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Highlights:

 A characteristic frequency equation for T- and overhang-shaped cantilevers 

was derived.

 Mode frequencies and mode gaps could be effectively tuned.

 A formula for coupling strength between cantilevers, was proposed and in 

good agreement with experimental results and FEM simulation.
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Abstract- A characteristic equation for the frequencies of the T-shaped and overhang-

shaped cantilevers is derived for the first time. We show that there are optimum values of 

the overhang lengths and widths that maximize the frequency and the number of maxima 

is corresponding to the mode number. The frequency of higher-order modes could be 

tuned by changing the overhang dimensions. Especially, a semi-empirical formula for the 

coupling strength between cantilevers in an array is proposed where the strength  

presents a cubic decrease with the overhang width  and a linear increase with the  

overhang length , . There is a very good agreement between the proposed   3/  

formula and the values obtained in recent experiments by other researchers. 

Keywords- frequency equation, coupling strength, microcantilever, AFM, overhang-shaped

1. INTRODUCTION

Microcantilevers are at the heart of a wide range of technology: actuators in MEMS, 

sensors, energy harvesters, and atomic force microscopy (Huber, Lang, Zhang, Rimoldi, & 

Gerber, 2015; Kim et al., 2013; Payam, Trewby, & Voïtchovsky, 2018; Sposito, Kurdekar, 

Zhao, & Hewlett, 2018; Toda, Inomata, Ono, & Voiculescu, 2017; Nguyen Duy Vy, Tri 

Dat, & Iida, 2016; Xu & Siedlecki, 2009). Recently, microcantilever arrays are widely 

used to increase the versatility and detecting speed in chemical and bio-sensing (Chen, 

Huang, & Lai, 2008; Gil-Santos, Ramos, Pini, Calleja, & Tamayo, 2011; McKendry et al., 

2002; Plaza et al., 2006). They also present several interesting nonlinear dynamics and 

physical phenomena such as the collective dynamics (Kimura & Hikihara, 2009; Sato, 
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Hubbard, & Sievers, 2006). The cantilevers could be independently actuated or 

dependently coupled via electrical (Krylov, Lulinsky, Ilic, & Schneider, 2014), mechanical 

(Adiga et al., 2009; Cai, Zhang, Wang, Zhao, & Wu, 2013; Chopard, Lacour, & Leblois, 

2014; Kimura & Hikihara, 2009; Plaza et al., 2006), or both (Napoli, Wenhua, Turner, & 

Bamieh, 2005) channels. The coupling between cantilevers is crucial for excitation and 

controlling the vibration and response of the other cantilevers. Mechanically, it could 

attribute to a net (Cai et al., 2013) or a full bridge (the overhang, Fig. 1(top)) between 

subsequent cantilevers (Chopard et al., 2014; Endo, Yabuno, Higashino, Yamamoto, & 

Matsumoto, 2015; Mukhopadhyay et al., 2005; Spletzer, Raman, Wu, Xu, & Reifenberger, 

2006; Yabuno, Seo, & Kuroda, 2013). It is the crucial factor in parallel sensing with array; 

nevertheless, in fabrication of single cantilevers it could be the unexpected sideback 

because its dimensions and properties are challenging to control. 

In a cantilever array, the overhang plays the key role of the coupling mechanism. 

However, a rigorous study on the dependence of the overhang dimensions on this coupling 

strength (κ) is still open to question and is usually estimated based on the measurement 

using various cantilevers. These overhangs could significantly modify the frequency 

especially for short cantilevers (Guillon et al., 2011) and transduce the dynamics of the 

excitation. Therefore, analyzing the properties of the overhang, such as its effect on the 

final frequency of the cantilever, is of interest. Many efforts have been performed to 

examine the width-varying cantilevers involving overhang-, trapezoid-, or T-shaped 

cantilevers. For example, by assuming an analytical function for varying widths, one could 

obtain a frequency equation (Singh, Pal, & Pandey, 2015); however, it is usually lengthy 

and complicated. 

In general, the frequency (and the modeshapes) is determined from a characteristic 

frequency equation. For overhang cantilevers, such an equation has not been figured out 

and the authors usually come with an approximation or numerical results by finite element 

method (FEM) simulation. In these approximations, the mode shape is assumed to be the 

ideal form of a rectangular cantilever and the Rayleigh’s energy method is adopted. 

