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Abstract: Controlling vegetation fuels around human settlements is a crucial strategy for reducing fire
severity in forests, buildings and infrastructure, as well as protecting human lives. Each country has
its own regulations in this respect, but they all have in common that by reducing fuel load, we in turn
reduce the intensity and severity of the fire. The use of Unmanned Aerial Vehicles (UAV)-acquired
data combined with other passive and active remote sensing data has the greatest performance to
planning Wildland-Urban Interface (WUI) fuelbreak through machine learning algorithms. Nine
remote sensing data sources (active and passive) and four supervised classification algorithms
(Random Forest, Linear and Radial Support Vector Machine and Artificial Neural Networks) were
tested to classify five fuel-area types. We used very high-density Light Detection and Ranging (LiDAR)
data acquired by UAV (154 returns·m−2 and ortho-mosaic of 5-cm pixel), multispectral data from
the satellites Pleiades-1B and Sentinel-2, and low-density LiDAR data acquired by Airborne Laser
Scanning (ALS) (0.5 returns·m−2, ortho-mosaic of 25 cm pixels). Through the Variable Selection Using
Random Forest (VSURF) procedure, a pre-selection of final variables was carried out to train the
model. The four algorithms were compared, and it was concluded that the differences among them
in overall accuracy (OA) on training datasets were negligible. Although the highest accuracy in the
training step was obtained in SVML (OA = 94.46%) and in testing in ANN (OA = 91.91%), Random
Forest was considered to be the most reliable algorithm, since it produced more consistent predictions
due to the smaller differences between training and testing performance. Using a combination of
Sentinel-2 and the two LiDAR data (UAV and ALS), Random Forest obtained an OA of 90.66% in
training and of 91.80% in testing datasets. The differences in accuracy between the data sources used
are much greater than between algorithms. LiDAR growth metrics calculated using point clouds in
different dates and multispectral information from different seasons of the year are the most important
variables in the classification. Our results support the essential role of UAVs in fuelbreak planning
and management and thus, in the prevention of forest fires.
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1. Introduction

Since the 1950s, a global phenomenon of rural-to-urban migration has been taking place, mainly
in developed countries, leading to profound changes in land use caused by rural abandonment.
Though the extent and effects of these changes in rural landscapes vary significantly among regions,
in the Mediterranean basin one of the negative consequences is the increase in frequency and intensity
of wildfires due to the encroachment of shrublands and young forests into ancient farmlands and
pastures [1]. In many cases, the traditional domus, hortus, ager, saltus and silva system has been
transformed into a prevalent wildland-urban interface (WUI) [2] in rural areas. This situation becomes
particularly unmanageable when the structure of the human settlements is scattered.

In this scenario, controlling vegetation fuels around human settlements is a critical strategy to
reduce fire severity in forests, buildings and infrastructures [1]. These specific areas can be synthetically
classified into firebreaks and fuel-breaks. In both cases they are fuel-managed areas dedicated to
stopping or reducing fire propagation, respectively. Firebreaks are areas of land (usually linear in shape)
where the fuel present is completely removed, while fuelbreaks are usually wider, and covered by
vegetation, where the fuel is partially removed [3]. When some forest canopy remains after treatment
they are referred to as shaded fuelbreaks [1].

Fuelbreaks at the WUI consist of modifying the fuel load in areas adjacent to buildings and
infrastructure in order to reduce the probability of ignition and the severity of a potential wildfire
and thus to create safer areas for firefighting [4,5]. According to Ascoli et al. [3], in general, a surface
fuel load ranging from 0.2 to 0.4 kg·m–2 is recommended for fuelbreaks. Regarding canopy cover,
a value between 10% and 50% is desirable, while a crown base height of more than 2.5–5 m is
recommended (depending on the surface fuels available) to avoid vertical continuity of the fuel. Finally,
they recommend a recurrence in the operations ranging from 1 to 6 years. Even so, the rules for
establishing the recommended fuel load and the permitted vegetation type depend on the legislation
of each country. This legislation is generally in agreement with the forest and ownership structures
of the area. In addition, the rules for firebreaks always depend on two factors; firstly, on the type of
vegetation, and then on its characteristics, usually evaluated based on the height of the trees and their
canopy cover.

In this case, these rules are based on the fact that the typical Galician forest was mainly made up
of deciduous species, such as oak (Quercus robur L.), chestnut tree (Castanea sativa Mill.), and maritime
pine (Pinus pinaster Ait.), but these formations have been greatly reduced through centuries in favor
of pastures, agricultural land and shrublands. During the 20th century a remarkable increment in
forested area took place, mainly through reforestations with maritime pine and the foreign species
blue gum (Eucalyptus globulus Labill.), which has transformed the Galician forest environment into a
pine- and eucalyptus-dominated landscape. In fact, these two species, along with the species of the
genus Acacia Mill. have been declared forbidden in the fuelbreaks of the WUIs.

To characterize the forest structure, and especially to perform classifications, it is common to use
remote sensing technologies, both optical satellite imagery and airborne Light Detection And Ranging
(LiDAR). Optical satellite imagery is considered passive data, while LiDAR is considered an active
sensor. The purpose of image fusion is to use different types of sensor data to obtain more information
from their union than is possible from separate analyses [6]. In this way, the integration of LiDAR
data and multispectral imagery provides the geometric and radiometric attributes, respectively [7].
Different authors [8,9] have preferred to use only active sensors, which provide values related to
vegetation metrics, while others [10–14] have privileged the combination of multispectral imagery with
LiDAR information to improve classification accuracies in forest environments. In all cases, the use of
remote sensing substantially reduces the cost of the estimation process [15].

A drone or Unmanned Aerial Vehicle (UAV) is a lightweight flying device that is not operated
by an on-board pilot, and also has a ground control station and communication components. These
devices can be either self-controlled or remotely piloted. Based on the types of wing, UAVs might
broadly be classified as fixed-wing or rotary-wing type. Finally, they are classified according to the
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weight of their platform; thus, the most interesting ones for evaluating vegetation are usually the small
unmanned aerial systems (UAS) whose weight is less than 10 kg [16].

Although the origin of UAS dates back to the military sector, especially to surveillance, in recent
decades their professional use has become widespread in aerial photography and also in remote
sensing [17]. Nowadays, it has become a common working tool in many fields such as forestry,
precision agriculture and other sectors related to civil engineering, as well as emergency response [18].
On the other hand, the incorporation of cloud-based and generally more user-friendly data processing
systems has greatly helped its expansion as a working tool [19].

