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Abstract 26 

Virtual Reality (VR) allows users to interact with 3D immersive environments, and will be a 27 

key technology across many domain applications, including access to a future metaverse. 28 

Yet, consumer adoption of VR technology is limited by cybersickness (CS) - a debilitating 29 

sensation accompanied by a cluster of symptoms including nausea, oculomotor issues and 30 

dizziness. A leading problem is the lack of automated objective tools to predict or detect CS 31 

in individuals, which can then be used for resistance training, timely warning systems or 32 

clinical intervention. This paper explores the spatiotemporal brain dynamics and heart rate 33 

variability involved in cybersickness, and uses this information to both predict and detect CS 34 

episodes. The present study applies deep learning of EEG in a spiking neural network (SNN) 35 

architecture to predict CS prior to using VR (85.9%, F7) and detect it (76.6%, FP1, Cz). ECG 36 

derived sympathetic heart rate variability (HRV) parameters can be used for both prediction 37 

(74.2%) and detection (72.6%) but at a lower accuracy than EEG. Multimodal data fusion of 38 

EEG and sympathetic HRV does not change this accuracy compared to ECG alone. The 39 

study found that Cz (premotor and supplementary motor cortex) and O2 (primary visual 40 

cortex) are key hubs in functionally connected networks associated with both CS events and 41 

susceptibility to CS. F7 is also suggested as a key area involved in integration of information 42 

and implementation of responses to incongruent environments that induce cybersickness. 43 

Consequently, Cz, O2 and F7 are presented here as promising targets for intervention.  44 

 45 

Keywords: Cybersickness; Virtual reality, Spiking neural networks; EEG, ECG, NeuCube. 46 

 47 

 48 

 49 

 50 
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 51 

 52 

Introduction 53 

Virtual Reality (VR) technology is becoming prevalent in entertainment, art, education, 54 

social and professional settings[1,2]. VR allows for interactive immersion into shared digital 55 

environments that can be accessed by many. Despite this, individual experiences in VR 56 

remain far from idyllic. Drawbacks exist in the form of cybersickness (CS) - a debilitating 57 

sensation accompanied by a cluster of symptoms that include nausea, oculomotor issues and 58 

dizziness[3]. It is unfortunate that limitations to human physiology and perception form a 59 

barrier to consumer adoption of VR technology; especially since our world continually 60 

charges towards a nexus of virtual and real-world interactions. A way to combat CS would be 61 

to utilize a tool that predicts or detects it. Yet, these tools must be automated and objective, 62 

so that preparations or active responses like training resistance, timely warning systems and 63 

clinical intervention can be implemented. Tracking of CS is currently restricted to subjective 64 

reports through verbal confirmation or questionnaires. Not only do these methods not allow 65 

for future prediction, but they are time inefficient and require manual input. With current 66 

technology at our disposal, objective biomarkers correlated with cybersickness can be 67 

collected from wearable devices and fed into machine learning algorithms for streamlined, 68 

automatic prediction and/or detection of cybersickness events[4]. While various models for 69 

prediction and detection of CS severity have been proposed[4,5], there lacks a way to both 70 

collect CS data and continue to generate new knowledge about the condition through 71 

machine learning assisted approaches. To achieve this, the present study uses a modified 72 

version of the brain-inspired NeuCube SNN architecture[6] to both predict and detect CS 73 

whilst generating new knowledge about the condition. 74 

 75 
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 76 

There are several reasons for choosing SNNs for this purpose. SNNs are advanced machine 77 

learning techniques[7] and are considered the third generation of artificial neural networks. 78 

They simulate the behaviour of biological neural networks by creating and updating 79 

connections between spiking neurons (synaptic connections) to learn temporal associations 80 

between them. This architecture and mechanism of learning has several advantages in 81 

temporal information processing[8-13] over that of traditional neural networks. This includes 82 

robustness to noise through the encoding of consecutive time series data, such as EEG, into a 83 

compressed data format known as spikes (binary units) [7]. Encoding procedures such as 84 

threshold-based-spike-generation, produce spikes that represent a change in consecutive 85 

values above a certain threshold, allowing for changes in data to be captured over time . 86 

Additionally, if multiple time series, such as EEG channels, are modelled in a single SNN, 87 

patterns of interactions between the changes in their time series can be detected and analysed. 88 

SNN architectures can further benefit from the usage of brain templates that specify a spatial 89 

distribution in the anatomical shape of a brain. Upon training, these models can be considered 90 

an interpretable spatiotemporal map of the brain activities measured, which assists to better 91 

understand brain dynamics under diverse conditions. Further on, this spatiotemporal map can 92 

be represented as a feature vector, and additional parameters from other biologically relevant 93 

data such as HRV can be added for classification of different brain states.  94 

 95 

Consequently, the present study performs deep learning of integrated EEG and sympathetic 96 

heart rate variability (HRV) data in an interpretable dynamically evolving spiking neural 97 

network (SNN) architecture. This architecture mimics the biological structure and processing 98 

mechanisms of the human brain, and captures spatiotemporal information from EEG signals 99 

to form a dynamically updateable neural map of CS. A machine learning algorithm was 100 
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developed that can detect CS events (76.6%) and predict it prior to VR usage at resting 101 

baseline (85.9%) using electroencephalogram (EEG) data. F7 alone was the most optimal 102 

input for cybersickness prediction. The algorithm also integrated fusion of electrocardiogram 103 

(ECG) heart rate variability data but it did not improve classification accuracy. The study 104 

found that features related to cybersickness susceptibility are diverse and that highlighted 105 

features change over time. Amongst many important features, Cz (premotor and 106 

supplementary motor cortex) and O2 (primary visual cortex) are key hubs in functionally 107 

connected networks associated with both CS events and susceptibility to CS. According to 108 

accuracy results and analysis of CS related brain hubs, Cz, O2 and F7 present as promising 109 

targets for intervention. The study additionally proceeded with an exhaustive analysis to find 110 

the best time segment during a resting-state EEG baseline and its data length for optimal 111 

prediction accuracy.  112 

 113 

Contributions 114 

In summary, the paper contributes the following: 115 

- A novel approach to the prediction and detection of cybersickness using interpretable 116 

spiking neural networks (SNN) and weighted K-nearest neighbor (KNN) algorithms 117 

using EEG and ECG data, both separately and in their integration. 118 

- Optimized SNN architecture based on inherent characteristics of cybersickness 119 

- Machine learning assisted knowledge discovery and insight into the spatiotemporal 120 

brain dynamics of cybersickness 121 

- Considerations for feature reduction for diagnostic and predictive CS computational 122 

models.  123 

- Machine learning extracted clinical biomarkers for the development of intervention 124 

strategies. 125 
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-  126 

Methods 127 

Subjects  128 

Sixty-four participants, male (29) and female (35), age range of 18-33 years (mean 23, 129 

standard deviation  4.1). Subjects were recruited from the student and working population. 130 

The exclusion criteria were a previous diagnosis of neurological disorder, cardiovascular 131 

disease, diabetes, gastrointestinal disorder, medications, or smoking. All subjects had either 132 

normal or corrected visual acuity with contact lenses. This study was approved by the 133 

University of Otago Ethics Committee (H20/169) and performed in accordance with relevant 134 

guidelines and regulations. All participants provided signed consent. 135 

 136 

Experimental equipment 137 

A VR video of rotating stars published by previous researchers was played in an HTC Vive 138 

headset (HTC Corporation, Taipei, Taiwan). EEG was recorded using starstim32 139 

(Neuroelectrics). ECG was recorded using Shimmer3 5 lead ECG (Shimmer, Dublin, Ireland) 140 

at a sampling rate of 512 Hz. Five electrodes were placed, two 5 cm above the pelvic girdle, 141 

labelled according to proximity towards the left leg (LL) and right leg (RL), and two 5 cm 142 

below the clavicle, labelled according to proximity towards the left arm (LA) and right arm 143 

