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A Multi-Task Deep Learning Approach for
Sensor-based Human Activity Recognition and

Segmentation
Furong Duan, Tao Zhu, Member, IEEE, Jinqiang Wang, Liming Chen, Senior Member, IEEE, Huansheng

Ning, Senior Member, IEEE, and Yaping Wan

Abstract—Deep learning for sensor-based human activity
recognition (HAR) has been a focus of research in recent
years. Sensor data stream segmentation is a core element in
HAR, which has currently been treated as an independent
preprocessing task, usually with a fixed-size window. This has
led to two critical problems, namely the multi-class window
problem caused by possible multiple activities within a fixed-
size window and the fluctuation of prediction results due to
noisy data and over-segmentation. To address these research
challenges, in this paper, we conceive a novel Multi-Task deep
learning approach to segmenting and recognizing human activity
simultaneously. Specifically, we propose a multi-scale window
method based on feature sequence generation to overcome the
multi-class window problem. We develop a novel boundary
offset prediction algorithm to adjust a window’s boundary to
tackle the over-segmentation issue. In addition, We design a
multi-task framework to streamline and optimize the activity
recognition and segmentation tasks simultaneously. We conduct
extensive experiments on eight benchmark datasets to evaluate
the proposed framework and associated methods. Initial results
show that our approach outperforms the performance of current
state-of-the-art HAR methods.

Index Terms—Deep learning, multi-task learning, activity
recognition, activity segmentation, sensors

I. INTRODUCTION

SENSOR-based Human activity recognition is a key tech-
nique in many real-world context-aware applications, such

as smart homes and healthcare [1]–[3]. Early studies [4], [5]
showed that although traditional approaches for HAR, such as
ontological reasoning [6] and supportive vector machine [7]
had achieved satisfactory results, they significantly relied on
handcrafted feature engineering and domain knowledge from
experts.

In contrast, deep learning (DL) can automatically extract
low and high-level features by training an end-to-end neural

This work is partly supported by the National Natural Science Foundation of
China (62006110, 62071213).The Research Foundation of Education Bureau
of Hunan Province (21C0311, 21B0424). Hengyang Science and Technology
Major Project: 202250015428. (Corresponding author: Tao Zhu, Yaping Wan.)

Furong Duan, Tao Zhu, Jinqiang Wang, and Yaping Wan were with the De-
partment of Computer Science, University of South China, 421001 China (e-
mail: frduan@stu.usc.edu.cn, tzhu@usc.edu.cn, jqwang@stu.usc.edu.cn, yp-
wan@aliyun.com).

Liming Chen was with the School of Computing and Mathematics, Uni-
versity of Ulster, Belfast, BT37 0QB, U.K. Huansheng Ning was Department
of Computer & Communication Engineering, University of Science and
Technology Beijing, 100083 China (email: l.chen@ulster.ac.uk, ninghuan-
sheng@ustb.edu.cn).

network and has been very successful in image classification,
video object detection, and natural language processing during
the last decade. There has been growing interest in applying
deep learning to HAR in recent years, leading to a large
number of studies [8], [9].

Generally speaking, an activity recognition workflow in-
cludes the sensor data segmentation, feature extraction and
activity classification. Many different models have been ex-
plored for feature extraction, including convolution neural
network(CNN) [10], selective kernel convolution neural net-
work [11], long short-term memory (LSTM) [12] and self-
attention [13]. Nevertheless, Compared to feature extraction,
human activity segmentation (HAS) has relatively attracted
little attention.

In a real-world application scenario, sensor data streams
need to be segmented in HAR systems in real-time. The
challenge is it is difficult to define the activity boundaries
[14]. Traditional HAS techniques using fixed-size windows
have been proven to be ineffective due to the irregularity of
the activity duration. As such, selecting a suitable window
size is still a challenge. For example, jumping is a short-
duration activity, and walking may last a long duration. A
small window may lead to misclassification because it con-
tains inadequate information. A large window could contain
multiple activities providing more information. Traditional
windowing approaches generally take the activity class of the
largest number of occurrences as the label of the window
[8], [14]. If the window size is not defined appropriately,
there could have multiple classes in one window and these
activity classes are not identical, leading to the so-called multi-
class window problem [15]. The transitions and short periods
of activity aggravated this problem, further reducing activity
recognition performance.

In recent years, several approaches have been proposed
to address the fixed-size window selection and multi-class
window challenges. Noor et al. [16] and Akbari et al. [17]
proposed an adaptive sliding window method that generates
the default size window and then adjusts the size by comparing
it with the activity class of the adjacent windows. Guédon
[18], Keogh et al. [19], and Fryzlewicz et al. [20] presented
change point detection methods. However, these methods are
inappropriate in real-time continuous data streams because the
boundaries of activities are uncertain. To tackle this problem,
Yao et al. [15] exploited the idea of image semantic segmen-
tation for sample-level prediction. This method usually results
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in some fluctuations in the predicted labels caused by noise
or other factors’ interference, leading to the so-called over-
segmentation problem.

