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Simple Summary: Metronomic chemotherapy with different mechanisms of action against cancer
cells and their microenvironment represents an exceptional holistic cancer treatment. Each type of
tumor has its own characteristics, including each individual tumor in each patient. Understanding
the complexity of the dynamic interactions that take place between tumor and stromal cells and the
microenvironment in tumor progression and metastases, as well as the response of the host and
the tumor itself to anticancer therapy, will allow therapeutic actions with long-lasting effects to be
implemented using metronomic regimens. This study aims to highlight the complexity of cellular
interactions in the tumor microenvironment and summarize some of the preclinical and clinical
results that explain the multimodality of metronomic therapy, which, together with its low toxicity,
supports an inhibitory effect on the primary tumor and metastases. We also highlight the possible
use of nano-therapeutic agents as good partners for metronomic chemotherapy.

Abstract: The concept of cancer as a systemic disease, and the therapeutic implications of this, has
gained special relevance. This concept encompasses the interactions between tumor and stromal
cells and their microenvironment in the complex setting of primary tumors and metastases. These
factors determine cellular co-evolution in time and space, contribute to tumor progression, and
could counteract therapeutic effects. Additionally, cancer therapies can induce cellular and molecular
responses in the tumor and host that allow them to escape therapy and promote tumor progression. In
this study, we describe the vascular network, tumor-infiltrated immune cells, and cancer-associated
fibroblasts as sources of heterogeneity and plasticity in the tumor microenvironment, and their
influence on cancer progression. We also discuss tumor and host responses to the chemotherapy
regimen, at the maximum tolerated dose, mainly targeting cancer cells, and a multimodal metronomic
chemotherapy approach targeting both cancer cells and their microenvironment. In a combination
therapy context, metronomic chemotherapy exhibits antimetastatic efficacy with low toxicity but is
not exempt from resistance mechanisms. As such, a better understanding of the interactions between
the components of the tumor microenvironment could improve the selection of drug combinations
and schedules, as well as the use of nano-therapeutic agents against certain malignancies.

Keywords: metronomic chemotherapy; cancer therapy; tumor microenvironment; tumor vascular-
ization; bone-marrow-derived cells; cancer-associated fibroblasts; nanomedicine; nanocarriers

1. Introduction

The concept of cancer as a systemic disease encompasses the intercellular interactions
between cancer cells and stromal cells and the non-cellular components of the microenvi-
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ronment. These interactions are essential to support primary tumor growth and distant
metastasis progression and may influence the therapeutic response [1,2].

Tumor hypoxia promotes acidosis and necrosis [3,4] and has been associated with
abnormal angiogenesis, immunosuppression [5], tumor progression, and increased therapy
resistance [6–8]. The heterogeneity in the vascular perfusion within the tumor arises as
a result of the formation of abnormal tumor vessels, which leak and can be compressed
by both cancer and stromal cells (e.g., desmoplastic tumors). The strategies to decrease
tumor hypoxia through vascular normalization and normalization of cancer-associated
fibroblast/extracellular matrix could improve the outcome of therapies [9–13]. In addi-
tion to the vascular network, other sources of heterogeneity and plasticity in the tumor
microenvironment are the immune-infiltrated cells and the cancer-associated fibroblasts
(CAFs) [1,14], which could have a dual role in tumor progression and metastasis [15].

Anticancer drug therapies induce host response effects that modify the tumor mi-
croenvironment, and these effects can enhance or reduce their therapeutic potential [16,17].
In this sense, the conventional chemotherapy regimen, at the maximun tolerated dose
(MTD), which preferentially targets highly proliferative cancer cells, can induce cellular
and molecular responses in the tumor and the host that can promote tumor regrowth, tu-
mor cell dissemination, and metastasis [17]. In contrast, metronomic chemotherapy (MC),
defined as the chronic administration of less toxic lower dosages of cytotoxic drugs with
short or no drug-free breaks [18,19] and characterized by a multimodal effect on cancer
cells and their microenvironment [20,21] shows limited induction of these host response
effects [17]. As such, understanding these complex and multifaceted interactions could
help improve the selection of drug combinations and schedules and reduce resistance
to anticancer drugs. MC has become a new treatment option [22] that can be applied
to chemotherapy, radiotherapy, and biotherapy [23]. In this regard, nanotherapy offers
smartly targeted nanoparticles with modifiable properties to target components of the
tumor microenvironment and could therefore be a good addition to MC [24].

In this review, we briefly define some cellular components of the tumor microen-
vironment and their reciprocal crosstalk to promote tumor progression, which could be
affected by multimodal MC. We summarize the effects of host responses after MC regimen
versus standard chemotherapy regimen and the general biological mechanisms of action
of MC to explain its antitumor effects. Furthermore, we show that by using sophisticated
nanocarriers to administrate the drug, the benefits of metronomic chemotherapy may be
improved in terms of the selectiveness of drug delivery and therapy specificity.

2. Metronomic Chemotherapy: A Multimodal Therapy

The definition of MC as “a frequent, regular administration of drug doses designed
to maintain low, but active, concentrations of chemotherapeutic drugs over prolonged
periods of time, without causing serious toxicities” [25] highlights the importance of phar-
macokinetic analysis, which provides information on optimal dosing and administration
schedules for a single drug or in combination [25–27].

MC exhibits multiple potential mechanisms of action, which, together with its low
toxicity, results in an inhibitory effect on both primary tumors and metastases [28,29]. The
selection of the most appropriate drug or drug combinations, the administration schedule,
and the tumor to be treated will affect the target of action, effectiveness, and resistance to
therapy [30–32]. Thus, with an adequate selection of the above parameters, MC induces a
selective antitumor immune response [33].

The concept of MC, and its therapeutic use, have been extensively reviewed [19–23,25]
as regards the treatment of breast cancer [34,35], non-small-cell lung cancer (NSCLC) [36],
and high-risk pediatric malignancies [37]. A systematic review on MC compiles the
clinical experience in different cancers such as breast, castration-resistant prostate, ovarian,
glial, renal, lung, gastrointestinal, hepatocellular, multiple myeloma, melanoma, and
head and neck [38]. Moreover, MC, preferentially in a combination-therapy context, has
demonstrated remarkable efficacy in post-surgical therapy models for advanced and early
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metastatic disease, especially for the treatment of several types of aggressive cancers [39]. In
some cases, a differential response to therapy between metastasis and primary tumor was
observed [40]. The efficacy and tolerability of MC when used as adjuvant in locoregionally
advanced nasopharyngeal carcinoma patients [41,42], maintenance therapy in early-stage
triple-negative breast cancer and high-risk rhabdomyosarcoma patients [43,44], and as
treatment option in frail elderly patients with HER2-positive metastatic breast cancer [45]
has been demonstrated in recent phase III trials. Two systematic reviews of the literature of
metronomic clinical trials, covering the periods 2000/2012 and 2012/2019, showed that
most of the metronomic studies refer to breast, lung, malignant glioma, and prostate cancer,
with the most widely used being the cytotoxic drugs cyclophosphamide, capecitabine,
vinorelbine, methotrexate, and temozolamide, mainly in combination with other therapies
and mostly using empirical doses and schedules. These reviews conclude that although
MC is active and improves quality of life, further such trials are required to confirm its
widespread clinical utility [46,47].

