

ANÁLISIS COMPARATIVO DE DATOS EN SENSORES ACTIVOS Y PASIVOS EN SENSORES AEREOS NO TRIPULADOS

COMPARATIVE ANALYSIS OF DATA IN ACTIVE AND PASSIVE SENSORS IN UNMANNED AIRCRAFT SENSORS

Camilo Ernesto Palma Zapata Código 3101585 Ingeniero Topográfico

Director trabajo de grado: Ing. Freddy Alberto Gutierrez García Msc Gestión de la información y Tecnologías Geoespaciales Msc in Geographic Information Science and Systems

UNIVERSIDAD MILITAR NUEVA GRANADA ESPECIALIZACIÓN EN GEOMÁTICA JUNIO DE 2022 BOGOTÁ-COLOMBIA

ANÁLISIS COMPARATIVO DE DATOS EN SENSORES ACTIVOS Y PASIVOS EN SENSORES AEREOS NO TRIPULADOS

COMPARATIVE ANALYSIS OF DATA IN ACTIVE AND PASSIVE SENSORS IN UNMANNED AIRCRAFT SENSORS

Camilo Ernesto Palma Zapata Ingeniero Topográfico Estudiante Especialización en Geomática Universidad Militar Nueva Granada Bogotá, Colombia Est.camilo.palma@unimilitar.edu.co

Resumen

Este documento tiene como área de estudio el análisis y los resultados de la comparación de productos obtenidos a partir de dos tipos de sensores con diferentes tecnologías como son los sensores digitales (cámaras digitales) y sensores LiDAR (detección de luz y alcance) en aeronaves no tripuladas o drones de ala rotatoria, siguiendo una metodología lógica divida en fases con las cuales se desarrolló la obtención y el análisis de la información contemplando tecnologías complementarias como la captura, calculo e implementación de puntos de control terrestre para el ajuste de los productos principales como son la nubes de puntos densas y sub productos de importancia como la generación de cálculos de áreas y generación de perfiles.

Palabras claves: Fotogrametría, Aerotringulación, Sistema de aeronave pilotado a distancia (RPAS), Drone, LiDAR, (GCP) puntos de control terrestre, red geodésica, Ajuste de red, nubes de puntos.

ABSTRACT

This document aims to show the result of the comparison of products obtained from two types of sensors with different technologies such as digital sensors (digital cameras) and LiDAR sensors (light detection and range) in unmanned aircraft or drones. of rotary wing, following a logical methodology divided into phases with which the obtaining and analysis of information was developed, contemplating complementary technologies such as the capture, calculation, and implementation of ground control points for the adjustment of the main products such as clouds of dense points and by-products of importance such as the generation of area calculations and generation of profiles.

Keywords: Photogrammetry, Aerotriangulation, Remotely Piloted Aircraft System (RPAS), Drone, LiDAR, (GCP) ground control points, geodetic network, Network adjustment, point clouds.

INTRODUCCION

La fotogrametría como fuente de información puede ser aprovechada por diferentes ramas de estudio; el uso y fiabilidad de cada una de las técnicas está determinada por la precisión de los datos. Al mismo tiempo es importante generar un análisis estadístico de cada una de estas técnicas, impulsando la utilización de la fotogrametría como instrumento de preservación, conservación y restauración del patrimonio cultural [1].

Se denota la evolución que ha tenido la fotogrametría en 3 grandes momentos: análoga, analítica y digital [2]. Estas clasificaciones responden al instrumento utilizado para la obtención de las fotografías, cabe destacar que estos avances han sido gracias a la evolución tecnológica, siendo la fotogrametría una de las más beneficiadas generando innovaciones, en la toma de datos y su procesamiento. La representación gráfica del espacio busca técnicas que permitan mejorar dichos procedimientos; la representación en dos dimensiones permite tener un acercamiento preliminar de los objetos de estudio, dado que generan una reconstrucción del contorno de los objetos [3].

La tecnología LiDAR que en un momento solo se contemplaba desde una aeronave tripulada ha tenido avances muy importantes hasta llegar a reducir su peso y tamaño para ser montada en aeronaves tipo RPAS (Sistema de Aeronaves Pilotadas a Distancia), gracias a sus retornos permite la identificación de un MDT (Modelo Digital de Terreno) con mayor calidad y veracidad de datos en comparación de los productos fotogramétricos.

Esta evolución trae consigo un desarrollo no solo en hardware sino en software, la aplicación de metodologías sencillas de procesamiento que finalmente generan productos entendibles casi para cualquier persona han generado un boom en el uso de estos equipos, pero también hay vacíos en los cuales los alcances de los sensores y sus productos no cubren las necesidades o no se logran los resultados pensados en un inicio y gran parte de esto es porque no se cuenta con el conocimiento suficiente para seleccionar el equipo, aeronave, tipo de sensor y software no solo de procesamiento si no de visualización y manejo de los datos.

La zona seleccionada para la adquisición de datos fue la sede de la biblioteca y observatorio astronómico Aduanilla de Paiba de la Universidad Distrital Francisco José de Caldas ubicada en el centro de la ciudad en la Cl. 13 # 31-75, se identificaron elementos interesantes para el estudio como el domo del observatorio, plataforma, vía principal como lo es la calle 13, elementos plenamente identificables y de vegetación. La comparación de los productos fotogramétricos obtenidos con tecnologías LIDAR y con cámaras RGB nacen de la necesidad de identificar que sensor utilizar dependiendo del objeto del levantamiento y que los productos sean óptimos orientados a objetivos específicos de los proyectos sin exceder los costos de los sensores y seleccionando la solución correcta.

Con la aparición de nuevas técnicas de captura masiva de información, equipos, desarrollo de software y metodologías de trabajo se han detectado puntos de inflexión en donde se debe determinar dependiendo de la necesidad con qué equipo y técnica se van a obtener los datos, esto estará determinado por el alcance y el tipo de productos que se necesiten para cubrir dicha necesidad. Los sensores en la actualidad no solo son cámaras digitales, ahora se cuentan con sistemas de alta resolución que brindan millones de datos geográficos con atributos que definen de manera muy detallada y precisa el tipo de dato y cómo hacen parte del entorno o zona de estudio; los diferentes tipos de software que llevan consigo los algoritmos clásicos y los algoritmos actuales en donde se resumen estas técnicas que antes costaban mucho más pero que hoy por hoy se encuentran condensadas en sistemas de procesamiento que brindan productos concisos y de alta calidad, aun así hay muchos vacíos en el cómo procesar estos datos y más allá el cómo utilizarlos y aplicarlos de manera correcta. [4].

Con el avance y el auge de la tecnología en especial con el desarrollo de los drones o RPAS [5], se han implementado nuevos modelos de trabajo en la captura de información y así mismo en el procesamiento y obtención de productos cartográficos y fotogramétricos, de esta manera se han encontrado problemáticas muy interesantes las cuales abren un abanico de áreas de estudio y de mejora y también de vinculación y complemento para los productos en vista de que hay muchos sensores activos y pasivos que incluso en sus principios no se contemplaban para uso profesional, de hecho hoy en día las empresas fabricantes más grandes de drones se han tropezado con las aplicaciones con equipos pequeños y de consumo como por ejemplo la utilización de drones pequeños o de consumo para fines fotogramétricos de uso profesional, gracias a esto se han segmentado los diferentes modelos de aeronaves y se ha tenido una evolución de gran impacto a los usuarios finales, pues los datos obtenidos son muy confiables, rápidos y han logrado alivianar los trabajos extensos de campo teniendo así mayor

detalle de la información, precisiones y volúmenes de datos que finalmente permiten tener de manera digital la realidad.

Los modelamientos tridimensionales permiten el análisis y estudio del área de estudio, siendo este un punto de partida para realizar distintas investigaciones, estos modelamientos pueden ser tomados con cámaras digitales o con escáner laser, que supone dos diferencias: las imágenes digitales utilizan un sensor pasivo que permite capturar fotografías con recubrimiento estereoscópico, generando un material para su posterior estudio en diferentes programas de diseño o análisis, mientras que el escáner laser se compone de un sensor activo que genera una extrae información mayor precisión, dado que а partir de pulsos electromagnéticos, midiendo una distancia por medio de la velocidad de retorno; estas dos metodologías se usan de referencia topográfica permitiendo un acercamiento a la realidad [6].