(RA), with the fifth electrode at the V3 position relating to the midway point between the 4th 144 

and 5th intercostal space. Data obtained from the LL-RA channel between electrodes was 145 

used for analysis. 146 

 147 
Software 148 

iMotions 8.0 (iMotions, Cophenhagen, Denmark) was used to synchronize EEG and ECG 149 

data recordings for a unified collection of measurement time series. Live view of biosensor 150 

data streaming ensured quality data collection and so that markers separating baseline, 151 
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stimulation and post stimulation could be placed during the experiment. Neucube was used 152 

for the SNN architecture and feature vector production. Python 3.8.8 was used for the 153 

classification algorithms.  HRV was analyzed using Kubios HRV Premium Ver. 3.3 154 

software[14] (Kubios, Kuopio, Eastern Finland). For 10s HRV results, Neurokit2[15] was 155 

used to determine R-peaks and pyHRV[16] was used to calculate RMSSD. The VR video 156 

used in this experiment was developed in previous work by researchers from Stanford 157 

University, and was chosen for its propensity to induce cybersickness in individuals. The VR 158 

video consists of clockwise rotating white dots about the roll axis, dispersed at different 159 

depths through the visual foreground and background[17]. 160 

 161 

Protocol 162 

Participants (n=64) underwent a 2 minute resting state baseline (A) before VR immersion 163 

without HMD usage, then watched a 2 minute VR video of rotating stars (B), followed by 164 

removal of the headset and a 2 minute recovery period. EEG and ECG was recorded 165 

continuously throughout the entire experiment. To mitigate any potential noise, participant 166 

immersion in VR was a passive ordeal where the only requirement was to stare straight ahead 167 

with minimal body and head movement, and all parts the experiment were seated. The 168 

conscious perception of cybersickness was reported via a thumbs up, and was simultaneously 169 

marked on the data stream. Individuals who reported cybersickness and those that did not 170 

(controls) were separated into two groups. A pre-experiment motion sickness susceptibility 171 

questionnaire[18] (MSSQ-Short) was administered to assess motion sickness history and 172 

susceptibility, along with a post-experiment simulator sickness questionnaire[19] (SSQ) to 173 

collect individual sickness ratings. 174 

 175 
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 176 

 177 

 178 

 179 

 180 

 181 

 182 

Figure 1. a) Experiment flow, b) VR video example  183 

 184 

Statistics  185 

A Mann-Whitney U test was run to compare between cybersick and control groups for the 186 

following data: MSSQ-short scores, SSQ scores, spike count and HRV parameters -  187 

Parasympathetic nervous system index (PNS), sympathetic nervous system index (SNS), 188 

stress index (SI), standard deviation of N-N intervals (SDNN), root mean squared of 189 

successive differences of R-R intervals (RMSSD). 190 

 191 

The NeuCube brain-inspired Spiking Neural Network Architecture [18] 192 

The following sections below describe the general architecture of the model and data pipeline. 193 

This includes initial encoding of the raw EEG data into spikes, training of the SNN reservoir 194 

for knowledge discovery and feature selection, producing a feature vector which represents the 195 

spiking activity in the neural network through connections with an output neuron layer, and 196 

finally classification of this feature vector. A graphical representation of this data pipeline is 197 

shown in Figure 2. 198 

b) a) 
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 199 

Figure 2. Data pipeline. STDP (spike timing dependent plasticity), SDSP (spike driven 200 

synaptic plasticity), deSNN-KNN (dynamic evolving spiking neural network-k nearest 201 

neighbour algorithm) 202 

 203 

Spike Encoding:  204 

SNNs receive reconstructed input signals as binary waveforms known as spike trains. Thus, 205 

the raw EEG data must first be transformed into this format. Step Forward (SF) encoding was 206 

used as a ‘signal to spike encoder’. SF is a threshold-based algorithm that works based on 207 

updating cutoff values for excitatory and inhibitory spikes, according to a 𝑏𝑎𝑠𝑒 value at time 208 

𝑡 = 0 and a user defined threshold value. If a signal’s value is greater than the current 209 

excitatory cutoff (𝑏𝑎𝑠𝑒 + 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑) then an excitatory spike is encoded, and the excitatory 210 

cutoff value is updated as the new 𝑏𝑎𝑠𝑒 value. If the signal’s value at 𝑡 is less than the 211 

current inhibitory cutoff value (𝑏𝑎𝑠𝑒 + 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑) then an inhibitory spike is encoded and 212 

the inhibitory cutoff value is updated as the new base value. In some cases, no spike is 213 

encoded and the base value remains the same[20]. Spike counts for every channel were 214 

extracted and compared between CS and control groups at baseline (A) and during the CS 215 

onset event (B). 216 

 217 

NeuCube Reservoir: 218 

A reservoir of connected neurons were initialized in preparation for spike inputs. A SNN 219 

reservoir (SNNr) module is in principle scalable in size, and here it is composed of 1471 LIF 220 
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neurons representing 1cm3 of the brain, located at the same coordinates as those modelled in 221 

the Talairach atlas to create a 3D-brain geometry. Defining the spatial location of neurons 222 

allows spatial-temporal patterns to be elucidated from spike inputs. Connection weights 223 

between reservoir neurons were randomly initialized using the small world connectivity 224 

(SWC) approach. The SWC limits connections to only form within a defined radius and the 225 

random connections creates a diverse set of dynamical states. Connection weights, also 226 

known as ‘synaptic weights’, modulate any increase or decrease in the membrane potential of 227 

the post-synaptic neuron. In other words, it is a measure of the contribution of a pre-synaptic 228 

neuron towards the firing of a post-synaptic neuron. Connections also hold an intrinsic value 229 

of ‘synaptic delay’, which is the time delay in firing between pre and post synaptic neurons. 230 

Excitatory and inhibitory synapses within the reservoir are probabilistically determined 231 

according to the following formula:  232 

 233 

𝑃𝑖,𝑗 = {𝐶 ∗ 𝑒−(𝑑𝑖,𝑗
𝑛𝑜𝑟𝑚/𝜆)2

  𝑖𝑓 𝑑𝑖,𝑗
𝑛𝑜𝑟𝑚 ≤ 𝑑𝑡ℎ𝑟𝑒𝑠ℎ

0                     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 234 

 235 

Where: 𝑃𝑖,𝑗is the probability of establishing a connection between two neurons i and j; 𝐶 is 236 

the maximum connection probability; λ is the small world connection radius; 𝑑𝑖,𝑗
𝑛𝑜𝑟𝑚 is the 237 

normalized distance between two neurons; 𝑑𝑡ℎ𝑟𝑒𝑠ℎ is the maximum connection distance 238 

between two neurons. In this way, closer neurons have a higher probability of stronger 239 

connection weights than neurons further away.   240 

 241 

 242 

 243 

 244 
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SNNr training: 245 

Training the SNNr involved unsupervised learning of spike trains introduced by ‘input 246 

neurons’ at 32 EEG channel locations. These locations were gained from the conversion of 247 

10-10 scalp electrode positions into Talairach coordinates. Input neurons feed spike trains of 248 

each sample to the SNNr in a temporally synced and spatially distributed manner. Similar to 249 

the notion of summation at an axon hillock[21,22], an output spike is produced by a post 250 

synaptic neuron when many input spikes from pre synaptic neurons accumulate over a short 251 

period of time.  As spike trains spread throughout the SNNr, connection weights between 252 

reservoir neurons are updated according to a rule called ‘Spike Timing Dependent Plasticity’ 253 

