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A B S T R A C T   

Objective: This study analyzed, at a postcode detailed level, the relation-ship between short-term exposure to 
environmental factors and hospital ad-missions, in-hospital mortality, ICU admission, and ICU mortality due to 
COVID-19 during the lockdown and post-lockdown 2020 period in Spain. 
Methods: We performed a nationwide population-based retrospective study on 208,744 patients admitted to 
Spanish hospitals due to COVID-19 based on the Minimum Basic Data Set (MBDS) during the first two waves of 
the pandemic in 2020. Environmental data were obtained from Copernicus Atmosphere Monitoring Service. The 
association was assessed by a generalized additive model. 
Results: PM2.5 was the most critical environmental factor related to hospital admissions and hospital mortality 
due to COVID-19 during the lockdown in Spain, PM10, NO2, and SO2and also showed associations. The effect was 
considerably reduced during the post-lockdown period. ICU admissions in COVID-19 patients were mainly 
associated with PM2.5, PM10, NO2, and SO2 during the lockdown as well. During the lockdown, exposure to PM2.5 
and PM10 were the most critical environmental factors related to ICU mortality in COVID-19. 
Conclusion: Short-term exposure to air pollutants impacts COVID-19 out-comes during the lockdown, especially 
PM2.5, PM10, NO2, and SO2. These pollutants are associated with hospital admission, hospital mortality and ICU 
admission, while ICU mortality is mainly associated with PM2.5 and PM10. Our findings reveal the importance of 
monitoring air pollutants in respiratory infectious diseases.   

1. Introduction 

In December 2019, a new betacoronavirus (SARS-CoV2) emerged in 
Wuhan, changing life radically as we used to know it (Lu et al., 2020; Xu 
et al., 2020). In Spain, there were two epidemic waves and more than 2 
million cases. Hospitalizations reached up to 200.000 admissions 

overloading hospital services; mainly, the capacity of Intensive Care 
Units (ICU) had to be increased to admit more than 18.000 severe cases. 
More than 42.000 people died in Spain that first year (Equipo COVID-19. 
Red Nacional de Vigilancia Epidemiológica (RENAVE). Centro Nacional 
de Microbiología (CNM), 2020; Equipo COVID-19. Red Nacional de 
Vigilancia Epidemiológica (RENAVE). Centro Nacional de Microbiología 

* Corresponding author. Department of Pharmacology, Faculty of Medicine, Universidad de Valladolid, Valladolid, Spain. 
E-mail address: marta.martin.fernandez@uva.es (M. Martín-Fernández).   

1 Equal contribution.  
2 Equal contribution. 

Contents lists available at ScienceDirect 

Environmental Research 

journal homepage: www.elsevier.com/locate/envres 

https://doi.org/10.1016/j.envres.2023.115904 
Received 26 September 2022; Received in revised form 24 March 2023; Accepted 12 April 2023   

mailto:marta.martin.fernandez@uva.es
www.sciencedirect.com/science/journal/00139351
https://www.elsevier.com/locate/envres
https://doi.org/10.1016/j.envres.2023.115904
https://doi.org/10.1016/j.envres.2023.115904
https://doi.org/10.1016/j.envres.2023.115904
http://crossmark.crossref.org/dialog/?doi=10.1016/j.envres.2023.115904&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


Environmental Research 229 (2023) 115904

2

(CNM), 2021). 
The first measure taken to prevent the virus spread was the 

confinement of the population that started in Spain on March 15th and 
lasted until May 10th, 2020 (Boletín Oficial del Estado (67): 
25390–25400, 2020). One of the main consequences was the reduction 
of person-to- person contact, drastically impacting the virus’s trans-
mission (Kraemer et al., 2020). Another direct consequence was the 
reduced traffic, as many people started working remotely from home. 
This had implications on the levels of environmental conditions, as 
anthropogenic emission of nitrogen oxides comes mainly from fossil 
fuels. 

In the past two years, many studies on pollution and COVID-19 
outcomes have been performed (Zang et al., 2022; Sarmadi et al., 
2021; Martelletti and Martelletti, 2020). The main findings suggest short 
and long-term exposure to NO2, PM2.5, and SO2 was associated with 
higher COVID- 19 incidence and long-term exposure to PM2.5 with 
increased COVID-19 mortality. A recent study suggested short and 
long-term exposure to NO2, and PM2.5 increased COVID-19 hospitali-
zations and ICU admissions (Chen et al., 2022). 

This study analyzed, at a detailed postcode level, the relationship 
between short-term exposure to environmental factors and hospital 
admissions, in-hospital mortality, ICU admission, and ICU mortality due 
to COVID-19 in Spain during the lockdown and post-lockdown 2020 
periods. 

2. Materials and methods 

2.1. Study design 

We conducted a nationwide population-based retrospective study in 
patients hospitalized due to COVID-19 in Spain in 2020. Clinical and 
administrative data of all patients were collected from the Spanish 
Minimum Basic Data Set (MBDS), an administrative database provided 
by the Ministry of Health, which has an estimated coverage of 99.5% for 
both public and private Spanish hospitals discharges (Subdirección 
General de Información Sanitaria, 2016). The database includes 
encrypted patient identification numbers, gender, birth date, hospital 
admission, and discharge, and admission to Intensive Critical care Units 
(ICU), and postcode. It also 

Includes clinical data, 20 diagnoses, and 20 procedures codes ac-
cording to the International Classification of Diseases 10th Revision, 
Clinical Modification (ICD-10-CM), as well as the outcome at discharge 
(ICD-10-CM, 2022). The MBDS is validated for data quality and overall 
methodology by the Spanish Ministry of Health, establishing protocols 
and periodic audits. The data were treated with complete confidentiality 
according to Spanish legislation. Thus, given the anonymous and 
mandatory nature of the data, informed consent was not required or 
necessary. This study was approved by the Ethics Committee of Valla-
dolid East Health Area under the code PI 22–2855. 

2.2. Study variables and outcomes 

Diagnosis codes included in the MBDS, differentiate between pri-
mary and secondary diagnoses at discharge and whether they were 
present on admission (POA). Hospitalization due to COVID-19 was 
defined as any hospitalization with codes B97.29 and U07.1, as the 
principal diagnosis present on admission, from January 1st to December 
31st, 2020. Outcomes considered in this study included COVID-19 
severity, defined as: a) hospital admission, b) in-hospital mortality, c) 
ICU admission, and d) ICU mortality. In Spain, the first wave of COVID- 
19 was marked by the lockdown from March 15th to May 10th that year 
(Boletín Oficial del Estado (67): 25390–25400, 2020). That had multiple 
effects, including a considerable reduction in traffic flow, among others 
(Donzelli et al., 2021). Therefore, the study was divided into two pe-
riods: the first, from COVID-19 introduction in Spain until May 10th, 
2020; and the second, from May 11th, 2020 until December 31st, 2020. 