El objetivo principal de este documento es analizar y comparar los datos resultantes del procesamiento obtenidos por medio de sensores activos y sensores pasivos a bordo de aeronaves tipo RPAS, considerando el Análisis de la implementación de los puntos de control terrestre para cada uno de los sensores contemplados como activos y pasivos para así comparar los tipos de sensores y sus aplicaciones según la necesidad y el tipo de obtención masiva de la información de campo. Finalmente evaluar la relación directa entre las aeronaves tipo RPAS y los rendimientos que se pueden obtener con los sensores.

1. MATERIALES Y MÉTODOS

Este artículo describe los elementos tenidos en cuenta para la captura de información en campo considerando un escenario idóneo y seguro para poder realizar los vuelos con las aeronaves Sistema de aeronave pilotado a distancia (RPAS): Los vehículos aéreos no tripulado denominados por sus siglas UAV o también conocidos como los UVS Sistemas de Vehículo no Tripulado o UAS Sistema de Aeronave no Tripulado, como su nombre lo indica son aeronaves que vuelan de manera autónoma y obedecen a un mando con recepción de radio frecuencias [7], esto permite acatar las órdenes de su piloto el cual está en un rango determinado de distancia dependiendo las especificaciones de la aeronave.

Los sensores digitales y LiDAR, Light Detection and Ranging o Laser Imaging Detection and Ranging) son dispositivos que permiten determinar la distancia desde un emisor láser a un objeto o superficie utilizando un haz láser pulsado. La distancia al objeto se determina midiendo el tiempo de retraso entre la emisión del pulso y su detección a través de la señal reflejada [8]. En general, la tecnología LiDAR tiene aplicaciones en geología, sismología y física de la atmósfera. También se investiga su uso en vehículos, especialmente los autónomos. Un sistema típico de Medición y Detección mediante LIDAR transmite muy rápidamente pulsos de luz que se reflejan del terreno y de otros objetos obteniéndose en el sistema LIDAR puntos de las alturas o puntos de elevación. El pulso de vuelta se convierte de fotones a impulsos eléctricos y se recoge por un registrador de datos de alta velocidad [9], también se incluyó la monumentación de los GCP's (Ground control points, puntos de control terrestre) y la captura de las coordenadas con equipos GNSS GPS doble frecuencia en modo estático largo, esto con el fin de determinar las coordenadas finas de estos puntos de control terrestre, es fundamental esta información en vista de que a parir de estas coordenadas y su distribución geométrica se ajustan los modelos y productos basados en las referencias reales medidas en campo o calculadas en los puntos de control terrestre [10].

Los equipos utilizados para la adquisición de datos fueron los siguientes:

- RPAS multirotor
 - ✓ DJI Matrice 300 RTK
 - ✓ DJI Phantom 4 RTK
 - ✓ DJI Phantom 4 Pro V2

Imagen1 . RPAS Multirotor DJI M300 RTK – PH4RTK – Fuente propia - 2022

- Sensores Digitales
 - ✓ DJI P1
 - ✓ Camara Digital Phantom 4 Pro V2

Imagen 2. Sensores Digitales DJI P1 – CMOS 1" Fuente propia - 2022

Sensor LiDAR
 ✓ DJI L1

Imagen 3. Sensor LiDAR DJI L1 - Fuente propia - 2022

- GNSS GPS Doble Frecuencia
 - ✓ Trimble 5700
 - ✓ DJI D-RTK2
 - ✓ CORS Topcon

Imagen 4. GNSS GPS DJI D-RTK2 – Trimble 5700 - Fuente propia - 2022

La metodología para este trabajo se puede definir y resumir en 4 fases:

- ✓ Fase 1: Selección del área de estudio, implementación de GCP´s, posicionamiento y cálculo de coordenadas
- ✓ Fase 2: Adquisición de información aérea, validación y modelo preliminar
- ✓ Fase 3: Procesamiento de información RGB e Información LiDAR
- ✓ Fase 4: Modelamiento de información y análisis de información

Figura 1. Diagrama de Flujo para captura y obtencion de productos fotogramétricos – Fuente propia - 2022

Fase 1. Selección del área de estudio, implementación de GCP´s, posicionamiento y cálculo de coordenadas

El sitio elegido para la captura de información digital y LiDAR fue la biblioteca aduanilla de Paiba y observatorio astronómico de la Universidad Distrital Francisco Jose de Caldas ubicado en el centro de Bogotá sobre la carrera 13 con calle 31, pues aquí se pueden realizar vuelos de manera segura y adicionalmente se tiene un observatorio astronómico cuya estructura es un elemento interesante para evaluar el comportamiento de los datos de los sensores digitales y LiDAR, adicionalmente se tiene una estación de referencia CORS que sirve para obtener los datos RINEX con los cuales se ajustan las coordenadas de los puntos de

control terrestre, también se utilizan los datos de las estaciones de la red magna eco acorde a la metodología implementada y regulada por el IGAC.

Se rastrearon 5 puntos de control terrestre principales, adicionalmente se implementaron 32 puntos más como puntos de chequeo distribuidos de manera uniforme en el área de estudio haciendo énfasis en los alrededores del Observatorio, en la imagen 5 se relaciona un ejemplo de un punto de paso, estos puntos fueron capturados con metodología RTK (Tiempo Real Cinemático) con radios, estas coordenadas estarán calculadas a partir de las coordenadas de los puntos principales anteriormente mencionados.

Imagen 5. GCP – Punto de Paso, fuente propia - 2022

El cálculo de coordenadas de los puntos de control terrestre se realizó con doble determinación y utilizando efemérides precisas, también se ajustó utilizando las coordenadas semanales SIRGAS, la estrategia de procesamiento corresponde a una máscara de elevación de 10° en donde se garantiza el uso de la totalidad de los datos capturados con filtros en las señales rastreadas en las diferentes constelaciones y los vectores resultantes de las líneas base.

Los puntos de control son implementados y capturados antes de la ejecución de los planes de vuelo, para lograr una buena distribución, digitación e incorporación óptica de los puntos de control en el software de procesamiento de las imágenes RGB y de los datos del LiDAR.

Para los puntos de control de paso se eligieron elementos existentes en el área de estudio tales como esquinas de las tapas de servicios públicos, tapas de pozos de alcantarillado, puntos iluminados y elementos de fácil identificación.

Después de hacer el rastreo de los puntos de control y de la radiación de los puntos de paso, se procedió a retirar los equipos GNSS-GPS (Sistema de Navegación Satelital – Sistema de Posicionamiento Satelital) para que así los

puntos de control terrestre quedaran en total visual perpendicular y sin obstrucciones para la radiometría al momento de la ejecución de los planes de vuelo.

El pos-procesamiento de los puntos de control terrestre principales se realizó con la metodología contemplada en las resoluciones y normativas vigentes IGAC Norma NTC-6271 "Información geográfica, Estudios Topográficos" y la Norma GU-IC07 "Elaboración de estudios Topográficos". (Guía de elaboración de estudios topográficos Versión 2, Instituto de Desarrollo Urbano IDU, GU-IC-07 V2, 2019) [11], con el fin de tener los mejores resultados en el cálculo de los puntos de control terrestre, después de tener las coordenadas independientes se llevó a cabo un ajuste de red por mínimos cuadrados, el software utilizado para este cálculo de coordenadas finas fue el Leica Infinity versión 3.8, el informe de procesamiento y de calidad del procesamiento arrojó valores estadísticos en donde se comprobó el resultado de fiabilidad del ajuste de la red y el ajuste en los puntos de control terrestre como se indica en la tabla 1.

