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The development of gene signatures is key for delivering personalized medicine, despite only a few sig-
natures being available for use in the clinic for cancer patients. Gene signature discovery tends to revolve
around identifying a single signature. However, it has been shown that various highly predictive signa-
tures can be produced from the same dataset. This study assumes that the presentation of top ranked sig-
natures will allow greater efforts in the selection of gene signatures for validation on external datasets
and for their clinical translation. Particle swarm optimization (PSO) is an evolutionary algorithm often
used as a search strategy and largely represented as binary PSO (BPSO) in this domain. BPSO, however,
fails to produce succinct feature sets for complex optimization problems, thus affecting its overall run-
time and optimization performance. Enhanced BPSO (EBPSO) was developed to overcome these short-
comings. Thus, this study will validate unique candidate gene signatures for different underlying
biology from EBPSO on transcriptomics cohorts. EBPSO was consistently seen to be as accurate as
BPSO with substantially smaller feature signatures and significantly faster runtimes. 100% accuracy
was achieved in all but two of the selected data sets. Using clinical transcriptomics cohorts, EBPSO has
demonstrated the ability to identify accurate, succinct, and significantly prognostic signatures that are
unique from one another. This has been proposed as a promising alternative to overcome the issues
regarding traditional single gene signature generation. Interpretation of key genes within the signatures
provided biological insights into the associated functions that were well correlated to their cancer type.

� 2022 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY license (http://creativecommons.

org/licenses/by/4.0/).
1. Introduction

Gene signature development towards prognostic and predictive
abilities on cancer data types is crucial for delivering personalized
medicine [1]. One of the most popular signatures includes 70 genes
for breast cancer prognosis which has been approved for clinical
use [2]. The decreasing cost associated with sequencing the gene
expression profile of multiple patient clinical cohorts has led to
what is being defined as the big data era within bioinformatics
[3]. This is reflected in the amount of publicly available gene
expression datasets from published research associated with clin-
ical trial cohorts and massive databases such as the Gene Expres-
sion Omnibus (GEO) [4], ArrayExpress [5], and The Cancer
Genome Atlas (TCGA) [6]. Amongst research using these datasets
towards gene signature generation, there appears to be little over-
lap of associated genes and their associated biology [7].

Gene signature discovery tends to revolve around statistical
methods for feature selection and machine learning for classifica-
tion tasks. Due to the highly dimensional nature of biological omics
data types, feature selection is a crucial step in identifying gene
signatures. Additionally, they provide faster and more cost-
effective models by using less features to consider in a classifica-
tion task [8]. Feature selection methods are split into three cate-
gories which is based on how they select features in combination
with the classification model. These include filter techniques,
wrapper techniques, and embedded techniques. The most popular
of these methods amongst gene expression microarray analysis is
univariate filtering techniques. These methods are fast and easy
to interpret individually as features are ranked based on a statisti-
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cal metric such as a p-value. Wrapper and embedded feature selec-
tion techniques are an alternative to multivariate analysis which
incorporates classification bias for greater accuracy. The wrapper
approach evaluates how well each feature subset performs with
the selected classifier [9]. Wrapper methods have been suggested
as the superior approach when regarding predictive accuracy com-
pared to filter methods [10]. Finally, embedded methods are clas-
sifiers that have the ability to discard input features for a more
discriminative feature subset.

In microarray gene expression studies, wrapper methods tend
to be dominated by evolutionary algorithms such as particle
swarm optimization (PSO) and genetic algorithms (GA) as the
search algorithm with a selection of different classifiers. Both
PSO and GA are similar in that they are metaheuristics, evolution-
ary algorithms, and attempt to identify optimal solutions through
iteratively improving a population of candidate solutions [11]. Var-
ious alternatives of PSO have been produced along its own evolu-
tion. This includes the likes of multi-objective PSO [12] and
discrete or binary PSO (BPSO) [13]. In gene signature selection
studies, BPSO is amongst the most popular of PSO alternatives. In
BPSO, dimensions represent features and positions are binary bits
that flip 0 or 1 to indicate a non-selection or selection of a feature,
respectively. In gene signature selection, BPSO has also been used
as feature selection for wrapper methods with classifiers such as
k-NN [14], SVM [15], Naïve-Bayes [16], and decision trees [17].

Variants of BPSO have been proposed to help overcome some of
the challenges that conventional BPSO faces. This includes
enhanced BPSO (EBPSO) which was purpose built to select for
small subsets of informative genes without losing accuracy perfor-
mance for cancer classification [18]. EBPSO focuses on improving
the limitations that are seen in conventional BPSO’s sigmoid veloc-
ity and individual gene selection functions. Further investigation of
these equations in traditional BPSO reveal some limitations in
selecting for features to create an appropriate feature signature.
Mohamad et al. demonstrated that the probabilities of a feature
being selected, and it not being selected are the same at 0.5, or a
50/50 chance. Thus, conventional BPSO is primed to select for
50% of the input feature length which restricts its ability to pro-
duce succinct signatures out of the input features. This in turn
could potentially have an effect on accuracy performance also.
Conventional BPSO could be selecting for gene signatures that
are accurate as a combination of informative features, redundant
features, and non-informative features. EBPSO aims to overcome
these limitations by introducing the scalar quantity called particle
speed and modifying the sigmoid and updated position functions.
These implementations were put in place to increase the probabil-
ity of a feature to not be selected, and thus decrease the probability
of the feature to be selected for. This would result in smaller fea-
ture signature lengths, whilst only selecting for the most informa-
tive features towards signature performance.

Major issues around popular methods for gene signature selec-
tion relate to identifying gene signatures that are not well vali-
dated on other clinical cohorts. This could be due to identifying
gene signatures of interest that are specific to the characteristics
of a given dataset, not of a given disease type. Determining the
underlying biology driving the specific selection of genes to make
up the signature is also hard to achieve [19]. Pathway analysis on
gene signatures has been proposed to help overcome these issues
by identifying genes within a signature related to a key biology.
Additionally, gene signature discovery tends to revolve around
identifying a single signature. This has been replicated previously
with a single breast cancer dataset [20]. Various highly predictive
signatures were produced from the same analysis explained
through properties of the data. These included suggesting that
many genes were correlated with the classification task, the differ-
ences between these correlations being small, and these correla-
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tions changing dramatically over different training data subsets.
A possible reason for this has been suggested as a patient or sample
having the potential to contain unique variations and heterogene-
ity, which in turn could affect markers for outcome [20].

This study assumes that the successful development of EBPSO
will allow for the generation of gene signatures on transcriptomics
cohorts that are both accurate and succinct in their number of
associated features. Additionally, the presentation of top ranked
signatures on their fitness values will allow for greater efforts in
the selection of gene signatures for validation on external clinical
cohorts and for their transition towards clinical use. Thus, this
study aims to develop EBPSO on a PSO Python research module
which employs conventional BPSO and validate the potential of
unique candidate gene signatures with different underlying biol-
ogy from EBPSO on selected transcriptomics cohorts.
2. Materials & methods

2.1. Simulated and publicly available clinical transcriptomics cohorts

It is critical that the performance of both EBPSO and BPSO in
selecting for gene signatures within transcriptomics cohorts is
evaluated appropriately. To adhere to this, simulated datasets were
generated, and publicly available transcriptomics cohorts were
selected for testing the two PSO algorithms. Simulated datasets
allow for greater control over knowing what features are important
towards gene signature classification and whether the PSO meth-
ods were able to accurately select for these. Additionally, simulated
datasets also show what features are not important towards signa-
ture classification and whether the PSO techniques are able to not
select for these.

