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Object SLAM With Robust Quadric Initialization
and Mapping for Dynamic Outdoors

Rui Tian , Yunzhou Zhang , Member, IEEE, Zhenzhong Cao , Jinpeng Zhang,
Linghao Yang, Sonya Coleman , Dermot Kerr , and Kun Li

Abstract— Object SLAM is a popular approach for
autonomous driving and robotics, but accurate object perception
in outdoor environments remains a challenge. State-of-the-art
object SLAM algorithms rely on assumptions and are sensitive
to observation noise, limiting their application in real-world
scenarios. To address these challenges, we propose a novel object
SLAM system that utilizes a quadric initialization algorithm
based on constrained quadric optimization, which does not rely
on planar assumptions and is robust to partial observations.
Additionally, we introduce an automatic object data association
algorithm capable of detecting motion states while associating
objects across frames. To further enhance the accuracy of
the quadric mapping, an extra thread is used to refine the
ellipsoid parameters within a local sliding window composed of
keyframes. Our system utilizes a joint optimization framework
that optimizes camera poses, object landmarks, and point clouds
in the local mapping thread for further global optimization
while maintaining a consistent map. Experimental results on
the real-world KITTI dataset show that the proposed system is
more robust and significantly outperforms current state-of-the-
art methods in quadric initialization and mapping in outdoor
scenarios. Moreover, our system achieves real-time performance,
making it suitable for practical applications.

Index Terms— Robotics, visual localization, quadric mapping,
data association, object SLAM.

I. INTRODUCTION

S IMULTANEOUS Localization and Mapping (SLAM) is a
fundamental technique in order for autonomous vehicles

to perceive environments. When compared with classic SLAM
methods that use only the geometry of the scene [1], [2],
object-based SLAM has recently focused on creating maps
containing both geometry and high-level semantic objects
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within the environment [3], [4], [5], [6], [7], [8], [9], [10],
[11], [12], [13], [14], [15], [16], [17], [18], [19], [20]. This
semantic information promotes target-oriented tasks like obsta-
cle avoidance [13], camera localization [10], [11], and robust
relocalization [9], [12]. The improvement in the accuracy
of semantic information acquisition, driven by deep learning
networks [21], [22], [23], has led to an increased use of
object detection and semantic segmentation in visual SLAM
systems to build semantically enriched maps and enhance the
perception ability.

Accurate object representation is a key issue in object-
oriented SLAM research, commonly used object representa-
tion can be divided into the prior object model [18], [19],
[20], and the generic object model [5], [6], [7], [8], [14],
[15], [16], [17]. The prior object model methods rely on the
prebuilt CAD model databases [18], [19] or point cloud models
[20]. Since these models must be known in advance, the
application scenarios of such methods are limited. The generic
model methods adopt the cubic box or ellipsoid. In contrast to
the cubic box, the ellipsoid can be compactly parameterized
and easily manipulated within the framework of projective
geometry, which has attracted attention in recent work due
to the closed surface of the ellipsoid being meaningful for
object landmarks [5], [6], [7], [8]. However, the accuracy and
robustness of current quadric-based SLAM algorithms are not
ideal, especially the quadric initialization process, which is
limited by the parameter coupling of the direct linear solution
method [5], the necessity of point cloud fitting [14], or the
commonly used decoupled orientation methods rely on planar
assumptions [6], [8], which limits their applications in real-
world scenarios. Therefore, we propose a novel robust and
accurate quadric initialization algorithm for outdoor scenes.

One of the core issues in object SLAM is object association
since it establishes the correspondence between the same
object in different frames and the global map, and these
correspondences provide essential constraints for the optimiza-
tion of object SLAM. Unlike data association methods using
designed features [24], [25] or descriptors [26], object associ-
ation methods can be divided into probabilistic methods [27],
[28], [29] and assignment-based methods [30], [31]. However,
the probabilistic EM algorithm is time-consuming and cannot
handle large-scale scenarios, so its application scenarios are
limited. Assignment-based methods are commonly utilized
by using the constraints of overlaps between detection and
projection results. However, the performance of these methods
can be significantly degraded in the case of partial observations
and occlusions, leading to false correspondences. Therefore,
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we propose a robust data association method considering
occlusions and partial observations.

Dynamic objects such as moving vehicles are a challenge
for object SLAM, moreover, incorrect correspondence of dif-
ferent motion states will lead to false object association and
mapping results. Typical approach [1] treat dynamic features
as outliers by using epipolar constraints. However, it suffers
when the camera is rotating or moving in the same direction as
the target. Previous work [32] proposed a method that detects
dynamics based on the semantic segmentation. However, the
potential static motion state is not considered, which degrades
the performance of pose estimation. Recent quadric-based
SLAM systems [3], [4], [5], [6], [7] still assume a static
environment where the relative positions between objects do
not change, degrades the performance of object association.
Therefore, we propose a robust data association algorithm
capable of detecting motion states while associating objects
in consecutive frames.

In summary, the aim of this work is to propose a novel
SLAM system for outdoors that builds maps with accurate
quadric landmarks, representing the location, orientation, and
shape of the objects. Challenges to be addressed include:

• Current quadric initialization methods are not robust
under partial observations and planar assumptions,
so there are no practical solutions for robust quadric
initialization in outdoors;

• Object data association remains an unsolved problem
in object SLAM, especially for dynamic outdoors with
occlusions;

• An efficient system architecture for joint optimization of
objects, camera poses, and point clouds has not been
proposed.

A. The Main Contributions of This Work Are
• A novel quadric initialization algorithm based on the opti-

mization of constrained quadric is proposed, which does
not involve planar assumptions and effectively overcomes
the observation noise.

• An additional thread is used to perform ellipsoid
parameter refinement within a local sliding window of
keyframes, further enhancing the accuracy of quadric
mapping.

• An object association algorithm is proposed that can
detect motion states while associating objects across
frames, improving the robustness and accuracy of object
association in dynamic scenes.

• A real-time object SLAM system is implemented, incor-
porating the proposed quadric initialization and mapping
algorithms and the object association algorithm. The
system aims to build an object-oriented and semantically-
enhanced map for dynamic outdoors.

