acting as nucleation centres evenly distributed across the cluster’s surface. A
self-healing effect is observed when the oxygen atom is forced to attack a local square
defect on the zinc rich side. This naturally prevents the oxygen from approaching the
cluster core. This positive synergy between zinc and magnesium promote the growth
of a uniform oxide crust whilst protecting the core. Furthermore, the presence of Mg,
which naturally segregates towards the cluster’s surface, prevents the formation of the
non-protective corrosion product ZnO, holding the zinc atoms attached to the system,
explaining this way the lesser weight loss when including magnesium upon corrosion.
Through quantum topological analysis, it is observed that the addition of magnesium
to the cluster’s surface disconnects chemically the innermost atom from the surface in
practical terms. In particular, Zn11Mg2 and Zn2Mg compositions are found to be the
best candidates to optimize the protection against corrosion in Zn-Mg alloys, in agree-
ment with the experimental observations.

The results obtained will serve to guide the subsequent steps in the complete study of
the corrosion process. Larger clusters should be considered as a following step, where a
more developed core would serve to assess how well is isolated by the protective fully-
oxidized surface layer. Also, it is expected that the oxygen atoms can percolate towards
the sub-surface to conform a thick oxidized layer. This way, a perfect periodic slab can
be considered in order to analyse the oxidation profile, with magnesium atoms ascend-
ing towards the outermost layers to meet with the oxygen atoms. Either way, it should
be proved that the magnesium atoms place themselves in the outermost regions to con-
form the protective layer, firstly with oxygen, and later on with other corroding agents.
Any of these paths cannot be successfully explored at ab initio level due to the complex-
ity of the problem. Consequently, one should rely on models which approximate the
oxidation reaction. A Neural Network potential to explore the oxidation process would
be developed to this end, as these models can represent any desired energy potential
landscape. This potential would be quite innovative, since to our knowledge, no attempt
has been performed so far to analyse the oxidation process with numerical models. Us-
ing this approach, an exhaustive study of the oxidation on clusters or periodic surfaces,
irrespective of the size and composition, can be performed. Lastly, the analysis of the
full protective Mg-based coating would be addressed after incorporation of other cor-
roding agents such as Cl− or water molecules. It is expected that the more reactive Mg
atoms would prevent the zinc phase to intensely react, and rather form the Mg-based
corrosion products which conform the protective coating. Simultaneously, the inspec-
tion of the isolating capability of the oxidized surface layer can be analysed, as well as
that of the resulting fully corroded crust.
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The results exposed in this thesis, and the following steps to be carried out, will
help in the comprehension of the corrosion problem, as well as to unveil the funda-
mental aspects that trigger the optimal anticorrosive properties of Zn-Mg coatings. On
the other hand, the theoretical basis presented on Quantum Chemistry is hoped to sum-
marise the most important concepts required to properly address any quantum system
with any DFT code. The widespread use of DFT based methods makes this theory
quite influential and consequently, it is essential to understand it to some extent, but
one should always recall its advantages and limitations. Also, one should mind the new
developments concerning the exchange-correlation functional. For instance, improve-
ments to the exchange-correlation potential are already available through the RPA/GW
approximation, which brings closer the exact self-energy term. On the other hand, other
single particle methods may be relied upon once the computational power increases, or
new methods are developed. For example, time-dependent DFT will very likely become
more accessible as more progress is achieved. In the same way, new tools based on Ma-
chine Learning techniques, as the one presented on this thesis, will be more available
in wide realms of Quantum Chemistry. Then again, one should understand how they
work and their limitations, hence the chapter dedicated in this dissertation to introduce
the Neural Network potentials. All in all, this thesis is hoped to serve as an example of
application of the current Quantum Chemistry techniques and ideas into the corrosion
problem, which, like any other riddle in the realm of Material Sciences, is worth the
time and dedication.
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A.1 A S I M P L E Y E T E F F I C I E N T S T RU C T U R A L S I M I L A R I T Y D E S C R I P T O R

As explained in the main text, we need to remove duplicate structures that may appear
in the structural data pool generated by the different potentials. We achieve this goal by
using a structural similarity descriptor based on the “atomic equivalence indices”, first
introduced in [J. Chem. Phys. 107, 6321 (1997)] by Bonacic-Koutecky and coworkers.
For brevity of exposition, let us consider first a homonuclear cluster for which we need
to characterize the atomic skeleton only, i.e. we dispense with the chemical order prob-
lem for the time being. For a cluster with N atoms, the atomic equivalence index of
atom i is just the sum of its distances to all other atoms in the cluster:

σi =

N∑
j=1

d(i, j), (A.1.1)

where d(i, j) is the distance between atoms i and j. The set of ordered σi values forms
and N−dimensional vector σ = (σ1, . . . ,σN) that characterizes each local minimum
(isomer) on the potential energy surface (in our case we have ordered the σi values in
ascending order, i.e. from the least to the most coordinated atom). With the vector com-
ponents ordered this way, and each component being exclusively based on interatomic
distances, two identical isomers will have identical σ indicators irrespective of their
global orientation in space or of possible permutations of atoms. The indicator will ad-
ditionally remove enantiomers in case of chiral point group symmetries.