MC is not exempt from resistance processes. However, they develop more slowly
compared to the MTD regimen, which could be due to the multimodal character of the
former [20,48]. In this regard, it has been demonstrated that MC modulates the balance of
drug-resistant and drug-sensitive clones co-existing within a tumor better than an MTD
regimen [49]. Cancer cells and host cells develop tumor support mechanisms to escape
therapy. Therefore, the drivers and targets for overcoming resistance to MC and other
antiangiogenic therapies are found in both cancer cells and host cells [48,50,51].

3. Cellular Components of the Tumor Microenvironment and Their Modulation by
Metronomic Therapy
3.1. Tumor Vasculature as a Support for Cancer Cells and Tumor-Initiating Cells or Cancer Stem
Cells (CSCs)

The normal vascular tree is a heterogeneous and highly organized network compris-
ing both supply and drainage vessels. The lining endothelial cells, especially capillary
endothelial cells, regulate the crosstalk between the needs of the tissue and the overall
systemic circulation, exhibiting differential gene expression in different tissues and organs,
and even within the same tissue [52–54].

During tumor progression, a vascular network is formed and remodeled as a result
of different processes that can coexist in tumors, such as de novo arteriogenesis, venogen-
esis [55,56], sprouting angiogenesis, initiation from capillaries, and vasculogenesis, with
bone-marrow-derived endothelial progenitor cells (EPCs) being involved [57]. In addition,
vessel co-option and vasculogenic mimicry are non-neoangiogenesis mechanisms of vessel
formation in tumors. Vessel co-option is a mechanism by which tumor cells grow around
pre-existing blood vessels, mainly observed in primary and metastatic lung, liver, and
brain tumors, as well as in lymph nodes, and it requires motility and invasion of cancer
cells [58,59]. In the vasculogenic mimicry mechanism, CSCs participate in the formation of
vascular-like structures. This mechanism is associated with higher tumor invasiveness and
recurrence [60,61]. Both mechanisms mediate resistance to anti-angiogenic therapy [62,63].

The microenvironment of a growing tumor is characterized by high heterogeneity in
terms of hypoxia and acidity levels, and by the continuous production of pro-angiogenic
factors by tumor and stromal cells [64,65]. The tumor vascular network is formed and
remodeled with no spatio-temporal control, thus exhibiting significant heterogeneity in
terms of structure, organization, and function [56,66].

The different characteristics of tumor endothelial cells (TECs) and normal ECs have
recently been reviewed [67]. TECs establish communication with tumor cells and other
stromal cells via the release of angiocrine factors that control tumor progression [68].
Angiocrine signaling from endothelial cells plays a role in maintaining disseminated tumor
cells, which reside in perivascular niches of the metastatic place, in a dormant state [69,70].
In addition, pericytes perform regulatory functions in vessel stabilization, permeability,
and blood flow; play a role in the angiogenesis process; and interact with endothelial cells,
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tumor cells, cancer-associated fibroblasts (CAFs), and immune cells to promote tumor
growth and progression [71].

CSCs may contribute to blood vessel formation by transdifferentiation into endothelial
cells or pericytes [60]. Hypoxic peri-arteriolar glioma stem cell niches exist in human
glioblastoma samples, with the SDF-1α/CXCR4 signaling axis and osteopontin/CD44
interactions being involved in the homing of glioma stem cells in their niches and their
maintenance [72,73]. Arterioles are transport vessels, not exchange vessels like capillar-
ies [73]. In an in vitro sphere-forming assay with C6-rat-glioma cell line, which contains
brain tumor stem-like cells, it was confirmed that factors secreted by human umbilical vein
endothelial (HUVEC) cells significantly increased the number of primary tumor spheres
formed [74]. Similarly, in an in vivo study, C6-rat-glioma tumor xenografts with low and
high CSCs were compared. A higher microvessel density and blood perfusion was found
in the latter, along with an increase in bone-marrow-derived EPCs in the bloodstream and
their incorporation into the vessels [75].

Metronomic Chemotherapy to Target Endothelial, Cancer, and Cancer Stem Cells

A systematic review of preclinical studies has confirmed the significant relationship
between reduced tumor vascularization and inhibition of tumor development, thus high-
lighting the importance of vascular efficiency [76]. However, a microvascular density
analysis cannot distinguish between angiogenic and non-angiogenic tumors, therefore the
histopathological growth pattern of tumors must be taken into account [77] or the term
“microvessel density” redefined [78,79]. Two tumor phenotypes have been distinguised in
murine tumor models and tumor specimens from patients based on the vascular/stromal
architecture ratio, which are known as “tumor vessel” and “stromal vessel” and are sensi-
tive or refractory to the VEGFR-2-blocking antibody DC101, respectively [80].

The anti-angiogenic potential of MC has been recently reviewed [81] and, given that
tumor cells and CSCs depend on the tumor vasculature, they will be affected. Prolonged
and continuous exposure in vitro to low doses of chemotherapy drugs has shown that
much lower concentrations of paclitaxel or 4-hydroperoxycyclophosphamide promote
the inhibition of proliferation and the induction of apoptosis in active endothelial cells
more than in tumor cells [82]. Following the same in vitro assay, a protracted low dose of
vinorelbine showed a direct anti-proliferative effect on NSCLC cells [83].

Unlike the administration of high doses of drugs, MC treatment showed a delayed but
sustained antitumor effect and a reduced resistance to therapy, which was explained by its
antiangiogenic effects and the activation of antitumor immunity [19,84]. In the combination
of MC and a conventional antiangiogenic drug, the antitumor efficacy was mutually
enhanced [19,85]. There is evidence from mouse tumor models and clinical trials that
MC decreases the levels of proangiogenic factors and increases the levels of endogenous
angiogenesis inhibitors, such as trombospondin-1 (TSP-1), which may contribute to the
angiogenic dormancy of the primary tumor [86].

In a PET-MRI study in recurrent glioblastoma patients treated with [18F]FMISO, a
PET tracer incorporated by viable hypoxic cells and not affected by perfusion, before and
after treatment with bevacizumab, an intrinsic resistance to bevacizumab was observed in
certain hypoxic tumor regions, as shown by an increased cerebral blood volume/cerebral
blood flow ratio and larger vessels compared to non-hypoxic regions. Those regions whose
initial hypoxia was reversed by the treatment showed shorter mean transit times, thus
demonstrating vascular normalization and improved oxygenation [87].

Vascular normalization combined with chemotherapy or radiotherapy has emerged as
a new antitumor therapy, although numerous factors must be taken into account during op-
timization [10]. Mathematical modeling has been used to define the normalization window
for increased perfusion after bevacizumab administration, a period in which the release
of a cytotoxic drug could be increased. In this way, the optimal schedule for sequential
administration of bevacizumab and pemetrexed-cisplatin in human NSCLC xenograft
model has been defined [88] and scaled for use in humans [89]. A mathematical model has
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also been used to assess the value of metronomic therapy in a vascular normalization strat-
egy [90]. Thus, using a patient-derived xenograft of a pancreatic cancer model, treatment
with metronomic gemcitabine caused a cytostatic effect, that is, viable but non-proliferative
tumor cells, an improvement in tumor perfusion, a reduction in hypoxia and necrosis, and
a decrease in tumor metabolism compared to the control [91].

