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A B S T R A C T

Crop canopy water content (CWC) is an essential indicator of the crop’s physiological state. While a diverse range
of vegetation indices have earlier been developed for the remote estimation of CWC, most of them are defined for
specific crop types and areas, making them less universally applicable. We propose two new water content
indices applicable to a wide variety of crop types, allowing to derive CWC maps at a large spatial scale. These
indices were developed based on PROSAIL simulations and then optimized with an experimental dataset
(SPARC03; Barrax, Spain). This dataset consists of water content and other biophysical variables for five
common crop types (lucerne, corn, potato, sugar beet and onion) and corresponding top-of-canopy (TOC) re-
flectance spectra acquired by the hyperspectral HyMap airborne sensor. First, commonly used water content
index formulations were analysed and validated for the variety of crops, overall resulting in a R2 lower than 0.6.
In an attempt to move towards more generically applicable indices, the two new CWC indices exploit the
principal water absorption features in the near-infrared by using multiple bands sensitive to water content. We
propose the Water Absorption Area Index (WAAI) as the difference between the area under the null water
content of TOC reflectance (reference line) simulated with PROSAIL and the area under measured TOC re-
flectance between 911 and 1271 nm. We also propose the Depth Water Index (DWI), a simplified four-band index
based on the spectral depths produced by the water absorption at 970 and 1200 nm and two reference bands.
Both the WAAI and DWI outperform established indices in predicting CWC when applied to heterogeneous
croplands, with a R2 of 0.8 and 0.7, respectively, using an exponential fit. However, these indices did not
perform well for species with a low fractional vegetation cover (< 30%). HyMap CWC maps calculated with both
indices are shown for the Barrax region. The results confirmed the potential of using generically applicable
indices for calculating CWC over a great variety of crops.

1. Introduction

Water is the most abundant molecule in leaves and its availability in
leaf tissues is essential for cell enlargement, and, hence, plant growth.
The knowledge of leaf water content (LWC) is important for assessing
the physiological state, especially for detecting drought stress of the
plant. Shortage in water content can produce not only environmental
impacts such as an increase in fire risk, but moreover social and eco-
nomic negative effects caused by food production decrease (Carlson and
Burgan, 2003; Chuvieco et al., 2004; Riaño et al., 2005; Stimson et al.,
2005). In agriculture fields, crop water content provides vital in-
formation for making correct decisions regarding irrigation planning
(Jackson et al., 2004) and is used for productivity estimation (Peñuelas

et al., 1993; Zhang et al., 2010). What is more, the success of sustain-
able agriculture, mainly in arid and semi-arid regions of the world,
depends entirely on water availability (Alderfasi and Nielsen, 2001).
Because the quantity of water in leaf tissues is a critical factor in plant
survival (Kumar, 2007), assessing water stress symptoms accurately
using spectral reflectance measurements has been an important goal for
remote sensing research during the past decades. Remote sensing can
play a unique and essential role because of its ability to acquire synoptic
information at different time and space scales (Jackson, 1986; Oppelt
and Mauser, 2004; Peñuelas et al., 1993).

Vegetation biophysical variables, such as chlorophyll (Chl), leaf
area index (LAI) and water content, are considered to be the most im-
portant indicators of vegetation health, growth and productivity
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(Gitelson et al., 2003). At leaf level, LWC is usually calculated by the
weight difference of freshly harvested leaves and their weight after a
drying process, i.e. a time-consuming procedure, especially for large-
scale study areas. At this large spatial scale, canopy water content
(CWC), defined as the amount of water in the vegetation per surface
unit (g/m2 ground surface), is a physiological variable of high interest
which can be estimated multiplying the leaf water content (LWC, g/cm2

of leaf) with the LAI (m2 leaf per m2 surface or dimensionless) to obtain
CWC. Therefore, alternative non-destructive methods have been de-
veloped by means of linking water content with optical remote sensing
data (Pu et al., 2003). The rationale for doing so is as follows. Water
absorbs light energy along the entire spectrum, but in the near-infrared
(NIR, 750–1300 nm), and short-wave infrared (SWIR, 1300–2500 nm)
regions, water produces maximum absorptions features concretely at
970, 1200, 1450, 1940 and 2500 nm (Carter, 1991; Knipling, 1970;
Tucker, 1980). Thus, with the understanding of the water absorption
spectra, spectroradiometers provide the opportunity to quantify CWC
through non-destructive methods (Inoue et al., 1993).