We hypothesize that jointly learning activity segmentation
with recognition could be a novel approach to solving multi-
class window and over-segmentation problems. Inspired by
computer vision object detection, we propose a multi-scale
window method to tackle the multi-class window problem. Un-
like traditional windowing methods, we generate multi-scale
windows based on feature sequences exploiting the receptive
field features. To alleviate the over-segmentation problem, we
propose a boundary offset prediction network to predict the
activity boundary offset for adjusting the window length and
a concatenated algorithm to get the final results of recognition
and segmentation. In addition, considering that HAR and HAS
share the same feature space, we propose a MTHARS(multi-
task human activity recognition and segmentation) framework
that can provide a mutual constraint on activity recognition
and segmentation to streamline the process and optimize the
performance of the proposed approach.

The main contributions of this article are as follows.
• We develop the MTHARS multi-task framework to

streamline and optimize activity recognition and seg-
mentation simultaneously, thus improving both tasks’
performances.

• We propose a novel multi-scale window based segmen-
tation method to address multi-class windows problem.

• For efficient segmentation, we design the activity bound-
ary offset prediction network and a concatenated algo-
rithm to tackle over-segmentation issue.

• We conduct comprehensive experiments on eight public
activity datasets and evaluate the MTHARS method with
the state-of-the-art results from relevant studies, demon-
strating the effectiveness and superiority of the MTHARS
method.

The rest of the article is organized as follows. Section
II discusses related works. Section III details the proposed
MTHARS approach and associated framework and methods.
Section IV presents the experiments and results including
discussions on research findings. Section V summarizes our
work and discusses future work.

II. RELATED WORKS

A. Deep learning for Human Activity Recognition

Using DL for Sensor-based activity recognition has attracted
increasing studies [10], [21]. A CNN for HAR usually consists
of convolution, pooling, and a fully connected layers [22],
[23]. Huang et al. [24] presented a shallower CNN to im-
plement channel information interaction. To better capture the
temporal and spatial features, recurrent neural network (RNN),
like GRU [25] and LSTM [26], was introduced in HAR.
Ordóñez et al. [27] proposed combining CNN and LSTM
to fuse multimodal sensor information for improving activity
recognition performance. Guan et al. [12] proposed to combine
multiple LSTM learners into an ensemble classifier, making it
more robust in solving realistic scenario challenges such as
noisy, ambiguous data. More recently, attention mechanisms

have been investigated for HAR models. Tang et al. [13]
presented a ternary attention mechanism with channel, time,
and sensor modalities attention. Khan et al. [28] assumed that
generating multiple heads with attention can improve feature
representations. Abedin et al. [29] introduced a self-attention
encoder to learn the latent interactions between multiple
sensor channels. Existing models that utilize CNNs for activity
recognition typically have the same receptive field size in
the neurons of the same layer, which presents a limitation
to capture more features [11]. To address this, Gao et al. [11]
proposed SK convolution, which uses the attention mechanism
to learn multi-scale features by automatically modifying the
receptive field.

These existing studies usually use fixed-size window meth-
ods for segmentation, suffering from the multi-class window
problem. To alleviate this problem, Okeyo et al. [30] proposed
a dynamic segmentation model that can shrink and expand
the window size by analyzing sensor data, temporal activity
information, and the status of the activity recognition. Noor
et al. [16] proposed an adaptive sliding window method that
compares the window with the activity class of the adjacent
windows to adjust the window size. Akbari et al. [17] proposed
a hierarchical signal segmentation method which first applied a
larger window to extract features, and then divided the window
into smaller windows based on the activity category probabil-
ities and reassigned the labels. Yao et al. [15] developed a
full convolution network that uses the dense labelling strategy
to assign a class label to each data point. Triboan et al. [31]
presented a semantic-based segmentation method inspired by
ontological modelling.

B. Multi-task deep learning for Human Activity Recognition
Multi-task learning (MTL) is a learning paradigm, which

is built upon the assumption that, for a set of related task,
information contained for each task can help other tasks to
improve model generalization. This is usually achieved by
learning tasks simultaneously and sharing low-dimensional
representation [32].

Ruder [33] summarized two MTL methods for deep learn-
ing: soft or hard parameter sharing of hidden layers. In soft
parameter sharing, each task has its own model, but models
have similar parameters. In hard parameter sharing, all tasks
share the hidden layers among them. This can be further
classified into three categories [34]: namely the multi-input
single-output (MISO), the single-input multi-output (SIMO),
and the multi-input multi-output (MIMO). It is commonly
accepted that HAR and HAS are closely related in the way that
both share the same feature space. Based on this observation,
the information contained in one task could be helpful to
the other, and an integrated approach to jointly performing
two tasks could address the challenges associated with HAS
and HAR separately in one go. Based on this classification
scheme our framework in this paper belongs to SIMO. Zhang
et al. [35] raised three research questions for MTL, i.e.
when to share, what to share and how to share. According
to the approach characterisation of [35], our method is a
Feature Transformation Approach that falls into the category
of feature-based.
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Fig. 1. Overview of the Proposed MTHARS framework (GT, Lconf, and Lloc represent Ground Truth, Classification Loss, and Offset Loss respectively.)

