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Featured Application: When one is uncertain whether the potential fault is unbalancing or shaft
bow based on frequency analysis, the proposed approach is applicable to issues regarding the
balancing of heavy rotating systems, such as turbines and generators.

Abstract: A growing interest in intelligent fault detection may sometimes lead to practical issues
when existing malfunctions reveal analogous indications and the number of observations is limited.
This article addresses the classification problem of two identical malfunctions, i.e., unbalancing and
shaft bow in rotary machines, where only 56 observations were utilized for the training. The faulty
systems are modeled in ABAQUS/CAE; a data set for each fault is created by simulation under
various physical and operational conditions employing the uncertainty concept. The wavelet time
scattering (WTS) technique extracts low-variance presentations from signals. With respect to the
classification procedure of the faulted rotor systems, two models are examined with the extracted
features from WTS as the input. Initially, a long short-term memory (LSTM) network is trained and
tested, and then, the capability of a support vector machine (SVM) model is inquired. Ultimately,
the classification models are trained and tested using the raw time series data and the extracted
features to compare the effectiveness of the suggested methods, i.e., WTS. The employed approach
for feature extraction demonstrated remarkable effectiveness in addressing a potential hurdle in
identifying faults in rotating systems: the ability to differentiate between unbalanced and bowed
rotors, irrespective of the classification model utilized.

Keywords: rotary machines; unbalancing; shaft bow; FE analysis; wavelet time scattering; long
short-term memory; support vector machine

1. Introduction

Because they are expensive, and their failure can halt the entire process, turbines
and other rotating machinery used in the production, transmission, and transformation
of energy should be carefully monitored. The three different types of maintenance are
reactive, preventive, and predictive. Condition monitoring (CM), which is based on the
machine’s past and present conditions, is a type of predictive maintenance. Some of the
methodologies used for CM in rotor systems include journal bearing clearance and film
thickness monitoring, shaft relative displacement in the horizontal and vertical planes,
journal bearing oil quality and wear debris monitoring, and vibration monitoring in the
bearing housing; the latter is most frequently utilized. In the onset, accelerometers, eddy
currents, or key phasor transducers ought to be utilized to measure vibration signals. Time,
frequency, and time–frequency domain characteristics of the real-time captured signals
should be contrasted with those of the healthy signals. The CM staff can receive an alert
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if any abrupt changes occur in the under-monitoring parameters (for instance, in the
regression model) [1].

After noticing a change in the machine’s operation, the next step is fault diagnosis,
which allows the type, severity, location, and root of the fault to be determined. Numerous
malfunctions, including misalignment, shaft bow, shaft crack, defective bearings, and
unbalance, can arise in rotary systems. Some of these faults can only be fixed if they are
diagnosed early on as ignoring them can have disastrous repercussions [2].

Symptoms can be extracted and compared to the fault constitution, failure criteria,
damage theories from standards, and literature findings to detect a fault. However, because
the symptoms of some malfunctions are very similar, it can occasionally be challenging to
distinguish between them. Rotor systems with bowed and unbalanced rotors are a striking
example. Finding the differences in the time domain is incredibly difficult citing the litera-
ture, and there are also a lot of unknowns in the frequency and time–frequency domains.

Almost all rotating objects, from car rims to sophisticated industrial turbines, are
thought to suffer from unbalancing as the most frequent type of damage in such systems.
An uneven mass distribution that prevents the center of mass and volume from aligning is
the definition of this flaw. This deficiency can cause fatigue load and, if not corrected, can
lead to other defects, such as bearing defects and shaft cracks [3].

Myriad research has been carried out in an attempt to identify and correct this
failure [3,4]. Studies on fault detection in rotor systems fall into two broad categories:
transient and stationary responses. Investigation into the transient responses of a rotating
system focuses on the startup or shut-down of the machine. The dynamic behaviors of
a misaligned, unbalanced, and mechanically loosed rotor system were described by de
Arruda Santiago and Pederiva [5] using wavelet transform. The study of the run-up signals
was performed both theoretically and experimentally. The presence of the aforementioned
faults was demonstrated by the appearance, location, and magnitude of peaks associated
with the second subcritical speed.

Sudhakar and Sekhar employed a model-based method in two various procedures,
i.e., equivalent loads minimization and vibration minimization to investigate the effects
of unbalancing in a rotor system. It has been found that the main symptoms of this
impairment in the time and frequency domain are the increased vibration amplitude and
the appearance of 1X frequency harmonic, respectively [6].

Rotating machines can experience distributed unbalancing, or shaft bow, for a variety
of causes, including creep, thermal distortion, or a significant imbalance force. Shaft bows
can occasionally be the result of too much heat, a long length, or a physical bend. This fault
can be fixed in its initial phases, somewhat like a concentrated unbalancing [7].

On the assumption that the malfunction is permanent, a limited number of modifica-
tion procedures from balancing and optimization (to relocate other components) can be
carried out. The presence of this malfunction may occasionally be transient and can be
resolved on its own [8].

Since, in some circumstances, the temporary shaft bending is removed soon after
the device starts, the analysis of start-up and shot-down signals has, thus far, been the
primary focus in the study of bent rotor systems. Although both model-based and data-
driven approaches have been researched, the quantity of recent studies is not particularly
impressive when compared to some defects, such as concentrated unbalanced or cracked
systems; most researchers focus on contrasting this defect with imbalance.