In addition to the antiangiogenic effects of MC, in a sphere-forming assay using C6-rat
glioma xenografts, Folkins et al. demonstrated that metronomic cyclophosphamide alone,
or MTD cyclophosphamide + DC101, reduces the number of tumor spheres by targeting
CSCs [74]. Two metronomic schedules of gemcitabine treatment in orthotopic human
pancreatic tumor models reduced the percentage of pancreatic CSCs subpopulations [92].

3.2. Tumour Microenvironment May Reprogram Non-Immunological Bone Marrow-Derived Cells
to Support Tumor Growth and Metastases

Tumor hypoxia induces tumor vascularization by promoting the production of angio-
genic factors by tumor and stromal cells [93] and acts as a trigger in bone-marrow-derived
cell (BMDC) recruitment, a complex process involving mobilization, peripheral blood circu-
lation, transendothelial migration, and tumor homing [94–96]. The BMDCs recruited by the
tumor include CD133+/CD34+/VEGFR-2+ bone-marrow-derived endothelial progenitor
cells (EPCs), which undergo differentiation and incorporation into newly formed blood ves-
sels, where they stimulate tumor vascularization as a result of paracrine signaling [95,97,98].
On the other hand, several subsets of hematopoietic progenitor cells (HPCs) recruited into
the tumor bed act as peri-vascular modulators by producing growth factors, cytokines,
and matrix metalloproteinase-9 (MMP9), a critical molecule for vascular remodeling and
neovascularization [97]. The homing of EPCs to the tumor bed is regulated by several
chemokines and their receptors, especially VEGF/VEGFR-2 and SDF-1α/CXCR4 [95].
Given the complexity of the research on the origin, characterization, and contribution of
EPCs to neovascularization, it has yielded widely differing results [98,99].

The contribution of EPCs to tumor vasculogenesis was demonstrated using angiogenesis-
defective Id mutant (Id1+/−Id3−/−) and wild-type mice inoculated with human lymphoma
and Lewis lung carcinoma (LLC) cells. The tumors obtained from wild-type mice were well
vascularized, unlike those obtained from mutant mice, which did not show blood vessel
infiltration and presented necrosis and very slow growth [100]. When Id mutant mice were
lethally irradiated, transplanted with wild-type bone marrow, and then inoculated with
tumor cells, tumor growth was restored. VEGFR-2+-circulating endothelial progenitor cells
(CEPs) were incorporated into the neo-vessels and surrounded by VEGFR-1+-HPCs, which
confer stability [101]. A high expression of Id1 and Id3 has been found in many types of
cancer, both in the vasculature and in tumor cells [102].

Higher levels of VEGFR-2+-CEPs were found in the blood of patients with recurrent
or metastatic pediatric solid malignancies [103]. Using reconstituted bone-marrow mice
injected with LLC cells, a sequential implication of VEGFR-1+-HPCs and VEGFR-2+-
CEPs in the formation of micrometastasis was shown. Anti-VEGFR-1-antibody treatment
prevented the formation of lung pre-metastatic VEGFR-1+-HPCs clusters, consequent
tumor cell recruitment, and metastasis formation, and anti-VEGFR-2-antibody treatment
prevented large, well-vascularized metastases [104,105]. An elevation of VEGFR-1+-HPC
levels was observed in blood samples from patients with breast cancer, with an average
time of 6 months before relapse, and a subsequent elevation of VEGFR-2+-CEPs one month
before relapse, thus suggesting that they represent the early stages of development of
metastasis and treatment opportunities [106]. Moreover, there is some clinical evidence for
CEPs in patients with solid and hematological cancers [107,108].

Metronomic Chemotherapy Has a Systemic Antiangiogenic Effect by Reducing
Mobilization and Viability of Bone-Marrow-Derived CEPs

The levels of VEGFR-2+-CEPs and mature circulating endothelial cells (CECs), the
latter possibly derived from tumor endothelium by vascular turnover [109], found in
peripheral blood before and after tumor treatment could help to explain vascularization
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and tumor progression and the biological activity of a therapeutic agent [110,111]. In this
regard, a systematic study of the clinical diagnostic and prognostic value of CEP levels
concluded that, although higher CEP levels were found in the blood of cancer patients than
in healthy subjects, a deeper understanding of these cells and the tumor vascularization
process is required before CEPs can be used as tumor biomarkers [112].

Children with metastatic disease or relapses presented higher CEP levels compared to
healthy subjects [103]. In addition, a reduction in blood CEP levels was detected in children
with acute lymphoid leukemia (ALL) 6 months after the start of standard maintenance
chemotherapy, with characteristics of metronomic therapy, and was maintained over time.
Moreover, a significant increase in circulating levels of thrombospondin-1 was observed
after 18 months of treatment [113]. In patients with advanced breast cancer, after two
months of metronomic chemotherapy (cyclophosphamide/methotrexate +/- thalidomide),
an elevation of apoptotic blood CECs was observed and found to be correlated with
a better clinical outcome after follow-up of the patients for two years [114]. In a trial
of lenalidomide and metronomic melphalan in elderly patients with chronic myeloid
leukemia, it was observed that baseline CEC levels in responding patients were higher than
in non-responders, and that peaks of CECs occurred more frequently than in patients with
progressive disease [115]. A trial of metronomic vinorelbine and sorafenib, as palliative
treatment in patients with advanced NSCLC, showed a better response at lower doses.
Moreover, dynamic changes in CECs occurred during treatment, and their overall increase
was a predictor of better survival [116].

In human lymphoma xenograft models, CEP levels were observed to increase in
parallel with tumor growth. A peak in blood CEP levels occurred a few days after MTD
cyclophosphamide treatment, thus resulting in tumor resistance. In contrast, metronomic
cyclophosphamide produced a significant and sustained reduction in the number and
viability of CEPs and a delay in tumor growth [117]. The acute host response to MTD
treatment was not generally mediated by the different chemotherapeutic drugs tested [118].

The administration of Oxi-4503, a vascular disrupting agent (VDA), promoted an
acute elevation of viable CEPs in blood. A high concentration of GFP+-CEPs was found
to be localized at the tumor site, with some being incorporated into the peripheral tumor
vasculature. Administration of DC101 before VDA avoided these effects [119,120], similar
to MC cyclophosphamide treatment, thus resulting in a sustained delay of primary tumor
growth associated with lower perfusion and an increased apoptosis of tumor cells [121].

The optimal biological dose (OBD) for a therapeutic drug is defined as the lowest dose
that causes the maximum antitumor effect and safety. A correlation between OBD and
the maximum decrease in viable blood CEPs caused by antiangiogenic drugs and several
chemotherapy drugs administered in a metronomic regimen has been demonstrated [122,123].

