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Study of thermo-fuid fow has its signifcance in energy analysis of a building. Various thermo-fuid analyses are performed in
heating ventilation and air conditioning (HVAC) systems for energy efcient buildings by scientists and engineers to save energy
consumption during the life of a building. In order to achieve energy conservation for diferent HVAC systems, determination of
air fow pattern and fow physics are vital parameters. In case of fuid fow postprocessing techniques such as streamlines, vector
plots and contours are often employed.Tese techniques help in understanding the nature of fow and its properties. Each of these
postprocessing techniques mentioned are based on Eulerian methods and have certain inherent defciencies pertaining to the
amount of information they can convey about certain aspects of fuid fow. Lagrangian coherent structures (LCS) on the other
hand use Lagrangian data for analysis purposes. LCS are generated using fnite time Lyapunov exponent felds which in turn depict
the rate of expansion or contraction of the trajectories around a certain point. LCS act as the transport barriers across which there
is approximately zero mass fux. Tis property means that LCS can be applied to problems related to separation and reattachment
in fuid fow and fnd virtual boundaries inside fows. In the current study, we focused on the application of LCS for efcient
placement of sensors for HVAC systems.We computed LCS using velocity data extracted from the CFD simulations of a 2D room
model. Tus, LCS can be used to identify the virtual boundaries in fuid fow. Tis helps in indication of regions where mixing of
particles occurs and also where particles are stagnated. Inlet angles of 0, 15, 22, and 30 degrees are used and analysis shows that
manifolds with 30 degree angles provide better ventilation.Te outcome of this study can be used to improve the energy efciency
as well as predict the accurate location of HVAC sensor and control units.

1. Introduction

Te building stock includes residential, commercial, in-
stitutional, and public structures. Energy efciency means
utilizing the minimum amount of energy for heating,
cooling, equipment, and lighting that is required to maintain
comfort conditions in a building. An important factor
impacting on energy efciency is the building envelope. Tis
includes all of the building elements between the interior
and the exterior of the building such as walls, windows,
doors, roof, and foundations. All of these components must
work together in order to keep the building cool in the

summer and warm in the winter [1, 2].Te amount of energy
consumed varies depending on the design of the fabric of the
building and its systems and how they are operated. Te
heating and cooling systems consume the most energy in
a building; however, controls such as programmable ther-
mostats and building energy management systems can
signifcantly reduce the energy use of these systems. Some
buildings also use zone heating and cooling systems, which
can reduce heating and cooling in the unused areas of
a building. In commercial buildings, integrated space and
water heating systems can provide the best approach to
energy efcient heating [3]. Commercial buildings include
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a wide variety of building types such as ofces, hospitals,
schools, police stations, places of worship, warehouses,
hotels, libraries, and shopping malls. Tese diferent com-
mercial activities all have unique energy needs but, as
a whole, commercial buildings use more than half their
energy for heating and lighting [4]. In commercial buildings
the most common fuel types used are electricity and natural
gas. Occasionally, commercial buildings also utilize another
source of energy in the form of locally generated group or
district energy in the form of heat and/or power.

Tere are two perspectives while studying the fuid fow
behavior; one is Eulerian and other is Lagrangian. In
Eulerian approach, properties of fow feld are observed in
a fxed space and time irrespective of identity of fuid
particles. On the other hand, in Lagrangian perspective, the
identity of individual fuid elements is concerned. Te
changing velocity of the particles is tracked along their paths
as they are adverted by the fow. Lagrangian coherent
structures method is used to identify dynamic manifolds in
fuid fows. A Lagrangian coherent structure is a mobile
separatrix with zero mass fux property or with minimum
leak. LCS is a material line that is defned as the smooth
curves of fuid particles that acts as a transport barrier and is
an invariant manifold. Tese structures are called La-
grangian because they use a series of time steps defning the
motion of fuid particles to calculate instead of the Eulerian
approach, that only uses instantaneous time frames. Te
term coherent structure in the name is used because the LCS
delineates the familiar coherent structures associated with
the fow. LCS method uses material lines that have locally
maximum attraction or repulsion to the fuid particles. Te
defnition of coherent structures has been vague in the past,
despite their importance. Tis has made it difcult to
properly identify and extract them. Hyperbolic structures
have been studied widely in past in periodic and steady
systems [5, 6]. Te study of stable and unstable manifolds in
such systems is simpler then unsteady and aperiodic time.