However, this method is correct only if the mode shape is correct (Blevins, 2015; Tamayo, 

Ramos, Mertens, & Calleja, 2006), which has been skipped in several studies. In fact, in a 

recent study where the deformation is approximate, it has been shown that if mode shapes 

satisfy only some boundary conditions, one could obtain some results on the frequency 

(Meirovitch, 1967).
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In this study, we theoretically figure out the frequency equation for the microcantilever 

with an overhanging part based on the Euler-Bernoulli beam theory. Dependence of the 

cantilever frequency on the overhang width and length will be revealed. The analytical 

results are then confirmed with that from the FEM simulation which shows a low relative 

deviation between the two calculations, below 3%. Especially, a semi-empirical coupling 

strength ( ) between cantilevers has been proposed which presents a cubic decay with the 

cantilever’s distance (∼ overhang width ) and a linear increase with the overhang length 

( ) according to the rule . A comparison to the experimental values has been  3/  

performed and a good agreement was obtained.   

Figure 1: SEM image of the cantilevers without (1) and with (2,3, and 4) overhangs. (a) A 

model for a microcantilever (width  and length ) with an overhanging part of length  w l 0l

and width . The thickness is assumed to be uniform, t, and the total length is 0w w

. (b) A T-shaped cantilever with . Throughout the paper, the reduced 0L l l  0w w

dimensions  and  are frequently used.0 /w w  0 /l L 
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2. CHARACTERISTIC FREQUENCY EQUATION

A cantilever with overhang of a same thickness (t) is modeled in Fig. 1(a). The overhang 

(length  and width ) locates between the main cantilever (length l and width ) 0l 0w 0w w

and the (clamped) fixed base. If , one has a T-shaped cantilever [Fig. 1(b)]. The 0w w

Euler-Bernoulli beam theory is used to study the frequency and mode shapes of the 

cantilever. The dynamic equation is written as 

, (1)
       2 22

2 2 2

, ,V x t V x t
m x EI x

t x x
  

      

where, the deflection  is a function of position x and time t,  is the mass per ( , )V x t ( )m x

unit length. E and I(x) are the (elastic) Young’s modulus and the area moment of inertia of 

cross section, respectively. Using the method of separation of variables, 

, one obtains and( , ) ( ) ( )V x t W x G t 2''( ) ( ) 0G t G t 

(2)
       

22
2

2 2 0.
d W xd EI x m x W x

dx dx


 
  

 

In the case without overhang, , and a uniform mechanical property along the 0w w

length, I(x) is independent on x and Eq. (2) returns to , where 
(4) ( ) ( ) 0LW x W x 

. Solving this equation using suitable boundary conditions, W(x) is 
2 / ( )L m EI 

obtained. Especially, a characteristic frequency equation is also revealed,

(3)1 cos cosh 0.L LL L  

This is the famous transcendental equation and its roots are numerically solved 

(Timoshenko & Young, 1937),  for i = 1, 2, 3, etc. These , 1.875, 4.694, 7.854,10.995, ...L i L 

 determine the frequencies of all singly clamped cantilevers provided that its elastic ,L i

strength and mass density are known, . Considering the cantilever with an 
2
,i L i

EI
m

 

overhang, position-dependent I(x) and m(x) are I0 and M0 for  and are I and M for 0x l

, respectively. Then, we have  for  and 0x l      4
0 0 0

4 0W x W x  00 x l 

 for , where  and ; therefore, 
       4 4 0W x W x  0l x

2
0

0

4
0

M
EI


 

2
4 M

EI
 
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. The solutions of such equations are of the form 

1/4

0 0
0

0

1IM
I M


 


 

    
 

, (and similarly, ).  0 1 1 1 1sin cos sinh coshW x A x B x C x D x         2 sin ...W x A x 

Using  as the reduced overhang width, we obtain the equation0 0/ /I I w w  

(4). 0K X 

where  is a column matrix and K is a square  T
1 1 1 1 2 2 2 2X A B C D A B C D

matrix contaning the dimensions of the cantilever and the overhang,

       
       

0 0 0 0

0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0

0 1 0 1 0 0 0 0
1 0 1 0 0 0 0 0
0 0 0 0 sin cos sinh cosh
0 0 0 0 cos sin cosh sinh

sin cos sinh cosh sin cos sinh cosh
cos sin cosh sinh cos sin cosh

l l l l l l l l
l l l l l l l l

K
l l l l l l l l
l l l l l l l

   
   

       
      

     
    


   

   0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

sinh
sin cos sinh cosh sin cos sinh cosh
cos sin cosh sinh cos sin cosh sinh

l
l l l l l l l l
l l l l l l l l


           
           

 
 
 
 