Two combination treatments, namely endostar with metronomic vinorelbine or en-
dostar with vinorelbine at the MTD, were assayed in an LLC mouse xenograft model.
These treatments affected CEP mobilization, tumor vessel number, and tumor expression
of VEGF and hypoxia inducible factor-1 (HIF-1α) differently. Thus, whereas the former
promoted a significant decrease, the latter showed an increase in comparison with the
control group [124]. There is some clinical evidence for the efficacy and safety of metro-
nomic vinorelbine in advanced breast cancer and NSCLC [125,126]. Metronomic topotecan
with pazopanib showed antitumor activity in murine models of aggressive pediatric solid
tumors and a significant reduction in viable blood CEPs and CECs and tumor microvessel
density [127]. Treatment with MTD capecitabine, as monotherapy or combined with metro-
nomic cyclophosphamide, increased HIF-1α in primary orthotopic human metastatic colon
adenocarcinoma and in its liver metastasis. Substitution with metronomic capecitabine
decreased HIF-1α levels and was correlated with a decrease in intra-metastatic hypoxia
and nodule size [128].
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3.3. Tumour Microenvironment May Reprogram Immunological Bone-Marrow-Derived Cells to
Support Tumor Growth and Metastases

Myeloid-derived suppressor cells (MDSCs) CD11b+GR1+ in mice are immature bone
marrow myeloid cells characterized by immunosuppressive activity [129] and hetero-
geneity [130]. Factors produced by cancer and stromal cells, such as granulocyte-colony-
stimulating factor (G-CSF) and granulocyte-macrophage-stimulating factor (GM-CSF),
promote the expansion of immature myeloid cells (IMCs) in the bone marrow and their
migration to, and accumulation in, peripheral lymphoid organs and tumor sites [131].
IMCs Cd11b+Gr-1intLy6Chi accumulate in the marginal region of the spleen and expand
during tumor development [132]. A plethora of factors at tumor sites trigger different
signaling pathways in MDSCs that lead to the development of immature monocytic
myeloid-derived suppressor cells (M-MDSCs) Cd11b+Gr-1hiLy6Clo and polymorphonu-
clear myeloid-derived suppressor cells (PMN-MDSCs) Cd11b+Gr-1loLy6Chi. The induction
of immunosuppressive pathways in MDSCs inhibits tumor T-lymphocyte responses via
several mechanisms and promotes regulatory T cells (Treg) [133]. Apart from MDSCs,
tumors drive the recruitment and infiltration of other myeloid cells, such as macrophages,
neutrophils, and dendritic cells [131]. Immunosuppressive pathways can operate in these
other myeloid cell types, thus resulting in macrophage and neutrophil polarization to a
pro-tumor phenotype and the blocking of dendritic activation [133].

Tumor-associated MDSCs and macrophages (TAMs) are key components of CSC
niches. Both release cytokines, inflammatory molecules, and growth factors that support
CSCs [134]. A cross-talk is established between MDSCs/TAMs and CSCs in the TME.
Thus, MDSCs were found in the TME from glioblastoma patient samples, and a significant
fraction of them were found close to CSCs [135]. In studies with glioblastoma xenograft tu-
mors and co-culture strategies, it was demonstrated that macrophage migration inhibitory
factor (MIF), which is secreted at high levels by CSCs, activated the immunosuppressive
phenotype of MDSCs in a CXCR2-dependent manner [135].

Tumor-associated MDSCs promote tumor progression by inducing tumor angiogene-
sis via the release of growth factors, cytokines, and metalloproteinases (e.g., VEGF, Bv8,
MMP9) in response to tumor hypoxia and by STAT3 activation in MDSCs. Similarly,
tumor-associated MDSCs can be transdifferentiated into endothelial-like cells. The VEGF
produced stimulates the recruitment of MDSCs by the tumor, thus creating an immunosup-
pressive and antiangiogenic positive feed-forward loop [136]. In addition, recruitment of
CD11b+Gr1+ cells has been associated with refractoriness to anti-VEGF therapy [137,138].

MDSCs can promote tumor invasion and are essential for the formation of a pre-
metastatic niche [139–141]. In this regard, MDSC levels were found to be significantly
higher in the blood and tumors of patients with different types of cancers than in healthy
individuals, and were correlated with the clinical cancer stage and metastatic tumor bur-
den [142–145]. Recent studies, in the context of clinical trials, have suggested a correlation
between circulating and intratumoral MDSC levels and tumor stage, progression, and re-
sistance to therapy [146]. However, due to the phenotypic complexity of these cells, which
is governed by the microenvironment, a greater number of clinical trials and standardized
studies remains necessary [147–150].

A small subset of circulating CD11b+-myeloid cells expressing the Tie-2 angiopoi-
etin receptor, known as Tie-2 expressing monocytes (TEM), which are a subset of tumor-
associated macrophages (TAM), was identified, along with their infiltration into orthotopic
tumors and perivascular location [151]. TEMs have pro-angiogenic potential by secreting
angiogenic factors and high levels of MMP9 [151,152]. In cancer patients, TEMs were found
in the blood and in different types of solid tumors, usually close to the blood vessels [153].
Tumor-derived angiopoietin-2 (Ang-2) induces chemotactic activity in TEMs [152,153],
which have been associated with resistance to therapies that block VEGF and VEGFR-2
and with the development of an invasive phenotype [154,155].



Cancers 2021, 13, 5414 8 of 28

Metronomic Chemotherapy as Immune Modulator by Targeting Bone-Marrow-Derived
Myeloid Cells

Treatment of mice bearing metastatic pancreatic adenocarcinoma with MTD gemc-
itabine significantly increased the mobilization and tumor infiltration of MDSCs expressing
high levels of the pro-angiogenic chemokine Bv8, thus resulting in highly perfused tumors
and rapid tumor regrowth [156]. When MTD treatment was combined with metronomic
gemcitabine, or with anti-Bv8-antibodies, the number of MDSCs in the tumor was signifi-
cantly reduced, which resulted in a significant reduction in angiogenesis, tumor regrowth,
and metastasis [156]. In addition, in an aggressive mice model of pancreatic adenocar-
cinoma, treatment with MTD gemcitabine after tumor resection resulted in a reduction
of local recurrences, but not distal metastases, mainly due to an increased infiltration of
natural killer cells (NK) at the resection margin [157]. The neoadjuvant and adjuvant
modality of chemotherapy could be modulated by the tumor microenvironment and host
conditions [141].

In brain tumor xenograft models, metronomic cyclophosphamide (Q6day cycle)
activated anti-tumor immunity (blocked by axitinib and DC101), which is associated
with tumor regression, and decreased CD11b+GR1+ reservoirs in bone marrow and
spleen [158,159]. In a mouse glioma model, metronomic 5-FU produced a selective reduc-
tion in blood MDSC levels, which is associated with an increase in CD8+-T cells and a
reduction in Treg, which attenuated tumor immunosuppression and prolonged survival,
whereas a higher dose did not [135]. A similar result was obtained in breast carcinoma
patient-derived xenograft mouse models treated with capecitabine using MTD or metro-
nomic regimens [160]. In patients with recurrent glioblastoma, treatment with metronomic
capecitabine prior to surgery produced a decrease in circulating MDSCs and an increase in
tumor infiltration of CD8+-T cells and NK immune cell populations [161,162].

In an anti-VEGF-refractory LLC ectopic model, post-surgical treatment with anti-
Ang-2 antibodies inhibited the growth of lung metastases and reduced the vessel area in
metastatic nodules. The combination of metronomic gemcitabine/anti-Ang-2/anti-VEGF
therapy showed a very significant reduction in metastatic burden [163]. This therapeutic
effect was explained by the blocking of MDSC recruitment to metastasis, together with
inhibition of the adherence of pro-metastatic macrophages to endothelial cells and their
infiltration at the metastasis site [163].