(STDP). The sort of learning mimics cellular processes of long-term potentiation and long-254 

term depression involved in learning and memory[23]. 255 

 256 

𝑊(𝑠) = {
𝐴+ 𝑒𝑥𝑝[𝑠/𝑡+]  𝑓𝑜𝑟 𝑠 < 0

𝐴− 𝑒𝑥𝑝[−𝑠/𝑡+]  𝑓𝑜𝑟 𝑠 > 0
 257 

 258 

S is the time delay between presynaptic and post-synaptic firing. 𝑡+ is the pre-synaptic time 259 

interval. 𝑡+ is the post-synaptic time interval. 𝐴+ is the amplitude of weight increase. 𝐴− is 260 

the amplitude of weight decrease.  261 

The STDP rule implements a form of logical causality, in which connection weights increase 262 

or decrease proportional to the synaptic delay. If a presynaptic neuron fires before a post-263 

synaptic neuron, the connection weight increases between them. Likewise, connection 264 

weights decrease if a postsynaptic neuron fires before a presynaptic neuron. The end product 265 

is a trained ‘SNNr cube’ - a neuronal model with connection weights that represent complex 266 

and dynamic spatiotemporal brain activity.  267 

 268 

 269 
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 270 

In our study, the training samples were divided into two groups equally, CS (n=32) and 271 

control (n=32). A SNNr cube was trained on all 32 channels of EEG data for each group, 272 

giving two distinct SNNr cubes with different connection weights. The connection weights of 273 

these cubes were subtracted from each other, producing an SNNr cube specific to 274 

cybersickness.  275 

 276 

Knowledge Discovery: 277 

Subtracted SNNr cubes were made using data 2 seconds in length selected from time 278 

segments 30-32s and 90-92s at baseline, and from 1 second before the CS event. Since 279 

connections between neurons at SNNr initialization are randomly generated, the same 280 

initialized connections were kept constant for subtractions between cybersick and control 281 

groups. Underpinning this subtraction, was the hypothesis that there would be different brain 282 

information processes and network dynamics in CS versus control subjects. In theory, these 283 

differences would not just appear during the manifestation of CS but also during resting-state 284 

baseline as a precursor to CS or marker of susceptibility. The reason behind selecting two 285 

time points at baseline was to see if these markers might change over time. 286 

 287 

Using the subtracted SNNr cube, clusters of reservoir neurons surrounding each input neuron 288 

were grouped by connection weight. Neuron proportion was calculated as the percentage of 289 

neurons in the cube belonging to each cluster. Total input cluster interactions were compared 290 

to each other in a Feature Interaction Network (FIN) analysis.  FIN revealed relative strengths 291 

of functionally connected areas of the brain that discriminate between the two classes. The 292 

top 5 features (channels) by neuron proportion were chosen as input neurons to train a new 293 

SNNr cube, representing only the most informative features that define CS. Data for the 294 



                                                 Paper accepted in Brain Informatics, March, 2023 

 

 13 

control group during VR immersion were selected as the median time of CS induction, which 295 

was at the 39 second mark. This process is detailed in Figure 3.  296 

 297 

Figure 3. Finding the top five features to create a new SNNr cube with key CS information; c 298 

= EEG channels, CS = cybersickness, Ctrl = Control, sub = subtracted cube 299 

Producing a Feature Vector: 300 

Default NeuCube processing uses one reservoir cube trained on all data samples for 301 

classification, with the notion that data of a certain label will have different spike activity and 302 

spike propagation than data of another label[24]. This study took a different approach by 303 

subtracting individually trained SNNr cubes, to produce synaptic connection weights within 304 

the reservoir that form a neural map specific to CS. This map is a template through which 305 

new data samples are parsed to obtain a feature vector, which is the synaptic connection 306 

weights between input + reservoir neurons, and output neurons. A dynamic evolving SNN 307 

algorithm (deSNN) was used to learn the association between class labels and the training 308 

samples in a supervised manner. deSNN [15] has the advantage over other SNN classification 309 

models in that it is computationally inexpensive and boosts the importance of the order in 310 

which input spikes arrives, along with considering all other incoming spikes. Thus, it is 311 

suitable for on-line learning and early prediction of temporal events. In this algorithm, a new 312 

output neuron (𝑂) for each training sample was created. These output neurons connect to 313 

every input and reservoir neuron (𝑁). The connections have initial weights that are set 314 

according to the Rank-Order learning rule (RO).  315 
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 316 

𝑤𝑖𝑛𝑖𝑡(𝑁𝑛, 𝑂𝑚) = 𝑚𝑜𝑑𝑜𝑟𝑑𝑒𝑟(𝑁𝑛,𝑂𝑚) 317 

 318 

The RO learning rule boosts the importance of the first incoming spikes on neuronal 319 

synapses. The advantage of RO is fast, one-pass learning and asynchronous data entry of 320 

synaptic inputs. The value of the mod parameter for part 1 of this study was set to a default of 321 

0.9. The 𝑂- 𝑁 connection weights between the SNNr and the output deSNN neurons are then 322 

further dynamically tuned by the following spikes via spike driven synaptic plasticity (SDSP) 323 

– a modified version of STDP. Due to a bi-stability drift in the SDSP rule, once a weight 324 

reaches the defined high value (resulting in LTP) or low value (resulting in LTD), it is fixed 325 

for the rest of the training phase. The rate at which a weight reaches LTD or LTP depends on 326 

the values of the set drift parameter. 327 

 328 

𝑤𝑓𝑖𝑛𝑎𝑙(𝑁𝑛, 𝑂𝑚) =  
𝑤𝑖𝑛𝑖𝑡(𝑁𝑛, 𝑂𝑚)  + 𝑑𝑟𝑖𝑓𝑡𝑢𝑝 ∗  𝑛𝑠𝑝𝑖𝑘𝑒𝑠

                                − 𝑑𝑟𝑖𝑓𝑡𝑑𝑜𝑤𝑛 ∗  𝑛𝑠𝑝𝑖𝑘𝑒𝑠
  329 

 330 

𝑑𝑟𝑖𝑓𝑡𝑢𝑝 is the value increase in synaptic weight after pre-synaptic firing. 𝑑𝑟𝑖𝑓𝑡𝑑𝑜𝑤𝑛 is the 331 

value decrease in synaptic weight with no pre-synaptic firing. 𝑑𝑟𝑖𝑓𝑡𝑢𝑝 is set to 0.08 and 332 

𝑑𝑟𝑖𝑓𝑡𝑑𝑜𝑤𝑛 is set to 0.08 for part 1 of the study. SDSP works similar to STDP except that the 333 

post-synaptic membrane potential is assumed to always reach above threshold when the pre-334 

synaptic neuron fires, leading to an increase in connection weight of the synapse between two 335 

neurons. At the same time, if no firing occurs from the pre-synaptic neuron, the connection 336 

weight of the synapse is decreased.  337 
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Altogether, the deSNN algorithm provided brain-inspired feature vectors for every sample, 338 

consisting of both input-output neuron connections, and reservoir-output neuron connections 339 

that can be classified.  340 

 341 

The following connection strategies between the SNNr neurons and the deSNN classifier 342 

neurons were explored in this paper while searching for an optimal model:  343 

- SNNr cube trained on all data of 32 input neurons; 1471 SNNr neurons connected to 344 

each output neuron in the evolved deSNN classifier;  345 

- SNNr cube trained on all data of 32 input neurons; only the 32 input neurons are 346 

connected to the output neurons; 347 

- SNNr cube trained on 5 channel data; 1471 SNNr neurons connected to each output 348 

neuron in the evolved deSNN classifier 349 

- SNNr cube trained on all data using all combinations of 5 top input neurons (e.g. top 350 

channels); only the 5 input neurons are connected to each output neuron;  351 

 352 

ECG  353 

The following heart rate variability parameters were computed: PNS, SNS, SI, SDNN, 354 