Algorithms based on Machine Learning techniques such as Random Forests (RF) are now widely
used for classification and prediction purposes in remote sensing applications [20]. Nevertheless,
the Artificial Neural Networks (ANN) and Linear and Radial Support Vector Machine (SVML, SVMR)
algorithms are increasingly being taken into consideration [21–23]. All these algorithms have been
successfully applied to estimate forest biophysical parameters through multispectral data [24], biomass
and soil moisture recovery [25], crop monitoring [26] or land use classification [27–29]. However, RF is
the most widely used algorithm for earth observation and, in particular, for classification of land
use and forestry applications [30]. Among different studies, we can highlight the use of RF to detect
insect infestations according to the physiological characteristics of plants [31] or to estimate timber
production [32] and forest biomass [33]. Nevertheless, other authors [34] consider that SVM is the best
algorithm to solve complex classification problems, such as differentiation of tree species. Recently,
due to the great success that deep learning is having, ANN are being used extensively for remote
sensing in Earth observation and often achieve the same accuracies as SVML or even RF [28].

Based on the initial hypothesis that UAVs could be used to identify action areas in fuelbreaks and
WUI areas, the general objective of this work is to test the performance of combined passive and active
remote sensing data to predict vegetation types through machine learning algorithms. More specifically,
we aim at: (i) analyzing the uncertainty of these four classification methods (RF, SVML, SVMR and
ANN) in an object-based approach; (ii) comparing the accuracy obtained by different combinations
of active and passive remote data sensed (UAV-LiDAR, low density LiDAR and different satellite
images) and their interaction with the four ML algorithms; and finally (iii) mapping the wildland-urban
interface fuelbreak planning rules.

2. Materials and Methods

2.1. Study Area

The study area is located in Porto do Son (Galicia, Northwest Spain). The municipality of Porto do
Son encompasses a collection of coastal towns and scattered inland villages. The most represented tree
species in the area are chestnut (Castanea sativa), oak (Quercus robur), pine (Pinus pinaster) and eucalyptus
(Eucalyptus globulus). The climate of the area is characterized by high rainfall, low temperature variation,
mild temperatures and some water deficit in summer. The main characteristics of the atmospheric
environment are linked to the influence of the sea. The area of interest of this location corresponded to
3.7 km2 (Figure 1).
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Figure 1. General location of the study area: (A) location in reference to Europe, (B) location in reference
to Spain, and (C) detail of the study area (red polygons).

2.2. Data Acquisition

2.2.1. UAV Imagery

Data from the UAV was obtained in July 2019. The integrated LiDAR system comprises a DJI M600
Pro UAV, a Phoenix LiDAR Systems Scout 16 with a Velodyne VLP-16 LiDAR sensor, an A6K RGB
camera (based on Sony A600) and an inertial measurement unit (IMU-14). It is a high-precision system
(Root Mean Square Error (RMSE) = 30 mm) with a scanning rate of 600 k dual return points/s with a
360-degree field of view at a recommended scanning height of 20–60 m. To generate Post-Processing
Kinematic paths (PPK) the system uses a dual-frequency L1/L2 Global Navigation Satellite System
(GNNS) receiver. The study was conducted with a flight height of 55 m above the ground at a speed of
4 m/s and at an approximate horizontal distance between adjacent flight lines of 15 m, producing a very
high density LiDAR point cloud (154 returns·m−2) with redundant coverage in the 90% overlap area.

Aeromedia UAV Inc. combined IMU and GNSS data through LiDARMill software (Phoenix
LiDAR Systems) to apply differential corrections to generate a smooth and highly accurate trajectory
for the computation of planimetric coordinates and ellipsoid height values. The LasTools (rapidlasso
software) environment was used to pre-process the raw data, which involved five tasks: (i) a total
of 586 unbuffered tiles (200 × 200 m) was generated using lastile procedure; (ii) duplicate points
were eliminated and noise was reduced using lasduplicate and lasnoise procedures respectively; (iii)
the overlap was classified by the procedure lasoverage; (iv) ground points were classified using a
triangulated irregular network (TIN) algorithm implemented in lasground_new; (v) and finally the
point cloud was classified into vegetation and buildings through the lasclassify procedure [35].

Aeromedia UAV Inc. generated the RGB-orthomosaic (UAV-ORTHO) using the Pix4D software [36].
The overall workflow of Pix4D consists of the following stages: initial photo matching, point cloud
densification and ortho mosaic generation. In the case of forest and dense vegetation it is common
to modify some parameters both in flight (increase the overlap between images to at least 85% front
overlap and at least 70% side overlap) and in process to ensure that the desired quality, accuracy and
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format of the final production is obtained. The result was a TIFF image with spatial resolution of
4.14 cm and a high level of geometric accuracy (RMSEX,Y = 2.5 cm and RMSEZ = 2.4 cm).

2.2.2. Large-Scale Remote Sensing Data

Two open access ALS point cloud coverages from the National Program of Aerial
Orthophotography (PNOA) of the Spanish Government were used (http://centrodedescargas.cnig.es/).
The first coverage (ALS1) was collected between February and April 2011, while the second coverage
(ALS2) campaign acquired information between July and September 2015. In both coverages,
the nominal laser pulse density was 0.5 points·m−2 and the vertical and horizontal accuracy was 0.20
and 0.30 m, respectively. The LiDAR sensor used in each of the datasets was the RIEGL LMS-Q680i
and the LEICA ALS60, respectively. In both cases it was mounted on an airplane operated by an
on-board pilot.

The digital orthophoto (ORTHO) supplied by the PNOA was also used in this study. In Spain,
the PNOA provides annual country-wide coverage with a spatial resolution of at least 0.5 m. An 8-bit
RGB orthophoto image, acquired in June 2017, with a spatial resolution of 0.25 m was used.

Two public data sources based on multispectral satellite imagery from the European Space Agency
(ESA) Copernicus program were used: (i) Sentinel-2 (S2) satellite images (only the 10 and 20 m
resolution bands were considered), and (ii) a Pleiades-1B (P1B) image from the VHR_IMAGE_2015
coverage. We used images from Sentinel-2 captured in February, May, August, and November of the
years 2017, 2018 and 2019. These orthorectified and atmospherically corrected images were downloaded
from the Copernicus Open Access Hub (https://scihub.copernicus.eu/). Suitable dates were selected
to obtain cloud-free and reflection-enhanced images of deciduous trees using easySat®(föra forest
technologies) [29]. Pleiades-1B image was captured in July 2015. Copernicus delivers this coverage
with an approximate geometric correction. For precise geometric correction, a minimum of nine control
points per scene and the DTM with 5 m mesh pitch from the National Plan of Aerial Orthophotography
needs to be provided. The maximum allowed error has been 1 m. Table 1 provides detailed information
on the spectral and spatial characteristics of each of the bands used.

Table 1. Spectral and spatial characteristics for the Sentinel-2 and Pleiades bands used.