2.3. Air pollution data 

Air pollutant data from January 1st, 2020, to December 31st, 2020 
was obtained from Copernicus Atmosphere Monitoring Service (CAMS) 
European air quality forecasts (METEO FRANCE, 2022). CAMS registers 
hourly analysis for the European Region at a level of (0.1◦ × 0.1◦) 
approx. 10 km2. For the seven main air pollutants, daily averages were 
calculated and used for analysis, including carbon monoxide (CO) in 
μg/m3, nitrogen monoxide (NO) in μg/m3, nitrogen dioxide (NO2) in 
μg/m3, sulfur dioxide (SO2) in μg/m3, ozone (O3) in μg/m3, particulate 
matter < 2.5 μm (PM2.5) in μg/m3, and particulate matter < 10 μm 
(PM10) in μg/m3. 

2.4. Meteorological data 

Temperature and relative humidity were considered the two main 
meteorological effects. Data was obtained from Copernicus Climate 
Change Service, ERA5-Land hourly data from 1950 to the present 
(Muñoz Sabater, 2022). ERA-5 produces hourly analysis in a regular grid 
of (0.1◦ × 0.1◦). As Copernicus does not provide precipitation data that 
might influence pollution levels, relative humidity was used as an in-
direct method to account for precipitation. To measure air humidity, we 
computed the daily average temperature of air at 2 m above the ground 
surface, and the temperature to which the air, at 2 m above the ground 

Fig. 1. Diagram of patient selection.  

Table 1 
Summary of the epidemiological and clinical characteristics of patients with a 
COVID-19 hospital admission in Spain. Abbreviations: No: Number of patients; 
ICU: Intensive Care Unit. Values are expressed as number (%) for categorical 
variable and median (interquartile range) for quantitative variable.  

No, Total Lockdown 
period 

Post-lockdown 
period 

p-value 

208,744 103,154 105,590  

Gender (male) 117,620 
(56.35) 

58,217 
(56.44) 

59,403 (56.26) 0.413 

mean Age 
(years) 

69.0 (26.0) 69.0 (25.0) 69.0 (27.0) 0.770 

Length of stay 
(days) 

8.0 (8.0) 8.0 (9.0) 8.0 (7.0) <0.001 

In-hospital 
mortality 

34,867 
(16.7) 

19,317 (18.7) 15,550 (14.7) <0.001 

Charlson Index 1.0 (2.0) 1.0 (2.0) 1.0 (2.0) <0.001 
ICU 
ICU 18,915 (9.1) 9094 (8.8) 9821 (9.3) <0.001 
ICU death 6030 (31.9) 3057 (33.6) 2973 (30.3) 0.270 
ICU length of 

stay 
10.0 (16.0) 12.0 (19.0) 9.0 (13.0) <0.001  
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surface, would have to be cooled for saturation to occur. That data, 
combined with temperature and pressure, can be used to calculate the 
relative humidity by (Alduchov and Eskridge, 1996): 

RH= 100
exp((17.625 ∗ TD)/(243.04 + TD))

exp((17.625 ∗ T)/(243.04 + T))

With TD as dew point temperature (◦C) at 2 m above the surface and T as 
temperature (◦C) of air at 2m above the surface. 

2.5. Link environmental data with clinical data 

A critical task in these studies is the linkage of air pollutant exposures 
to individuals in the data set. Having the data on a fine grid over Spain, 
the assignment was performed as follows: first, each patient’s centroid 
postcode was calculated; secondly, the nearest position of the centroid to 
the grid was searched; and finally, the environmental data were linked 
according to the date of admission. 

2.6. Statistical analysis 

A descriptive study of each environmental factor was carried out in 
each wave defined. Spearman’s rank correlation test was used to study 
the bivariate relationships between the environmental factors and the 
outcomes. The incubation period of COVID-19 ranges from 1 to 7 days, 
so we used a moving average approach to account for the cumulative 
effect of environ-mental factors. Therefore, the cumulative effects were 
examined by modeling the moving average lag effect (lag3, lag5, lag7) 
on the mean environmental factors on daily hospital admission of 
COVID-19. For example, lag0 represented the concentration of the day 

of hospital admission. Lag3 represented a 3-day moving average expo-
sure, which was calculated as the average concentration of the day of 
hospital admission and the three previous days, and so on. We per-
formed separate models by lockdown and post-lockdown period, using a 
generalized additive model (GAM) (Hastie and Tibshirani, 1990) with a 
Poisson family distribution and log-link function to estimate the asso-
ciation between the moving average air pollutant concentrations and the 
daily hospital admission, hospital mortality, ICU admission, and ICU 
mortality. GAMs were adjusted by temperature, relative humidity, and 
day of the week. Because there were higher correlations between air 
pollutants (see Appendix A; Table A1), each model only contains one of 
them to avoid collinearity. Therefore, the model is defined as follows:  

log(yit) = Xil + Tempil + RHil + s(dayi) + εit                                            

where i is the postcode, t is for the date of admission, and log(yit) is the 
log-transformed cases of hospital admissions, hospital mortality, ICU 
admission, and ICU mortality for postcode i and date t. Xil represents the 
moving average term (lag0-l) of daily air pollution in postcode i. We 
controlled by daily mean temperature (Tempil), relative humidity, (RHil) 
and day of the week as s(dayi), which is the basis spline to smooth the 
data with 4 degrees of freedom. We obtained the percentage of change 
(%) by exponentiating the effects estimates, subtracting 1, and multi-
plying by 100. We controlled over-dispersion using quasi-Poisson dis-
tribution (McCullagh and Nelder, 1989). 

Finally, a sensitivity study was performed on the pollutants that 
showed an association to establish values at which the pollutants 
showed a more significant impact on the outcomes studied. For this 
purpose, and due to the high correlation between different outcomes, we 
used a multi-output decision tree regression (Dumont et al., 2009) with a 

Fig. 2. Summary of the association between environmental factors and hospital admissions due to COVID-19. Abbreviations: PC: Percentage of change (%), 
computed by GAM adjusted for temperature, humidity, and day of the week. (*) Increases of 0.1 μg/m3 for NO and SO2. CI95%, 95% of the confidence interval. Lag: 
Moving average lag effect at 3, 5 and 7 days. q-value: False discovery rate q-value. Note that the x-axes have different scales. 
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minimum of 1000 observations per sheet. As regressors, we used the 
moving averages of each of the pollutants. This was performed with a 
MANOVA test which allows the degree of correlation between outputs to 
be taken into account in the segmentation process. The outputs 
considered were hospital admissions, in-hospital mortality, ICU admis-
sion, and ICU mortality. Thus, in each tree, we can find those pollutant 
values at lag3, lag5, and lag7 for which the mean number of outputs is 
different. A secondary sensitivity analysis was also carried out to assess 
environmental factors’ impact on the clinical events analyzed, strati-
fying the population ac-cording to the previous chronic lower respira-
tory diseases (CLRD) with the ICD-10 codes J40 to J47, which 
encompasses four major diseases: chronic obstructive pulmonary dis-
ease (COPD), chronic bronchitis, emphysema, and asthma. 

All analyses were performed using python (version 3.9) and R sta-
tistical software (version 4.2.1) with the mgcv package (Wood, 2011) for 
GAM analysis. All statistical analyses were evaluated using two-sided 
tests at the 0.05 level of significance. False discovery rates were calcu-
lated using the Benjamini-Hochberg method for multiple comparisons. 