George Haller was the frst researcher to provide
a general defnition to Lagrangian coherent structures for
time dependent systems [7, 8]. Haller used a fnite time
interval in his approach to defne LCS. He was also the frst
to introduce hyperbolic time approach in his seminal papers.
Lagrangian coherent structures were defned as the ridges of
fnite time Lyapunov exponent felds by Shadden et al. [9]. In
the past, Lagrangian coherent structures have been used in
several real life applications. Usage of Lagrangian coherent
structures to analyze the pollution release of the coast of
Florida has been performed in the past [10]. Te problem
was associated with knowing the exact time and location for
pollution release so that it drifted away into the ocean in-
stead of returning to the shore. As LCS structures are the
virtual boundaries in the fuid, it was possible to identify the
locations of LCS and determine on which locations and

times are suitable for pollutant release. Similarly, wake
formation for fow over a cylinder [11] and structure of
aortic valve jet [12] and fow control over an airfoil is there as
well. Assorted works of Shadden [13] were the applications
of Lagrangian coherent structures. Te literature review in
the form of a table is presented herewith for better un-
derstanding. Table 1 presents the summary of the literature
review.

2. Methodology

2.1. Air Flow Analysis in a 2D RoomModel. To study the air
fow pattern, a 2D room model was used. Te length and
height of the room are 9meters and 3meters, respectively.
An inlet slot is made in the top left near the wall having
a height of 0.168meters and outlet slot is made in the bottom
right near the wall having a height of 0.48meters as shown in
Figure 1. Air is introduced from the inlet with inlet velocity
0.455m/s. Te Reynolds number is 5000, based on inlet air
velocity, inlet width, and properties of air, which creates
turbulent fow and introduces circulation into the cavity. We
computed horizontal and vertical components of velocity
along vertical lines at x� 3m and x� 6m and along hori-
zontal lines at y� 0.084m and y� 2.916m as shown in
Figure 2. Results from the calculations are presented with the
result of Kayne and Agarwal [14].

For the conservation of mass and momentum of fuid
fow, continuity and momentum equation are used as
follows.

2.1.1. Continuity Equation. Te continuity equation is given
by the following equation:

zρ
zt

+
z ρui( 

zxi

� 0. (1)

2.1.2. Momentum Equation. Te momentum equation is
given bythe following equation:

z ρui( 

zt
+

z ρujui 

zxj

� −
−zp

zxi

+ μ
z
2
ui

zxjzxj

, (2)

where i, j� 1, 2; ui represents the Cartesian velocity com-
ponents (u, v); ρ is fuid density; p is pressure; and μ is fuid
dynamic or absolute viscosity.

To numerically simulate turbulent fow, we used
standard k-ε Model. It is a two-equation model based on
model transport equations for the turbulence kinetic en-
ergy (k) and its dissipation rate (ε). Transport equation for
turbulence kinetic energy (k) and its dissipation rate (ε) are
as follows:
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(3)

Te left side of both equations represents the rate of
change of k or ε and transport of k or ε by convection, while
the right side of both equations represents transport of k or ε
by difusion, rate of production of k or ε, and rate of de-
struction of k or ε.

Te turbulent (or eddy) viscosity (μt) is computed by
combining k and ε as follows:

μt � ρCμ
k
2

ε
. (4)

Table 1: Summary of the literature review.

Author Year Salient

Kedar 1990 Examine the transport properties of a particular 2D incompressible fow using
dynamical systems techniques

Haller 2000 Derived analytical criterion to extract coherent structures and applied it to 2D
barotropic turbulence simulation

Haller 2002 Examines whether hyperbolic Lagrangian structures found in model velocity data
represent reliable predictions for mixing in the true fuid velocity feld

Shadden 2005 Developed theory of Lagrangian coherent structures applicable to fows over fnite
interval of time

Tian 2006 Ventilated model room to evaluate turbulence prediction in indoor airfow
Evola 2006 CFD models for wind driven natural ventilation in a cubic building
Stankov 2006 Numerically modeled ofce room for thermal comfort of occupants
Kayne 2013 CFD computations using RANS equation in 3D building enclosure
Kermani 2015 Investigate ventilation in a hospital room
Alhashme 2016 Cases with diferent inlet velocity, heating, and cooling systems were tested
Olcay 2016 Flow over a cylinder using CFD and fnite time Lyapunov exponent felds

H=3 m

L=9 m

Figure 1: Sketch of the 2D model for airfow.