Denomination Spatial Resolution (m) Central Wavelength (nm) Bandwidth (nm)

Sentinel-2 Band 2 (Blue) 10 492.4 66
Sentinel-2 Band 3 (Green) 10 559.8 36
Sentinel-2 Band 4 (Red) 10 664.6 31
Sentinel-2 Band 8 (NIR) 10 832.8 106

Sentinel-2 Band 11 (SWIR) 20 1613.7 91
Pleiades-1B Band 0 (Blue) 2 490 60

Pleiades-1B Band 1 (Green) 2 550 60
Pleiades-1B Band 2 (Red) 2 660 60
Pleiades-1B Band 3 (NIR) 2 850 100

2.3. Data Processing

2.3.1. LiDAR Analysis

The ALS from PNOA can be downloaded already pre-processed, cleaned and classified. The LiDAR
data processing, both from UAV and ALS, consisted also of several steps and was executed with
easyLaz®(föra forest technologies), a proprietary tool based on the FUSION/ LDV software [37]. First,
Digital Elevation Models were created. The Digital Terrain Model (DTM), using the GridSurfaceCreate
procedure, and the Canopy Height Model (CHM), using the CanopyModel procedure, were generated
at 0.5 m and 1 m resolution for UAV and at 1 m for ALS, and their respective slope rasters were also
obtained. A series of descriptive statistics for a LiDAR data set were calculated by the GridMetrics
procedure (Canopy Relief Ratio (CRR), height percentiles (HP) values and Canopy Cover (CC)), all of
them with a resolution of 1 m and 5 m for UAV and 5 m for ALS. Finally, and only for data from UAVs,

http://centrodedescargas.cnig.es/
https://scihub.copernicus.eu/
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point density metrics were calculated using elevation-based slices in every 1-m height layer through
the DensityMetrics procedure. Densities were reported as the proportion of the returns within the
layer. Table 2 shows the description of all the raster layers obtained after the LiDAR processing, as well
as their spatial resolution.

Table 2. LiDAR derived layers obtained after its processing: spatial resolution and description.

Denomination UAV Resolution ALS Resolution Range Description

CHM 0.5 m and 1 m 1 m [0;50] Canopy Height Model
CHMSLP 0.5 m and 1 m 1 m [0;1000] Canopy Height Model Slope
DTMSLP 0.5 m and 1 m 1 m [0;500] Digital Terrain Model Slope

CC 1 m and 5 m 5 m [0;100] Canopy Cover
H95 1 m and 5 m 5 m [0;50] 95th percentile height value
H75 1 m and 5 m 5 m [0;50] 75th percentile height value
H25 1 m and 5 m 5 m [0;47] 25th percentile height value
CRR 1 m and 5 m 5 m [0;1] Canopy relief ratio [37]
CR 1 m and 5 m 5 m [0;1] Crown Ratio = (H95-H25/H95)

SLC0–1 5 m - [0;100] 100 × (total point between 0 to 1 m)/(total points)
SLC1–2 5 m - [0;100] 100 × (total point between 1 to 2 m)/(total points)
SLC2–3 5 m - [0;100] 100 × (total point between 2 to 3 m)/(total points)
SLC3–4 5 m - [0;100] 100 × (total point between 3 to 4 m)/(total points)
SLC4–6 5 m - [0;100] 100 × (total point between 4 to 6 m)/(total points)
SLC6–8 5 m - [0;100] 100 × (total point between 6 to 8 m)/(total points)
SLC8–10 5 m - [0;100] 100 × (total point between 8 to 10 m)/(total points)
SLC10–15 5 m - [0;100] 100 × (total point between 10 to 15 m)/(total points)
SLC15–20 5 m - [0;100] 100 × (total point between 15 to 20 m)/(total points)
SLC20–25 5 m - [0;100] 100 × (total point between 20 to 25 m)/(total points)
SLC25–30 5 m - [0;100] 100 × (total point between 25 to 30 m)/(total points)
SLC30–40 5 m - [0;100] 100 × (total point between 30 to 40 m)/(total points)
SLC40–50 5 m - [0;100] 100 × (total point between 40 to 50 m)/(total points)

When two LiDAR datasets were available, height growth metrics were calculated. In the case
of the ALS data, since there are two point-clouds coverages, the height growth between the second
coverage (ALS2) and the first coverage (ALS1) was calculated, i.e., between 2015 and 2011. Finally,
only when UAV and ALS data were combined, then height growth between 2019 (UAV) and 2015
(ALS2) was calculated. A description of the computed variables is shown in Table 3.

Table 3. Calculated growth metrics characteristics (t2: UAV or ALS2 coverage; t1: ALS2 o ALS1 coverage,
respectively; CHM: Canopy Height Model; CC: Canopy Cover; H95: 95th percentile height value; H75:
75th percentile height; H25: 25th percentile height; CRR: Canopy Relief Ratio; CR: Crown Ratio).

Denomination Spatial Resolution Range Description 1

(t2−t1)CHM 1 × 1m [−40;10] (t2)CHM – (t1)CHM
(t2−t1)CC 5 × 5m [−100;60] (t2)FC – (t1)FC
(t2−t1)H95 5 × 5m [−40;20] (t2)H95 – (t1)H95
(t2−t1)H75 5 × 5m [−40;20] (t2)H75 – (t1)H75
(t2−t1)H25 5 × 5m [−40;20] (t2)H25 – (t1)H25
(t2−t1)CRR 5 × 5m [−1;1] (t2)CRR – (t1)CRR
(t2−t1)CR 5 × 5m [−1;1] (t2)CR – (t1)CR

1 All variables were also calculated as absolute values.

2.3.2. Multispectral Analysis

In both image sources (Sentinel-2 and Pleiades-1B), four vegetation indexes were calculated
based on imagery data: Enhanced Vegetation Index (EVI), Soil Adjusted Vegetation Index (SAVI),
Green Normalized Difference Vegetation Index (GNDVI) and Normalized Difference Vegetation Index
(NDVI) [29,38]. Table 4 shows the description of all the raster layers obtained.
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Table 4. Spectral and spatial characteristics for the Sentinel-2 and Pleiades-1B bands (BNIR: Near
Infrared Band; BRED: Visible Red Band; BGREEN: Visible Green Band) used.

