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ABSTRACT: An organophotoredox 1,6-radical addition of 3,4-
dihidroquinoxalin-2-ones to para-quinone methides catalyzed by
Fukuzumi’s photocatalyst is described under the irradiation of a
HP Single LED (455 nm). The corresponding 1,1-diaryl
compounds bearing a dihydroquinoxalin-2-one moiety (20
examples) are obtained with good to excellent yields under mild
reaction conditions. Several experiments have been carried out in
order to propose a reaction mechanism.
KEYWORDS: organophotoredox catalysis, visible-light photocatalysis, quinoxalin-2-ones, 1,6-addition, para-quinone methides

The conjugate addition of nucleophiles to electron-
deficient alkenes is one of the most important synthetic

methodologies for the formation of C−C bonds in organic
synthesis.1−3 In contrast, the radical addition (Giese reaction)
to electron-deficient alkenes is less investigated.4−6 In this
context, the 1,6-addition7−9 is much less studied than the 1,4-
addition that is pivotal for synthetic organic chemistry.
Nevertheless, in recent years, para-quinone methides have
become important substrates for the development of 1,6-
conjugate additions.10−12 para-Quinone methides are organic
molecules that contain a carbonyl group and an exo-methylene
moiety connected to cyclohexadiene, and display intrinsically
high reactivity as versatile Michael acceptors driven by
aromatization. Despite the significant advances in the field of
1,6-conjugate additions thanks to the versatility of para-
quinone methides, if we compare the nucleophilic versus the
radical 1,6-addition reactions, we could conclude that the
radical version is scarcely explored.
Since the development of visible-light photoredox catalysis

has allowed the generation of organic radicals under mild
reaction conditions,13−17 impressive achievements have been
made in radical functionalization reactions. Accordingly,
several radical 1,6-additions have been reported using para-
quinone methides as electron-deficient acceptors mediated by
visible-light.18,19 For example, photocatalytic fluoroalkylation
reactions using sodium sulfinates20 or difluoroalkylating
reagents21 have been described, as well as alkylation reactions
using cyanoalkylation reagents,22 4-substituted Hantzsch
esters,23 or carboxylic acids.24−27 Moreover, a photocatalytic
1,6-radical acylation reaction had been reported using simple
carboxylic acids, triphenylphospine, and iridium photocata-
lyst.28

Regarding the rich chemistry of α-aminoradicals29,30 for
conjugate additions, amines such as glycine26 or anilines31 have
been used as precursors to describe the radical 1,6-addition

with para-quinone methides. These reactions represent a
convenient strategy for the synthesis of 2,2-diarylethyl-
amines,32 an important motif that widely exists in drugs and
natural products. Despite these successful examples, these
reports are limited to acyclic amines. As a part of our
continuing interest in the development of synthetic approaches
for the generation of α-amino radicals from other tertiary
amines such as 3,4-dihydroquinoxalin-2-ones,33−39 we envi-
sioned that these cyclic amines could be suitable α-amino
radical precursors which undergo a 1,6-radical addition with
para-quinone methides using photocatalysis (Scheme 1).
Furthermore, 1,4-dihydroquinoxalinones are an interesting
class of nitrogen heterocycles which are present in many
molecules with biological activities such as antiviral,40

anticancer41 or anti-inflammatory compounds.42 Accordingly,
the functionalization of this class of nitrogen heterocycles is
significant for medicinal and pharmaceutical chemistry.
Our previous observations in this field35,36 prompted us to

start the optimization of the reaction between 4-benzyl-3,4-
dihydroquinoxalin-2(1H)-one (1a) and 4-benzylidene-2,6-di-
tert-butylcyclohexa-2,5-dien-1-one (2a) focusing on the photo-
redox catalyst. Specifically, we decided to screen several
photoredox catalysts while using dry and degassed MeCN as
solvent, 0.15 mmol of 1a, 0.1 mmol of 2a and HP (High
Power) Single LED (455 nm) as light source (Table 1).
First, we evaluated the reaction using Ru(bpy)3Cl2 as

photocatalyst (entry 1). With these conditions, we obtained
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product 3aa in 72% yield determined as a mixture of
diastereoisomers (1.2:1). After we decided to evaluate
organophotocatalysts in order to increase the yield of product
3aa. When Eosin Y (entry 2) or 2,4,6-triphenylpyrylium

tetrafluoroborate (entry 3) were used as photocatalysts, the
efficiency of the reaction was worse, and 3aa was gained with
much lower yield. A complex reaction mixture was observed
when 4-CzIPN (2,4,5,6-tetrakis(9H-carbazol-9-yl) isophthalo-
nitrile)43 was used, while product 3aa was not observed when
9,10-phenanthrenedione44,45 was tested (entry 4 and 5,
respectively). Delightfully, we could quantify by 1H NMR
the expected product 3aa in 94% yield after 19 h of irradiation
when Fukuzumi’s photocatalyst ([Mes-Acr-Me][BF4])

