
UNIVERSIDAD DEL NORTE

MAESTRIA EN INGENIERÍA DE SISTEMAS Y
COMPUTACIÓN

THESIS

Continuous and Secure Integration Framework for

Smart Contracts

Alvaro Jose Reyes Yepes

Barranquilla, 2022



UNIVERSIDAD DEL NORTE

THESIS

Continuous and Secure Integration Framework
for Smart Contracts

Author: Alvaro Jose Reyes Yepes

Supervisor: Miguel Angel Jimeno Paba

Co-supervisor: Ricardo Villanueva Polanco

Barranquilla, 2022



Por todos aquellos que me impulsaron a seguir adelante.
Para los que me veran terminnar y para los que ya no podran.

Cada uno fue simplemente indispensable.



CHAPTER 1

Introduction

In software development projects, organizations work to implement development practices using

mostly agile methodologies [1]. One of these practices is DevOps. This software development

practice focuses on improving the cooperation between the different teams working on a project,

especially the development and operation team, from which the name is derived[2, 3]. The

result is an improvement in the productivity of all involved teams by effectively using their

time, which leads to faster software development cycles and higher product quality [1][4].

However, there are issues in implementing such practices, as presented in works by [5], [6],

and others. Typical issues include manual and time-consuming tasks (which makes project

management not scalable, especially for small teams), inaccurate results in testing phases,

subjective evaluations, and authority constraints when phases are divided across teams. The

work presented by Nogueria, Ana et al. [6] uses machine learning techniques to formulate

strategies that lead to even higher product quality.

Although the adoption of DevOps has shown indisputable benefits, its implementation is

challenging [7]. This challenge is significantly more complex when the implementation consid-

ers ongoing projects with developed practices and habits. The first issue faced is dealing with a

currently established development routine [8], as having to re-establish current procedures and

having the teams follow it can be met with resistance. The second issue is cost, as there are

infrastructure considerations involving an initial cost in budget, skill development, and time

taken for integration and maintenance of the tools required [9] [10]. Finally, the third issue is

the communication between the developer and operational teams, as continuous deployment

can demand additional awareness of the different systems [11].

In recent years, the development of smart contracts has become popular thanks to the

increasing interest in cryptocurrencies. Researchers have found interesting uses for smart

contracts beyond the new currencies thanks to this revived interest. Smart contracts are

protocols that enable and enforce contracts made between several parties on a blockchain. For

this reason, the distributed fashion of blockchain creates particular requirements for elaborating

the contracts. [12, 13]. As shown in [14], constant changes in the DevOps process can cause

unexpected delays, which can be a big issue in the case of smart contracts, given that the

language is changing fast [15] and with it, the need to implement new and more complete tools



and development strategies. However, the viability of implementing a few steps of DevOps

on an Ethereum blockchain has been proven by Wöhrer, and Zdun [16]. Implementing all the

DevOps steps is important to guarantee a project’s success. Al-Mazrouai and Sudevan [17],

Marchesi, Marchesi and Tonelli [18], Lenarduzzi, Lunesu and Tonelli [19] have all also suggested

other processes using agile development as a base. These authors further validate that it is

possible to establish a framework to work with blockchains and smart contracts.



CHAPTER 2

Problem & Objectives

2.1. PROBLEM STATEMENT

Blockchain and smart contracts, as mentioned in 1, the implementation of agile methodologies

has been combined with the blockchains and smart contracts. Literature on this topic has been

showing an increased rate in the past years however, this is still a new field when compared to

more traditional software. To gain a better understanding on why DevOps should be properly

implemented and the benefits it tries to cover on smart contracts, a research is required.

For this we had the next questions:

1. ¿Which problems are being faced when implementing DevOps on smart contracts?

2. ¿Can traditional DevOps be applied without any change to smart contracts technology?

3. ¿What issues can be prevented with DevOps being applied to smart contracts?

2.2. OBJECTIVES

The thesis aims to propose a DevOps framework to work specifically with smart contracts. This

proposal would be independent of blockchain and language as long as the tools mentioned are

available. To achieve this, the objectives in Table 2.1 has been specified.

Table 2.1: Objective’s Description and Results

Objective Results
General: Propose a DevOps frame-

work aimed at smart contracts.

Creation of the framework proposed in this doc-

ument.

Specific: Specify the DevOps steps

and how it has been handled in tra-

ditional software.

An state of art was elaborated including the in-

formation for DevOps steps and software avail-

able to aid this process, in both on-premise and

cloud scenarios.

Continues in the next page.



Objective Results
Specific: Specify the different

blockchain types that exist, attacks

and prevention mechanisms.

An state of art was elaborated including the in-

formation for blockchain, smart contracts, vul-

nerabilities and software to aid on vulnerability

identification.

Specific: Design a framework to be

used in a DevOps process with smart

contracts in consideration.

A framework was built, taking into account the

different factors faced when developing smart

contracts.

Specific: Create a study case based on
Ethereum and Solidity for document

identification.

A test application for document identification

was created using Solidity in a single smart con-

tract.

Specific: Validate the proposed frame-

work using the developed study case.

A pipeline was created in Azure DevOps to run

the proposed framework on he study case appli-

cation.



CHAPTER 3

State of Art

3.1. DEVOPS

DevOps is a software development practice focused on improving the cooperation between

the different teams working on a project, especially the development and operation team,

from which the name came [2]. Modern development organizations require entire teams of

DevOps to automate and reduce the gap between the development team and the operation

team. At the same time, this process needs to acknowledge the interdependence of the different

teams to produce faster results for software products and services in an organization [20].

DevOps can be defined in five major phases: Continuous Planning (CP), Continuous Integration

(CI), Continuous Testing (CT), Continuous Deployment (CD), and Continuous Feedback and

Monitoring (CFM) [21] [22].

CP is the phase that handles dynamic planning, where events are constantly assessed to

determine the best action to take according to the specific event. This phase allows plans to

be agile and adapt to moving conditions [22]. The process consists of a cycle where managers

plan small steps, execute them and get feedback. These steps allow the team to react and adjust

the current plan to match the feedback. As a result, the phase generates a prioritized product

backlog, and participants can change this prioritization where adjustments can be made at

any point [23]. CI allows the integration of multiple activities on a partial automation process

going from source control to project building [24][25]. One of the CI process’s most significant

advantages is that a clean code build is always the result. The result from the CI phase can vary

from a compiled executable, an image, a container, or a library to be used on another project

[26].

CT is the next phase of the DevOps process, where multiple tests are done over the source

code and the compiled build during the CI phase. These practices have evolved from functional

testing to include static code analysis and dynamic code analysis for security and performance

issues. These analyses allow the detection of possible defects that developers must address as

soon as possible. Systems’ users access the results of this activity in real-time without depending

on each other [27], leading to more software features and finding bugs much faster. After the

successful completion of the CT phase, the CD phase happens. The artifact’s deployment goes



Figure 3.1: DevOps phases

into the different environments for the product. The activities inside the CD phase do not handle

the security of the generated artifacts, confidentiality, or infrastructure issues [24]. They do,

however, facilitate updating a system component, allowing feedback from the different teams to

be made available to the developer more frequently, given the automation of the process. [28].

CD, however, can be divided into two types: Continuous Deployment and Continuous Delivery.

The ending activity defines the difference. Continuous Delivery is not fully automated, as it

finishes delivering an artifact capable of deployment. Continuous deployment, however, ends

with the final artifact being pushed to a system without any decision-making.

Finally, CFM starts once the build has been deployed on a system. As Fayollas, Camille et al.

[29] suggested, this could be included in the CD phase. However, to differentiate the most, a

new phase is defined. Here, there exists a valuable chance to observe the behavior and usage of

the system through different qualitative parameters to react to any bugs or improvements that

can be done over the source at an early stage of the deployment [21].

There is, however, a significant point to consider when implementing the tools required by a

DevOps process called security. As mentioned before, not only is it a part of the DevOps process

to guarantee the security of the artifact being deployed, but the security of the application

itself needs to be considered. As mentioned by Düllmann, Thomas et al. [30], security is also a

concern in the tools themselves. There must be mechanisms to prevent identity spoofing, data

tampering, repudiation, information disclosure, denial of service, and elevation of privilege.

3.2. DEVOPS TOOLS

This section describes software tools for each phase in the DevOps cycle. DevOps tools are

the software in charge of helping with the different parts of software development, such as



version control, building, testing, and deployment. Tools are tailored for specific activities of

the process.

It is essential first to discuss Source Control Management (SCM) tools. Working on a shared

project with a local directory is satisfactory at the start of the project. However, as it starts

growing, i.e., other participants start joining and contributing to it, sharing the code changes

becomes convoluted, and hence a way to do it is a need [31]. That does not imply that no

benefits can be obtained from an SCM if working alone since a sole member may benefit if

one wishes to recover a previous code version in case something goes wrong. An SCM tool

stores the code in repositories, versions the code, and helps distribute the work between project

members. Some SCM technologies are Git, Subversion (SVN), Concurrent Versions System

(CVS), Vesta, and Mercurial.

The second set of tools handles the orchestration between the multiple services. These tools

coordinate the processes required to compile a project. These ensure that the predefined steps

are done for both success and error cases. Sometimes the orchestrator can be built-in in another

tool, such as Gitlab (a Git repository manager) with its own CI/CD [11]. However, there are

tools dedicated to this function, such as Jenkins, Tekton, Travis-CI, Circle-CI, and AppVeyor

[14] [16].

The third tool is not mandatory but is highly encouraged to have and handles the testing

of the application. As mentioned before, testing should now include static code analysis and

dynamic code analysis without forgetting about unit testing. The used code framework should

cover unit testing. However, the other testing tools require other tools. A static code analysis

tool is responsible for flagging preconfigured programming and style errors in the source code.

Meanwhile, a dynamic code analysis tool flags potential vulnerabilities in a running artifact.

3.3. DEVOPS CLOUD-BASED TOOLS

Emerging cloud technologies influence the paradigm for applications, which has changed as the

capability to develop and deploy on the cloud has increased the scalability and reliability of the

systems [32]. Cloud providers have had to adapt to these changes causing the support of DevOps

tools on the cloud to increase and allowing support for the DevOps process while minimizing the

deployment downtime. The architecture that handles all of this is the microservice architecture

[14]. One key factor that allows the implementation of the microservice architecture in the

cloud is virtualization, which can be done through virtual machines and containerization. Some

of the cloud providers that offer DevOps tools services are:

• Microsoft Azure Pipelines: Pipelines simplify hardware and VMmanagement using Mi-

crosoft’s agents and allow users to automate code builds and deployments with Pipelines.

Azure offers support for every major platform and tool through container jobs. Important

to note is that Azure allows the user to do a deployment to multiple cloud providers and

on-premise machines [33].

• Google Cloud Build: It is a fully managed platform to build, test, and deploy code from

multiple source code repositories. Cloud Build permits the user to deploy the build to



the platform of choice. Important to note is that Google offers "Binary Authorization" to

perform deep security scans, enforce standardized container release practices and verify

images to ensure no tampering is done on deployment [34].

• Alibaba Cloud DevOps Pipeline (Flow): An automated delivery pipeline service

that offers tools to go from continuous integration to continuous deployment. Flow

benefits include integrating multiple cloud repositories, code and security scanning, and

deployment to public clouds or self-hosted environments [35].

• IBM Cloud Continuous Delivery (CCD): IBM CCD platform allows user to handle

their pipeline entirely through tools integration. It offers issue tracking, source code

repository, and web IDE in addition to the tools required to build, test and deploy. IBM

CCD offers deployment exclusively to the IBM Cloud [36].

• Amazon AWS CodePipeline: It is a platform to build, test, and deploy code based on a

defined release process model. It is based on three services: AWS CodeBuild (code building

and testing), AWS CodeDeploy (deployment to AWS servers or on-premise servers), and

AWS CodeStar (user interface for configuration) [37].

• Redhat OpenShift Pipelines: OpenShift Pipelines is a Kubernetes-native CI/CD solu-

tion based on Tekton. Therefore, this allows each pipeline step to run on its container.

Openshift Pipelines can build, test, and deploy applications to public cloud platforms and

on-premise. [38]

Table 3.1 compares the analyzed cloud providers that a developer should consider when

starting a smart contract development project.

Table 3.1: Comparison of cloud providers.