Debates on the specific signs of this damage go far beyond unbalancing because it
has been discovered that the significant indicators of this fault in the time domain are an
increased vibration response [9–14] although the severity of the vibration is essentially
constant, and it is not significantly impacted by changes in rotating speed [15]. The self-
balancing circumstance refers to a very scarce event in which the unbalancing and bow
vectors are completely out of phase, as well as having the same magnitude also was
observed [10,16,17]. The steady-state analysis also revealed changes in the critical speed
and phase difference [18,19]. In the frequency domain, 1X, 2X, and very rarely 3X frequency
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components have been announced as possible characteristics [20–22]. A comprehensive
review of the previous investigations can be found in [7].

There is a long history of employing the finite element method (FEM) to model
and troubleshoot rotating systems. In fact, many complex systems that were previously
impossible or challenging to model using numerical methods have been modeled, thanks
to the advancement of computer science and the emergence of cutting-edge software such
as ABAQUS using FEM.

A rotor system was modeled by Nelson and McVaugh [23] using the FEM, which
is valid until now. Characteristic matrices of the system were extracted; the force vector
resulting from an unbalancing was presented. Additionally, Nicholas et al. [16] utilized
FEM to model a bowed rotor system. A cosine function was applied to simulate the
harmonic nature of a bowed shaft’s force by multiplying it by the stiffness matrix and the
initial bow vector.

Hossain and Wu [24] used ABAQUS to simulate the effects of a crack’s breathing
behavior on a rotor system; for this, a quasi-static approach was applied.

Primarily, uncertainties should be taken into account in the design of mechanical
systems, especially in dynamic systems to avoid unexpected vibrational responses [25].
On the other side, the effect of uncertainties should be considered when theorizing and
designing such systems’ fault detection mechanisms as well, since as will be discussed
below, fault uncertainty is also one of the sources of uncertainty. Damage symptoms
should be distinguishable from those of other defects when the physical and/or operational
conditions of a system are changed. For instance, the industry has reported that switching
from a metallic grid coupling to a jaw coupling can alter the signature of a misaligned rotor
system in the frequency domain.

The effects of uncertainties in the analysis of rotor systems have been the subject of nu-
merous studies in recent years [26]. Didier et al. [25] quantified the impacts of uncertainty in
rotating systems with multiple faults. The quantification used the Harmonic Balance tech-
nique, and the results were compared to those calculated using Monte Carlo simulations.

Recent years have experienced noticeable growth in the use of wavelet frameworks
for noise reduction, wavelet transformation, and wavelet time scattering (WTS) [27]. In
the feature extraction stage, wavelet transform and WTS are useful tools [28]. The contin-
uous wavelet scalogram can also function as the visual input for feature extraction in a
convolution layer [29].

Experimentally, Rezazadeh and Fallahy [30] applied discrete wavelet transform and
a multi-layer artificial neural network in the classification of healthy and cracked rotor
systems in various crack depth scenarios. Relative wavelet energy (RWE) and wavelet
entropy (WE) were extracted at the different levels of decomposed signals and then were
fed into the perception learning network.

Wavelet time scattering is a suitable feature extractor as well as the phase before
exploring fault indicators because they maintain translation invariance, deformations, and
high-frequency information [31]. Numerous studies have established the ability of WTS
in feature extraction of rotating devices. Heydarzadeh et al. [32] employed the wavelet
scattering transform of acoustic emission in the classification of four faults in a gearbox.
In the training phase, the system was not exposed to all loads, but the benchmark could
still separate classes. To diagnose bearing faults in rotor systems, Bourgana et al. [33] used
WTS; the suggested approach was also contrasted with three feature extraction and prior
fault detection benchmarks.

The implementation of smart processes for manufacturing, enhancing quality, and
fault diagnosis has significantly advanced, thanks to artificial intelligence, cloud computing,
and the Internet of Things throughout the Industry 4.0 revolution [34].

The application of intelligent techniques in condition monitoring and fault diagnosis
of rotating systems is witnessing a noticeable improvement during the revolution [35]. It is
well known that using such a method has both benefits and disadvantages. Difficulty in
the physical comprehension and interpretation of signals is one of the drawbacks of smart
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fault diagnosis procedures, and this becomes particularly challenging when multimodal
behavior is attained. On the other hand, the noticeable benefit of such techniques is their
capabilities in real-time condition monitoring and fault detection. Using intelligent methods
can also diminish human error when a wide range of classes are under process, or a decision
must be taken instantly.

A fault diagnosis model for rotor systems was proposed by Wang et al. [36] which
combines data-driven and failure mechanism analysis. The model is based on vibration
signal feature vector transfer learning, with the Relief algorithm for feature extraction and
the WkNN classifier for reducing data set differences. The model was tested using real
fault data from multiple machines and demonstrated good generalization and accuracy in
cross-device diagnosis. With accurate and efficient calculation, the results have industrial
application value.

Pacheco et al. [37] improved fault detection in the bearing of rotary machines by using
a combination of vibration and acoustic signals. Simulated faults were created in a bearing,
and a database was generated to compare the signals. Three different supervised machine
learning methods were proposed and tested, resulting in a fault classification above 96%.
The results present a new approach to enhance predictive maintenance with vibration and
acoustic signals.