RMSSD. The selected time segments were 2 minutes, 30s and 10s in length. Only RMSSD 355 

was analysed for the 10s time segments, due to the statistical unreliability of the other 356 

parameters for this length of data. RMSSD is considered a reliable indicator for 357 

parasympathetic cardiac activity robust to the signal noise of respiration. Meanwhile, SI is an 358 

index for sympathetic activity Both parasympathetic and sympathetic activity contribute to 359 

SDNN. PNS and SNS are validated indicators of parasympathetic and sympathetic 360 

activity[25,14]. 361 

 362 
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Classification 363 

Three different algorithms were used to classify the feature vectors, with leave-one-out cross 364 

validation (LOOCV): 365 

 366 

Modified KNN: 367 

A distance-based algorithm between data points. The study employed a modified version of 368 

KNN, in which the following parameters were optimized using an exhaustive grid search: 369 

1)  k is for all neighbours or restricted by class label; 370 

2) Using Manhattan distance or Euclidean distance; 371 

3) Distance initially weighted uniformly or by signal-to-noise ratio (SNR) that identifies 372 

the importance of the features (see the wwkNN method [37]); 373 

4) Neighbours weighted during voting – 374 

a. Uniform (equally) 375 

b. By the inverse of their distance 376 

c. By the function: 
max 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒− (𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟−𝑚𝑖𝑛𝑖𝑚𝑢𝑚 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒)

max 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒
 377 

5) Feature weights weighted during voting – 378 

a. Uniform for each feature 379 

b. SNR for each feature 380 

 381 

Linear Discriminant Analysis (LDA): 382 

An algorithm that finds linear combinations of features that separate classes along a 383 

hyperplane. Least squares solution was used with optimized shrinkage. 384 

 385 

Light Gradient Boosting Machine (LightGBM): 386 

LightGBM is a gradient boosting framework that uses tree-based learning algorithms.  387 
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Optimized for number of trees, learning rate, boosting type (gradient boosting decision tree, 388 

GBDT), gradient-based one-side sampling (goss), dropouts meet multiple additive regression 389 

trees (dart)). 390 

 391 

This study approached data fusion by combining feature vectors representing synaptic 392 

connection weights with the output layer of NeuCube and HRV variables that yielded the 393 

best accuracies.  These include the best combination of parasympathetic or sympathetic 394 

features which would be added on to the final feature vector.  395 

 396 

Part 2 of the study used high capacity computing provided by New Zealand eScience 397 

Infrastrucutre (NeSI) to extend the previous analysis using the modified KNN algorithm. The 398 

goal was to find the best time segment for prediction out of the 2 minute EEG resting-state 399 

baseline, partitioned into varying data lengths (2s, 5s, 10s). The analysis similarly scans 400 

through all types of model training, and feature vector type in terms of connections to the 401 

output neurons as in Part 1. The difference is that mod and drift parameters for SDSP were 402 

optimized for classification of the best time segment for prediction and also for detection to 403 

see if this would improve accuracy. Additionally, the value of 𝑑𝑟𝑖𝑓𝑡𝑢𝑝was set to always be 404 

more than 𝑑𝑟𝑖𝑓𝑡𝑑𝑜𝑤𝑛, which implements stronger I-O connection increases compared to 405 

decreases. This type of SDSP also maintains stronger I-O connections for input neurons that 406 

fire more compared to those that fire less, thereby boosting their importance further. Varying 407 

data lengths serve to explore whether capturing more EEG data improves prediction 408 

accuracy, whereas optimizing for SDSP improves the transformation of the EEG data into the 409 

feature vector for classification. 410 

 411 

Results 412 
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Part 1 413 

MSSQ-short and SSQ Scores 414 

MSSQ-short scores did not differ significantly (P>0.05) between CS and Control groups 415 

(Figure 4). SSQ scores differed significantly between CS and control (P>0.0001) (Figure 5). 416 

CS groups had significantly higher SSQ scores than controls, showing that MSSQ-short 417 

percentile scores were not a good indicator of sickness in VR usage. 418 

 419 

 420 
 421 
Figure 4. MSSQ-short scores P>0.05. Error bars show  SEM. 422 
 423 
 424 

 425 
 426 
Figure 5. SSQ scores, **** = p>0.0001. Error bars show  SEM. 427 
 428 
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EEG 429 

Functional connectivity analysis at resting baseline EEG (30-32s) shows that CS prone 430 

individuals have more concentrated negative connections in the Cz area, interspersed with 431 

surrounding positive connections (Figures 6a and 6b), when compared to controls. Feature 432 

interaction analysis (FIN) revealed that Cz is likely a hub for brain activity processing in this 433 

time segment, either collecting or sending out this information to all the other key channels 434 

located in the left and interhemispheric frontal and bilateral parietal areas (Figure 6c and 6d). 435 

The top 5 features according to neuron proportion were P4, Fz, Cz, PO3 and F3, with Cz 436 

being the highest (Figure 7). A second time segment further on in the baseline (90-92s) was 437 

analysed, which showed that other important features (T8, CP6, Fz, FC5, T7) can appear at 438 

different time segments (Figure 8 and Figure 9). During the CS event, the high functional 439 

connectivity seen at baseline in CZ changes to interspersed positive and negative 440 

connections. Meanwhile there is a shift towards O2 positive connection dominance.  FIN 441 

analysis (Figure 10) showed that both O2 followed by Cz are most likely hubs for 442 

cybersickness processing, where both have the highest neuron proportion (Figure 11). The 443 

top 5 features according to neuron proportion were FC6, FP2, FP1, Cz and O2. These results 444 

indicate that important areas identified in the baseline that are also found during the 445 

manifestation of cybersickness could be important biomarkers of susceptibility to 446 

cybersickness. 447 

 448 

 449 

 450 

 451 
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Figure 6. Resting-state baseline 30-32s subtracted network dynamics. Functional 452 
connectivity of neurons in the SNNr is represented by a) right hemisphere medial view of the 453 
SNNr and b) axial view. Blue lines are positive connections, red lines are negative 454 
connections. Brighter neurons have stronger connections. Feature interaction networks 455 
between channels are represented by c) right hemisphere medial view and d) axial view. 456 
Thicker lines indicate stronger interaction whether they be positive or negative. These 457 
interactions confirm our hypothesis that even at baseline of 30-32s, there is a significant 458 
difference between the brain information processes of CS versus control subjects.  459 
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 460 
 461 
 462 
Figure 7.  Neuron proportion clustered by connection weights in the subtracted SNNr =   463 
SNNr/control – SNNr/cs at resting-state baseline 30-32s. Blue indicates higher proportion, 464 
red indicates less neuron proportion. It shows a larger difference between the CS and control 465 
subjects in the brain areas Cz, F3, P4, PO3, Fz, Pz and C3, with a dominant factor of Cz.   466 
 467 
 468 
 469 
 470 
 471 
 472 
 473 
 474 
 475 
 476 
 477 
 478 
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 479 
Figure 8. Resting-state baseline 90-92s subtracted network dynamics. Functional 480 
connectivity of neurons is represented by a) right hemisphere medial view and b) axial view. 481 
Blue lines are positive connections, red lines are negative connections. Brighter neurons have 482 
stronger connections. Feature interaction networks between channels are represented by c) 483 
right hemisphere medial view and d) axial view. Thicker lines indicate a stronger interaction 484 
whether they be positive or negative. These interactions confirm our hypothesis that even at 485 
the 90-92 baseline, there is a significant difference between the brain information processes 486 
of CS versus control subjects.  487 
 488 
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 489 