Cloud Provider On-Premise
Deployment

Multi-Cloud
Deployment

Additionals

Microsoft Yes Yes Extension

marketplace

Google No Yes Binary Authorization

Alibaba Yes Yes

IBM No No Issue tracking, Web

IDE

Amazon Yes No

Redhat Yes Yes

3.4. BLOCKCHAINS AND SMART CONTRACTS

Blockchains worldwide have become the base for digital currencies containing blocks protected

from manipulation and alteration. Any block has information regarding the previous block and

timestamp. Blockchains implementations are free from alteration as it is impossible to change



the data in a block [39]. First-generation blockchains, like Bitcoin, introduced cryptocurrency

transactions as their only function. Meanwhile, second-generation blockchains, like Ethereum,

have introduced the possibility of building and deploying software executed by the members of

the blockchain [40].

The programs on the blockchains are called smart contracts, which are the core of a

blockchain service. A smart contract is, as previously stated, an immutable software code

that runs on top of the blockchain. Currently, Ethereum is the most popular blockchain for

smart contracts [15], but other blockchains with smart contract support are shown in recent

studies [41].

Bugs and security concerns are issues that smart contracts need to solve to have a bigger

adoption rate. Security concerns regarding smart contracts have appeared in recent years, as

shown by different studies [42] [43] [44]. Bugs are an issue on both cost, as running smart

contracts on a blockchain has a transaction cost [45], and security, as unsafe programming

can allow an attacker to run undesired code [46]. Since smart contracts convert software

programming instructions and due to requirements occurring in multiple scenarios, many smart

contract platforms have become available to solve business requirements [43]. Some of these

blockchains are [41]:

• Ethereum: One of the most popular open-source public blockchain platforms with a

cryptocurrency called ETH or Ether. Ethereum is the oldest smart contract platform,

allowing developers to build decentralized apps through its Ether. Ethereum Virtual

Machine (EVM) software stores and executes all smart contracts, with Solidity as the

relevant programming language. However, this blockchain suffers from concurrency

issues which developers are working to reduce [47].

• Hyperledger Fabric: A private blockchain platform with smart contract features that

first became available as an enterprise blockchain platform. It is an open-source Linux

project which supports the collaborative development of blockchain-based distributed

ledgers. This blockchain architecture bases itself on a microservice architecture for an

appropriate deployment. Hyperledger developers have access to tools that allow them to

develop smart contracts more efficiently and quickly [48].

• New Economy Movement (NEM): A platform for private blockchains focused on

building solutions for requirements using a cryptocurrency called XEM, which can be

traded but not used as payment. Created initially in 2015 based on another blockchain

called NXT [49, 50]. Unlike other blockchains, NEM uses a proof-of-importance (POI)

mechanism instead of a proof-of-work (POW) mechanism. NEM offers several advantages

to the users, such as ease of deployment, deep customization, performance, and complete

security.

• Stellar: It is a blockchain-based platform that facilitates economic transactions over

boundaries. For the Stellar blockchain, smart contracts manifest as Stellar Smart Contracts

(SSC) [51]. The crypto coin used in Stellar is Lumen [52]. A Stellar Smart Contract (SSC)

is a composition of connected and executed transactions using various constraints with a

processing time between three and five seconds. Stellar allows users to create, trade, and



send digital representations of all forms of money (i.e., bitcoin, dollars, and pesos) while

securing this with the Stellar Consensus Protocol (SCP).

• EOS: It is a blockchain-based platform designed to develop scalable and secure applications

with smart contract capability [53]. EOS provides decentralized storage of enterprise

solutions to solve the scalability issues faced by Bitcoin and Ethereum. A difference

between the EOS platform and others is that it eliminates all users’ fees and uses a

Proof-of-Stake (PoS) algorithm.

• Corda: An open-source blockchain project, designed for business from the start, allows

users to transact directly with smart contracts [54]. This practice streamlines business

processes to reduce transaction costs and record-keeping. The R3 Corda platform repre-

sents the smart contract corresponding to real-world contracts. It is an agile and flexible

platform that can scale to meet business requirements. Applications built on Corda,

CorDapps are designed and developed to transform businesses across various sectors,

including insurance, healthcare, finance, and energy.

Table 3.3 has an abbreviated comparison of the blockchains discussed before.

Table 3.3: Comparison of most used blockchains.

Blockchain Open
source

Supports
Cryp-
tocur-
rency

Miner
participa-

tion

Smart
Contract
Language

Consensus
Mecha-
nism

Scalable

Ethereum Yes Yes Public Solidity Proof of

Work

No

Hyperledger

Fabric

Yes No Public,

Private

Java,

Solidity,

Golang

Proof of

Work

Yes

NEM No Yes Private Java Proof of

Impor-

tance

Yes

Stellar Yes Yes Public Solidity,

Javascript,

Java, Go

Stellar

Consensus

Protocol

Yes

EOS Yes Yes Public C++ Proof of

Stake

Yes

Corda Yes No Private DAML,

Kotlin,

Java

Validity

and

Unique-

ness

Yes



3.5. SMART CONTRACTS SECURITY

In addition to the security risks posed against distributed ledgers, such as 51% attack [9567686]
against blockchain based on mining [Classification, math10142504], as well as emerging

threats as cryptojacking [aponte2022detecting], there are other risks directly against smart

contracts. The distributed and immutable characteristics of a smart contract in a blockchain

had consequences when faults in them caused economic impacts in multiple cases [46][55].

Such risks pressed developers to hasten the creation of multiple tools to mitigate these impacts.

However, not all tools have been kept up to date or made accessible to a larger public, as shown

by Lopez, Antonio et al. [56]. There is also the difference in programming language between

the blockchains that only makes them available for some blockchains [41]. It is also worth

mentioning the analysis of the tools developed are built for static code analysis instead of a

dynamic code analysis [45].

There are doubts about the current tools available for smart contract programmers, which

has caused proposals such as SolAnalyzer [57], SolAudit [55] and SuMo. However, the biggest

concern is the need for articles concerning employing DevOps for a smart contract pipeline.

3.5.1. Smart Contract Vulnerabilities

Information on vulnerabilities of Solidity Smart Contracts has been collected in multiple studies

such as Villar Lopez et al. [56], Badruddoja et al. l [44], Dika et al. [45], Akca et al. [55]. Most

studies focus on and explain the most critical vulnerabilities presented in this section.

• Reentrancy: This vulnerability is considered one of the most severe. The reentrancy

vulnerability relies on the interaction between two smart contracts. If, through smart

contract dependencies, a contract hands over the control to another contract, it allows

this second contract to call back into the first contract before the first initiated interaction

between them is completed. Therefore, the second contract could have an action to refund

gas and do this operation multiple times to empty the balance of the smart contract of the

target. The correct order of operations during a balance transfer is essential to prevent

this attack.

• tx.origin: tx.origin is a global variable used in Solidity smart contracts containing the

account’s address that sends the transaction. The vulnerability, named after this variable,

aims to identify the user who initiated the chain of interactions between contracts. This

action is done during the authorization method to spoof unauthorized users as authorized

and obtain leveraged privileges in the contract.

• Callstack depth exception: Contracts have a call stack limit of 1024. Therefore it is

possible to make a smart contract execution fail by making external calls and exceeding

this maximum stack call size. An attacker can use this call as an advantage to produce an

output that suits them the best during a contract execution if the call stack exception is

not handled correctly by the contract.

• Timestamp dependence: A contract that depends on the timestamp can be vulnerable

if used in a vital contract call. An attacker can manipulate the timestamp to produce an



output that suits them best.

• Transaction-ordering dependence: This vulnerability is a prevalent security bug in

the smart contract that consists of relying on the order of transaction execution. This

vulnerability can have the attacker be the smart contract owner or the miner. It consists of

making the gas price of the transaction change during the execution of the smart contract

because the attacker sends a transaction that modifies the price before the transaction

being executed finishes.

• Gasless send: This situation happens when, under certain conditions, the gas sent to

execute a contract call is not enough to cover the call. This situation generates a "gas

exhaustion" exception and, therefore, a transaction failure. The exception happens if the

recipient’s contract has a fallback function with a large code base. It is crucial to throw

an exception if a failure based on gas consumption happens and to ensure that the gas

requirements for contracts’ calls are not too high.

• Call to the unknown: It happens when a Call, Send or DelegateCall primitive of the

Solidity language is called inside a contract. However, this one internally uses a function

defined inside all contracts (as part of the Solidity language) but is not found in the miner’s

environment during execution.

• Overflow and underflow: This vulnerability can occur when transactions do not check

the input data to verify it is an authorized input. Smart contract overflow occurs when

the value provided exceeds the maximum value defined for its data type. In the case of

Solidity, it is a 256-bit number. In the case of underflow, it is trying to achieve the same

by using numbers under the limit permitted by Solidity.

• Short address attack: This vulnerability occurs in Ethereum Virtual Machine (EVM). It

permits padded arguments that allow an attacker to send a crafted address that leads to a

contract exploit. The EVM will add zeros to the end of the encoded arguments to make

up for an expected length of 20 bytes (applied only when the argument is less than 20

bytes). This attack is not explicitly made on the Solidity contracts themselves but on the

third-party applications that interact with them. It is usually an issue when third-party

applications interacting with smart contracts do not validate the inputs.

3.5.2. Analysis Methods

For developing secure software, especially in the case of smart contracts, it is essential to make

the code error-free. To achieve this level, developers need to involve a wide array of security

testing [58]. Security testing for vulnerability detection methods divides into two significant

testing methodologies: static vulnerability detection and dynamic vulnerability detection [59].

These analyses can be specialized to follow specific standards according to the sector where the

program’s execution will occur in [60].

Static Vulnerability Detection

Static software analysis is a way of studying a program from its compiled binary code without

executing it. The basic concept common to all static analysis tools is checking the source code



to identify specific coding patterns that often lead to vulnerabilities [61]. Manually checking

for these patterns is an option, but automated tools are more effective than manual options.

There are several analyses done when doing static analysis [56]

• Control analysis: Focuses on the flow of the different calls in a structure. The analysis

revises the calls done in a process, function, method, or subroutine.

• Data analysis: Concerns using defined data to ensure data objects are correctly operating.
• Fault/failure analysis: Analyzes faults and failures in the data components used inside

the code.

• Interface analysis: Verifies the interfaces between solutions and applications to deter-

mine that the components interact appropriately.

• Pattern recognition analysis: Searches for portions of code known to contain poten-

tially vulnerable code.

Dynamic Vulnerability Detection

Dynamic software analysis studies a program during service execution to find vulnerabilities

that can only be detected upon the execution of a service [62]. This process consists of running

multiple inputs in the program to crash it [63]. There are several analyses done when doing

static analysis:

• Fault localization: Searches for faults in the code by giving multiple random values to

tests to see if the tests fail with a specific value.

• Memory errors and concurrency errors analysis: Searches for resource and memory

leaks during race conditions on multi-threaded programs.

• Performance analysis: Traces software applications at run-time and captures data to

identify the causes of poor performance.

3.5.3. Blockchain development tools

A tool can be defined as a concept, technology, software system, template, framework, or library

that aims to help design, development, and maintenance of a software product [64]. With this

in mind, multiple tools used during the development of smart contracts are shown in Tables 3.5

and 3.6, with information regarding IDEs and Security Tools.

A tool can be defined as a concept, technology, software system, template, framework, or

library that aims to help design, development, and maintenance of a software product [64].

With this in mind, multiple tools used during the development of smart contracts are shown in

Tables 3.5 and 3.6, with information regarding IDEs and Security Tools.

After, on Table 3.6, we organized the tools not classified as IDE for security analysis. Here,

we can find tools executed for static and dynamic analysis of the code created for smart contracts.

In both cases for Table 3.5 and 3.6, we added information regarding the available blockchain

and the last time they were updated.



Table 3.5: Blockchain development tools for IDE purposes.

Description Tool Name Classification Blockchain Last
Updated

Web-based IDE with built-

in static analysis, and a test

blockchain virtual machine

Remix [65] Web-IDE Ethereum Apr 2022

Web-based IDE that lets you

write, compile, and debug

your smart contract, pow-

ered by Loom Network

EthFiddle [66] Web-IDE Ethereum Jun 2021

A Cloud-Based Multi-Chain

IDE that provides debug-

ging, testing and deploy-

ment one-stop services, de-

velopers don’t need to install

extra tools while working on

smart contracts

ChainIDE

[67]

Web-IDE Ethereum Mar 2022

A customizable development

environment for Ethereum

with hot reloading, error

checking, and first-class test-

net support

Replit [68] Web-IDE Ethereum Apr 2022

Visual Studio Code is a

lightweight but powerful

source code editor which

runs on your desktop and is

available for Windows, ma-

cOS and Linux.