In the present-day context, many efforts have been made to improve the performance
of intelligent diagnostic systems. The attention given to certain methods, such as convo-
lutional neural networks (CNNs), is due to two main reasons: improved accuracy and
automated feature extraction. CNNs have been shown to deliver high accuracy in different
applications, such as image classification, object detection, and natural language process-
ing. Additionally, they can automatically learn and identify important features from the
data, eliminating the need for manual feature engineering which can be time-consuming
and prone to errors, outperforming other methods [38,39]. Rezazadeh et al. [40] classi-
fied unbalanced, misaligned, and cracked rotor systems using CNNs and classic machine
learning algorithms. Inputs for the CNNs were colorful persistence spectrums, while on
the condition of classic techniques, statistical features were extracted directly from the
raw data.

Srinivas et al. [41] classified a rotor system that was simultaneously experiencing shaft
bow and unbalancing using an artificial neural network (ANN) and wavelet transform by
analyzing the vibrations in the two transverse and axial directions. The signals were split
up using a discrete wavelet transform, and during the feature extraction process, the root
means square (RMS) values of the detail coefficients were used. The training set consisted
of three scenarios (different values of mass unbalance and initial bow magnitude), and one
was used in the testing phase.

Recurrent neural networks, more specifically long short-term memory (LSTM), have
established themselves as powerful algorithms in time series data analysis in recent years.
Similar to CNNs, one can set feature extraction layers inside the structure of such algorithms.
Moreover, their capabilities in the usage of the graphics processing unit (GPU) can be
considered an extra merit.

Numerous investigations have demonstrated fault diagnosis in rotor systems using
LSTM. In an experimental setting, Yang et al. [42] applied LSTM to the fault classification of
gears in the rotating part of wind turbines. Anwarsha and Babu [43] studied the capability
of LSTM in the classification problem of rolling element bearings in rotor systems.

Support vector machine (SVM) models’ prowess in categorizing damaged rotor sys-
tems has been extensively studied. Using supervised and unsupervised algorithms, SVM
models can handle labeled and unlabeled data sets [44].

When the supporter ball bearings were also damaged, Kankar et al. used ANNs and
SVM in the theoretical and experimental classification of healthy and cracked rotor systems.
To extract features and reduce dimensionality, statistical operations were applied to the
vibration signals [45].
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SVM was employed by Gangsar et al. [46] to categorize healthy and unbalanced rotor
systems. The features of the time and frequency domains were compared; it was claimed
that the time domain features that were extracted could produce results that were more
accurate overall.

Since the sign of parallel and angular misalignment in a rotor system is the same, that
is, 2X frequency harmonic, Patil et al. [47] used the SVM model to discriminate between
these two conditions. Time domain features were extracted from the vibroacoustic signals,
e.g., the fusion form of the vibration and acoustic signals.

In the context of this study, combinations of WTS with LSTM and SVM are employed
in the classification of unbalanced and bowed rotor systems. The process of modeling
is performed using ABAQUS/CAE, and the modeled systems are simulated when the
value of Young’s modulus is not constant which can result in changes in the mass and
stiffness matrices of the whole system. Variation of the aforementioned parameter is applied
utilizing uncertainty where the perturbation method is responsible for producing different
magnitudes. Additionally, a data set is produced by altering the rotational velocity in each
Young’s modulus scenario. The signal processing stage makes use of the WTS; the extracted
features are then fed into an LSTM network for training and testing phases. Parallel with
the mentioned classification method, the same features are introduced to an SVM model.
The results of these techniques are compared with the conditions where the raw signals are
used as input to the LSTM algorithm as well as the input to the feature extraction stage
before applying the SVM.

The pioneering elements of this research are the use of ABAQUS/CAE modeling for
bowed rotor systems and the combination of WTS with LSTM and SVM for classifying
these systems with a limited number of sample tests, which has not been documented in
the literature before for such a mechanical system.

2. Materials and Methods

The lack of information on malfunctioning conditions in real-world machines increases
the need for modeling and simulation, whether numerically or in a lab setting. On the one
hand, the FEM is a dependable method for carrying out numerical modeling. Furthermore,
disregarding important factors, e.g., uncertainties, lead to imprecise outcomes since in real-
world application of any condition monitoring task, there is a wide spectrum of uncertain
sources, such as varying wind speed, different humidity, and discrepant temperature.

A data set is required to train the designed network and assess the effectiveness
of the learning process when using classification algorithms. Unbalanced and bowed
rotor systems should be modeled in ABAQUS/CAE first, and then the modeled systems
should be run under various circumstances, such as changing the physical properties and
operational conditions. The feature extraction phase is performed utilizing WTS to prepare
inputs for the LSTM and SVM models. Additionally, the original time series data are
applied in the classification using LSTM and the feature extraction material before applying
the SVM to represent the effectiveness of the applied feature extraction method, i.e., WTS
in the classification of unbalanced and bowed rotor systems.

The primary rationale behind the selection of LSTM and SVM for the classification
phase stems from their distinct mechanisms in establishing relationships between indepen-
dent and dependent variables. Specifically, LSTM has been engineered to discern temporal
dependencies within sequential and time-series data, whereas SVM predominantly excels
in identifying non-linear dependencies within the data set. Consequently, the observed out-
comes ensuing from the application of these methodologies demonstrate that the employed
feature extraction procedure, herein referred to as WTS (wavelet transform and statistical
features), exhibits considerable efficacy in capturing dependencies in rotor systems signals,
encompassing both temporal dynamics and non-linear characteristics. Figure 1 reveals the
workflow of the present research.
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Figure 1. Workflow of the article.