Simulated datasets have been produced by using the scikit-
learn Python library [21]. The make_classification utility within
the scikit-learn datasets module allows for the generation of ran-
domised classification datasets. Artificial datasets are created with
control over the number of samples, features, informative features,
and class separation. Class separation is the value that separated
the informative features between the classes. Higher values thus
resulted in more informative features between the classes and
should provide greater accuracy for the given classification task.
Two artificial datasets were generated, consisting of a binary and
a multi-class gene expression simulated cohort. Both simulated
datasets had 200 samples, a class separation value of five, and a
balanced number of classification labels. Additionally, both simu-
lated datasets had 500 features, and of these features 20 were
informative features towards their associated classification labels.

Regarding the selection of publicly available clinical gene
expression cohorts, the first of these was a diffuse large B-cell lym-
phoma (DLBCL) patient gene expression cohort, consisting of 7129
genes and 77 samples [22]. Of these 77 samples, 58 (75%) were
DLBCL samples and the remaining 19 (25%) were follicular lym-
phoma samples (FL). Thus, the PSO algorithms will be identifying
genetic signatures that have the ability to distinguish between
the two lymphomas. The next of these gene expression cohorts
included breast cancer patients consisting of different molecular
subtypes including triple negative (TN) and human epidermal
growth factor receptor 2 (HER2) positive [23]. TN breast cancer is
defined as estrogen receptor (ER), progesterone receptor (PgR),
and HER2 negative in its molecular subtype. This study selected
only the triple negative and HER2-positive patients. This filtered
cohort thus contained 31 samples and 54,675 genes, 17 of which
were triple negative samples (55%) and the remaining 14 being
HER2-positive samples (45%). The final gene expression cohort
was of 248 patients with locally advanced prostate cancer com-
mencing radical radiotherapy with androgen deprivation therapy
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(ADT) [24]. Biochemical failure status was selected for classifica-
tion due to its higher number of events in comparison with other
phenotype class labels within this cohort. Biochemical failure is
defined when PSA levels begin to rise again in prostate cancer
patients following treatment. Other genetic signatures have been
proposed for predicting biochemical failure [25,26]. These studies
have highlighted the need for an effective method to predict bio-
chemical risk to help therapeutic strategy decisions for prostate
cancer patients. The cohort consisted of 19,453 genes, with 64
(26%) patient samples with biochemical failure status, and the
remaining 184 (74%) did not. A summary of both the simulated
and transcriptomics cohorts can be seen (Table 1).
2.2. Enhancement of PySwarms Python library

To perform the conventional version of BPSO, this study utilised
the PySwarms Python module [27]. The PySwarms module was also
adapted to develop a Python module for EBPSO. The pandas mod-
ule version 1.2.4 was used for reading and manipulating the pub-
licly available transcriptomics cohorts. The numpy version 1.17.2
module was used for manipulating data throughout the script also
[28].

EBPSO uses information gain ratio filtering as a feature deduc-
tion and pre-processing technique to select the top 500 ranked fea-
tures. This study however introduces an avenue of improvement
for EBPSO’s feature reduction, and of relevance towards a gene
selection study, by replacing information gain ratio filtering with
a differential expression p-value filtering technique to select the
top 250 differentially expressed features. The number of ranked
features from the filtering technique is reduced from 500 to 250
to better identify the important features within the candidate sig-
natures, and to produce more succinct candidate signatures over-
all. These features were thus selected to be used as inputs for the
two PSO methods. The differential expression filtering was per-
formed with the limma R package version 3.48.3, using R version
4.1.2, as a well-known algorithm specifically built for differential
expression analysis [29]. A high-level schematic showing how
the data flow from the full transcriptomics cohorts to the visualiza-
tion of the top candidate gene signatures can be seen (Fig. 1).

The scikit-learn library version 0.24.1 was also utilised to per-
form classification using SVM, leave-one-out (LOO) cross valida-
tion (CV), and to make predictions with trained models on the
input dataset. SVMs are defined as supervised learning models in
machine learning that analyse data towards classification or
regression [30]. CV is a model validation technique for evaluating
how statistical analysis results are generalized towards indepen-
dent testing data [31]. Essentially, it evaluates how accurate a pre-
dictive model is. LOOCV splits the input dataset by using one
sample as the testing data, and the remaining samples as the train-
ing data. This is repeated until every sample in the input dataset
has been used as testing data. The final evaluation value for these
predictive models is the average evaluation value seen across all
the predictive models produced. In this study, this would be the
average accuracy performance seen across all the predictive mod-
Table 1
Summary of the simulated and selected clinical transcriptomics cohorts to validate EBPSO

Dataset name Samples Features Classes Class

Binary class simulated 200 500 2 100 (5
Multi-class simulated 200 500 3 67 (33
DLBCL 77 7129 2 77 (75
Breast 31 54,675 2 17 (55
FASTMAN 248 19,453 2 64 (26

Abbreviations: EBPSO, Enhanced Binary Particle Swarm Optimization; BPSO, Binary Part
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els produced by LOOCV. Runtime parameters for both PSOmethods
and SVM matched those in the original EBPSO implementation.

Results generated for each of the two PSO methods on each of
the data sets were acquired using the same runtime specifications
and on the same computing system. The computing system was on
an Ubuntu 18.04.5 LTS, with an Intel� Xeon� processor, and a GPU
card as a Quadro P2000. The processor includes 16 CPUs with a
processing power of 3.70 GHz with 64 GB of memory. A single
CPU was used on the DLBCL and breast cancer datasets to run each
of the two PSO methods. Due to the greater number of samples
within the simulated datasets with 200 samples and the prostate
cancer cohort for biochemical failure prediction, additional CPUs
were needed for appropriate overall runtimes. Thus, four CPUs
were used to run each of the two PSO methods on these datasets.
The runtimes for these datasets were represented as a single CPU
for consistent comparisons of all the datasets used. These single
CPU runtimes were represented simply as four times the magni-
tude of the recorded runtimes on four CPU’s.

Ten runs of each of the PSO methods were run on each of the
selected datasets in order to better present the performance and
algorithm time complexity of each of the methods by using aver-
ages of their resulting runtime metrics. These runtime metrics
used to evaluate the performance and time complexity of the
PSO methods included their classification accuracy, the number
of features selected, and the time taken to complete a single PSO
run. The most accurate and sufficient gene signature selected over
the shortest amount of time would have the greatest evaluated
performance. The completion of a single PSO run is defined by
500 iterations of the updated particle positions. Additionally, the
candidate signature produced from each single PSO run was used
to generate hierarchical clustering heatmaps with their respective
input datasets. This was achieved by using the Matplotlib (version
3.1.1) [32] and seaborn (version 0.10.1) Pythonmodules. The plot_-
cost_history utility was adapted and improved to allow for two dif-
ferent cost history arrays from the two PSO algorithms to be
directly compared on the same image. In this scenario, the average
value at each iteration was measured over the ten runs of each PSO
method to demonstrate their performance over the 500 iterations.