Visual Studio

Code [69]

Local-IDE Ethereum,

Hyperledger

Fabric, Corda

Apr 2022

IntelliJ IDEA is an integrated

development environment

written in Java for develop-

ing computer software.

JetBrains

IDEs [70]

Local-IDE Ethereum,

Corda

Apr 2022

Remix Desktop is an Elec-

tron version of Remix IDE.

It works on Linux, Windows,

& Macs.

Remix

Desktop [71]

Local-IDE Ethereum Dec 2021

Truffle is a development en-

vironment, testing frame-

work and asset pipeline for

multiple blockchains.

Truffle [72] Local-IDE Ethereum,

Corda

Apr 2022

Continues in the next page.



Description Tool Name Classification Blockchain Last
Updated

An application development

framework which simpli-

fies and expedites the cre-

ation of Hyperledger fabric

blockchain applications.

Hyperledger

Composer

[73]

Local-IDE Hyperledger

Fabric

Aug 2019

Stellar uses no specific IDE

to work with. You install

the stellar-sdk for the lan-

guage you want to program

with which means you can

interact with the network

through the API

Stellar-SDK

[74]

Local-IDE Stellar Apr 2022

A web IDE integrated with

various tools required for

EOSIO in a unified graphical

application.

EOS Studio

[75]

Web-IDE EOS Feb 2020

Desktop version for EOS stu-

dio for Windows, Linux and

Mac.

EOS Studio

Desktop [76]

Local-IDE EOS Sep 2019

IDE providing developers

with a personal single-node

EOSIO blockchain for devel-

opment and testing.

EOSIO

Quickstart

Web IDE [77]

Web-IDE EOS Jun 2020

A source code editor forWin-

dows, Linux and macOS.

Zeus IDE [78] Local-IDE EOS May 2021

Table 3.6: Blockchain development tools for IDE purposes.

Blockchain Tool Name Classification Description Last
Updated

Ethereum Oyente [79] Static

Analysis

An Analysis Tool for Smart

Contracts

Nov 2020

Ethereum Solgraph [80] Static

Analysis

Visualize Solidity control

flow for smart contract secu-

rity analysis

Jan 2019

Continues in the next page.



Blockchain Tool Name Classification Description Last
Updated

Ethereum MadMax [81] Dynamic

Analysis

Ethereum Static Vul-

nerability Detector for

Gas-Focussed Vulnerabili-

ties

Jun 2021

Ethereum Manticore

[82]

Dynamic

Analysis

Manticore is a symbolic ex-

ecution tool for analysis of

smart contracts and binaries.

Mar 2022

Ethereum Mythril [83] Dynamic

Analysis

Security analysis tool for

EVM bytecode.

Apr 2022

Ethereum ContractLarva

[84]

Dynamic

Analysis

Runtime verification tool for

Solidity smart contracts.

Mar 2022

Ethereum SolMet [85] Static

Analysis

A static analysis tool for

calculating OO-style source

code metrics for Solidity

smart contracts.

Nov 2020

Ethereum Vandal [86] Static

Analysis

Static program analysis

framework for Ethereum

smart contract bytecode.

Jul 2020

Ethereum Securify [87] Static

Analysis

A security scanner for

Ethereum smart contracts.

Sep 2021

Ethereum Slither [88] Static

Analysis

Static Analyzer for Solidity Apr 2022

Ethereum Ethlint [89] Static

Analysis

Code quality & Security Lin-

ter for Solidity

Sep 2019

Hyperledger

Fabric

Revive-CC

[90]

Static

Analysis

Static analysis tool for Hy-

perledger Fabric smart con-

tracts written in Go.

Jul 2020

Hyperledger

Fabric

Blockchain

Analyzer [91]

Data Analysis Analyze ledger data stored

within a Hyperledger Fabric

peer.

Feb 2020

Hyperledger

Fabric

Chaincode

Analyzer [92]

Static

Analysis

CLI tool to detect the codes

which can be risks poten-

tially such as nondetermin-

ism in smart contract in Hy-

perledger Fabric.

Feb 2020



3.6. SELF-SOVEREIGN IDENTITY

For the study case, we opted to work on a system based on self-sovereign identity for document

validation. This section describes the self-sovereign identity (SSI) for clarity.

The majority of current existing identity systems are built on centralized storage architec-

tures. In this type of architecture, the identity provider is considered Trusted Third Party (TTP)

[93]. Both the service provider and the user need to trust a the TTP to allow for authentication

while also trusting them with the required users’ personal information. The data stored at either

cloud storage or centralized servers is considered by many to be a privacy concern because of

the various types of attacks or data breaches that can happen during operation. [94]. Recently,

however, a shift in identity management solutions has happened with the growth of blockchain.

Blockchains, acting as a decentralized ledger, provide an answer thanks to the immutability

factor, where integrity of the transactions can be checked by anyone. With a blockchain-based

identity solution, the user is given control of their identity and is the sole user in charge of

allowing his or her visibility [95].

3.6.1. Principles

The SSI systems are based on multiple principles that separate them from traditional identity

mechanism [94] [96] [97]. These principles are:

• Existence: The identity must always reflect a human user that allows it to access a

service.

• Control: The user must be able to exert control over its digital identity and attributes.

• Access: The user must be able to always access the data associated with its identity.

• Transparency: Any service providers must be transparent in the information that is

being used from the user.

• Persistence: The user’s identity must endure as long as a user deems it appropriate.

• Portability: The user must be able to transfer its identity from one provider to another.

• Interoperability: The user’s identity should work with any service provider.

• Consent: The user is the only party that permits information sharing.

• Minimalization: If a user permits information to be During the usage of the identity,

especially when disclosing attributes, only a minimum amount of data must be disclosed

to third parties. The principle of data economy should be adhered to.

• Protection: The axiom of protection implies the precedence of user rights. In case of a

conflict between the identity holder and the network, the decision should be in favor of

the identity holder.

3.6.2. Four Privacy Layers of SSI

With the principles mentioned before, four privacy layers of SSI have also been defined which

allow users to share as much as they desire about their identities. The layers defined are the

following [96]:



• Level 0: No information is shared with others.

• Level 1: Only the identity defined by public/private key pairs is shared.

• Level 2: Identity is allowed to trusted third parties/organizations

• Level 3: Identity is allowed to be publicly shared.

3.6.3. Blockchain-based SSI

After the introduction of Blockchain technology and smart contracts, the implementation of

a decentralized identifier that realize the SSI paradigm was finally be abled to be introduced

[93]. Blockchain use cryptography to authenticate users and sign messages that are sent to the

network, this allows to have mechanism be applied for user credentials for authentication and

identity control. Moreover, a decentralized identifier ensures the uniqueness of the identity in

the system. With this in mind, the removal of a central authenticator is not needed to guarantee

individuality. The relation between all the parts can then be established as following [93] [98]

[sis8]:

• Issuer The agents in charge of defining a credential and issuing or revoking those

credentials to other users.

• User The identity owner. The holder of an identifier, in charge of presenting credentials

when required. Is able to control the privacy of their information.

• Verifier The agent requiring to a ascertain information from a user to be able to authorize

movements.

Figure 3.2: Blockchain-based SSI

3.6.4. Proposed Blockchain SSI Models

On the literature, multiple models have been proposed to work with blockchains and SSI,

however on the commercial side many more have been established [99]. These aim to establish

mechanisms to identify a user based on decentralized systems while giving control of their

information to the user for data safety and privacy. Some of these models are:

• Casper built as an Android/iOS based mobile identity wallet application as use case for

an academic proposal. It provides the user ability to save their identities in their own

mobile wallet application wit the proof of these in the blockchain. Casper platforms’



provides a Zero Knowledge Proof mechanism to other users that allows them to verify

the identity information. [94].

• ATIB stands for Attribute Trust-enhancing Identity Broker. The academic proposal

includes an abstract of a dedicated SSI solution with plans to offer standard protocols

for multi party consumption in order to facilitate adoption by different service providers.

The aim of this model is to comply with the SSI principles for the user [93].

• MQTT-based The Message Queuing Telemetry Transport (MQTT) protocol is often cited

to present security challenges due to their authentication mechanisms. The academic

proposal, however, presents an approach involving an authentication scheme using

decentralized identity system tomanage the users’ identities. By using this mechanism, the

proposal aims to facilitate both the queue subscribers and publishers their authentication

by utilizing a smart contract in Ethereum blockchain to guarantee trust while preseving

their privacy [100].

• Sovrin Network is an open-source framework for managing digital identity of users.

The Sovrin Network is managed by a non-profit organization Sovrin Foundation. This

framework is built on the Hyperledger blockchain. In this framework, a digital identity is

created that permits the user to be identified privately without sharing any information

using Zero Knowledge Proof mechanism. [101] [102].

• uPort, like Sovrin Network, is also an open-source framework for decentralized identity

management. This framework however operates on Ethereum, where users can use their

identity to sign transactions and control their own data by storing it in a personal wallet

instead of a third-party. [101] [103].

• Jolocom is also a framework that stores the identifiers on the public Ethereum blockchain.

The information here includes how certain attributes may be used where this is under

user control [101].



CHAPTER 4

Framework Proposal

This section presents the proposal for the application of DevOps to smart contracts. When used

with both traditional software and blockchain smart contracts, the underlying DevOps concepts

and techniques are strikingly similar. However, some phases are different while working with

blockchains because of the limitations. In more detail, we outline the suggested DevOps phases

as they apply to blockchains and smart contracts, along with the tasks involved in each phase

and useful indicators that provide ongoing feedback. When it comes to tasks, we describe each

one in full, including the input and output that are anticipated. In addition, important indicators

that provide feedback for the different teams throughout the entire process will be taken into

account and described in their own area.

4.0.1. Preparation

While the preparation itself is not a component of the DevOps approach, some of the actions

conducted prior to beginning with DevOps are. Also, we consider this phase important to assure

the quality and security of the following phases. It’s important to remember that a specialized

team with the capabilities to take decisions should handle this step alone. At this beginning

stage of the phase, a number of tasks should be finished, including:

Analysis of current systems

The first phase should be an analysis of the existing resources, and the person or group in charge

of it should provide all of the input. Repurposing the current resources requires a thorough

analysis of the development team’s existing systems. This action can result in less training time

because the team is already familiar with the present procedures, as well as a means to save

money because no new system will be needed. The analysis of the current artifact and container

repositories, the development tools (both for version control and automated testing), and the

tools available for general work management are the results of this analysis, which is presented

as a report to determine whether these tools will be compatible with the new blockchain project.

A report containing no information would also be a valid result because it would indicate the

need to buy or make plans not to use the unavailable tools (not recommended).



Defining the quality strategy

As development consists of both functional and non-functional requirements, the recommenda-

tion is to work with a development and a quality environment before releasing the new smart

contract onto the blockchain (if possible, as this depends on the blockchain). The input for

these tasks consists of the identified quality metrics defined for the project (if they exist), with

the output consisting of the testing strategy and the release strategy while ensuring the use of

the distinct environments.

Securing the development process with the respective tooling

With the input taken from the two previous tasks, this task validates the security practices

required for the defined strategy. Security not only implies the integration of security tooling

for the code but also for the tooling systems used by the team. If the team has no tools available,

as an empty report is considered valid, the recommendation for the whole secured environment

must be given (version control, artifact management tool, automated testing, and building).

Validation of existing code base and dependencies

For this task, the information of previous source control and the repositories of existing systems

are taken to validate the code base for compliance and inspect the dependencies for security

flaws. The output of this step should be the code requiring manual validation and dependencies

requiring updates due to security failures.

Setup of tools environment

Considering all input taken from the previous steps, now a decision must be taken on the

minimum necessities for the project and allow growth according to the given budget for tools

that would allow saving time due to simplifying tasks. With all decisions made, this line of

tasks ends up with an environment set up to start DevOps.

4.0.2. Continuous Planning

The DevOps first phase and the one that generates will generate the input for the following

phases is the CP phase. As smart contracts should focus on a single task, developers should

prepare to plan according to this ideology, where one prefers multiple small smart contracts

[16]. This planning saves on the number of transactions done and thus reduces the execution

costs.

Task Discovery

The first task of the whole DevOps strategy will be to collect the information regarding the

requirement needed to deploy. This result is considered a gap, and the multiple small tasks

required to complete the gap are defined. This step is done by a single senior developer or a

group of developers.



Task Planification

The second task of the whole DevOps strategy will be management work. The project manager

is informed of the tasks required to complete the expected functionality. These tasks must be

registered in a work management flow tool to keep track of the activities in progress (e.g., Jira,

Gitlab, ClickUp), which will serve as output for this task.