In the field of deep learning HAR, there are already studies
on multi-task learning, but none of them address simultaneous
HAR and HAS. Sun et al. [36], [37] proposed an online
MTL framework that was for personalized human activity
recognition, where each task corresponds to a specific person
in activity recognition. Chen et al. [38] proposed a deep
MTL approach, jointly solving activity recognition and user
recognition. These studies have demonstrated the advantages
of MTL. In this paper, we develop a novel MTL framework
to optimize activity recognition and segmentation performance
simultaneously.

III. THE MTHARS APPROACH

In this section, we formally define the research problem and
describe the MTHARS framework.

A. Problem definition

Given an activity data stream X = {xi}Ni=1, where xi denotes
a vector of signals collected at timestamp t. a = {ak}Kk=1 is the
set of K activity labels contained in the activity data stream,
where ak ∈ {A1, A2 , A3 · · · AL}, and each ak has a different
duration. Our goal is to segment the streaming sensor data
into K non-overlapping segments {Xk}Kk=1, each Xk ⊆ X,
and

⋃
k=K
k=1 Xk = X. Each Xk is assigned an ak. The start and

end of Xk represent an activity boundary, which can also be
denoted by a centroid point and corresponding length (tx, tl).

B. The holistic framework of MTHARS

Traditional activity recognition methods usually use a fixed-
size window to perform sensor data stream segmentation. This
has led to the multi-class window and over-segmentation prob-
lems. To address them, we propose a multi-task framework
to jointly optimize the activity recognition and segmentation
tasks. The MTHARS framework consists of a selective kernel
convolution neural network [11] (as a backbone network),
multi-scale window generation module, and the HAR and HAS
prediction module, as shown in Fig. 1. It works as follows:
First, the backbone network generates the feature sequence. In

order to solve the multi-class window problem, the window
generation module produces a certain number of multi-scale
windows. The HAR and HAS prediction module consists of
two neural networks in parallel branches. One performs HAR
tasks to predict the activity class contained in each window,
and the other performs HAS tasks to predict the boundary
offset between a window and the truth activity bounding box
for addressing the over-segmentation problem. Our recognition
and segmentation prediction flow, as shown in Fig.2, uses
a non-maximum suppression(NMS) algorithm to retain the
best windows. The final results are calculated by algorithm
1, which concatenates adjacent windows of the same activity.

C. Multi-scale windows generation on feature sequences

Representation of multiscale windows: Unlike the con-
ventional sliding window used in the community of sensor-
based HAR, we leverage the concept of anchor in the computer
vision field [39]. A window is denoted by (x, l), where x is
the window center, and l represents the window length.

Generation of multiscale windows: Assume that the pro-
vided feature sequence is n. With a scale of s ∈ (0, 1], n

√
s and

n/
√
s represent the window lengths. s takes the values of s1, s2

· · · sm. This will produce n × m × 2 windows. Therefore, we
can cover various truth activity lengths as much as possible.

We are inspired by the receptive field in convolutional
operations to deal with the relationship between sensor data
and feature sequences. So, we set the feature sequence length
as half of an input data stream length. We generate windows
centered on each unit of the feature sequence(as shown in Fig.
2) and divide the center of the window by the feature sequence
length. Hence, the x indicates the window’s relative position
in the feature sequence. Since the centers of the window are
distributed over all the feature sequence units, these centers
are uniformly distributed over input data stream based on their
relative spatial locations.

IOU: We employ the Jaccard index to measure the sim-
ilarity between the generated window and the truth activity
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Fig. 2. Overview of the MTHARS’s activity recognition and segmentation prediction flow. ( A1 = 0.98 represents a class probability of 0.98 for activity A1

in this window.)

bounding box. The Jaccard index is defined as the ratio of
the intersection length of the window and the truth activity
bounding box to their merge length. We denote their Jaccard
values as an intersection over union (IOU). The range of an
IOU is between 0 and 1 that indicates whether there is any
overlap. 0 indicates that there is no overlap, while 1 indicates
that they are equal.

Multi-scale windows matching and labeling: Each gen-
erated window is treated as a training sample. To train the
model, we need to label each window with an activity class
and a bounding offset, where the former refers to the activity
associated with the window and the latter refers to the offset
of the truth activity bounding box concerning the window.

To mark any generated window, We apply the following
approach to assign the truth activity bounding box to the
window.

Assume the generated windows are W1, W2 · · · , Wna, and
the truth activity bounding boxes are T1, T2 · · · , Tnb, where
na > nb. First, we create a matrix M ∈ R(na×nb), in which
the element mij in the ith row and jth column is the IOU of
Wi and Tj . The steps for matching are as follows:

1) Find the largest element in M, we set its row index and
column index to i1 and j1, respectively, and then assign
Tj1 to Wi1 , discarding all the elements in the i1 rows
and j1 columns of M.