Regarding the analysis of the selected gene expression cohorts,
EBPSO was run separately as an additional run following the previ-
ous 10 runs. In this separate additional run, the top three gene sig-
natures based on their associated cost values are retained. This
allowed for the comparison of the features that made up these
selected signatures with each other and a previously defined gene
signature for each clinical cohort. This was performed to demon-
strate whether or not EBPSO was able to identify unique and bio-
logically relevant candidate gene signatures. An eight probeset ID
signature had been previously identified in distinguishing between
the two lymphomas for the DLBCL cohort. Due to the lack of cohort
specific gene signatures in the literature for the breast and prostate
cancer cohorts, the limma R package was used to define a ten gene
signature. This was comprised of the top ten most differentially
expressed genes based on their associated p-values for HER2
against TN in the breast cancer cohort and biochemical failure pre-
diction for the prostate cancer cohort.
and BPSO.

balance Class separation Informative features

0%) / 100 (50%) 5 20
.5%)/ 67 (33.5%) / 66 (33%) 5 20
%) / 19 (25%) — —
%) / 14 (45%) — —
%) / 184 (74%) — —

icle Swarm Optimization; DLBCL, Diffuse Large B-Cell Lymphoma.



Fig. 1. High level schematic showing the data flow from the full transcriptomics cohort to Flask-EBPSO. The limma R package selects the top 250 differentially expressed
genes to be used in EBPSO. After each iteration of EBPSO, Flask-EBPSO visualizes the top candidate gene signatures through hierarchical clustering heatmaps and ROC curves.
This is repeated until the number of EBSPO iterations has been reached. Abbreviations: EBPSO, enhanced binary particle swarm optimization; ROC, receiver operating
characteristic.
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2.3. Biochemical failure survival analysis

In addition to biochemical failure status being recorded for the
patients associated with the prostate cancer cohort, their respec-
5550
tive time to biochemical failure survival data was also available.
Using the genes contained within selected gene signatures, hierar-
chical clustering was performed with Ward’s linkage method and
Euclidean distance to define two patient subgroups (k = 2). Associ-
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ations to biochemical failure survival were determined through
Cox proportional hazards survival analysis of the patient
subgroups.

2.4. Web-based micro-framework EBPSO application

A web-based micro-framework was developed using the Flask
Python module. To deal with the new functionality that Flask pro-
vides for EBPSO, the developed EBPSO module was further updated
and improved to adhere to these. These changes include retaining
the ranked history of unique signatures produced by EBPSO. New
visualization functions have been generated also. The top ten
unique candidate signatures produced from EBPSO are visualised
through hierarchical clustering heatmaps and receiver operating
characteristic (ROC) curves in Flask EBPSO. ROC curves are gener-
ated by plotting the true positive rate (TPR) or sensitivity against
the false positive rate (FPR) or specificity. The TPR relates to the
number of correctly identified real positive cases in a dataset
against the total number of real positive cases. The FPR relates to
the number of correctly identified real negative cases against the
total number of real negative cases. Thus, ROC curves are illustra-
tions demonstrating the diagnostic ability of binary classification.
The scikit-learn library was used for performing CV, train SVM clas-
sifiers for class label prediction probabilities, and compute the ROC
curve values. The StratifiedKFold utility allowed for CV to be per-
formed, splitting the input dataset with five splits. This resulted
in five different training and testing datasets to be evaluated. This
k-fold CV method was used instead of the previously defined
LOOCV as this would provide a quick assessment of how well a
trained model performs for visualisation purposes.

Interested collaborators are invited to contact the authors to
access the program code developed in this study.

3. Results

3.1. Comparative analysis between EBPSO and PySwarms BPSO

Regarding performance on the simulated datasets, EBPSO
demonstrated the ability to perform as accurately as BPSO whilst
consistently identifying candidate signatures with substantially
less associated features and within a significantly faster timeframe
(Table 2). Following this, performance on the gene expression
cohorts shows similar results. Only the FASTMAN prostate cancer
cohort for biochemical failure prediction showed increased accu-
racy for BPSO regarding the best signature produced. In this case,
Table 2
Comparing the best candidate gene signatures produced from EBPSO and BPSO on simula
datasets and the GSE116918 FASTMAN dataset was represented as single CPU runs, but w

Dataset Statistics EBPSO
Best Avera

Binary class simulated Accuracy (%) 99.5 99.5
Genes 5 9.7
Time (min) 1129 1185

Multi-class simulated Accuracy (%) 99 96.5
Genes 77 56.7
Time (min) 1447 1465

DLBCL Accuracy (%) 100 100
Genes 5 5.4
Time (min) 68.9 70.5

GSE43358 Accuracy (%) 100 100
Genes 2 2.3
Time (min) 17.8 18.2

GSE116918 FASTMAN Accuracy (%) 85.1 83.8
Genes 15 12.3
Time (min) 1464 1515

Abbreviations: EBPSO, Enhanced Binary Particle Swarm Optimization; BPSO, Binary Part

5551
PySwarms BPSO had superior accuracy for its best signature with
90% performance, whilst EBPSO still a similar accuracy with
85.1%. The overview of candidate gene signatures from EBPSO
and BPSO over ten runs can be seen for all the simulated and clin-
ical gene expression data sets in Appendix A.

3.2. Best gene signatures from EBPSO and BPSO on simulated datasets

Two simulated datasets were generated to represent the high
dimensionality gene expression cohorts that EBPSO should be used
towards for gene signature selection. To represent simpler binary
classification tasks, one of these simulated datasets had two differ-
ent classification labels, whilst the other simulated dataset had
three different classes to represent more complex multi-
classification tasks.

Focusing on the binary class simulated dataset, hierarchical
clustering of the 20 informative features shows each features rela-
tionship towards these two classes (Fig. 2A). EBPSO produced a
candidate gene signature of five features that demonstrated almost
perfect accuracy of 99.5% towards classification. The candidate
gene signature from EBPSO included two informative features as
193 and 241, as well as another three non-informative features
(Fig. 2B). BPSO produced a similarly accurate candidate signature,
but with 154 features it failed to generate a signature that was suc-
cinct. The candidate signature from BPSO included seven informa-
tive features, but also included an additional 147 non-informative
genes (Fig. 2C). EBPSO performed more favourably in comparison
to PySwarms BPSO regarding the average cost history over ten runs
of each method (Fig. 2D).

Using the more complex multi-class simulated dataset, hierar-
chical clustering for the 20 informative features shows the closely
correlated relationship between these features and the three
classes (Fig. 3A). EBPSO’s candidate signature included 77 features,
seven of which were informative features (Fig. 3B). BPSO produced
a candidate signature of 155 features in length (Fig. 3C). Similar
performance from EBPSO was observed in comparison to the 200
sample simulated dataset with two classes (Fig. 3D).

3.3. Best gene signatures from EBPSO and BPSO on clinical cohorts

Having evaluated EBPSO in simulated gene expression cohorts,
the algorithm was evaluated on publicly available gene expression
cohorts. The first of these was the DLBCL cohort, with PSO algo-
rithms classifying between the DLBCL and FL, two different lym-
phomas [22]. The previously identified eight probeset signature
ted and real patient gene expression data sets. Note that runtimes for the simulated
as run on four CPU’s.

BPSO
ge S.D. Best Average S.D.