Figure 9. Neuron proportion clustered by connection weight at 90-92s resting-state baseline. 490 
Blue indicates higher proportion, red indicates less neuron proportion. It shows a larger 491 
difference between the CS and control subjects in the brain areas T8, CP6, Fz, T7, FC5 with a 492 
dominant factor of T8.    493 
 494 
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Figure 10. Cybersickness network dynamics of the SNNr=SNNr/control – SNNr/cs, in VR.  495 
Functional connectivity of neurons is represented by a) medial view) and b) (axial view). 496 
Blue lines are positive connections, red lines are negative connections in a) and b). Brighter 497 
neurons have stronger connections. Feature interaction networks between channels are 498 
represented by c) and d). Thicker lines indicate stronger interaction whether they be positive 499 
or negative. These interactions confirm our hypothesis that there is a significant difference 500 
between the brain information processes of CS versus control subjects during the CS 501 
manifestation when subjects are exposed to VR. Some of these interactions have been 502 
captured already at baseline (see Fig.6 and Fig.8).  503 
 504 
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 505 
 506 
Figure 11. Neuron proportion in SNNr = SNNr/control – SNNr/cs, clustered by connection 507 
weights during a VR experiment. Blue indicates a higher proportion, and red indicates a 508 
lower proportion of neurons. The difference in the connectivity confirms our hypothesis that 509 
there is a significant difference between the brain information processes of CS versus control 510 
subjects during the CS manifestation, when subjects are exposed to VR, with dominating 511 
brain areas being O2, Cz, Fp2, Fp1 and Fc6. Some of these areas have been captured 512 
already at baseline (see Fig.7).  513 
 514 
 515 
 516 

 517 

 518 

 519 

 520 

 521 
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Classification results 522 

Overall, our modified KNN algorithm was the best for both prediction (EEG 76.6%, ECG 523 

74.2%) and detection (EEG 75%, ECG 72.6%) of CS (Tables 1-5 and Figure 12). Both EEG 524 

and ECG had similar classification accuracies, although EEG alone was slightly better. 525 

Although data fusion of both EEG and ECG could increase accuracy to 77.4% for prediction, 526 

it reduced the accuracy for detection to 70.9% (Figure 12).  527 

 528 

 Prediction 30-32s  

I-O 

connectio

n 

32 Channel Trained  5 Channel Trained  

 LDA KNN LGBM LDA KNN LGBM 

1471 

Reservoir 

+ I-O 

59.4% 65.60% 68.8% 53.1% 67.20% 53.1% 

32 62.5% 67.20% 62.5% N/A N/A N/A 

5 54.7% 60.90% 54.7% 59.4% 73.40% 59.4% 

P4 48.4% 65.60% 57.8% 46.9% 51.60% 51.6% 

Fz 50.0% 59.40% 46.9% 57.8% 70.30% 70.3% 

Cz 43.8% 60.90% 57.8% 39.1% 60.90% 54.7% 

PO3 0.00% 57.80% 48.4% 0.00% 57.80% 54.7% 

F3 53.1% 62.50% 62.5% 53.1% 64.10% 64.1% 

Best 

combo out 

of 5 

Cz+F3 

56.3% 

P4, Fz, Cz 

75.00% 

P4, PO3 

64% 

Cz+F3 

62.5% 

Fz, Cz 

76.6% 

Cz 

70.3% 

 529 

Table 1. Prediction accuracies of LDA, modified KNN and LGBM classification algorithms 530 

at baseline 30-32s for all subtracted SNNr Cubes. 531 

 532 

 Prediction 90-92s  

I-O 

connection 
32 Channel Trained  5 Channel Trained  

 LDA KNN LGBM LDA KNN LGBM 
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 533 

Table 2. Prediction accuracies of LDA, modified KNN and LGBM classification algorithms 534 

at baseline 90-92s for all subtracted SNNr Cubes. 535 

 536 

 Detection CS onset  

I-O 

connectio

n 

32 Channel Trained  5 Channel Trained  

 LDA KNN LGBM LDA KNN LGBM 

1471 

Reservoir 

+ I-O 

57.8% 70.30% 75.0% 56.3% 57.80% 65.6% 

32 65.6% 75.00% 70.3% N/A N/A N/A 

5 50.0% 62.50% 67.2% 53.1% 62.50% 60.1% 

FC6 59.4% 65.60% 62.5% 53.1% 67.20% 65.6% 

Fp2 42.2% 56.30% 59.4% 43.8% 59.40% 59.4% 

Fp1 46.9% 60.90% 57.8% 0.00% 64.10% 59.4% 

Cz 25.0% 56.30% 54.7% 53.1% 56.0% 64.1% 

O2 51.6% 53.10% 45.3% 0.00% 50.0% 59.4% 

Best 

combo out 

of 5 

FC6 59.4% 
Fp2, Cz 

68.80% 

Fp1,Cz 

68.8% 

FC6+Fp2+C

z 57.8% 

Fp2, Cz 

68.80% 

FC6,Fp1,Cz 

68.8% 

 537 

Table 3. Detection accuracies of LDA, modified KNN and LGBM classification algorithms 538 

at the time of the CS event for all subtracted SNNr Cubes. 539 

1471 

Reservoir 

+ I-O 

53.1% 67.20% 60.9% 50.0% 65.60% 73.4% 

32 57.8% 70.30% 64.1% N/A N/A N/A 

5 51.6% 68.80% 70.3% 54.7% 64.10% 68.8% 

T8 48.4% 71.90% 60.9% 50.0% 62.50% 56.3% 

CP6 59.4% 54.70% 56.3% 56.3% 64.10% 67.2% 

Fz 50.0% 60.90% 59.4% 0.00% 64.10% 54.7% 

FC5 18.8% 60.90% 56.3% 42.2% 60.90% 54.7% 

T7 23.4% 65.60% 53.1% 42.2% 57.80% 54.7% 

Best 

combo out 

of 5 

T8+CP6+Fz 

59.4% 

 

T8 

73.40% 

 

T8 

61.3% 

T8,CP6,Fz,

FC5 

57.8% 

T8, CP6 

75% 

T8,CP6 

66.1% 
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 540 

 541 

ECG Prediction 

Time 

Segment 
ML Algorithm 

 LDA KNN LGBM 

2 Min 

Baseline 

56.5% 

SI+SDNN 

74.2% 

PNS+SNS 

69.4% 

SNS 

15-45s 

61.3% 

PNS + 

SNS 

+SDNN + 

RMSSD 

67.7% SI 
67.7% 

SNS + SI + RMSSD 

75-105s 

62.9% 

PNS + 

SNS 

74.2% 

SNS 

71.0% 

SNS +SDNN 

25-35s 
6.5% 

RMSSD 

67.7% 

RMSSD 

61.3% 

RMSSD 

85-95s 
16.1% 

RMSSD 

59.7% 

RMSSD 

51.6% 

RMSSD 

 542 

Table 4. Prediction accuracies of LDA, modified KNN and LGBM classification algorithms 543 

at different time segments for the best combination of HRV parameters. 544 

 545 

 546 

Table 5. Detection accuracies of LDA, modified KNN and LGBM classification algorithms 547 