2.1. Modeling in ABAQUS/CAE

ABAQUS allows modeling a fault in a system whether by variations in the geometry
resulting from the damage such as a crack or by employing the expected force due to the
defect such as a bearing defect in a rotary system by means of periodic loads. In this article,
the first approach, i.e., change in the geometry of the system, is utilized to model faulty
rotor systems.

As previously mentioned, an unbalancing occurs when the volume (geometry) and
mass (mass) centers of a rotating object—in this case, a disk—are at different points.
Figure 2a illustrates a schematic of an unbalanced rotor-disk-bearing system. The disk’s
volume and mass centers are indicated in the figure by the letters C and M, respectively.
On the other hand, a bowed shaft refers to a situation where the rod is not straight along its
main axis. A schematic of this assumption is shown in Figure 2b (with exaggeration).
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Figure 2. Schematic of a rotor-disk-bearing system: (a) unbalanced and (b) bowed.

The modeled rotating system in ABAQUS in the current work consisted of a shaft, a
central disk, and two couplings at the ends. The couplings are modeled as the kinematic
type; as the boundary condition, the ends of the shaft are constrained in all directions
except rotation around the fundamental axis of the shaft (x-axis). It should be mentioned
that the shaft and disk are considered integrated parts. On the assumption of the bowed
rotor, the shaft is drawn along a curved line, where the maximum curvature is in the center
of the shaft. C3D8R solid elements (characterized by 8 nodes with 3 degrees of freedom
per node) from the Abaqus Library were used to model both the shaft and the disk, using
an average element size of 10 mm. For the bowed rotor, a total of 33,880 elements and
39,096 nodes were created.

To model unbalancing in the rotor system, a number of holes have been drilled in
the disk. By changing their diameters as well as their distances from the disk’s center, the
mass center of the disk changed (eccentricity has occurred). The FE model counts a total of
33,353 elements and 39,328 nodes which were created with the same solid elements as the
bowed system. Graphs in Figure 3 are the meshed models of the unbalanced and bowed
rotor systems, subsequently.
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Figure 3. Modeled rotor systems: (a) unbalanced and (b) bowed.

To determine the optimal mesh size, a mesh convergence test was conducted to analyze
the L2 norm of transverse displacement, i.e., the y-axis in Figure 3 at the node of the left
side journal bearing across different mesh sizes. The distinctions between the various
mesh grid sizes were not stark. So, the most suitable sizes were chosen based on the
aforementioned values.

The explicit dynamic procedure is performed to analyze the systems’ motion while the
constant rotating velocity is modeled using a predefined field in the load module; vibration
signals are captured in the transverse direction, e.g., y-axis.

To compare vibration signals of the unbalanced and bowed rotor systems in the
stationary performance, the time domain waves and frequency spectrums (single-side)
for four operational speeds, i.e., 50, 75, 100, and 150 rad/s, are plotted in Figures 4 and 5.
Mechanical parameters of these four systems are selected the same as are listed in Table 1.
To have a reasonable comparison between these two faults, amounts of the disk eccentricity
and the initial bow are selected the same—5 mm. It is worthwhile to emphasize that
to avoid resonance or semi-resonance behavior that can result in transient changes in
the signal, these velocities are selected well below the first torsional natural frequency
(subcritical speed range), e.g., 68.29 Hz (~429 rad/s).

Table 1. Parameters of the rotor system.

Parameter Magnitude Parameter Magnitude

Shaft length 150 mm Density 7.83 × 10−6 kg/mm3

Shaft diameter 100 mm Young’s modulus 207,000 MPa
Disk diameter 300 mm Poisson’s ratio 0.3

Disk width 100 mm Structural damping 0.02
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Figure 4. Time domain signals at four rotational speeds.
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It is crucial to mention that the values presented in Table 1 have been selected due to
their close alignment with the dimensions of potential rotating systems that can be installed
and studied in laboratory settings by future researchers. On the contrary, opting for smaller
dimensions would restrict the achievable rotational speed, which hinders the analysis by
diminishing the critical speed.

When the rotation pace was 75 and 100 rad/s, the vibration signals of the bowed and
unbalanced systems were in the same range according to Figure 4. While in the slowest
rotational speed, e.g., 50 rad/s, the vibration of the bowed system was more intensive than
the unbalanced one; on the assumption of the fastest velocity (150 rad/s), on the contrary,
the amplitude of the unbalanced system is much higher than the bowed rotor while the
magnitude of the bowed systems remained approximately constant in all operational
conditions. These behaviors find their roots in the unbalancing force’s nature, which is
characterized by an increase in magnitude with the square of the rotational speed, as well as
the shaft bow’s introduction of a roughly constant force [15,48]. Similar observations were
noted in industrial scenarios, where the augmentation of rotational speed was found to be
ineffectual in yielding a proportional increase in the resultant force of a shaft deflection [49].
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In the frequency spectrums, the first frequency harmonic was observed at approxi-
mately the same rotational speeds that the systems operated; moreover, there are not any
other higher harmonics neither in the unbalanced system nor in the bowed one. It should be
noted that a second frequency component appeared when the Fourier transform’s sampling
frequency was increased, but its amplitude and occurrence frequency were constant across
all four operational speeds, indicating that it represented the system resonance frequency
rather than the fault’s effect.

2.2. Building the Data Set

Since the main objective of the present study is to classify unbalanced and bowed
rotary devices using artificial intelligence, a data set should be created by simulating the
modeled systems in various contexts. Numerous classification algorithms, including both
classic machine learning algorithms and deep neural networks, are data-hungry, which
means as the number of sample tests falls, the network’s predictive accuracy decreases as
well. To address the problem in the classification of faulted rotor systems, the combination
of WTS with LSTM and SVM is proposed. As a result, the whole data set contains only
140 samples, where unbalanced and bowed systems, Class 1 and Class 2, respectively, have
only 70 representatives.