Criterios de Prueba:	
Nivel de significancia (α, multi-dimensional):	0,37
Nivel de significancia (α0, uni-dimensional):	5,0%
Poder de la prueba (1-β):	80%
σ a-priori:	1,0
σ a-priori (GNSS):	10,0
Avanzado	
Usar observaciones reducidas:	No
Usar corrección de factor de escala:	Ignorar
Corrección de factor de escala inicial:	0,0 PPM
Usar coeficiente de refracción vertical:	Ignorar
Coeficiente de refracción vertical inicial:	0,13

Tabla 1. Criterios para ajuste de red – Fuente Informe Leica Infinity - 2022

El resultado de la desviación estándar producto de los criterios de prueba estadísticos son los consignados en la tabla 2.

Estación	Desv. Estd. Lat WGS84 [m]	Desv. Estd. Long WGS84 [m]	D.Est Alt [m]
ABCC	0,00000	0,00000	0,00000
BOGA	0,00000	0,00000	0,00000
GPS-01	0,00077	0,00091	0,00192
GPS-02	0,00087	0,00111	0,00237
GPS-03	0,00153	0,00173	0,00434
GPS-04	0,00107	0,00134	0,00326
GPS-05	0,00091	0,00115	0,00244

Desviación Estándar

Tabla 2. Resultados desviaciones estandar – Fuente: informe Leica Infinity – 2022

Resultados del A	sultados del Ajuste													
Coordenadas Ajust	ordenadas Ajustadas													
Estación	Latitud WGS84	Longitud WGS84	Altura Elipsoidal [m]	Corr Lat WGS84 [m]	Corr Long WGS84 [m]	Corr Altura [m]								
ABCC	4° 39' 40,44845" N	74° 07' 36,92031" O	2.576,19509	0,00000	0,00000	0,00000								
BOGA	4° 38' 19,25965" N	74° 04' 47,81863" O	2.609,73945	0,00000	0,00000	0,00000								
GPS-01	4° 36' 48,32914" N	74° 05' 39,43649" O	2.586,13956	0,00008	0,00005	0,00023								
GPS-02	4° 36' 53,87902" N	74° 05' 35,05653" O	2.586,24291	0,00000	0,00000	0,00001								
GPS-03	4° 36' 54,99062" N	74° 05' 36,71493" O	2.585,75949	0,00000	-0,00001	0,00001								
GPS-04	4° 36' 49,46124" N	74° 05' 41,46334" O	2.586,01007	0,00000	0,00000	0,00000								
GPS-05	4° 36' 52,53775" N	74° 05' 39,30782" O	2.585,65036	0,00000	0,00000	0,00000								
Estación	Coordenada X [m]	Coordenada Y [m]	Altura Ortom. [m]	Corr E [m]	Corr N [m]	Corr Altura [m]								
ABCC	994.517,28656	1.007.191,88966	2.553,93291	0,00000	0,00000	0,00000								
BOGA	999.729,07540	1.004.697,81318	2.586,85016	0,00000	0,00000	0,00000								
GPS-01	998.138,07092	1.001.904,71471	2.563,15071	0,00005	0,00008	0,00023								
GPS-02	998.273,07638	1.002.075, 18777	2.563,25646	0,00000	0,00000	0,00001								
GPS-03	998.221,96089	1.002.109,33372	2.562,77890	-0,00001	0,00000	0,00001								
GPS-04	998.075,59896	1.001.939,49102	2.563,02794	0,00000	0,00000	0,00000								
GPS-05	998.142,04003	1.002.033,99071	2.562,67012	0,00000	0,00000	0,00000								

Las coordenadas ajustadas finales son las siguientes:

Tabla 3. Resultados Coordenadas ajustadas – Fuente: Leica Infinity – 2022

Las coordenadas finales fueron exportadas en formato CSV para ser cargadas en el software de procesamiento de imágenes Pix4D Mapper Pro, también este mismo archivo de coordenadas se ha cargado en el software de cálculo y modelamiento de la nube de puntos, para este paso se ha utilizado el software DJI Terra, es así como se logra ajustar tanto los datos digitales y los productos generados a partir de fotografías RGB y la nube de puntos obtenida por medio del LiDAR DJI L1, la imagen 6 corresponde a los vectores de calculo de la red geodésica.

Imagen 6. Vectores de calculo Red Geodesica Fuente Leica Infinity - 2022

Fase 2. Adquisición de información aérea, validación y modelo preliminar

Para la adquisición de la información se seleccionaron dos tipos de equipos multirotor, el primer equipo utilizado fue el drone DJI Matrice 300 RTK con sensor LiDAR DJI L1, se hizo énfasis en la estructura principal del observatorio, se consideraron datos capturados en vuelo manual con la opción POI (point of interest) especialmente a la cúpula y laterales de la estructura. Este vuelo se consideró como complemento de la estrategia en la planeación del vuelo con el fin

de visualizar el retorno de información y validar la densidad de captura de puntos, esto gracias a que software de campo permite la visualización preliminar de los retornos del sensor LiDAR L1, así se pueden analizar dos factores: el primero es establecer las zonas de riesgo del vuelo por los posibles obstáculos como redes eléctricas, postes, antenas de comunicaciones y elementos a gran altura, segundo determinar si el número de retornos y la velocidad de vuelo son suficientes para adquirir información de calidad.

Se realizó un segundo vuelo autónomo a 100 metros de altura para la captura del total del área de estudio y su entorno, el sensor DJI L1 se configuró con dos retornos como método de captura, el software de campo permite establecer el número de puntos por segundo para cada misión de vuelo, teniendo resoluciones máximas de 480.000 pts/seg. El tiempo de vuelo de este plan de vuelo fue de 16 minutos en captura de información.

Para el segundo vuelo se hizo el cambio del sensor y se ocupó la cámara digital DJI P1, se configuró el vuelo a 100 metros y a una velocidad de vuelo baja, se calculó un traslapo frontal del 85% y traslapo lateral del 80%, esto con la intensión de garantizar un buen porcentaje de recubrimiento en todos los sentidos de la captura que finalmente brinda condiciones óptimas para el procesamiento y restitución fotogramétrica, cabe aclarar que este sensor captura información no solo cenital si no que en su algoritmo de captura vincula imágenes oblicuas donde el sensor gira automáticamente para tomar fotos en los diferentes ángulos necesarios y capturar justo hasta el límite del predio. Para cubrir el área seleccionada esta función de obturación del sensor P1 permite incrementar la eficiencia en el número de fotos y ayuda en la minimización del tiempo de procesamiento.

Finalmente se ejecutó un vuelo con el drone Phantom 4 pro V2 con el cual se configuró una misión de vuelo autónoma con traslapo frontal del 85% y lateral del 80%, con el objeto de poder comparar los resultados fotogramétricos de los sensores, cabe aclarar que este sensor RGB no cuenta con captura de imágenes oblicuas con lo cual se captura una zona más grande que la necesaria, es así que parte de la estrategia de captura tiene un factor directo con el procesamiento en sentido de que el polígono de vuelo debe ser más grande con el fin de garantizar la captura de fotografías suficientes para cubrir los bordes del predio.

Fase 3: Procesamiento de información RGB e Información LiDAR

Después de la captura de información se requiere de diferentes softwares de procesamiento para la generación de productos o salidas fotogramétricas y cartográficas sobre las cuales se puede hacer un análisis comparativo de la

información, esto depende de a qué atributos se les dé más peso, por ejemplo, las precisiones absolutas y relativas tanto en posición como en resolución en el caso de las imágenes RGB, densidad de puntos, nivel de ruido, deformación por oblicuidad. En este caso se le dio peso a la precisión de los productos y resoluciones espaciales. La aerotringulación es realizada por medio de la fotogrametría, de donde se pueden realizar y obtener medidas con precisión a través de fotografías aéreas. Se creó con el fin de utilizar fotografías para realizar levantamientos topográficos, y así reducir el tiempo de trabajo en campo. Para su correcta ejecución se deben determinar al menos 3 puntos con coordenadas conocidas, los cuales ayudaran a dar la escala y nivelar el modelo estereoscópico, estos puntos se denominan puntos de control (Lizana, 2008).

Para el procesamiento de los insumos obtenidos a partir de las imágenes digitales RGB del sensor DJI P1, se utilizó software comercial Pix4D Mapper Pro, este software fotogramétrico es de uso sencillo y cuenta con tres pasos para la generación de los productos como se aprecia en la figura 2 flujograma de procesamiento fotogramétrico para la obtención de productos.