at different time segments for the best combination of HRV parameters. 548 

ECG Detection 

Time Segment ML Algorithm 

 LDA KNN LGBM 

2 Min VR 

61.3% 

( PNS or SDNN) + SNS + Mean 

HR 

72.6% 

SNS+SI 

69.4% 

SI + SDNN 

30s VR 66.1% PNS + SNS +SI 

69.4% 

PNS + SNS + SI/ 

PNS + SI + 

RMSSD 

67.7% 

SI + SDNN + 

Mean HR 

VR 10s 
56.5% 

RMSSD 

58.1% 

RMSSD 

54.8% 

RMSSD 
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 549 

550 

Figure 12. Best KNN classification accuracies for EEG and ECG (HRV) in multiple time 551 

segment analyses.  552 

 553 

EEG considerations 554 

Some participants were predicted at 30-32s (samples 3, 4, 18, 24, 27) but not at 90-92s and 555 

vice versa (samples 9, 22 and 23). A hypothesis was that spike count, MSSQ-short percentile 556 

scores, SSQ total scores, or CS onset times could explain why some participants were 557 

predicted in one baseline segment but not the other. This was not the case, as none of the 558 

above showed any deviation from the norm when graphed (appendix 1-6). 559 

 560 
 561 

Appendix 1. MSSQ percentile score breakdown for the CS group. 562 
 563 
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 564 
 565 
Appendix 2. SSQ score breakdown for the CS group 566 
 567 

 568 
 569 
 570 
 571 
 572 
 573 
 574 
 575 
 576 
 577 
 578 
 579 
 580 
 581 
 582 
 583 
 584 
 585 
Appendix 3. CS onset timings  586 
 587 
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 589 
 590 
 591 
 592 
 593 
 594 
 595 
 596 
 597 
 598 
 599 
 600 
 601 
 602 
 603 
 604 
 605 
Appendix 4. Spike count of 30-32s time segment for all CS participants. Sample number 3, 4, 606 
18, 24 and 27 were predicted at 30-32s but not at 90-92s. 607 
 608 
 609 

 610 
 611 
 612 
 613 
 614 
 615 
 616 
 617 
 618 
 619 
 620 
 621 
 622 
 623 
 624 
 625 
 626 
Appendix 5. Spike count of 90-92s time segment for all CS participants. Sample number 9, 627 
22, 23 were predicted at 90-92s but not at 30-32s. 628 
 629 
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 631 
 632 
 633 
 634 
 635 
 636 
 637 
 638 
 639 
 640 
 641 
 642 
 643 
 644 
 645 
 646 
 647 
Appendix 6. Spike count for all CS participants during the CS onset.  648 
 649 

It was hypothesized that the spike count at each channel would be different in the CS groups 650 

compared to controls at all time segments. We found that the spike count was significantly 651 

lower in the CS group than in the controls at the 30-32s baseline segment (for P4, Fz, Cz 652 

PO3, F3) and during VR immersion (O2) (P<0.0001), but not at 90-92s. Sample 7 in 30-32s 653 

has a high spike count compared to others, as does sample 10 during VR immersion, but 654 

removal of these samples does not change the statistical differences (30-32s P<0.0001, VR 655 

immersion P<0.001) between CS and controls spike count. Classification accuracy, however, 656 

remains similar for 30-32s and 90-92s analysis (76.6% and 75.0%, respectively).  657 

 658 

ECG and HRV considerations 659 

Sympathetic indexes (SNS + SI) outclassed other HRV parameters in terms of classification 660 

accuracy. A normal control baseline may be easy to predict or detect, but small changes in 661 

these HRV values may not always equate to cybersickness. The differences between CS and 662 

Ctrl groups must be more complicated than just their means, medians and distributions, 663 

because as a whole, there are no significant differences (p>0.05) between any of the HRV 664 
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parameters used here according to a Mann Whitney u rank test. Furthermore, both of the 665 

KNN algorithms employed here employ a min/max voting type on the importance of K-666 

neighbours, which takes into account a weighted Euclidian distance via signal to noise ratio 667 

(SNR) between sample data points. These weightings between all data points and between K- 668 

neighbours are still influenced by the sample sizes and distribution of the data. Therefore, it 669 

may also be possible that a larger sample size is needed to more accurately represent 670 

cybersickness.  671 

 672 

Part 2 673 

After extensive analysis of different time segments and data lengths, the 2 second time 674 

segment relating to 110 - 112 seconds, with only one of I-O connection (F7 channel), yielded 675 

the best results of 85.9% accuracy. Overlapping time segments for data lengths 5s and 10s 676 

did not reach the same performance, achieving a max 75-76% using the best combination of 677 

I-O connections. In addition, detection performance was boosted to 76.6% after SDSP 678 

optimization.  679 

 680 

 EEG EEG + ECG Fusion 

Prediction 85.9% (F7) 74.2% (75-105s, SNS) 

Detection 76.6% (FP1, Cz) 72.6% (2 mins, SNS + SI) 

 681 

Table 6. Improved accuracies for CS prediction and detection using EEG. Analysis included 682 

time segment and data length optimization (prediction only), and SDSP optimization of the 683 

mod, driftup and driftdown parameter. Fusion accuracies increased for detection but not for 684 

prediction. 685 

 686 
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 687 

Discussion 688 

Classification 689 

This paper presents a proof of concept for on-the-spot prediction of cybersickness at resting 690 

state baseline and near-instant detection of cybersickness during its onset. The algorithms are 691 

based on brain inspired SNN architectures and HRV classification. Another study has also 692 

demonstrated the predictive capacity of their algorithm for CS at resting baseline with a 693 

smaller sample size of n=19[26]. Near-instant detection was demonstrated by Nam et al. [27] 694 

but required PCA preprocessing, power spectral analysis for EEG and 7 other biosignals. The 695 

present study shows that only 2 seconds of EEG data and 30 seconds of ECG data are 696 

required, and both biosignals can be used individually or together to predict and detect CS. 697 

The modified deSNN-KNN classification algorithm produced the best results in terms of 698 

accuracy, over LDA and light-GBM. It was found that similar classification accuracies can be 699 

obtained by using either earlier (30-32s, 76.6%) or later time segments (90-92s, 75%) at 700 

baseline. Upon further investigation, the study found that time segment optimization was still 701 

important (85.9%). Simplifying feature vectors by removing reservoir – output neuron 702 

connections, and leaving the direct connections of input neurons to output neurons increases 703 

accuracies (Table 1-3). In addition, reducing redundancy in training data by focusing on key 704 

cybersickness relevant areas also has the same positive effect on accuracy. However, in the 705 

case where a model is trained on all 32 features, but only the top 5 features are considered, a 706 

reduction leads to a decrease in accuracy (75.00% to 68.80%) (Table 3). This highlights that 707 

in idealistic scenarios, not just a few but all features a model is trained on should be 708 

considered when eliminating redundancy. However, it is important to note that there is a 709 

trade-off in considering all features, as computational cost increases when conducting 710 

exhaustive searches.  711 
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 712 

Our analysis did not reveal why some participants were predicted in one baseline segment but 713 

not the other. An explanation is that this could be due to differences in the temporal 714 

characteristics of the spiking activity of neurons captured by the connection weights between 715 

input clusters and between individual reservoir neurons. Another explanation could be due to 716 

the nature of clinical studies, where there is interindividual variation between participants. 717 

 718 

Fusion of EEG and ECG did not yield much improvement in accuracy, and in the case of 719 

detection it worsened accuracies in part 1. Multi-modal data fusion was investigated to 720 

explore if information from two organs would lead to increased accuracy, especially because 721 

they are biologically linked through the nervous system both in anatomy and also in 722 

association to nausea[28]. Because of the disparity in classification performances between 723 