 
 
 
 

 
     
     

(5)

Solving this matrix, we obtain

        22
0 0 0 02 1 cos cosh 1 cos cosh cos cosh 1 1 cosh cosh cos cos 0L L l l l l l l l l                   

(6)

Letting , we arrive with  cos coshf x x x 

(7)             22
0 01 1 1 1 0.f L f l f l f l f l                   

This is the characteristic frequency equation for the cantilever with an overhanging part. It 

maintains the form of Eq. (3) (first term) for a rectangular cantilever and has additional 

terms symmetric with l0 and l. Therefore, the eigenvalues for the frequency are functions 

of l0 and , . In case without the overhang, , Eq. (7) returns Eq. 0 /w w   0 ,l   0 0l 

(3), , when . The frequencies with and without overhang are  1 0f L  L 

 and , respectively. It is worthy to mention that I and M here 
2
ii

EI
M

 
,0 2

,
,

L w
i L i

L w

EI
M

 

corresponds to the cantilever part  which could be accurately measured in  ,l w

experiments. Because , we have0 0/ /I M I M
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(8)

2

2
0

.
L

 
 



Knowing , one could directly obtain the resonance frequency. Equation (7) is the new 

transcendental equation and will be solved by numerical calculations. Let  be the 0 /l L 

overhang-to-full length ratio, Fig. 2 presents β for the first 4 modes normalized to that of a 

rectangular cantilever (β0) of the case the overhang width is . The 1st mode [Fig. 0w w

2(a)] presents a simple increase of frequency with , or , if . At , the  0w   1  0 0l 

cantilever is rectangular of width w and . For a certain value of ξ,  because l L 0 1   

cantilevers of different widths but a same length will have a same frequency (same  /I M

ratio). β has one maximum (if ξ > 1) and one minimum (if ξ < 1) locating at η = 0.5. 

Especially, the number of maxima (when ξ > 1) is corresponding to the mode number and 

the change in β with overhang length η is more complicated; however, it is symmetric 

versus the half length, 0.5L. For example, the second mode has two maxima, at η = 0.2 and 

0.8. The third mode peaks at 0.1, 0.9, and 0.5 and the fourth mode, at around 0.08, 0.92, 

0.35, and 0.65. A cut at ξ = 1.5 shown in Fig. 2(e)–(h) makes clear these characteristics. 

The behavior of T-shaped cantilevers could be seen when ξ < 1 [blue region in Fig. 2]. The 

frequencies of the 1st and 2nd modes are decreased. However, for higher modes, an 

asymptotical increase of β to β0 at a certain length is clearly seen. This characteristic could 

be used to enhance the frequency of higher-order modes. 

Table 1: Deviations between analytical and numerical calculation, for κ = 3, are mostly not 
greater than 3%.

κ = 3.0 Mode 3 (kHz) Mode 4 (kHz)

η Analytical FEM
Deviation (%)

Analytical FEM
Deviation (%)

0.1 517.18 506.93 -1.98 991.14 980.82 -1.04
0.2 500.60 502.75 0.43 916.33 902.49 -1.51
0.3 462.11 452.93 -1.99 928.85 900.11 -3.09
0.4 469.61 456.52 -2.79 934.94 933.82 -0.12
0.5 484.71 481.75 -0.61 897.59 875.89 -2.42
0.6 469.61 469.75 0.03 934.94 905.92 -3.10
0.7 462.11 450.09 -2.60 928.85 931.00 0.23
0.8 500.60 482.60 -3.60 916.33 888.91 -2.99
0.9 517.18 517.77 0.11 991.14 973.06 -1.82
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The analytical calculation could be confirmed using the FEM simulation. 

Parameters of a Silicon cantilever with , and 200 ,  20 ,  0.8 ,  160 GPaL m w m t m E     

, are used. A cut at ξ = 1.5 clearly reveals the dependence of 
3/ 2320 kg/mm L  

 on the overhang length. The deviations are mostly not greater than 0.5% (see  / 2f  

the Supplementary Information). Increasing ξ up to 2.5, the deviations below 3% are seen. 

Increasing w0, for example ξ > 3, leads to the less accuracy of the assumption that all parts 

of the overhang deflect as a 1D cantilever. Because while the end part of the overhang (at 

) deflects with the cantilever, the further part of the shoulder, due to the strong 0l

connection with the clamped substrate, receives smaller bending. As a results, the entire 

cantilever suffers a smaller deflection and a higher frequency in comparison to that from 

Eq. (7). For the cantilever part , it is clamped by a soft “substrate” , this is  ,l w  0 0,l w

equivalent to an extra effective length . As a results, the frequency of the  effl 1 effl

cantilever is lower than that of the l cantilever, as seen in a recent experiment (Guillon et 

al., 2011). This explains the higher values from FEM in comparison to the analytical 

result. Therefore, a 2D analysis should be used if much higher accuracy is required. 