🦉 Output Status		? ×
1 Initial Processing	2 Point Cloud and Mesh	3 DSM, Orthomosaic and Index
Quality Report	_ Densified Point Cloud: LAS, LAZ, PLY, XYZ	_ Grid DSM: XYZ, LAS, LAZ _
Camera Internals and Externals, AAT, BBA	_ 3D Textured Mesh: OBJ	_ Raster DSM _
Undistorted Images	-	Contour Lines: SHP, PDF, AutoCAD DXF _
		Orthomosaic _
		Google Maps Tiles and KML _
		Mapbox Tiles _
		Reflectance Map _
		- Index Map -
Display Options 🔻 🗹 Advanced		Close Help

Figura 2. Flujograma de procesamiento fotogrametrico – Fuente Pix4D Mapper - 2022

En donde en el paso 1 o procesamiento inicial el software primero calcula los puntos clave de las imágenes y utiliza estos puntos clave para encontrar coincidencias entre las imágenes. A partir de estas coincidencias iniciales, el mismo software ejecuta una Triangulación Aérea Automática (AAT) y un Ajuste de Bloque de Paquete (BBA), llevando a cabo la calibración de los valores de la cámara.

Después de finalizar el paso 1 el software ha identificado los puntos coincidentes en las fotos y puede hacer la unión de los puntos clave, hay un paso intermedio en el cual se ingresan los puntos de control terrestre que han debido estar bien distribuidos en la zona de estudio, se deben considerar la inclusión de puntos de control en las zonas donde existan puntos de quiebre en el terreno, esto con el fin de mejorar el ajuste de la nube de puntos y de los DEM (Modelos Digitales de Elevación) generados como productos.

Para el ajuste y re optimización del paso 1 se incluyen las coordenadas de los puntos de control terrestres medidos en campo por medio de los equipos GNSS GPS doble frecuencia, estas coordenadas ajustadas y en red se encuentran en un marco de referencia de proyecciones planas, el sistema utilizado es Magna Bogota con código 3116, no se contempla ningún modelo geoidal y solo se tiene en consideración la coordenada Z en valores de la elevación referida al elipsoide WGS84, se cargaron dichas coordenadas y se seleccionaron en cada fotografía en la cual se encontró el punto de control de manera visible, gracias a la alta resolución de la cámara DJI Zenmuse P1 se lograron ver y picar los puntos de control de manera segura. En los siguientes ejemplos imagen 7 y 8 se visualiza el nombre del Punto de control y el tipo de coordenada, adicionalmente el número de fotogramas en donde se ha ajustado el punto de control, para este GCP se hizo el procedimiento en 46 fotografías logrando una precisión teórica de 0.002 m en las componentes X, Y con una precisión de 0.005m en la componente Z.

Imagen 7. Punto de control terrestre y resultado Fuente - Pix4D Mapper - 2022

Imagen 8. Puntos de control terrestre y resultados - Fuente Pix4D Mapper - 2022

	Numero de	Precisión X	precisión Y	precisión Z	
GCP	fotos	(m)	(m)	(m)	
GPS-01	50	0.001	0.001	0.002	
GPS-02	46	0.002	0.002	0.005	
GPS-03	35	0.002	0.002	0.008	
GPS-04	47	0.001	0.001	0.003	
GPS-05	55	0.001	0.001	0.003	

Los valores obtenidos para los GCP's restantes se indican en la tabla 4.

Tabla 4. Resumen de precisiones GCP's – Fuente propia - 2022

Después de seleccionar los GCP's en cada una de las fotos posibles, se re optimiza el paso 1 y se reconstruye la calibración de las cámaras y los match points para así continuar con el paso 2.

Imagen 9. Visualizacion Puntos de control antes y despues - Fuente Pix4D Mapper - 2022

El paso 2 consiste en la generación de la nube de puntos y malla como se visualiza en la imagen 10, se permite el cambio de las opciones de procesamiento y los resultados deseados para la nube de puntos que se genera como producto. Este paso aumenta la densidad de puntos 3D del modelo inicial generado en el paso 1 correspondiente al procesamiento inicial, lo que conduce a una mayor precisión tanto para el DSM (Modelo Digital de Superficie) como para el Orto mosaico.

En la estrategia de procesamiento se seleccionan los parámetros y valores medios o valores estándar, un procesado de alta densidad genera archivos muy pesados y difíciles de mover en equipos de cómputo convencionales y no brindan gran ventaja a menos de que el detallado requerido sea muy alto o específico.

Imagen 10. Nube de puntos densa generada - Fuente Pix4D Mapper - 2022

El resultado de este paso es una nube de puntos densa y coloreada o texturizada, en este caso la extracción de la nube de puntos se hace a partir de las fotografías, por ello se tienen los valores de color real RGB y a distancia pareciera ser una fotografía con diferentes vistas, el resumen se relaciona en la tabla 5 resultado nube de puntos.

Results

Number of Generated Tiles	4
Number of 3D Densified Points	72005763
Average Density (per m ³)	3756.54

6

Tabla 5. Resultado nube de puntos - Fuente Pix4D Mapper - 2022

Fase 4. Modelamiento y generación de informes

El paso 3 del flujo de procesamiento del software Pix4D Mapper Pro permite al usuario cambiar las opciones de procesamiento y los resultados deseados para la generación de DSM y Orto mosaico, que finalmente es la unión de todas fotografías a manera de un mosaico unificado en un solo archivo, el ortofotomosaico de la imagen 11 es una imagen orto rectificada en coordenadas X, Y, aquí no se considera la componente de elevación, pero es un producto totalmente medible, de alta resolución y vectorizable.

Imagen 11. Ortofotomosaico- Fuente Pix4D Mapper - 2022

En este paso se genera también el modelo digital de superficie, la acotación para este es que dicho modelo esta generado a la superficie de los elementos dentro del área de estudio, si existen árboles o edificaciones el modelo pasara por encima de estos elementos como se puede visualizar en la imagen 12.

Imagen 12. Modelo digital de Superficie - Fuente Pix4D Mapper - 2022

Este DSM se puede leer en la paleta de colores en donde se tiene en color amarillo las zonas más bajas haciendo transición al color rojo donde se encuentran las elevaciones más altas de la zona de estudio.

Las opciones seleccionadas para el procesamiento del DSM son las siguientes:

Processing Options		•
DSM and Orthomosaic Resolution	1 x GSD (0.985 [cm/pixel])	
DSMFilters	Noise Filtering: yes Surface Smoothing: yes, Type: Sharp	
Raster DSM	Generated: yes Method: Inverse Distance Weighting Merge Tiles: yes	
Orthomosaic	Generated: yes Merge Tiles: yes GeoTIFF Without Transparency: no Google Maps Tiles and KML: yes	
Raster DTM	Generated: yes Merge Tiles: yes	
DTMResolution	5 x GSD (0.985 [cm/pixel])	
Contour Lines Generation	Generated: yes Contour Base [m]: 0 Elevation Interval [m]: 10 Resolution [cm]: 100 Mnimum Line Size [vertices]: 20	

Tabla 6. Modelo digital de Superficie Fuente - Informe procesamiento Pix4D Mapper - 2022

Como datos y valores interesantes se encuentra que la resolución del DSM y del orto mosaico es de 0.95Cm/píxel, lo cual se logra con un procesamiento medio, esto gracias a la cantidad de megapíxeles para el sensor P1 el cual es de 45Mpx.

El procesamiento del sensor LiDAR DJI L1 es un proceso muy sencillo y que no requiere de una estrategia muy elaborada, este tipo de tecnología integrada cuenta con una relación de datos en RTK con lo cual la captura de la información viene ajustada y muy bien referida desde el momento propio de la adquisición de datos en campo, de hecho la recomendación es hacer este tipo de vuelos y de adquisición de datos por con apoyo en el modelo de trabajo con RTK,

anteriormente el punto crítico del procesamiento de los sistemas LiDAR Móviles era el re cálculo de la trayectoria dependiente del sistema inercial del equipo, ahora es más sencillo obtener dicho ajuste ya que el sistema inercial mejora el calculo de la trayectoria del vuelo y las variaciones de las líneas de vuelo, adicionalmente la calibración del IMU en vuelo al inicio y al final de la misión permite tener unos valores complementarios para dicho ajuste.