0 99.5 99.5 0
2.8 154 157.1 2
37.7 7363 7426 44.5
1.9 99 99 0
59.8 155 159.6 3.5
49 10202.1 10264.7 48.1
0 100 99.2 0.7
0.8 69 69.2 5.2
1.1 207 204.8 5.8
0 100 100 0
0.5 57 63.6 3.3
0.3 29.2 29.4 0.3
0.9 90 88.8 0.8
7 98 92.8 6.1
58 5522 5451 87.8

icle Swarm Optimization; S.D., Standard Deviation.



Fig. 2. EBPSO and PySwarms BPSO on a simulated dataset of 200 samples, 500 features, two classes, and 20 informative features with a class separation of five. A. Hierarchical
clustering of the 20 informative features towards the two classes. B. Hierarchical clustering of the candidate signature selected by EBPSO. C. Hierarchical clustering of the
candidate signature selected by PySwarms BPSO. D. Cost history over 500 iterations for EBPSO (solid) and PySwarms BPSO (dashed). Abbreviations: EBPSO, Enhanced Binary
Particle Swarm Optimization; BPSO, Binary Particle Swarm Optimization.
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for distinguishing between these two lymphomas has been visual-
ized with hierarchical clustering (Fig. 4A). EBPSO produced a can-
didate signature with five probeset IDs out of the 250 lowest
differential expression p-value filtered input features to the algo-
rithm with 100% accuracy (Fig. 4B). BPSO however generated a
much larger candidate signature of 69 probesets with 100% accu-
racy also (Fig. 4C). Regarding the average cost performance over
ten runs of each PSO algorithm, EBPSO performed more favourably
over PySwarms BPSO (Fig. 4D). Between the top three selected can-
didate signatures and the known eight probeset signature, six
probesets are shared amongst them out of a combined total of 22
probesets between them (Fig. 4E). Five probesets are shared
between the first and second selected signatures from EBPSO as
L17131_rna1_at (HMGA1), U46006_s_at (CSPR2), X54941_at
(CKS1B), X78992_at (ZFP36L2) and M83751_at (MANF). Addition-
ally, one was shared with the first and second selected signature
and the known signature as D87119_at (TRIB2). Each of the probe-
sets selected by the top three selected candidate signatures were
shown to be statistically significant for differential expression
(Table 3).
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The next of these gene expression cohorts looked to distinguish
between TN and HER2-positive breast cancer patients. This study
used the limma R package to identify the top ten most DEGs based
on p-value between the two breast cancer molecular subtypes
(Fig. 5A) [29]. This allowed for the creation of a known genetic sig-
nature that could be compared with the results of the two PSO
algorithms. EBPSO produced a candidate signature consisting of
only two probeset IDs (Fig. 5B). BPSO however generated a candi-
date signature of 57 features (Fig. 5C). Much like the previous sim-
ulated and clinical datasets, EBPSO was able to outperform
PySwarms BPSO regarding their average cost value comparison
(Fig. 5D). The comparison of the features selected from the top
three candidate signatures produced from a single run of EBPSO
with the top ten DEGs identified by limma can be seen within its
associated Venn diagram (Fig. 5E). Each of the features selected
by the top three selected candidate signatures were shown to be
statistically significant for differential expression (Table 4). No fea-
tures were shared amongst the four signatures, demonstrating the
selection of unique signatures which all performed favourably with



Fig. 3. EBPSO and PySwarms BPSO on a simulated dataset of 200 samples, 500 features, three classes, and 20 informative features with a class separation of five. A.
Hierarchical clustering of the 20 informative features towards the three classes. B. Hierarchical clustering of the candidate signature selected by EBPSO. C. Hierarchical
clustering of the candidate signature selected by PySwarms BPSO. D. Cost history over 500 iterations for EBPSO (solid) and PySwarms BPSO (dashed). Abbreviations: EBPSO,
Enhanced Binary Particle Swarm Optimization; BPSO, Binary Particle Swarm Optimization.

R.G. Murphy, A. Gilmore, S. Senevirathne et al. Computational and Structural Biotechnology Journal 20 (2022) 5547–5563
100% accuracy for classification between HER2 against TN breast
cancer samples.

The final clinical gene expression cohort was of locally
advanced prostate cancer patients commencing radical radiother-
apy with ADT for biochemical failure prediction. The limma R pack-
age identified the top ten most statistically significant DEGs for
biochemical failure status in this cohort for the generation of a ref-
erence gene signature (Fig. 6A). EBPSO identified a 15 gene candi-
date signature, but this failed to produce a highly accurate
distinction for biochemical failure status (Fig. 6B). BPSO in compar-
ison produced a candidate signature of 98 genes, but with an
increase in accuracy for biochemical failure prediction in compar-
ison to EBPSO (Fig. 6C). EBPSO outperformed PySwarms BPSO
regarding their average cost value and the number of genes within
their candidate signature, however (Fig. 6D). One gene was shared
between the top selected signature from EBPSO and the previously
defined limma DEG signature for biochemical failure status, as
fibroblast activation protein alpha (FAP; Fig. 6E). Additionally,
one gene was shared between the first and third selected signa-
tures from EBPSO, being elongation factor for RNA polymerase II
2 (ELL2). Finally, one gene was shared between the second and
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third selected signatures from EBPSO, as prostate cancer associated
transcript 4 (PCAT4). FAP was the only gene that was statistically
significant following FDR correction as a differentially expressed
gene selected by the top three candidate signatures, and this gene
was only selected by the top candidate signature (Table 5). All the
genes selected by the top three candidate signatures were however
statistically significant with an unadjusted p-value.

As this clinical gene expression cohort also contained associated
patient survival data, the selected gene signatures were evaluated
with survival analysis to investigate their prognostic ability on
time to biochemical failure. Hierarchical clustering on the selected
genes within the selected signatures were used to define two sub-
groups for these patients. Cox proportional hazard survival mod-
elling was then applied to the subgroups to determine their
prognostic ability. The hierarchical clustering subgroups for the
limma DEG for biochemical failure status signature produced a sta-
tistically significant poor prognosis Subgroup2 of 78/248 (31.4%)
patients [HR = 3.56 (2.25 – 5.64); p < 0.001] (Fig. 7A). The sub-
groups produced for the EBPSO 15 gene candidate signature simi-
larly identified a poor prognosis Subgroup2 of 109/248 (44%)
patients, but with a greater risk of a biochemical failure event



Fig. 4. EBPSO and PySwarms BPSO on the DLBCL data set. A. Hierarchical clustering of eight previously identified features for best class separation towards the two classes. B.
Hierarchical clustering of the candidate signature selected by the EBPSO. C. Hierarchical clustering of the candidate signature selected by PySwarms BPSO. D. Cost history over
500 iterations for EBPSO (solid) and PySwarms BPSO (dashed). E. Venn diagram comparing the top three candidate signatures from a single run of EBPSO and the eight
previously identified features in A. Abbreviations: EBPSO, Enhanced Binary Particle Swarm; BPSO, Binary Particle Swarm Optimization; DLBCL, Diffuse Large B-Cell
Lymphoma.
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[HR = 4.1 (2.47 – 6.81); p < 0.001] (Fig. 7B). The subgroups for the
BPSO 98 gene candidate signature had a much larger poor progno-
sis Subgroup2 of 178/248 (71.8%) patients, and had a decreased risk
of a biochemical failure event in comparison with EBPSO
[HR = 2.97 (1.53 – 5.79); p < 0.001] (Fig. 7C). The subgroups pro-
duced for the top two ranked candidate signatures from the sepa-
rate single run of EBPSO both identified a statistically significant
poor prognosis Subgroup2 (Fig. 7D). The subgroups produced for
the third ranked candidate signature from EBPSO identified a
worse prognosis Subgroup1 of 195/248 (78.6%) patients, which
was not statistically significant for time to biochemical failure
[HR = 0.52 (0.27 – 1.01); p = 0.054].
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3.4. HTML GUI with Flask micro web framework