II. RELATED WORK

A. Object Representation

Object representation methods are commonly categorized
into the prior object model and the generic model. Prior object

model methods establish observation constraints through pre-
built databases [18], [19]. However, the prebuilt models need
to be known in advance, which limits their applicability to spe-
cific scenarios. On the other hand, the generic model methods
can be divided into parametric and nonparametric approaches.
Parametric approaches represent objects using regular 3D
forms such as cubic boxes [16], [17] and dual quadrics [5],
[6], [7], [8], [9], [10]. These methods tightly constrain the
parameters of the 3D model by using the 2D bounding box
corresponding to the object. Dual quadrics, in particular, have
gained attention due to their compact mathematical parame-
terization and ease of manipulation within the framework of
projective geometry [5]. Recent research has focused on using
dual quadrics as object representations to improve system
robustness and localization accuracy [5], [6], [7], [8], [9],
[10]. In contrast, nonparametric approaches reconstruct and
represent objects using a combination of geometric structures
such as surfels [15], [27], [33], voluments [34] and clusters
[28], [35]. These approaches describe objects in more detail,
but at the cost of more memory and computation, which limits
their applications.

B. Object Initialization

Unlike a cubic box, a dual quadric can be represented
by a symmetric matrix with nine degrees of freedom [5].
In terms of quadric initialization, Nicholson et al. [5] proposed
a method using 2D detection boxes of keyframes. However,
the closed-constrained parameterization and limited viewing
angles make it sensitive to observation noise. In [14], multiple
constraints combined with points, surfaces and quadrics are
used in the optimization framework, but the prior shape of the
object is estimated by deep networks, which is computationally
expensive. Cao et al. [7] fused object detection and surfel
construction in the quadric initialization to overcome the lim-
itations of multi-frame and large-view observations. However,
the initialization method is designed for RGB-D systems in
indoor scenes. Recent work [9] proposed a refinement-based
quadric initialization method that initially reconstructs the
object as a sphere. However, the method is not robust for
outdoor scenes due to the frequent occurrence of false object
associations. In [4], texture plane and shape prior constraints
are added to the quadric initialization for outdoor scenes.
However, the assumption that the texture plane is parallel
to the image plane during initialization makes it sensitive to
partial observations. Recently, the decoupling algorithms for
quadric initialization based on the planar assumption have been
proposed [6], [8], [16]. However, the planar assumption does
not hold in real-world scenarios, especially when a vehicle is
on a slope, leading to errors between the estimated vehicle
rotation and the ground truth.

C. Object Association

Probabilistic methods model the statistical distribution
and leverage the EM algorithm to find correspondences
between observed landmarks [27], [28], [29]. However,
they can only handle a limited number of object instances
in complex environments. For assignment-based methods,
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Fig. 1. The overview of the proposed system, including detection thread, tracking thread, ellipsoid mapping thread, and local mapping thread. The system
combines detection results from the deep neural networks and constructs an object map of quadric representations.

Gawel et al. [31] proposed a random walk-based algorithm
for assignments with semantic descriptors. Li et al. [36]
established object correspondences under distinct viewpoints
through graph matching. Yang and Scherer [16] proposed
an efficient association method for counting the number of
matched object features. However, these methods do not
consider the effects of dynamics. Recently, Cao et al. [7]
proposed a joint data association method that combines mixed
information, but it was only applicable to indoor environments.
In OA-SLAM [9], only the 2D IoU distance between the
detection of consecutive frames and projection is used for
object association, which works well for indoor scenes but
is not suitable for dynamic outdoor scenes. Recent research
has focused on dynamic objects in SLAM [3], [4], [5], [16],
as they have a significant impact on the commonly used
IoU-based association methods, which can lead to incorrect
constraints and mapping results. Ballester et al. [37] consid-
ered potential dynamic objects by segmenting instances and
photometric re-projection errors. Other work involved deep
learning methods for dynamic instance segmentation [35],
[38]. VDO-SLAM [39] tracked the dynamic objects and inte-
grated dynamic information into a unified SLAM framework.
However, these methods cannot be efficiently implemented
due to bottlenecks imposed by the limited frequency of deep
networks. Therefore, efficient and robust data association
algorithms that can handle dynamic objects in real-time are
urgently needed.

III. SYSTEM OVERVIEW

A. Mathematical Definition

For convenience of description, the notations are as follows:
• (·)w - world coordinate, (·)c - camera coordinate,

(·)o - object coordinate.
• Di ≜ {M, B} - Detection result, M and B are the

semantic mask and detection bounding box (BBox).
• I n(M, x) - Check for features x located in M .
• q = [ax , ay, az, tx , ty, tz, θx , θy, θz]

T
∈ R9×1 - the 9D

vector representing the attributes of the ellipsoid, includ-
ing semi-axial length, translation and rotation. The dual

quadric is denoted by Q∗
∈ R4×4, with the projection

dual conic denoted by C∗,

C∗
= PQ∗PT , (1)

where P = KT is the camera projection matrix contains
intrinsic K and extrinsic camera parameters T.

B. System Architecture

The overview of the proposed system is shown in Fig.1.
We implement our algorithms based on the stereo configura-
tion of ORB-SLAM3 [1] with additional modules of detection
thread and ellipsoid mapping thread. The detection thread
uses Yolact [22] to acquire semantic detections on the left
image of the stereo pair, and output results are object BBoxes
and semantic masks. The tracking thread takes images and
estimates camera poses from consecutive frames using ORB
features. The flow vector bound (FVB) algorithm combines
optical flows to detect object motion, and further, objects
are tracked with their motion states across frames through
the automatic object data association (AODA) algorithm,
i.e., objects are associated in 2D and reconstructed in 3D. The
ellipsoids are initialized by the optimization of the constrained
quadric (OCQ) algorithm and inserted into the map and
are continuously refined in subsequent threads. The ellipsoid
mapping thread performs ellipsoid parameters refinement in a
sliding window of keyframes and runs in a parallel thread for
system efficiency. The local mapping thread jointly optimizes
quadric landmarks, camera poses, and map points in a nonlin-
ear optimization of the bundle adjustment (BA) framework.
The map database stores and updates map points, as well
as optimized ellipsoids. The final perception results include a
point clouds map and an object map for high-level applications
such as localization and navigation.

IV. OPTIMIZATION OF CONSTRAINED QUADRIC

In outdoor scenes, object detection results face the prob-
lem of occlusion and failure, and State-of-the-art quadric
initialization algorithms are sensitive to observation noise.
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Meanwhile, the commonly used decoupling algorithms for
quadric initialization rely on planar assumptions [6], [8], which
limits their real-world applications. To solve these problems,
we propose the OCQ algorithm for robust and accurate quadric
initialization.