At the same time, an important process to consider in the study of
CWC is the atmospheric correction because atmospheric water vapour
(WV) absorption effects in the air column affect the reflected radiance
in the 900–1000 nm region measured at the remote sensor, at the air-
craft or satellite platform (Datt, 1999; Gao and Goetz, 1990; Goetz and
Boardman, 1995). The atmospheric correction process aims to retrieve
top-of-canopy (TOC) reflectance by removing the atmospheric effects.
This correction is one of the critical steps to obtain good information
related to the surface properties. Thus, the overall accuracy of CWC
retrieval will strongly depend on the accuracy achieved by the atmo-
spheric correction process (Sabater et al., 2014; Vicent et al., 2015,
2017).

Statistical methods are most widely used to identify sensitive wa-
velength bands from atmospherically corrected TOC reflectance data
for the development of simple vegetation indices (VIs), which relate the
biophysical variable of interest to an arithmetic formulation of bands
(Verrelst et al., 2015a). These indices are defined in a way that enhance
the spectral characteristics associated with a given vegetation property
(Glenn et al., 2008). The potential of VIs for the biophysical variables
determination has been widely demonstrated in numerous studies: they
are intuitive, simple and fast (Broge and Leblanc, 2000; Colombo et al.,
2003; Gitelson et al., 2005). Over the last several decades, some authors
have proposed indices for LWC or CWC estimation, generally used for
monitoring different aspects of vegetation health, such as fire risk as-
sessment (Peñuelas et al., 1997) or disease monitoring (Pu et al., 2003).
These indices typically use an insensitive band to water absorption
(e.g., 820 and 900 nm) and a sensitive band to change in this variable
(e.g., 970 and 1600 nm). Some of them have been defined in order to
provide LWC (e.g., Datt, 1999; Hunt et al., 1987; Peñuelas et al., 1993;
Pu et al., 2003). These authors have proposed LWC indices for the study
of a specific plant species. For example, Datt (1999) proposed two
normalized indices to determinate water content of various species of
Eucalyptus, and Pu et al. (2003) established two ratio indices in order
to calculate LWC of oak leaves. On the other hand, several authors
established indices to calculate CWC (e.g., Hardisky et al., 1983; Hunt
and Rock, 1989; Rollin and Milton, 1998; Wang and Qu, 2007). Some of
these CWC indices are derived from indices developed at the leaf scale,
such as the Water Index proposed by Peñuelas et al. (1997) being a
modification of the Water Band Index (Peñuelas et al., 1993) used for
calculating LWC.

Despite the positive aspects of VIs, their major weakness is the lack
of a generally applicable index for multiple vegetation types. A uni-
versal relationship between a biophysical variable and a spectral sig-
nature cannot be expected since the reflected signal depends on com-
plex interrelationships between internal and external physical factors,
which can involve significant variation in time, space, and between one
type of crop and another (Colombo et al., 2003). The best way to find
efficient and robust indices is to use large and diverse field datasets,

with a large variety in canopy structures (Glenn et al., 2008; le Maire
et al., 2008). This applies as well for different crop development stages,
representing instraspecies variability in canopy structure and biophy-
sical variables. Moreover, VIs have been traditionally developed for
sensors configured with only a few spectral bands. Several studies have
confirmed that applying indices composed of a few bands to hyper-
spectral data is suboptimal and not recommended (Kira et al., 2016;
Verrelst et al., 2015b). It is more optimal to use a larger number of
bands, thereby always taking into account multiple sensitive bands
along the spectral range (Verrelst et al., 2016). Accordingly, several
authors have shown that exploiting a contiguous reflectance curve in-
stead of using a few single bands sensitive to biophysical variables tend
to be more promising to obtain good parameter retrieval results
(Delegido et al., 2010; Malenovský et al., 2006; Mutanga et al., 2005;
Oppelt and Mauser, 2004). This thus suggests that there is a need for
the development of VIs not just based on a few bands as is commonly
done, but rather based on multiple bands along the spectral range.

When aiming to develop generically applicable CWC indices, an
ideal tool for studying general relationships between biophysical vari-
ables and VIs are Radiative Transfer Models (RTMs). RTMs are physi-
cally-based models that describe the absorption and scattering of light
throughout the leaf, canopy and atmosphere. In several studies, RTMs
have been used to develop optimized indices sensitive to water content
at leaf and canopy scales (Clevers et al., 2010; Haboudane et al., 2002;
Malenovský et al., 2006). One of the most popular leaf RTMs is PRO-
SPECT (Jacquemoud et al., 1996; Jacquemoud and Baret, 1990), which
considers the leaf as a succession of absorption layers. And one of the
most popular canopy RTMs is SAIL (Verhoef, 1984), which describes
the canopy as a homogenous and horizontal turbid-medium. The cou-
pling of PROSPECT and SAIL, also known as PROSAIL (Jacquemoud
et al., 2009), has been widely used to study canopy directional re-
flectance and their relationships with biophysical variables, including
CWC (Clevers et al., 2010).