Denomination 1 Spatial Resolution Range Description

(SAT_YEAR/MONTH)NDVI 10 × 10m [-1;1] (BNIR − BRED)/(BNIR + BRED)
(SAT_YEAR/MONTH)GNDVI 10 × 10m [-1;1] (BNIR − BGREEN)/(BNIR + BGREEN)

(SAT_YEAR/MONTH)EVI 10 × 10m [-1;1] 2.5 × (BNIR − BRED)/((BNIR + 6.0 × BRED−7.5 × B2) + 1.0)
(SAT_YEAR/MONTH)SAVI 10 × 10m [-1;1] (BNIR − BRED)/(BNIR + BRED + 0.428) × (1.428)

1 SAT: Sentinel-2 or Pleiades-1B; YEAR: 2017, 2018 or 2019; MONTH: 02, 05, 08 or 11.

2.3.3. Object-Based Image Analysis

Image segmentation is the key to an object-based classification approach. In this way, homogeneous
image-objects representing the elements to be classified (e.g., roads, buildings, different types
of vegetation) are created by grouping adjacent pixels with homogeneous characteristics [39,40].
An Object-Based Image Analysis was performed through the eCognition (Trimble Geospatial Imaging)
software package. This software, like OrfeoToolBox [41] is usually used in remote sensing applications
to carry out the segmentation [42]. This object identification is defined accordingly to the specific
parameterization of certain attributes such as shape, spectral criterion of homogeneity, scale, and their
compactness ratio. Fractal Net Evolution Approach (FNEA) is a multi-resolution segmentation
algorithm widely used in object-oriented image analysis. It was first introduced by Baatz and
Schäpe [43]. It is based on bottom-up region fusion, i.e., starting with each image pixel as a separate
object to merge pixels into large objects at each step, based on relative homogeneity criteria. This
homogeneity criterion is a combination of spectral and shape criteria, which are customizable. Higher
values of the scale parameter produce larger image objects, and vice versa. However, the homogeneity
criterion measures how homogeneous or heterogeneous an image object is within itself. To do this,
a combination of the objects’ color and shape properties is used [44]. Finally, eCognition uses a modular
programming language (Cognition Network Language) that defines not only the import routines but
also the analysis phases of the different objects. In this work three scale parameters (5, 10 and 15) were
tested with the aim of finding an optimum parameterization to accurately define objects, and with
enough size to compute the spectral information from Sentinel-2 (10 × 10 m) inside each object.

2.4. Field Data

The ground truth was taken at the segment level. Five ground truth classes were defined,
as follows: Class 1: No Vegetation; Class 2: Crops; Class 3: Bush and Grass; Class 41: Permitted trees
(oak, chestnut tree), and Class 42: Forbidden trees (eucalypt, maritime pine and acacias). During the
field work we identified 434 segments (Table 5) distributed through all classes. Once the ground truth
was collected, each segment got assigned its vegetation class. Subsequently, zonal statistics were
computed for all the variables processed (Tables 1–4) for the segments of both the ground truth and the
entire population.

Table 5. Description of the ground truth classes, and number of segments collected.

Denomination Number of Segments Description

Class 1 86 No Vegetation (buildings, streets, roads . . . )
Class 2 77 Crops (corn, kiwisfruit...)
Class 3 71 Bush and Grass
Class 41 82 Permitted trees (oak, chestnut tree . . . )
Class 42 118 Forbidden trees (eucalypt, pine and acacia)

2.5. Data Analysis

To reduce processing time in model training, feature selection was conducted using the Variable
Selection Using Random Forest (VSURF) [45]. VSURF is a consistent three step wrapper-based
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algorithm which uses RF as the base classifier [46] operating as follows [45]: (i) the thresholding step is
focused on removing irrelevant variables from the dataset, (ii) the interpretation step is dedicated to
selecting all variables related to the response for interpretation purposes, and (iii) the prediction step
improves the selection by removing redundancy in the set of variables selected. The selection of
variables is based on the Mean Decrease in Gini (MDG). It is a measure of how important a variable
is for estimating the value of the target variable across all the trees that make the Random Forest up.
A higher Mean Decrease in Gini indicates higher variable importance. The greater the importance of a
variable, the larger the MDG and the higher the position in the plot, and vice versa.

Following Raczko and Zagajewski [47] we compared four nonparametric classification algorithms
(ANN, SVML, SVMR, and RF). The Support vector machine (SVM) classifier, developed by Vapnik [48],
looks to find the optimal hyperplane in a n-dimensional classification space with the largest margin
between classes. SVM was computed using linear and kernel variants. Cost and gamma SVM
parameters were established in 1 and the inverse of the number of predictors, respectively. The Random
Forest (RF) classifier, developed by Breiman [49], consists of an ensemble of individual decision trees.
The maximum number of variables to try in each individual tree was the squared root of the variables
selected by VSURF. Maximum number of trees was established in 500. Finally, an ANN classifier can
be explained as a parallel computing system consisting of a very large number of simple processors
with interconnections. The learning rate was set to 0.3, with a maximum of 105 iterations. To allow the
four algorithms compete, the nnet, svmLinear, svmRadial and rf methods were executed using caret
package in R software [50].

The ground truth dataset was randomly split in two samples, one for training (70%) and one for
testing (30%). The latter was excluded from any training and reserved for testing the performance of
the generalization of the model, as this procedure is a key point in supervised classifications aiming at
management goals. Next, we executed random k-fold Cross-validation (CV) on the training data set
randomly partitioned into folds, which is probably the most popular approach to estimate the error
rate, or accuracy, of machine learning-based classifications [51]. A Repeated k-fold CV was performed
using 10 folds with three replicas to control overfitting. A 10-fold CV involves dividing the training
data set randomly into 10 parts and then using nine parts in training and one part in validation. When
using three repeats of 10-fold CV, we will get the average of the error from performing the same analysis
three times. This analysis was carried out through the function trainControl (method = “repeatedcv”,
number = 10, repeats = 3) of the caret package in R software [50]. Finally, for each classifier, a confusion
matrix was computed for predictions of both training and testing datasets.

2.6. Mapping Application of Wildland–Urban Interface Fuelbreak Planning Rules

Once the data had been acquired, processed, the ground truth obtained, the databases created
and the prediction of the vegetation class of each segment computed, the wildland-urban interface
fuelbreak planning rules were applied (Figure 2). These rules usually include two steps. Firstly, we
need to classify the vegetation in every segment following the prediction of the top-performance model.
Secondly, we need to calculate the metric for every segment (CHM and CC), which is computed with
up-to-date LiDAR information (in our case from UAV-LiDAR).

A general overview of the entire materials and methods used is shown in Figure 3.
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Figure 2. Scheme of the rules for fuelbreak planning from land use classification and vegetation metrics
(CHM, Canopy Height Model; CC, canopy cover).

Figure 3. General diagram representing all the materials and methods used in this research (RS, Remote
Sensing; ALS, Airborne Laser Scanner; PNOA, National Program of Aerial Orthophotography of
Spanish Government).
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3. Results and Discussion

Figure 4 shows the segmentation output. The best result was obtained with a scale parameter of
15. Those segments are large enough to integrate the information from Sentinel-2 indexes (10 × 10 m).
A smaller segment size implies too many segments without spectral information because few Sentinel-2
pixel centroids fall inside them.

Figure 4. Detail of one of the study areas with the segments overlapping the orthomosaic: (A) small
objects (scale 5); (B) medium objects (scale 10); (C) large objects (scale 15); (D) finally selected
segmentation (scale 15) overlapping the CHM (50 cm resolution).