3. Results 

3.1. Population characteristics 

A total of 3,114,793 hospital admissions were recorded in Spanish 
MDBS during 2020, of which 251,417 were admitted with a COVID-19 
diagnosis and 217,106 of them with the principal diagnosis and pre-
sent on hospital admission. Finally, 208,744(96%) hospital admissions 
with full postcodes were selected Fig. 1. 

Table 1 shows all patients’ clinical and epidemiological character-
istics stratified by waves. Overall, the median age was 69 years, and 56% 

were men. The hospital stay was seven days, in-hospital mortality was 
15.9%, ICU admission was 8.8%, and ICU mortality was close to 30%. A 
difference in in-hospital mortality between waves was found, with the 
epidemiological characteristics remaining constant. 

3.2. Environmental conditions in 2020 

During the lockdown in 2020, NO, NO2, and SO2 levels were lower 
and CO, O3 PM10, and PM2.5 levels were higher compared to post- 
lockdown (Appendix A, Figure A1, and A2). In order to look for a sea-
sonal pattern, the previous year and the year after were also studied. 
Compared to those years, overall pollution was lower in 2020. However, 
differences corresponding to lock-down and post-lockdown periods are 
equally observed. Therefore, a separate analysis of 2020 would be 
appropriate to discard the seasonal effect. 

3.3. Environmental conditions related to COVID-19 hospital admissions 

Fig. 2 shows the association between environmental factors and the 
number of hospital admission. During the lockdown period (Fig. 2a), all 
air pollutants were positively associated with hospital admissions, 
except for O3. PM2.5 had the most significant impact on hospital 
admission, with a percentage of change (PC) greater than 8% for in-
crements of 1 μg/m3. Exposures to NO2, PM10, and SO2 also impacted 
hospital admissions, with an increase around 5% for every 1 μg/m3 in-
crease for the first two pollutants and 0.1 μg/m3 for the third, in the 
moving average (Fig. 2a).). Although the negative impact of some air 
pollution was maintained in the post-lockdown period, it was not as high 
as in the lockdown period. The PC for PM2.5 was around 3–4% for in-
creases of 1 μg/m3 in the moving average (Fig. 2b). Besides, a similar 

Fig. 3. Summary of the association between environmental factors and hospital mortality due to COVID-19. Abbreviations: PC: Percentage of change (%), computed 
by GAM adjusted for temperature, humidity, and day of the week. (*) Increases of 0.1 μg/m3 for NO and SO2. CI95%, 95% of the confidence interval. Lag: Moving 
average lag effect at 3, 5 and 7 days. q-value: False discovery rate q-value. Note that the x-axes have different scales. 
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pattern was observed for NO2 and PM10. However, SO2 considerably 
decreased in this period (Fig. 2b). 

3.4. Environmental conditions related to COVID-19 hospital mortality 

During the lockdown, the negative impact of PM2.5 was present in the 
hospital mortality with a PC around 5% for increases of 1 μg/m3 in the 
moving average at lag 3, 5, and 7 days. Also PM10,NO2, and SO2, showed 
a negative impact on hospital mortality with a PC of at least 2% for 
increases of 1 μg/m3 (PM10 and NO2), and 0.1 μg/m3 (SO2) in the 
moving average at 3, 5, and 7 days (Fig. 3a). Also, NO presented a PC of 
at least 1% for increases of 0.1 μg/m3 in the moving average at lag 3, 5, 
and 7 days. On. 

The contrary, a lesser impact of environmental conditions was 
observed on hospital mortality during the post-lockdown period 
(Fig. 3b). 

3.5. Environmental conditions related to COVID-19 ICU admissions 

The effect of environmental conditions during lockdown showed 
PM10 and PM25 had the strongest association with ICU admission, with a 
PC between 2 and 4% for increases of 1 μg/m3 in the moving average at 
lag 3,5 and 7 days. Likewise, NO2 and SO2 were associated with ICU 
admission. By contrast, the impact of pollutants in the post-lockdown 
was lesser and the strongest association was present for PM2.5 with a 
Pc of 1% for increases of 1 μg/m3 in the moving average at lag 3,5 and 7 
days (Fig. 4a and b). 

3.6. Environmental conditions related to COVID-19 ICU mortality 

Fig. 5 shows the environmental effect on ICU mortality, but this was 
evident only during the lockdown for PM2.5 and PM10 (Fig. 5a). During 
post-lockdown (Fig. 5b), a different picture from the one previously 
detected was observed. Only exposures to PM2.5 and PM10 showed a 
slight effect on ICU mortality with PC around 0.25% for increases of 1 
μg/m3 in the moving average at lag 3, and 7 days (Fig. 5b). 

3.7. Sensitivity analysis 

Using the environmental factors that presented an association with 
the events studied, the sensitivity analysis determined that in the lock-
down period, close to 65% of admissions, hospital mortality, ICU ad-
missions, and ICU mortality happened when the moving average at 3 
days was over 162 μg/m3 for CO, over 0.9 μg/m3 for SO2, 3.1 μg/m3 for 
NO2, 0.2 μg/m3 for NO, 9.8 μg/m3 for PM10, and 8.5 μg/m3 for PM2.5 
(Fig. 6). 

In the post-lockdown period, the environmental values associated 
with significant differences in the means of each outcome were similar 
to those obtained in the lockdown period. However, although the seg-
mentation performed provided cut-offs for which the mean of the 
number of events was significantly different, the distribution of the 
events during the post-lockdown is more uniform than that obtained in 
the lockdown period (see Appendix A Figure A3). Similar patterns were 
found for lag5 and lag7 days (data not shown). 

We stratified the patients according to previous CLRD to analyze the 
as-sociation between environmental factors and clinical events. When 
patients did not have CLRD, the association of environmental factors 
with the out-comes studied remained in the same direction as when the 

Fig. 4. Summary of the association between environmental factors and ICU admissions due to COVID-19. Abbreviations: PC: Percentage of change (%), computed by 
GAM adjusted for temperature, humidity, and day of the week. (*) Increases of 0.1 μg/m3 for NO and SO2. CI95%, 95% of the confidence interval. Lag: Moving average 
lag effect at 3,5 and 7 days. q-value: False discovery rate q-value. Note that the x-axes have different scales. 
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population was not stratified (see Appendix A Table A2). However, 
when the previous CLRD was considered, the effect of environmental 
factors was reduced in all clinical events analyzed, particularly in ICU- 
related clinical events (admission and death) (see Appendix A Table A3). 

4. Discussion 

This report analyzes the influence of environmental factors on hos-
pital admission, hospital mortality, ICU admission, and ICU mortality in 
COVID- 19 patients during the lockdown and post-lockdown periods in 
2020. Those outcomes were significantly affected mainly by PM2.5, NO2, 
PM10, and SO2 specially in the lockdown. Additionally, we determined 
the values at which an increase in admissions, in-hospital mortality, ICU 
admissions, and ICU mortality would be observed three days later. 