Para este procesamiento se utiliza el software DJI Terra, en el cual se cargan los archivos crudos y se procede a seleccionar las configuraciones o estrategias de procesamiento, pero como se mencionó anteriormente la configuración estándar no tiene muchos parámetros modificables como se tiene en la imagen 13.

Imagen 13. Procesamiento LiDAR - Fuente DJI Terra - 2022

El producto generado por el software DJI Terra es una nube de puntos densa en formato universal para ficheros de nubes de puntos en formato universal .las, aquí se puede llevar a cabo diferentes visualizaciones desde el RGB, por valores de altura, por número de retornos o por reflectividad. Esto sirve para analizar la información desde diferentes puntos de vista, adicional que se puede evaluar el ruido generado por el sistema o por los elementos mismos.

2. RESULTADOS Y DISCUSIONES

Como parte de la fase 4 se llevó a cabo el análisis de los resultados y la evaluación de los datos comparables, se ha estimado que la resultante de los puntos de control y puntos de paso son fundamentales al momento de llevar los productos como nubes de puntos y ortofotomosaicos en un plano de referencia geoespacial con precisiones optimas de las coordenadas calculadas y ajustadas, también se ha considerado que las resoluciones espaciales de los productos serán determinantes para dicho análisis.

Se realizó un ajuste a los productos con 5 puntos de control terrestre medidos y pos procesados con los valores residuales expuestos anteriormente, ahora para dar validez y con el fin de tener un mejor muestreo en la comparación de datos se capturaron 45 puntos de paso con tecnología GNSS RTK, estos puntos fueron cajas, esquinas, targets, y elementos plenamente identificables desde los productos de los diferentes sensores.

Este paso de inclusión de puntos sobre el ortofotomosaico se realizó en ArcMap 10.8 en vista de las limitaciones de los softwares fotogramétricos, los cuales toman los puntos de control principal y ajustan planarmente las imágenes, mientras que en ArcMap al incluir los 45 puntos de control o de paso, el software ajusta la imagen de manera oblicua estirando la fotografía hasta ajustar de mejor manera el mosaico lo cual es más real que el ajuste solo por posición.

La imagen 14 corresponde al cargue de mosaicos ajustados desde Pix4D Mapper Pro en ArcMap generados desde la captura de los sensores P1 y Phantom 4 Pro V2, e incluyen los puntos tomados con el equipo RTK como archivos de texto.

Imagen 14. Mosaicos y puntos de control - Fuente ArcMap - 2022

Después de incluir los puntos en RTK en cada uno de los mosaicos, se ajustaron dando clic en cada uno de los elementos tanto en el mosaico del phantom 4 Pro v2 como en el mosaico de la camara P1, para esto se utilizó una herramienta llamada georreferenciación con la cual se hace el ajuste de cada uno de los mosaicos tomando como datos absolutos las coordenadas capturadas en RTK obteniendo los datos que se presentan en las tablas 7, 8 y 9.

	Р	UNTOS ABSOLU	TOS EN RTK		24	998144.51	1002048.581	2583.8503	esquina caja
Punto	X_ESTE	ESTE Y_NORTE Z Detalle		25	998132.97	1002035.311	2583.8582	Esquina	
1	998149.833	1001914.998	2584.162	intersección	26	998157 825	1002012 863	2583 8668	Esquina
2	998169.363	1001937.114	2584.5961	pozo	20	009109 114	1002012.005	2505.0000	intersocción
3	998220.296	1001997.159	2584.3147	intersección	27	998108.114	1002001.910	2363.339	· · · · · ·
4	998219.408	1002011.645	2584.3253	esquina caja	28	998076.933	1001965.536	2583.4777	Interseccion
5	998228.951	1002003.13	2584.3925	esquina caja	29	998061.287	1001949.17	2583.8895	esquina caja
6	998235.719	1002010.096	2584.3793	esquina caja	30	998103.563	1001921.966	2583.8662	intersección
7	998226.177	1002023.256	2584.465	esquina caja	31	998122.648	1001905.821	2584.0101	intersección
8	998218.41	1002016.732	2584.2484	esquina Rampa	32	998149.058	1001955.361	2584.2984	pozo
9	998210.753	1002019.054	2584.2562	Esquina Cañuela	33	998146.506	1001977.366	2584.3012	pozo
10	998202.21	1002021.819	2584.2747	intersección	34	998168 81	1002002 025	2584 3601	intersección
11	998192.556	1002037.079	2584.1222	Esquina Jardin	25	009194 567	1002002.025	2504.3601	intersección
12	998185.677	1002043.051	2583.8865	intersección	35	998184.307	1002019.829	2504.3032	· . · .
13	998190.781	1002052.892	2583.7934	esquina caja	36	998203.651	1001974.711	2584.2021	Intersection
14	998208.314	1002073.571	2583.7838	esquina caja	37	998190.449	1002078.658	2583.6914	esquina caja
15	998220.852	1002087.946	2583.7629	esquina caja	38	998208.092	1002100.774	2583.8025	esquina caja
16	998233.391	1002101.658	2583.7881	esquina caja	39	998167.034	1001999.703	2584.366	DIANA 4
17	998247.151	1002102.763	2584.0012	intersección	40	998169.585	1001933.907	2584.6231	DIANA 1
18	998259.245	1002086.508	2584.5406	intersección	41	998189.559	1001959.23	2584,1371	DIANA 3
19	998278.441	1002069.478	2584.1519	esquina caja	12	008126 755	1001050 562	259/ 2159	
20	998261.907	1002050.79	2584.1272	esquina caja	42	008170 252	1001051.345	2504.5158	
21	998251.699	1002039.732	2584.1982	esquina caja	43	998170.253	1002051.345	2583.0357	DIANA 9
22	998181.349	1002047.032	2583.8717	Esquina	44	998223.292	1002010.76	2584.3161	DIANA 8
23	998170.586	1002050.349	2583.6442	esquina caja	45	998196.773	1002044.377	2584	DIANA 5