Depending on the data used, VSURF selects different sets of variables. Table 6 shows the variables
selected by VSURF for the different combinations of datasets. In all cases, the variables are sorted by
relative importance; the first variable in each column represents the most influential variable in the
classification. When two LiDAR point clouds are used, the growth between both point clouds is a
crucial variable. In the case where the dataset includes images of Pleiades, these are usually relevant.
No fourth-quarter images were selected. Normally, Sentinel images that were selected were from the
first quarter and mainly from the NIR or blue band. UAV-LiDAR data are always very significant.

When focusing on results by data source (Table 7), we observe that six of them reach OA >90% for
the training dataset at least with one of the algorithms under discussion. Differently, only two of them
(ALS + S2 and UAV + ALS + S2) exceeded that figure when generalized to the testing datasets. We
hypothesize that, on the one hand, as ALS includes two LiDAR coverages, allowed to estimate the
LiDAR-based vegetation growth, which in turn proved to be a relevant variable in the classification
procedure. On the other hand, the time series of three complete years (characterized by mean February,
May, August and November images) derived from S2 data can satisfactorily characterize the phenology
of the different plant species in the area. For those reasons, we consider that the combination ALS + S2
(with or without UAV) is essential to perform optimum classifications in this context. If UAV data
are included, results are roughly similar. Nevertheless, we suggest that the use of UAV data should
be mandatory to achieve optimum prediction of the actions to be used in the fuelbreak planning.
First, UAV data combined with two open access datasets (ALS + S2) reached OA above 90% for all
algorithms. Secondly, UAV makes available accurate and updated metrics of the vegetation, which are
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essential for a correct application of the rules for fuelbreak planning, as they are based not only on the
type of vegetation but also on its height.

Regarding the algorithms (Table 7), in 19 combinations of algorithm-data source the OA values
surpassed 90% (seven with SVML and SVMR, four with ANN and two with RF). Conversely, only
RF accomplished OA values above 90% with more than one data source (i.e., ALS + S2 and UAV +

ALS + S2) in the testing phase. In addition, RF was the unique algorithm with OA above 90% with a
data source including UAV testing dataset. Furthermore, SVML, SVMR and ANN exhibited larger
differences between training and testing OAs, which clearly suggests they tend to overfit. Therefore,
we suggest that the best combination analyzed is that combining the dataset UAV + ALS + S2 with
the RF algorithm. Consequently, the performance of UAV to identify action areas in fuelbreaks and
WUI areas has the greatest accuracy combined with passive and active remote sensing data to predict
vegetation types through machine learning algorithms.

Machine Learning-based techniques are suitable tools to optimize classification in land use for
fuelbreak planning. Because the differences between the algorithms used are almost negligible (in
almost all cases we have an accuracy close to 0.9), it is essential in land use classifications to make all
available algorithms compete and also include different databases. In this work, we have found how
RF has been the algorithm that offered the most robust results in land use classification purposes in
fuelbreak planning due to the small deviation between accuracy values and, more interestingly, more
similar values of OA between training and testing datasets. This is particularly relevant when the goal
of a supervised classification is to provide managers with operational tools to be applied on large
territories far beyond ground truth sample. Over 90% of land use classes (1, 2, 3, 41 and 42) classified
from remote sensing data are correct, despite the relatively small size of the ground truth sample.
Nevertheless, it is expected that the generalization to a distinct area, even with comparable vegetation
attributes, would need an ancillary ground truth sample to retrain the model.

The detailed results of each of the classes separately for all combinations (dataset × algorithm) are
shown in Table 8 (training) and Table 9 (testing). When only LiDAR information and orthophotos were
used, errors were higher (nearly 20%). When multispectral images were included, errors decreased by
50%, and never exceeded 25%. Class 3 (Bush and Grass) was the one that obtained the less accurate
classification results, with errors between 8.3% (SVMR - UAV + SENTINEL) and 36.9% (ANN-UAV).
Forbidden tree species (Class = 42) are always classified very precisely, normally obtaining an error
below 10%. The Classes (=3; =41 and =42) requiring silvicultural treatments (clearing, thinning,
pruning, or felling) tend to be confused with each other when they give false positives. In practice
this is not a critical error, since it indicates that a silvicultural treatment must be applied. In any case,
the results of both confusion matrices show that it would be advisable to increase the ground truth in
the classes with larger errors.

The reliability of Machine Learning for land use classification, in particular for vegetation analysis,
has been evaluated in many studies developed in different environments, some of them also based
on UAVs combined with other remote sensing data. For example, ref. [22] found that the best ML
algorithm to classify forest development stages are RF and ANN, and ref. [23] obtained better results
with RF and SVM when classifying mountain forests and shrubland land cover classes. Together
with UAV and hyperspectral data [52] used RF to map species in a tropical environment and [53]
successfully identified tree species in a mixed coniferous-deciduous forest in the USA. Also, applying
Random Forest on UAV images [54] were able to identify seedling stands. The accuracy levels obtained
in the present study are consistent with the ones reached in all these previous studies. All this research
demonstrates the potential and the efficiency of artificial intelligence to deal with this type of analysis.



Drones 2020, 4, 21 12 of 18

Table 6. Data sources and respective variables ordered according to their importance derived from the mean decrease in Gini index of VSURF.

Data Source

ALS ALS + S2 ALS + S2 + P1B UAV UAV + S2 UAV + S2 + P1B UAV + ALS UAV + ALS + S2 UAV + ALS + S2 + P1B

ALS2−ALS1_H75 ALS2−ALS1_H75 ALS2−ALS1_H75 UAV_H95 S2_2019/02_B P1B_2015_G ALS2−ALS1_H75 UAV_H95 ALS2−ALS1_H75
ALS2_CHM_SLP ALS2−ALS1_H95 ALS2−ALS1_H95 UAV_ORTHO_B UAV_H95 UAV_H95 ORTHO_2017_B ALS2−ALS1_H75 ALS2_CHM_SLP
ORTHO_2017_B S2_183Q_B S_1902_B UAV_CHM UAV_ORTHO_B S2_2019/02_B ALS2−ALS1_H95 ALS2_CHM_SLP ALS2_H95

ALS2_H95 ALS2_H95 P1B_2015_B UAV_ORTHO_R S2_2017/05_NIR UAV_CHM ALS2_H95 ALS2_H95 ALS2−ALS1_H95
ORTHO_2017_G ALS2_H75 ALS2_CHM_SLP UAV_DTM_SLP S2_2019/02_ NIR P1B_2015_R ALS2_CHM_SLP ALS2−ALS1_CHM P1B_2015_B
ALS2_DTM_SLP ALS2_CHM ALS2_H95 UAV_CHM_SLP S2_2017/02_ NIR P1B_2015_B ABS(UAV−ALS_CHM) ORTHO_2017_B P1B_2015_G

ALS2_CR S2_2018/05_GNDVI S2_2019/02 _SAVI UAV_CR_1M S2_2018/05_ NIR S2_2017/05_ NIR UAV_H95 S2_2017/05_NIR UAV_H95
S_2019/02_B ALS2_CHM UAV_CRR_1M UAV_H95_1M S2_2018/05_ NIR UAV_DTM_SLP S2_2019/02_B S2_2017/05_NIR