Nevertheless, in the current 1D calculation, the deviation is mostly less than 3% [see Table 

I]. 

Significant change of frequency is presented in Figs. 2(e)–(f) using various cut 

positions. Especially, it presents an increase of f of the 3rd mode for η = 0.5 [red dashed 

line, Fig. 2(g)] or of the 4th mode for η = 0.4 [blue dash-dotted line, Fig. 2(h)]. This opens 

a method for tuning and increasing higher-order resonance frequencies in addition to using 

an optical resonance cavity shown in a recent study (Hoang, Vy, Dat, & Iida, 2017).
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Figure 2: (a)–(d) The frequency ratio versus the overhang length  and  0/  0 /l L 

width  for the first 4 modes. The numbers of maxima (when ξ > 1) is 0 /w w 

corresponding to the mode number. (e)–(h). Corresponding cuts from (a)–(d) at some 

values of η reveal the change of frequency versus overhang width. Frequency of the 4th 

mode in T-shaped cantilever [blue dash-dotted line, ξ < 0.8 (h)] could be increased.
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Figure 3: Frequency ratio of the first four modes for various values of ξ. The cantilever 

frequency could be effectively tuned by changing the internal parameters ξ and η.

Change in frequencies of various modes is significant in measurement, especially 

when we could bring the modes closer or further, as shown in Fig. 3. Using ξ = 3, for 

example, while the frequency of the 1st and 2nd modes are increased, the 4th mode, on the 

other hand, decreased. This behaviour is also seen at other value of ξ. This means the 

frequency ratio between modes has been effectively alter depending on the internal 

parameters of the structure. From the physics viewpoint, the change in the boundary 

conditions inside the cantilever (as a waveguide) gives rise to the change in the 

eigenvalues of the system. This opens a way to control the relative frequency of the 

cantilever.

3. THE EFFECT OF NUMBER OF CANTILEVER

Due to the diminishing of oscillation over distance, the effect of the number (n) of nearby 

cantilevers on the frequency of a single cantilever has been checked, using  as an 0.1 

example. It is clearly seen in Fig. 4 that the frequency gets an asymptotic value for 4n 

(violet diamonds) and the asymptotic behaviour is obtained faster for greater cantilevers’ 
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distance (ξ). For , the difference in the frequency is negligible for the number 1.2  2n 

(blue triangles). Therefore, we could determine the coupling strength in any array using the 

results from that of two coupled cantilevers.

Figure 4: Frequency of a single cantilever in an array of several cantilevers. For , 1.2 

the difference of frequencies of a cantilever in a 2- and 3-cantilever system (blue triangles 

and aqua inverted triangles) is negligible. The parameters here are same as those used in 

Fig. 2 where using .0 26.83 kHzf  0 / 0.1l L  

4. SEMI-EMPIRICAL MECHANICAL COUPLING STRENGTH

The coupling stiffness between two subsequent cantilevers is the key factor determining 

the effectiveness of indirect excitation. Via the overhang, the original frequency (  and A

) of every cantilever is changed and the two hybrid modes exist (Novotny, 2010)B

(9) 2 2 2 2 22 21 4 ,
2 AA B A B B      

        
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where  is the anticrossing between and  and , the coupling strength between     

two oscillators. For , one has , and  is 0A B    𝜅 =
𝑘𝑐

𝜔0
=

1
2

𝜔2
+ ― 𝜔2

―

𝜔2
―

=
𝛤

𝜔0 ― 𝛤 ≃
𝛤

𝜔0


frequently called the coupling stiffness. 