The main goal of this study is to develop generically applicable CWC
indices, which are capable of providing CWC in heterogeneous crop
types areas, based on remote sensing measurements of the leaf spectral
behaviour when varying water content. For this purpose, PROSAIL si-
mulations and a large field dataset are used to tackle the following two
objectives. The first objective is to identify the spectral bands that
present the highest correlation (R2) for the estimation of CWC, tested
with commonly used VIs by the scientific community. Based on this
analysis and on a subsequent spectral sensitivity study of the multiple
crop types in response to changes in CWC, a second objective is to
develop and validate two new CWC indices, i.e. respectively applicable
to data with high and low spectral resolution. The performances of the
newly developed indices and established VIs sensitive to CWC are
evaluated and CWC maps are generated.

2. Materials and methods

2.1. SPARC03 experimental dataset

The used dataset is based on the Spectra Barrax Campaign
(SPARC03) (Delegido et al., 2013). This campaign took place between
12th and 14th of July (2003) in Barrax, La Mancha, Spain (coordinates
39°3′ N, 2°6′ W, 700m a.s.l., Datum ETRS89). The SPARC03 dataset has
been earlier used in various studies because it covers multiple crop
types, growth phases, canopy geometries and soil conditions. Specifi-
cally, field data of lucerne (Medicago sativa), corn (Zea mays), potato
(Solanum tuberosum), sugar beet (Beta vulgaris), garlic (Allium sativum)
and onion (Allium cepa) were collected. Table 1 describes the biophy-
sical and structural variables for each crop, indicating low structural
and biophysical differences between the different elementary samplings
units (ESUs) for each crop. The considered crops were in different de-
velopment stage at the moment of flight overpass. Lucerne was in the
pre-bloom phase, bud stage, in addition to being sparse with ray grass.
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Corn crop was beginning to produce ears. Potato and sugar beet were
dense and well developed, ready to be harvested. Garlic crop was in a
maturity stage, but this crop type was in poor state and very sparse.
And, finally, onion was in a maturity stage, with mature bulbs.

Regarding the variables used, chlorophyll content (Chl), fraction of
green vegetation cover (FVC), effective LAI (green LAI) and leaf water
content (LWC) were measured for a total of 100 ESUs of 20× 20m.
Each ESU was assigned a Chl value, measured using a CCM-200
Chlorophyll Content Meter and calibrated through laboratory analysis
of specific samples (Gandia et al., 2004); a FVC value, which was es-
timated through hemispherical photographs; a LAI value with LicorLAI-
2000 digital analyser (Welles and Norman, 1991), which uses a fish-eye
lens with an hemispheric field view (± 148°) to calculate the inter-
ception of blue light (320–490 nm); and a LWC value, obtained through
a drying and weighing method, collecting three leaves at the top level,
due to this is the part of the plant observed by the sensor. For CWC
estimation, leaf area was obtained by digital photographs of each leaf
over squared grid paper. From the two masses and the known sampled
area, LWC was calculated. LWC multiplied with LAI values (m2 leaf/m2

surface) provided CWC in g/m2 of ground surface.
During the campaign (12th–14th of July), airborne hyperspectral

HyMap flight-lines were acquired for the study site, obtaining the TOC
reflectance value for each of the ESUs. HyMap is a hyperspectral sensor
that spans the 430–2490 nm wavelength range with 125 usable bands.
Spectral bandwidth varied between 11 and 21 nm and the pixel size at
overpass was 5m. The ESU TOC reflectance was computed as the mean
value of the central pixel and all adjacent pixels. The images obtained
were geometrically corrected (Alonso and Moreno, 2005) and then at-
mospherically corrected by the ATCOR4-r (Atmospheric and Topo-
graphic Correction – rugged terrain) method at the German Aerospace
Center (DLR), according to Guanter et al. (2005).

The total field and airborne dataset consisted of 100 CWC values
and their corresponding radiometric hyperspectral information, cov-
ering multiple crop types, i.e., 18 lucernes, 14 corns, 12 potatoes, 22
sugar beets, 14 garlics, 10 onions and 10 bare soils, in which LAI and
CWC values were zero.

2.2. Analysis of generic vegetation indices

The systematic analysis of the predicted power of VIs was mainly
conducted by using the Automated Radiative Transfer Models Operator
(ARTMO) scientific software package (Verrelst et al., 2012). ARTMO
consists of RTMs (e.g., PROSAIL) and several retrieval toolboxes that
enable the development and optimization of retrieval algorithms to
convert optical images into maps of vegetation properties. The spectral
indices assessment toolbox (Rivera et al., 2014) was used to calibrate
and validate established and generic indices by providing all the pos-
sible band combinations in the NIR region (750–1300 nm).