2) Repeat the previous steps until all elements in column nb
of M have been discarded. So that all of the truth activity
bounding boxes are allocated to a generated window.

3) For each Wi of the remaining na-nb windows, find its
best matching Tj , and assign Tj to Wi if the IOU is
great than the threshold.

Here is a concrete example. Assume that the largest IOU in
M∈ R (5×3) is m51, T1 is assigned to W5. Then, we discard

all the elements in Row 5 and Column 1 of M.

M =


0.55 0.82 0.96
0.69 0.95 0.78
0.32 0.48 0.88
0.75 0.67 0.45
0.98 0.67 0.88


5×3

Next, we repeat the above steps to find the maximum m13,
m22 subsequently, and discard row 1 and column 3, row 2
and column 2. After that, we traverse through the remaining
unassigned W3, W4 and assign them the truth activity bounding
box based on their IOU against the threshold.

Now, we can label a window with an activity class and the
boundary offset in the following way. If a window is assigned
to a truth activity bounding box, the class of the truth activity
bounding box is used to label that window. The boundary
offset is calculated as follows.

Given a truth activity bounding box T= (tx, tl) and a
window W = (wx, wl). We define the offset as F = (fx,
fl), where fx, fl represents the centre and the length offset,
respectively, calculated as follows:

fx =
tx − wx

wl
(1)

f l = log
tl

wl
(2)

Predicted activity boundary: In the predicting process, we
employ the predicted offsets (f̂x, f̂ l) to calculate the activity
boundary (t̂x, t̂l), where t̂x, t̂l denote the activity center and
length, respectively.

t̂x = f̂xwl + wx (3)

t̂l = wl exp(f̂ l) (4)

Non-maximum Suppression (NMS): For the same activity,
it may be matched by multiple windows. To find the most
suitable window, we modified the NMS algorithm from the
computer vision field [40]. This algorithm is described as
follows.
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The HAR network predicts the probability p for each W.
All the predicted windows are ranked as a list L based on p
in descending order for the same activity. This list L is then
processed as follows.

1) Select a W with the highest p as the base and remove
the rest of the windows whose IOU with W over the
threshold. Thus, W is retained, and the windows with
high similarity to W are discarded. In other words, the
window with the non-highest p is suppressed.

2) Repeat the above steps until all windows are selected or
non-base windows discarded. As such, the IOU values
of any two predicted windows are below the threshold.

Algorithm 1 Final Output
Input: Predicted activity-boundary offsets F = {Fi}Ni=1

Windows W = {Wi}Ni=1

Predicted activity classes {ai}Ni=1

Predicted activity probabilities {pi}Ni=1

Output: activity boundaries T̂ = {T̂i}Ki=1

activity classes â = {âi}Ki=1

1: Remove redundant windows via the NMS algorithm
2: Calculate activity boundaries {Xi}Li=1 with Eqs. (3)(4)
3: a1 ← The first activity of X1

4: x1 ← The starting position of the first activity in X1

5: xl ← The ending position of the first activity in X1

6: Initial index i
7: for j = 1 to L do
8: if a1 ̸= aj then
9: Add a1 to âi

10: Add (x1, xl) to T̂i

11: a1 ← aj
12: x1 ← xl + 1
13: i ← i + 1
14: end if
15: xl ← boundary length of Xj + xl

16: end for
17: if T̂ is Empty then
18: Add a1 to âi
19: Add (x1, xl) to T̂i

20: end if

D. HAR and HAS Prediction

This component is comprised of two neural networks in
parallel branches for HAS and HAR tasks. For the HAR
branch, suppose the number of activity classes is k, and each
generated window has k+1 classes, where class 0 represents
the background. The length of the feature sequence is n. When
centered on each unit of the feature sequence generating m
windows, a set of n × m × 2 windows need to be classified.
Choosing a convolutional layer can reduce the number of
parameters and does not change the length of the feature
sequence. Hence, the output and input coordinates correspond
to each other. To generate effective predictions, there are
m(k+1) output class channels. For the same spatial position,
the output channel with the index i(k+1)+j (0 ≤ j ≤ k) denotes
the predictions of class j for the window i.

The design of the HAS branch is similar to the HAR branch.
The only difference is that we predict two offsets for each
window. We utilize the predicted offset and the absolute
position of the window to accurately locate the boundary of the
activity. Hence, we are able to address the over-segmentation
problem and segment the activity more accurately.

E. Joint Losses

The boundary offset loss (5) is calculated by comparing the
truth offset F = (fx, fl) with the predicted offset F̂ = (f̂x, f̂ l)
using SmoothL1

loss.

Lloc(F, F̂ ) =
∑

i∈{x,l}

SmoothL1(Fi − F̂i) (5)

in which

SmoothL1(x) =

{
0.5(x)2, if |x| < 1.

|x| − 0.5, otherwise.
(6)

The classification loss is calculated by the window labeled
activity class a with the predicted class â using cross-entropy
loss (7), in which n represents the sample number.