In addition to the creation of the adapted EBPSO PySwarms
Python module, a web-based micro-framework analytical applica-
tion was also developed for the EBPSO module (Video 1; Fig. 8).
This web-based application allowed for real time analytical visual-
isations and runtime statistics from the algorithm. More impor-
tantly, it would allow for the top ten candidate gene signatures
selected from EBPSO to be viewed. This study hypothesizes that
some of the candidate signatures will be unique regarding its
selected features.

The Flask EBPSO micro-framework has two main pages, the
Upload/View Data page, and the Monitor Signatures page. The



Table 3
Summary statistics from limma for the gene features selected by the top three ranked gene signatures selected by EBPSO on the DLBCL dataset for DLBCL vs FL. Feature names in
bold relate to features that have appeared in more than one of the top three ranked gene signatures from EBPSO.

Signature rank Feature name Gene LogFC p-value Adj(p-value)

1st ranked D87119_at TRIB2 �1.557 3.436e-11 6.123e-08
L17131_rna1_at HMGA1 1.321 1.791e-09 8.51e-07
U46006_s_at CSRP2 �1.724 6.651e-09 1.6e-06
X54941_at CKS1B 2.037 3.634e-07 3.365e-05
D26069_at ACAP2 �0.722 2.233e-06 1.373e-04
X78992_at ZFP36L2 �1.324 9.046e-06 4.243e-04
M83751_at MANF 0.778 1.143e-05 4.97e-04

2nd ranked D87119_at TRIB2 �1.557 3.436e-11 6.123e-08
L17131_rna1_at HMGA1 1.321 1.791e-09 8.51e-07
U46006_s_at CSPR2 �1.724 6.651e-09 1.6e-06
X54941_at CKSB1B 2.037 3.634e-07 3.365e-05
M22960_at CTSA 0.75 1.01e-06 7.12e-05
X78992_at ZFP36L2 �1.324 9.046e-06 4.243e-04
M83751_at MANF 0.778 1.143e-05 4.97e-04

3rd ranked M74093_at CCNE1 1.87 1.448e-11 3.44e-08
M14328_s_at ENO1 0.899 1.191e-09 6.531e-07
M23323_s_at CD3E �0.924 2.203e-09 9.551e-07
L19437_at TALDO1 0.749 3.311e-07 3.147e-05
Z35227_at RHOH �0.978 6.402e-07 5.015e-05
X66867_cds1_at MAX �1.133 1.451e-05 5.868e-04
HG4258-HT4528_at — �0.967 2.878e-05 9.634e-04

Abbreviations: LogFC, Log Fold Change; Adj(p-value), Adjusted p-value; TRIP2, Tribbles Pseudokinase 2; HGMA1, High Mobility group AT-hook 1; CSRP2, Cysteine and glycine
Rich Protein 2; CKS1B, CDC28 protein Kinase regulatory Subunit 1B; ACAP2, ArfGAP with Coiled-coil, Ankyrin repeat and PH domains 2; ZFP36L2, ZFP36 ring finger protein
Like 2; MANF, Mesencephalic Astrocyte derived Neurotrophic Factor; CTSA, Cathepsin A; CCNE1, Cyclin E1; ENO1, Enolase 1; CD3E, CD3e molecule; TALDO1, Transaldolase 1;
RHOH, Ras Homolog family member H; MAX, MYC Associated factor X.
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Upload/View Data page allows for the end user to load the tran-
scriptomics data and its associated clinical information class labels
for classification as CSV files. This page also allows for the previ-
ously uploaded datasets to be viewed for review. The Monitor Sig-
natures page runs EBPSO and shows real time visualizations.
Additionally, the final visualizations and candidate signature
statistics are saved when EBPSO has completed. These completed
sessions can be reloaded at another time point and visualized on
the web-based application for greater interactivity of the produced
results.
4. Discussion

The results presented with these simulated and real patient
gene expression cohorts demonstrate that EBPSO consistently out-
performs BPSO. Additionally, EBPSO was shown to outperform a
supervised feature selection method with limma differential
expression for biochemical failure prediction for prostate cancer
patients. These results also reflect the improved performance of
PSO as a feature selection technique in comparison with other evo-
lutionary algorithms and unsupervised methods in combination
with SVM [33].

Using the simulated cohorts, it can be demonstrated that both
of the different PSO methods failed to distinguish the highly infor-
mative features from non-informative features due to the inclusion
of non-information features in candidate gene signatures. When
these highly informative features are included within a gene signa-
ture, their contribution towards classification may be highly signif-
icant. In this scenario, the inclusion of non-informative features
may not affect accuracy performance, and thus these PSO algo-
rithms may fail to separate these non-informative features from
their candidate signatures.

It is worth noting the deceased accuracy, in comparison to the
other patient gene expression cohorts, from the best performing
candidate gene signatures towards biochemical failure prediction
for prostate cancer patients from both PSO methods investigated.
Based on the top ten DEGs for biochemical failure in this cohort
seen in Fig. 6, it is clear that the failure to create a distinction
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between biochemical failure status represents a more complex
classification task in comparison to the other gene expression
cohorts. Additionally, the classification tasks associated with the
other gene expression cohorts are related to making predictions
for well-defined cancer subtypes in DLBCL against FL, and TN
against HER2-postive breast cancers. Biochemical failure however
is an indicator of prostate cancer disease progression and its pre-
diction for definitive radiotherapy treated prostate cancer patients
is a less studied and more complex classification task. Despite one
prostate cancer gene signature being shown to be prognostic in
predicting for biochemical failure in this cohort [34], biomarker
discovery in this cohort has yet to be investigated for comparison.
4.1. EBPSO identifies signatures with informative features and few
non-informative features

The original EBPSO algorithm focused heavily on classification
accuracy, the number of genes within a signature, and the time
taken to complete a single run of EBPSO. Whilst these are impor-
tant in the definition of the algorithm, there is no mention of what
these selected genes are, or more importantly their importance
towards classification accuracy. We used simulated datasets in
order to identify these important or informative genes to deter-
mine if they had been selected by candidate signatures produced
from EBPSO.