EEG and ECG, it is likely that the classification algorithm’s ability to differentiate strongly 724 

between labels is ‘drowned’ out by the ECG HRV features, which is why the EEG now adds 725 

no useful information for classification beyond what is already there. It is also possible that 726 

KNN being a distance based algorithm, gets worse with higher dimensional feature vectors, a 727 

trend shown as well in the improved classification performances the less features there are in 728 

the feature vector.  729 

 730 

MSSQ and SSQ scores 731 

In our experiment, the MSSQ-short was not a good predictor of cybersickness induction or 732 

sickness ratings. This points towards the need for questionnaires more targeted at visually 733 

induced motion sickness[29] to assess susceptibility. SSQ scores were a good adjunct to the 734 

subjective cybersickness reports in the separation of cybersick and control groups. 735 

 736 
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Related spatiotemporal brain dynamics were discovered in the following areas: 737 

Fz Brodmann 8 visual attention and eye movements 738 

T8, T7: Auditory processing 739 

CP6: Auditory processing, speech comprehension 740 

O1, O2: Retinotopic mapping of visual scene, edge detection 741 

P4: Angular gyrus attention, memory retrieval, language number processing, spatial 742 

cognition 743 

PO3: Associative visual cortex (V3, V4, V5). 744 

F3: Frontal eye fields, visual attention and eye movements. 745 

FC5, FC6: Brocas speech production and articulation (primarily left hemisphere), 746 

language processing. 747 

FP1, FP2: Executive function, decision making 748 

F7, F8: Active maintenance of stimulus information, interoceptive, limbic emotion-749 

motivational, and sensory input integration 750 

CS is a complex condition with many brain areas involved[30,31]. Presented in this study is 751 

functional connectivity of the brain that predicts future CS, meaning that an individual with 752 

similar neural maps may be susceptible to cybersickness, and connectivity that marks the CS 753 

event. In the present study, a high neuron proportion grouped by connection weight of frontal 754 

(FC6, FP1, FP2) regions during the CS event, and temporal regions (T8) during resting 755 

baseline are consistent with another study showing changes in these areas well into the CS 756 

event. In addition, areas involved in CS include those for visual + attention processing and 757 

executive function (CP6, O2, PO3, F3, F4, FP1, FP2). Liu et al. [30] found reduced 758 

gravitational frequency means (transition of EEG power spectral density, temporal changes 759 

within a frequency band), and gravitational frequency standard deviation (dispersion of brain 760 
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signal) at FP1, FP2, TP9 and TP1. Power spectral entropy (disorder of time sequence signals 761 

and irregularity of multi-frequency component signals) and Kolmogorov complexity (time 762 

domain complexity) were all reduced at FP1 and FP2 during VIMS[30]. However, it was 763 

noted that these changes may be related to other factors, such as alertness level or various 764 

mental conditions, and not limited or specific to VIMS. Our finding of an increase in O2’s 765 

interaction with other areas during cybersickness highlights that visual processing is altered 766 

beyond just the demands of normal visual processing in VR. O2 has been selected as an 767 

important feature in other machine learning studies as well [27,32,33], but the possible 768 

differences in results compared to the discussed brain analysis and imaging studies may be in 769 

the temporal specificity (2 seconds long) of our analysis compared to longer data lengths 770 

analysed.  771 

 772 

Of interest is the brain activity hub found at Cz, which had altered connectivity at resting-773 

state baseline as well as during the onset of cybersickness when compared with controls. 774 

Reduced spike count at Cz before VR immersion may indicate that there is less frequency of 775 

communication from this area to other connected areas. Cz interacts with three cortices 776 

simultaneously, the somatosensory, motor and also is positioned over the mid cingulate, 777 

which has increased functional connectivity with the left V5/MT during cybersickness[34]. 778 

Krokos, Varshney [35] found high activity power in the central regions similar to the location 779 

of Cz, of average scalp maps according to independent component analysis. Brodmann area 5 780 

corresponds to Cz, which is part of the superior parietal lobule and post central gyrus. It is 781 

located immediately posterior to the primary somatosensory cortex. Neuroimaging evidence 782 

suggests that this area contributes to movement planning. Furthermore, one study showed a 783 

correlation between the activity of area 5 neurons and the starting or final coordinates of limb 784 

movement. This suggested that BA5 is involved in processing spatial information for limb 785 
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movement. Emerging evidence suggests that BA5 is also involved in the inhibition of 786 

movement[36]. A transcranial magnetic stimulation study found a causal role for BA5 in the 787 

regulation of corticospinal output during preparation that differentiates between whether a 788 

movement is withheld or executed[37]. One may think that Cz’s role in movement and also 789 

as a marker of future cybersickness at resting baseline lends possible credence to the postural 790 

instability theory of motion sickness, which postulates that postural instability is both a 791 

marker and a predictor of motion sickness, likely extending as well to cybersickness in virtual 792 

reality[38]. Our results, however, suggest that although processes related to motor control are 793 

altered during the event, we cannot speak for postural instability itself. Furthermore, a recent 794 

study shows that postural instability itself is not a good predictor of cybersickness. For purely 795 

visually induced motion sickness (VIMS), increases in functional connectivity were also 796 

found between the right MT/V5 and anterior insula. Decreased functional connectivity was 797 

also found between the left and right V1[34]. The left MT/V5 in particular is an area 798 

important for processing of “what” but not “where”, in priming for motion direction but not 799 

spatial position[39]. Nonetheless, cortical areas that control movement and visual processing 800 

are clearly involved in cybersickness.  801 

Interestingly, cortical areas for visually induced cybersickness also overlap with areas 802 

involved in vestibular processing: Cz and FC6 – premotor and supplementary motor 803 

(movement processing, planning and inhibition) and P4 – medial superior temporal (motion 804 

detection). In this study, it can be observed that the size of the nodal cluster and strength of 805 

connectivity shift to right hemispheric dominance during CS, a preference also observed in 806 

vestibular processing. Overall, there appears to be an alteration of activity and connection in 807 

areas related to motor control and planning, as well as visual processing. These areas may 808 

become targets of intervention for future studies. [40] 809 

 810 
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F7 was highlighted as an area of interest after its correlation as an input to produce high 811 

accuracies in part 2 of the analysis. F7 relates to Brodmann area 45, the inferior frontal gyrus 812 

(IFG) [41]. The IFG and also anterior insular (AI), which also has associations with V5/MT 813 

as described above, is part of the ventrolateral prefrontal cortex (VLPFC). The VLPFC is 814 

involved in a host of functions related to active maintenance of stimulus information, 815 

including being both a control and integrative node in the brain and an interface between 816 

sensory and motor areas[42,43].  Not only does it handle awareness of the immediate 817 

moment but also implementation of reactions to it. Furthermore, it is involved in forming 818 

immediate connections between sensory processing and action control[42].  In addition, F7 819 

integrates interoceptive, limbic emotion-motivational (from orbitofrontal and subcortical 820 

areas), and sensory input (object identity from the ventral visual pathway) [42,44-46]. In 821 

particular, visual information of behavioural significance travels from the ventral pathway to 822 

the VLPFC, and later to the dorsolateral prefrontal cortex (DLPFC) and arcuate area. From 823 

here additional information from the dorsal pathway is then integrated to form a precursor of 824 

motor command[43]. In a transcranial magnetic stimulation (TMS) study, it was found that 825 

the left VLPFC had a role in the regulation of negative emotions using positive reappraisal, 826 

which is the ability to reinterpret the meaning of an emotional event or stimulus into a more 827 

positive light. The VLPFC further produces a top-down biasing effect[47] that drives 828 

selection and retrieval dynamics in the posterior cortex[42]. There also exists underlying 829 

asymmetry in the activation of the IFG/AI. F7 refers to the left IFG, and it has been found 830 

that incongruency in a flanker task activates IFG/AI, whereas the right IFG/AI (F8 was also a 831 

top 5 feature along with F7 in the best time segment) is activated more by errors [48]. The 832 