Tregs is another type of immunosuppressive cell in the TME [164] whose plasticity
and function have been reviewed recently [165]. Several studies have indicated a potential
role for Treg in tumor angiogenesis [166,167]. As such, antiangiogenic drugs may affect
the number and function of Treg [168]. In a rat glioma model, metronomic temozolomide
selectively and significantly decreased the Treg/CD4+ ratio in the spleen [169]. Clinically,
elderly breast cancer patients treated for 6 months with letrozol or letrozol + metronomic
cyclophospamide showed a significant reduction in tumor Tregs associated with a good
response to treatment [170]. Similarly, an increase in tumor-infiltrating lymphocytes was
observed in breast cancer patients treated pre-operatively for 3 weeks with letrozole or
letrozol + metronomic vinorelbine [171]. Treatment of patients with metastatic solid tumors
with metronomic cyclophosphamide for one month induced a strong decrease in blood
levels of Tregs and restored immune functions [172]. In a phase I/II trial of metronomic
cyclophosphamide in patients with metastatic colorectal cancer, a depletion of Tregs in the
blood was observed in parallel with an increase in CD8+-T cells and a significantly longer
progression-free survival [173].

Metronomic chemotherapy exerts immune-modulatory effects, unlike the standard
chemotherapy regimen; for this reason, it was proposed to combine it with immunother-
apies, such as anti-CTLA-4 and anti-PD-1, the immune checkpoint inhibitors [174], to
enhance its effects in overcoming the cancer-induced immunosuppressive tumor microenvi-
ronment [31,34,175,176]. In this sense, metronomic paclitaxel combined with programmed
cell death 1 (PD-1) mAb in a syngeneic breast cancer mouse model improved the anti-tumor
efficacy of the immune checkpoint inhibitor as monotherapy, with a significant benefit in
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survival and reduced toxicity. Analysis of the immune microenvironment of the tumor
showed a reduction in the levels of Treg and MDSCs and an increase in the levels of CD4+

and CD8+ T cells [177]. In a murine glioma model, standard treatment with temozolomide
promoted the exhaustion of CD4+ and CD8+ T-cell and an increase in Treg and MDSC
levels. These effects were not observed with metronomic temozolomide. The combination
of the metronomic temozolomide regimen with PD-1 mAb preserved but did not increase
the beneficial effects of PD-1 inhibition, effects that were abolished by the combination
with the standard dose of temozolomide [178]. In a preclinical study using an EMT6/P
breast cancer mouse model, blocking cytotoxic T-lymphocyte antigen 4 (CTLA-4) inhibited
tumor growth. This inhibitory effect was increased when the anti-CTLA-4 antibody was
combined with a low-dose cyclophosphamide regimen, but not with a bolus (high-dose)
injection of cyclophosphamide plus a low-dose cyclophosphamide regimen [179]. In an-
other preclinical study, the metronomic cyclophosphamide regimen (Q6day cycle) inhibited
tumor growth and significantly increased survival in mice with aggressive EMT6-CDPP
breast cancer tumors. Analysis of the treated tumors showed an increase in CD4+ and CD8+

T lymphocytes and B lymphocytes. Although this cyclophosphamide therapy regimen
was shown to increase PD-L1 expression on the surface of EMT6-CDPP tumor cells, its
combination with anti PD-L1 antibody did not show greater efficacy compared to anti-PD-
L1 antibody single-agent [180]. In a phase II clinical trial (TONIC), short-term sequential
administration of metronomic doxorubicin, or cisplatin but not cyclophosphamide, as
induction treatment, followed by nivolumab (anti-PD-1) increased objective response rates
(ORRs) in patients with triple-negative breast cancer [181]. In this sense, a phase II trial that
compared the efficacy of a combined biomodulatory therapy (pioglitazone + clarithromycin
+ low-dose metronomic treosulfan) with nivolumab (anti-PD-1) as a single-agent in patients
with locally advanced, unresectable, or metastatic NSCLC showed that biomodulatory
therapy was well tolerated and showed stabilization of the disease. Although progression-
free survival (PFS) in the biomodulatory treatment arm was significantly lower than for
the nivolumab treatment, both treatments showed similar overall survival (OS). Based on
these results, it was suggested that biomodulatory therapy could be used as an induction
treatment to improve the efficacy of immune checkpoint inhibitors [182]. All these data
highlight the difficulty and complexity of improving the efficacy of immune checkpoint
therapy with metronomic chemotherapy as an immune-modulator. With this goal in mind,
essential factors such as tumor type, drug type, dose, timing, treatment schedule, and
method of drug administration must be considered and optimized.

3.4. Heterogeneity and Plasticity in Cancer-Associated Fibroblasts (CAF), a Subset of the Tumor
Microenvironment

CAFs, which are a major cell population in the tumoral stroma, are phenotypically
and functionally heterogeneous and are not completely characterized [183,184]. Their
heterogeneity may depend on the multiplicity of origins or their different spatial distribu-
tion inside the tumor [185–187]. In addition, resident endothelial cells may undergo an
endothelial-to-mesenchymal transition to CAFs with migratory potential, thus playing a
role in the metastatic process [188,189].

CAFs have an active and dynamic secretome that is involved in angiogenesis, tumor
immunity, migration and invasion, resistance to therapy, and tumor recurrence [190–192].
CAFs together with tumor cells participate in the deposition and remodeling of the ex-
tracellular matrix (ECM). Indeed, CAFs secrete ECM-degrading proteases (e.g., matrix
metalloproteinases) that release matrikines and growth factors from the ECM reservoir,
promoting tumor growth and metastasis [193]. On the other hand, the degradation of
the ECM by matrix metalloproteinases (MMPs) favoring lymphocyte tumor infiltration
and immunomodulation of the tumor microenvironment shows how MMPs play both
pro-tumorigenic and anti-tumorigenic roles [194]. Several trials have focused on therapies
based on the MMPs’ inhibition, and even if unsatisfactory results have been described so far,
they have contributed to emphasizing the complexity of the metalloproteases family [195].
CAFs may mediate resistance to androgen-deprivation therapy, which is effective in the
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treatment of prostate cancer. Prostate cancer cells and CAFs express the androgen receptor
(AR), and when the AR signaling is therapeutically inhibited in CAFs, it increases the ex-
pression and release of both CCL2 and CXCL8 cytokines, which exert pacracrine signaling
in cancer cells of the prostate, promoting cell migration and invasion [196]. Viewing tumors
as “wounds that never heal” [197] allows us to consider CAFs as permanently activated
fibroblasts associated with tumors [198]. However, there are different CAF subsets, even
within the same tumor, with different phenotypes and levels of activation.

In one experiment, MCF-7-ras breast cancer cells combined with human CAFs (or
normal fibroblasts as control) were grafted into SCID mice, and the SDF-1 produced by
CAFs was found to increase tumor mobilization and EPC recruitment [199].

In a multi-step squamous skin carcinogenesis model, fibroblasts isolated in the early
hyperplastic stage exhibited a pro-inflammatory gene signature (e.g., chemokines CXCL1,
SDF-1, IL6 cytokine, osteopontin) that persists during all stages of cancer progression. In
this step, IL1-β expressed by resident activated immune cells promotes CAF induction via
NF-κB signalling, thereby resulting in a proangiogenic and tumor-promoting inflammatory
response as a result of the recruitment of macrophages into the tumor [200].