We present the mathematical analysis of dual quadric
parameters to illustrate the OCQ algorithm. The parameters
of a dual quadric can be decomposed by eigen-decomposition
in a reference camera coordinate by Eq.(2),

Q∗
w = TQ∗

oTT

=

[
R t
0T 1

] [
A 0
0 −1

] [
RT 0
tT 1

]
=

[
RART

− ttT
−t

−tT
−1

]
≜

[
Q∗

33 −t
−tT

−1

]
, (2)

where A ∈ R3×3 is the diagonal matrix composed of the
square of semi-axis of the ellipsoid, and t ∈ R3×1 is the center
translation vector of the ellipsoid in the reference camera
coordinate.

Note that the parameters of the block matrix Q∗

33 ∈ R3×3

couple the rotation and translation of the ellipsoid. Since the
length of the centroid translation is much larger than that of the
rotation and axes, small errors in the estimation of the centroid
translation have a significant impact on the accurate estimation
of the dual quadric matrix, which is why the initialization
method of [5] is sensitive to observation noise, which often
occurs when the viewing angle is limited and the detection
observation occluded in outdoors.

To avoid this problem, the initialization method of quadric
parameters separation is proposed in our prior work [6].
The method estimates the translation vector independently
to eliminate the effect of coupling parameters. Based on the
assumption that autonomous vehicle is in the road plane, the
yaw rotation is estimated and pitch and roll are constant to
zero in reference camera coordinates. The constrained rotation
matrix is given by Eq.(3),

R =

 cosθy 0 sinθy
0 1 0

−sinθy 0 cosθy

 . (3)

Thus, the dimensions of quadric parameters q to be esti-
mated are reduced from nine to seven, and the independent
translation estimation improves the numerical stability of the
initialization, as demonstrated in [6]. However, this assumption
does not hold in real scenarios, especially when the vehi-
cle is on a slope, causing the estimated vehicle rotation to
be different from the ground truth, as illustrated in Fig.2.
More experimental results of challenge cases are detailed in
SectionVIII-D.

Herein, we propose the OCQ initialization in which the
quadric is first initialized with equal axes (sphere) and then
refined in the form of a constrained quadric as more detections
are observed. The position of the ellipsoid is triangulated from
centers of associated boxes, and axes are determined by the
mean BBox size back-projected to the position of the center

Fig. 2. Illustration of the planar assumption limitation. The rotation of
estimated quadric (green) is different from the ground truth (red) due to the
limitation of the rotation constraint with pitch and roll being zero.

of the ellipsoid, such that semi-axial length is obtained by,

a =
1

4n

n∑
i=1

ti z

(
wi

fx
+

hi

fy

)
, (4)

where ti z is the depth of the ellipsoid center in the i-th camera
coordinate, wi and hi are the pixel width and height of the
2D BBox, fx and fy are camera focal lengths and n is the
number of observation associated to the object.

Observations of BBox centers form an overdetermined
equation, and the RANSAC method is used to solve t ∈ R3×1.
To ensure the accuracy of triangulation, the minimum angle
and maximum distance of object observation for consecutive
frames are set to 15 degrees and 50 m, respectively.

As the coarse initialization is associated with new observa-
tions, the ellipsoid parameters are refined with q ∈ R9×1 and
axes, positions and rotations are updated through nonlinear
optimization. Note that the minimum eigenvalue of Q∗ is
constrained to -1 to avoid the degeneracy of quadrics. The
nonlinear optimization is given by:

q = arg min
q

{

∑
i

∥e(Bi , q)∥2
6o

+ ∥A − Ã∥
2
6a

},

e(Bi , q) = Bi − B(Pi Q∗PT
i ), (5)

where e(Bi , q) is the re-projection error between detection
BBox and projection BBox. B is an operation for calculating
the ellipse tangent bounding box [5]. A is the semi-axes of the
ellipsoid. Note that the prior size error is used to constrain the
ellipsoid shape, and the prior semi-axes is given by diagonal
matrix Ã = diag(1, 1, 1/4).

The OCQ algorithm is a highly efficient method for
quadric initialization, offering several advantages over existing
approaches. Firstly, the spherical rotation does not affect the
initialization result, which can be initialized as an identity
matrix for efficiency, and the rotation can be further opti-
mized with quadric parameters without relying on the planar
assumption. Secondly, unlike existing methods such as [6]
and [5], which only use keyframes, the OCQ algorithm can
immediately associate the back-projection of the 3D initial-
ization with potential matches in consecutive frames. This
approach overcomes the limitations of keyframe-only meth-
ods, improving the robustness of initialization. Thirdly, the
proposed OCQ algorithm shows significant improvement in

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: UNIVERSITY OF ULSTER. Downloaded on June 22,2023 at 08:30:03 UTC from IEEE Xplore.  Restrictions apply. 



TIAN et al.: OBJECT SLAM WITH ROBUST QUADRIC INITIALIZATION AND MAPPING FOR DYNAMIC OUTDOORS 5

dynamic outdoors over the method proposed by Zins et al. [9].
The prior object error provides constraints for optimizing the
constrained quadric, which prevents the solution from falling
into a local minima. This, in turn, significantly improves the
algorithm’s robustness in outdoor environments, as demon-
strated in Section VIII.

V. ELLIPSOID REFINEMENT IN A SLIDING WINDOW

The aim of local ellipsoid refinement is to refine ellipsoid
parameters with constraints provided by keyframes with accu-
rate camera poses. As shown in the right module of Fig.1,
an additional thread is used to refine the ellipsoid parameters
within a local sliding window composed of keyframes.