Tabla 7. Coordenadas absolutas RTK – Fuente propia - 2022

	DJI ZENMU	JSE P1 COORDEN	NADAS Y DIF	ERENCIA	ALES		24	998144,483	1002048.604	2562,807	0.027	-0.023	0.043
Punto	X_ESTE	Y_NORTE	z	DIF X	DIF Y	DIF Z	25	998132.948	1002035.234	2562.805	0.022	0.077	0.053
1	998149.808	1001914.932	2563.141	0.025	0.067	0.021	26	998157.870	1002012.824	2562.851	-0.046	0.039	0.016
2	998169.389	1001937.044	2563.546	-0.026	0.070	0.050	27	998108 101	1002001 872	2562 389	0.013	0.045	-0.030
3	998220.366	1001997.148	2563.287	-0.071	0.011	0.027	20	008076.018	1001065 541	2562.565	0.015	0.005	0.017
4	998219.494	1002011.648	2563.290	-0.086	-0.004	0.036	20	998070.918	1001903.341	2302.400	0.015	-0.003	0.017
5	998228.991	1002003.102	2563.341	-0.040	0.027	0.051	29	998061.278	1001949.159	2562.854	0.009	0.011	0.036
6	998235.807	1002010.057	2563.298	-0.087	0.040	0.081	30	998103.561	1001921.957	2562.862	0.001	0.009	0.004
7	998226.169	1002023.254	2563.420	0.008	0.002	0.045	31	998122.650	1001905.763	2563.025	-0.002	0.057	-0.015
8	998218.403	1002016.726	2563.204	0.007	0.006	0.044	32	998149.129	1001955.323	2563.265	-0.072	0.038	0.034
9	998210.757	1002018.971	2563.213	-0.003	0.083	0.043	33	998146.515	1001977.359	2563.264	-0.009	0.007	0.037
10	998202.252	1002021.784	2563.247	-0.043	0.035	0.028	34	998168.846	1002002.056	2563.331	-0.036	-0.030	0.030
11	998192.595	1002037.024	2563.063	-0.038	0.055	0.059	35	998184 598	1002019 763	2563 330	-0.031	0.065	0.038
12	998185.682	1002043.030	2562.841	-0.006	0.021	0.046	26	008202 624	1001074 677	2563.550	0.031	0.024	0.034
13	998190.776	1002052.884	2562.750	0.006	0.008	0.043	50	998205.054	1001974.077	2303.178	0.017	0.034	0.024
14	998208.294	1002073.498	2562.769	0.020	0.073	0.015	37	998190.514	1002078.664	2562.680	-0.065	-0.006	0.011
15	998220.894	1002087.910	2562.798	-0.042	0.036	-0.035	38	998208.115	1002100.770	2562.847	-0.022	0.004	-0.044
16	998233.417	1002101.618	2562.783	-0.025	0.040	0.005	39	998167.015	1001999.696	2563.328	0.019	0.007	0.038
17	998247.129	1002102.756	2562.979	0.021	0.007	0.022	40	998169.639	1001933.876	2563.609	-0.054	0.031	0.014
18	998259.327	1002086.401	2563.521	-0.082	0.106	0.020	41	998189.583	1001959.129	2563.112	-0.024	0.101	0.025
19	998278.460	1002069.444	2563.127	-0.019	0.033	0.025	12	008126 761	1001050 576	2563 200	-0.007	-0.012	0.017
20	998261.931	1002050.796	2563.182	-0.024	-0.007	-0.055	42	008170 216	1001959.570	2505.255	0.007	0.012	0.050
21	998251.715	1002039.701	2563.156	-0.017	0.031	0.042	43	9981/0.316	1002051.422	2302.586	-0.062	-0.077	0.050
22	998181.298	1002046.967	2562.697	0.052	0.065	0.175	44	998223.360	1002010.704	2563.255	-0.069	0.056	0.061
23	998170.588	1002050.405	2562.595	-0.002	-0.055	0.049	45	998196.766	1002044.379	2562.960	0.007	-0.001	0.040

Tabla 8. Diferenciales de Coordenadas P1 – Fuente propia - 2022

	PHANTON	14 P COORDEN	ADAS Y DIF	ERENCIA	LES		24	998144.502	1002048.585	2583.791	0.008	-0.004	0.060
Punto	X_ESTE	Y_NORTE	Z	DIF X	DIF Y	DIF Z	25	998132.966	1002035.232	2583.879	0.004	0.080	-0.021
1	998149.819	1001914.942	2584.234	0.014	0.057	-0.072	26	998157.881	1002012.812	2583.910	-0.056	0.051	-0.043
2	998169.397	1001937.056	2584.647	-0.034	0.058	-0.051	27	998108 117	1002001 845	2583 439	-0.002	0.071	-0.080
3	998220.351	1001997.150	2584.996	-0.055	0.008	-0.681	27	008076 020	1001065 541	2503.155	0.002	0.005	0.000
4	998219.471	1002011.648	2584.375	-0.062	-0.003	-0.050	20	998070.920	1001903.341	2383.300	0.015	-0.003	-0.088
5	998228.965	1002003.101	2584.456	-0.014	0.028	-0.064	29	998061.279	1001949.153	2583.952	0.008	0.01/	-0.062
6	998235.790	1002010.045	2584.435	-0.070	0.051	-0.055	30	998103.583	1001921.964	2583.941	-0.020	0.002	-0.074
7	998226.163	1002023.240	2584.513	0.014	0.016	-0.048	31	998122.652	1001905.755	2584.097	-0.004	0.066	-0.087
8	998218.401	1002016.743	2584.291	0.009	-0.011	-0.042	32	998149.093	1001955.361	2584.334	-0.035	0.000	-0.035
9	998210.755	1002018.996	2584.304	-0.002	0.058	-0.048	33	998146.529	1001977.351	2584.339	-0.023	0.015	-0.038
10	998202.260	1002021.785	2584.320	-0.050	0.033	-0.045	34	998168 833	1002002 039	2584 396	-0.024	-0.013	-0.036
11	998192.611	1002037.015	2584.162	-0.055	0.065	-0.040	25	009194 567	1002002.005	250/ 100	0.000	0.000	0.040
12	998185.685	1002043.024	2583.948	-0.008	0.027	-0.061	35	998184.307	1002019.829	2504.400	0.000	0.000	-0.040
13	998190.755	1002052.862	2583.834	0.026	0.031	-0.041	36	998203.632	1001974.688	2584.271	0.019	0.023	-0.069
14	998208.297	1002073.470	2583.843	0.016	0.101	-0.059	37	998190.492	1002078.636	2583.768	-0.043	0.022	-0.077
15	998220.888	1002087.879	2583.840	-0.035	0.067	-0.077	38	998208.096	1002100.767	2583.875	-0.003	0.007	-0.073
16	998233.412	1002101.588	2583.857	-0.021	0.069	-0.068	39	998167.006	1001999.681	2584.391	0.028	0.022	-0.025
17	998247.133	1002102.733	2584.105	0.017	0.030	-0.104	40	998169.635	1001933.878	2584.690	-0.050	0.030	-0.067
18	998259.341	1002086.392	2584.618	-0.096	0.116	-0.077	41	998189 592	1001959 145	2584 200	-0.033	0.085	-0.063
19	998278.452	1002069.425	2584.265	-0.011	0.053	-0.113	42	008126 712	1001050 518	2504.200	0.043	0.045	0.005
20	998261.915	1002050.776	2584.236	-0.008	0.013	-0.109	42	996120.712	1001959.518	2564.372	0.043	0.045	-0.056
21	998251.699	1002039.687	2584.242	-0.001	0.045	-0.044	43	998170.308	1002051.401	2583.687	-0.054	-0.056	-0.051
22	998181.297	1002046.969	2583.885	0.053	0.063	-0.013	44	998223.347	1002010.711	2584.366	-0.056	0.049	-0.050
23	998170.585	1002050.362	2583.694	0.001	-0.013	-0.050	45	998196.781	1002044.378	2584.055	-0.008	0.000	-0.055

Tabla 9. Diferenciales de Coordenadas Phanton 4 Pro – Fuente propia - 2022

Analizando los resultados de las componentes X, Y, Z, correspondientes a las coordenadas Este, Norte y Cota, se obtuvieron los promedios de las diferencias entre las coordenadas relativas y las coordenadas absolutas considerando como absolutas las coordenadas capturadas con el levantamiento en RTK de cada uno de los 45 puntos de muestreo, se evidencia que las resultantes de elevacion correspondiente a la componente Z son mayores, esto quiere decir que el sistema de referencia con el cual se hace al estudio correspondiente hace referencia al elipsoide WGS84 al ser un modelo elipsoidal cuenta con variaciones importantes, ahora respecto a las componentes X, Y correspondientes a la posición, presentan variaciones pero menores ajustándose de mejor manera. Es asi que la precision absouta vs la presicion relativa de los mosaicos y de las nubes de puntos es mejor en la camara o sensor DJI Zenmuse P1, esto correlacionado con la cantidad de megapixeles del sensor, adicionalmente en los extremos del mosaico se mantiene la precision al tener capturas de fotogramas de manera oblicua.

El sensor del phantom 4 pro de 20 Megapixeles y de 1" se comporta muy bien a menores elevaciones, es decir, donde los fotogramas son capturados en alturas de vuelo bajas entre 50 y 100 metros, comparando con el sensor P1 de 45 megapixeles full frame tiene una ventaja enorme en el proceso fotogrametrico, pues con un numero mayor de megapixeles se logra tener precisiones mejores en segmentos entre los 50 y 100 metros, facilmente se puede obtener precisiones inferiores al centimetro en el caso de este estudio la resolucion espacial fue de 0,98 cms GSD, en el caso del phantom dicha resolucion obtenida fue de 2,8 cms GSD.