The lockdown in many countries worldwide during the spring of 
2020 to prevent the spread of COVID-19 significantly impacted the 
quality of life in most areas (Choi et al., 2021). As one of the countries 
most affected by the COVID-19 pandemic, Spain implemented one of the 
most strict confinement measures (Domínguez-Amarillo et al., 2020). 
Most studies agree on a global decrease in pollution during the lockdown 
(Srivastava, 2021). However, a few studies found no differences from 
previous years (Schiermeier, 2020; Jia et al., 2020; Varotsos et al., 
2021). In our study, although 2020 was less polluted, the differences 
between the lockdown and post-lockdown periods were not as signifi-
cant as we initially 

Expected. Different factors are probably involved in those results. 
First, after the lockdown, some cities returned rapidly to their usual 
pollution levels, while in others, levels remained relatively low for a 
while (Jevtic et al., 2021). And second, meteorological conditions 
affecting pollution levels are usually repeated year after year. 

When comparing both periods (lockdown and post-lockdown), the 
short-term impact of air pollutants is higher during the lockdown. Still, 
there are many factors that we must take into consideration. First, the 
traffic, aviation, industrial activities, and shipping reduction did not 
recover immediately. Second, home-based work was prolonged for more 
than a year in many sectors, 2020 summer holiday trips remained local, 
and mobility restrictions were imposed in Spain in the autumn of 2020 
as cases increased dramatically (Gobierno de España, 2020). The use of 
masks outdoors was also implemented in Spain at the end of June 2020. 
And third, the confinement from March to May 2020 in Spain involved 
an intense use of home heating systems, which has previously been 
described from data all over Europe (Menut et al., 2020). 

The difficult task of relating COVID-19 disease with air pollutants has 
been attempted since the early days of the pandemic (Zang et al., 2022). 
Those studies have initially established relationships between air pol-
lutants and COVID- 19 transmission, particularly PM2.5 (Wang et al., 
2020; Tateo et al., 2022), but also PM10, CO, NO2, and O3 (Zhu et al., 
2020; Copat et al., 2020). Many mortality studies have been performed 
worldwide (Bozack et al., 2022; Coker et al., 2020; Hendryx and Luo, 
2020; Wu et al., 2020), but only a few studies contemplating a short term 
analysis (Jiang and Xu, 2021; Khorsandi et al., 2021). Those agree that 
PM2.5 is related to higher mortality. Also, PM2.5, PM10 and O3 were 
associated with higher mortality and hospitalization rates (Khorsandi 
et al., 2021). Our results are aligned with previous findings in which 
PM2.5 was associated with hospitalization, remarking the additional 
impact of PM10 and SO2 on mortality. Additionally, our results show that 
NO should be considered in future studies since it has a critical and 
explainable impact on COVID-19 outcomes. NO and small amounts of 
NO2 are generated by traffic, heating, and industrial processes, but the 
latter mainly derives from NO conversion in the atmosphere. Therefore, 

Fig. 5. Summary of the association between environmental factors and ICU mortality due to COVID-19. Abbreviations: PC: Percentage of change (%), computed by 
GAM adjusted for temperature, humidity, and day of the week. (*) Increases of 0.1 μg/m3 for NO and SO2. CI95%, 95% of the confidence interval. Lag: Moving average 
lag effect at 3,5 and 7 days. q-value: False discovery rate q-value. Note that the x-axes have different scales. 
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it is essential not to limit studies to the influence of NO2 but to broaden 
them to NOx (Ayuntamiento de Valladolid, 2022). 

It is well-known air pollutants have a short-term and long-term 
impact on human health. On the one hand, they alter the functions of 
lung cells, increasing oxidative stress and inflammation and altering the 
immune responses which favor viral infections (Boningari and Smir-
niotis, 2016; Copat et al., 2020; Ray and Kim, 2014). Also, a relationship 
between acute exposure and cardiovascular problems, including stroke, 
cardiac arrest, and thrombosis, has been described (Robertson and 
Miller, 2018). On the other hand, those processes 

Lead to fibrosis that reduces pulmonary function, mediating the 
development, maintenance, and exacerbation of obstructive airway 
diseases and favoring infectious diseases (Feng et al., 2016). The relation 
between the aforementioned mechanisms and COVID-19 has also been 
proposed (Bourdrel et al., 2021; Woodby et al., 2020). In fact, those 
effects have been similarly described for different respiratory viruses 
(Domingo and Rovira, 2020). Additionally, it has been suggested that 
pollutant particles could be acting as transporters for SARS-CoV-2 
(Martelletti and Martelletti, 2020),a theory that should be carefully 
studied. 

Although not many studies include SO2 among the air pollutants 
studied regarding COVID-19, to our knowledge, no evidence has been 
described before that a positive correlation exists with COVID-19 out-
comes. In contrast, a negative correlation between SO2 and mortality has 
been found in a couple of studies (Jiang and Xu, 2021; Zhu et al., 2020). 
Interestingly, the short-term effects of SO2 were described 25 years ago 
(Katsouyanni et al., 1997; Stieb et al., 2002, 2003; Sunyer et al., 2003a, 
b) as a potent irritant contributing to airway inflammation. However, its 
implications are still controversial, suggesting it could contribute as a 
co-factor of other pollutants (Kan et al., 2010). 

In addition, the cut-off values provided in our study could help us in 
two directions. On the one hand, it can help us predict when hospital 

demands will increase if those limits are exceeded the previous 3 days. 
On the other hand, they can be set as limits of pollution allowed to 
prevent these events from happening. Although, this has not been per-
formed before, we consider this should be further studied. 

A potential bias to consider is that there were changes in patient 
management during the study period, especially during the first wave. 
The overflow of patients and the increase in medical personnel with 
little experience in the management of critical patients could have 
influenced the outcome of patients with COVID-19. The MBDS database 
does not have information on the medical staff who care for the patients 
and their previous experience, so we cannot analyze their real influence 
on the outcome of these patients. 

Overall, we showed associations between four air pollutants (PM2.5, 
PM10, NO2, and SO2) and different clinical outcomes, with similar pat-
terns, despite the impact of the post-lockdown period. The short-term 
exposure with lags (3, 5, 7d) was assessed because the incubation 
period of COVID-19 ranges from 1 to 7 days. Thus, the relevant role of 
PM2.5, PM10, NO2, and SO2 could be due to their direct pathological 
effects on the lower respiratory tract, which could increase the severity 
of COVID-19. Moreover, three air pollutants (CO, NO, and O3) did not 
show a significant short-term impact, but a possible direct or indirect 
long-term impact cannot be ruled out. 

CLRD is a major predictor of severe outcomes in COVID-19 patients. 
(Beltramo et al., 2021; Gerayeli et al., 2021). We conducted a 

sensitivity analysis to evaluate the impact of previous CLRD on the 
relationship between environmental factors and clinical events, finding 
previous CLRD diluted this association with the clinical events analyzed, 
particularly in the ICU. It is possible that the impact of environmental 
contaminants on the clinical outcomes of COVID-19 is more evident in 
the absence of CLRD and that the presence of CLRD dilutes or cancels 
this association because it is already a risk factor for severe COVID- 19. 

Fig. 6. Summary of the distribution of each pollutant with its cut-off value for each outcome, obtained by multi-output decision tree regression at lag3 days dur-
ing lockdown. 
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4.1. Limitations of the study 

The main limitations are: (i) The retrospective design could intro-
duce biases. (ii) There was no relevant clinical information to interpret 
the COVID- 19 infection (iii) The accuracy of the MBDS for COVID-19 
diagnosis was not evaluated, generating a confusion bias. (iv) Records 
of ICU admitted patients only include length of stay but not whether it 
was at the time of admission or later on. (v) We did not have data on 
indoor air contaminants, which may also influence susceptibility to 
COVID-19 infection. 