In the simulated datasets, the informative features were identi-
fied by both EBPSO and PySwarms BPSO. Other non-informative
features were also included in these candidate signatures, how-
ever. Some of these non-informative features were also not con-
tributing towards classification either and were not needed to be
included in the candidate signature. As previously discussed, pos-
sible reasons for this include the potential for informative genes
with large class separation values increasing overall accuracy for
a candidate gene signature and thus the inclusion of some non-
informative genes may not affect is ability in classification accu-
racy. These results show that the candidate signatures identified
from EBPSO may not contain important or informative features
only, and could be trapped in closely related local minima and



Fig. 5. EBPSO and PySwarms BPSO on GSE43358. A. Hierarchical clustering of the top ten features selected on p-value from limma. B. Hierarchical clustering of the candidate
signature selected by EBPSO. C. Hierarchical clustering of the candidate signature selected by PySwarms BPSO. D. Cost history over 500 iterations for EBPSO (solid) and
PySwarms BPSO (dashed). E. Venn diagram comparing the top three candidate signatures from a single run of EBPSO and the top ten features selected from limma in A.
Abbreviations: EBPSO, Enhanced Binary Particle Swarm Optimization; BPSO, Binary Particle Swarm Optimization.

Table 4
Summary statistics from limma for the gene features selected by the top three ranked gene signatures selected by EBPSO on GSE43358 for TNBC vs HER2 breast cancer subtypes.

Signature rank Feature name Gene LogFC p-value Adj(p-value)

1st ranked 211026_s_at MGLL �0.994 2.308e-05 0.007
218440_at MCC1 0.827 1.791e-09 0.007
201728_s_at KIAA0100 �0.921 3.253e-05 0.008

2nd ranked 219344_at SLC29A3 �0.625 5.835e-06 0.003
227279_at TCEAL3 �0.981 6.056e-06 0.003
224809_x_at TINF2 �0.373 8.197e-06 0.004

3rd ranked 221732_at CANT1 �0.94 1.914e-06 0.002
222400_s_at ADI1 0.58 4.098e-05 0.009
223344_s_at MS4A7 �0.858 4.175e-05 0.009

Abbreviations: LogFC, Log Fold Change; Adj(p-value), Adjusted p-value; MGLL, Monoglyceride Lipase; MCC1, Methylcrotonyl-CoA Carboxylase subunit 1; SLC29A3, solute
Carrier family 29 member 3; TCEAL3, Transcription Elongation factor A Like 3; TINF2, TERF1 Interacting Nuclear Factor 2; CANT1, Calcium Activated Nucleotidase 1; ADI1,
Acireductone Dioxygenase 1; MS4A7, Membrane Spanning 4-domains A7.
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Fig. 6. EBPSO and PySwarms BPSO on GSE116918 FASTMAN. A. Hierarchical clustering of the top ten features selected based on p-value from limma. B. Hierarchical clustering
of the candidate signature selected by EBPSO. C. Hierarchical clustering of the candidate signature selected by PySwarms BPSO. D. Cost history over 500 iterations for EBPSO
(solid) and PySwarms BPSO (dashed). E. Venn diagram comparing the top three candidate signatures from a single run of EBPSO and the top ten features selected from limma
in A. Abbreviations: EBPSO, Enhanced Binary Particle Swarm Optimization; BPSO, Binary Particle Swarm Optimization.
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not the best solution global minima. Regardless, 99% accuracy and
above was demonstrated with these candidate signatures on these
simulated datasets, but the inclusion of non-informative features
has larger implications when identifying genetic signatures on
clinical cohorts.
4.2. EBPSO identifies unique signatures with different underlying
biology

Regarding the clinical data sets, there is the potential to further
validate the signature selection from EBPSO by exploring the
underlying biology driving their selection. The identification of
the most informative genetic signatures amongst these highly
dimensional transcriptomic cohorts will allow for greater efforts
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in biomarker discovery with greater diagnostic, predictive, and
prognostic potential. Prognostic gene signatures for identifying
which early breast cancer patients would have more aggressive
disease in the future have already been translated into clinical
practice, highlighting the clinical potential of gene signatures
[35]. The EBPSO signatures have been selected based on both their
classification accuracy and how succinct they are in terms of the
number of genes involved within the signature. The more succinct
a signature can become whilst retaining its classification accuracy
is most beneficial towards its clinical translation. This is reflected
in the reduction of financial cost associated with using a succinct
signature within clinical practice.

Amongst the transcriptional datasets, no single gene or feature
was shared amongst the top three candidate signatures produced



Table 5
Summary statistics from limma for the gene features selected by the top three ranked gene signatures selected by EBPSO on GSE116918 FASTMAN for biochemical failure status.
Feature names in bold relate to features that have appeared in more than one of the top three ranked gene signatures from EBPSO. Abbreviations for the official gene symbols can
be seen in Appendix B.

Signature rank Feature name LogFC p-value Adj(p-value)

1st ranked FAP 0.599 4.069e-07 0.008
MX1 0.331 1.424e-05 0.046
RAB27B �0.507 2.844e-05 0.061
RGS16 0.341 5.305e-05 0.069
UACA 0.225 0.0003 0.137
ADC 0.188 0.0003 0.137
IGFBP3 0.247 0.0004 0.158
AKAP7 �0.226 0.0012 0.247
FCER1G 0.208 0.0024 0.302
ANO10 0.214 0.0038 0.362
COL1A2 0.323 0.004 0.364
THBS1 0.164 0.0047 0.394
GLIPR1 0.193 0.0049 0.402
ELL2 �0.199 0.0064 0.419
MFSD4 �0.209 0.007 0.432
APPBP2 �0.149 0.0131 0.498
PDIA5 �0.2 0.0138 0.505
OR51D1 0.203 0.0198 0.579

2nd ranked RTCA �0.274 0.0002 0.107
TLL1 0.218 0.0002 0.112
SIAH1 �0.318 0.002 0.271
ZNF382 0.229 0.002 0.281
PPAPDC1B �0.344 0.002 0.294
ASPN 0.382 0.003 0.345
CHRNA2 �0.325 0.003 0.357
LYZ 0.455 0.004 0.362
PCED1A 0.151 0.005 0.394
RBP7 �0.223 0.008 0.442
DESI2 0.139 0.013 0.501
PCAT4 �0.52 0.014 0.511
SYNPO 0.153 0.019 0.575

3rd ranked ORL51L1 �0.257 0.0007 0.197
FNDC1 0.602 0.0008 0.217
IFI44L 0.343 0.0009 0.217
TMEM138 0.139 0.001 0.236
TRPM8 �0.482 0.001 0.236
ZNF702P �0.376 0.001 0.245
PDCD1LG2 0.135 0.001 0.245
HOX19 �0.352 0.002 0.271
CTSD 0.323 0.002 0.274
MRPL17 �0.292 0.003 0.319
SAMD3 0.332 0.003 0.341
TMSB10 0.283 0.004 0.362
SUSD4 �0.24 0.004 0.362
MPEG1 0.256 0.004 0.371
SLFN5 0.207 0.006 0.412
ELL2 �0.199 0.006 0.419
PRSS27 0.208 0.008 0.441
PCAT4 �0.52 0.014 0.511
CRIP1 0.136 0.017 0.558
ZNF613 �0.216 0.018 0.567
AIFM1 �0.139 0.02 0.581
GFM2 �0.173 0.025 0.611