X=3 m X=6 m

Y=2.916 m

Y=0.084 m

Figure 2: Partition lines for observation of U and V components of velocity.
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Te values of constants used in the above equations are
as follows:

C1ε � 1.44,

C2ε � 1.92,

Cμ � 0.09,

σk � 1.0,

σε � 1.3.

(5)

Te driving force for fuid fow in momentum equation
is pressure term, but there is no transport equation for the
case of incompressible fow. Due to nonlinearity and cou-
pling between pressure and velocity, iterative guess and
correct method would be required. In the current study,
semi-implicit method for pressure linked equations (SIM-
PLE) is used to couple pressure and velocity. To solve the
momentum, turbulent kinetic, and dissipation rate, second-
order upwind scheme is used. Te second-order upwind
scheme uses a Taylor expansion of the upstream cell about
the cell centered data. Te least squares cell based (LSCB)
and second order spatial discretization are used for the
gradient and pressure, respectively. First-order implicit
method is used for temporal discretization. Let us nowmove
towards the results section.

3. Results

Te horizontal component of the velocity in non-
dimensional form along vertical lines at x� 3m and x� 6m
is presented in Figure 3.

Te horizontal component of velocity in non-
dimensional form also computed along horizontal lines at
y� 0.084m and y� 2.916m is shown in Figure 4.

Te vertical component of velocity in nondimensional
form along vertical lines at x� 3m and x� 6m is presented
in Figure 5. Te velocity profles at these lines are parabolic
in nature. Te velocity profle along a vertical line at x� 6m
is inverse parabola as compared to velocity profle along
a vertical line at x� 3m, which shows recirculation of air in
2D cavity.

3.1. Model Verifcation. In order to verify the above men-
tioned results, we computed these results at three diferent
grid/mesh sizes. Te number of mesh elements is 0.04
million, 0.05 million, and 0.06 million. Te belowmentioned
results in Figures 6(a)–6(d) show mesh independency
achieved and the results do not change in a signifcant
manner as further refnement of mesh elements.

3.2. Model Validation. For model validation, we compared
our results with the results of Kayne and Agarwal [14]. In
this validation, we also computed L2 relative error norm,
which is 0.08 for the horizontal component of velocity along
a vertical line at x� 3m and 0.10 for the horizontal com-
ponent of velocity along a vertical line at x� 6m. Te results
shown in Figures 7(a) and 7(b).

Te computational fuid dynamics (CFD) postprocessing
results are presented in the form of velocity contours and
vector plot. Figures 8(a)–8(c) represent the horizontal ve-
locity contour u, vertical velocity contour v, and velocity
vectors, respectively, in 2D model room.

3.3. Lagrangian Coherent Structures (LCS). In the study of
dynamical systems a separatrix can be defned as a manifold
attached to fxed points across which there is zero mass fux.
In case of fuid fow and many such physical problems, the
fxed points are not stationary. In fact, they can be constantly
moving with time. Tis presents a problem in using tradi-
tionally analytical techniques for dynamical systems to fnd

Y 
(m

)

0.0
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1.0

1.5

2.0

2.5

3.0

-0.2 0.0 0.2 0.4 0.6 0.8-0.4
U (Uo)