Lconf (a, â) = −
n∑

i=1

ailog(âi) (7)

Some windows not matched with any activity are regarded
as negative samples. We sort all the negative samples in
descending order according to the activity class probability
and select a certain number of negative samples with a higher
class probability to participate in the classification loss. The
number of negative to positive samples is in the ratio of 3:1.
If all the negative samples are involved in the training, it will
make the training process tend towards the negative samples.

Finally, we multiply the weight α by the classification loss
(conf) plus the weight β by the localization loss (loc).

L(a, â, F, F̂ ) =
1

N
(αLconf (a, â) + βLloc(F, F̂ )). (8)

F. Activity recognition and segmentation prediction

Our prediction process is shown in Fig.2. After the multi-
scale windows generation module, these windows are put into
the trained HAR and HAS networks to predict the window
categories and the offsets. Next, the length of the windows
was adjusted by (3)(4). Windows with low class probability
are filtered out. Then we employ a NMS algorithm to remove
similar windows. As the length of an activity input to the
network is fixed, we input a fixed length activity data stream
at a time to recognize the boundary of each activity. Finally,
we concatenate all the segments according to the activity class
to obtain the boundary of each activity in the whole activity
data stream. The concatenation algorithm1 is described in the
algorithm 1.

1https://github.com/duanfurong/multi-scale-windows
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TABLE I
SIMPLE DESCRIPTION OF PUBLIC HAR DATASETS.

Attribute
Dataset

SKODA HCI PS WISDM UCI OPPORTUNITY PAMAP2 UNIMIB SHAR

Type AG AG ADL ADL ADL ADL ADL ADL
Subject 1 1 4 29 30 4 9 4
Rate 96HZ 96HZ 50HZ 20HZ 50HZ 30HZ 33.3HZ 30HZ
Window Size 1s 1s 2s 10s 2.56s 1s 1s 1s
Activity Categories 10 8 6 6 6 18 18 17
Sample 696975 7352 161959 1,098,208 748406 701366 2872533 11771
Proportion of Training Data 70% 70% 70% 70% 70% 70% 80% 70%
Proportion of Testing Data 30% 30% 30% 30% 30% 30% 20% 30%
1 AG denotes gesture activity and ADL denotes activity of daily life.

(a) SKODA (b) HCI (c) PS (d) WISDM

(e) UCI (f) OPPORTUNITY (g) PAMAP2 (h) UNIMIB SHAR
Fig. 3. Activity length distribution of benchmarking datasets

IV. EXPERIMENTS AND RESULTS

In this section, we detail our extensive experiments on
eight benchmark datasets and analyze the experimental results
to evaluate the effectiveness and scalability of the proposed
MTHARS framework.

A. Datasets

We use eight publicly available benchmark HAR datasets
to assess the effectiveness of our framework in daily activity
segmentation and recognition. To make a fair comparison with
other studies, we select the same parameters. The specifics of
the eight benchmark datasets are described in Table I, and the
activity length distribution are depicted in Fig. 3.

• SKODA Dataset [41]: A participant wearing 10 USB
acceleration sensors in the left and right hands, respec-
tively, performed 10 different gestural activities in an
automobile repair scenario. Each of the gesture activities
was conducted more than 70 times.

• HCI Dataset [42]: Eight accelerometer USB sensors were
worn on the participant’s right arm to perform various
gestures, such as sketching triangles, squares, and circles.

• PS Dataset [43]: Four participants recorded their walk-
ing, standing, running, sitting, going upstairs, and going
downstairs activities. They employed the phone’s built-in
accelerometer, magnetometer, and gyroscope on different
locations: pants pocket, waistband, right arm and right
wrist.

• WISDM Dataset [44]: The data were obtained by 29 par-
ticipants using phones with triaxial acceleration sensors
placed in their pant pockets with a sampling frequency
of 20 Hz. Walking, strolling, walking up stairs, walking
down stairs, standing motionless, and standing up were
among the six daily activities undertaken by each partic-
ipant. The mean value of the column was used to fill in
the missing values in the dataset.

• UCI Dataset [45]: The dataset were generated by 30 par-
ticipants aged 19 to 48 years performing daily activities.
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TABLE II
THE OVERALL VERIFICATION TASKS.

Sections Compared Baselines Tasks

Section V.C Dynp [18], BottomUP [19], and BinaryCPD [20] activity segmentation

Section V.D
SK [11], Other methods in
[12], [13], [15], [21], [23],

[25], [26], [27], [28], [29], [47], [48]
activity recognition

Each participant wore a Samsung Galaxy S2 smartphone
around their waist. They collected sensor data in 9 dimen-
sions using the phone’s built-in acceleration, gyroscope,
linear acceleration, and 3-axis angular velocity sensors.
Six different daily activities (walking, walking upstairs,
walking downstairs, standing still, standing, and lying
down) were performed.