ALS2_CHM_SLP ORTHO_2017_B UAV_SLC_4−6 UAV_CHM S2_2017/02_ NIR UAV_CRR_1M ABS(UAV−ALS_CHM) S2_2019/02_B
ORTHO_2017_B S2_2017/05_NIR UAV_SLC_0−1 UAV_SLC_6−8 S2_2019/02_ NIR UAV_SLC_0−1 S2_2018/05_NIR S2_2019/02_NDVI
S2_2017/05_NIR P1B_2015_NDVI UAV_SLC_8−10 UAV_SLC_6−8 UAV_SLC_4−6 S2_2019/02_EVI P1B _2015_R
S2_2017/02_NIR ORTHO_2017_R ALS2_CR S2_2019/02 _NDVI ABS(UAV−ALS_CHM)
S2_2018/05_NIR ALS2_H75 ALS1_FC S2_2019/02_SAVI S2_2019/02_NIR
S2_2019/02_NIR S2_2019/02_NIR S2_2018/08_GNDVI UAV_H95_1M

S2_2017/02_NIR S2_2018/08_B

Table 7. Overall Accuracy (OA) of models in trained and testing datasets for all combinations of data sources and algorithms (in bold type, accuracies greater than 90%).

Data Source
Training (OA: %) Testing (OA: %)

SVML SVMR RF ANN SVML SVMR RF ANN

ALS 83.51 84.88 84.19 85.22 85.00 81.67 88.33 85.83
ALS + S2 92.00 90.55 87.64 90.18 90.44 91.18 90.44 91.91

ALS + S2 + P1B 92.31 91.26 88.11 88.46 80.80 84.80 86.40 85.60
UAV 82.43 84.80 80.41 78.72 83.72 82.95 81.40 85.27

UAV + S2 90.37 88.04 87.04 89.37 83.87 83.87 87.90 83.87
UAV + ALS 91.97 91.64 90.97 89.97 78.57 81.25 83.93 79.46

UAV + S2 +P1B 92.36 91.36 88.37 90.37 81.45 79.84 81.45 84.68
UAV + ALS + S2 94.46 92.04 90.66 91.35 84.43 85.25 91.80 87.70

UAV + ALS + S2 + P1B 91.58 94.04 89.82 90.88 85.71 85.71 85.71 86.51
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Table 8. Confusion matrix (observed: rows; predicted: columns) for training analyses for all the
combinations of dataset and algorithms. (error: %; Class 1: No Vegetation; Class 2: Crops; Class 3:
Bush and Grass; Class 41: Permitted; Class 42: Forbidden trees; RF: Random Forest; SVML: Linear
Support Vector Machine; SVMR: Radial Support Vector Machine; ANN: Artificial Neural Networks).

MACHINE LEARNING ALGORITHM

SVML SVMR RF ANN

DATA 1 2 3 41 42 error 1 2 3 41 42 error 1 2 3 41 42 error 1 2 3 41 42 error

ALS

1 59 1 0 1 0 3.28 60 0 0 1 0 1.64 59 0 1 1 0 3.28 59 1 0 0 1 3.28 1
2 1 38 7 2 1 22.45 7 32 6 3 1 34.69 1 37 8 2 1 24.49 2 35 8 3 1 28.57 2
3 0 10 36 2 0 25.00 1 9 37 1 0 22.92 1 8 35 3 1 27.08 1 7 38 2 0 20.83 3
41 1 2 1 42 8 22.22 2 0 0 49 3 9.26 1 1 2 43 7 20.37 1 3 0 45 5 16.67 41
42 1 0 5 5 68 13.92 0 0 2 8 69 12.66 0 0 1 7 71 10.12 0 0 2 6 71 10.13 42

ALS + S2

1 54 0 0 0 0 0.00 53 1 0 0 0 1.85 52 1 0 0 1 3.70 53 1 0 0 0 1.85 1
2 0 40 4 0 1 11.11 0 38 6 0 1 15.56 0 37 6 1 1 17.78 0 40 4 0 1 11.11 2
3 0 3 41 0 1 8.89 0 2 41 1 1 8.89 1 3 38 2 1 15.56 0 3 39 2 1 13.33 3
41 0 3 3 47 3 16.07 0 2 2 49 3 12.50 0 2 3 46 5 17.86 0 3 2 48 3 14.28 41
42 0 0 2 2 71 5.33 0 0 3 4 68 9.33 0 0 2 5 68 9.33 0 0 2 5 68 9.33 42

ALS + S2 + P1B

1 55 1 0 0 0 1.78 54 2 0 0 0 3.57 53 3 0 0 0 5.36 54 2 0 0 0 3.57 1
2 2 42 2 1 1 12.50 3 38 5 1 1 20.83 1 38 5 3 1 20.83 2 36 8 2 0 25.00 2
3 1 2 45 2 0 10.00 1 1 45 2 1 10.00 1 5 41 3 0 18.00 0 3 44 2 1 12.00 3
41 0 3 1 48 2 11.11 0 1 1 50 2 7.41 0 1 0 49 4 9.26 0 3 1 48 2 11.11 41
42 0 0 3 1 74 5.13 0 0 2 2 74 5.13 0 0 4 3 71 8.97 1 0 3 3 71 8.97 42

UAV

1 59 3 1 0 0 6.35 58 5 0 0 0 7.94 57 5 1 0 0 9.50 56 6 1 0 0 11.10 1
2 1 48 9 1 0 18.64 1 51 7 0 0 13.56 4 47 7 1 0 20.30 4 46 9 0 0 22.00 2
3 0 11 33 2 0 28.26 2 7 37 0 0 19.56 2 9 32 3 0 30.40 3 10 29 4 0 36.90 3
41 0 2 1 51 4 12.07 0 2 0 50 6 13.79 1 1 1 47 8 18.90 1 2 1 47 7 18.90 41
42 0 2 4 11 53 24.28 0 3 5 7 55 21.43 1 2 4 8 55 21.40 0 1 4 10 55 21.40 42

UAV + S2

1 64 0 1 0 0 1.54 64 0 1 0 0 1.54 65 0 0 0 0 0.00 65 0 0 0 0 0.00 1
2 1 44 7 0 0 15.38 1 45 6 0 0 13.46 1 43 7 0 1 17.30 1 47 4 0 0 9.61 2
3 1 3 43 1 0 10.41 1 3 44 0 0 8.33 1 6 38 2 1 20.83 1 4 40 2 1 16.66 3
41 0 1 1 50 4 10.71 0 4 3 46 3 17.86 0 2 0 48 6 14.28 0 3 0 49 4 12.50 41
42 2 0 4 3 71 11.25 0 0 11 3 66 17.50 0 0 3 9 68 15.00 2 0 6 4 68 15.00 42