2.3. Uncertainty

In rotor fault detection, uncertainty refers to the inherent variability and unpredictabil-
ity in the physical and operational conditions of the rotary systems. This variability can
cause variations in the signals generated by faulty systems, making it difficult to identify
and classify the faults accurately. The uncertainty concept in rotor fault detection aims to
account for these variations and ensure that the data set used for modeling and simulation
represents the diverse conditions that the rotary systems may experience in real-world
scenarios. By taking uncertainty into account, the goal is to develop more robust and
reliable models for detecting and classifying rotor faults.

In the forming of the data set, the concept of uncertainty is employed. There are vari-
ous sources of uncertainties in a system, such as model parameters, boundary conditions,
external (operational) loads, faults, observations (measurements), and model uncertainty.
All of them can be aleatory or epistemic in nature. Different techniques, such as the proba-
bilistic distribution function (PDF), fuzzy (membership) function, and interval function,
can be used to model uncertainty. Additionally, uncertainty can be quantified using either
probabilistic or non-probabilistic methods. The first category includes methods such as
Monte Carlo simulation, polynomial chaos expansion, random matrix theory, Bayesian
inference, and Kriging surrogate, whereas the second category contains techniques, such as
the fuzzy, evidence-based, imprecise, Taylor, and Chebyshev interval strategies [26]. The
equation of motion of a rotary machine can be written as Equation (1):

MY′′(t) + CY′(t) + KY(t) = F(t) (1)

in which M, C, and K represent the mass, damping, and stiffness matrices, respectively.
Furthermore, Y is the displacement vector, and F represents the force vector.

Since as mentioned earlier, the effects of faults are simulated by variations of the
systems’ geometries in this work, uncertainties in the model parameters are considered
to produce the sample tests. As a result, by changing the values of Young’s modulus and
rotational speed, the modeling and simulation parameters of systems varied. To apply
uncertainty in Young’s modulus, the probabilistic method with perturbation technique
is used. If the initial value of Young’s modulus is Ej0, the jth uncertain parameter can be
calculated using the following equation [50].

Ej = Ej0(1 + εj) (2)
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where εj is the jth uncertain parameter that should satisfy |εj| < 1. The data set is created by
selecting five rotational speeds, 15, 50, 75, 100, and 150 rad/s; Ej is 207,000 MPa; uncertain
parameters are then calculated for this parameter by applying Equation (2) until the 15th
order. The perturbation term is selected between 0.001 and 0.09 with a constant increment.
As a result, for each of the unbalanced and bowed systems, 70 samples are achieved.

Several key considerations support the selection of the five specified rotational speeds.
Firstly, opting for values below the lower limit of 15 rad/s would result in a rotation
that is excessively slow, making it difficult to clearly observe the noticeable effect of the
shaft bow. Hence, values below this limit are deliberately avoided. Conversely, the upper
limit of 150 rad/s has been carefully determined to effectively minimize the impact of
imbalance, ensuring that it remains well below the first critical torsional speed and does
not overshadow the bowing effects.

2.4. Signal Processing

Latent information can be extracted manually or automatically for classification pur-
poses by converting original signals into numerical features, whether in the time, frequency,
or time–frequency domain.

In some cases, extracted statistical features from raw data in the time domain, such as
standard deviation and peak values, can result in significant accuracy in the classification
algorithms although, on the assumption of signals in limited length and negligible differ-
ences of different classes, more sophisticated techniques such as wavelet transformation
should be applied either in the classification or feature extraction process [51,52].

The Gabor (analytic Morlet) wavelet is utilized to construct a network for a WTS
decomposition in MATLAB®. WTS produces representations that are impervious to in-
put signal translations without compromising class discriminability. The results of WTS
typically give a hierarchical representation of the input signal, with each layer capturing
different time–frequency features. The first layer records low-frequency information, and
the succeeding layers collect information with an increasing frequency. These representa-
tions can be used as the input feature matrices of a classifier or regressor algorithm. In this
technique, real-valued time series data should pass frequently through three steps consist-
ing of convolution, non-linearity, and averaging using wavelet decomposition, modulus,
and low-pass filter, respectively [52,53].

The number of filters per octave and the length of translation invariance are the
only variables that must be determined for feature extraction and signal processing using
WTS. Until the duration-based invariance scale (IS) is reached, the scattering framework
is translation-invariant. The representation of the signal and the features that are derived
from it both heavily depend on IS. To distinguish between patterns that are truly similar
and those that are similar only by chance, a low degree of IS means that the transform
can only detect patterns that are similar at a specific scale. Since the scaling filter is used
to apply the invariance in the framework, its time support is not greater than that of the
invariant. IS should be greater than the wavelet’s time support; IS has impacts on the center
frequencies’ spacing in the filter banks. This parameter can be calculated by inverting the
Fourier transform of the scaling function and centering it at 0 in time when the dynamical
variations of the signals are known; otherwise, it can be discovered through trial and
error [54,55].

In this study, the transverse vibration signal of each sample is recorded for 3 s with a
sampling frequency of 4 kHz. To avoid transient behavior, the initial 1.55 s is disregarded,
while the final 1.46 s is retained.