At x=3 m
At x=6 m

Figure 3: U/Uo velocity along x� 3m and x� 6m.
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Figure 4: U/Uo velocity along y� 0.084m and y� 2.916m.
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these manifolds in fuid fow. To tackle this problem
a technique of Lagrangian coherent structures is used to
identify these dynamic manifolds in fuid fows. Lagrangian
coherent structure is a mobile separatrix with zero mass fux
property or with minimum leak. LCS is a material line that is
defned as the smooth curves of fuid particles that acts as
a transport barrier and is an invariant manifold. Tese
structures are called Lagrangian because they use a series of
time steps defning the motion of fuid particles to calculate
instead of the Eulerian approach, that only uses in-
stantaneous time frames [11, 15]. Te term coherent
structures in the name are used because the LCS delineates
the familiar coherent structures associated with the fow.
LCS use material lines that have locally maximum attraction
or repulsion to the fuid particles. Te property that LCS use
material lines with maximum local attraction and repulsion
can be used to compute them.Tis technique uses fnite time
Lyapunov exponents (FTLE). A domain or particles is in-
tegrated in time to fnd the trajectories of particles after
a certain fnite time. Tis information is then used to cal-
culate the FTLE feld [16]. Te rides in the FTLE feld depict
the manifolds or material lines. For the computation of
repelling material lines or stable manifolds, the particles are
integrated forward in time, while for the computation of
unstable manifolds or attracting material lines, particles are
integrated backwards in time as the expansion of particles in
backward time simulation will represent the attraction of
particles in forward time simulation.

3.3.1. Finite Time Lyapunov Exponents (FTLE). Te classical
Lyapunov exponent lim

T⟶∞
σT

t0
is useful in the study of

Ergodic theory for time independent dynamical systems.
It measures the rates of expansion and contraction of
trajectories surrounding it. Lyapunov exponents are as-
ymptotic quantities and describe the rate at which
a perturbation to a trajectory grows or decays at a certain
location in time. However, many dynamical systems es-
pecially fuid fow applications are time dependent and
only computed or measured over a fnite interval of time.
Because of its asymptotic nature, the classical Lyapunov
exponent is not suited for analyzing time dependent
dynamical systems or those that are only defned on
a fnite time interval, so its value is quite limited for
practical analyses. Nonetheless, the fnite time Lyapunov
exponent is applicable to many time dependent applica-
tions that are defned by a discrete set of data points. Te
fnite time Lyapunov exponent (FTLE), denoted by σT

t (x),
is a scalar value which characterizes the amount of
stretching about the trajectory of point x ∈ D over the
time interval (t, t + T). For most fows of practical im-
portance, the FTLE varies as a function of space and time.
Te FTLE is not an instantaneous separation rate rather it
measures the average or integrated separation between
trajectories. Tis distinction is important because in time
dependent fows, the instantaneous velocity feld often is
not very revealing about actual trajectories, that is, in-
stantaneous streamlines can quickly diverge from actual
particle trajectories. However, the FTLE accounts for the
integrated efect of the fow because it is derived from the
particle trajectories, and thus is more indicative of the
actual transport behavior.

Consider an arbitrary point x ∈ D at time t0 which is
advected by the fow after a time interval T. Te fow has
a continuous dependence on initial conditions and an
arbitrary point near x at time t0 will behave similarly as x
when adverted in the fow, at least locally in time.
However, as time evolves, the distance between this
neighboring point and the point x will almost certainly
change. Consider the evolution of a point close to x, which
is written as y � x + δx(t0), where δx(t0) is infnitesimal
and arbitrarily oriented. After time interval T, this per-
turbation becomes

x⟼∅t0+T
t0

(x),

δx t0 + T(  � ∅t0+T
t0

(y) −∅t0+T
t0

(x)

�
d∅t0+T

t0
(x)

dx
δx t0(  +Ο δx t0( 

����
����
2

 .

(6)

Te second equality comes from taking the Taylor series
expansion of the fow about point x. Since δx(t0) is in-
fnitesimal, therefore, Ο(‖δx(t0)‖

2) term is negligible. Te
magnitude of perturbation using standard vector L2-norm is
given by the following equation:
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(m

)
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-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8-1.2
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At x=3 m
At x=6 m

Figure 5: V/Vo velocity along x� 3m and x� 6m.
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dx
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We can write

∆ �
d∅t0+T

t0
(x)

dx
.
d∅t0+T

t0
(x)

dx
δx t0( , (8)

where ∆ is a symmetric matrix. To fnd out the maximum
stretching between two points x and y, we are interested in
the value of δx(t0) that is aligned with the eigenvector that

gives the highest eigenvalue of Δ. Hence, an expression can
be written as follows:

max
δx t0( )