For the ellipsoid stored in the local map, its re-projected
ellipse can be obtained by taking the adjugate of the dual
conic C∗ in Eq.(1), which can be interpreted as 2D Gaussian
distributions N (µ, 6), such that,

(x − µ)T 6−1 (x − µ) = 1, (6)

where µ = (cx , cy)
T is the center of ellipse and 6 is the

covariance obtained by the dual conic decomposition.
Herein, motivated by the work of [11], we design the

re-projection error by using the Bhattacharyya distance
between two re-projected ellipses tangent to BBoxes of
keyframes, which is given by:

E (N1,N2) =
1
8

(µ1 − µ2)
T 6−1 (µ1 − µ2)

+
1
2

ln
(

det(61 + 62)/2
√

det 61 det 62

)
. (7)

The ellipsoid parameters are optimized by minimizing
re-projection errors by using observations from keyframes
and associated ellipsoids stored in the local map database.
Combined the center translation error, the optimization of dual
quadric Q∗

j in the sling window is given by:

q j = arg min
q j

∑
i, j

{∥E
(
Ni , Pi Q∗

j P
T
i

)
∥

2
6o

+ ∥π(T−1
i t j ) − ui∥

2
6t

}, (8)

where Ni is the associated ellipse inscribed in the i-th
detection. π(.) is the operation of re-projecting the ellipsoid
center onto the frame, ui is the center of the box corresponding
to the keyframe and t j is the position of the ellipsoid. The size
of the sliding window buffer is n and i ∈ {1, 2, . . . n}.

Note that the use of accurate pose estimations of keyframes
and detection results in the sliding windows introduces more
local constraints, which improves the robustness and accuracy
of the quadric mapping to observation noise and partial
observations. We adopt a keyframe insertion strategy similar
to that proposed in [1], and to ensure the robustness of the
quadric mapping, we additionally set the minimum angle of
object observation for consecutive keyframes to 30 degrees.

VI. AUTOMATIC OBJECT DATA ASSOCIATION

Object association is of significance, since it links the corre-
spondence between the image detection and mapped ellipsoids.

The proposed AODA algorithm considers the complexity of
outdoor scenes with dynamics and occlusions, and can be
described as follows: (1) Object tracking; (2) Motion detection;
(3) Object association by assignment.

A. Object Tracking

Object occlusions lead to false detection and hence incor-
rect object associations. In addition, outdoor moving objects
have a significant impact on the commonly used IoU-based
association methods [5], [9], [16]. To address these issues,
we propose a Kalman Filter (KF) based multi-object tracking
method with 2D BBox.

The displacement of a BBox with a linear constant velocity
model is given by,

χ i = [u, v, s, r, u̇, v̇, ṡ], (9)

where u, v are the box center and h and w are the pixel height
and width of the box. s = h ·w denotes the box scale. r = h/w

represents the aspect ratio of the box, which is considered as
a constant. u̇ and v̇ are the pixel velocity at center. ṡ is the
change rate of the scale.

The state in Eq.(9) is updated by KF algorithm when the
detection box of the current frame is associated with the box of
the previous frame. The state is predicted without correction
and a new object ID is assigned if no association is found,
further details of the KF prediction can be found in [40].
To prevent incorrect associations in our implementation, the
predicted BBox is compensated using the median-flow tracker
[41] when the predicted and detected boxes are too far apart.
The final BBox prediction B̂i is calculated with predicted state,

B̂i = (
√

ŝ · r̂ ,

√
ŝ · r̂
r̂

, û, v̂). (10)

B. Motion Detection

For object motion detection, the FVB [42] is used to handle
the case of the degenerate motion where when the camera is
rotating or moving in the same direction as the target, which
cannot be solved by the epipolar constraint correctly.

The object features within the semantic mask M are tracked
by the Lucas Kanade (LK) optical flow [43], and normalized
features of consecutive frames are denoted as xi and xi+1,
respectively. The motion state of the object feature xi+1 is
defined by,

Si+1 =

{
0, d < 0
1, otherwise

d = (xi +
Kt
z

− xmin)(xi +
Kt
z

− xmax )

xmin = xi +
Kt

zmax
, xmax = xi +

Kt
zmin

, (11)

where Si+1 is the motion state, the binary values 0 and 1
denote the static and dynamic states of an object feature,
respectively. t is the relative camera translation, and the depth
z of the object feature is obtained by the stereo matching
algorithm [1].
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For our implementation, we set zmax=∞ and zmin=0.5 m
as the upper and lower bounds on the possible depth of object
points, respectively. We identify dynamic features as those
exhibiting optical flow displacement beyond the predefined
xmin and xmax boundaries. The initial detection of the motion
state of the object feature is performed using the epipolar
constraint. The ratio of dynamic LK features is calculated and
used to update the motion state of the object through Bayesian
updates, as described in [42].

C. Object Association by Assignment

The Hungarian algorithm [44] is used to complete the
assignment of M detections with N ellipsoids through the
cost matrix A ∈ RM×N , formed by elements ai j with dif-
ferent weighted distances and are given by Eq.(12). In our
implement, we set θi as 2, 1 and 1, respectively. We define
Bt

k as the k-th detection BBox of t-th frame, and Q∗

j is the
j-th ellipsoid in the map database, the aim of this process is
to assign the current detection to the ellipsoid in the map, and
associate BBox for KF prediction.

ai j = θ1as
i j + θ2ad

i j + θ3a p
i j . (12)

1) Semantic Inliers Distance: To overcome the issue of
object occlusions, we track the ratio of the LK feature set
{x t−1

j } of the last frame within the feature set {x t
i } of the

current detection mask M t
i ,

as
i j =

size(I n(M t
i , x t−1

j ))

size({x t
i })

. (13)

2) Detection IoU Distance: We use the IoU between the
re-projection BBox of j-th ellipsoid and i-th detection.

ad
i j = IoU(Bt

i ,B(Pi Q∗

j P
T
i )). (14)

3) Prediction IoU Distance: We use the IoU between the
predicted BBox of Eq.(10) and i-th detection.

a p
i j = IoU(Bt

i , B̂t
j ). (15)

The detection IoU distance of Eq.(14) provides long-term
associations of objects, and the prediction IoU distance of
Eq.(15) provides short-term associations of detection in con-
secutive frames. The assignment results are used for both ini-
tialization and KF correction. Note that the unsigned detection
will be processed by the OCQ algorithm as a new quadric
instance. If there is no association after more than 10 frames,
the instance will be discarded.

VII. JOINT OPTIMIZATION IN LOCAL MAPPING THREAD

In the local mapping thread, we optimize ellipsoids, camera
poses and static map points in a joint optimization framework.
Using the observations omitting dynamics proposed by VI-B,
the static map points Pk , feature observations uk and the
ellipsoid parameters q j formulated the joint BA optimization
problem by Eq.(16),

Ti , Pk, q j = arg min
{Ti ,Pk ,q j }

{

∑
i, j

||Bi − B(Pi Q∗

j P
T
i )||26o

+

∑
i,k

||π(T−1
i Pk) − uk ||

2
6m

}, (16)

where 6o and 6m are the covariance of BBox projection error
and static map point projection error, respectively. 6m follows
the similar strategy of multi-scale image pyramid as proposed
by [1]. The Huber kernel and the Levenberg-Marquardt algo-
rithm are use for optimization.