In accordance with the Nyquist–Shannon Sampling Theorem, the sampling frequency
(in this case, 4 kHz) should be at least twice the maximum frequency component present in
the signal (which is 23.98 Hz). Thus, the sampling frequency is chosen significantly higher
than necessary to avoid missing any frequency components within the signals.

Given that the objective of the present investigation is to analyze the stationary signal
of defective rotor systems, there are no specific restrictions on the time–wave range. Any
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section of the signals that represents stationary behavior can be appropriately incorporated
into the methodology employed in this study.

The WTS technique is utilized with an IS of 0.5 and the original data’s sampling
frequency to compute a coefficient matrix for each sample. The resulting matrix has a
dimension of 199 × 12, representing 199 time–frequency representations generated by the
WTS, each with 12 features. The feature matrix for the entire data set has a dimension of
140 × 199 × 12, where 140 is the total number of sample tests. These matrices will be used
in the classification process, where they will be fed into both an LSTM network and SVM
in subsequent stages.

2.5. Classification

Classification as a subfield of artificial intelligence can differentiate between two or
more categories based on the extracted features. Thanks to the state of the art in this field,
a machine learning (ML) network and its subfield, a deep learning (DL) network, can be
used to perform intelligent tasks, such as classification, regression, and anomaly detection.
The number of node layers—or depth—of ML and DL networks is the key distinction: In a
deep network, the number of hidden layers ought to be two or more [56].

Utilizing recurrent neural networks (RNNs) such as LSTM and convolutional neural
networks (CNNs), deep learning can be performed on sequence data and time series
data and visual objects (such as images). With memory cells and recurrent connections,
LSTM is a feedforward neural network (nodes do not form loops). As an optimized
neural network algorithm, LSTM manages long-term dependencies (with the LSTM layer),
explores gradients, and handles vanishing problems.

There are three various gates in an LSTM, i.e., input, output, and forget that have the
responsibility of conducting information throughout the network in such a way that the
network decides which information is kept and which to be discarded through the gates.
This property gives LSTMs further capability for remembering information rather than the
other types of RNNs.

An LSTM network normally consists of various layers, which include an input layer,
one or more LSTM layers, an output layer, and optionally, fully connected layers. The entry
point for data is the input layer while the LSTM layers are fundamental layers containing
the LSTM cells, which handle the input data and preserve the network’s internal state. The
output layer receives the output from the LSTM cells and generates a prediction of output.
Fully connected layers can be used for classification or regression tasks and map the output
of the LSTM layers to a specific output size or range. To enhance the network’s ability to
learn complex patterns, an activation layer can also be added to introduce non-linearity.
It should be noted, however, that the number of layers, LSTM cells, and fully connected
layers may need to be adjusted based on the specific task and data set to achieve optimal
performance [57,58].

One of the most popular supervised machine learning models, support vector machine
(SVM) as non-parametric model has demonstrated its effectiveness in both classification
(SVC) and regression (SVR) tasks. Along with its solidity against model errors, the tech-
nique’s fundamental advantage is its ability to handle a small number of features with
reasonable accuracy as well as explore non-linear dependencies in the data [59].

SVM can be performed in a data set where features of two or more classes are distin-
guishable in a linear also non-linear approach using the optimal hyperplane (the separation
plane). A kernel made up of a set of mathematical functions can be employed to modify the
input data when the condition indicators of classes are non-linear. There are several types
of kernels, such as Dirichlet, Sigmoid, radial basis function, polynomial, and Gaussian. The
polynomial kernel itself can be divided into cubic, quadratic, etc., based on its order [60,61].

This work utilizes LSTM as a supervised deep network and SVM as a supervised ma-
chine learning algorithm to categorize faulted systems into Class 1 and Class 2 (with indices
0 and 1 as the labels in the data set for the unbalanced and bowed rotors, respectively).
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These two classification models were chosen because of how well they each do at
determining the connection between the input data and the intended response. While
SVM can identify non-linear reliance, LSTM was developed to reveal short- and long-term
subordinations. However, it should be noted that the entire procedure was examined by
fewer number of observations, and the employed numbers are the lower required limit
for the current use. As a result, performing the models can reveal WTS’s competence in
extracting meaningful condition indicators regardless of what classification model is to be
applied and/or how many training materials are achievable.

The extracted coefficients of WTS should be inserted into the LSTM network in the
first mechanism, to memorize the time dependencies. Hyperparameters of the employed
LSTM network are listed in Table 2; stochastic gradient descent with momentum (SGDM)
optimizer is applied as the solver. The choice for the state activation function was the
hyperbolic tangent function (tanh).

Table 2. The LSTM network’s hyperparameters.

Option Value Option Value

Mini batch size 12 Learning rate 1 × 10−4

Maximum epoch 500 Validation frequency 30
Number of hidden layers 512 Shuffle Every epoch

In the second part, the explored WTS feature should be added to the SVM model by
using parameters outlined in Table 3. It is worthwhile to mention that the cross-validation
technique is used for the validation (protecting from overfitting). Similar to the WTS
procedure, both classification methods are applied in MATLAB®.

Table 3. The SVM network’s hyperparameters.

Option Value Option Value

Kernel type Quadratic Box constraint level 1
Kernel scale Auto Standardize data True

Multiclass method One-vs-One Cross-validation folds 5

It should be mentioned that these hyperparameters have been tuned by comparing
the training and testing accuracies in various scenarios utilizing a grid search optimization
procedure with the number of grid divisions equal to 20. Worthwhile to note that these
hyperparameters were optimized based on the performance of the network trained by
extracted health indicators utilizing WTS.