Based on established CWC indices in the literature, a series of VIs
was introduced into the toolbox together with the multi-crop TOC re-
flectance data. The indices introduced in ARTMO were a series of
generic indices, i.e. formulas in which the specific bands to be used are
not defined, whose formulation was based on commonly used CWC
indices (Table 2, in shading), among other VIs typically used to estimate

various biophysical variables (mainly Chl).
The first analysis was to test with different types of fitting functions

(linear, exponential and polynomial) the performance of commonly
used CWC indices, with their specific bands as defined by the original
authors, given the SPARC03 field TOC reflectance dataset acquired over
a variety of crops.

Secondly, for each generic CWC index introduced (Table 2), all band
combinations were analysed, resulting in a best performing combina-
tion of bands. Only the NIR region was evaluated because of its high
sensitivity to mainly liquid water, whereas the signal from the SWIR
region is additionally heavily influenced by cellulose (Delegido et al.,
2015). A cross-validation method was used to ensure more robust re-
sults. To cross-validate each index with the SPARC03 dataset, the k-fold
method was used (Snee, 1977; Yang and Huang, 2014). This method
divides the available data into k subsets. From these k sub-datasets, k-1
sub-datasets are selected as a calibration dataset and a single k sub-
dataset is used for model validation. The cross-validation process is
then repeated k times, with each of the k sub-datasets used as a vali-
dation dataset. Thus, all data are used for both calibration and vali-
dation. Here, we used a 10-fold (k=10) cross-validation procedure
(Pérez-Planells et al., 2015; Verrelst et al., 2015b).

2.3. CWC spectral sensitivity analysis for real and simulated data

As mentioned above, water produces maximum absorptions features
mainly at 970, 1200, 1450, 1940 and 2500 nm (Carter, 1991; Knipling,
1970; Tucker, 1980). These maximum absorptions can be observed for
several crop types of the SPARC03 campaign with contrasting CWC
(Fig. 1).

In Fig. 1 the maximum CWC-related absorptions in the NIR region,
i.e. around 970 and 1200 nm, can be inspected. In these points, the
depth of the spectrum (difference between the absorption minimums,
850 nm and 1080 nm, and the NIR shoulder) is maximized as the CWC
increases. For this reason, the sugar beet spectrum (CWC=2200 g/m2)
has the largest depth while the lucerne spectrum (CWC=359 g/m2)
the smallest.

These water absorption maxima can also be observed when simu-
lating vegetation reflectance with PROSAIL. In Fig. 2, two PROSAIL
simulations are plotted where CWC is expressed as the water sheet
thickness of the leaf (Cw, in cm). One spectrum (solid line) corresponds
with a high CWC (Cw=0.05 cm) and the other (dashed line) with a
low CWC (Cw=0.025 cm), both with LAI= 3. In addition, the atmo-
spheric WV transmittance simulated with the atmospheric RTM MOD-
TRAN (Berk et al., 2006) is shown (blue lines in Fig. 2).

Next, a spectral sensitivity analysis for varying CWC was conducted
to inspect the spectral behaviour when water content is approaching
zero, while varying LAI. In Fig. 3, TOC reflectance spectra were mod-
elled for multiple LAI values ranging between 0.5 and 6 (in m2 leaf/m2

surface or without units) and three representative values of Cw: the
minimum (0 cm), intermediate (0.025 cm) and maximum (0.05 cm) of
the variable setting. The other model variables, maintained default
values (Chl= 30 μg/cm2; Dry matter= 0.012 g/cm2).

Fig. 3 shows that for the simulations when Cw is zero, the TOC
reflectance is characterized by a straight line without absorptions

Table 1
Mean values and standard deviation of the obtained variables for each crop species used in the SPARC03 campaign.

Crop species N° of ESUs Growth phase Chl (μg/cm2) FVC (%) LAI (m2/m2) LWC (g/m2 leaf) CWC (g/m2 surface)

Lucerne 18 Bud stage 48.51 ± 0.98 60 ± 17 2.71 ± 0.75 137 ± 8 368 ± 102
Corn 14 Swelling ear 51.02 ± 0.74 65 ± 6 3.4 ± 0.42 180 ± 10 612 ± 75
Potato 12 Tuber bulking 35.51 ± 0.59 96 ± 1 5.29 ± 0.37 223 ± 15 1165 ± 90
Sugar beet 22 Maturity 44.09 ± 1.72 94 ± 1 4.05 ± 0.51 448 ± 11 1805 ± 225
Garlic 14 Maturity 14.51 ± 1.94 12 ± 3 0.58 ± 0.11 595 ± 15 344 ± 60
Onion 10 Maturity 20.38 ± 1.47 64 ± 1 1.96 ± 0.46 681 ± 14 1334 ± 316

During the campaign (12th–14th of July), airborne hyperspectral HyMap flight-lines were.
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features between 800 nm and 1200 nm approximately. The slope and
the magnitude of this reflectance line varies only as a function of LAI.
This water absorption-free reference line between 800 and 1200 nm
was subsequently used as a starting point to define a new index.