VIII. EXPERIMENTS

In this section, we present the evaluation results of our
proposed system and compare it with other state-of-the-art
techniques, including [1], [3], [4], [5], [6], [9], [15], [16],
and [32], on the KITTI dataset [45]. The KITTI tracking
sequences were selected to validate multi-object tracking per-
formance, while KITTI raw data sequences with the most
ground truth (GT) object annotations were used to evaluate the
quadric initialization and mapping performance, both quantita-
tively and qualitatively. Additionally, The camera localization
accuracy was evaluated using KITTI odometry sequences with
GT camera trajectories.

To ensure a fair comparison, we re-implemented the
approaches of [5] and [9] with stereo configurations since the
open-source codes of [5] and [9] were monocular versions.
We set the 2D object detection confidence threshold for Yolact
to 0.6, and the frame number of the sliding window in
the ellipsoid mapping thread to 15. All experiments were
conducted on a system with an Intel(R) Core(TM) i7-9700
CPU@3.00GHz, 16G memory, and Nvidia GTX 1080 Ti.

A. Evaluation Metrics

To evaluate the muti-object tracking, we follow the widely
used CLEAR MOT metrics proposed in [46].

The Multi-Object Tracking Accuracy (MOTA) metric mea-
sures the overall tracking accuracy, mt , f pt , mmet and gt
represent the number of misses, false positives, mismatches,
and ground truth respectively.

MOTA = 1 −

∑
t mt + f pt + mmet∑

t gt
. (17)

The Multi-Object Tracking Precision (MOTP) metric mea-
sures the object localization precision, d i

t represents the dis-
tance between a detection and its corresponding ground truth,
and ct is the number of all matches found.

MOTP =

∑
i,t d i

t∑
t ct

. (18)

We evaluate the constructed ellipsoids by the criteria of the
translation error (TE), the axial length error (AE), the success
ratio of initialization (SR), and the 2D IoU, which are defined
as follows,

• TE: The average translation error between the position of
a GT annotation and a constructed ellipsoid,

TE =
1
n

∑
i

∥tgt − ti∥
2. (19)

• AE: The average axial length error between the size of a
GT annotation and the ellipsoid,

AE =
1
n

∑
i

∥agt − ai∥
2. (20)
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TABLE I
THE COMPARISON OF MULTI-OBJECT TRACKING PERFORMANCES WITH MOTA(%) AND MOTP(%) METRICS ON KITTI TRACKING BENCHMARK

Fig. 3. Visualization of multi-object tracking results of the AODA algorithm on KITTI tracking sequences, where 2D BBoxes are marked with Object IDs
and confidence scores located at the top. The consistency of Object IDs across frames indicates the algorithm’s accurate tracking performance.

• SR: The 2D IoU between projection and GT greater than
0.5 is defined as successfully initialized. The ratio is
the number of successfully initialized ellipsoids divided
by the number of GT annotations in the reference
frame.

• 2D IoU: The intersection ratio of the 2D BBox projection
of the successfully constructed ellipsoid and the GT
annotation in the reference frame.

B. Multi-Object Tracking Evaluation

The KITTI tracking sequences contain images captured by
cameras mounted on vehicles moving in dynamic environ-
ments. These frames are annotated with various object classes
such as ‘Car’ and ‘Pedestrian’. In our experiment, we evaluate
the multi-object tracking performance using only the ‘Car’
object tracks. Specifically, we select 8 sequences that feature
self-motion, as well as static and dynamic observed vehicles
in the environments. The number of vehicles present in each
sequence can be found in Table I.

Fig.3 shows the results of multi-object tracking with object
ID and confidence score, where the red lines represent objects
tracked in consecutive frames in highly dynamic scenes.
The consistent ID results demonstrate the accuracy of object
tracking with 2D BBoxes. Additionally, Fig.4 shows the
motion detection results with 3D projected red cube GT
annotations, where red and yellow 2D boxes denote dynamic
and static detection results, respectively. The same object

ID is maintained across frames, and the vehicle’s motion
state is accurately estimated. Static vehicles are successfully
reconstructed as quadric landmarks, and the magenta line
demonstrates the accuracy of object data association by show-
ing the projection of the object center onto the current frame.

Table I presents the quantitative results of multi-object
tracking with the MOTA and MOTP metrics, where larger
values indicate better results. Our proposed AODA algorithm
outperforms the compared methods in most cases. Compared
to the methods of [6] and [9], the average MOTA metric
increases by 12.22% and 101.87%, and the average MOTP
metric increases by 4.28% and 6.38%. Moreover, our MOTA
is larger than ODA’s [6] for sequences with a large num-
ber of moving vehicles (e.g., sequence-0003, -0004, -0010,
-0011, -0018, -0019), which demonstrates the effectiveness of
motion detection and object tracking. In addition, we evaluate
the proposed system using only 2D IoU distance without
semantic inlier distance for object association (denoted as
w/o Semantics). Compared with this method, our average
MOTA and MOTP metrics improved by 84.03% and 8.65%,
respectively. The improved performance is attributed to the
robust tracking of semantic features in the object data associ-
ation. In OA-SLAM [9], only 2D IoU distance between detec-
tion of consecutive frames and projected mapped ellipsoids
are used for object association, which works well for indoor
scenes but is not suitable for dynamic outdoor scenes. The
relatively low MOTA metric of OA-SLAM [9] indicates the
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Fig. 4. Visualization of multi-object tracking results with ground truth annotations. Red and yellow boxes denote the detected dynamic and static objects.
The left magenta lines show the projection of vehicles’ centers. Static vehicles are reconstructed as ellipsoids and participate in the object association.

Fig. 5. Visualization of the ID switching of object tracking. The results
show the effect of omitted distant detection results on the tracking process,
resulting in the ID switching of vehicle 27 to 101, which usually occurs with
moving objects.

instability of object tracking and association performance in
dynamic outdoors, which also affects the accuracy of quadric
mapping and is demonstrated with quantitative evaluation in
Section VIII-E.