Task Assignment

This final task will now take the activities registered on the previous task as input. Again, a

senior developer or team will assign the responsibility based on the available human resources.

They consider the task’s difficulty to assign to a developer according to their skills. This task

then leaves an output of assigned activities with the requirement to be done by the developer.

Indicators

These indicators will help provide a better understanding of the capacity of a team to fulfill the

tasks created.

1. Resources Available: The total amount of resources assigned to a project. This doesn’t

necessarily mean only human resources but other types of resources too (computational,

tools, third-party supports).

2. Assignment Time: The time taken between task creation and task assignment.

3. Lead Time: Time taken between task assignment and task completion. This can only be

calculated once the full development cycle is completed.

4. Feature Prioritization: Reinforces the value of DevOps, where constant iterations are

being done to meet user demands. This will determine if the tasks being assigned meet

the needs of those features being utilized the most.

4.0.3. Continuous Integration

As explained previously, CI allows the integration of multiple activities on a partial automation

process going from source control to project building. The input for this step is the activity

list previously defined during the CP phase to solve the gap. The general flow, as previously

mentioned, involves developing and building the code.

Code

Developing new smart contracts involves taking the activities planned during the CP phase to

solve the requirements needed. Various programming languages (e.g., Solidity, Java, C) can be

used depending on the blockchain. Depending on the blockchain, the IDE developers will work

with also varies (e.g., Remix, VSCode, HyperledgerComposer). The output of this step will be

the code that solves the requirement given.



Unit test creation

After being done with the code, or in parallel, the unit tests should get coded too. This step

will guarantee that the code is ready for production and behaving as the developer expected.

The input for this task is the current developed code, and the output is the unit tests created to

assert that the code is behaving as was initially expected.

Commit

Different Git repositories (e.g., Github, Gitlab, Bitbucket) and SVN repositories (e.g., SourceForge,

CloudForge) can store the developed code. The code, the input for this case that is published,

will then be submitted for a merge request. This process involves giving human approval to take

the submitted changes and apply them to the main code. This step works as a peer review to at

least get a second pair of eyes to validate the changes. No automatic acceptance is recommended

here as the chance for a peer review before testing is lost. In the end, the step output will be the

merge requested code.

Build

The build step includes all the steps required to generate the artifacts needed for execution from

the source code. The compiler and instructions to execute the source code change depend on

the blockchain and programming language used. The input taken for this step is the merged

code that is now in the code repository. An established CI software will then do the build (e.g.,

Jenkins CI, Travis CI, Gitlab CI/CD), which will involve automating the actions required to

generate the final output of the CI phase: the compiled smart contract.

Indicators

These indicators will help provide a better understanding of task fulfillment by developers.

1. Unplanned Work: Represents on-demand changes done while work is in progress due

to unidentified situations during task discovery. This could also be due to unexpected

situations occurring due to ongoing changes. No matter the reason, however, this is a

metric that should be accounted for. Aimed at being a low value, as it represents proper

discovery work being done and no changes being accepted once work has started.

2. Change Volume: Determines the extent to which code was changed when fulfilling a given

task. Ideally, the change volume should remain low implying only the task objectives are

being changed.

3. Test Coverage: Constitutes the percent of functionality in a smart contract that is covered

by unit tests. A low value implies the unit test creation step is being skipped, which then

will lead to unexpected bugs.



4.0.4. Continuous Testing

The CT phase has steps that can be executed only after the CI output. However, some of

the analyses done during this phase can be executed even during the CI phase. To separate

responsibilities between phases, it is assumed that all testing will get done after the CI phase. In

this phase, a series of automated tests review the output of the smart contract. As in traditional

software, multiple layers are available for testing in smart contracts. Layers can dictate a

subdivision, i.e., the contract, the data, or the blockchain’s consensus [104]. When a test

involves functional testing, there should be a simulated local temporary blockchain where the

smart contract can be deployed and tested.

Static Analysis

This step involves taking the source code as input and using a subset of tools to test it for

different issues (e.g., checking for errors, checking structural problems) without executing the

smart contract. For example, Splinter is one tool that can be run against the source code to

test the smart contract. Other examples of tools are in Table 3.6. The test metric should be as

error-free as possible, and the output of this test is either a pass or no pass.

Dynamic Analysis

Different tools are available to work on dynamic analysis. Some take the source code and

work as a static analysis tool, while others take the generated output and work on this. These

tools examine the code for potential bugs, undesirable patterns, and patterns that could lead to

possible errors during the smart contract execution. Some of these tools are Mythril, Manticore,

Vertigo, and Echidna. This process naturally comes with the possibility of false positives, so a

minimum required metric for the output of pass or no-pass should be planned.

Private Blockchain Deployment

Before unit testing or integration testing can happen, there is a need for deployment on a

blockchain. The suggested approach due to cost and control is to have a private blockchain

already created which has been done in the setup of tools environment mentioned in the

Preparation phase. This task will take as input the build previously generated and deploy it

into the test blockchain where the following steps can connect. The output of this task will be a

success or failure of the deployment.

Unit Testing

The third type of testing to be executed is unit tests. According to the survey by Chakraborty et

al. [105], this step should not be skipped as it was the testing methodology that most commonly

found issues on blockchain software. The ideal scenario for unit tests includes: all methods

covered, all inputs validated, transactions reverts checked, and access privilege verified [16].

This task takes as input the unit tests previously developed. The output for this step includes a



metric informing the tests passed. The advantage of unit testing is the complete automation

and parallel testing execution using frameworks such as OpenZeppelin or Truffle.

Integration Testing

This type of testing validates the interaction of various components [106]. In the context of

smart contracts, this involves setting up multiple smart contracts in specific states to validate

the proper behavior of the smart contract. This activity can be time-consuming, mainly due to

the manual setup needed for each case. The input for this activity consists of the smart contract

functionality to test, and the output consists of a metric determining the tests passed.

Indicators

These indicators give insight into the testing being executed over smart contracts. Low or high

values, depending on the indicator, can reflect future issues that will be faced if deployment is

done instead of revisiting the scenarios.

1. Test Pass Rate: If code releases consistently fail unit tests, this suggests that teams are

ignoring secure practices and work must be done to correct those issues. This value

should always remain high, as it implies functionality works as expected according to the

tests created.

2. Error Detection Rate: Represents the errors and warnings detected by the static and

dynamic analyses. The detection rate value aim is to be low as possible, which will imply

the common errors found in code are accounted for.

3. Escape Rate: Represents the value of changes creating changes in functionality that were

not caught in testing. A high value will imply the testing will need to be reviewed to see

where the issue lies.

4.0.5. Continuous Deployment

As described by Górski, the CD aims to enable on-demand software release [107]. However, the

smart contracts’ complexity and interaction with the blockchain strain the phase. In this phase,

the input obtained from the CT phase will be the metrics that will allow the process to decide if

the compiled smart contract will be released and deployed.

Release

The release step is a decision step, where all the inputs from the testing get evaluated against

previously decided acceptance metrics. If the step decision is "pass", the smart contract is

considered releasable. This decision is followed by generating all the files needed to release the

smart contract in a blockchain. The output for this step will be the files prepared for deployment.



Deploy

The deployment step can be manual or automatic, working on a pull (deploy when you need)

or push (deploy when you release) configuration. The release decision on how to operate

the deployment depends solely on the operation team, as the smart contract would then be

immutable in the blockchain [108]. The input for this step is the released contract generated on

the Release step, and the output is whether the smart contract has been successfully deployed.

Indicators

These indicators provide information regarding deployment and the team’s ability to respond

to scenarios regarding this.

1. Deployment Time: The time between release and deployment. Deployments can occur

with high frequency if tasks are simplified enough, but these times should remain rela-

tively constant. Any kind of dramatic increases in deployment time will warrant further

investigation,

2. Recovery Time: The time indicating the team’s ability to respond appropriately to issues

during deployment. If issues are found promptly but not followed by an equally rapid

recovery time it would mean little.

3. Failed Deployment Rate: Related to the previous indicator, this value aims to represent

the percent of deployment failures. The value should be kept as low as possible to indicate

a low amount of issues are being generated.

4.0.6. Continuous Feedback and Monitoring

Assuring smart contracts are secure before deployment is preferable when possible [109].

This step in the DevOps process verifies proper behavior and generates feedback for the CP

phase. This phase still has work to be done in the current state as the available tools do not

permit extensive monitoring. The input for this phase is the deployment notification from the

deployment step, which will allow the monitoring to start and generate feedback.

Monitoring Smart Contract

Monitoring smart contracts, as previously stated, is a challenging task as it depends on the

capabilities of each blockchain to give the information required to allow monitoring. Assuming

data is available, possible metrics expected are transactions versus actual transactions, the

overall cost per transaction, and transaction speed. Also, even when blockchains can resist data

loss or unintended data manipulation to a certain extent, there is a need to monitor the data

integrity. This monitoring could be done automatically by generating automated reports with

the compiled data.



Monitoring Permissions

In cases where authorizing accessing data is done, via methods, features, or permissions, an

attacker or a misconfiguration can lead to a breach of privacy. Therefore, since it is required to

ensure that confidential data remains as so, the team must be able to check on data access. It is

possible to monitor data access manually or automatically by using state comparison tools to

raise warnings in case of differences.

Monitoring Client

Having access to a client node for the smart contract allows the monitors to validate the proper

behavior of the smart contract on that specific client node. Multiple validations on distinct

nodes would allow the generation of reports. However, this implies the work has to be done

manually and, therefore, will have a high resource cost.

Feedback

This step involves taking the information from the monitoring steps and generating a feed-

back report. This report will then be sent to a team lead to evaluate utilizing the same work

management flow tool defined in the CP phase as a new task for the team lead.

Indicators

Not the most important, but highly valuable information is contained in these indicators. This

determines whether a good job was executed by the different teams and allows for feedback to

be given appropriately.

1. Compliance: This highlights the difference between the deployed work and the planned

work. A high compliance value ensures that expectations are being met.

2. Ticket Volume: This concept reflects alerts generated by a monitoring user to indicate

bugs or unexpected functionality. An increased ticket volume suggests issues in the

deployed code and/or issues not caught in testing.

3. Performance: A key indicator for any application. Code deployed should not affect

the performance of previous functionality and should not generate unaccounted slow

performance times.

4.1. GENERAL USE CASE

This section describes a framework summary using a use case to guide the steps required to

run DevOps on smart contracts. The guidance image is in Figure 4.1. This figure explains the

overall process and steps to take in each.

1. The next is the continuous planning phase, which consists of two tasks: planning and

assignment. Issue tracker software covers these functionalities. Examples of software



dedicated to issuing tracking are Atlassian Jira, HubSpot, ClickUp, and Backlog. However,

other applications like Gitlab or Microsoft Teams have issue-tracking capabilities.

2. The next phase is the continuous integration phase, which consists of coding tasks. For the

smart contract coding, it is necessary to create unit tests for the smart contract and commit

to the repository hosting the smart contract or groups of smart contracts. Once completed,

a build process using an automation server should verify that the recent commit will

allow the code to build successfully. The repository, with technologies mentioned in

Section ??, can be hosted by software such as Github, Gitlab, VisualSVN Server, or Apache

Subversion, among others. Meanwhile, the automation server, as mentioned in ??, can be

done by software such as Jenkins, Tekton, Travis-CI, Circle-CI, and AppVeyor.

3. The next phase is continuous testing, which tests the code directly using static analysis

tools. Dynamic analysis tools are also run on the compiled code. Some tools are referenced

in Table 3.6. The automation server should do these tests once the build successfully

generates a report on possible bugs. Finally, manual and automatic integration tests

are available using blockchain simulators such as Ganache or Geth once all tool testing

finishes.

4. The release of the smart contract is generated, which involves the creation of the needed

files to publish the smart contract on a blockchain. After this, the files are deployed onto

the blockchain. Everything in the continuous deployment phase should be left to the

automation server, or at least as much as possible.

5. The continuous monitoring of the released smart contract starts operating. The proposal

is to do this by monitoring statistics related to the smart contract and the data generated

by it and its users. Also, monitoring related permissions to the smart contract must

constantly, so there is a verification regarding undesired permission changes. A feedback

report is filed from the operations team to send back to the development team.



Figure 4.1: Framework example



CHAPTER 5

Study Case

For framework proposal to be implemented, we required a study case we could control. For

this, we created a smart contract with Solidity for Ethereum. The proposed system for this

smart contract is based on model behind SSI, but instead aiming for this to be used for general

document identification where the user has complete control on the data that is being shared to

the document verifier.