This indicator would be enough for a homonuclear cluster if one works with a single
empirical potential, i.e. with a unique potential energy surface. However, we have em-
ployed a variety of potentials in order to enhance structural diversity, and collected the
different outputs of each potential into a single structural data pool. A potential problem
is that different potentials may have slightly different values for the average interatomic
distance, so the same structural motif (for example, an icosahedron) may appear several
times in the data pool but with different interatomic distances. Now, σ as defined above
depends on the quantitative values of distances, and will not be able to remove duplic-
ates with a different “volume”. Therefore, we redefine the indicator by normalizing the
σ vector:

σi ⇒
σi√∑
i σ
2
i
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This new indicator will recognize two structures that merely differ by a scale transform-
ation as identical.

In a nanoalloy, it is important to distinguish different chemical order patterns as well.
To this end, we have employed additional σAA

i , σBB
i and σAB

i indicators, defined in full
analogy with equation (1), but where only AA, BB or AB distances, respectively, are
considered. All the vector indicators are ordered and normalized as explained above.
The degree of similarity between two isomers p and q is then quantified by the metric
distance in the vector spaces defined by the different indicators:

Σpq =
1

4

(
|σp −σq|+ |σAA

p −σAA
q |+ |σBB

p −σBB
q |+ |σAB

p −σAB
q |
)

The first term will determine the degree of similarity between two given skeletal struc-
tures, while the remaining three terms will check the homotop similarity. Given a struc-
tural data bank containing an arbitrary number of structures, the user can choose the
cutoff value of Σpq used to decide if one of those two structures has to be removed from
the database. We have empirically determined that values of Σ around 0.01-0.03 are ap-
propriate for removing duplicates. But we notice that the same indicator can be used to
select from a database containing, say, 1000 structures, those 50 structures which differ
most from each other, i.e. it is useful to select a number of individuals with maximum
diversity. One simply has to increase the value of the cutoff until only 50 structures
remain in the pruned list.
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Table A1: Optimal parameters for the bare Gupta potential

AAA ξAA pAA qAA ABB ξBB pBB qBB AAB ξAB pAB qAB

0.078 0.40 4.51 2.21 0.090 0.56 7.75 3.47 0.084 0.50 6.26 2.90

Table A2: Optimal parameters for the Coulomb-corrected-Gupta potential. In this table we quote
the parameters for the metallic part of the potential

AAA ξAA pAA qAA ABB ξBB pBB qBB AAB ξAB pAB qAB

0.07 0.38 4.69 2.30 0.085 0.55 7.29 3.12 0.085 0.47 5.87 2.65

Table A3: Optimal parameters for the Coulomb-corrected-Gupta potential. In this table we quote
the parameters for the ionic part of the potential

χA χB ηA ηB CA CB DA DB

3.88 3.24 2.24 1.79 0.98 1.30 1.37 0.77

Table A4: Optimal parameters for the Coulomb-corrected-Gupta potential. In this table we quote
the cutoff parameters used to determine the coordination numbers (eq. 2 in the main
paper), in Å units.

d1(AB) d2(AB) d1(AA) d2(AA) d1(BB) d2(BB)

2.70 3.30 2.55 3.15 2.95 3.55
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A.3 S I Z E T R A N S F E R A B I L I T Y T E S T F O R T H E E P

The training and testing sets employed in the main paper include exclusively clusters
with between 10 and 50 atoms. Thus a pertinent question to ask is about the transferab-
ility of the potential to system sizes bigger than those employed in the fitting procedure.
To check this issue, we have chosen a convenient test system, namely a 79-atom trun-
cated octahedron, and performed a global search for homotops of the Zn40Mg39 nanoal-
loys, which is essentially equiatomic. We have sorted all the homotops located in these
extensive searches according to the number of Zn-Mg heterobonds, i.e. from maxim-
ally mixed to maximally segregated, and then have chosen ten different homotops with
varying degrees of mixing, on which we have performed DFT SIESTA calculations.
The figure below benchmarks the performances of bare and Coulomb-corrected Gupta
models against the ab initio data. This figure displays the differences in binding energy
per atom, with respect to the most stable homotop. The degree of mixing decreases
from homotop 1 to homotop 10. SIESTA results show, except for some oscillations of
secondary importance, that stability increases with the degree of mixing, homotop 1 be-
ing the most stable one. The bare Gupta potential does not correctly capture the energy
difference between mixed and segregated homotops, and moreover predicts homotop
4, with an intermediate degree of mixing, to be most stable. Meanwhile, the Coulomb-
corrected Gupta EP recognizes homotop 1 as the most stable one, and further provides
a much more accurate match for all the energy differences between homotops, even for
a cluster size which is significantly bigger than those used when training the potential.