Note that in our proposed system, distant object detection is
omitted to ensure quadric initialization accuracy, as distant fea-
ture depth estimation is usually inaccurate and leads to object
ID switching, as shown in Fig.5. This strategy is a trade-off
between the quadric mapping accuracy and the multi-object
tracking accuracy, which degrades the overall performance of
the multi-object tracking, especially for the MOTA metric.
However, it does not affect static object initialization as object
ID switching tends to occur during dynamic object tracking.

C. Quadric Initialization Evaluation

The KITTI raw data sequences consist of images taken by
cameras mounted on vehicles moving in urban environments.

These sequences provide object annotations for the vehicles
that appear in each frame and the GT cubes can be obtained
from these annotations. Fig.6 presents the results of quadric
initialization on the KITTI raw data sequence-0009 using
comparison initialization methods, including the Conic method
of Rubino et al. [3], the QuadricSLAM method of Nicholson
et al. [5], the ROSHAN method of Ok et al. [4], the SQP
method of Tian et al. [6], the OA-SLAM method of Zins et al.
[9] and our proposed OCQ algorithm.

Better convergence of the quadric projection and more
enveloped vehicles indicate better initialization performance,
as shown in Fig.6. The red cubes denote the GT annotations
projected onto the current frame using the extrinsic parameters
of the sensor calibration provided by [45], and yellow ellipses
represent the initialized ellipsoids. The results show that the
proposed algorithm (f) has a higher number of accurate quadric
envelopes than the comparison algorithms (a)-(e), demonstrat-
ing the effectiveness of the proposed OCQ algorithm. In par-
ticular, the reconstruction results of the comparison algorithms
are not ideal due to observation noise and partial observations
in the scenes, resulting in significant scale and rotation errors,
especially for the Conic method (a) and QuadricSLAM (b).
Compared with the results of OA-SLAM (e), our proposed
method (f) shows advantages in the scale and orientation of
initialized quadrics. Compared with the SQP algorithm (d),
our method (f) shows competitive results in quadric scale
and orientation, while our OCQ method demonstrated higher
initialization success rates and more accurate quadric mapping
results due to the refinement of the ellipsoid parameters,
as shown in Table II with quantitative results and analysis.

Table II provides a comparative analysis of the quadric
initialization performance of the proposed OCQ algorithm
against state-of-the-art methods, including [3], [4], [5], [6],
and [9], based on SR and 2D IoU metrics, evaluated on
the KITTI raw data sequences. Higher values indicate better
initialization performance. The proposed algorithm outper-
forms the comparison methods in terms of SR, achieving the
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Fig. 6. Visualization of the quadric initialization results of comparison algorithms, the proposed algorithm (f) has a higher number of accurate quadric
envelopes than the comparison algorithms (a) [3], (b) [5], (c) [4], (d) [6], (e) [9], demonstrating the effectiveness of the proposed OCQ algorithm. Red cube:
GT annotation; Ellipse: projection of the quadric initialization; Bound box with ID: object detection result.

TABLE II
QUADRIC INITIALIZATION PERFORMANCE: THE COMPARISON OF THE SUCCESS RATIO (%) AND THE 2D IoU ON KITTI RAW DATA SEQUENCES

Fig. 7. Visualization of challenging cases with partial observations and occlusions on the KITTI datasets. The upper plots show the initialized quadric
reconstruction results, while the lower plots show the corresponding camera inputs. The proposed system successfully initializes the observed vehicles with
quadric representations despite the challenges posed by overlapping object detection.

highest value of 91.22% on the sequence-0009. The average
SR metrics of the proposed method increase by 114.80%,
41.90%, 46.10%, 130.68%, and 182.26% over the compari-
son methods, respectively. The improved performance of the
OCQ algorithm is attributed to the stable spherical initializa-
tion, which leverages the constraints from consecutive frames
with reliable observations, as opposed to the comparison

algorithms [4], [5], [6] that rely only on keyframes. In terms
of 2D IoU, our method outperforms other algorithms except
for sequence-0036 with the improvement of 34.62%, 9.21%,
42.63%, 9.36%, and 12.04%, respectively. The larger IoU of
the SQP method [6] on sequence-0036 could be attributed
to its strict keyframe selection strategy, which discards
some detection results that failed to initialize. The failed
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ellipsoid initialization estimations result in smaller SR and
2D IoU for OA-SLAM [9]. Compared with [9], the significant
improvement of the proposed algorithm can be attributed to
the scale constraint and the accurate object association, which
ensures a more stable solution for the constrained ellipsoid
during the non-linear optimization. These results demonstrate
that the proposed OCQ algorithm achieves high accuracy and
robustness of quadric initialization in comparison to state-of-
the-art methods.

D. Partial Observation and Slope Cases

Fig.7 showcases the challenging scenarios of partial obser-
vation and occluded vehicles that are often encountered on the
KITTI odometry sequences and KITTI raw data sequences.
Ellipsoid reconstruction on these sequences is particularly
challenging due to the narrow range of angles between vehicle
and camera, which is almost limited to the azimuth plane.
Furthermore, each vehicle appears in a limited subset of
frames. As shown in Fig.7, the raw input frames are presented
along with detection results, GT annotations, and quadric
initialization projections. The yellow boxes denote detection
results, the green boxes correspond to 2D BBoxes tangent
to the projected quadric initialization, while the red cubes
denote the GT annotations. Vehicles are parked on both sides
of narrow roads, and occlusions are present. Some detection
boxes are obscured or overlapped, and distant vehicles with
limited viewing angles are starting to initialize and envelope
the vehicle. Despite the challenges posed by overlapping
object detection, the proposed system successfully initializes
the observed vehicles with quadric representations.

In Fig.8, we compare the quadric initialization results of the
proposed OCQ method with the SQP method [6] when the
vehicle is driving downhill on the KITTI odometry sequence-
10, and the observed vehicle is parked on the slope. The
left plots show the quadric projection results of the proposed
system and the right red dashed line marks the ground plane
of the slope. It is evident that the pitch angle of the recon-
structed ellipsoid under the rotation constraint of the SQP
is aligned with the reference camera, resulting in rotation
errors, as shown in Fig.8 (2). In contrast, our reconstructed
ellipsoid’s pitch angle remains parallel to the actual ground
plane, as shown in Fig.8 (1). These results demonstrate that
the proposed OCQ algorithm can overcome the problem of
incorrect initialization when the planar assumption is not valid.