5.1. REQUIREMENTS

Based on the information provided in Chapter 3 regarding SSI, we set the next requirement

objectives for the system:

• Authentication A user must be able to log in to the system using their own account.

• Authorization After proper authentication, the system must allow the user must be able

to only do what their permissions state.

• VerificationA user must be able to ascertain the information provided by a user regarding

their document.

• Flexible Attributes The documents creation must be generalized to allow for any type

of data to be added into it.

• SSI principles The application must follow the SSI principles and allow the user control

of its data.

5.2. SYSTEM USERS AND OPERATIONS

Once the requirements were established, the users and the operations required to comply with

this were identified. The users that interact with the system are the following:

• Owner This account would be the initial owner of the contract and general system admin

which would be in charge of authorizing specific accounts to access certain functions.

• Issuer The accounts that would be allowed define their own document schema and issue

a document to an specific document holder.



• Document Holder User accounts with access to multiple assigned documents, should

be allowed control of their information and when to share it.

• Verifier The accounts that require verification that a document presented is valid, for

this they would require to know the schema beforehand. A verifier can also be an issuer.

With this system users in consideration, the operations in the smart contract that would allow

the system to work were defined as following:

• Owner change The system must allow the owner to be changed, but only if the owner

executes the function.

• Role assignment The system must allow the owner assign issuer permission and verifier

permissions to other accounts, this accounts don’t necessarily have to previously be

registered. Once the owner defines a permission to give to an specific account, it will

then be automatically registered to the system registries. Once the account then log in,

the system will verify the credentials the account has and show the proper interface for

each permission the account user has.

• Document creation The system must allow issuers to create a document and assign it to

a document holder. Later, on the system must also allow only the issuer who created the

document to assign attributes to the document. No modification to the assigned attributes

can be done, if this case must be filled, then a new document must be created to reflect

this.

• Visualize documents The system must allow the document holders to check their

assigned documents and read the information attributes in it.

• Generate token The system must allow the document holder to create a token that will

allow temporary exemption for a verifier to ascertain the document data.

• Verification The system must allow a verifier ascertain document claims which are

presented by the document holder. For this, the verifier is required to present the token

generated by the document holder.

Figure 5.1: Users and Operations



5.3. ARCHITECTURE

Next, the defined architecture and how components interact with each other will be defined. For

the study case implementation we opted do have a simplified scenario to have a better control

on the pipeline once we get to the validation of it. The components forming the architecture

are the following, as seen in Figure 5.2:

• Ethereum The blockchain in charge of holding the smart contract and storing the

information. However, for the study case, a test Ethereum blockchain was used. This

particular case used Ganache (which is part of Truffle which was mentioned in Table 3.5)

to deploy a personal Ethereum blockchain that would allow for easier testing.

• Document Identifier Smart Contract The smart contract holding the operations logic.

The system users would interact with the blockchain through specific public functions

exposed in the smart contract.

• MetaMask A software wallet used to interact with the Ethereum blockchain. This allows

the users to access a Ethereum wallet through a browser extension or mobile app, which

can then be used to interact with decentralized applications [110].

• Document Identifier Front EndAweb application creating using react. This application

is in charge of connecting to theMetaMask wallet to identify the user to the smart contract,

which then is used to authorize the user to the available functions. Also in charge of the

visualization logic for all the operations in the smart contract.

• Browser Themedium throughwhich the system users will be able to access the Document

Identifier front end.

Figure 5.2: Implemented Architecture



5.3.1. Document Identifier Smart Contract

The most important component for the application is the Document Identifier Smart Contract

(DISC). This smart contract is a contract that acts as a storage for the the system. It is involved

in the creation, reading and updating operations of the identities or structures defined for the

operation. This smart contracts takes the information from MetaMask to obtain the identity,

and therefore their authorizations. This smart contract also provides the verification mechanism

with which a verifier can ascertain the document provided by a document holder.

Structures

The structures or structs are the identities defined in the contract, set for a general use case

scenarios. This could be simplified if applied to an specific subset of documents instead of a

generalized case. The structures required in the system were defined as followed and their

relationship can be seen in Figure 5.3 (actual implementation can be found in Figure A.1):

• Issuer The issuer struct contains the information required to identify an issuer. The

struct holds the information regarding an ID for which the issuer can be identified and a

name to identify the issuer.

• DocumentHolder This struct holds the information for the document holder. It includes

a unique identifier, a name, the token information with which the document holder

allows a verifier to check on the information and the documents information. The token

information includes the actual token, an expiration for the token as this token is just

a temporary token and a boolean for token used as the token was defined as one time

use. Meanwhile, the documents are just a dictionary Document structs, with two extra

properties a dictionary of document ids and a value for document size that were required

for visualization.

• Document This struct holds the information assigned by an issuer to a document holder.

The document information includes the issuer and the attributes in the document. The at-

tributes defined in the document consist of a key and a value which allows for information

safe guarding as the key needs to be known to be able to access the value.

Figure 5.3: DISC Structures



• Verifier The verifier struct contains the information required to identify an verifier. The

struct holds the information regarding an ID for which the verifier can be identified and

a name to identify the verifier.

Functions

The functions are the endpoints available for the front end to connect to the smart contract.

All the functions validate for proper authorization to allow for only the previously assigned

accounts to execute them. The available functions in the smart contract to obtain the desired

functionality are defined as following:

• createIssuer Function executed only by an account set as owner. The function receives

the address of the issuer account, with the id and name that will be associated with this

account. This will register the issuer inside the issuer list and emit an event to the front

end once the operation has successfully finalized to be able to refresh the web application

according to the information received.

• createDocumentHolder Function executed only by a issuer registered with the previous

function. The function receives the address of the document holder account, with the

id and name that will be associated with this account. The account is generated with

a expired and marked as used token as a default. The document holder entity will also

have an empty document dictionary. The account is finally added to the dictionary of

document holders for the whole system.

• createDocument This function is only executed by an issuer. The functions received

the address for the document holder, which has to have been previously been registered

using the function above. It will then create the base document struct and add it to the

document list for the document holder.

• createDocumentAttribute This function can only be executed by an issuer. The func-

tions receives the address of the document holder and the document id. This is then used

easily identify the document inside associated document holder list. A verification will

be done on the issuer, as only the issuer who created the document will be able to add

attributes to the document.

• createVerifier Function executed only by an account set as owner. The function receives

the address of the verifier account, with the id and name that will be associated with

this account. This will register the verifier inside the verifier list and emit an event to

the front end once the operation has successfully finalized to be able to refresh the web

application according to the information received.

• refreshToken This function can only be executed by a previously registered document

holder. This will allow the document holder to generate a new token that the verifier

can input as permission to allow document validation. This function will generate a new

token, change the token used flag to false and give a expiration date for the token. The

expiration date is set for 5 minutes in current implementation.

• verifyDocument The function holding the logic for verifiers to ascertain the attributes

shown by a document holder from one of documents issued. It receives the document

holder address, an array of attributes with keys, values and comparison sign, and token.



The function will then first validate the token and later take the input received to calculate

whether the document is valid with the given information. The only value returned to

the verifier is whether the result is valid or not. This is to ensure no information is leaked

from the document holder.

5.3.2. MetaMask

As mentioned before, MetaMask is an established wallet that allows users to connect to their

Ethereum accounts through a browser extension. This is exactly what was required for the

web application to allow for authentication process. For this wallet, the user would connect to

the wallet through their browser using a set of words as password. Whenever the application

would require connection to the smart contract, the plugin would then automatically signs

all transactions and pop up a confirmation window when you make a payment to get user

approval. The following diagram shows the flow when using MetaMask:

Figure 5.4: MetaMask interaction flow



CHAPTER 6

Framework Validation

This chapter describes the tools and steps taken to execute the framework proposal. These

covers the steps from Continuous Integration up to Continuous Deployment. The objective here

was to make sure that the proposed framework was able to be executed utilizing commercial

and/or open-source tools available.

6.1. TOOLS

Multiple tools were utilized to generate the CI/CD pipeline. There are many available as seen

in Table 3.5 and 3.6, however the following tools were the ones selected:

• GitHub is the application selected to host the private Git repository. DevOps connects

directly to GitHub account using the GitHub app for authentication and to later be

authorized to perform the required actions by the pipeline. The repository holds the react

application, the solidity smart contract and pipeline configuration for CI/CD in it.

• Azure DevOps or DevOps is the cloud automation tool selected to work for pipeline

orchestration. A pipeline will then be a list of tasks, each of which comprises one or

more steps. Each execution that occurs in the pipeline is called a job. The tasks done in

the pipeline are configured in a .yml file with predefined tasks and personalized tasks.

These steps are then triggered to build whenever a change is pushed to the repository

using the connection made to GitHub. There is also the possibility to manually trigger

the execution of the steps. It also holds the dashboard for visualization of the process.

• Agent is the container or the machine where the steps are executed. The agent for

the scenario is a local machine that hosts the Ganache installation for simplicity in

the connection. The other requirements for the pipeline to execute properly will be

downloaded and prepared by the agent.

• SolHint is an open source project for linting Solidity code. The linter provides both

security and style guide validations for the contract, making it ideal for static code analysis

of the smart contracts.

• Ganache is the private Ethereum blockchain deployed in the agent machine for testing.

The blockchain had 10 addresses with 100 ETH for testing. The repository files had the

configuration for the connection to Ganache.



6.2. TASKS

The as mentioned above in Section 6.1, the *.yml file used by the repository holds all the

configuration for the process. These steps are prepared to go into any agent and be able to

compile and build the project without issues. Therefore, we can conclude there are 2 types

of steps: preparation steps and execution steps. The preparation steps involve preparing the

machine for steps after, these involve installation and configuration.

1. Checkout Code This task is not defined in the *.yml file, it instead is an automatic step

created by the DevOps pipeline where it connects to GitHub and pulls the code to the

agent.

2. Install NodeJs Run with predefined task: NodeTool@0, this task receives as input the

Node.js version and installs it in the agent in a temporary folder, exclusive to the current

job execution.

3. Install NPM Dependencies Runs as a personalized task, this task only includes one

step. It is installing all the dependencies required by the project to compile and build.

4. Configure Linter Runs as a personalized task, it involves 2 steps: installation of SolHint

and creating the basic rule set for SolHint to run.

5. Run Linter This is a personalized task in charge of executing SolHint on the smart

contract. The information resulting from SolHint execution is saved as a variable in the

pipeline to be used in a future task. The task is configured to keep going even when an

error occurs.

6. Add GitHub comment This is a predefined task that takes as input the output from the

previous step. As long as the variable with the linter information is not null, then the

task GitHubComment@0 would execute. This task adds a commit to GitHub adding a

comment to the last pull where it inputs what SolHint detected during its run.

7. Run Unit Tests This runs as a personalized task with only one step. This step is running

the prepared unit tests for functionality check. The smart contract is deployed in Ganache

to be able to access its functions. The unit tests are executed using Javascript. If all unit

tests assertions are correct, then it moves to the next step.

8. Compile smart contract This runs as a personalized tasks with a single step. It involves

compiling the smart contract and leaving the files ready for deployment into the blokchain.

9. Archiving contract Final step of the pipeline, this takes the files resulting from the

previous task and creating a zip with everything. This file is archived in the agent in an

specified archiving route.

The actual definition of the pipeline can be seen in the figure located in Figure A.2.



CHAPTER 7

Discussion

This section describes some implementation issues that require attention and consideration

when migrating from traditional software to a smart contract based application, which would

lead to the application of this framework.

7.0.1. Secure deployment and integration

This segment describes implementation issues to consider to make a secure deployment and

integration of smart contracts.

1. Define, design, and implement a mechanism to allow existing software to request/execute

a smart contract method. Given that a complete overhaul of a software architecture is

expensive, and not accounting for the cases where specific technologies do not allow for

this to be done, the goal would be to reutilize as much as possible from current software.

A mechanism that would connect current software with a smart contract with minimal

change is however out of scope for the proposed framework.

2. Define, design, and implement a mechanism to authenticate and authorize requests to

access resources in the smart contract from existing software. Such a mechanism should

correspond to identities created in the existing software to accounts from the blockchain.

This part would help extend the authorization model to control what identities may or

may not access resources deployed in the implementation or update of smart contracts.

Authentications or authorizations should not be lost under any circumstance for a system.

If such case exists where a migration should occur, the deployment step of the framework

should consider any kind of migration on the authentication and authorization model to

guarantee data is kept.