One of the main results of our work is that the apparently small (6%) charge trans-
fer contribution to the nanoalloy binding energies is utterly important to reproduce the
correct chemical order trends. The results of this test, performed on 79-atom clusters,
suggests that such conclusion holds quite generally for all clusters within the small non-
scalable size regime. Thus, we expect our potential to be useful for clusters with up to
a few hundred atoms at least. There should not be high expectations, however, about
the performance of our potential in reproducing structural properties or cohesive ener-
gies at the bulk limit, as no bulk data were feeded into the fitting process. In summary,
our new potential model displays a very good transferability with respect to nanoalloy
composition, and does so over a sizable size regime, including all sizes within the most
interesting non scalable regime. Whether our analytical model can be made fully trans-
ferable (to all compositions and to all sizes from small molecules to the bulk), while
retaining its high accuracy regarding homotopic stability, still remains an open ques-
tion.
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Figure A1: Relative stabilities of ten different homotops for a 79-atom nearly-equiatomic
Zn40Mg39 nanoalloy, with a truncated octahedral atomic skeleton. The figure shows
excess binding energies per atom (or cohesive energies) with respect to the most
stable homotop, for each level of theory. The bare Gupta potential fails in identify-
ing the most stable DFT homotop. The relative stabilities in homotopic space are
much better reproduced by the Coulomb-corrected potential.
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A.4 C O M PA R I S O N W I T H B U L K A L L OY S T RU C T U R E S

Figure A2: On the left we show a fragment of the Pmma crystalline lattice of the equiatomic Zn-
Mg alloy; the middle graph shows a 24-atom fragment directly cut from the Pmma
lattice. Relaxation of this initial structure produces the GM structure of Zn12Mg12;
the right figure shows a relaxed 26-atom fragment of the R3̄c crystalline lattice adop-
ted by Mg21Zn25 alloy. Its structure is identical to the GM structure of Zn13Mg13,
although the composition is obviously different.
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A.5 E L E C T RO N I C P RO P E RT I E S

Table A5: Vertical ionization potential, vertical electron affinity and fundamental gap of equi-
atomic Zn-Mg nanoalloys with up to 50 atoms

N vIP vEA GAP

4 6.70 0.64 6.06

6 6.20 0.97 5.23

8 6.04 1.19 4.86

10 5.69 1.09 4.60

12 5.79 1.59 4.20

14 5.62 1.93 3.69

16 5.51 1.45 4.06

18 5.43 2.09 3.34

20 5.28 1.62 3.66

22 5.28 1.92 3.37

24 5.03 1.95 3.08

26 4.95 2.06 2.89

28 4.97 2.05 2.92

30 5.00 2.20 2.80

32 5.12 2.07 3.04

34 5.08 2.22 2.86

36 4.83 2.02 2.81

38 5.06 2.27 2.79

40 5.06 2.33 2.73

42 5.07 2.41 2.66

44 5.11 2.20 2.91

46 5.16 2.11 3.05

48 4.90 2.25 2.64

50 4.82 2.32 2.50
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Figure A3: Cohesive energy of equiatomic Zn-Mg nanoalloys as a function of the total number
of atoms (lower scale) or of electrons (upper scale).
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B.1 AC T I VAT I O N F U N C T I O N P E R F O R M A N C E C O M PA R I S O N

Table B1: Cost function for train and test sets achieved after 1500 iterations for Swish [145], Elu
[154], Tanh and Sigmoid activation functions.

Swish Elu Tanh Sigmoid

Train set 1.39·10−4 1.52·10−4 1.73·10−4 2.17·10−4
Test set 1.71·10−4 1.59·10−4 2.07·10−4 2.50·10−4

We provide in table B1 the cost function values obtained after 1500 iterations in the
training stage, using different activation functions. We can readily see that lower errors
in both the train and test sets are achieved using rectifiers (Elu and Swish functions),
while the sigmoids (Tanh and sigmoid functions) offer larger errors. Furthermore, the
execution time of Elu and Swish are similar and lower than their sigmoid counterparts;
in particular, Elu gives the lowest execution time. Our choice of Swish over Elu is due
to the former usually performing slightly better, as we have confirmed when training
other chemical elements. Thus we consider Swish to be more robust for general use, al-
though Elu activation function should certainly not be dismissed, and for this particular
nanoalloy produces results of a similar accuracy to Swish.
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B.2 F U RT H E R T E C H N I C A L D E TA I L S O N T H E N E U R A L N E T W O R K C O D E

The code standardizes the data in the input layer by rescaling them so that the average
value of each input channel is 0 and the standard deviation is 1. Besides, all weights in
the neural network are initialized as a random normal distribution, and the bias terms
are initialized to 0. After each epoch, the training set is randomly reordered. These are
very technical but important points which are known to ease the training process [123,
155, 156].
L2 regularization [126] is used to reduce over-fitting. It involves including an extra

penalty term in the original cost function Γ0, which measures the size of the weightsW:

Γ = Γ0 + λ
∑

|W2
i | (B.2.1)

with λ the regularization parameter. Thus, this term promotes smaller weights’ values
as largeW rise the Γ value to optimize, reducing this way to some extent the over-fitting.
We used 10−5 and 10−7 as λ values for the first and second Neural Network potentials,
respectively.