Costa et al. characterized four CAF subsets in samples from breast cancer patients at
the time of surgery before any treatment. The subsets CAF-S1 (CD29MedFAPHiFSP1Med

αSMAHiPDGFRβMed−HiCAV1Low), the only one positive for fibroblast activation protein-α
(FAP), and CAF-S4 (CD29HiFAPNegFSP1Low−MedαSMAHiPDGFRβLow−MedCAV1Low) pref-
erentially accumulate in the most aggressive triple-negative breast cancer subtype. These
subsets promote an immunosuppressive microenvironment by attracting CD4+CD25+-T
lymphocytes, increasing their survival, and promoting their differentiation into immuno-
suppressive CD25+FOXP3+ Treg cells [201].

FAP+-CAFs were isolated by digestion of murine hepatoma tumor tissues and found
to be an important source of the chemokine CCL2, which mediates tumor inflammation
and immunosuppression. STAT3-CCL2 signaling, which is activated by FAP, promoted
tumor growth by enhancing the recruitment of MDSCs (CD11b+Gr1+) and macrophages,
both of which express the CCR2 receptor, thus preventing antitumor IFNγ-T-cell immunity.
A significant positive correlation was found between the expression of FAP, pSTAT3,
and CCL2 in the tumor stroma in patients with intrahepatic cholangiosarcoma, a highly
aggressive primary desmoplastic tumor associated with poor overall survival and a high
probability of recurrence [202].

A new CD10+GPR77+-CAF subset associated with poor survival was identified in
patients with breast and lung cancer. This subset is abundant in chemoresistant tumors
and provides a survival niche for CSCs as a result of continuous paracrine secretion of
IL6/IL8 [203,204]. A pro-tumorigenic integrin-α11+/PDGFRβ+-CAF subtype has recently
been identified in human breast cancer tissues associated with metastasis and poor clinical
outcome. Furthermore, integrin-α11 plays a role in the regulation of PDGFRβ signaling,
leading to JNK activation and a subsequent increase in tenascin c [205].

Metronomic Chemotherapy Prevents the Pro-Stemness Function of CAFs

A better understanding of the functional, spatial, and temporal heterogeneity of CAFs,
and the presence of subsets with opposite effects on cancer progression, will allow us to
develop more specific, effective, and safe therapies [206], thereby avoiding the adverse
effects observed after complete depletion of CAFs [207–209].

Due to the presence of pro-stemness CAFs, it is essential to consider the dose and
timing (neoadjuvant or adjuvant setting) of administration of CAF-targeted therapy [210].
Neoadjuvant MTD chemotherapy (doxorubicin, paclitaxel, or cyclophosphamide) induced
the expression of ELR+-chemokines in CAFs from human breast cancer tissues and in breast
and pancreatic ductal carcinoma xenograft models. Secreted ELR+-chemokines signal
using the CXCR-2 receptor, in a paracrine manner, thus promoting tumor progression by
stimulating angiogenesis, macrophage tumor infiltration, and phenotypic conversion and
expansion of cancer cells to CSCs (CD44+CD24low/−) [211]. A significant increase in the
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percentage of CSCs was observed in biopsies from breast cancer patients after 12 weeks of
preoperative treatment with docetaxel or doxorubicin and cyclophosphamide at standard
doses [212]. Significantly, MC with the same chemotherapeutic agents attenuates ELR+-
chemokine CAF expression and prevents therapy-induced expansion of CSCs. As such, it
could be suitable for the treatment of desmoplastic tumors (e.g., breast, pancreatic cancer)
with high levels of CAFs [28,211].

Pancreatic ductal adenocarcinoma has an intrinsic resistance to gemcitabine [213].
Orthotopic injection of pancreatic cancer cells combined with pancreatic stellate cells
treated with MTD-gemcitabine into mice promoted a very rapid development of metastases.
However, co-injection with pancreatic stellate cells treated with metronomic gemcitabine
led to tumor regression and longer survival [211]. In human epidermoid carcinoma and
NSCLC tumor-bearing mice, treatment with MTD paclitaxel monotherapy, in sensitive and
drug-resistant mice, promoted extensive tumor infiltration of CAFs, which was increased in
resistant tumors. Treatment of taxol-resistant human tumor xenografts with metronomic 5-
FU in combination with MTD paclitaxel reverses tumor drug resistance by down-regulating
P-glycoprotein, a multidrug efflux transporter, and decreasing density of CAFs and collagen
in the tumor microenvironment [214].

In Figure 1 and Table 1, some of the most relevant results described in Section 3 are
summarized.

Table 1. Summaries of selected preclinical and clinical studies indicating biological mechanism of action of metronomic
chemotherapy.

Cancer Type Therapeutic Agents In Vivo Studies Mechanisms Cites

Section: Metronomic Chemotherapy to Target Endothelial, Cancer, and Cancer Stem Cells.

Pancreatic MC gemcitabine
PC patient-derived

xenograft
↓hypoxia
↓necrosis [91]

Glioma MC CTX 1 PC xenograft ↓CSCs [74]
Pancreatic MC gemcitabine PC xenograft ↓CSCs [92]

Section: Metronomic Chemotherapy Has a Systemic Antiangiogenic Effect by Reducing Mobi-lization and Viability of
Bone-Marrow-Derived CEPs.

Acute lymphoid
leukemia (ALL)

ALL maintenance therapy
(MC Mercaptopurin + MC

MTX 2)
clinical ↓blood CEPs

↑blood TSP-1 [113]

Advanced breast
carcinoma

MCCTX/MCMTX +/−
thalidomide

clinical ↑apoptotic blood CECs [114]

Chronic myeloid
leukemia lenalidomide + MCmelphalan clinical ↑apoptotic blood CECs [115]

Advanced NSCLC MCvinorelbine + sorafenib clinical dynamic changes of CECs [116]
Lymphoma MCCTX PC xenograft ↓blood CEPs [117]

Lewis lung carcinoma
(LLC) endostar + MCvinorelbine

PC syngeneic mouse
model

↓blood CEPs
↓microvessel density,
↓VEGF, HIF-1α

[124]

Neuroblastoma,
osteosarcoma,

rhabdomyo-sarcoma

MCtopotecan + pazopanib PC xenograft
↓viable blood CEPs and

CECs
↓microvessel density

[127]

Colon adenocarcinoma
and liver metastasis

MC capecitabine
MC capecitabine + MC CTX

PC xenograft
↓HIF-1α

↓intrametastatic hypoxia [128]
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Table 1. Cont.

Cancer Type Therapeutic Agents In Vivo Studies Mechanisms Cites

Section: Metronomic Chemotherapy as Immune Modulator by Targeting Bone-Marrow-Derived Myeloid Cells.

Pancreatic
adenocarcinoma

MTD gemcitabine + MC

gemcitabine

PC syngeneic mouse
model

PC xenograft
↓tumor MDSCs [156]

Brain MC CTX (Q6day cycle) PC xenograft
↓CD11b+GR1+ bone marrow

& spleen [158,159]

Glioblastoma MC 5-FU 3 PC xenograft
↓blood MDSCs
↑CD8+-T cells
↓Treg

[135]

Breast carcinoma MC capecitabine
PC patient-derived

xenograft

↓blood MDSCs
↑cytotoxic T cells

↓Treg
[160]

Recurrent glioblastoma MC capecitabine clinical
↓blood MDSCs
↑CD8+-T cells
↑NK cells

[161,162]

Lewis lung carcinoma
(LLC)

MC gemcitabine + anti-Ang-2
+ anti VEGF

PC syngeneic mouse
model

⊗MDSC recruitment in
metastasis.