Our study also has several strengths that must be considered: (i) This 
nationwide study covers around 47 million population and all postcodes 
including all hospitalizations due to COVID-19 in 2020, unlike studies in 
individual regions or hospitals. (ii) We use data at the postcode level, 
and exposures were linked in a fine 10 km2 grid rather than a few 
stations. 

5. Conclusions 

Short-term exposure to air pollutants impacts COVID-19 outcomes. 
During the lockdown, PM2.5, PM10, NO2, but also SO2, significantly 
impacted hospital admission, hospital mortality, and ICU admission. 
ICU mortality was mainly associated with PM2.5 and PM10 during the 
same period. The influence of pollutants in COVID-19 outcomes during 
the post-lockdown period was much lower. Our findings reveal the 
importance of monitoring air pollutants in respiratory infectious 
diseases. 
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PRADA. Supervision: SALVADOR RESINO and EDUARDO TAMAYO. 
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Appendix A  

Table A1 
Spearman’s correlation matrix among environmental factors. Abbreviations: CO: Carbon monoxide; NO: Nitrogen monoxide; NO2: Nitrogen dioxide; SO2: Sulfur 
dioxide; O3: Ozone; PM10: Particulate matter < 10 μm; PM2.5:Particulate matter < 2.5 μm; RH: Relative Humidity; Temp: Temperature above 2m surface; *: p-value <
0.001   

CO NO NO2 SO2 PM10 PM2.5 O3 RH Temp 

CO 1.00         
NO 0.56* 1.00        
NO2 0.63* 0.96* 1.00       
SO2 0.51* 0.73* 0.76* 1.00      
PM10 0.29* 0.47* 0.51* 0.48* 1.00     
PM2.5 0.40* 0.54* 0.59* 0.51* 0.94* 1.00    
O3 − 0.63* − 0.43* − 0.48* − 0.28* − 0.17* − 0.28* 1.00   
RH 0.37* 0.00 0.10* 0.00 0.05 0.09 − 0.60 1.00  
Temp − 0.55* − 0.17* − 0.21* − 0.05* 0.12* 0.03* 0.67* − 0.60* 1.00   

Table A.2 
Summary of the association between environmental factors and clinical out-comes due to COVID-19 in patients without chronic lower respiratory disease. Abbre-
viations: PC: Percentage of change (%), computed by GAM adjusted for temperature, humidity, and day of the week. (*) Increases of 0.1 μg/m3 for NO and SO2. CI95%, 
95% of the confidence interval. Lag: Moving average lag effect at 3, 5 and 7 days. q-value: False discovery rate q-value    

Hospital Admission Hospital Mortality   

First Wave Second Wave First Wave Second Wave 

(continued on next page) 
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Table A.2 (continued )   

Hospital Admission Hospital Mortality   

First Wave Second Wave First Wave Second Wave 

Enviromental 
factor 

Lag N.◦

events 
PC (CI95%) q- 

value 
N.◦

events 
PC (CI95%) q- 

value 
N.◦

events 
PC (CI95%) q- 

value 
N.◦

events 
PC (CI95%) q- 

value 

CO Lag 
3 

88,905 1.12 (1.03–1.20) <0.001 91,280 0.28 
(0.25–0.31) 

<0.001 16,154 0.44 (0.36–0.51) <0.001 12,950 0.07 (0.05–0.09) <0.001 

Enviromental 
factor 

Lag N.◦

events 
PC (CI95%) q- 

value 
N.◦

events 
PC (CI95%) q- 

value 
N.◦

events 
PC (CI95%) q- 

value 
N.◦

events 
PC (CI95%) q- 

value 

CO Lag 
3 

88,905 1.12 (1.03–1.20) <0.001 91,280 0.28 
(0.25–0.31) 

<0.001 16,154 0.44 (0.36–0.51) <0.001 12,950 0.07 (0.05–0.09) <0.001 

NO* Lag 
3 

88,905 2.04 (1.87–2.22) <0.001 91,280 0.25 
(0.21–0.29) 

<0.001 16,154 0.94 (0.76–1.12) <0.001 12,950 0.09 (0.05–0.14) <0.001 

NO2 Lag 
3 

88,905 5.40 (4.98–5.81) <0.001 91,280 2.13 
(2.01–2.25) 

<0.001 16,154 2.13 (1.77–2.50) <0.001 12,950 0.53 (0.42–0.65) <0.001 

SO2* Lag 
3 

88,905 4.25 (3.96–4.55) <0.001 91,280 0.79 
(0.71–0.87) 

<0.001 16,154 1.81 (1.55–2.07) <0.001 12,950 0.20 (0.12–0.27) <0.001 

O3 Lag 
3 

88,905 0.00 
(− 0.22–0.23) 

>0.999 91,280 0.00 
(− 0.06–0.06) 

>0.999 16,154 0.07 
(− 0.12–0.26) 

>0.999 12,950 − 0.02 
(− 0.07–0.04) 

>0.999 

PM10 Lag 
3 

88,905 4.38 (3.97–4.79) <0.001 91,280 1.84 
(1.68–2.00) 

<0.001 16,154 2.34 (1.97–2.70) <0.001 12,950 0.49 (0.36–0.63) <0.001 

PM25 Lag 
3 

88,905 8.38 (7.68–9.09) <0.001 91,280 3.01 
(2.78–3.25) 

<0.001 16,154 3.89 (3.28–4.51) <0.001 12,950 0.71 (0.51–0.92) <0.001 

CO Lag 
5 

88,905 1.22 (1.12–1.31) <0.001 91,280 0.30 
(0.28–0.33) 

<0.001 16,154 0.47 (0.39–0.56) <0.001 12,950 0.08 (0.06–0.10) <0.001 

NO* Lag 
5 

88,905 1.97 (1.80–2.13) <0.001 91,280 0.27 
(0.23–0.31) 

<0.001 16,154 1.00 (0.81–1.18) <0.001 12,950 0.11 (0.06–0.16) <0.001 

NO2 Lag 
5 

88,905 5.44 (5.02–5.87) <0.001 91,280 2.28 
(2.16–2.41) 

<0.001 16,154 2.25 (1.87–2.62) <0.001 12,950 0.59 (0.46–0.71) <0.001 

SO2* Lag 
5 

88,905 4.33 (4.03–4.64) <0.001 91,280 0.83 
(0.74–0.91) 

<0.001 16,154 1.88 (1.61–2.15) <0.001 12,950 0.20 (0.12–0.28) <0.001 

O3 Lag 
5 

88,905 − 0.25 
(− 0.49–0.00) 

0.124 91,280 0.01 
(− 0.06–0.07) 

>0.999 16,154 − 0.12 
(− 0.33–0.09) 

0.670 12,950 − 0.01 
(− 0.06–0.05) 

>0.999 

PM10 Lag 
5 

88,905 5.30 (4.83–5.79) <0.001 91,280 2.20 
(2.02–2.38) 

<0.001 16,154 2.90 (2.48–3.32) <0.001 12,950 0.57 (0.42–0.73) <0.001 

PM25 Lag 
5 

88,905 9.73 
(8.93–10.54) 