2.4. Development of the Water Absorption Area Index

Here, the so-called Water Absorption Area Index (WAAI), is pro-
posed with the purpose of being generally applicable to a diversity of

Table 2
Generic vegetation indices introduced in ARTMO, where indices based on commonly CWC indices are shown shaded. Rλ represents reflectance at the wavelength λ (nm). The generic
name of each index has been established in this study. Dash and Curran (2004), Gao (1996), Gitelson et al. (2002), Gower (1980), Hunt et al. (2013), Vincini et al. (2008), Zarco-Tejada
and Ustin (2001).

Fig. 1. Lucerne, corn, sugar beet and potato TOC spectra,
with a bare soil spectrum of the field campaign SPARC03.
CWC is expressed in g water/m2 surface.
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crop types. WAAI is based not only on the reflectance of a few bands,
but instead on a wide spectral range with the purpose of minimizing
estimation errors. The WAAI is defined as the difference between the
area under the reference line (Cw=0 cm) and the area under the curve,
between the integration limits 800 nm and 1200 nm. The specific area
covered by this index is shown in Fig. 4, with Cw the leaf water
thickness in cm.

The first step to calculate WAAI, therefore, was to obtain the re-
ference line. Fig. 5 shows R1200 as a function of R800 with Cw=0 cm of
PROSAIL simulations of varying LAI, in which a clearly linear relation
(R2=1) is observed.

The linear relationship contained in Fig. 5 together with the area
under the line formed between 800 nm and 1200 nm (Eq. (1)) and the
integral between these same limits (Eq. (2)) were required for defining
the area index:

=
+

−
R R

Area under  the  reference line (Trapezium area)

2
(1200 800)800 1200

(1)

∫= R λ dλArea  under  curve ( )
800

1200

(2)

where Rλ represents reflectance at the wavelength λ.
Thus, substituting the linear relationship (R1200=

0.857*R800+0.097) into Eq. (1) and subtracting (2) from Eq. (1), the
Water Absorption Area Index is defined as:

∫= + −WAAI R R λ dλ200(1.857 0.097) ( )800
800

1200

(3)

After the WAAI calculation, the optimal integration limits were
determined. To do so, multiple spectral analyses were conducted on the
SPARC03 dataset, i.e. by varying both integration limits within the NIR
region (750–1300 nm) to observe the index response and to determine
the spectral range that leads to the best correlation for estimating water
content.

2.5. Development of the Depth Water Index

The WAAI is an area index essentially developed for high spectral
resolution data, i.e. coming from hyperspectral imaging spectrometers.
However, since hardly any of the currently operational satellite sensors
are equipped with such a high spectral resolution the so-called Depth
Water Index (DWI) is proposed as a possible guide for the configuration
of future optical superspectral sensors. The DWI makes use of only four
specific bands, providing the sum of the depth at 970 nm (d1) and at
1200 nm (d2), i.e., the difference between the corresponding reflectance
at the baseline (yi) and the TOC reflectance at 970 nm for d1 and
1200 nm for d2 (Fig. 6). The baseline yi is formed from the TOC re-
flectance points at 850 nm and 1080 nm.

Therefore, the Depth Water Index presents the following general
form:

= − + −DWI y R y R( ) ( )1 970 2 1200 (4)

Fig. 2. Vegetation reflectance spectrum with more (solid
line) and less (dashed line) CWC expressed as leaf water sheet
thickness (Cw), LAI= 3, simulated with PROSAIL, together
with atmospheric water vapour transmittance, simulated
with MODTRAN (blue). (For interpretation of the references
to colour in this figure legend, the reader is referred to the
web version of this article.)

Fig. 3. TOC reflectance modelled by PROSAIL
varying LAI and water content (Cw) variables.
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Specifically, the baseline has the following form, from which yi can
be calculated for xi= 970 and 1200 nm:

=
−

+
−

−
y R R x R R

230
*850 *1080

230i i
1080 850 1080 850

(5)

Consequently, substituting Eq. (5) into (4), the Depth Water Index
equation is obtained:

= − − −DWI R R R R2.044 0.0441080 850 970 1200 (6)

Lastly, to analyse the statistical response of the WAAI and DWI, the
coefficient of determination, R2 (ranging from 0 to 1), is used.