En los productos obtenidos se puede identificar una diferencia muy marcada, el analisis de la nube de puntos arroja mucho mas ruido en la generada con el phantom 4 Pro, este ruido hace referencia a puntos generados pero que no existen en la realidad, esto es producido por posibles distorciones y haces de luz que quedan en las capturas de los fotogramas, tambien es debido a la reflectividad de los elementos de la zona de estudio, esto se compensa en ocasiones con los intercambios de lentes o la inclusion de filtros; en el caso de la camara zenmuse P1 al ser full frame ajusta muchos de esos factores y gracias al intercambio de lentes se logra compensar y ajustar el brillo de las fotos, y los parametros internos de la camara, es asi que la nube de puntos es mucho mas limpia. Adicionalmente analizando la calidad y no la cantidad de puntos generados, en la variable de elevacion tambien se compensa mucho mejor los datos de la P1, asi los margenes de incertidumbre son menores, cabe aclarar que mas puntos no necesariamente se traduce en mejores resultados, partiendo de que la estrategia de pos procesamiento es la que define en gran medida cuantos millones de puntos generar, correponde tambien al área capturada y a la cantidad de fotogramas, en este caso se ha trabajado con la estartegia por defecto a 1/2 del tamaño de la imagen y con una resolucion media.

Pasando ahora al analisis de los ortofotomosaicos, se evidencia que en los extremos se encuentran muchos datos no congruentes con la informacion capturada con el phantom 4, esto debido a que como no se capturan imágenes oblicuas los extremos quedan con menos informción disponible para cubrir la zona de los extremos, esto obliga a que los vuelos deben llevar un area adicional o una linea de vuelo adicional para garantizar la homogeneidad en todo el producto, ya sea el mosaico, modelo digital o nube de puntos densa; en el caso de la camara P1 no se tiene este inconveniente, ya que se permite configurar el movimiento de la camara en tres 3 ejes desde el gimbal, capturando imágenes cenitales y también imágenes oblicuas.

En las imágenes 15 y 16 se encuentran los errores medios cuadraticos de los puntos de control terrestre en donde se demostró que la camara P1 cuenta con un RMS de 0,0060 en comparación con el RMS de 0,0130 como resultado de la cámara del Phantom 4 Pro, aquí estadísticamente se comprueba que los productos generados cuentan con menores índices de incertidumbre y mayor fiabilidad de datos, aproximando los valores reales de captura masiva, esto desde la variable de los puntos de control terrestre más finos resultantes del ajuste de red para la determinación de las coordenadas para los puntos de control terrestre bases.

Link	:								Π×		
🖻 🖥 🐗 🐗 🚅			Tota	RMS Error:	Forward:0,00600	Forward:0,00600597					
	Link	Link X Source Y Source X !		Х Мар	Ү Мар	Residual_x	Residual_y	Residual			
\checkmark	1	998075,59418	1001939,4810	998075,59895	1001939,4910	0,00601861	0,00621426	0,00865105			
\checkmark	2	998138,08041	1001904,7239	998138,07092	1001904,7147	-0,00345904	-0,00358718	0,00498325			
\checkmark	3	998142,04463	1002033,9878	998142,04002	1002033,9907	-0,00551513	-0,00567769	0,00791535			
\checkmark	4	998273,07627	1002075,1829	998273,07637	1002075,1877	0,00295567	0,00304895	0,00424643			
\checkmark	5	998221,95951	1002109,3236	998221,96089	1002109,3337	-0,0000012	0,00000166	0,00000167			
🗹 Au	uto Adjust		Transform	nation: 1st	t Order Polynomial (A	Affine)	\sim				
De	egrees Minu	tes Seconds	Forward R	esidual Unit : Unkno	wn						

Imagen 15. Resultado RMS GCP P1 – Fuente ArcMap- 2022

Link									□ ×			
🖆 🖬 +a + + + +			Tota	RMS Error:	Forward:0,01300	Forward:0,0130066						
	Link	X Source	Y Source	Х Мар	Ү Мар	Residual_x	Residual_y	Residual				
	1	998075,59197	1001939,4734	998075,59895	1001939,4910	0,00305763	0,01662106	0,01689996				
\checkmark	2	998273,06476	1002075, 1931	998273,07637	1002075, 1877	-0,00335266	0,00765333	0,00835547				
\checkmark	3	998221,95161	1002109,3461	998221,96089	1002109,3337	0,00811277	0,00080844	0,00815295				
\checkmark	4	998142,04935	1002034,0129	998142,04002	1002033,9907	-0,00925013	-0,01584118	0,01834415				
\checkmark	5	998138,04980	1001904,7231	998138,07092	1001904,7147	0,00143240	-0,00924165	0,00935200				
🗹 Au	Auto Adjust		Transform	nation: 1	st Order Polynomial (A	t Order Polynomial (Affine) $$						
De	Degrees Minutes Seconds			esidual Unit : Unkn	own							

Imagen 16. Resultado RMS GCP P1– Fuente ArcMap - 2022

El sensor LiDAR DJI L1 integra un módulo Livox LiDAR una IMU Unidad de Movimiento Inercial) de alta precisión y una cámara de 20 Mpx con un CMOS de 1" en un cardán estabilizado de 3 ejes, es así que los resultados de la fotogrametría desde el punto de vista digital RGB son similares a los datos obtenidos del Phantom 4 RTK, pues cuenta con las mismas especificaciones técnicas, las imágenes capturadas desde el L1 son utilizadas para agregar un atributo de color en la nube de puntos, simplemente para obtener una nube coloreada en valores de color real con la combinación de bandas, aunque se puedes extraer nubes de puntos de estas imágenes pierden peso frente al LiDAR.

Cabe aclarar que las nubes de puntos obtenidas y generadas en software fotogramétrico no cuentan con penetración alguna, mientras que el LiDAR con un alcance de detección de hasta 450 metros, el módulo LiDAR Livox del L1 ofrece una frecuencia de puntos efectiva de 240.000 puntos por segundo. Pero el L1 permite hasta tres retornos por disparo de láser, lo que significa que esta frecuencia de puntos puede llegar hasta 480.000 puntos por segundo en

operaciones con dos o tres retornos se obtiene penetración incluso en zonas de alta vegetación, esto aporta datos consistentes para la generación de un modelo digital de terreno, mientras que el modelo digital de superficie de un sensor digital deja muchos vacíos de información; se observó que si la zona de estudio no cuenta con vegetación importante el RGB es suficiente para la obtención de un buen producto.

Sobre los productos generados se analizó la nube de puntos del sensor LiDAR L1, el software utilizado para este manejo de datos es el Leica Cyclone 3DR en donde se generó una extracción de área y volumen, se localizaron dos zonas de muestreo, el área total del predio de estudio de Aduanilla de Paiba y el área del observatorio astronómico, en donde se calcularon las áreas a partir de una vectorización en 3D directamente en la nube de puntos. De igual forma se hizo el cálculo del área desde la nube de puntos del Phantom 4 RTK obteniendo lo comprendido en las imágenes 17 y 18.

Imagen 17. Calculo de area Aduanilla de Paiba L1 – Fuente Cyclone 3DR - 2022

Imagen 18. Calculo de area Aduanilla de Paiba RGB Phantom - Fuente Cyclone 3DR - 2022

Se comparó el cálculo de area entre las nubes de puntos teniendo en la nube de puntos del LiDAR L1 un área de 24.707,9 m2, para el área de la nube de puntos del phantom 4 RTK se obtuvo un área de 24.890,9 m2, el resultante es una diferencia de 183 m2, analizando el porqué de la diferencia se encuentra que los datos obtenidos del LiDAR L1 cuenta con información en las fachadas y cubiertas las cuales permiten tener un mejor detalle del paramento como se ve a continuación en la imagen 19.

Imagen 19. Nube de puntos en fachada para calculo de area LiDAR - Fuente Cyclone 3DR - 2022

De otro lado la nube de puntos del Phantom 4RTK no cuenta con la definición ni con el detalle en comparación con el sensor LiDAR L1, es así como no se logra definir de manera clara y precisa el paramento debido a que la cubierta sobresale de la fachada, este efecto se ve en diferentes sectores de la zona de estudio como se ve representado en la imagen 20.