Figure 5: Normalized coupling strength, , in Eq. (10) for    3
0, / /ck       0.24 

(black solid lines), 0.2 (blue dotted line), and 0.18 (red dashed line) and experimental 

values from other groups: blue triangles—the results of Gil-Santos et al., (2011); red 

circles—the result of Spletzer et al., (2006); black circle—the results of Endo et al., 

(2015); green circle—the result of Sato et al., (2003) and Chen et al., (2008). The error 

bars are extracted from the corresponding papers. For  in Ref. (Spletzer et al., 2~ 10 

2006),  is selected with a deviation of 0.005. For Ref. (Gil-Santos et al., 2011): 0.015 

magenta circles—the FEM results and yellow shadow—Eq. (10) with .0.24 0.03  

The value of this coupling is usually deduced to fit with the first two frequencies in 

experiments. Gil-Santos et al., (2011) suggested that , where ξ − 1 is the gap   01 /l
G Ae   

between cantilevers; however, this formula involves an unknown parameter A skips the 

role of the cantilever width and length.
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Here, we propose a semi-empirical coupling strength that does not contain any 

parameters but the reduced dimensions of the overhang, which writes

. (10)  3,   




Certainly, κ is proportional to the overhang length (η) and diminishes with the increasing 

gap between subsequent cantilevers (ξ −1). Furthermore, it satisfies  and , 
0 or 1 0

0
 


 


? 1

1






and is presented in Fig. 5 (solid lines). One could rewrite κ as     3 3, / 1 / p       

where p is the gap between cantilevers (Gil-Santos et al., 2011); however, this skips the 

contribution of the cantilever width on the coupling. Experimental values from Gil-Santos 

et al. (Gil-Santos et al., 2011) (blue triangles), Spletzer et al. (Spletzer et al., 2006) (red 

circles), Endo et al. (Endo et al., 2015) (black circle), and Sato et al. (Sato et al., 2003) 

(green circle) have been presented. The error bars when available are also plotted. For Ref. 

(Spletzer et al., 2006) which used , we chose  [see Table 2]. It 2~ 10  0.015 0.005  

could be seen that the proposed κ, although very simple, fits well with the experimental 

values. 

Table 2: Coupling strength from experimental parameters, FEM simulations, and semi-
empirical formula.

 Cantilevera Overhang 0 /l L w0/w coupling strength (κ)
Dimensions L w l0 gap w0 η ξ experimental FEM Eq. (10)

20 30 3 0.015±0.006 0.003 0.008
10 20 2 0.030±0.006 0.03 0.03
5 15 1.5 0.055±0.006 0.087 0.071

Gil-Santos et 
al., (2011) 33 10 8

2 12

0.24

1.2 0.128±0.016 0.169 0.138
Spletzer et 
al., (2006) 500 100 90  250 0.18 2.5 0.015±0.005 0.0116 0.0115

Endo et al., 
(2015) 500 100 100 250 350 0.2 3.5 0.0144 0.0056 0.0046

Sato et al., 
(2003), 

 Chen et al., 
(2008) 

73.5b 15 100  350 0.31 3.7 0.0735 0.0194 0.0062

a Dimensions in µm.
b An average value from two cantilever lengths.

In fact, the coupling is also dependent on the cantilever thickness and the materials made 

of the cantilever, i.e. the greater the Young’s modulus E is, the higher the coupling is. 

Therefore, the experimental results could be highly deviated from the semi-empirical 

Page 14 of 17

John Wiley & Sons

Microscopy Research and Technique

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

value, as shown by green circle for Refs. (Sato et al., 2003) and (Chen et al., 2008) versus 

the green dash-dotted line. We could write a more general form for κ as .   3/A E  

Nevertheless, in the case of silicon and silicon nitride cantilever, the simple form of Eq. 

(10) still describes well the coupling, i.e.  was used. Using the FEM simulation   1A E 

(magenta circles) to check the experimental results, we could see that there is a significant 

deviation of κ for small overhang lengths, e.g. . This arises from the deviation in the 1.2 

overhang length in fabrication, , which gives rise to (yellow 0 8 1 l m  0.24 0.03  

shadow in the figure). For greater overhang lengths, , the formula agrees well 1.5 2.5  

with both the experimental and FEM results.

5. CONCLUSION

In summary, we have figured out an analytical formula for the characteristic frequency of 

overhang- and T-shaped cantilevers. The formula involves a symmetric term of cantilever 

(Gil-Santos et al., 2011) and overhang lengths in addition to the empirical term of a 

rectangular cantilever. FEM simulation has been used to confirm the accuracy of the 

analytical equation. A deviation below 3% is obtained for the overhang that 3-fold wider 

than the cantilever width. The analytical procedure could be applied for doubly clamped 

cantilever with various width geometries such as tapered, anti-tapered, or normal beam 

with symmetrical attachment in the middle (Bereyhi et al., 2019; N. D. Vy, Cuong, & 

Hoang, 2018). Especially, a semi-empirical formula for the coupling strength between 

cantilevers in an array has been presented which shows a good agreement with the values 

from experiments of other research groups.
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