<0.001 91,280 3.46 
(3.20–3.72) 

<0.001 16,154 4.72 (4.03–5.42) <0.001 12,950 0.80 (0.57–1.02) <0.001 

CO Lag 
7 

88,905 1.33 (1.22–1.43) <0.001 91,280 0.32 
(0.29–0.35) 

<0.001 16,154 0.54 (0.44–0.63) <0.001 12,950 0.08 (0.06–0.11) <0.001 

NO* Lag 
7 

88,905 2.10 (1.92–2.28) <0.001 91,280 0.29 
(0.25–0.33) 

<0.001 16,154 1.08 (0.89–1.26) <0.001 12,950 0.11 (0.05–0.16) <0.001 

NO2 Lag 
7 

88,905 5.54 (5.11–5.98) <0.001 91,280 2.40 
(2.27–2.53) 

<0.001 16,154 2.44 (2.06–2.82) <0.001 12,950 0.59 (0.46–0.72) <0.001 

SO2* Lag 
7 

88,905 4.45 (4.13–4.77) <0.001 91,280 0.84 
(0.76–0.93) 

<0.001 16,154 2.00 (1.73–2.28) <0.001 12,950 0.19 (0.11–0.27) <0.001 

O3 Lag 
7 

88,905 − 0.50 
(− 0.76–0.23) 

0.001 91,280 0.01 
(− 0.06–0.08) 

>0.999 16,154 − 0.33 
(− 0.56–0.10) 

0.012 12,950 0.01 
(− 0.05–0.07) 

>0.999 

PM10 Lag 
7 

88,905 6.57 (6.04–7.10) <0.001 91,280 2.51 
(2.32–2.70) 

<0.001 16,154 3.66 (3.19–4.12) <0.001 12,950 0.63 (0.46–0.79) <0.001 

PM25 Lag 
7 

88,905 11.19 
(10.32–12.08) 

<0.001 91,280 3.84 
(3.57–4.12) 

<0.001 16,154 5.67 (4.93–6.43) <0.001 12,950 0.83 (0.59–1.08) <0.001 

ICU Admission ICU Mortality 
CO Lag 

3 
7977 0.26 (0.15–0.38) <0.001 8543 0.05 

(0.02–0.08) 
0.008 2623 0.13 (0.05–0.21) 0.004 2478 0.00 

(− 0.02–0.03) 
>0.999 

NO* Lag 
3 

7977 0.65 (0.38–0.92) <0.001 8543 0.10 
(0.05–0.16) 

<0.001 2623 0.31 (0.12–0.49) 0.004 2478 0.02 
(− 0.03–0.06) 

>0.999 

NO2 Lag 
3 

7977 1.30 (0.76–1.85) <0.001 8543 0.77 
(0.62–0.92) 

<0.001 2623 0.65 (0.28–1.03) 0.003 2478 0.15 (0.02–0.27) 0.114 

SO2* Lag 
3 

7977 1.01 (0.61–1.41) <0.001 8543 0.25 
(0.16–0.35) 

<0.001 2623 0.55 (0.28–0.83) <0.001 2478 0.03 
(− 0.04–0.10) 

>0.999 

O3 Lag 
3 

7977 0.27 
(− 0.02–0.55) 

0.171 8543 0.03 
(− 0.04–0.11) 

0.984 2623 0.21 (0.02–0.41) 0.087 2478 − 0.03 
(− 0.09–0.02) 

>0.999 

PM10 Lag 
3 

7977 2.04 (1.47–2.61) <0.001 8543 0.65 
(0.46–0.83) 

<0.001 2623 1.01 (0.60–1.42) <0.001 2478 0.21 (0.07–0.35) 0.060 

PM25 Lag 
3 

7977 3.12 (2.21–4.04) <0.001 8543 0.98 
(0.71–1.25) 

<0.001 2623 1.55 (0.89–2.20) <0.001 2478 0.28 (0.07–0.48) 0.075 

CO Lag 
5 

7977 0.26 (0.13–0.39) <0.001 8543 0.04 
(0.01–0.07) 

0.068 2623 0.11 (0.02–0.20) 0.054 2478 0.01 
(− 0.02–0.03) 

>0.999 

NO* Lag 
5 

7977 0.64 (0.37–0.92) <0.001 8543 0.12 
(0.06–0.18) 

<0.001 2623 0.32 (0.13–0.51) 0.004 2478 0.02 
(− 0.03–0.07) 

>0.999 

NO2 Lag 
5 

7977 1.33 (0.77–1.90) <0.001 8543 0.83 
(0.67–0.99) 

<0.001 2623 0.66 (0.27–1.05) 0.004 2478 0.16 (0.03–0.29) 0.129 

SO*2 Lag 
5 

7977 1.01 (0.60–1.42) <0.001 8543 0.26 
(0.15–0.36) 

<0.001 2623 0.56 (0.27–0.84) 0.001 2478 0.02 
(− 0.05–0.10) 

>0.999 

(continued on next page) 
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Table A.2 (continued )   

Hospital Admission Hospital Mortality   

First Wave Second Wave First Wave Second Wave 

Enviromental 
factor 

Lag N.◦

events 
PC (CI95%) q- 

value 
N.◦

events 
PC (CI95%) q- 

value 
N.◦

events 
PC (CI95%) q- 

value 
N.◦

events 
PC (CI95%) q- 

value 

CO Lag 
3 

88,905 1.12 (1.03–1.20) <0.001 91,280 0.28 
(0.25–0.31) 

<0.001 16,154 0.44 (0.36–0.51) <0.001 12,950 0.07 (0.05–0.09) <0.001 

O3 Lag 
5 

7977 0.19 
(− 0.13–0.50) 

0.640 8543 0.04 
(− 0.04–0.12) 

0.794 2623 0.16 
(− 0.06–0.38) 

0.427 2478 − 0.03 
(− 0.09–0.03) 

>0.999 

PM10 Lag 
5 

7977 2.50 (1.83–3.17) <0.001 8543 0.80 
(0.59–1.00) 

<0.001 2623 1.15 (0.67–1.64) <0.001 2478 0.20 (0.04–0.36) 0.129 

PM25 Lag 
5 

7977 3.67 (2.62–4.72) <0.001 8543 1.16 
(0.86–1.46) 

<0.001 2623 1.71 (0.95–2.46) <0.001 2478 0.27 (0.04–0.50) 0.132 

CO Lag 
7 

7977 0.28 (0.14–0.42) <0.001 8543 0.02 
(− 0.01–0.06) 

0.506 2623 0.10 (0.01–0.20) 0.116 2478 0.01 
(− 0.01–0.04) 

>0.999 

NO* Lag 
7 

7977 0.68 (0.40–0.96) <0.001 8543 0.12 
(0.06–0.19) 

<0.001 2623 0.35 (0.16–0.54) 0.001 2478 0.02 
(− 0.03–0.08) 

>0.999 

NO2 Lag 
7 

7977 1.42 (0.85–2.00) <0.001 8543 0.85 
(0.69–1.02) 