3. Define, design, and implement a mechanism to properly handle/integrate the different

versions of a smart contract deployed into the blockchain. Since a contract version is

unavailable for modification after deployment, such a mechanism should help direct

existing software requests to the smart contract’s correct version. This mechanism would

act as proxy, which mediates requests from existing software to the smart contract. When

deployment of the smart contract being updated is executed, the deployment of this proxy

should also be updated. Whether this mechanism is another smart contract, or another



type of tool is left to the implementer, however it is recommended to find an automated

way according the implementation.

7.0.2. Secure monitoring

This segment describes implementation issues regarding the monitoring of smart contracts,

as the transactions occurring on execution time increase the need for proper monitoring and

analysis. Sometimes the information required to be monitored in a smart contract is not

available depending on the implementation. One way to accomplish monitoring is to look at

all transactions of the contract, however that may be insufficient, as message calls between

contracts are not recorded in the blockchain. A monitoring mechanism should:

1. Define, design, and implement metrics to measure events related to the operation of a

smart contract. An event is a convenient tool given by smart contracts to record executions

in the contract. Events that were emitted stay in the blockchain along with the other

contract data and are available for future audits. A mechanism should be available to be

constantly seeking this data to transform it into visual form. This would work as feedback

for the different team working on implementation.

2. Define, design, and implement a mechanism to utilize the data from the smart-contract

operation. Such a mechanism should access the data extracted mentioned in the previous

point. This data can then be given as machine models which can be fed and deployed to

measure the previously defined metrics. The objective of this mechanism is to make this

data available in visual form for the different teams involved in the implementation.



CHAPTER 8

Conclusion and Future Work

DevOps is a proven development strategy applied to traditional software development that

shows high potential for the blockchain smart contracts development cycle. As shown in our

framework, applying these same principles is considered with extra precautions to handle the

nature of smart contracts. The strategy is created with overall security in mind while associating

tools with specific activities to make it easier to identify the step. It also has the benefit of

contributing to both repeatability and portability of the framework, a capability we consider

will be desired by many organizations for security and business purposes.

In the case of our implementation for the test case, it was done entirely with specific tools

in mind. overcome this limitation. Further work is required to demonstrate the mentioned

repeatability and portability of our framework using more tools to prove these characteristics.

However, there is confidence the changes required for the application in other tools will be

exclusively on the tool implementation rather than the steps required. With the goal of security

of both the framework and the smart contracts, we expect the integrated vulnerability checks

to create a much higher awareness of security issues during development. This, in theory, will

force developers to fix vulnerabilities as soon as possible.

As blockchain technology continues to move forward, so will the requirement to build

software around them. However, testing the released smart contracts can not be reduced as

we consider it a critical practice that can not and should not be disregarded. In this regard,

after stating the best practices for smart contract development and the overall steps, we have

found some critical steps that require further research. This future research should evaluate two

main points: first, the strategy to identify the points used to evaluate the output of the further

analysis, depending on the blockchain, to specify whether we can consider the smart contract

steps of the CT phase as successful. Second, to automate the monitoring of the smart contracts

as the current proposal is a task to be done manually. Ultimately, the teams integrating DevOps

into their practice will face challenges to ensure reliable and secure blockchain smart contracts,

to which we place our contribution.



Bibliography

[1] M. Rizky and D. Sulistiyo, “Implementation of continuous integration and continuous

delivery (ci/cd) on automatic performance testing,” 9th International Conference on
Information and Communication Technology, 2021. doi: 10.1109/ICoICT52021.2021.
9527496.

[2] L. de Aguiar Monteiro, “A proposal to systematize introducing devops into the software

development process,” in 2021 IEEE/ACM 43rd International Conference on Software
Engineering: Companion Proceedings (ICSE-Companion), 2021, pp. 269–271. doi: 10.1109/
ICSE-Companion52605.2021.00124.

[3] W. De Kort, DevOps on the Microsoft Stack, 1st ed. Berkeley, CA, USA: Apress Berkley,
2016, vol. 1, isbn: 978-1-4842-1446-6. [Online]. Available: https://doi.org/10.1007/978-1-
4842-1446-6 (visited on 06/21/2022).

[4] Q. Liao, “Modelling ci/cd pipeline through agent-based simulation,” IEEE International
Symposium on Software Reliability EngineeringWorkshops, 2020. doi: 10.1109/ISSREW51248.
2020.00059.

[5] N. Chen, S. C. H. Hoi, and X. Xiao, “Software process evaluation: A machine learning

framework with application to defect management process,” Empirical Software Engi-
neering, vol. 19, no. 6, pp. 1531–1564, Dec. 2014, issn: 1573-7616. doi: 10.1007/s10664-
013-9254-z. [Online]. Available: https://doi.org/10.1007/s10664-013-9254-z (visited on

06/21/2022).

[6] A. Nogueira et al., “Improving la redoute’s ci/cd pipeline and devops processes by apply-

ing machine learning techniques,” International Conference on the Quality of Information
and Communications Technology, 2018. doi: 10.1109/QUATIC.2018.00050.

[7] M. Aldeen et al., “Adopting continuous integeration and continuous delivery for small

teams,” International Conference on Computer, Control, Electrical, and Electronics Engi-
neering, 2019.

[8] T. Tegeler, F. Gossen, and B. Steffen, “A model-driven approach to continuous practices

for modern cloud-based web applications,” IEEE Access, 2019.
[9] M. Virmani, “Understanding devops & bridging the gap from continuous integration

to continuous delivery,” in Fifth International Conference on the Innovative Computing
Technology (INTECH 2015), 2015, pp. 78–82. doi: 10.1109/INTECH.2015.7173368.

[10] F. Erich, “Devops is simply interaction between development and operations,” in Soft-
ware Engineering Aspects of Continuous Development and New Paradigms of Software

https://doi.org/10.1109/ICoICT52021.2021.9527496
https://doi.org/10.1109/ICoICT52021.2021.9527496
https://doi.org/10.1109/ICSE-Companion52605.2021.00124
https://doi.org/10.1109/ICSE-Companion52605.2021.00124
https://doi.org/10.1007/978-1-4842-1446-6
https://doi.org/10.1007/978-1-4842-1446-6
https://doi.org/10.1109/ISSREW51248.2020.00059
https://doi.org/10.1109/ISSREW51248.2020.00059
https://doi.org/10.1007/s10664-013-9254-z
https://doi.org/10.1007/s10664-013-9254-z
https://doi.org/10.1007/s10664-013-9254-z
https://doi.org/10.1109/QUATIC.2018.00050
https://doi.org/10.1109/INTECH.2015.7173368


Production and Deployment, J.-M. Bruel, M. Mazzara, and B. Meyer, Eds., Cham: Springer

International Publishing, 2019, pp. 89–99, isbn: 978-3-030-06019-0.

[11] S. Throner et al., “An advanced devops environment for microservice-based applica-

tions,” IEEE International Conference on Service-Oriented System Engineering, 2021. doi:
10.1109/SOSE52839.2021.00020.

[12] S. Wang et al., “Blockchain-Enabled Smart Contracts: Architecture, Applications, and

Future Trends,” IEEE Transactions on Systems, Man, and Cybernetics: Systems, vol. 49,
no. 11, pp. 2266–2277, Nov. 2019, issn: 2168-2232. doi: 10.1109/TSMC.2019.2895123.

[13] N. Szabo,Nick Szabo – Smart Contracts: Building Blocks for Digital Markets, 1996. [Online].
Available: https://www.fon.hum.uva.nl/rob/Courses/InformationInSpeech/CDROM/
Literature/LOTwinterschool2006/szabo.best.vwh.net/smart_contracts_2.html (visited
on 06/21/2022).

[14] F. Zampetti et al., “Ci/cd pipelines evolution and restructuring: A qualitative and quan-

titative study,” IEEE International Conference on Software Maintenance and Evolution,
2021. doi: DOI:10.1109/ICSME52107.2021.00048.

[15] K. B. KIM and J. LEE, “Automated generation of test cases for smart contract security

analyzers,” IEEE Access, 2020. doi: 10.1109/ACCESS.2020.3039990.
[16] M. Wöhrer and U. Zdun, “Devops for ethereum blockchain smart contracts,” in 2021

IEEE International Conference on Blockchain (Blockchain), 2021, pp. 244–251. doi: 10.
1109/Blockchain53845.2021.00040.

[17] V. Lenarduzzi et al., “Blockchain applications for agile methodologies,” in Proceedings of
the 19th International Conference on Agile Software Development: Companion, ser. XP ’18,

Porto, Portugal: Association for Computing Machinery, 2018, isbn: 9781450364225. doi:

10.1145/3234152.3234155. [Online]. Available: https://doi.org/10.1145/3234152.3234155.
[18] L. Marchesi, M. Marchesi, and R. Tonelli, “Abcde—agile block chain dapp engineering,”

Blockchain: Research and Applications, vol. 1, no. 1, p. 100 002, 2020, issn: 2096-7209.
doi: https://doi.org/10.1016/j.bcra.2020.100002. [Online]. Available: https://www.
sciencedirect.com/science/article/pii/S2096720920300026.

[19] G. Al-Mazrouai and S. Sudevan, “Managing blockchain projects with agile methodol-

ogy,” in Proceedings of 6th International Conference on Big Data and Cloud Computing
Challenges: ICBCC 2019, UMKC, Kansas City, USA, V. Vijayakumar et al., Eds. Singapore:
Springer Singapore, 2020, pp. 179–187, isbn: 978-981-32-9889-7. doi: 10.1007/978-981-
32-9889-7_14. [Online]. Available: https://doi.org/10.1007/978-981-32-9889-7_14.

[20] J. Shah, D. Dubaria, and J. Widhalm, “A survey of devops tools for networking,” in 2018
9th IEEE Annual Ubiquitous Computing, Electronics Mobile Communication Conference
(UEMCON), 2018, pp. 185–188. doi: 10.1109/UEMCON.2018.8796814.

[21] P. Agrawal and N. Rawat, “Devops, a new approach to cloud development & testing,” in

2019 International Conference on Issues and Challenges in Intelligent Computing Techniques
(ICICT), vol. 1, 2019, pp. 1–4. doi: 10.1109/ICICT46931.2019.8977662.

[22] C. Pang, A. Hindle, and D. Barbosa, “Understanding devops education with grounded

theory,” in 2020 IEEE/ACM 42nd International Conference on Software Engineering: Com-
panion Proceedings (ICSE-Companion), 2020, pp. 260–261.

https://doi.org/10.1109/SOSE52839.2021.00020
https://doi.org/10.1109/TSMC.2019.2895123
https://www.fon.hum.uva.nl/rob/Courses/InformationInSpeech/CDROM/Literature/LOTwinterschool2006/szabo.best.vwh.net/smart_contracts_2.html
https://www.fon.hum.uva.nl/rob/Courses/InformationInSpeech/CDROM/Literature/LOTwinterschool2006/szabo.best.vwh.net/smart_contracts_2.html
https://doi.org/DOI: 10.1109/ICSME52107.2021.00048
https://doi.org/10.1109/ACCESS.2020.3039990
https://doi.org/10.1109/Blockchain53845.2021.00040
https://doi.org/10.1109/Blockchain53845.2021.00040
https://doi.org/10.1145/3234152.3234155
https://doi.org/10.1145/3234152.3234155
https://doi.org/https://doi.org/10.1016/j.bcra.2020.100002
https://www.sciencedirect.com/science/article/pii/S2096720920300026
https://www.sciencedirect.com/science/article/pii/S2096720920300026
https://doi.org/10.1007/978-981-32-9889-7_14
https://doi.org/10.1007/978-981-32-9889-7_14
https://doi.org/10.1007/978-981-32-9889-7_14
https://doi.org/10.1109/UEMCON.2018.8796814
https://doi.org/10.1109/ICICT46931.2019.8977662


[23] A. Wahaballa et al., “Toward unified devops model,” in 2015 6th IEEE International
Conference on Software Engineering and Service Science (ICSESS), 2015, pp. 211–214. doi:
10.1109/ICSESS.2015.7339039.

[24] J. Mahboob and J. Coffman, “Continuous integration, delivery and deployment: A system-

atic review on approaches, tools, challenges and practices,” IEEE 11th Annual Computing
and Communication Workshop and Conference, 2021. doi: 10.1109/CCWC51732.2021.
9376148.

[25] N. Railić and M. Savić, “Architecting continuous integration and continuous deployment

for microservice architecture,” 20th International Symposium INFOTEH-JAHORINA, 2021.
doi: 10.1109/INFOTEH51037.2021.9400696.