2.6. Evaluating Metrics

Valid metrics assessment should be implemented for managing the performance of
artificial intelligence models, whether controlled manually by a user or automatically (in
problems governed by optimization algorithms). Accuracy, precision, recall, F1-Score, and
root mean squared error can be mentioned as well-known examples.

Before delving into the analysis of these metrics and presenting the corresponding
equations, it is crucial to establish a clear understanding of certain fundamental concepts.
Let us consider a scenario where the objective entails the classification of shapes into two
distinct categories: “circle” and “cube”.

The term “true positive” (TP) refers to the count of instances that belong to the positive
class (i.e., circles) and have been accurately predicted as such. Conversely, the designation
“true negative” (TN) encompasses the instances belonging to the negative class (i.e., cubes)
that have been correctly identified as such in the predictions.

Conversely, “false positive” (FP) signifies the instances that pertain to the positive class
(circles) but have been erroneously predicted as belonging to the negative class (cubes). On
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the other hand, “false negative” (FN) denotes the instances that belong to the negative class
(cubes) but have been incorrectly identified as members of the positive class (circles).

Accuracy can be defined as the ratio of the correctly classified samples to the overall
number of instances and normally is stated as a percentage; precision, on the other hand,
measures the percentage of correctly predicted positive instances among all positive in-
stances that were predicted. It focuses on the reliability of optimistic forecasts and evaluates
how well the model does at reducing false positives. The proportion of correctly predicted
positive instances among all actual positive instances is measured by recall (also known as
sensitivity or true positive rate). It is helpful in applications where false negatives should
be minimized because it concentrates on correctly identifying all positive instances.

The harmonic means of recall and precision is known as the F1-Score. It offers a fair
evaluation of both recall and precision, giving each metric the same weight [62].

Based on the values of TP, TN, FP, and FN, the following formulas provide a mathe-
matical definition for the stated metrics.

Accuracy = (TP + TN)/(TP + TN + FP + FN) (3)

Precision = TP/(TP + FP) (4)

Recall = TP/(TP + FN) (5)

F1-Score = 2 × (Precision × Recall)/(Precision + Recall) (6)

The mentioned metrics will be utilized further in the Results section to represent the
designed classification models along with the feature extraction procedure.

3. Results and Discussion

The training material is drawn randomly from 80% of the whole data set; the testing
material is taken from the remaining 20%. In both the training and testing phases, each class
has an equal share, e.g., 56 and 14, respectively. As a means of comparing the two proposed
classification approaches fairly, the training and testing samples from the first algorithm,
that is, the LSTM, are saved to be applied in the second method as well.

Initially, the extracted features from the WTS were fed into the designed classification
models. In Figure 6, the training progression is plotted along with the accuracy and loss for
each epoch in the LSTM network. The training process was run on a single GPU (NVIDIA
Quadro P2000) of a workstation and took 75 s. From Figure 6, it can be understood that
the training accuracy increased gradually parallel with a sensible reduction in loss after
each epoch.
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The confusion matrices in the training and testing steps are also represented by the
graphs in Figure 7. Only 1 sample out of the 112 that were assigned to the training process
is incorrectly classified in the validation, despite the testing accuracy being 100%.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 14 of 20 
 

 
Figure 6. Training process of the LSTM. 

 
Figure 7. Confusion matrix using WTS and LSTM: (a) training step and (b) testing step. 

Figure 8 presents the confusion matrices of the training and testing phases when the 
SVM model is applied as the classifier for the explored features by the WTS. The training 
accuracy in the method was 100%, whereas, in the testing phase, 1 sample among the 28 
samples, e.g., 3.6%, is classified mistakenly. Even though there has been a drop in perfor-
mance between the training and testing phases, a 3.6% drop in performance does not nec-
essarily mean that the network is overfitted. When a network becomes excessively cus-
tomized to the training data and then performs horribly on unobserved test data, this is 
known as overfitting. The problem’s inherent complexity and variations in the test data, 
such as outliers, can both result in a 3.6% reduction in performance. 

The whole procedure of executing WTS and SVM on the same workstation in a single 
GPU took only 42 s. 

 
Figure 8. Confusion matrix using WTS and SVM: (a) training step and (b) testing step. 

Figure 7. Confusion matrix using WTS and LSTM: (a) training step and (b) testing step.

Figure 8 presents the confusion matrices of the training and testing phases when the
SVM model is applied as the classifier for the explored features by the WTS. The training
accuracy in the method was 100%, whereas, in the testing phase, 1 sample among the
28 samples, e.g., 3.6%, is classified mistakenly. Even though there has been a drop in
performance between the training and testing phases, a 3.6% drop in performance does
not necessarily mean that the network is overfitted. When a network becomes excessively
customized to the training data and then performs horribly on unobserved test data, this is
known as overfitting. The problem’s inherent complexity and variations in the test data,
such as outliers, can both result in a 3.6% reduction in performance.
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The whole procedure of executing WTS and SVM on the same workstation in a single
GPU took only 42 s.

Now that the previous two classification algorithms have been trained and tested
using features extracted by WTS, the same procedures should be tested with raw signals.
There are two possible methods for using LSTM for time series signals: The first is to feed
the signals directly into the network, while the second is to apply a feature extraction step
before the LSTM network; in this work, the first approach is followed.