UAV + ALS

1 59 1 0 0 0 1.67 59 1 0 0 0 1.67 58 2 0 0 0 3.33 59 1 0 0 0 1.67 1
2 0 45 6 0 0 11.76 0 44 6 0 1 13.72 2 44 4 0 1 13.72 0 43 7 0 1 15.68 2
3 0 10 31 1 0 26.19 0 10 31 1 0 26.19 0 6 33 2 1 21.43 0 11 30 1 0 28.57 3
41 0 0 0 58 3 4.92 0 2 0 58 1 4.92 0 2 1 57 1 6.56 0 2 0 57 2 6.56 41
42 0 0 0 3 82 3.53 0 0 1 2 82 3.53 0 1 0 4 80 5.88 0 0 1 4 80 5.88 42

UAV + S2 +P1B

1 58 1 0 0 0 0.02 58 0 0 1 0 0.02 57 1 0 1 0 0.03 58 0 0 1 0 0.02 1
2 0 51 5 0 0 0.09 1 49 6 0 0 0.12 2 50 4 0 0 0.11 2 50 4 0 0 0.11 2
3 1 4 43 0 0 0.10 0 2 45 0 1 0.06 0 6 39 2 1 0.19 0 4 43 1 0 0.10 3
41 0 2 1 53 4 0.12 0 2 3 53 2 0.12 0 1 2 52 5 0.13 0 4 1 51 4 0.15 41
42 0 0 1 4 73 0.06 0 0 4 4 70 0.10 0 0 1 9 68 0.13 0 0 4 4 70 0.10 42

UAV + ALS + S2

1 53 1 0 0 0 1.85 51 2 0 1 0 5.56 54 0 0 0 0 0.00 53 1 0 0 0 1.85 1
2 1 44 2 0 0 6.38 2 43 2 0 0 8.51 2 41 2 1 1 12.76 2 41 3 0 1 12.76 2
3 1 4 37 1 0 13.95 2 4 36 1 0 16.28 1 4 33 5 0 23.25 1 4 36 2 0 16.28 3
41 0 1 1 59 1 4.84 0 3 1 57 1 8.06 0 1 1 58 2 6.45 0 3 2 56 1 9.68 41
42 0 0 1 2 80 3.61 0 0 1 3 79 4.82 0 0 1 6 76 8.43 0 0 1 4 78 6.02 42

UAV + ALS + S2 +
P1B

1 53 2 0 0 0 3.64 53 2 0 0 0 3.64 53 1 1 0 0 3.64 50 4 0 1 0 9.09 1
2 2 36 6 0 0 18.18 2 38 4 0 0 13.64 2 36 4 1 1 18.18 3 36 3 1 1 18.18 2
3 1 1 42 2 0 8.70 1 0 43 1 1 6.52 1 3 39 2 1 15.22 1 1 42 2 0 8.70 3
41 0 0 2 52 2 7.14 0 0 1 55 0 1.79 0 3 2 51 0 8.93 0 1 1 52 2 7.14 41
42 1 0 1 4 78 7.14 0 0 1 4 79 5.95 0 0 0 7 77 8.33 0 0 0 5 79 5.95 42

1 2 3 41 42 error 1 2 3 41 42 error 1 2 3 41 42 error 1 2 3 41 42 error

SVML SVMR RF ANN

Moreover, the practical implications of using classification techniques for land-use planning at
large scale and, particularly for the costly and time-consuming processes usually involved in fuel
management, stand out when examining Figure 5. Nearly half of the area of interest studied here
is classified as “no action” area, which has the clearest economic consequences. In addition, these
data make possible to adequately gauge the required human and machinery resources to carry out
the most suitable fuelbreak amount in a given area. Furthermore, since the predicted classification is
spatially explicit, it permits not only to plan how many of the attainable resources to deploy before
any field exploration, but also where to do it. This would make it feasible to implement optimization
procedures [55]. In this regard, the use of high- and very high-resolution DTMs and DSMs derived
from the UAV-LiDAR data makes it possible to identify areas with steep slopes and stone fences or
other obstacles for machinery, which is crucial for an optimal solution on distribution of resources.
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Table 9. Confusion matrix (observed: rows; predicted: columns) for testing analyses for all the
combinations of dataset and algorithms. (Class 1: No Vegetation; Class 2: Crops; Class 3: Bush and
Grass; Class 41: Permitted; Class 42: Forbidden trees; RF: Random Forest; SVML: Linear Support Vector
Machine; SVMR: Radial Support Vector Machine; ANN: Artificial Neural Networks).

MACHINE LEARNING ALGORITHM

SVML SVMR RF ANN

DATA 1 2 3 41 42 error 1 2 3 41 42 error 1 2 3 41 42 error 1 2 3 41 42 error

ALS

1 23 0 0 0 0 0.00 22 0 0 1 0 4.35 23 0 0 0 0 0.00 23 0 0 0 0 0.00 1
2 2 12 2 0 0 25.00 6 8 2 0 0 50.00 1 14 1 0 0 12.50 2 12 2 0 0 25.00 2
3 0 1 17 0 0 5.55 0 1 15 0 2 16.67 0 2 15 1 0 16.67 0 1 17 0 0 5.56 3
41 0 1 3 20 3 25.92 0 1 4 21 1 22.23 0 1 2 21 3 22.22 0 1 3 21 2 22.22 41
42 2 0 0 4 30 16.67 1 0 0 3 32 11.12 0 0 0 3 33 8.33 2 0 0 4 30 16.67 42

ALS + S2

1 30 0 0 0 0 0.00 29 0 1 0 0 3.33 29 0 1 0 0 3.33 30 0 0 0 0 0.00 1
2 0 19 1 0 0 5.00 0 18 2 0 0 10.00 0 17 2 1 0 15.00 0 18 1 1 0 10.00 2
3 0 3 18 0 0 14.29 0 3 18 0 0 14.29 0 3 18 0 0 14.29 0 2 19 0 0 9.52 3
41 2 0 2 20 1 20.00 0 0 1 24 0 4.00 0 0 1 24 0 4.00 1 1 1 22 0 12.00 41
42 1 0 2 1 36 10.00 0 0 2 3 35 12.50 0 0 2 3 35 12.50 0 0 2 2 36 10.00 42

ALS + S2 + P1B

1 27 1 0 0 0 3.57 27 0 0 0 1 3.57 28 0 0 0 0 0.00 27 0 1 0 0 3.57 1
2 0 9 6 2 0 47.06 0 10 5 2 0 41.18 0 11 4 2 0 35.29 0 10 5 2 0 41.18 2
3 0 0 15 0 1 6.25 1 1 14 0 0 12.50 1 0 15 0 0 6.25 0 0 16 0 0 0.00 3
41 1 0 3 20 3 25.93 0 0 3 22 2 18.52 0 0 4 22 1 18.52 0 0 3 23 1 14.81 41
42 1 0 0 6 30 18.92 0 0 0 4 33 10.81 0 0 0 5 32 13.51 1 0 0 5 31 16.22 42