3. Results

3.1. Performance of established CWC indices for a multi-crop dataset

The above-described established indices as given in Table 2 were
evaluated with the multi-crop SPARC03 dataset. To start with, the es-
tablished CWC indices have been tested with their default bands. The
R2 obtained with different types of fitting functions ranged between
0.114–0.598 when applying the respective indices on the multi-crop
dataset (Table 3). Hence, the accuracies of each index obtained with
linear, exponential and polynomial fitting were rather low. All three
fitting functions performed similar, with the linear fitting performing
slightly better than the exponential and polynomial fitting. Therefore,
only linear fitting is used in further analysis.

In order to be more generic, the following step involved system-
atically calculating all bands combinations. Table 4 lists the best sta-
tistical results obtained for each of the generic indices and the corre-
sponding bands with a linear fit.

Comparing to the afore-tested established indices, these results al-
ready show a more promising correlation with a R2 ranging between
0.811 and 0.908. However, questions arose when evaluating the ob-
tained wavelengths of the resulting best-performing bands from a
physical point of view. In most cases, the selected bands were physically
not only influenced by CWC, but also by other leaf constituents such as
Chl pigments (e.g., 738 nm, 753 nm, etc.), while other bands were lo-
cated in the NIR (e.g., 1272 nm, 927 nm, 943 nm) but not closely

Fig. 4. TOC reflectance obtained with PROSAIL with different water
content (Cw: leaf water thickness in cm), at a fixed LAI=4.5, the
shaded area corresponds with the area calculated by the WAAI.

Fig. 5. Relationship between R800 and R1200 in vegetation spectra modelled, with
Cw=0 cm for LAI ranging from 0 to 6.

Fig. 6. Graphic representation of the DWI, which is the sum of the depths at 970 and at
1200 nm of the TOC reflectance, with respect to the baseline formed between the peaks at
850 and 1080 nm. The two spectra correspond to different CWC value (blue spectrum
459 g/m2, orange spectrum 359 g/m2). (For interpretation of the references to colour in
this figure legend, the reader is referred to the web version of this article.)

Table 3
R2 obtained with a linear, exponential and polynomial fitting for each index with their
default bands.

Index Formula R2

(linear
fitting)

R2

(exponential
fitting)

R2

(polynomial
fitting)

RGI R1600
R820

0.485 0.478 0.473

R900
R970

0.576 0.565 0.542

R860
R1240

0.598 0.592 0.584

NDWGI −

+

R820 R1650
R820 R1650

0.556 0.551 0.564

−

+

R860 R1240
R860 R1240

0.597 0.585 0.579

RDGI ×
− 100minR1116 (R1120, R1150)

R1116
0.525 0.521 0.491

NMDGI − −

+ −

R RR860 ( 1640 2130)
R860 (R1640 R2130)

0.124 0.119 0.114
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located at the depth features 970 and 1200 nm. Consequently, the de-
velopment of alternative multi-band indices with a stronger physically
meaningful basis is needed.

3.2. Fitting and validation of the Water Absorption Area Index

As outlined in Eq. (3), the WAAI was defined as an integration index
between the limits of 800 and 1200 nm. After multiple spectral ana-
lyses, the best regression result was achieved with the integration limits
set at 911 nm and 1271 nm (R2 of 0.808, RMSE=290 g/m2), using Eq.
(7), with an exponential fitting (Eq. (8)). This may be due to the fact
that at 911 nm the first absorption peak begins and at 1271 nm the
water content maximum influence ends. Fig. 7 shows the area index
response between these values.

∫= + −WAAI R R λ dλ180(1.812 0.271) ( )optimized 911
911

1271

(7)

=CWC g m exp( / ) 42.98 WAAI2 0.061 optimized (8)

This optimized WAAI led to a good correlation and at the same time
is physically sound since the crop types with low CWC (garlic and lu-
cerne) have minimum index values, and crop types with high CWC
(sugar beet and potato) show maximum WAAI values. It should be
mentioned that garlic usually has a high LWC, but because it also has
low LAI (lower than 1), the derived CWC is consequently also low.
Moreover, garlic has a scarce and dispersed coverage which translates
into a low FVC. In the case of corn, the crop was planted late on the
season and the plants were not fully grown at the time of measure-
ments, it was in the swelling ear stage. Also, lucerne has a low CWC
because it was in a bud stage and sparse with ray grass. On the other
hand, potato and sugar beet crops typically have high CWC because
these plants are usually leafy.