Imagen 20. Nube de puntos en fachada para calculo de área RGB - Fuente Cyclone 3DR - 2022

Otro ejercicio realizado en la comparación de los productos fue la generacion de secciones transversales en la nube de puntos, encontrando que si se hacen vuelos fotogrametricos con buen traslapo y suficiente calidad o exigencia en las resoluciones del procesamiento se logran obtener datos de muy buena calidad desde un sensor RGB, en este caso se extrajo una seccion transversal desde la nube de puntos generada desde la camara Zenmuse P1 obteniendo lo siguiente:

Imagen 21. Perfil generado desde RGB P1 - Fuente Cyclone 3DR - 2022

Imagen 22. Perfil generado desde LiDAR L1 - Fuente Cyclone 3DR - 2022

El análisis permitió observar que los datos en lugares limpios de obstáculos y con zonas descubiertas la nube de puntos está muy bien definida y al generar el perfil se logra detallar el perfil de gran manera, el punto crítico de evaluación son los bordillos en donde termina la calzada y empieza el andén, el perfil arroja datos consistentes que representan muy bien los elementos de la vía, anden, bordillo, calzada, bombeo, bordillo y anden, al acercar el perfil la distorsión es menor que en la nube de puntos del LiDAR L1.

Incluso la definición de la nube de puntos es mayor que la del LiDAR; se puede observar este efecto en las líneas de delimitación de los carriles en la calzada del Transmilenio (sistema de transporte masivo de Bogotá), es así como se puede indicar que para este tipo de zonas los sensores RGB cumplen con la tarea de capturar fotogramas que con buenas estrategias de procesamiento permiten obtener productos consistentes y de alta definición y resolución.

Por último se destacan la aplicación que para el caso de zonas con vegetación alta o densa como se puede visualizar en la imagen 23, el uso de la tecnología LiDAR es determinante si lo que se necesita es obtener datos de terreno, gracias a los múltiples retornos de las ondas emitidas por el sensor que permite penetrar dicha vegetacion y asi obtener datos de terreno, en este ejemplo se expone un árbol denso en donde se pueden ver los puntos con el retorno de señal en colores, de esta manera se logra visualizar las zonas de captura acorde a cada retorno y la densidad de puntos, esta información sería imposible capturarla con un sensor RGB, entonces la aplicación y las condiciones de la zona son un factor decisivo en la elección del sensor a utilizar.

Imagen 23. Perfil generado desde LiDAR L1 - Fuente Cyclone 3DR - 2022

3. CONCLUSIONES

El sistema rtk es funcional, rápido y preciso siempre y cuando se tengan las coordenadas ajustadas de los mojones o referencias en donde se estructura la base, de lo contrario se necesita un alto porcentaje de implementación de puntos

de control terrestre y reprocesos de optimización de las imágenes y su posición relativa.

El uso de tecnología RTK o PPK no elimina el uso de puntos de control terrestre y de puntos de paso o chequeo, sobre todo cuando se trabaja en zonas con diferencias de elevación importantes, o cuando se necesitan de arios vuelos para cubrir una zona.

El uso de tecnología LiDAR es apropiado para obtener nubes de puntos mucho más densas y definidas y a su vez generan menos ruido, esta tecnología permite la penetración en vegetación para obtención de puntos que permitan construir un modelo digital de terreno.

Para elementos finos como redes eléctricas, postes, y tejados la tecnología LiDAR es mucho más robusta y favorece la minimización de las deformaciones, las imágenes RGB al triangular y rellenar las zonas faltantes generan desplazamiento y efectos de deformidad en este tipo de elementos.

Se requiere de software complementario para el tratamiento de productos como nubes de puntos y modelos digitales, los softwares de fotogrametría cumplen la función de procesamiento de imágenes y de generación de productos, pero no son softwares de restitución fotogramétrica o de tratamiento de nubes de puntos en los ajustes robustos y en la generación de subproductos como vectorizaciones y cálculos adicionales.

Al analizar los costos de los sensores y aeronaves, y considerando la tasa de retorno de la inversión la adquisición y uso de sistemas LiDAR vale la pena siempre y cuando existan condiciones de vegetación media y alta en la zona de trabajo, de lo contrario un sistema RGB o digital puede cubrir las necesidades sin sacrificar la calidad de los datos, incluso el tratamiento de datos es menos efectivo.

4. REFERENCIAS BIBLIOGRÁFICAS

- D. A. Vergara, «Evaluación de la Viabilidad del uso de Aeronaves No Tripuladas para la Elaboración de Cartografía,» 14 - 18 Agosto 2017. [En línea]. Available: https://www.researchgate.net/. [Último acceso: 6 junio 2020].
- [2] L. Jauregui, «Introducción a la Fotogrametría,» 7 10 2020. [En línea]. Available: http://webdelprofesor.ula.ve/ingenieria/iluis/publicaciones/Fotogrametr%EDa/CAPITULO1.p df.

- [3] R. Brooks, «Symbolic reasoning among 3-D models and 2-D images,» *Artificial Intelligence*, pp. 285-348, 1981.
- [4] J. L. Lerma García, Fotogrametría moderna., Valencia: Universitat Politècnica de València, 2002.
- [5] J. L. Carrillo, A. E. Juárez, A. López y F. Madrigal, «El mundo delos drones: Tipos de drones ysus principales usos,» *Fing Uach,* pp. 5-7, 2018.
- [6] J. L. Lerma, M. Cabrelles, S. Navarro y . A. E. Seguí, «Modelado fotorrealístico 3D a partir de procesos fotogramétricos: láser escáner versus imagen digital,» *Cuadernos de Arte Rupestre*, vol. 6, nº 85-90, p. 86, 2013.
- [7] J. O. Escalante, J. J. Cáceres y H. Porras, «Ortomosaicos y modelos digitales de elevación generados a partir de imágenes tomadas con sistemas UAV,» *Tecnura*, pp. 119-140, 2016.
- [8] M. F. Rosa y D. A. Stow, «Mapping fuels at the wildland-urban interface using colour orthoimages and LiDAR data,» *Geocarto International, University, San Diego, CA, USA*, pp. 2,3, 2013.
- [9] J. E. Salamanca Céspedes y J. N. Pérez Castillo, «LIDAR, una tecnología de última generación, para planeación y desarrollo urbano,» *Ciencia, Investigación, academia y desarrollo, UDFJC*, p. 67, 2008.
- [10 E. d. C. Agüero Corzo, A. d. J. Montilla Pacheco y G. J. Valero Segovia, «Medición de puntos
] GPS por el método estático con equipo diferencial. Una experiencia didáctica en el Instituto Pedagógico de Maturín,» *Tecné, Episteme y Didaxis*, pp. 43,137-153, 2018.
- [11 I. INSTITUTO DE DESARROLLO URBANO, *Guía de elaboracion de estudios topográficos*, Bogotá,] 2019.
- [12 C. Lizana, «Introducción A La Aerotriangulación,» UNIVERSIDAD NACIONAL DE SAN JUAN, San] Juan, 2008.
- [13 Pix 4D Mapper Pro, «Pix 4D,» Pix 4D, 2017. [En línea]. Available: https://pix4d.com.
- [14 L. I. Leica Geosystems AG, «Leica Geosystems Products,» Leica Geosystems AG, 2022. [En
] línea]. Available: https://leica-geosystems.com/products/gnss-systems/software/leicainfinity.
- [15 L. C. 3. Leica Geosystem AG, «Leica Geosystems Products,» Leica Geosystems AG, 2021. [En
] línea]. Available: https://leica-geosystems.com/products/laser-scanners/software/leica-

cyclone/leica-cyclone-3dr.

[16 Z. L. DJI, «DJI products,» DJI, 2022. [En línea]. Available: https://www.dji.com/zenmuse-l1.
]

[17 M. 3. DJI, «DJI Products,» DJI, 2022. [En línea]. Available: https://www.dji.com/matrice-300.

Análisis comparativo de datos en sensores activos y pasivos en sensores aéreos no tripulados

Comparative analysis of data in active and passive sensors in unmanned aircraft sensors