E. Quadric Mapping Evaluation

1) KITTI Odometry Sequences: Fig.9 shows the object map
of the KITTI odometry sequence-07 with details. Vehicles in
the frames have corresponding reconstructed ellipsoids with
accurate estimated positions, rotations, and sizes. The static
reconstruction results remain unaffected by these dynamics
due to correct motion estimation and object association,
as shown in regions (3) with the dynamic vehicle marked in
red. In addition, the vehicle maintaining the same speed as
the camera is also correctly detected and does not affect the
quadric mapping, as shown in regions (5). The reduction of

Fig. 8. Visualization of comparison mapping results when the vehicle is
located on a slope. The left plots show the visualization results of our system.
1) The quadric initialization result of the proposed OCQ algorithm, where
the pitch angle of the ellipsoid remains parallel to the actual ground. 2) The
quadric initialization result of the SQP algorithm [6], where the pitch angle of
the ellipsoid is aligned with the reference camera under rotation assumption,
while the planar assumption does not hold, leading to mapping rotation errors.

dynamic effects demonstrates the robustness of the proposed
system.

Fig.10 shows the object map constructed by the proposed
system and comparison algorithms, including [6], [9], and
[16]. We use the offline reconstruction result of CubeSLAM
[16] as baseline to show correct vehicle poses. The recon-
structed ellipsoids of our system significantly outperform
the SQP method [6] and OA-SLAM [9] in terms of scale,
orientation, and quantity, for maps with quadric landmark rep-
resentation. Note that ellipsoids reconstructed by OA-SLAM
suffer from initialization failure and overlap. We contribute the
improved performance of our system to the scale constraint of
the OCQ algorithm and the correct object association of the
AODA algorithm. These comparison results demonstrate the
accuracy of the proposed system in quadric mapping.

2) KITTI Raw Data Sequences: Fig.11 shows visualization
of object maps on KITTI raw data sequences. Red cubes are
GT annotations for the quantitative evaluation of the recon-
structed ellipsoids, and colored ellipsoids are reconstructed
quadrics. Notably, some distant quadric landmarks are ignored
with the GT annotations shown in the map, but this does
not affect the accuracy of the camera localization. The results
show that the reconstructed ellipsoids match the GT cubes in
term of position, rotation and quantity, demonstrating the high
accuracy and success rate of the proposed system.

Table III shows the results of TE and AE of the compared
methods, including [3], [4], [5], [6], and [9]. The smaller
values indicate better reconstructed results. It can be seen that
our proposed method outperforms the comparison methods in
all cases, with an average TE of 0.8184 m, reducing the errors
by 136.58%, 159.98%, 168.11%, 311.70%, and 444.13%,
respectively. In addition, our average AE is 0.5355 m, with
an error reduction of 432.21%, 19.87%, 179.53%, 155.70%,
and 77.01% for the compared algorithms, respectively. Note
that the smaller AE of QuadricSLAM [5] compared to [4]
and [3] is due to its smaller SR, which eliminates some of
the results of the failed constructions. The average TE of
OA-SLAM [9] is smaller than that of other methods [3],
[4], [5], [6], which could be attributed to its initialization
method of coarse sphere estimation, yielding more accurate
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Fig. 9. Visualization of the object map on the KITTI odometry sequence with details. The static reconstruction results remain unaffected by these dynamics
due to correct motion estimation and object association. This demonstrates the robustness of the proposed system.

Fig. 10. Comparison of quadric mapping results. Regions (1)-(4) show local details of object mapping. Object map of [16] is a baseline to show correct
vehicle poses. Our proposed system shows the accuracy of the quadric mapping in terms of scale, position and quantity, which demonstrates the advantages
of the proposed system.

object centroids estimation. However, due to the lack of scale
constraint, the reconstructed ellipsoid of OA-SLAM tends to
fall into a local minima during optimization, resulting in an

excessive scale error of the reconstructed ellipsoid, which
leads to its larger AE. Compared to the SQP method [6],
the improved TE metric of the proposed system benefits from
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Fig. 11. Visualization of object maps with 3D GT annotations for quantitative evaluation of reconstructed ellipsoids in KITTI raw data sequences. The
constructed color ellipsoid matches the GT cube in position, rotation, and quantity, demonstrating the quadric mapping accuracy of the proposed system.

the use of more local constraints in the sliding window with
accurate pose estimation of keyframes.

We attribute our improvements in AE and TE metrics to
the following factors. Firstly, the scale constraint of the OCQ
algorithm ensures correct object shape during initialization
optimization. Secondly, the AODA algorithm overcomes the
effect of moving objects and ensures accurate object associ-
ation. Thirdly, the sliding window-based optimization of the
ellipsoid mapping thread includes more local constraints to
refine ellipsoid parameters. These experimental results demon-
strate high accuracy and robustness in the quadric mapping of
our proposed system.

F. Localization Evaluation

We evaluate the localization performance on KITTI odome-
try sequences in comparison to other state-of-the-art systems,
including the object SLAM systems of [5], [6], [9], [15], and
[16], the dynamic SLAM [32] and the baseline SLAM [1].
We use the criteria of the relative translation error RPE (%),
the relative rotation error RRE (◦/100 m) and absolute trans-
lation error ATE (m) on the KITTI odometry benchmark [45].

As illustrated in Table IV, the proposed system demon-
strates a significant improvement in localization accuracy over
CubeSLAM [16] and QuadricSLAM [5] in all the evaluated
scenarios. In Sequence-01, which is a highway scene with
moving vehicles, CubeSLAM and QuadricSLAM fail to ini-
tialize the objects, leading to tracking failure of the system.
Particularly, QuadricSLAM fails to locate on the sequence-
01, -04, -07, and -08, mainly due to the frequent occur-
rences of dynamic vehicles and quadric initialization failure.
Compared to CubeSLAM and QuadricSLAM, the proposed

system reduces the average ATE by 257.26% and 219.38%,
respectively. These results demonstrate that for quadric initial-
ization, the direct decomposition method of QuadricSLAM is
numerically unstable, and the inaccurate object reconstruction
without considering dynamics leads to degraded localization
performance or tracking failure. Furthermore, compared to
the baseline SLAM [1], we obtain better results with an
average of RPE, RRE, and ATE metrics reduced by 5.71%,
4.54%, and 46.26%, respectively. Compared to DynaSLAM
[32], our proposed system reduces the average RPE, RRE, and
ATE by 7.14%, 4.5%, and 9.25%, respectively. These results
indicate that integrating accurate object landmarks improves
localization accuracy.