Abbreviations: LogFC, Log Fold Change; Adj(p-value), Adjusted p-value.
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from EBPSO and a previously defined signature for classification. In
the DLBCL dataset for DLBCL against FL, five features were shared
between the first and second placed candidate signatures produced
from EBPSO, being L17131_rna1_at, U46006_s_at, X54941_at,
X78992_at and M83751_at. L17131_rna1_at is a probeset ID which
is annotated towards the high mobility group AT-hook 1 (HMGA1)
gene. HGMA1 has been identified as a master regulator for contri-
butions towards disease progression of FL patients for transforma-
tion towards the aggressive DLBCL [36–38]. To complement this,
HGMA1 was downregulated in FL samples and upregulated in
DLBCL samples in this dataset. X54941_at is annotated as the
CDC28 protein kinase regulatory subunit 1B (CKS1B). CKS1B has
been associated with greater survival outcomes following
chemotherapy on FL patients [39].
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For the candidate signatures produced by EBPSO for the breast
cancer cohort, none of their features were seen to be shared. In
the prostate cancer cohort for biochemical failure prediction, the
FAP gene was shared between the top candidate signature pro-
duced from EBPSO and the limma ten gene signature. FAP has been
associated with metastatic disease in prostate cancer [40], and in
turn was also upregulated in the prostate cancer cohort. Addition-
ally, it has been seen to be expressed in human prostate cancer
stroma [41]. The ELL2 gene was shared between the first and third
candidate signatures from EBPSO. ELL2 is androgen responsive
gene that is largely seen as a tumour suppressor in the prostate
[42] and has been shown to be downregulated in advanced pros-
tate cancer [43]. This was also reflected in the prostate cancer
cohort as being downregulated for biochemical failure status.



Fig. 7. Survival analysis of hierarchical clustering patient subgroups with selected gene signatures from EBPSO and PySwarms BPSO on GSE116918 FASTMAN. A. Kaplan-Meier
plot of the subgroups for the top ten features selected based on p-value from limma. B. Kaplan-Meier plot of the subgroups for the candidate signature selected by EBPSO. C.
Kaplan-Meier plot of the subgroups for the candidate signature selected by PySwarms BPSO. D. Forest plot of the signatures from limma, EBPSO (TopEBPSO), and PySwarms
BPSO, and the top three ranked candidate signatures from a single run of EBPSO (EBPSO1-3; see Fig. 6E). Abbreviations: DEG, Differentially Expressed Gene; BCR, Biochemical
Recurrence; EBPSO, Enhanced Binary Particle Swarm Optimization; BPSO, Binary Particle Swarm Optimization.
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However, it has been reported that ELL2 is overexpressed in AR-
negative neuroendocrine prostate cancer as an oncogene [44].
4.3. EBPSO for multiple signature selection on big data cohorts

EBPSO could be used for identifying a range of unique gene sig-
natures in highly dimensional cohorts to help mine these ever
increasing datasets. High throughput technologies allow for the
generation of huge datasets at efficient costs, leading to what is
being defined as the ‘big data’ era in bioinformatics [3]. As these
datasets increase in information volume over time, traditional
bioinformatics tools and software will struggle to fully landscape
different key drivers in their biology amongst different predictors
for clinical outcome and potential therapeutic benefit. Thus, new
bioinformatics tools and software will need to be able to appropri-
ately mine these vast datasets with accuracy, the ability to handle
the amount of information, and produce a sufficient runtime for
analysis [45]. This study utilises PSO as an evolutionary algorithm
to provide unique candidate solutions for potential gene signature
selection towards diagnostic, predictive, and prognostic biomark-
ers. The implementation of EBPSO furthers this by also demon-
strating high accuracy, succinct signatures, and with improved
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runtimes. Other types of evolutionary algorithms have been uti-
lised in this field also. Examples of this include the Atlas Correla-
tion Explorer (ACE) [46]. ACE can identify patterns within TCGA
between different matched -omics data types and clinical informa-
tion. It has also demonstrated its ability to identify novel cancer
biomarkers in big data cohorts with fast runtimes.

It has been suggested that gene signature discovery is often
specific to its training data, and thus the inclusion or exclusion of
some samples would produce a different gene signature [1]. As
previously discussed, gene signature selecting is dominated by
defining a single signature. This study has demonstrated how mul-
tiple unique candidate gene signatures of interest could potentially
exist within a single transcriptomic cohort based on the same clas-
sification task. These unique signatures of interest would be
selected by different end-users through characteristics such as its
associated cost value, performance accuracy, number of genes,
and the biology involved in the selected gene.
4.4. Study limitations

EBPSO has demonstrated its strong performance in identifying
accurate gene signatures with limited number of features on both



Fig. 8. EBPSO web-based analytical application with Flask. A. Upload/View Data homepage for loaded data sets to be previewed or deleted and new data sets to be loaded into
the application’s file system. B. Monitor Signatures page displaying: visualization options and an interactive gene signature performance cost leaderboard (left panel); real
time visualizations (middle panel); and user input parameters including loading historical application runs and button for downloading the signatures from a completed
application run (right panel). Abbreviations: EBPSO, Enhanced Binary Particle Swarm Optimization.
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simulated and clinical transcriptomics datasets. However, its per-
formance on gene signature selection has only been applied to
microarray transcriptomics. RNA-seq is a next generation sequenc-
ing (NGS) technique to capture the transcriptome [47]. RNA-seq
has been adopted due to microarrays pitfalls which include
cross-hybridization artifacts and poor quantification of lowly and
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highly expressed genes. Additionally, it has the ability to detect
novel transcripts, allele-specific expression and splice junctions
[48]. RNA-seq and microarray technology have been compared to
demonstrate RNA-seq’s ability to detect more DEGs with higher
fold-changes [49]. EBPSO adapted PySwarms was developed to
aid gene signature selection on highly dimensional datasets in pre-



Table A1
Candidate gene signature selection results over ten runs of EBPSO on simulated datasets. These simulated datasets were created based on binary and multi-class classification
tasks.

Run Binary class Multi-class

Accuracy (%) Genes Accuracy (%) Genes

1 99.5 8 97.5 12
2 99.5 11 96.5 57
3 99.5 16 84 50
4 99.5 8 93.5 40
5 99.5 9 96.5 25
6 99.5 5 99 218
7 99.5 10 99 77
8 99.5 11 95 29
9 99.5 10 97.5 20
10 99.5 9 96 19
Average ± S.D. 99.5 ± 0 9.7 ± 2.8 96.5 ± 1.9 56.7 ± 59.8

Abbreviations: EBPSO, Enhanced Binary Particle Swarm Optimization.

Table A2
Candidate gene signature selection results over ten runs of EBPSO on real patient gene expression cohorts DLBCL, GSE43358, and GSE116918 FASTMAN.

Run DLBCL GSE43358 GSE116918 FASTMAN

Accuracy (%) Genes Accuracy (%) Genes Accuracy (%) Genes

1 100 5 100 2 83.5 4
2 100 5 100 2 83.5 11
3 100 5 100 3 84.7 22
4 100 7 100 2 92.7 10
5 100 5 100 2 85.1 26
6 100 7 100 2 83.5 11
7 100 5 100 2 83.9 6
8 100 5 100 2 85.1 15
9 100 5 100 3 83.1 11
10 100 5 100 3 82.7 7
Average ± S.D. 100 ± 0 5.4 ± 0.8 100 ± 0 2.3 ± 0.5 83.8 ± 0.9 12.3 ± 7

Abbreviations: EBPSO, Enhanced Binary Particle Swarm Optimization; DLBCL, Diffuse Large B-Cell Lymphoma.
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sent studies and for the future big data eta within bioinformatics. It
is assumed that future studies will look to utilise RNA-seq for tran-
scriptome capturing due to its advantages over microarray tech-
nologies [50]. Thus, it is crucial that it is properly validated on
RNA-seq datasets to ensure its ability to identify accurate and suc-
cinct gene signatures on the transcriptome capturing technology.