• OPPORTUNITY Dataset [45]: IMU sensors were placed
on volunteers’ 12 different positions. They were asked
to repeat a sequence of 17-morning activities in the
kitchen, such as opening the refrigerator door, closing the
refrigerator door, opening the drawer, closing the drawer,
and so on. Interpolation was performed to fill in missing
values in the dataset.

• PAMAP2 Dataset [46]: Nine participants wore an IMU
on their chest, hands, and ankles, collecting three types
of sensor information. Each participant was required to
complete 12 mandatory activities, such as lying, standing,
and walking up and down stairs, as well as six elective
activities, such as watching television, driving, and play-
ing ball. During the activity transformation, interference
was generated. The start and the last 10 s of each activity
were eliminated to reduce the noise data.

• UNIMIB SHAR Dataset [49]: The dataset was col-
lected from the University of Milano-Bicocca. 30 vol-
unteers equipped with Bosh BMA220 sensor Samsung
cell phones. These were placed in their left or right
pockets to collect daily life activities (running, going
upstairs, standing, walking, and so on.) and different
falling activities. Each activity was repeated 3 to 6 times.

B. Experimental Setup

We implement the MTHARS framework in the Pytorch
platform and train it in Ubuntu 20.04 environment with an
RTX 3090 GPU. We set the training epoch as 500 and use
the Adam optimizer with an initial learning rate of 0.001. All
datasets are divided into training and testing sets, and all the
results are performed on the testing set.

1) Evaluation metric: To evaluate the accuracy of the
activity segmentation, we use the Normalized Edit Distance
(NED) [50]. NED uses the Levenshtein distance to measure the
distance between the predicted activity sequence (T̂ ) and the
truth activity sequence (T), calculated by the minor operation

that makes the two sequences equivalent. NED is defined as
follows.

NED =
lev(T̂ , T )

length of T
(9)

lev(i, j) =


max(i, j)min(i, j) = 0

min =


lev(i− 1, j) + 1

lev(i, j − 1) + 1

lev(i− 1, j − 1) + 1i ̸=j .

(10)

Equation (10) is the smallest operation step that makes the
predicted sequence and the truth sequence equal and takes into
account three different ways to make the two sequences equal,
namely, removing an element from the sequence, inserting a
new one, and changing the sequence’s label directly.

Since the activity classes in human activity data are mostly
unbalanced, using classification accuracy is not an appropriate
criterion [27]. Therefore, we apply F1 to evaluate the activity
recognition performance.

F1 = 2
∑ Nc

Ntotal

P ×R

P +R
(11)

Here, Nc denotes the number of class c in all samples, and
Ntotal the number of all samples. P and R are calculated from
the set of all positive classes, defined below.

P =

∑n
i=1 TPi∑n

i=1 TPi +
∑n

i=1 FPi
(12)

R =

∑n
i=1 TPi∑n

i=1 TPi +
∑n

i=1 FNi
(13)

Here, i denotes the activity class in the dataset, TPi the true
positive class, FPi the false-positive class and FNi the false-
positive class.

2) Overall verification tasks: We compare various tasks in
the MTHARS framework with corresponding tasks in previous
studies. Table II describes the verification tasks of MTHARS,
including activity segmentation and recognition, respectively.
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Fig. 4. HAS visualization results on SKODA and WISDM datasets

Fig. 5. NED performance on the five benchmark datasets

C. Comparisons with dynamic segmentation algorithms

In order to choose optimal window lengths for HAR and
HAS, we adopt dynamic segmentation approaches, aiming
to investigate if MTHARS can achieve better segmentation
results with the help of classification tasks. Table III displays
the segmentation results.

TABLE III
F1 VALUE OF DYNAMIC SEGMENTATION.

Methods

Datasets
SKODA HCI PS WISDM UCI

Dynp [18] 0.8858 0.8751 0.9663 0.8711 0.9352

BottomUP [19] 0.8661 0.8750 0.9536 0.8807 0.9353

BinaryCPD [20] 0.8826 0.8450 0.9601 0.8859 0.9151

MTHARS 0.9648 0.9479 0.9733 0.9872 0.9632

As revealed in Table III, all methods achieve over 90% F1

values on PS and UCI datasets, though the performance of all
approaches on PS is better than that on UCI. The MTHARS
framework is superior to other dynamic segmentation ap-
proaches. One possible reason is that MTHARS, with the help
of the activity recognition task, can improve the segmentation
performance.

On the HCI dataset, The NED values of Dynp and Bot-
tomUP are similar and their classification results are similar.
On the PS dataset, the NED values of Dynp and BinaryCPD
are lower than the BottomUP method, and the F1 values of
their classifications are higher than the BottomUP classifica-
tion. In addition, on the WISDM dataset, the BottomUP and
BinaryCPD approaches have higher classification results than
Dynp, and their NED values are lower than those of the Dynp
method. Especially, We find out that the NED performance on
the SKODA dataset is poor due to the fact that the SKODA
dataset was collected in an unrestricted environment where
each activity lasts for an irregular duration and the number
of ground truth segments is relatively small. The degradation
caused by this problem is noticeable for sequences with short-
time or transition activities. These short-duration activities
introduce errors in the testing phase, making it harder for the
HAR models to further enhance the recognition performance.