⊗infiltration of MΦ at
metastasis site

[163]

Glioma MC temozolomide PC syngeneic rat model ↓Treg/CD4+-T cells in spleen [169]

ER 4-positive breast
letrozol

letrozol +MC CTX clinical ↓Treg [170]

ER-positive
breast

letrozol
letrozol + MC vinorelbine clinical ↑tumor infiltrating

lymphocytes [171]

Metastatic solid tumors MC CTX clinical
↓blood Treg

enhancing T and NK cell
functions

[172]

Metastatic colorectal
cancer

MC CTX clinical ↓blood Treg
↑CD8+-T cells [173]

Section: Metronomic Chemotherapy Prevents the Pro-Stemness Function of CAFs

Breast and pancreatic
ductal adenocarcinoma

MC doxorubicin
MC paclitaxel

MC CTX

PC xenograft
and

human breast cancer
tissues

↓ ELR+-chemokines CAF
expression ↓expansion of

CSCs
[210]

MC metronomic chemotherapy, PC preclinical, MTD maximun tolerated dose, 1 cyclophosphamide, 2 methotrexate, 3 fluorouracil, 4 estrogen
receptor, ↑ increase, ↓ decrease, ⊗ blocking.
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cancer cells (CCs) and CSCs. CSCs can induce the conversion of non-stem cells into metastatic-CSCs with a migratory 
phenotype [219]. Hypoxia/HIF-1α promotes epithelial-to-mesenchymal transition in cancer cells and maintains stemness 
[220]. (B) CSCs are drivers of vascularization, and the perivascular area constitutes a supportive niche. (C) CSCs maintain 
populations of immunosuppressive cells (e.g., MDSCs, Treg), and tumor-associated MDSCs, in turn, are key components 
of CSC niches and are essential for the formation of the pre-metastatic niche. (D) CSCs induce the transformation of normal 
stromal fibroblasts into CAFs, which maintains the proliferation and self-renewal of CSCs. Bidirectional link between 
vasculature and immune cells: (E) Tumor-recruited MDSCs are pro-angiogenic and can be transdifferentiated into endo-
thelial-like cells. Tumor MDSCs are immunosuppressive by inhibiting tumor T-lymphocytes and NK cell activation and 
by inducing immunosuppressive Treg which, in turn, can promote tumor angiogenesis. Cross-talk between CAFs and the 
vasculature and immune system: (F) CAFs contribute to tumor angiogenesis and promote tumor CEP mobilization and 
recruitment. In turn, tumor endothelial cells can undergo an endothelial-to-mesenchymal transition to CAFs. In addition, 
CAFs mediate tumor immunosuppression by promoting MDSC recruitment and attracting T-lymphocytes and their dif-
ferentiation into immunosuppressive Treg. This figure is based on previous studies [20,28]. See Section 3 for more detailed 
information. Reprinted with permission from the original with modifications Ref. [29], Copyright 2021, Elsevier. 

Table 1. Summaries of selected preclinical and clinical studies indicating biological mechanism of action of metronomic 
chemotherapy. 

Cancer Type Therapeutic Agents In Vivo Studies  Mechanisms Cites 
Section: Metronomic Chemotherapy to Target Endothelial, Cancer, and Cancer Stem Cells. 

Pancreatic MC gemcitabine 
PC patient-derived xeno-

graft 

↓hypoxia 
↓necrosis 

[91] 

Glioma MC CTX 1 PC xenograft ↓CSCs [74] 
Pancreatic MC gemcitabine PC xenograft ↓CSCs [92] 

Section: Metronomic Chemotherapy Has a Systemic Antiangiogenic Effect by Reducing Mobi-lization and Viability of Bone-Mar-
row-Derived CEPs. 

Acute lymphoid leukemia 
(ALL) 

ALL maintenance therapy clinical ↓blood CEPs 
↑blood TSP-1 [113] 

Figure 1. General biological mechanisms of action of MC to explain their antitumor effects. Links that create a permissive
tumor microenvironment and could be affected by metronomic chemotherapy (two-way arrows). The CSC population is
characterized by heterogeneity, plasticity, and therapy-resistance [215,216]. The reciprocal interactions between CSCs, cancer
cells, endothelial cells, immune cells, CAFs, and other extracellular elements of the tumor microenvironment regulate CSCs
in the primary tumor and metastases [217,218]. (A–D): (A) A feedback-signaling mechanism occurs between cancer cells
(CCs) and CSCs. CSCs can induce the conversion of non-stem cells into metastatic-CSCs with a migratory phenotype [219].
Hypoxia/HIF-1α promotes epithelial-to-mesenchymal transition in cancer cells and maintains stemness [220]. (B) CSCs
are drivers of vascularization, and the perivascular area constitutes a supportive niche. (C) CSCs maintain populations of
immunosuppressive cells (e.g., MDSCs, Treg), and tumor-associated MDSCs, in turn, are key components of CSC niches
and are essential for the formation of the pre-metastatic niche. (D) CSCs induce the transformation of normal stromal
fibroblasts into CAFs, which maintains the proliferation and self-renewal of CSCs. Bidirectional link between vasculature
and immune cells: (E) Tumor-recruited MDSCs are pro-angiogenic and can be transdifferentiated into endothelial-like
cells. Tumor MDSCs are immunosuppressive by inhibiting tumor T-lymphocytes and NK cell activation and by inducing
immunosuppressive Treg which, in turn, can promote tumor angiogenesis. Cross-talk between CAFs and the vasculature
and immune system: (F) CAFs contribute to tumor angiogenesis and promote tumor CEP mobilization and recruitment. In
turn, tumor endothelial cells can undergo an endothelial-to-mesenchymal transition to CAFs. In addition, CAFs mediate
tumor immunosuppression by promoting MDSC recruitment and attracting T-lymphocytes and their differentiation into
immunosuppressive Treg. This figure is based on previous studies [20,28]. See Section 3 for more detailed information.
Reprinted with permission from the original with modifications Ref. [29], Copyright 2021, Elsevier.

4. Simulated Metronomic Therapies: Nanocarriers for Cancer Therapy

Advanced therapies for the clinical treatment of cancer are currently focusing on
personalized medicine approaches by refining drug-delivery procedures and improving
the specificity of therapy [221]. In this perspective, we show that most sophisticated
pharmacological vehicles play an important role in increasing the bioavailability of drugs
and their selectivity by delivering them directly to the tumor microenvironment and
allowing controlled release once in situ [222,223]. The aim of metronomic therapy to
administer a reduced but prolonged dose coincides with one of the main benefits of drug
carriers [224]. The development of vehicles that “package” therapeutic agents allows
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the delivery of a lower dosage in a “nanometronomic” manner [225], while overcoming
the obstacles presented by free drugs as regards alleviating systemic toxicity and side
effects, increasing tumor penetration, and sustained drug release [226–228]. Indeed, by
choosing the most suitable pharmacological vehicle for the therapeutic agent, the latter can
be protected, its solubility increased, and its release modulated by prolonging the time of
circulation and reducing the dosage [229].