We employed in our training algorithm an initial learning rate of 5·10−4, and a final
value of 1·10−4 with a learning rate decay of 0.999. The learning rate is a parameter
that modulates the updating step influence over the current weights’ values. This way,
a larger learning rate parameter would promote higher changes of the weights towards
the local minimum, involving also a higher risk of overshooting the local minimum.

Lastly, during the training stage, evaluating all the 3N force components of a structure
being N the number of atoms, can become computationally very expensive for large
sizes. Therefore, in order to reduce the computational fitting effort, we took randomly
a single atom when training the forces of the structure at hand. We found it to be a
sensible alternative, since the atomic forces on every atom are correlated with the rest of
the atoms due to Newton’s third law. Thus training a single atom provides information
not only of its forces, but of those of his neighbors too.
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B.3 F O R C E S D E R I VAT I O N

We detail in this section the computation of the atomic forces. These are calculated as:

F̂i,α = −
∂E

∂αi
= −

N∑
l

∂El
∂αi

= −

N∑
l

Ms∑
s

∂El
∂Gl,s

∂Gl,s

∂αi
(B.3.1)

with i denoting the atom moving along the α cartesian direction (x,y, z), s a radial
or angular symmetry function and l the atom whose symmetry function changes. The

first term
∂El
∂Gl,s

reflects the change of the output value with respect to the input layer,

and is obtained as the backpropagation up to the input layer. The second term
∂Gl,s

∂αi
is the derivative of the symmetry functions with respect to the atomic positions. These
derivatives are shown in the following lines.

B.3.1 Radial symmetry functions

First we compute the case l = i:

∂Gi,s

∂αi
=

∑
j ̸=i

∂Gi,s

∂αij

∂(αi −αj)

∂αi
=

∑
j ̸=i

∂Gi,s

∂αij
, (B.3.2)

where we have set αij = (αi −αj). The case l = j ̸= i has a similar form:

∂Gj,s

∂αi
=
∂Gj,s

∂αij

∂(αi −αj)

∂αi
=
∂Gj,s

∂αij
. (B.3.3)

Finally, the radial derivatives share a common expression for both ∂Gi,s and ∂Gj,s
terms:

∂Gi,s

∂αij
=
∂Gj,s

∂αij
=

= exp
(
−η(rij − rs)

2
)[

−2η(rij − rs)fc +
∂fc

∂rij

]
αij

rij
,

(B.3.4)

with
∂fc

∂rij
the derivative of the cutoff function with respect to rij:

∂fc(rij)

∂rij
=

−
1

2

[
π

rc
sin

(
πrij

rc

)]
rij ⩽ rc

0 rij > rc

(B.3.5)

Thus, we can simply compute all
∂Gj,s

∂αi
terms with j ̸= i and sum them all to obtain

∂Gi,s

∂αi
.
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B.3.2 Angular symmetry functions

Similarly as before, we compute first the case l = i. The change in Gi,s due to the
movement of atom i along α is the same as if i remained fixed while atoms j and
k moved in the opposite direction. This way, the derivative with respect to αi is the
negative sum of the derivatives with respect αj and αk:

∂Gi,s

∂αi
= −

∑
k>j ̸=i

(
∂Gi,s

∂αj
+
∂Gi,s

∂αk

)
. (B.3.6)

These two derivatives are computed as:

∂Gi,s

∂αj
=
∂Gi,s

∂αij

∂(αi −αj)

∂αj
= −

∂Gi,s

∂αij

∂Gi,s

∂αk
=
∂Gi,s

∂αik

∂(αi −αk)

∂αk
= −

∂Gi,s

∂αik
,

(B.3.7)

and after replacing back in (B.3.6) we get:

∂Gi,s

∂αi
=

∑
k>j ̸=i

∂Gi,s

∂αij
+
∂Gi,s

∂αik
. (B.3.8)

We have to bear in mind that for these derivatives, the moving atoms are j and k, not i.
On the other hand, for the cases l = j ̸= i and l = k ̸= i, being i the moving atom, we
have:

∂Gj,s

∂αi
=
∂Gj,s

∂αij

∂(αi −αj)

∂αi
=
∂Gj,s

∂αij

∂Gk,s

∂αi
=
∂Gk,s

∂αik

∂(αi −αk)

∂αi
=
∂Gk,s

∂αik

(B.3.9)

Next we provide explicit expressions for the several terms involved. We consider in

first place the terms appearing in
∂Gi,s

∂αi
. We can factorize the expression of Gi,s into

three different terms:

Gi,s = F1(θijk)F2(rij, rik, rjk)F3(rij, rik, rjk)
with

F1(θijk) = 2
1−ζ(1+ λcosθijk)

ζ

F2(rij, rik, rjk) = exp
(
−η(r2ij + r

2
ik + r

2
jk)
)

F3(rij, rik, rjk) = fc(rij)fc(rik)fc(rjk)

(B.3.10)

with θijk the angle formed between r⃗ij and r⃗ik:
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cos(θijk) =
xijxik + yijyik + zijzik

rijrik
. (B.3.11)