<0.001 2623 0.72 (0.32–1.11) 0.001 2478 0.18 (0.05–0.32) 0.100 

SO2* Lag 
7 

7977 1.05 (0.63–1.47) <0.001 8543 0.25 
(0.14–0.35) 

<0.001 2623 0.59 (0.30–0.88) <0.001 2478 0.03 
(− 0.05–0.11) 

>0.999 

O3 Lag 
7 

7977 0.08 
(− 0.26–0.42) 

>0.999 8543 0.05 
(− 0.04–0.13) 

0.760 2623 0.08 
(− 0.16–0.32) 

>0.999 2478 − 0.03 
(− 0.10–0.03) 

>0.999 

PM10 Lag 
7 

7977 3.10 (2.35–3.86) <0.001 8543 0.93 
(0.71–1.15) 

<0.001 2623 1.45 (0.91–2.00) <0.001 2478 0.21 (0.04–0.38) 0.100 

PM25 Lag 
7 

7977 4.29 (3.15–5.44) <0.001 8543 1.30 
(0.98–1.63) 

<0.001 2623 1.99 (1.17–2.81) <0.001 2478 0.31 (0.06–0.56) 0.100   

Table A.3 
Summary of the association between environmental factors and clinical out-comes due to COVID-19 in patients with chronic lower respiratory disease. Abbreviations: 
PC: Percentage of change (%), computed by GAM adjusted for temperature, humidity, and day of the week. (*) Increases of 0.1 μg/m3 for NO and SO2. CI95%, 95% of 
the confidence interval. Lag: Moving average lag effect at 3, 5 and 7 days. q-value: False discovery rate q-value    

Hospital Admission Hospital Mortality   

First Wave Second Wave   

Enviromental 
factor 

Lag N.◦

events 
PC (CI95%) Enviromental 

factor 
Lag N.◦ events PC 

(CI95%) 
Enviromental 
factor 

Lag N.◦

events 
PC 
(CI95%) 

Enviromental 
factor 

Lag 

CO Lag 
3 

14,249 0.41 
(0.32–0.49) 

<0.001 14,310 0.08 
(0.05–0.11) 

<0.001 3163 0.12 
(0.05–0.18) 

0.002 2600 0.03 
(0.00–0.05) 

0.059 

NO* Lag 
3 

14,249 0.36 
(0.27–0.46) 

<0.001 14,310 0.10 
(0.06–0.14) 

<0.001 3163 0.26 
(0.11–0.40) 

0.002 2600 0.04 
(0.00–0.08) 

0.092 

NO2 Lag 
3 

14,249 2.00 
(1.59–2.42) 

<0.001 14,310 0.91 
(0.78–1.05) 

<0.001 3163 0.60 
(0.29–0.90) 

<0.001 2600 0.28 
(0.18–0.39) 

<0.001 

SO2* Lag 
3 

14,249 1.72 
(1.42–2.02) 

<0.001 14,310 0.38 
(0.29–0.47) 

<0.001 3163 0.55 
(0.33–0.78) 

<0.001 2600 0.13 
(0.05–0.20) 

0.003 

O3 Lag 
3 

14,249 0.11 
(− 0.11–0.33) 

0.821 14,310 0.03 
(− 0.04–0.10) 

>0.999 3163 0.01 
(− 0.15–0.17) 

>0.999 2600 − 0.00 
(− 0.05–0.05) 

>0.999 

PM10 Lag 
3 

14,249 2.53 
(2.11–2.96) 

<0.001 14,310 1.06 
(0.88–1.23) 

<0.001 3163 1.10 
(0.79–1.42) 

<0.001 2600 0.31 
(0.18–0.44) 

<0.001 

PM25 Lag 
3 

14,249 4.19 
(3.49–4.90) 

<0.001 14,310 1.58 
(1.33–1.83) 

<0.001 3163 1.55 
(1.04–2.07) 

<0.001 2600 0.43 
(0.24–0.63) 

<0.001 

CO Lag 
5 

14,249 0.44 
(0.34–0.54) 

<0.001 14,310 0.09 
(0.05–0.12) 

<0.001 3163 0.11 
(0.04–0.18) 

0.010 2600 0.03 
(0.01–0.06) 

0.024 

NO* Lag 
5 

14,249 0.43 
(0.32–0.54) 

<0.001 14,310 0.12 
(0.07–0.16) 

<0.001 3163 0.25 
(0.10–0.40) 

0.004 2600 0.05 
(0.01–0.09) 

0.065 

NO2 Lag 
5 

14,249 2.05 
(1.63–2.47) 

<0.001 14,310 0.98 
(0.84–1.12) 

<0.001 3163 0.60 
(0.29–0.91) 

0.001 2600 0.30 
(0.19–0.41) 

<0.001 

SO2* Lag 
5 

14,249 1.75 
(1.44–2.07) 

<0.001 14,310 0.40 
(0.30–0.50) 

<0.001 3163 0.54 
(0.31–0.77) 

<0.001 2600 0.13 
(0.06–0.21) 

0.002 

O3 Lag 
5 

14,249 0.03 
(− 0.21–0.27) 

>0.999 14,310 0.04 
(− 0.03–0.12) 

0.662 3163 − 0.06 
(− 0.23–0.12) 

>0.999 2600 0.00 
(− 0.05–0.06) 

>0.999 

PM10 Lag 
5 

14,249 3.14 
(2.64–3.64) 

<0.001 14,310 1.21 
(1.01–1.40) 

<0.001 3163 1.36 
(0.99–1.74) 

<0.001 2600 0.34 
(0.19–0.49) 

<0.001 

PM25 Lag 
5 

14,249 5.08 
(4.27–5.90) 

<0.001 14,310 1.78 
(1.51–2.06) 

<0.001 3163 1.87 
(1.28–2.46) 

<0.001 2600 0.47 
(0.26–0.69) 

<0.001 

CO Lag 
7 

14,249 0.50 
(0.39–0.60) 

<0.001 14,310 0.09 
(0.06–0.12) 

<0.001 3163 0.12 
(0.04–0.20) 

0.008 2600 0.04 
(0.01–0.06) 

0.009 

NO* Lag 
7 

14,249 0.52 
(0.41–0.64) 

<0.001 14,310 0.12 
(0.08–0.17) 

<0.001 3163 0.29 
(0.14–0.44) 

0.001 2600 0.05 
(0.01–0.09) 

0.050 

NO2 Lag 
7 

14,249 2.14 
(1.71–2.57) 

<0.001 14,310 1.04 
(0.89–1.18) 

<0.001 3163 0.68 
(0.36–1.00) 

<0.001 2600 0.32 
(0.20–0.43) 

<0.001 

(continued on next page) 
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Table A.3 (continued )   

Hospital Admission Hospital Mortality   

First Wave Second Wave   

Enviromental 
factor 

Lag N.◦

events 
PC (CI95%) Enviromental 

factor 
Lag N.◦ events PC 

(CI95%) 
Enviromental 
factor 

Lag N.◦

events 
PC 
(CI95%) 

Enviromental 
factor 

Lag 

SO2* Lag 
7 

14,249 1.82 
(1.50–2.14) 

<0.001 14,310 0.41 
(0.31–0.51) 

<0.001 3163 0.57 
(0.34–0.81) 

<0.001 2600 0.13 
(0.06–0.21) 