Several drug-delivery systems, such as drug depots [230–232], hydrogels [233–236],
microspheres [237,238], or nanocarriers (NCs) [239,240], have been developed and inves-
tigated. For intra-tumoral drug delivery and for bypassing physiological barriers, local
drug-loaded depots and hydrogels have allowed the long-term delivery of treatment at the
site of action [234,241]. Moreover, these devices reduce the frequency of administration
and, therefore, patient discomfort, as only a single in situ application is required. Un-
fortunately, many tumors cannot be treated in situ with these macroscopic devices due
to the possible inability to administer them in the target organ, or the danger inherent
in doing so, and when the simultaneous treatment of different organs is necessary, such
as in the case of metastatic tumors [242]. In contrast, nanocarriers can overcome these
limitations as the administration of drug-loaded NCs can be systemic or localized, and
they can cross physiological barriers, thus reaching widely disseminated cancer cells [243].
The benefits of NC-based pharmaceutical formulations are even more evident in cancers
with poor prognosis, immunogenicity, and high resistance to current therapies, such as
pancreatic [244,245], triple-negative breast [246], or ovarian cancer [247,248]. NC treat-
ments have recently been approved, as they have been shown to provide survival benefit
to patients with advanced aggressive cancers, or are currently undergoing active clinical
trials [249–251]. Some of these therapies include combined treatments administrated in a
metronomic manner [252]. Thus, the treatment of pancreatic ductal adenocarcinoma using
a combination of gemcitabine-based therapy with irinotecan-, fluorouracil-, and folinic-
acid-loaded NCs has shown anti-tumor efficacy and improved patient survival [249]. The
effectiveness of the formulation known as CRLX101, which comprises self-assembling
NCs formed from a cyclodextrin-containing polymer conjugated to camptothecin, against
ovarian cancer is currently being studied in clinical trials in combination with weekly
paclitaxel administration [252,253] or an antiangiogenic drug [247]. Furthermore, many
other possible metronomic-based therapies are being studied. In this regard, promising
results have been attained upon combining metronomic therapy with an NC drug for-
mulation [227,254] in melanoma [255], and colorectal [254], prostate [256], and ovarian
cancer [257], thereby demonstrating how these two strategies can synergistically improve
cancer treatment. To achieve metronomic dosing for ovarian cancer therapy, Amoozgar
et al. have developed bilayer coated NCs to both extend paclitaxel release and improve
the ability of NCs to hide from the immune system, thereby enhancing their blood circula-
tion half-life. A comparison of encapsulated and free paclitaxel treatments demonstrated
increased survival times without presenting any detectable negative effects [257]. Many
therapeutic strategies based on the systemic administration of NCs, and their interaction
with the tumor microenvironment, have been reported, as the nanoscale size of NCs allows
them to be used for passive targeting by exploiting abnormalities in vascularity. Indeed,
NCs with an appropriate size can undergo extravasation to tumor blood capillaries that
present an aberrant vascular architecture and be retained in the tumor tissues due to the
vascular enhanced permeability and retention (EPR) effect [258]. A significant increase (up
to 100-fold) in the amount of NCs in the tumor microenvironment compared to free drugs
has been reported, although it is unclear whether this is attributable solely to passive trans-
port or whether a small percentage of NCs accumulated in the tumor stroma is delivered
to the solid tumor [259–261]. Moreover, passive targeting is not particularly selective due
to the heterogeneity of the size of the fissures in the tumor vasculature [262].

The biomaterials employed to produce NCs are essentially inorganic [263], lipid-
based [264,265], or polymeric [266–268] in nature (Figure 2). All the biomaterials selected
present numerous benefits as carriers for cancer therapy, especially bioavailability, biocom-
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patibility, an ability to self-assemble, and, due to recent advancements in molecular engi-
neering, the ability to be customized to improve their biological characteristics [269,270].
Indeed, biofunctionalized carriers facilitate molecular transport by overcoming biologi-
cal barriers [271–273] and regulate the distribution of the drug, directing it towards the
therapeutic goal, usually a selected organ, tissue, or even cell type [269,274].
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Figure 2. Schematic representation of the evolution of NCs towards targeted nano carriers (TNCs) in clinical cancer
treatments. Some NCs formulations approved or in clinical trials, based in lipid (Doxil, Marqibo, MM-310; Vyxeos),
inorganic (AMAG, NanoTherm), natural molecules (ABI-009, Abraxane), and polymers (BIND-014; AZD2811), as well as
engineering monoclonal antibody for target treatment (SGT-53, Kadcyla: Traszumab conjugate with emtansine). Reprinted
with permission from Ref. [275].

The specificity of cancer therapy has been improved by using stimuli-responsive
devices that achieve a therapeutic effect only in the organs affected by the tumor by
directing cancer-related biomolecules to them [276,277]. Thus, NCs decorated with tumor
stroma/cell targets as tumor-homing ligands facilitate the accumulation and internalization
of nano-devices after interaction with certain components overexpressed in the cancer
tissue, subsequently releasing anticancer drugs into solid tumors [269].

Despite the identification of a wide set of cancer-related biomarkers [276,278,279],
most of the selective therapies developed to date have proved unsatisfactory in in vivo
assays due to the drug resistance observed, related to the tumor microenvironment [24,280].
Accordingly, in light of the above, tumor progression results in a stroma remodeling that
deeply influences angiogenesis, invasion, and metastasis [277,281–283]. The tumor differs
from the normal tissue microenvironment in terms of accessory, vascular, stromal, and
immune cells, but also with regard to enzymes [284], pH [285], hypoxia [286], nitric oxide
concentration [287], and proportion of matrix components [288]. All these physiological
modifications can be used to trigger a selective response in active targeting strategies and
theragnostics (Figure 3) [276,288–291].

One of the primary causes of tumor chemoresistance was identified as being related to
the high interstitial pressure and hypoxic nature of tumor tissues [292]. As such, reprogram-
ing of the tumor hypoxic microenvironment is one of the main goals for overcoming drug
resistance in tumor cells. For the treatment of hepatocellular carcinoma, Zan and colleagues
described the results obtained using a multifunctional delivery system in which polymeric
NCs were co-loaded with two natural anti-cancer molecules that are able to reduce the
tumor hypoxic microenvironment decorated with a cancer-related biomarker that also
increases cellular uptake. The resulting multi-functional NC significantly reduced hypoxia
and tumor drug resistance, thereby increasing the therapeutic effects [293]. Although NCs
directed at cancer tissues limit the possible toxicity of the therapy, optimization of the dose
and administration reduces the risk of their non-specific accumulation in normal organs.
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Figure 3. (A) Representation summarizing current strategies to improve the tumor penetration of NCs
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Reprinted with permission from Ref. [272], Copyright 2021, Elsevier.

5. Conclusions

MC, which is preferential in a combination-therapy context, has demonstrated anti-
metastatic effects in preclinical and clinical settings. The multi-target mechanism of action
of MC has a potential normalizing effect on the vasculature and the tumor stroma, which is
accompanied by a decrease in hypoxia, in the number of CSCs, a reduction in immunosup-
pression, and the promotion of an immunostimulatory microenvironment. All the above
could limit tumor- and host-mediated effects in response to therapeutic strategies that gen-
erate marked stress in the TME, thus leading to therapy resistance, re-growth, and tumor
progression. As such, a lack of, or limited, host-response effects to MC could maintain a
stable disease state. Depending on the tumor type and stage of tumor development, the
appropriate selection of drug combinations, schedules, and delivery mechanisms, such as
nanocarrier-formulated chemotherapy, could improve and maintain their therapeutic efficacy.
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