Then, application of the chain rule produces the following expression for the two terms
in equation (B.3.8):

∂Gi,s

∂αij
=
∂F1
∂αij

F2F3 + F1
∂F2
∂αij

F3 + F1F2
∂F3
∂αij

∂Gi,s

∂αik
=
∂F1
∂αik

F2F3 + F1
∂F2
∂αik

F3 + F1F2
∂F3
∂αik

(B.3.12)

The different derivatives are obtained as follows:

∂F1
∂αij

=
∂F1

∂cosθijk

∂cosθijk

∂αij

= 21−ζζλ
(
1+ λcosθijk

)ζ−1 [ αik
rijrik

−
αijcosθijk

r2ij

]
∂F1
∂αik

=
∂F1

∂cosθijk

∂cosθijk

∂αik

= 21−ζζλ
(
1+ λcosθijk

)ζ−1 [ αij

rijrik
−
αikcosθijk

r2ik

]
(B.3.13)

∂F2
∂αij

=
∂F2
∂rij

∂rij

∂αij
+
∂F2
∂rjk

∂rjk

∂αij

=

(
−2ηrij

∂rij

∂αij
− 2ηrjk

∂rjk

∂αij

)
F2 = 2ηF2(−αij +αjk)

∂F2
∂αik

=
∂F2
∂rik

∂rik
∂αik

+
∂F2
∂rjk

∂rjk

∂αik

=

(
−2ηrik

∂rik
∂αik

− 2ηrjk
∂rjk

∂αik

)
F2 = −2ηF2(αik +αjk),

(B.3.14)

where we took into account that the moving atoms are j and k in the first and the second

expression, respectively, and as such
∂rij

∂αij
=
αij

rij
,
∂rjk

∂αij
= −

αjk

rjk
,
∂rik
∂αik

=
αik
rik

and

∂rjk

∂αik
=
αjk

rjk
. With the same considerations we obtain the derivatives for F3:
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∂F3
∂αij

=
∂F3
∂rij

∂rij

∂αij
+
∂F3
∂rjk

∂rjk

∂αij

=
∂fc(rij)

∂rij

αij

rij
fc(rik)fc(rjk) − fc(rij)fc(rik)

∂fc(rjk)

∂rjk

αjk

rjk
∂F3
∂αik

=
∂F3
∂rik

∂rik
∂αik

+
∂F3
∂rjk

∂rjk

∂αik

= fc(rij)
∂fc(rik)

∂rik

αik
rik
fc(rjk) + fc(rij)fc(rik)

∂fc(rjk)

∂rjk

αjk

rjk

(B.3.15)

Placing all these terms back into (B.3.12) we finally obtain:

∂Gi,s

∂αij
=

=

[
−21−ζζλ

(
1+ λcosθijk

)ζ−1 cosθijk
r2ij

F2F3 − 2ηF1F2F3+

F1F2
∂fc(rij)

∂rij
fc(rik)fc(rjk)

1

rij

]
αij+[

21−ζζλ
(
1+ λcosθijk

)ζ−1 F2F3
rijrik

]
αik+[

2ηF1F2F3 − F1F2fc(rij)fc(rik)
∂fc(rjk)

∂rjk

1

rjk

]
αjk

(B.3.16)

∂Gi,s

∂αik
=

=

[
−21−ζζλ

(
1+ λcosθijk

)ζ−1 cosθijk
r2ik

F2F3 − 2ηF1F2F3+

F1F2
∂fc(rik)

∂rik
fc(rij)fc(rjk)

1

rik

]
αik+[

21−ζζλ
(
1+ λcosθijk

)ζ−1 F2F3
rijrik

]
αij+[

−2ηF1F2F3 + F1F2fc(rij)fc(rik)
∂fc(rjk)

∂rjk

1

rjk

]
αjk

(B.3.17)

All that remains is computing the derivatives of Gj,s and Gk,s with respect to αi
appearing in equation (B.3.9). Again, we split into three terms the expressions for Gj,s
and Gk,s:
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Gj,s = F1(θjki)F2(rij, rik, rjk)F3(rij, rik, rjk)
Gk,s = F1(θkij)F2(rij, rik, rjk)F3(rij, rik, rjk)

with

F1(θjki) = 2
1−ζ(1+ λcosθjki)

ζ

F1(θkij) = 2
1−ζ(1+ λcosθkij)

ζ

F2(rij, rik, rjk) = exp
(
−η(r2ij + r

2
ik + r

2
jk)
)

F3(rij, rik, rjk) = fc(rij)fc(rik)fc(rjk)

(B.3.18)

with θjki the angle formed between r⃗ji and r⃗jk and θkij the angle formed between r⃗ki
and r⃗kj:

cos(θjki) =
xjkxji + yjkyji + zjkzji

rijrjk

cos(θkij) =
xkixkj + ykiykj + zkizkj

rjkrik

(B.3.19)

With the same considerations as before, but taking now i as the moving atom, one

arrives to the following expressions for
∂Gj,s

∂αij
and

∂Gk,s

∂αik
:

∂Gj,s

∂αij
=

=

[
−21−ζζλ

(
1+ λcosθjki

)ζ−1 cosθjki
r2ij

F2F3 − 2ηF1F2F3+

F1F2
∂fc(rij)

∂rij
fc(rik)fc(rjk)

1

rij

]
αij−[

21−ζζλ
(
1+ λcosθjki

)ζ−1 F2F3
rijrjk

]
αjk+[

−2ηF1F2F3 + F1F2fc(rij)fc(rjk)
∂fc(rik)

∂rik

1

rik

]
αik

(B.3.20)

∂Gk,s

∂αik
=

=

[
−21−ζζλ

(
1+ λcosθkij

)ζ−1 cosθkij
r2ik

F2F3 − 2ηF1F2F3+

F1F2
∂fc(rik)

∂rik
fc(rij)fc(rjk)

1

rik

]
αik+[

21−ζζλ
(
1+ λcosθkij

)ζ−1 F2F3
rjkrik

]
αjk+[

−2ηF1F2F3 + F1F2fc(rjk)fc(rik)
∂fc(rij)

∂rij

1

rij

]
αij

(B.3.21)
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Table B2: Symmetry function parameters for Zn atoms.

Nº Type Rc Rs η ζ λ

1 Pair 7.0 0.0 0.001 — —

2 Pair 7.0 0.0 0.08 — —

3 Pair 7.0 0.0 0.35 — —

4 Pair 7.0 2.2 25 — —

5 Pair 7.0 2.65 22 — —

Zn-Zn 6 Pair 7.0 3.15 20 — —

7 Pair 7.0 3.65 15 — —

8 Pair 7.0 4.2 15 — —

9 Pair 7.0 4.75 15 — —

10 Pair 7.0 5.4 12 — —

11 Pair 7.0 6.0 10 — —

12 Pair 7.0 0.0 0.001 — —

13 Pair 7.0 0.0 0.08 — —

14 Pair 7.0 0.0 0.35 — —

15 Pair 7.0 2.2 25 — —

16 Pair 7.0 2.65 22 — —

Zn-Mg 17 Pair 7.0 3.15 20 — —

18 Pair 7.0 3.65 15 — —

19 Pair 7.0 4.2 15 — —

20 Pair 7.0 4.75 15 — —

21 Pair 7.0 5.4 12 — —

22 Pair 7.0 6.0 10 — —

23 Triplet 7.0 0.0 0.001 1.0 1.0

24 Triplet 7.0 0.0 0.001 1.0 -1.0

25 Triplet 7.0 0.0 0.001 4.0 1.0

26 Triplet 7.0 0.0 0.001 4.0 -1.0

27 Triplet 7.0 0.0 0.001 16.0 1.0

28 Triplet 7.0 0.0 0.001 16.0 -1.0

29 Triplet 5.5 0.0 0.001 1.0 1.0

Zn-Zn-Zn 30 Triplet 5.5 0.0 0.001 1.0 -1.0

31 Triplet 5.5 0.0 0.001 4.0 1.0

32 Triplet 5.5 0.0 0.001 4.0 -1.0

33 Triplet 5.5 0.0 0.001 16.0 1.0

34 Triplet 5.5 0.0 0.001 16.0 -1.0

35 Triplet 4.0 0.0 0.001 1.0 1.0

36 Triplet 4.0 0.0 0.001 1.0 -1.0

37 Triplet 4.0 0.0 0.001 4.0 1.0

38 Triplet 4.0 0.0 0.001 4.0 -1.0
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Table B3: Symmetry function parameters for Zn atoms (continuation).