[26] J. Shah, D. Dubaria, and J. Widhalm, “A survey of devops tools for networking,” IEEE
Access, 2018.

[27] J. Shah, D. Dubaria, and J. Widhalm, “Distributing parallel virtual image application

using continuous integrity/continuous delivery based on cloud infrastructure,” The 8th
International Conference on Cyber and IT Service Management, 2020.

[28] A. Agarwal, S. Gupta, and T. Choudhury, “Continuous and integrated software develop-

ment using devops,” International Conference on Advances in Computing and Communi-
cation Engineering, 2018.

[29] C. Fayollas, H. Bonnin, and O. Flebus, “Safeops: A concept of continuous safety,” 16th
European Dependable Computing Conference, 2020. doi: 10.1109/EDCC51268.2020.00020.

[30] T. Düllmann, C. Paule, and A. van Hoorn, “Exploiting devops practices for dependable

and secure continuous delivery pipelines,” ACM/IEEE 4th International Workshop on
Rapid Continuous Software Engineering, 2018. doi: 10.1145/3194760.3194763.

[31] N. A. A. Khleel and N. Károly, “Comparison of version control system tools,” Multi-
diszciplináris Tudományok, vol. 10, no. 3, pp. 61–69, Jun. 2020, issn: 2786-1465. doi:
10.35925/j.multi.2020.3.7. [Online]. Available: https://ojs.uni-miskolc.hu/index.php/
multi/article/view/441 (visited on 06/28/2022).

[32] C. Singh et al., “Comparison of different ci/cd tools integrated with cloud platform,” 9th
International Conference on Cloud Computing, Data Science and Engineering, 2019.

[33] Azure pipelines, https://azure.microsoft.com/en-us/services/devops/pipelines/, 2022.
[34] Devops and ci/cd on google cloud explained, https://cloud.google.com/blog/topics/

developers-practitioners/devops-and-cicd-google-cloud-explained, 2021.
[35] Alibaba cloud devops pipeline (flow), https://www.alibabacloud.com/product/apsara-

deveops/flow, 2022.
[36] Ibm cloud continuous delivery, https://www.ibm.com/cloud/continuous-delivery, 2022.
[37] Devops and aws, https://aws.amazon.com/devops/, 2022.
[38] Cloud-native ci/cd on red hat openshift, https://cloud.redhat.com/learn/topics/ci-cd, 2022.
[39] G. Chen et al., “Blockchain-based cyber security and advanced distribution in smart

grid,” IEEE 4th International Conference on Electronics Technology, 2021. doi: 10.1109/
ICET51757.2021.9451130.

[40] T. Brandstatter et al., “Characterizing efficiency optimizations in solidity smart con-

tracts,” IEEE International Conference on Blockchain, 2020. doi: 10.1109/Blockchain50366.
2020.00042.

https://doi.org/10.1109/ICSESS.2015.7339039
https://doi.org/10.1109/CCWC51732.2021.9376148
https://doi.org/10.1109/CCWC51732.2021.9376148
https://doi.org/10.1109/INFOTEH51037.2021.9400696
https://doi.org/10.1109/EDCC51268.2020.00020
https://doi.org/10.1145/3194760.3194763
https://doi.org/10.35925/j.multi.2020.3.7
https://ojs.uni-miskolc.hu/index.php/multi/article/view/441
https://ojs.uni-miskolc.hu/index.php/multi/article/view/441
https://azure.microsoft.com/en-us/services/devops/pipelines/
https://cloud.google.com/blog/topics/developers-practitioners/devops-and-cicd-google-cloud-explained
https://cloud.google.com/blog/topics/developers-practitioners/devops-and-cicd-google-cloud-explained
https://www.alibabacloud.com/product/apsara-deveops/flow
https://www.alibabacloud.com/product/apsara-deveops/flow
https://www.ibm.com/cloud/continuous-delivery
https://aws.amazon.com/devops/
https://cloud.redhat.com/learn/topics/ci-cd
https://doi.org/10.1109/ICET51757.2021.9451130
https://doi.org/10.1109/ICET51757.2021.9451130
https://doi.org/10.1109/Blockchain50366.2020.00042
https://doi.org/10.1109/Blockchain50366.2020.00042


[41] S. Murugan and S. Kris, “A survey on smart contract platforms and features,” 7th
International Conference on Advanced Computing and Communication Systems, 2021. doi:
10.1109/ICACCS51430.2021.9441970.

[42] Y. Li, “Finding concurrency exploits on smart contracts,” IEEE/ACM 41st International
Conference on Software Engineering: Companion Proceedings, 2019. doi: 10.1109/ICSE-
Companion.2019.00061.

[43] J. Chen, “Finding ethereum smart contracts security issues by comparing history ver-

sions,” 35th IEEE/ACM International Conference on Automated Software Engineering, 2020.
doi: 10.1145/3324884.3418923.

[44] A. Dika and M. Nowostawski, “Security vulnerabilities in ethereum smart contracts,”

IEEE Confs on Internet of Things, Green Computing and Communications, Cyber, Physical
and Social Computing, Smart Data, Blockchain, Computer and Information Technology,
Congress on Cybermatics, 2018. doi: 10.1109/Cybermatics_2018.2018.00182.

[45] S. Sayeed, H. Marco-Gisbert, and T. Caira, “Smart contract: Attacks and protections,”

IEEE Access, 2020. doi: 10.1109/ACCESS.2020.2970495.
[46] G. Destefanis et al., “Smart contracts vulnerabilities: A call for blockchain software

engineering?” 1st International Workshop on Blockchain Oriented Software Engineering,
2018.

[47] S. Richards, Scaling, https://ethereum.org/en/developers/docs/scaling/, 2022.
[48] E. Androulaki et al., “Hyperledger fabric: A distributed operating system for permis-

sioned blockchains,” in Proceedings of the Thirteenth EuroSys Conference, ser. EuroSys ’18,
Porto, Portugal: Association for Computing Machinery, 2018, isbn: 9781450355841. doi:

10.1145/3190508.3190538. [Online]. Available: https://doi.org/10.1145/3190508.3190538.
[49] H. Pervez et al., “A comparative analysis of dag-based blockchain architectures,” in 2018

12th International Conference on Open Source Systems and Technologies (ICOSST), 2018,
pp. 27–34. doi: 10.1109/ICOSST.2018.8632193.

[50] N. Kraus, K. Kraus, and O. Manzhura, “Newest Digital Technology in Management

of National Economic System,” Atlantis Press, Sep. 2019, pp. 1–5, isbn: 978-94-6252-

790-4. doi: 10.2991/smtesm-19.2019.1. [Online]. Available: https://www.atlantis-
press.com/proceedings/smtesm-19/125917609 (visited on 06/28/2022).

[51] M. Lokhava et al., “Fast and secure global payments with stellar,” in Proceedings of the
27th ACM Symposium on Operating Systems Principles, ser. SOSP ’19, Huntsville, Ontario,

Canada: Association for Computing Machinery, 2019, pp. 80–96, isbn: 9781450368735.

doi: 10.1145/3341301.3359636. [Online]. Available: https://doi.org/10.1145/3341301.
3359636.

[52] P. Katsiampa, “An empirical investigation of volatility dynamics in the cryptocurrency

market,” Research in International Business and Finance, vol. 50, pp. 322–335, 2019, issn:
0275-5319. doi: https : / /doi . org / 10 . 1016 / j . ribaf . 2019 . 06 . 004. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0275531919300637.

[53] W. Song et al., “EOS.IO blockchain data analysis,” The Journal of Supercomputing, vol. 78,
no. 4, pp. 5974–6005, Mar. 2022, issn: 1573-0484. doi: 10.1007/s11227-021-04090-y.
[Online]. Available: https://doi.org/10.1007/s11227-021-04090-y (visited on 06/28/2022).

https://doi.org/10.1109/ICACCS51430.2021.9441970
https://doi.org/10.1109/ICSE-Companion.2019.00061
https://doi.org/10.1109/ICSE-Companion.2019.00061
https://doi.org/10.1145/3324884.3418923
https://doi.org/10.1109/Cybermatics_2018.2018.00182
https://doi.org/10.1109/ACCESS.2020.2970495
https://ethereum.org/en/developers/docs/scaling/
https://doi.org/10.1145/3190508.3190538
https://doi.org/10.1145/3190508.3190538
https://doi.org/10.1109/ICOSST.2018.8632193
https://doi.org/10.2991/smtesm-19.2019.1
https://www.atlantis-press.com/proceedings/smtesm-19/125917609
https://www.atlantis-press.com/proceedings/smtesm-19/125917609
https://doi.org/10.1145/3341301.3359636
https://doi.org/10.1145/3341301.3359636
https://doi.org/10.1145/3341301.3359636
https://doi.org/https://doi.org/10.1016/j.ribaf.2019.06.004
https://www.sciencedirect.com/science/article/pii/S0275531919300637
https://doi.org/10.1007/s11227-021-04090-y
https://doi.org/10.1007/s11227-021-04090-y


[54] M. Benji and M. Sindhu, “A Study on the Corda and Ripple Blockchain Platforms,” in

Advances in Big Data and Cloud Computing, J. D. Peter, A. H. Alavi, and B. Javadi, Eds.,

Singapore: Springer Singapore, 2019, pp. 179–187, isbn: 978-981-13-1882-5.

[55] J.-W. Liao et al., “Soliaudit: Smart contract vulnerability assessment based on machine

learning and fuzz testing,” Sixth International Conference on Internet of Things: Systems,
Management and Security, 2019.

[56] A. López et al., “An analysis of smart contracts security threats alongside existing

solutions,” Entropy, 2020. doi: 10.3390/e22020203.
[57] S. Akca, A. Rajan, and C. Peng, “Solanalyser: A framework for analysing and testing

smart contracts,” 26th Asia-Pacific Software Engineering Conference, 2019.
[58] Q. Ashfaq, R. Khan, and S. Farooq, “A comparative analysis of static code analysis tools

that check java code adherence to java coding standards,” in 2019 2nd International
Conference on Communication, Computing and Digital systems (C-CODE), 2019, pp. 98–
103. doi: 10.1109/C-CODE.2019.8681007.

[59] S. Kim, Y. Chul, and Y. Park, “Static code analysis in continuous integration - agile and

rule-compliant development,”Wireless Personal Communications, 2016.
[60] A. Paul, “More software safety a static analysis tools perspective,” ATZelectronics world-

wide, 2017.
[61] M. Hermeling, “Static code analysis in continuous integration - agile and rule-compliant

development,” ATZelectronics worldwide, 2019.
[62] R. Kumar, K. Indraveni, and A. K. Goel, “Automation of detection of security vulner-

abilities in web services using dynamic analysis,” in The 9th International Conference
for Internet Technology and Secured Transactions (ICITST-2014), 2014, pp. 334–336. doi:
10.1109/ICITST.2014.7038832.

[63] O. Zaazaa and H. El Bakkali, “Dynamic vulnerability detection approaches and tools:

State of the art,” in 2020 Fourth International Conference On Intelligent Computing in
Data Sciences (ICDS), 2020, pp. 1–6. doi: 10.1109/ICDS50568.2020.9268686.

[64] T. Theunissen., S. Hoppenbrouwers., and S. Overbeek., “In continuous software develop-

ment, tools are the message for documentation,” in Proceedings of the 23rd International
Conference on Enterprise Information Systems - Volume 2: ICEIS,, INSTICC, SciTePress,
2021, pp. 153–164, isbn: 978-989-758-509-8. doi: 10.5220/0010367901530164.