As can be seen in Fig. 5, MTHARS achieves the lowest
NED values. At the same time, the activity recognition is
more accurate. The reason is that although some activities are
short duration, in most cases, they are moderate length, which
can reduce the difficulty of activity recognition. Our activity
classification results are relatively higher, and our NED values
are more stable. This result demonstrates that MTHARS, with
the help of the activity recognition task, can improve the
performance of segmentation.

To better depict the segmentation results, we visualize
the segmentation performance in Fig.4. We observe that the
SKODA dataset contains a lot of short-time activities leading
to multi-class window problems. For the WISDM dataset,
where most of the activities are long duration activities,
baseline methods yield over-segmentation problems for short-
duration activities. These can be alleviated by using a multi-
scale window and offset prediction method.

From the above results, we observe that accurate activity
segmentation can improve activity recognition performance. In
addition, if data segmentation is considered a preprocessing
process, errors in data segmentation may be propagated to
the later steps. We can combine activity recognition and
segmentation to facilitate each other.
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TABLE IV
F1 PERFORMANCE ON EIGHT DATA SETS.

Methods

Dataset
SKODA HCI PS WISDM UCI OPPORTUNITY PAMAP2 UNIMIB SHAR

SK [11] 0.9510 0.9377 0.9574 0.9725 0.9558 0.9074 0.9338 0.7463

MTHARS 0.9632 0.9524 0.9721 0.9877 0.9723 0.9213 0.9480 0.7571

Other Reachers 0.924 [12] 0.949 [21] 0.9660 [13] 0.726 [12] 0.854 [12] 0.7538 [13]

0.916 [15] 0.9263 [26] 0.9293 [23] 0.849 [21] 0.9248 [13]

0.958 [27] 0.9720 [28] 0.9302 [47] 0.8058 [48] 0.9116 [23]

0.928 [29] 0.9585 [26] 0.915 [27] 0.9303 [48]

0.9545 [25] 0.9263 [26] 0.908 [29]

0.9537 [28] 0.746 [29]

TABLE V
ACCURACY& FLOPS(M) PERFORMANCE ON EIGHT DATASETS.

Methods

Dataset
SKODA HCI PS WISDM UCI OPPORTUNITY PAMAP2 UNIMIB SHAR

SK [11] 0.9586&5.43 0.9341&4.34 0.9649&14.03 0.9751& 17.63 0.9406&8.95 0.9014&10.3 0.9380&45.38 0.7589&6.51

MTHARS 0.9648&4.74 0.9479&3.79 0.9733&12.79 0.9872&6.62 0.9632&8.15 0.9153&9.0 0.9450&38.02 0.7648&5.01

D. Comparisons with activity recognition algorithms

In this section, Our purpose is to verify that MTHARS can
boost the performance of activity recognition accuracy with the
help of segmentation tasks. Table IV and Table V detail the
F1 value and accuracy recognition performance, respectively.

Performance Gains: From Table IV, V, MTHARS exceeds
the SK [11] performance with lower model complexity, re-
gardless of which dataset it is based on. For example, on
the SKODA dataset, compared with the SK performance, our
framework obtains a 0.22 % higher F1 value. Regarding classi-
fication accuracy, our framework surpasses the SK by 0.62 %
with lower model complexity. Compared with SK, MTHARS
obtains a 1.47 % higher F1 value on the HCI dataset. On the
PS dataset, MTHARS achieves 1.47 % F1 value performance
gains with little increase in the computational burden. These
comparisons indicate that the features learned by activity
recognition and segmentation contain unique information for
HAR and can facilitate each other, leading to better perfor-
mance.

For the WISDM dataset, previous research has found out
that it is difficult to separate the activities of "DownStairs"
and "UpStairs" from Fig.6, as they have similar patterns.
Our proposed framework improves the classification results
of both activities. This indicates that the activity classifica-
tion performance can be better improved with the help of
the activity segmentation task. Take the UCI dataset as an
example, among all the activities, the best classification result
is the "lying" due to the distinct orientation. The activities
"sitting" and "standing" have very similar patterns. Therefore,
the classification results of both activities are relatively low.
MTHARS achieves the best performance among these six

activities. The reason is that our framework considers both
activity class features and activity boundary features. As
shown in Fig.7, we plot the confusion matrices of MTHARS
and SK on the PAMAP2 dataset. It can be observed that
our framework improves the performance of the activities of
"sitting" and "standing". These results confirm the advantages
of our framework in terms of recognition performance.

In addition, we also compare MTHARS with some state-
of-the-art approaches on the HAR datasets, and experimental
results demonstrate in Table IV. A detailed description of these
methods can be found in section II. It can be concluded that
our proposed approach can achieve superior performance.