UAV

1 21 0 2 0 0 8.70 23 0 0 0 0 0.00 22 0 0 1 0 4.35 22 0 1 0 0 4.35 1
2 0 16 2 0 0 11.11 0 15 3 0 0 16.67 1 15 2 0 0 16.67 0 16 2 0 0 11.11 2
3 0 1 16 2 1 20.00 0 1 16 3 0 20.00 1 0 17 2 0 15.00 2 0 14 3 1 30.00 3
41 0 3 1 16 3 30.43 0 2 1 17 3 26.09 0 1 1 15 6 34.78 0 2 0 17 4 26.09 41
42 1 1 1 3 39 13.33 0 3 1 5 36 20.00 2 1 0 6 36 20.00 0 0 1 3 41 8.89 42

UAV + S2

1 18 1 0 1 1 14.29 19 1 0 1 0 9.52 19 1 0 1 0 9.52 19 1 0 1 0 9.52 1
2 2 22 1 0 0 12.00 2 21 2 0 0 16.00 0 24 0 1 0 4.00 2 22 1 0 0 12.00 2
3 1 0 14 2 1 22.22 1 1 15 0 1 16.67 1 1 14 1 1 22.22 2 0 13 2 1 27.78 3
41 0 1 0 21 3 16.00 0 1 1 21 2 16.00 0 0 0 22 3 12.00 0 1 0 21 3 16.00 41
42 0 0 3 3 29 17.14 1 0 3 3 28 20.00 0 0 3 2 30 14.29 1 0 2 3 29 17.14 42

UAV + ALS

1 22 2 0 0 0 8.33 21 1 0 1 1 12.50 22 2 0 0 0 8.33 21 1 0 1 1 12.50 1
2 0 12 2 0 0 14.29 0 12 2 0 0 14.29 0 13 1 0 0 7.14 1 10 3 0 0 28.57 2
3 0 12 11 1 0 54.17 0 8 15 1 0 37.50 1 7 16 0 0 33.33 0 8 15 1 0 37.50 3
41 0 1 2 17 0 15.00 0 1 2 17 0 15.00 0 1 0 17 2 15.00 0 1 2 17 0 15.00 41
42 0 0 0 4 26 13.33 0 1 0 3 26 13.33 0 1 0 3 26 13.33 0 0 0 4 26 13.33 42

UAV + S2 +P1B

1 24 3 0 0 0 0.11 25 2 0 0 0 0.07 25 2 0 0 0 0.07 25 2 0 0 0 0.07 1
2 0 20 1 0 0 0.05 0 19 2 0 0 0.09 1 18 2 0 0 0.14 0 20 1 0 0 0.04 2
3 1 2 13 0 2 0.28 1 2 15 0 0 0.17 1 2 13 0 2 0.28 1 1 13 0 3 0.28 3
41 0 2 5 12 2 0.43 0 1 6 12 2 0.43 0 1 1 16 3 0.24 0 2 4 13 2 0.38 41
42 1 0 3 1 32 0.13 1 0 5 3 28 0.24 1 0 4 3 29 0.21 0 0 2 1 34 0.08 42

UAV + ALS + S2

1 26 0 1 3 0 13.33 26 1 0 2 1 13.33 28 1 0 1 0 6.67 27 1 0 2 0 10.00 1
2 1 15 1 0 1 16.67 1 15 2 0 0 16.67 0 17 1 0 0 5.56 1 16 1 0 0 11.11 2
3 0 2 18 0 3 21.74 1 2 19 0 1 17.39 0 2 20 0 1 13.04 0 1 20 0 2 13.04 3
41 0 1 2 13 3 31.58 0 1 1 15 2 21.05 0 0 0 16 3 15.79 0 2 0 14 3 26.32 41
42 0 0 1 0 31 3.13 0 0 0 3 29 9.38 0 0 0 1 31 3.13 0 0 0 2 30 6.25 42

UAV + ALS + S2 +
P1B

1 26 3 0 0 0 10.34 27 2 0 0 0 6.90 28 1 0 0 0 3.45 25 4 0 0 0 13.79 1
2 0 16 5 0 0 23.81 0 15 6 0 0 28.57 0 15 6 0 0 28.57 0 17 4 0 0 19.05 2
3 0 2 18 0 0 10.00 0 2 17 1 0 15.00 0 2 15 2 1 25.00 0 2 17 1 0 15.00 3
41 1 0 1 20 3 20.00 0 0 1 23 1 8.00 0 0 2 21 2 16.00 0 0 2 21 2 16.00 41
42 0 0 0 3 28 9.68 0 0 0 5 26 16.13 0 0 0 2 29 6.45 0 0 0 2 29 6.45 42

1 2 3 41 42 error 1 2 3 41 42 error 1 2 3 41 42 error 1 2 3 41 42 error

SVML SVMR RF ANN

The use of Artificial Intelligence through ML algorithms to classify different land uses is a robust
and widely used technique today. It is necessary to make compete algorithms although the differences
between precision errors may not seem significant. These differences can become considerable when
working on a large scale and without using multispectral imagery. Moreover, differences may not be
negligible when classifying larger areas with more types of objects. Thus, the performance of different
algorithms and data sources should be tested in every land classification analysis, as their behavior
may largely change depending on spectral characteristics, size and variety of the object types included
in the study area.
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Figure 5. Detail of one of the study areas with final classification of the types of activities (thinning:
blue; thinning and pruning: brown; felling: red; clearing: cyan; no action: yellow).

4. Conclusions

In this study, we have shown that UAVs are suitable tools to provide precise and operational
data to identify action areas in fuelbreaks of WUI zones. They have the greatest accuracy combined
with other passive and active remote sensors to predict vegetation types through machine learning
algorithms. No clear differences in the performance of the different ML algorithms have been found.
However, we consider RF to be the most robust, providing similar results between training and testing
datasets. The rest of the algorithms tend to slightly overfit.

On the contrary, clear differences in prediction ability have been found among different data
sources. The use of more than one LiDAR point clouds to calculate vegetation growth provides
particularly useful information. The combination of UAV data with large-scale remote sensing data
and RF algorithms has an accuracy greater than 0.9 both in training and generalization phases, which
makes it an appropriate asset for optimizing vegetation classification for fuelbreak planning. Moreover,
the use of UAV should be mandatory whenever other updated LiDAR data are not attainable, as height
and cover metrics of vegetation are ineludible to apply actions rules in fuelbreak management planning.
Accurate prediction of vegetation type makes possible to adequately gauge the required human
and machinery resources to carry out the most suitable fuelbreak amount in a given area, reducing
management costs and optimizing field work.

Our results support the essential role of UAVs in fuelbreak planning and management and
thus, in the prevention of forest fires and the reduction of damages in human infrastructures and
natural environments.
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