3.3. Fitting and validation of the Depth Water Index

The DWI, a four-bands index (Eq. (6)), was defined based on the
hyperspectral WAAI with the purpose of being applicable to lower
spectral resolution sensors. After fitting the DWI with the SPARC03
dataset, a good statistical behaviour, (R2= 0.719, RMSE=400 g/m2)
with an exponential fit was obtained:

=CWC g m exp( / ) 113.92 10.72DWI (9)

The DWI varies from −0.01, corresponding to bare soils, to a
maximum of 0.26, in the case of sugar beet, in which CWC is high,
around 2000 g/m2 (Fig. 8). This index functions in a similar way than
the WAAI, with sugar beet showing highest CWC values and, therefore,
likewise expressing DWI values. By contrast, garlic leads to lowest CWC
(344 g/m2) estimations given by its low FVC (12%) and low LAI
(0.58 m2 leaf/m2 surface), despite having a high LWC (595 g/m2).

In order to demonstrate the validity of the four-bands DWI index for
CWC estimation, DWI-estimated CWC values were plotted against the
WAAI-estimated CWC values (Fig. 9). When comparing both CWC es-
timations, a R2 of 0.85 is obtained. Although the WAAI index presents
more accurate results because it uses information from a greater
number of bands influenced by CWC, this result suggests that the four-
bands DWI index closely approaches the original WAAI integration
index, despite some over- and under-estimations.

Finally, we applied both indices to the 14th of July HyMap flight
line as acquired over the Barrax region. The resulting maps are shown
in Fig. 10. A visual inspection reveals that both indices estimate the
CWC consistently with higher CWC values in the irrigated circular
parcels. When observing the maps with more detail, the WAAI estimates
CWC sometimes higher and sometimes lower than the DWI, depending
on the crop type. Given that DWI is a simplification of WAAI and
somewhat poorer validated, it can be reasonably assumed that the
WAAI map displays CWC with a better accuracy.

4. Discussion

Established vegetation indices commonly used for CWC estimation
are usually simple arithmetic formulations based on two spectral bands,
i.e. a water content sensitive band and another control band that is not
influenced by any variable. At the same time, these indices have been
typically developed for a specific plant species. The challenge arose
when we tried using these established indices in a general way for a
multi-crop dataset, i.e. the SPARC03 dataset, because very low corre-
lations (R2 between 0.114 and 0.598) were obtained. In an attempt to
improve estimations over this multi-crop dataset, all band combinations
were systematically calculated for each index in order to achieve the
highest possible correlation for the estimation of CWC. For the simple
ratio index, the best combination of bands (R2=0.825) was achieved
with R738/R1272, and for the normalized index was (R1006− R943)/

Table 4
Best combination of bands for each generic vegetation indices introduced in ARTMO,
ordered from highest to lowest R2, with a linear fitting.

Index Bands RMSE (g/m2) NRMSE (%) R2

MNGI 1006;753;1113 210 10 0.908
TDGI 1022;829;738 220 11 0.895
WLHGI 1022;829;738 220 11 0.895
MSGR 1022;927;753 240 12 0.876
TRBGI 943;539;1272 230 11 0.876
NMDGI 1157;1006;753 250 12 0.867
RDGI 1272;738 270 13 0.825
RGI 738;1272 270 13 0.825
NDWGI 1006;943 290 14 0.811

Fig. 7. CWC as a function of WAAI between the limits 911
and 1271 nm, with exponential fit and 95% of confidence
interval.
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(R1006+R943) with R2= 0.811. However, when inspecting these sen-
sitive bands whether they are physically meaningful, i.e. if the selected
bands are actually influenced only or mostly by water absorption fea-
tures, then these indices turned out to be questionable. For instance, the
band at 738 nm in the ratio index is mainly influenced by Chl content
(Peng et al., 2017; Zarco-Tejada et al., 2004) and, thus, it cannot be
used as a reference band. Also in the case of the normalized index, both
bands (1006 nm and 943 nm) are influenced by water content, which
potentially increases the level of error because there is no reference
band to compare with.

At the field or landscape scale, canopy reflectance patterns re-
present the integrated effects of all biophysical parameters. Because at
this scale most aircraft and satellite remote sensing instrument ob-
servations are made, interpreting the data can be challenging. Co-var-
iation mechanisms of leaf constituents is typically causing the selection

of bands related to other covarying biochemicals such as pigments,
starch or lignin due to their high effect on spectral variability (Ollinger,
2011). Similarly, it was earlier observed that due to the covariation
between water content and Chl content, typically bands in the Chl
absorption region are selected as most sensitive (Van Wittenberghe
et al., 2014).

It was shown that given a dataset of five common crop types (lu-
cerne, corn, potato, sugar beet and onion) the two newly proposed in-
dices, i.e. WAAI and DWI, estimate CWC with R2 of 0.8 and 0.7, re-
spectively, outperforming established indices in predicting CWC
(Table 3) and being applicable to zones with different crop types
(Fig. 10). When inspecting these indices more closely, there are some
aspects that indicated that WAAI and DWI may be promising indices for
CWC estimation. One aspect is that both have been designed in such a
way that they are applicable to hyperspectral (WAAI) and multispectral

Fig. 8. CWC as a function of DWI, with exponential fit and 95% of con-
fidence interval.