The same parameters listed in Table 2 were used to insert the time series data into the
LSTM network directly, and both the training and testing phases produced an accuracy of
50% (the confusion matrices are not plotted); indeed, the network assigned Class 1 to every
system that had a fault.

Performing hyperparameters tunning via a grid division tantamount to 20, the accu-
racy in both steps—training and testing—improved by 62.5% and 64.3%, respectively. On
this condition, the optimized learning rate, hidden layers, mini-batch size, and maximum
epoch were found to be 0.2, 4000, 9, and 1000, respectively. However, the outcomes are still
far from the previously attained feature extraction and trained LSTM model.
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Figure 9 represents the training and testing stages’ performance of the adjusted LSTM
network in the form of confusion matrices.
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The effectiveness of LSTM models in analyzing raw signals was investigated in pre-
vious sections. The results, however, demonstrate that the raw signals are not highly
instructive. As a result, in this section, a different feature extraction strategy is aimed to
be examined. The objective is to assess this new scenario’s effectiveness before putting
the created SVM model to use for classification. To this end, 10 features from each sample
test are extracted, including kurtosis, skewness, root mean square, signal-to-noise ratio,
total harmonic distortion, variance, standard deviation, spurious free dynamic range, band
power, and Shannon entropy. It should be noted that the training and testing data sets are
selected the same as the previous sections.

The training and testing phases’ accuracies—83.9% and 89.3%, respectively—increased
significantly when the SVM was applied to the extracted features from the time series data
in comparison to the earlier technique, which involved using LSTM on the raw data. It is
important to acknowledge that the hyperparameters are chosen similarly to the previous
SVM network. Confusion matrices of training and testing steps on this condition are plotted
in Figure 10.
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To have a clearer assessment, other defined metrics, i.e., recall, precision, and F1
score, in both input scenarios, i.e., raw signal and engineered features, are calculated from
formulas 4 to 6 for the training and testing steps and presented for the LSTM and SVM
models in Tables 4 and 5, respectively.

Comparing the statistics of Tables 4 and 5, it can be understood that a signal processing
(feature extraction) step to how extend can increase the performance of the classification
model. Indeed, the applied WTS increases the dimensionality of raw signals to provide
more ingredients for training the model. Additionally, research shows that using slightly
more straightforward feature engineering methods and increasing the number of observa-
tions under the SVM assumption probably can also lead to acceptable results.
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Table 4. Metrics for LSTM classification model.

Metric

Phase

Training Testing

Input Input

WTS Raw Signal WTS Raw Signal

TP 55 38 14 10
TN 56 32 14 8
FP 0 24 0 6
FN 1 18 0 4

Accuracy (%) 99.11 62.5 100 64.29
Precision (%) 100 61.29 100 62.5

Recall (%) 98.21 67.86 100 71.43
F1-Score (%) 99.09 64.47 100 66.67

Table 5. Metrics for SVM classification model.

Metric

Phase

Training Testing

Input Input

WTS Second Scenario WTS Second Scenario

TP 56 46 14 13
TN 56 48 13 12
FP 0 8 1 2
FN 0 10 0 1

Accuracy (%) 100 83.93 96.43 82.29
Precision (%) 100 85.19 93.33 86.67

Recall (%) 100 82.14 100 92.86
F1-Score (%) 100 83.62 96.55 89.66

4. Conclusions

This article examined the performance of combinations of WTS with LSTM and SVM
employed in the classification of unbalanced and bowed rotor systems. Additionally,
changing the mass center and central axis of the shaft, respectively, allowed for the initial
modeling of unbalanced and bowed coupled-rotor-disk systems using the finite element
method in ABAQUS/CAE. Both methodologies present a novelty for structural health
monitoring (SHM).

The results of the modeled systems were compared in four simulation statuses to-
gether, i.e., the same physical properties operated in various rotational paces as well as
the tantamount magnitude of unbalancing and initial bow. By applying concepts of un-
certainties in model parameters, 70 different physical and operational circumstances were
simulated for each of the rotating systems. Wavelet time scattering was used to perform
the signal processing stage by extracting the scattered wavelet coefficients. Using a long
short-term memory network as a deep learning algorithm for time series data, a hit rate of
100% was obtained running a maximum of 500 epochs in the testing phase. In the training
step, the achieved accuracy was noticeable too, e.g., 99.1%. Training the LSTM network
with the raw time series data, on the contrary, showed a faint performance—50% in both the
training and testing stages although by adjusting the hyperparameters of the network, the
accuracies in the training and testing phases developed to 62.5% and 64.3%, respectively.

While considering SVM along with WTS, the training accuracy in the method was
100%, whereas, in the testing phase, 1 sample among the 28 samples (3.6%) was classified
wrongly. Considering SVM without WTS, the hit rate was 83.9% and 89.3%, respectively.
The results of feature extraction in the time domain and the application of SVM also
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demonstrated the possibility of classifying such flawed systems in the case of setting
hyperparameters and/or extracting more robust features.

Ultimately, although the limited number of samples in a data set (140 overall), the
methods employed in this paper showed high accuracy in classifying unbalanced and
bowed rotor systems; therefore, rendering this approach a promising and useful contribu-
tion to the SHM area. Future work will focus on modeling rotor systems suffering from
other prevalent defects, such as cracks, bearing faults, and misalignment, and applying the
proposed benchmark in the case of multi-damaged systems. Furthermore, the applicability
of the proposed fault classification algorithm can be validated utilizing experimental data
whether from test rigs or real operating machines installed in the industry.
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