4.5. Future perspectives

Further improvements could look at repurposing the original
EBPSO implementation from a feature selection algorithm and
towards a classification model development framework for addi-
tional functionality of the method. The features ranking method
utilised in the original EBPSO implementation uses the information
gain ratio technique to pre-select the top 500 features towards the
classification labels on the full original dataset to be used as input
for EBPSO. However, feature selection on the full original data
when EBPSO uses the full dataset to evaluate PSO’s feature selec-
tion ability introduces performance bias into these estimates. To
overcome this and to better evaluate the classification models pro-
duced by EBPSO (as opposed to a feature selection technique), sep-
arate training and unseen testing datasets would need to be
generated on the whole dataset before the feature ranking method.
This would allow pre-selected features for input towards EBPSO to
be independent from the final testing dataset.

5. Conclusions

This study has successfully adapted a PSO Python module in
PySwarms towards EBPSO for greater efforts in predictive gene sig-
nature selection. EBPSO has been demonstrated to perform
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favourably for gene signature generation in comparison to con-
ventional BPSO. This has been evaluated as having similar predic-
tive accuracy performance, significantly smaller gene signature
lengths, and dramatic increases in runtime to completion. Using
real cancer transcriptomics cohorts, EBPSO has demonstrated
the ability to identify accurate, succinct, and prognostically signif-
icant gene signatures that are unique from one another. This has
been proposed as a promising alternative to overcome the issues
regarding traditional single gene signature generation. Interpreta-
tion of key genes within the signatures provided biological
insights into the candidate signatures associated functions that
were well correlated to their cancer type. Within the DLBCL data-
set for DLBCL against FL classification, HGMA1 was identified
within the top two candidate signatures from EBPSO. HGMA1
has been associated as a master regulator of disease progression
of FL patients towards the more aggressive DLBCL, and was upreg-
ulated for DLBCL samples in the DLBCL dataset. Despite the mod-
erate predictive accuracy, but statistically significant prognostic
ability, on the FASTMAN prostate cancer dataset for biochemical
failure classification, the top candidate signature identified the
FAP gene in its gene signature. FAP has been associated with
metastatic disease in prostate cancer is seen to be expressed in
prostate cancer stroma, and was upregulated for biochemical fail-
ure status in the prostate cancer dataset. This study proposes
improving EBPSO by functioning as an integrated feature selection
and classification model parameter selection technique for
increased predictive performance of the candidate gene signature
classification models. Additionally, development of downstream
analysis for a selected candidate signature would be beneficial
to better translate these gene signatures towards validation
cohorts and the potential use within the clinic.



Table B1
Abbreviations of the official gene symbols from Table 5.

Signature
rank

Feature
name

Full gene name

1st ranked FAP Fibroblast Activation Protein alpha
MX1 MX dynamin like GTPase 1
RAB27B RAB27B, member RAS oncogene family
RGS16 Regulator of G protein Signaling 16
UACA Uveal Autoantigen with Coiled-coil domains and

Ankyrin repeats
ADC —
IGFBP3 Insulin like Growth Factor Binding Protein 3
AKAP7 A-Kinase Anchoring Protein 7
FCER1G FC Epsilon Receptor IG
ANO10 Anoctamin 10
COL1A2 Collagen type I Alpha 2 chain
THBS1 Thrombospondin 1
GLIPR1 GLI Pathogenesis Related 1
ELL2 Elongation factor for RNA polymerase II 2
MFSD4 Major Facilitator Superfamily Domain containing

4
APPBP2 Amyloid beta Precursor Protein Binding Protein 2
PDIA5 Protein Disulfide Isomerase family A member 5
OR51D1 Olfactory Receptor family 51 subfamily D member

1
2nd

ranked
RTCA RNA 30-Terminal phosphate Cyclase
TLL1 Tolloid Like 1
SIAH1 SIAH E3 ubiquitin protein ligase 1
ZNF382 Zinc Finger protein 382
PPAPDC1B Phosphatidic Acid Phosphatase type 2 Domain

Containing 1B
ASPN Asporin
CHRNA2 Cholinergic Receptor Nicotinic Alpha 2 subunit
LYZ Lysozyme
PCED1A PC-Esterase Domain containing 1A
RBP7 Retinol Binding Protein 7
DESI2 Desumoylating Isopeptidase 2
PCAT4 Prostate Cancer Associated Transcript 4
SYNPO Synaptopodin

3rd
ranked

ORL51L1 —
FNDC1 Fibronectin type III Domain Containing 1
IFI44L Interferon Induced protein 44 Like
TMEM138 Transmembrane protein 138
TRPM8 Transient Receptor Potential cation channel

subfamily M member 8
ZNF702P Zinc Finger protein 702, Pseudogene
PDCD1LG2 Programmed Cell Death 1 Ligand 2
HOX19 Homeobox-leucine zipper protein HOX19
CTSD Cathepsin D
MRPL17 Mitochondrial Ribosomal Protein L17
SAMD3 Sterile Alpha Motif Domain containing 3
TMSB10 Thymosin Beta 10
SUSD4 Sushi Domain containing 4
MPEG1 Macrophage Expressed 1
SLFN5 Schlafen Family member 5
ELL2 Elongation factor for RNA polymerase II 2
PRSS27 Serine Protease 27
PCAT4 Prostate Cancer Associated Transcript 4
CRIP1 Cysteine Rich Protein 1
ZNF613 Zinc Finger protein 613
AIFM1 Apoptosis Inducing Factor Mitochondria

associated 1
GFM2 GTP dependent ribosome recycling Factor

Mitochondrial 2
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Appendix A. Overview of candidate gene signatures from EBPSO
over ten runs

In simulated data sets, EBPSO demonstrated excellent average
accuracy performance of at least 96.5 %, whilst still producing suc-
cinct signatures with an average number of features selected at
56.7 at its maximum (Table A.1). In the binary classification simu-
lated dataset, highly accurate signatures were selected with fea-
ture numbers as small as five. The multi-class simulated dataset
produced similar performances in comparison to the binary classi-
fication dataset. Much larger feature numbers in the selected sig-
natures in the multi-class data set were produced. The average
number of features in a signature was 56.7. The standard deviation
for this was also very high at 59.8, higher than the average number
of features in a signature. This is showcased through a mix of dif-
ferently sized signatures, both significantly small and large, across
the ten runs of EBPSO.

In the selected clinical data sets, EBPSO also demonstrates
highly accurate and compact selected signatures much like the
simulated datasets. 100 % accuracy was achieved in all of the ten
runs of EBPSO for the DLBCL and the GSE43358 HER2 against TN
breast cancer data set (Table A.2). Poorer signature performances
were demonstrated on the GSE116918 FASTMAN prostate cancer
data set for classification on biochemical failure status. The great-
est accuracy for a signature for this data set was at 85.1 %.

Appendix B. Abbreviations of the official gene symbols from
Table 5.

Table B1

Appendix C. Supplementary data

Supplementary data to this article can be found online at
https://doi.org/10.1016/j.csbj.2022.09.033.
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