Fig. 9. CWC estimations, calculated with DWI and WAAI.

Fig. 10. CWC maps estimated with WAAI (left) and DWI (right) for the Barrax crop fields, using the 14th of July atmospherically corrected HyMap data.
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(DWI) sensors. They are able to generate estimations closer to reality
than established two-bands indices due to the greater number of bands
located in the water absorption spectral regions. Results also suggested
that the more bands influenced by CWC are used, the better correlation
is obtained; the WAAI, an integration index that uses spectral in-
formation contained from 911 nm to 1271 nm, led to better results (R2

of 0.808) than the four-bands DWI (R2= 0.719). However, another
aspect to be remarked is that the performances of both WAAI and DWI
are only optimal when there is presence of a minimal FVC; in our ex-
perience, typically higher than 30%. The role of bare soil is a common
problem for the majority of VIs and is mostly apparent over the garlic
fields, for which both indices do not provide adequate values. Garlic
fields are characterized by an extremely low FVC, about 12% (Table 1).
Earlier CWC studies already noted poor estimations for crop types
where FVC values were very low due to the predominant role of soil
reflectance (Zarco-Tejada et al., 2003). It is therefore not recommended
to apply these indices for crop types with low FVC values, e.g. below
30%. Another limitation is that the CWC data is based on the LAI
variable, which is actually an effective LAI with accumulation of errors,
i.e. mainly the internal error of the LiCor LAI-2000 digital analyser and
the human error in taking the measures. It is important to realize this
when extrapolating these results to CWC estimation obtained with di-
rect and destructive measures. Moreover, atmospheric correction is
essential in VIs studies and especially for water indices because the
observed TOC reflectance will be strongly influenced by atmospheric
WV in the water absorbing regions (Goetz and Boardman, 1995). A
precise removal of atmospheric effects to obtain good physical para-
meter retrievals by vegetation indices is therefore critical. Also, a
widely applicable CWC index should not only work for multiple species
with various structures and FVC, but also for temporal intra-species
variability due to changing crop development stages. Since different
crop development stages of multiple species were represented in the
dataset, we have good assumptions that intra-species structural varia-
bility (and resulting biophysical changes) will also be better dealt by
WAAI/DWI as opposed to simple VIs.

Finally, in order to avoid underestimating CWC in crops with scarce
coverage, further work should focus on introducing a FVC-based ad-
justment in the newly proposed indices, as well to include data from
other crop types in the analysis to confirm their generic validity. In
addition, given that the DWI already leads to satisfactory estimations,
when moving towards delivering CWC maps in a more operational
framework, it would be interesting to configure operational optical
superspectral sensors with the specific bands used in DWI. For instance,
both indices can be applied to data of forthcoming imaging spectro-
scopy missions such as the German EnMAP–Environmental Mapping
and Analysis Program (Guanter et al., 2015) and the Italian PRIS-
MA–PRecursore IperSpettrale della Missione Applicativa (Candela
et al., 2016).

5. Conclusions

Although numerous VIs have been proposed for the estimation of
water content over various crop types, the problem found with these
indices is that they show low estimation accuracies when applied to
heterogeneous crop zones. Also, when systematically deducing the VIs
best band combinations, the optimal bands produced a good correlation
(R2) but lacked physical meaning with water absorption. Hence, new
indices are required that not only lead to accurate estimations but also
are physically sound, and thus applicable to a great variety of crop
types. Two new spectral indices were formulated capable of estimating
canopy water content (CWC) over common crop types and therefore
applicable to large spatial scales. The validity of these indices was based
on a large multi-crop dataset (SPARC03), composed of field CWC and
LAI values, as well as their corresponding hyperspectral TOC re-
flectance coming from a HyMap image. On the one hand, the WAAI was
defined as the area between the line formed when the CWC is zero and

the spectrum between the limits 911 and 1271 nm. On the other hand,
DWI was formulated as a simpler and thus more applicable index to
conventional sensors, which is based on the estimation of the spectral
depths produced by the absorption of water at 970 and 1200 nm. Both
WAAI and DWI improved the CWC estimations (R2=0.8 and 0.7, re-
spectively) compared to established indices, and are applicable to
heterogeneous agricultural areas, given crop areas with sufficiently
high FVC (> 30%). The validation of both indices proved good, with a
RMSE of 290 and 400 g/m2 for WAAI and DWI respectively, resulting in
HyMap-generated maps over the Barrax agricultural area.
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