Nº Type Rc Rs η ζ λ

39 Triplet 7.0 0.0 0.001 1.0 1.0

40 Triplet 7.0 0.0 0.001 1.0 -1.0

41 Triplet 7.0 0.0 0.001 4.0 1.0

42 Triplet 7.0 0.0 0.001 4.0 -1.0

43 Triplet 7.0 0.0 0.001 16.0 1.0

44 Triplet 7.0 0.0 0.001 16.0 -1.0

45 Triplet 5.5 0.0 0.001 1.0 1.0

Zn-Zn-Mg 46 Triplet 5.5 0.0 0.001 1.0 -1.0

47 Triplet 5.5 0.0 0.001 4.0 1.0

48 Triplet 5.5 0.0 0.001 4.0 -1.0

49 Triplet 5.5 0.0 0.001 16.0 1.0

50 Triplet 5.5 0.0 0.001 16.0 -1.0

51 Triplet 4.0 0.0 0.001 1.0 1.0

52 Triplet 4.0 0.0 0.001 1.0 -1.0

53 Triplet 4.0 0.0 0.001 4.0 1.0

54 Triplet 4.0 0.0 0.001 4.0 -1.0

55 Triplet 7.0 0.0 0.001 1.0 1.0

56 Triplet 7.0 0.0 0.001 1.0 -1.0

57 Triplet 7.0 0.0 0.001 4.0 1.0

58 Triplet 7.0 0.0 0.001 4.0 -1.0

59 Triplet 7.0 0.0 0.001 16.0 1.0

60 Triplet 7.0 0.0 0.001 16.0 -1.0

61 Triplet 5.5 0.0 0.001 1.0 1.0

Zn-Mg-Mg 62 Triplet 5.5 0.0 0.001 1.0 -1.0

63 Triplet 5.5 0.0 0.001 4.0 1.0

64 Triplet 5.5 0.0 0.001 4.0 -1.0

65 Triplet 5.5 0.0 0.001 16.0 1.0

66 Triplet 5.5 0.0 0.001 16.0 -1.0

67 Triplet 4.0 0.0 0.001 1.0 1.0

68 Triplet 4.0 0.0 0.001 1.0 -1.0

69 Triplet 4.0 0.0 0.001 4.0 1.0

70 Triplet 4.0 0.0 0.001 4.0 -1.0
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Table B4: Symmetry function parameters for Mg atoms.

Nº Type Rc Rs η ζ λ

1 Pair 7.0 0.0 0.001 — —

2 Pair 7.0 0.0 0.08 — —

3 Pair 7.0 0.0 0.35 — —

4 Pair 7.0 2.2 25 — —

5 Pair 7.0 2.65 22 — —

Mg-Zn 6 Pair 7.0 3.15 20 — —

7 Pair 7.0 3.65 15 — —

8 Pair 7.0 4.2 15 — —

9 Pair 7.0 4.75 15 — —

10 Pair 7.0 5.4 12 — —

11 Pair 7.0 6.0 10 — —

12 Pair 7.0 0.0 0.001 — —

13 Pair 7.0 0.0 0.08 — —

14 Pair 7.0 0.0 0.35 — —

15 Pair 7.0 2.2 25 — —

16 Pair 7.0 2.65 22 — —

Mg-Mg 17 Pair 7.0 3.15 20 — —

18 Pair 7.0 3.65 15 — —

19 Pair 7.0 4.2 15 — —

20 Pair 7.0 4.75 15 — —

21 Pair 7.0 5.4 12 — —

22 Pair 7.0 6.0 10 — —

23 Triplet 7.0 0.0 0.001 1.0 1.0

24 Triplet 7.0 0.0 0.001 1.0 -1.0

25 Triplet 7.0 0.0 0.001 4.0 1.0

26 Triplet 7.0 0.0 0.001 4.0 -1.0

27 Triplet 7.0 0.0 0.001 16.0 1.0

28 Triplet 7.0 0.0 0.001 16.0 -1.0

29 Triplet 5.5 0.0 0.001 1.0 1.0

Mg-Zn-Zn 30 Triplet 5.5 0.0 0.001 1.0 -1.0

31 Triplet 5.5 0.0 0.001 4.0 1.0

32 Triplet 5.5 0.0 0.001 4.0 -1.0

33 Triplet 5.5 0.0 0.001 16.0 1.0

34 Triplet 5.5 0.0 0.001 16.0 -1.0

35 Triplet 4.0 0.0 0.001 1.0 1.0

36 Triplet 4.0 0.0 0.001 1.0 -1.0

37 Triplet 4.0 0.0 0.001 4.0 1.0

38 Triplet 4.0 0.0 0.001 4.0 -1.0
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Table B5: Symmetry function parameters for Mg atoms (continuation).