[65] Remix, https://github.com/ethereum/remix-project, 2022.
[66] Loom network, https://github.com/loomnetwork, 2022.
[67] Chainide, https://chainide.gitbook.io/chainide-english-1/, 2022.
[68] Replit, https://github.com/replit, 2022.
[69] Visual studio code, https://github.com/microsoft/vscode, 2022.
[70] What’s new in intellij idea 2022.1, https://www.jetbrains.com/idea/whatsnew/, 2022.
[71] Remix desktop, https://github.com/ethereum/remix-desktop, 2022.
[72] Truffle, https://github.com/trufflesuite/truffle, 2022.
[73] Hyperledger composer, https://github.com/hyperledger-archives/composer, 2019.
[74] Software and sdks, https://developers.stellar.org/docs/software-and-sdks/, 2022.
[75] Eos studio releases, https://github.com/ObsidianLabs/EOS-Studio-Releases, 2020.
[76] Eos studio desktop, https://github.com/ObsidianLabs/EOS-Studio-Desktop, 2019.

https://doi.org/10.3390/e22020203
https://doi.org/10.1109/C-CODE.2019.8681007
https://doi.org/10.1109/ICITST.2014.7038832
https://doi.org/10.1109/ICDS50568.2020.9268686
https://doi.org/10.5220/0010367901530164
https://github.com/ethereum/remix-project
https://github.com/loomnetwork
https://chainide.gitbook.io/chainide-english-1/
https://github.com/replit
https://github.com/microsoft/vscode
https://www.jetbrains.com/idea/whatsnew/
https://github.com/ethereum/remix-desktop
https://github.com/trufflesuite/truffle
https://github.com/hyperledger-archives/composer
https://developers.stellar.org/docs/software-and-sdks/
https://github.com/ObsidianLabs/EOS-Studio-Releases
https://github.com/ObsidianLabs/EOS-Studio-Desktop


[77] Eosio web ide, https://github.com/EOSIO/eosio-web-ide, 2020.
[78] Zeus ide, https://github.com/liquidapps-io/zeus-ide, 2020.
[79] Oyente, https://github.com/enzymefinance/oyente, 2020.
[80] Solgraph, https://github.com/raineorshine/solgraph, 2019.
[81] Madmax, https://github.com/nevillegrech/MadMax, 2021.
[82] Manticore, https://github.com/trailofbits/manticore, 2022.
[83] Mythril, https://github.com/ConsenSys/mythril, 2022.
[84] Contractlarva, https://github.com/gordonpace/contractLarva, 2022.
[85] Solmet solidity parser, https://github.com/chicxurug/SolMet-Solidity-parser, 2020.
[86] Vandal, https://github.com/usyd-blockchain/vandal, 2020.
[87] Securify v2.0, https://github.com/eth-sri/securify2, 2021.
[88] Slither, https://github.com/crytic/slither, 2021.
[89] Ethlint, https://github.com/duaraghav8/Ethlint, 2021.
[90] Revive-cc, https://github.com/sivachokkapu/revive-cc, 2020.
[91] Blockchain analyzer, https://github.com/hyperledger-labs/blockchain-analyzer, 2020.
[92] Chaincode analyzer, https://github.com/FujitsuLaboratories/ChaincodeAnalyzer, 2020.
[93] A. Grüner, A. Mühle, and C. Meinel, “Atib: Design and evaluation of an architecture for

brokered self-sovereign identity integration and trust-enhancing attribute aggregation

for service provider,” IEEE Access, vol. 9, pp. 138 553–138 570, 2021. doi: 10.1109/ACCESS.
2021.3116095.

[94] E. Bandara et al., “A blockchain and self-sovereign identity empowered digital identity

platform,” in 2021 International Conference on Computer Communications and Networks
(ICCCN), 2021, pp. 1–7. doi: 10.1109/ICCCN52240.2021.9522184.

[95] R. Rana, R. N. Zaeem, and K. S. Barber, “An assessment of blockchain identity solu-

tions: Minimizing risk and liability of authentication,” in IEEE/WIC/ACM International
Conference on Web Intelligence, ser. WI ’19, Thessaloniki, Greece: Association for Com-

puting Machinery, 2019, pp. 26–33, isbn: 9781450369343. doi: 10.1145/3350546.3352497.
[Online]. Available: https://doi.org/10.1145/3350546.3352497.

[96] W. Song et al., “Self-sovereign identity and user control for privacy-preserving contact

tracing,” in IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent
Agent Technology, ser.WI-IAT ’21, Melbourne, VIC, Australia: Association for Computing

Machinery, 2022, pp. 438–445, isbn: 9781450391153. doi: 10.1145/3486622.3493914.
[Online]. Available: https://doi.org/10.1145/3486622.3493914.

[97] S. Mahula, E. Tan, and J. Crompvoets, “With blockchain or not? opportunities and

challenges of self-sovereign identity implementation in public administration: Lessons

from the belgian case,” in DG.O2021: The 22nd Annual International Conference on
Digital Government Research, ser. DG.O’21, Omaha, NE, USA: Association for Computing

Machinery, 2021, pp. 495–504, isbn: 9781450384926. doi: 10.1145/3463677.3463705.
[Online]. Available: https://doi.org/10.1145/3463677.3463705.

[98] Y. Liu et al., “Design patterns for blockchain-based self-sovereign identity,” CoRR,
vol. abs/2005.12112, 2020. arXiv: 2005.12112. [Online]. Available: https://arxiv.org/
abs/2005.12112.

https://github.com/EOSIO/eosio-web-ide
https://github.com/liquidapps-io/zeus-ide
https://github.com/enzymefinance/oyente
https://github.com/raineorshine/solgraph
https://github.com/nevillegrech/MadMax
https://github.com/trailofbits/manticore
https://github.com/ConsenSys/mythril
https://github.com/gordonpace/contractLarva
https://github.com/chicxurug/SolMet-Solidity-parser
https://github.com/usyd-blockchain/vandal
https://github.com/eth-sri/securify2
https://github.com/crytic/slither
https://github.com/duaraghav8/Ethlint
https://github.com/sivachokkapu/revive-cc
https://github.com/hyperledger-labs/blockchain-analyzer
https://github.com/FujitsuLaboratories/ChaincodeAnalyzer
https://doi.org/10.1109/ACCESS.2021.3116095
https://doi.org/10.1109/ACCESS.2021.3116095
https://doi.org/10.1109/ICCCN52240.2021.9522184
https://doi.org/10.1145/3350546.3352497
https://doi.org/10.1145/3350546.3352497
https://doi.org/10.1145/3486622.3493914
https://doi.org/10.1145/3486622.3493914
https://doi.org/10.1145/3463677.3463705
https://doi.org/10.1145/3463677.3463705
https://arxiv.org/abs/2005.12112
https://arxiv.org/abs/2005.12112
https://arxiv.org/abs/2005.12112


[99] R. Nokhbeh Zaeem et al., “Blockchain-based self-sovereign identity: Survey, require-

ments, use-cases, and comparative study,” in IEEE/WIC/ACM International Conference on
Web Intelligence and Intelligent Agent Technology, ser. WI-IAT ’21, Melbourne, VIC, Aus-

tralia: Association for Computing Machinery, 2022, pp. 128–135, isbn: 9781450391153.

doi: 10.1145/3486622.3493917. [Online]. Available: https://doi.org/10.1145/3486622.
3493917.

[100] M. ABDELRAZIG ABUBAKAR et al., “Blockchain-based identity and authentication

scheme for mqtt protocol,” in 2021 The 3rd International Conference on Blockchain Tech-
nology, ser. ICBCT ’21, Shanghai, China: Association for Computing Machinery, 2021,

pp. 73–81, isbn: 9781450389624. doi: 10.1145/3460537.3460549. [Online]. Available:
https://doi.org/10.1145/3460537.3460549.

[101] G. Kondova and J. Erbguth, “Self-sovereign identity on public blockchains and the gdpr,”

in Proceedings of the 35th Annual ACM Symposium on Applied Computing, ser. SAC ’20,

Brno, Czech Republic: Association for Computing Machinery, 2020, pp. 342–345, isbn:

9781450368667. doi: 10.1145/3341105.3374066. [Online]. Available: https://doi.org/10.
1145/3341105.3374066.

[102] N. Naik and P. Jenkins, “Sovrin network for decentralized digital identity: Analysing

a self-sovereign identity system based on distributed ledger technology,” in 2021 IEEE
International Symposium on Systems Engineering (ISSE), 2021, pp. 1–7. doi: 10.1109/
ISSE51541.2021.9582551.

[103] N. Naik and P. Jenkins, “Uport open-source identity management system: An assessment

of self-sovereign identity and user-centric data platform built on blockchain,” in 2020
IEEE International Symposium on Systems Engineering (ISSE), 2020, pp. 1–7. doi: 10.1109/
ISSE49799.2020.9272223.

[104] S. Porru et al., “Blockchain-oriented software engineering: Challenges and new di-

rections,” in Proceedings of the 39th International Conference on Software Engineering
Companion, ser. ICSE-C ’17, Buenos Aires, Argentina: IEEE Press, 2017, pp. 169–171,

isbn: 9781538615898. doi: 10.1109/ICSE-C.2017.142. [Online]. Available: https://doi.org/
10.1109/ICSE-C.2017.142.

[105] P. Chakraborty et al., “Understanding the software development practices of blockchain

projects: A survey,” in Proceedings of the 12th ACM/IEEE International Symposium on Em-
pirical Software Engineering and Measurement, ser. ESEM ’18, Oulu, Finland: Association

for Computing Machinery, 2018, isbn: 9781450358231. doi: 10.1145/3239235.3240298.
[Online]. Available: https://doi.org/10.1145/3239235.3240298.

[106] H. K. Brar and P. J. Kaur, “Differentiating integration testing and unit testing,” in 2015 2nd
International Conference on Computing for Sustainable Global Development (INDIACom),
2015, pp. 796–798.

[107] T. Górski, “Continuous delivery of blockchain distributed applications,” Sensors, vol. 22,
no. 1, 2022, issn: 1424-8220. doi: 10.3390/s22010128. [Online]. Available: https://www.
mdpi.com/1424-8220/22/1/128.

[108] S. N. Khan et al., “Blockchain smart contracts: Applications, challenges, and future

trends,” Peer-to-peer networking and applications, vol. 14, no. 5, pp. 2901–2925, 2021, issn:

https://doi.org/10.1145/3486622.3493917
https://doi.org/10.1145/3486622.3493917
https://doi.org/10.1145/3486622.3493917
https://doi.org/10.1145/3460537.3460549
https://doi.org/10.1145/3460537.3460549
https://doi.org/10.1145/3341105.3374066
https://doi.org/10.1145/3341105.3374066
https://doi.org/10.1145/3341105.3374066
https://doi.org/10.1109/ISSE51541.2021.9582551
https://doi.org/10.1109/ISSE51541.2021.9582551
https://doi.org/10.1109/ISSE49799.2020.9272223
https://doi.org/10.1109/ISSE49799.2020.9272223
https://doi.org/10.1109/ICSE-C.2017.142
https://doi.org/10.1109/ICSE-C.2017.142
https://doi.org/10.1109/ICSE-C.2017.142
https://doi.org/10.1145/3239235.3240298
https://doi.org/10.1145/3239235.3240298
https://doi.org/10.3390/s22010128
https://www.mdpi.com/1424-8220/22/1/128
https://www.mdpi.com/1424-8220/22/1/128


1936-6442. doi: 10.1007/s12083-021-01127-0. [Online]. Available: https://doi.org/10.
1007/s12083-021-01127-0.

[109] S. Azzopardi, J. Ellul, and G. J. Pace, “Monitoring smart contracts: Contractlarva and

open challenges beyond,” in Runtime Verification, C. Colombo and M. Leucker, Eds.,

Cham: Springer International Publishing, 2018, pp. 113–137, isbn: 978-3-030-03769-7.

[110] Metamask, https://metamask.io/, 2022.

https://doi.org/10.1007/s12083-021-01127-0
https://doi.org/10.1007/s12083-021-01127-0
https://doi.org/10.1007/s12083-021-01127-0
https://metamask.io/


APPENDIX A

Code



Figure A.1: Smart Contract Structures



Figure A.2: DevOps Pipeline Definition


	1 Introduction
	2 Problem & Objectives
	2.1 Problem Statement
	2.2 Objectives

	3 State of Art
	3.1 DevOps
	3.2 DevOps Tools
	3.3 DevOps cloud-based tools
	3.4 Blockchains and Smart Contracts
	3.5 Smart Contracts Security
	3.5.1 Smart Contract Vulnerabilities
	3.5.2 Analysis Methods
	3.5.3 Blockchain development tools

	3.6 Self-Sovereign Identity
	3.6.1 Principles
	3.6.2 Four Privacy Layers of SSI
	3.6.3 Blockchain-based SSI
	3.6.4 Proposed Blockchain SSI Models


	4 Framework Proposal
	4.0.1 Preparation
	4.0.2 Continuous Planning
	4.0.3 Continuous Integration
	4.0.4 Continuous Testing
	4.0.5 Continuous Deployment
	4.0.6 Continuous Feedback and Monitoring

	4.1 General Use Case

	5 Study Case
	5.1 Requirements
	5.2 System Users and Operations
	5.3 Architecture
	5.3.1 Document Identifier Smart Contract
	5.3.2 MetaMask


	6 Framework Validation
	6.1 Tools
	6.2 Tasks

	7 Discussion
	7.0.1 Secure deployment and integration
	7.0.2 Secure monitoring


	8 Conclusion and Future Work
	Bibliography
	A Code