IFG/AI is also involved in post error slowing, where performance is slowed down due to 833 

making an error[42]. The IFG/AI-anterior cingulate cortex network is also thought to be 834 

involved in incongruency detection and resolving, and the ability to inhibit inappropriate 835 
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responses[42]. All together, it is not too far a stretch to imagine that a brain area involved in 836 

immediate recognition, regulation, resolution and action on the incongruency and error in the 837 

environment could be one of the key role players in susceptibility to cybersickness, and this 838 

is reflected in its superior performance for prediction amongst all other features. The 839 

additional discovery of F7 in part 2 of the analysis has led to a comprehensive picture of 840 

cybersickness, in which there is now a node specific in function for integration and control in 841 

response to incongruent environmental information commonly found in VR stimuli that 842 

induce cybersickness[49] , in addition to areas mention above involved with visual 843 

processing (O2) and motor planning (Cz). 844 

 845 

ECG 846 

This study tried to use ultra-short-term RMSSD recordings in an attempt to classify 847 

cybersickness without having to capture more than 10 seconds of ECG data. Ultra-short-term 848 

RMSSD recordings (30s and 10s) have been statistically reliable in previous studies, but this 849 

parameter alone does not yield high accuracies (Table 4 and 5). Although reductions in 850 

RMSSD have been associated with cybersickness intensity, more evidence is needed to explore 851 

the role of parasympathetic cardiac indicators in cybersickness[50]. Conversely, nausea and 852 

visually induced motion sickness have been found to be mediated by the brain with links to 853 

sympathetic cardiac responses [28,51-53,34]. Although statistical differences between HRV 854 

parameters were not found, it was found that classification algorithms for cybersickness using 855 

sympathetic HRV indexes are still viable. This finding is shared with other studies where HRV 856 

has shown promise for cybersickness classification[4]. This suggests that the differences in 857 

sympathetic parameters of HRV in cybersick people versus control are more complex and 858 

simpler types of statistical analysis may not pick up on it.  859 

 860 
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Future suggestions and limitations: 861 

Given that HRV is computed using R-R intervals of an ECG wave, it may be the case that 862 

other parameters, arising also from other aspects of the ECG wave could be helpful as 863 

features, such as those used in detecting other pathologies like atrial fibrillation [54-56]. 864 

Further research could elucidate on this matter. 865 

 866 

The NeuCube SNNr has some similarities to a liquid state machine (LSM)[57]. In a LSM, 867 

both reservoir computing[58] and a spiking neural network is used to learn dynamical 868 

systems. Spike inputs cause a propagation of spike activity throughout the reservoir, which 869 

are like ‘ripples’ caused by a ‘stone falling into liquid’. However, NeuCube differs in that the 870 

structure is brain-inspired with stationary spatial mapping of inputs, and in that it uses 871 

unsupervised and supervised learning[59]. This application of SNNr allowed for new 872 

knowledge generation about CS and directed feature selection, and even revealed promising 873 

targets for intervention. Still, the reservoir and output layer connections were detrimental to 874 

classification performance. It is likely that these connections served as noise to the classified 875 

feature vector. However, the information synthesized and stored within the SNNr is still 876 

meaningful and valuable. Other training parameters of the cube could be optimized such as 877 

the leak rate in membrane potential, the learning rate, refractory time for neuron firing and 878 

number of training iterations[6]. Nonetheless this points towards the need for future research 879 

on how to maximize interpretability and knowledge discovery alongside classification 880 

performance. Moreover, given that SNNr activity is primarily influenced by its initial 881 

connections, a careful consideration on how to initialize neurons within the SNNr is needed. 882 

In this study the neurons within the SNNr have no distant connections because of the limited 883 

radius set by the small world connectivity approach. However, in an actual brain, there are 884 

both distant and local connections between neurons[60]. NeuCube allows for long distance 885 
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connections to be created through a probability [6], but these connections are not currently 886 

biologically informed. Future research can expand on how to generate a more biologically 887 

plausible SNNr and on how to use the information generated within it to enhance model 888 

performance. 889 

 890 

Some additional points also require consideration. This study used machine learning to 891 

extract information about the spatiotemporal processes within the cybersick brain but future 892 

studies could explore the role of the interplay between motor control, motor planning and 893 

visual processing in VR on CS. The feature interaction network analysis only showed 894 

interactions between cortical areas, but not whether they were increasing or decreasing 895 

connections. Future studies could shed light on how key cybersickness centers in the brain act 896 

to control the flow of information between cortical areas. Furthermore, the finding that 897 

different features can be found at different time segments, but still give similar accuracies, 898 

points towards the complexity of the cybersickness condition within the brain. It may 899 

therefore be of interest to look at the change in features over time, rather than the features at 900 

snapshots in time to understand cybersickness in more detail. Finally, it is not yet known if 901 

the multimodal data fusion shown in this study could be improved by other biosignals and 902 

this could be valuable research to conduct moving forwards. 903 

 904 

Conclusion: 905 

The paper proposes and demonstrates that a brain-inspired spiking neural network (SNN) 906 

model can be created and used for on-the-spot prediction of cybersickness at resting state 907 

baseline and near-instant detection of cybersickness during its onset. Using this SNN model 908 

means that instead of storing raw data, each sample can be stored as a feature vector 909 

representing brain activity, which means less memory storage and processing requirements.  910 
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The model can be dynamically updated on new data, modifying both the weighted template 911 

neural map and the feature vectors to produce new insights. HRV alone or data fusion with 912 

EEG are useful biosignals for the prediction and detection. Motor processing areas under Cz 913 

and visual processing areas at O2 are key sites containing biomarkers as a precursor and 914 

detector of cybersickness and could be useful target areas for clinical intervention.  915 

 916 

List of abbreviations 917 

VR – Virtual reality 918 

CS – Cybersickness 919 

ECG – Electrocardiogram 920 

EEG – Electroencephalogram 921 

SNN – Spiking neural network 922 

HRV – Heart rate variability 923 

KNN – K-nearest neighbor 924 
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RA – Right arm  928 

MSSQ – Motion sickness susceptibility questionnaire 929 

SSQ – Simulator sickness questionnaire 930 

PNS – Parasympathetic nervous system index 931 

SNS – Sympathetic nervous system index  932 

SI – Stress index 933 

SDNN – Standard deviation of N-N intervals 934 

RMSSD – Root mean squared of successive differences 935 

STDP – Spike timing dependent plasticity 936 
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SDSP – Spike driven synaptic plasticity 937 

deSNN – Dynamic evolving spiking neural network 938 

SF – Step forward 939 

LSM – Liquid State Machine 940 

SNNr – Spiking neural network reservoir 941 

FIN – Feature interaction network 942 

RO – Rank-order learning rule 943 

LOOCV – Leave-one-out cross validation 944 

SNR – Signal to noise ratio 945 

LDA – Linear discriminant analysis 946 

LightGBM – Light gradient boosting machine 947 

GBDT – Gradient boosting decision tree 948 
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DLPFC – Dorsolateral prefrontal cortex  953 
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