Nº Type Rc Rs η ζ λ

39 Triplet 7.0 0.0 0.001 1.0 1.0

40 Triplet 7.0 0.0 0.001 1.0 -1.0

41 Triplet 7.0 0.0 0.001 4.0 1.0

42 Triplet 7.0 0.0 0.001 4.0 -1.0

43 Triplet 7.0 0.0 0.001 16.0 1.0

44 Triplet 7.0 0.0 0.001 16.0 -1.0

45 Triplet 5.5 0.0 0.001 1.0 1.0

Mg-Zn-Mg 46 Triplet 5.5 0.0 0.001 1.0 -1.0

47 Triplet 5.5 0.0 0.001 4.0 1.0

48 Triplet 5.5 0.0 0.001 4.0 -1.0

49 Triplet 5.5 0.0 0.001 16.0 1.0

50 Triplet 5.5 0.0 0.001 16.0 -1.0

51 Triplet 4.0 0.0 0.001 1.0 1.0

52 Triplet 4.0 0.0 0.001 1.0 -1.0

53 Triplet 4.0 0.0 0.001 4.0 1.0

54 Triplet 4.0 0.0 0.001 4.0 -1.0

55 Triplet 7.0 0.0 0.001 1.0 1.0

56 Triplet 7.0 0.0 0.001 1.0 -1.0

57 Triplet 7.0 0.0 0.001 4.0 1.0

58 Triplet 7.0 0.0 0.001 4.0 -1.0

59 Triplet 7.0 0.0 0.001 16.0 1.0

60 Triplet 7.0 0.0 0.001 16.0 -1.0

61 Triplet 5.5 0.0 0.001 1.0 1.0

Mg-Mg-Mg 62 Triplet 5.5 0.0 0.001 1.0 -1.0

63 Triplet 5.5 0.0 0.001 4.0 1.0

64 Triplet 5.5 0.0 0.001 4.0 -1.0

65 Triplet 5.5 0.0 0.001 16.0 1.0

66 Triplet 5.5 0.0 0.001 16.0 -1.0

67 Triplet 4.0 0.0 0.001 1.0 1.0

68 Triplet 4.0 0.0 0.001 1.0 -1.0

69 Triplet 4.0 0.0 0.001 4.0 1.0

70 Triplet 4.0 0.0 0.001 4.0 -1.0
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Figure B1: Upper panel: DFT cohesive energy difference between the GM structure relaxed
with the potentials and the same structure relaxed at the DFT level, for all the Zn2Mg
and Zn11Mg2 nanoalloys studied in this paper. The blue line shows DFT energies
calculated on the NN-relaxed structure, the green one shows DFT energies calculated
on the Gupta-relaxed structure; lower panel: Absolute cohesive energy error of NN
(blue) and Coulomb-enhanced Gupta (green) models, calculated on the GM-DFT
structure of each nanoalloy.

In a recent work [157], we developed an empirical potential aimed to describe nanoal-
loys with a significant degree of charge transfer. The new potential enlarges a usual
Gupta potential description of metallic interactions with an explicit charge-transfer term
fitted to ab initio Bader charges. That work showed that the improved potential is clearly
superior to bare metallic potentials in describing chemical ordering patterns in nanoal-
loys. Fig. B1 compares now the performances of NN and Coulomb-corrected Gupta
potentials. The lower panel shows the absolute errors in cohesive energy obtained when
the two potential models are used to calculate the energy of the DFT global minimum
geometry in a single-point calculation. For all sizes and both compositions, the Neural
Network potential provides a noticeably better agreement with the DFT results than the
Coulomb-enhanced Gupta potential. Moreover, the absolute errors of the NN are uni-
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formly low for all clusters with N ⩾ 15 atoms, while the Coulomb-corrected Gupta
potential displays a much more erratic behavior as a function of size. For very small
clusters the electronic effects have a dramatic influence in determining the stability,
thus it is reasonable that the larger NN errors concentrate in this size region.

Complementary to these results, the upper panel shows the DFT cohesive energy
increase in the GM structures, when these are locally relaxed with either the NN or
Coulomb-corrected Gupta potential. Also in this figure one can readily see that the
Neural Network approach provides, upon relaxation, more stable structures that are
closer to the targets on the DFT potential energy surface. To sum up, the Neural Network
clearly outperforms the empirical potential in proposing candidate structures for DFT
reoptimization.
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Figure B2: Vertical ionization potential, vertical electron affinity and fundamental gap of
Zn2Mg nanoalloys with up to 51 atoms.



142 S U P P O RT I N G I N F O R M AT I O N F O R C H A P T E R 3

B.7 C L U S T E R S TA B I L I T I E S A N D C O M PAC T N E S S

Figure B3: Cohesive energy of Zn2Mg nanoalloys with up to 51 atoms.

We finish this section by checking for additional relationships between stability and
structural properties. As all clusters are close to be maximally mixed, chemical ordering
can not significantly influence the size evolution of relative stabilities, so we focus on
purely geometric indicators. We show in Fig. B4 the root-mean-squared cluster radius
divided by N1/3, as a measure of the compactness of the nanoalloy structures. This
parameter actually correlates very well with the found magic numbers, as it displays
local minima for clusters with Ne = 18, 36, 60, 72 and 90 electrons, all of them coin-
ciding with enhanced stabilities. The electronic shell closings thus generally promote
the formation of stronger and shorter bonds. The only exception is, once again, the
Zn14Mg7 nanoalloy, where the exotic dangling atom results in a non compact structure,
so the relatively high stability for this particular size is exclusively associated with the
lone pair orbital on the adatom. That orbital contributes to the electronic density of
states with a deep impurity-like level [153, 158] that hardly perturbs the closed-shell
electronic structure of the 40-electron host.
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Figure B4: The root-mean-squared cluster radius, divided by N1/3, is shown as a function of
the total number of atoms (lower scale) or of electrons (upper scale).





C
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C.1 N U C L E O P H I L I C F U K U I F U N C T I O N f−

Figure C1: Condensed Fukui functions f− for ZnxMg20−xOm nanoalloys. Oxygen atoms show
the smallest value possible (dark blue balls), while the largest f− value is shown for
every structure. Small and large colored balls are Mg and Zn atoms, respectively.

The nucleophilic Fukui function f− is depicted in Figure C1 for the set of 42 ZnxMg20−xOm
clusters. The O atoms, that are not supposed to be prone to electrophilic attack, are as-
signed a f− value equal to 0 for ease of visualization (this way, all of them have the
same dark blue color in the figure). Their true f− values are always significantly lower
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than those of magnesium or zinc surface atoms, but of the same order of magnitude as
for the central atom of the cluster which is protected by the surface layer and, as such,
is weakly reactive.
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Figure C2: Adsorption energy of the newcomer oxygen atom as a function of the oxygen content,
for all the compositions under study.
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