SK first proposed to adopt the concept of attention to con-
duct kernel selection among multiple branches with different
receptive fields to recognize activity accurately. Compared
with SK, we are a multi-task learning framework. Regarding
the scope of the application, we can more accurately rec-
ognize activity and activity boundaries, and we have lower
model complexity. We conclude that the MTHARS framework,
performing activity segmentation and recognition simultane-
ously, is able to improve activity recognition performance.
The activity segmentation employing multi-scale windows and
offset prediction can provide an accurate boundary for activity
recognition. The two tasks are therefore complementary.

E. Ablation experiments
In this subsection, we aim to investigate the effectiveness of

our framework. We find the class loss Lconf and offset loss
Lloc weights, and the scale s of the window are two essential
settings.

1) Impact of Loss Formulation: Loss formulation is pre-
sented in Section III, where Lconf and Lloc represent the
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(a)

(b)
Fig. 6. Comparison of recognition results (F1 value) for specific classes of
human activities

classification loss(7), and boundary offset loss(5), respectively.
For simplicity, the scale s of the window is fixed to 2 and
3. The detailed results of the experiment are shown in Table
VI. We observe that the best result on the WISDM dataset
is 2Lconf + 3Lloc. In addition, the best result is very similar
to the result of Lconf + Lloc. The results between Lconf +
2Lloc and 2Lconf + Lloc are close. These can be attributed
to the weight of Lconf and Lloc being alike. Similarly, on
the OPPORTUNITY dataset, we find the performance of
Lconf + 3Lloc is close to 2Lconf + 3Lloc. Moreover, The
Lconf + Lloc brings a 1.53 % performance gain compared
with the Lconf + 2Lloc on the OPPORTUNITY dataset.
Furthermore, we compare the Lconf + Lloc with SK and
achieve a noticeable improvement. In summary, We conclude
that activity recognition and segmentation can be mutually
facilitated. The components of our loss function can promote
activity recognition performance.

2) Impact of scale s: Different lengths and numbers of scale
s cause different effects. Therefore, we set various combina-
tions of scales s to investigate its performance. Specifically, we
set the loss combination as Lconf + Lloc. Due to the dataset
length limitation, we only set the following settings, and the

(a)

(b)
Fig. 7. The confusion matrices on the PAMAP2 dataset between SK [11]
and MTHARS. (a) SK, (b) MTHARS

TABLE VI
ACTIVITY CLASSIFICATION F1 VALUE WITH DIFFERENT WEIGHT

SETTINGS ON BENCHMARK DATA SETS

Model OPPORTUNITY WISDM

SK [11] 0.9074 0.9725

Lconf + Lloc 0.9213 0.9877
Lconf + 2Lloc 0.9060 0.9796
Lconf + 3Lloc 0.9174 0.9874
2Lconf + Lloc 0.9075 0.9783
2Lconf + 3Lloc 0.9154 0.9881
3Lconf + Lloc 0.9111 0.9841
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detailed results are shown in Table VII. When only set to
a s, we observe that the performance is inferior to that of
several different s. The reason is that the duration of activity
is variable, and using a single-size window is insufficient
to capture the activity characteristics of different durations.
Similarly, setting a small scale on the OPPORTUNITY dataset,
such as s = 0.5 and 0.3, may suffer from the same issue.
The best classification performance is to set s = 2, 3. As
most activity duration is irregular, this combination can better
enhance activity recognition performance. At the same time,
on the UCI dataset, the best result is 0.9723 when set s=2,
3, 4. The second result is 0.9615 with s=2, 3. One possible
reason is that most activities are long duration, and therefore
a larger window is able to collect more features. We conclude
that combining classification and segmentation using multi-
scale windows can better capture enough activity information
to boost the HAR performance.

TABLE VII
ACTIVITY CLASSIFICATION F1 VALUE FOR DIFFERENT s ON BENCHMARK

DATASET

Model OPPORTUNITY UCI

SK [11] 0.9074 0.9558

s=2 0.9138 0.9505
s=0.5, 0.3 0.9160 0.8928
s=2, 3 0.9213 0.9615
s=2, 3, 4 0.9167 0.9723

V. CONCLUSION AND FUTURE WORK

In this paper, we have proposed a multi-task deep learning
framework for sensor-based human activity recognition and
segmentation called MTHARS to jointly improve segmenta-
tion and recognition performance. We have developed a multi-
scale windows method to address the multi-class window
problem. We have also designed an activity boundary offset
prediction network and a concatenated algorithm to tackle the
over-segmentation issue. We have conducted comprehensive
experiments on a number of publicly available datasets and an-
alyzed the performance of HAR and HAS with the MTHARS
against community recognized state-of-the-art methods. The
initial results have demonstrated the effectiveness of the
MTHARS. In the future, we plan to address issues related to
model complexity so that this new integrated HAR and HAS
framework can be deployed on mobile devices and used in
real time.
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