δx t0 + T( 
����

���� �

��������������������

〈δx t0( , λmax(∆)δx t0( 〉


�

�������

λmax(∆)



δx t0( 
����

����,

(9)
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Figure 6: (a) Comparison of present CFD results with three diferent number of mesh elements at x� 3m. (b) Comparison of present CFD
results with three diferent number of mesh elements at x� 6m. (c) Comparison of present CFD results with three diferent number of mesh
elements at y� 0.084m. (d) Comparison of present CFD results with three diferent number of mesh elements at y� 2.916m.
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Figure 7: (a) Comparison of present CFD result with the computations of Kayne and Agarwal [14] at x� 3m. (b) Comparison of present
CFD result with the computations of Kayne and Agarwal [14] at x� 6m.
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Figure 8: Continued.
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Figure 8: (a) u velocity contours in 2D model room. (b) v velocity contours in 2D model room. (c) Velocity vectors in 2D model room.
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where δx(t0) is aligned with the eigenvector associated with
λmax(∆). If we defne

σT
t0

(x) �
1

|T|
ln

�������

λmax(∆)



, (10)

then equation (9) can be rewritten as follows:

max
δx t0( )

δx t0 + T( 
����

���� � e
σT

t0
(x)|T| δx t0( 

����
����. (11)

Equation (11) represents the fnite time Lyapunov ex-
ponent at the point x ∈ D at time t0 with a fnite integration
time T.

To calculate the FTLE feld, the initial information is
available in the form of discrete set of data, which is often
obtained from computational fuid dynamics or from direct
measurements. An initial domain on which LCS are to be
generated is selected. Tis domain consists of n number of
particles which are arranged uniformly at time t. Te tra-
jectory of these particles is integrated for an integration time

T. Due to this, the positions of these particles is changed and
they assume at diferent positions. Te new positions oc-
cupied by the particles as a result of evolving a trajectory at
time t+T is shown in Figure 9 [17].

Te formula for the gradient of the fow map at an
arbitrary point x (i, j) using central diferencing would be as
follows:

d∅t0+T
t0

(x)

dx
�

x
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(t)
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(t)
i−1.j

x
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i.j−1

y
(t)
i.j+1 − y

(t)
i.j−1

y
(t+T)
i+1.j − y

(t+T)
i−1.j

x
(t)
i+1.j − x

(t)
i−1.j

y
(t+T)
i.j+1 − y

(t+T)
i.j−1

y
(t)
i.j+1 − y

(t)
i.j−1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥

. (12)

Te value of the gradient is calculated on all the points on
the grid and used in the FTLE equation (10) to the compute
value of FTLE at each grid point. Tis data can be visualized
by a color contour plot by using any visualizing data
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Figure 11: (a) LCS-2D-room ventilation, air inlet angle 0°. (b) Corresponding CFD results, air inlet angle 0°.
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program or software. Te fow map of FTLE computation is
shown in Figure 10.

MATLAB code for Lagrangian coherent structures has
been written and the discrete data obtained from the nu-
merical simulation are plugged into the code. Te values on
the LCS grid are interpolated. Te interpolated values are
then used to integrate these grid points to generate stable or
unstable manifolds for the fnite time Lyapunov
exponent feld.

3.3.2. Lagrangian Coherent Structures on 2D Model Room.
Te main objective of the computational fuid dynamics
analysis was to generate velocity data on grid points in the
domain. Te velocity data, hence, generated would be used
for simulation of Lagrangian coherent structures, in which
pattern of fow is delineated by virtual boundaries.Tis is the
region where separation and transition occurs. Te velocity
data stored in the form of ASCII fles are used to create both
forward time fnite time Lyapunov exponents and backward
time fnite time Lyapunov exponents. Te manifolds, hence,

created are analyzed to observe the structure of fow. Par-
ticles are seeded at diferent air inlet angle
(0°, 15°, 22°, and 30°) and their trajectory corresponding to
the Lagrangian coherent structures is observed at diferent
time steps which are shown in Figures 11(a), 12(a), 13(a),
and 14(a), respectively, and also shown corresponding CFD
results in Figures 11(b), 12(b), 13(b), and 14(b), respectively,
as a comparison purpose for two diferent numerical
schemes.