Compared to the recently proposed DSP-SLAM [15], which
builds dense object maps, our proposed system reduces the
average RPE by 8.45%, which we attribute to the elimination
of dynamic effects. The advantages of our system are the
concise quadric representation of the object map and the
smaller memory footprint. In contrast, DSP-SLAM [15] uti-
lizes dense mesh grid reconstruction and GPU with high com-
putation. Moreover, compared to OA-SLAM [9], the average
RPE, RRE, and ATE are reduced by 158.57%, 40.90%, and
129.07%, respectively. We attribute the improved localization
performance of our proposed system to the accurate object
association of the AODA algorithm and the robust quadric
initialization of the OCQ algorithm, which ensure stable object
observation for the ellipsoid refinement and accurate estima-
tion of object landmarks. Finally, compared to our previous
work [6], the proposed system reduces the RPE and ATE
by 50.00% and 31.72%, respectively. These results indicate
the effectiveness of accurate object landmark estimation in
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TABLE III
QUADRIC MAPPING PERFORMANCE: THE COMPARISON OF THE TE (M) AND AE (M) ON KITTI RAW DATA SEQUENCES

Fig. 12. In contrast to the mapping results of [1] and [32], which focus on
constructing maps with sparse point clouds of the scene, our system provides
object-level maps with enhanced semantic perception capabilities.

improving localization accuracy. Therefore, our proposed sys-
tem improves object reconstruction by incorporating dynamic
integration and accurate object association, while accurate
object estimation further enhances camera localization.

Note that our proposed system shows competitive results
in terms of average RPE, RRE, and ATE compared to the
dynamic SLAM [32], with an improvement of the metrics
by 7.14%, 4.57%, and 9.25%, respectively. The difference is
that our system builds an object map as shown in Fig.12,
providing semantic perception for vision-based localization.
This is important for the perception and tracking of multiple
objects as well as for autopilot navigation in our future work.

G. Discussion

Various factors affect the accuracy and robustness of cam-
era localization, including the quadric initialization, ellipsoid
landmark estimation, object data association, dynamic effects,
and the multi-thread designed system architecture. We present
a comparative analysis of the experimental results and inves-
tigate the effects of improving camera localization. The com-
parison of our proposed system with existing methods and the

improvements in metrics are shown in Table V. Significant
improvement values over 100% are highlighted.

We demonstrate that the data association algorithm used in
OA-SLAM [9] is specifically designed for static environments,
leading to poor performance in dynamic sequences and hinder-
ing the reconstruction of static objects, such as sequence-01,
-03, -04, and -07. Through the analysis presented in Table V,
we highlight the significant improvement in localization accu-
racy achieved by accurate quadric initialization and mapping,
particularly in metrics such as SR, TE, and AE.

In direct comparison, our proposed system outperforms
OA-SLAM with a 114.80% improvement in SR, a substan-
tial 432.21% improvement in AE, and an enhanced ATE
by 129.07%. Additionally, our system outperforms Quadric-
SLAM [5] with a 182.26% improvement in SR, a substantial
444.13% improvement in TE, and an improved ATE by
219.38%. The results emphasize the significance of accurate
quadric initialization and mapping in enhancing localiza-
tion performance. Furthermore, in assessing dynamic effects,
we compare our proposed system with [1] and [32], confirming
the positive impact of dynamic feature rejection on local-
ization accuracy. While accurate object landmarks estimation
significantly contributes to the accuracy of camera localization,
it is crucial to address the negative impact of false object
landmarks on localization accuracy. Notably, QuadricSLAM
fails to localize in specific sequences, such as sequence-01,
-04, -07, and -08.

In conclusion, the accurate object estimation is critical to
enhancing camera localization accuracy. Our proposed sys-
tem, incorporating OCQ and AODA algorithms, effectively
improves quadric pose estimation, while accurate quadric
initialization and mapping significantly enhance localization
accuracy.

H. Real-Time Performance Evaluation

Table VI shows the average runing time of the frames
processed by main modules, indicating our system can operate
in real-time at a frequency of 10Hz. The detection thread
takes on average 58.25 ms. The average time for the tracking
thread is 96.08 ms, and the AODA and OCQ algorithms only
take an average of 1.68 ms and 8.71 ms, respectively. The
ORB extraction and LK flow take 59.67 ms and 17.35 ms,
respectively. The optimization of the ellipsoid mapping thread
and the local mapping thread take 164.20 ms and 372.76 ms,
respectively. Since these operations are performed in parallel
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TABLE IV
THE COMPARISON OF LOCALIZATION PERFORMANCES ON KITTI ODOMETRY SEQUENCES

TABLE V
THE CAMERA LOCALIZATION IMPROVEMENTS (CLI) OF OUR SYSTEM V.S. COMPARISON METHODS WITH EFFECT OF

OBJECT ASSOCIATION, QUADRIC INITIALIZATION AND QUADRIC MAPPING

TABLE VI
RUN-TIME (MS) OF MAIN MODULES OF THE PROPOSED SYSTEM

threads, they do not affect the real-time performance of the
rest of the system on the KITTI datasets captured at 10 Hz.

IX. CONCLUSION

In conclusion, this paper proposes a novel object SLAM sys-
tem that combines a quadric initialization algorithm, an auto-
matic data association algorithm, and a joint optimization
framework to construct an accurate and robust object map
in real-time for outdoor environments. In addition, the pro-
posed system includes a multi-thread framework for ellip-
soid parameter refinement, which significantly improves the
efficiency of the system. Our proposed system outperforms

the existing state-of-the-art object-based SLAM systems for
object perception in outdoor scenarios as it considers partial
observation, object occlusion, and dynamic objects. The novel
quadric initialization algorithm and automatic data association
algorithm enable accurate and robust quadric mapping, while
the joint optimization framework ensures localization accuracy
and real-time performance.

The proposed system has significant implications for
autonomous driving and robotics, enabling more accurate and
reliable object perception in complex outdoor environments.
In our future work, the following issues will be important
considerations: (1) Dynamic object representation for real-time
tracking and joint dynamic pose estimation. (2) Relocal-
ization and loop closure at the object level using quadric
landmarks.
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