0.002 

O3 Lag 
7 

14,249 − 0.09 
(− 0.34–0.17) 

>0.999 14,310 0.05 
(− 0.03–0.13) 

0.501 3163 − 0.17 
(− 0.36–0.02) 

0.199 2600 0.02 
(− 0.04–0.07) 

>0.999 

PM10 Lag 
7 

14,249 3.86 
(3.31–4.42) 

<0.001 14,310 1.34 
(1.13–1.55) 

<0.001 3163 1.68 
(1.27–2.10) 

<0.001 2600 0.35 
(0.20–0.51) 

<0.001 

PM25 Lag 
7 

14,249 5.98 
(5.10–6.87) 

<0.001 14,310 1.93 
(1.63–2.23) 

<0.001 3163 2.24 
(1.60–2.89) 

<0.001 2600 0.48 
(0.25–0.71) 

<0.001 

ICU Admission ICU Mortality 
CO Lag 

3 
1117 0.03 

(− 0.06–0.11) 
>0.999 1278 0.00 

(− 0.02–0.03) 
>0.999 434 − 0.04 

(− 0.12–0.03) 
>0.999 495 − 0.01 

(− 0.03–0.01) 
>0.999 

NO* Lag 
3 

1117 0.01 
(− 0.09–0.11) 

>0.999 1278 0.04 
(0.00–0.09) 

0.143 434 0.02 
(− 0.12–0.16) 

>0.999 495 0.00 
(− 0.06–0.06) 

>0.999 

NO2 Lag 
3 

1117 0.13 
(− 0.26–0.52) 

>0.999 1278 0.24 
(0.12–0.37) 

0.003 434 0.07 
(− 0.24–0.38) 

>0.999 495 0.01 
(− 0.11–0.13) 

>0.999 

SO2* Lag 
3 

1117 0.17 
(− 0.12–0.46) 

>0.999 1278 0.11 
(0.03–0.19) 

0.037 434 0.05 
(− 0.18–0.28) 

>0.999 495 0.05 
(− 0.02–0.12) 

>0.999 

O3 Lag 
3 

1117 0.24 
(0.02–0.46) 

0.208 1278 − 0.02 
(− 0.08–0.04) 

>0.999 434 − 0.03 
(− 0.20–0.14) 

>0.999 495 − 0.03 
(− 0.09–0.03) 

>0.999 

PM10 Lag 
3 

1117 0.78 
(0.34–1.22) 

0.010 1278 0.27 
(0.12–0.41) 

0.004 434 0.34 
(− 0.03–0.72) 

>0.999 495 0.08 
(− 0.06–0.22) 

>0.999 

PM25 Lag 
3 

1117 1.06 
(0.35–1.77) 

0.032 1278 0.37 
(0.15–0.59) 

0.006 434 0.35 
(− 0.21–0.92) 

>0.999 495 0.07 
(− 0.14–0.28) 

>0.999 

CO Lag 
5 

1117 0.04 
(− 0.06–0.14) 

>0.999 1278 0.01 
(− 0.02–0.04) 

>0.999 434 − 0.02 
(− 0.10–0.06) 

>0.999 495 0.00 
(− 0.02–0.03) 

>0.999 

NO* Lag 
5 

1117 0.02 
(− 0.09–0.13) 

>0.999 1278 0.04 
(− 0.01–0.09) 

0.311 434 0.04 
(− 0.10–0.19) 

>0.999 495 0.00 
(− 0.06–0.07) 

>0.999 

NO2 Lag 
5 

1117 0.21 
(− 0.20–0.61) 

>0.999 1278 0.24 
(0.11–0.38) 

0.008 434 0.14 
(− 0.19–0.46) 

>0.999 495 0.03 
(− 0.10–0.16) 

>0.999 

SO2* Lag 
5 

1117 0.22 
(− 0.08–0.52) 

0.704 1278 0.10 
(0.02–0.19) 

0.083 434 0.09 
(− 0.14–0.33) 

>0.999 495 0.05 
(− 0.03–0.13) 

>0.999 

O3 Lag 
5 

1117 0.22 
(− 0.03–0.46) 

0.491 1278 0.00 
(− 0.06–0.07) 

>0.999 434 − 0.06 
(− 0.24–0.13) 

>0.999 495 − 0.02 
(− 0.08–0.04) 

>0.999 

PM10 Lag 
5 

1117 1.04 
(0.52–1.57) 

0.002 1278 0.26 
(0.09–0.43) 

0.023 434 0.47 
(0.04–0.90) 

0.536 495 0.07 
(− 0.09–0.24) 

>0.999 

PM25 Lag 
5 

1117 1.49 
(0.68–2.30) 

0.003 1278 0.35 
(0.10–0.60) 

0.036 434 0.62 
(− 0.02–1.26) 

0.536 495 0.07 
(− 0.17–0.31) 

>0.999 

CO Lag 
7 

1117 0.05 
(− 0.05–0.16) 

0.948 1278 0.01 
(− 0.02–0.04) 

>0.999 434 − 0.01 
(− 0.10–0.07) 

>0.999 495 0.01 
(− 0.02–0.04) 

>0.999 

NO* Lag 
7 

1117 0.03 
(− 0.09–0.16) 

>0.999 1278 0.04 
(− 0.01–0.09) 

0.431 434 0.05 
(− 0.10–0.21) 

>0.999 495 0.00 
(− 0.06–0.07) 

>0.999 

NO2 Lag 
7 

1117 0.28 
(− 0.14–0.69) 

0.692 1278 0.25 
(0.10–0.39) 

0.012 434 0.15 
(− 0.18–0.48) 

>0.999 495 0.04 
(− 0.09–0.18) 

>0.999 

SO2* Lag 
7 

1117 0.27 
(− 0.04–0.58) 

0.555 1278 0.10 
(0.01–0.19) 

0.110 434 0.10 
(− 0.15–0.34) 

>0.999 495 0.06 
(− 0.02–0.14) 

>0.999 

O3 Lag 
7 

1117 0.18 
(− 0.07–0.44) 

0.692 1278 0.01 
(− 0.06–0.08) 

>0.999 434 − 0.07 
(− 0.28–0.13) 

>0.999 495 − 0.03 
(− 0.09–0.04) 

>0.999 

PM10 Lag 
7 

1117 1.26 
(0.68–1.85) 

<0.001 1278 0.26 
(0.08–0.45) 

0.052 434 0.58 
(0.10–1.06) 

0.336 495 0.09 
(− 0.08–0.27) 

>0.999 

PM25 Lag 
7 

1117 1.73 
(0.88–2.60) 

0.001 1278 0.36 
(0.09–0.63) 

0.055 434 0.62 
(− 0.05–1.30) 

0.635 495 0.13 
(− 0.13–0.39) 

>0.999   
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Fig. A.1. Mean of environmental effects in the Lockdown 2020 period (center) compared with the same period in 2019 (left) and 2021 (right)   
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Fig. A.2. Mean of environmental effects in the Post-lockdown 2020 period (center) compared with the same period in 2019 (left) and 2021 (right)   
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Fig. A.3. Summary of the distribution of each pollutant with its cut-off value for each outcome, obtained by multi-output decision tree regression at lag3 days during 
post-lockdown 
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