4. Discussions

In this study, air fow analysis of 2D room was performed
using CFD. Te analysis was verifed and validated with the
results of Kayne and Agarwal [14]. After that, four CFD cases
were studied based on air inlet angles (0°, 15°, 22°, and 30°)
and air velocity data on these angles in 2D HVAC domain
was acquired. Tis velocity data was further used in
MATLAB code for FTLE computations in order to generate
LCS boundary lines.
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Figure 12: (a) LCS-2D-room ventilation, air inlet angle 15°. (b) Corresponding CFD results, air inlet angle 15°.
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In the case with inlet angle 0° and 15°, it is observed that
manifolds carry most of the fresh air out of the domain.
Tere are regions inside the domain where fow remains
stagnated. When the inlet angle of 22° is chosen, some fresh
air reaches to the bottom center of the room. Tis case is
considered to provide better ventilation then the previous

one. Lastly, an angle of 30° is chosen for inlet air. In this case
the fresh air frst reaches the bottom center before being
carried out of the domain by manifolds. Te study shows
that manifolds at 30° angles provide better ventilation of air.
Using Lagrangian coherent structures to simulate ventilation
problem can help in better designing ventilation systems.
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Figure 13: (a) LCS-2D-room ventilation, air inlet angle 22°. (b) Corresponding CFD results, air inlet angle 22°.
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5. Conclusions

Lagrangian coherent structures was presented on 2D HVAC
system. It is a method for identifcation of complex struc-
tures in fuid fow. It was shown how the use of this method
provided additional information to the conventional
methods used. Te study shows presence of virtual walls
inside the room. Te presence of virtual walls has impact on
the quality of ventilation in certain parts of the room. Tese
walls are responsible for entraining particles and not letting
fresh air in certain regions, while on the other hand, path for
air fow created by manifolds in certain regions has helped in
creating better ventilation. Using Lagrangian coherent
structures to simulate ventilation problem can help in better
designing ventilation systems. It can also help in modifying
and optimizing the ventilation systems presently installed.
Another approach for better design and optimization can be
controlling the manifolds in order to have a desired pattern

of air fow and, hence, ventilation. Lagrangian coherent
structures have been applied to the applications such as
oceanography, bio medical sciences, and several other felds.
Lagrangian coherent structures can be used in dynamic
simulation of heating ventilation and air conditioning sys-
tems. Tis would help identify fow barriers in a dynamic
way and how they afect diferent parts of a building. A code
to calculate three dimensional Lagrangian coherent struc-
tures is also possible. Tis would require an extra dimension
in the modeling of FTLE. Te results of a three dimensional
code will show LCS as material surface rather than material
lines as shown in the current two dimensional simulations.

Nomenclature

CFD: Computational fuid dynamics
FTLE: Finite time Lyapunov exponent
LCS: Lagrangian coherent structure

t = 30 s

t = 90 s

t = 180 s

t = 798 s

(a)

t=798 s

t=180 s

t=90 s

t=30 s

3

2.5

2

1.5

1

0.5

0
0 1 2 3 4 5 6 7 8 9

3

2.5

2

1.5

1

0.5

0
0 1 2 3 4 5 6 7 8 9

3

2.5

2

1.5

1

0.5

0
0 1 2 3 4 5 6 7 8 9

3

2.5

2

1.5

1

0.5

0
0 1 2 3 4 5 6 7 8 9

(b)

Figure 14: (a) LCS-2D-room ventilation, air inlet angle 30°. (b) Corresponding CFD results, air inlet angle 30°.
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U/Uo: Normalized horizontal velocity
V/Vo: Normalized vertical velocity
Re: Reynolds number
|T|: Integration time length (s)
∅t0+T

t0
(x): Flow map describes the position information of

the fuid particle at time t� t0 + T

σT
t0

(x): Te fnite time Lyapunov exponent defned as
σT

t0
(x) � (1/|T|)ln

�������
λmax(∆)


.
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Te data used to support the fndings of this study are
available from the corresponding author upon request.
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LCS Code Link. https://github.com/Dildar1/LCS-Code.git.
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