46 was
employed. After, we proceeded to evaluated different solvents
(entries 7−11) with [Mes-Acr-Me][BF4] photocatalyst. When
DMF was used as solvent, we could observe only 41% yield of
3aa, after 24 h of irradiation (entry 7). To our delight, when
the reaction was performed in dichloromethane (DCM), the
product 3aa was found in quantitative yield after only 9 h of
irradiation (entry 8). However, the reaction did not proceed at
all in toluene, probably due to the low solubility of both
photocatalyst and 3,4-dihydroquinoxalin-2-one 1a in this
solvent (entry 9). Other chlorinated solvents such as 1,2-
dichloroethane (DCE) and chloroform, were also tested
obtaining high yields for product 3aa, but the performance
of DCM as solvent was slightly better. The variation of the
equivalents of 1a (entry 12) or 2a (entry 13) did not improve
the yield of the reaction. The use of Et3N-deactivated silica gel
as stationary phase allowed us to purify product 3aa without
observing decomposition, and 3aa was isolated in 99% yield
(entry 8). Additionally, control experiments showed that the
photocatalyst, visible-light irradiation, and an inert atmosphere
are essential for the success of this transformation (entries 14−
16). Moreover, product 3aa was not observed when the
reaction was performed under oxygen atmosphere or in the
presence of 1.5 equiv of the radical scavenger TEMPO (entry
17).
After establishing the optimized reaction conditions to carry

out the photocatalytic 1,6-addition reaction of 3,4-dihydroqui-
noxalin-2-one 1a to para-quinone methide 2a, we wanted to
explore the generality of this transformation. First, the
versatility of the cyclic amines was investigated. Different
substituted 3,4-dihydroquinoxalin-2-ones with different elec-
tronic and steric properties were tested in the reaction with
para-quinone methide 2a and the corresponding addition
products 3aa−3ia could be obtained with good to excellent
yields (Scheme 2). Initially, we studied the effect of different
substituents at the aminic nitrogen (R1) of 3,4-dihydroquinox-
alin-2-one 1. The presence of a more electron-rich benzylic
substituent such as the para-methoxybenzyl group resulted in
the corresponding product 3ba with an excellent 99% yield,
comparable with that of compound 3aa. Similarly, the presence
of a methyl or CH2CO2Me group at this nitrogen of the
dihydroquinoxalin-2-one moiety was allowed, and the corre-
sponding products 3ca and 3da, were obtained in 91 and 81%
yield, respectively. In any case, we did not observe the product
functionalized at exocyclic CH2 of amines 1. When we tested
the reaction with N-4 unprotected quinoxalin-2-one derivative
1e, we isolated N-alkylated product 4ea in 44% yield after 15 h.
This product corresponds to the 1,6-aza-conjugate addition
reaction to para-quinone methide 2a. Actually, we confirmed
that this reaction should be mediated by visible light, since if it
is performed in the dark, product 4aa was only isolated in 11%
yield after 3 days. To our delight, 3,4-dihydroquinoxalin-2-one
bearing an electron-donating (Me) or electron-withdrawing
(F) group at different positions of the parent aromatic ring
furnished the corresponding phenols 3fa and 3ga in good to

Scheme 1a

a(A) 1,6-Radical addition with para-quinone methides. (B) 1,6-
Addition of α-amino radicals to para-quinone methides. (C) 1,6-
Radical addition of dihydroquinoxalin-2-ones.

Table 1. Optimization of the Reaction Conditionsa

entry photocatalyst (X mol %) solvent t (h) drb yield (%)c

1 Ru(bpy)3Cl2 (1%) CH3CN 24 1.2:1 72
2 Eosin−Y-Na2 (5%) CH3CN 24 1.1:1 27
3 [2,4,6-Ph3-pyrillium]

[BF4] (5%)
CH3CN 19 1.1:1 43

4 4-CzIPN (5%) CH3CN 24 − −i

5 9,10-phenanthrenedione
(5%)

CH3CN 19 − −

6 [Mes-Acr-Me][BF4] (5%) CH3CN 19 1.3:1 94
7 [Mes-Acr-Me][BF4] (5%) DMF 24 1.9:1 41
8 [Mes-Acr-Me][BF4] (5%) CH2Cl2 9 1.2:1 99 (99)d

9 [Mes-Acr-Me][BF4] (5%) toluene 26 − −
10 [Mes-Acr-Me][BF4] (5%) DCE 6 1.3:1 93
11 [Mes-Acr-Me][BF4] (5%) CHCl3 8 1:1 87
12e [Mes-Acr-Me][BF4] (5%) CH2Cl2 9 1.2:1 71
13f [Mes-Acr-Me][BF4] (5%) CH2Cl2 9 1.4:1 60
14 − CH2Cl2 9 − −
15g [Mes-Acr-Me][BF4] (5%) CH2Cl2 9 − −
16h [Mes-Acr-Me][BF4] (5%) CH2Cl2 9 − −i

17j [Mes-Acr-Me][BF4] (5%) CH2Cl2 24 − −
aReaction conditions: 1a (0.15 mmol), 2a (0.1 mmol), X mol % of
photocatalyst in 1 mL of solvent at rt under argon atmosphere and
HP Single LED (455 nm) irradiation. bDetermined by 1H NMR.
cYield determined by 1H NMR using p-acetophenone as internal
standard. dIn brackets isolated yield after column chromatography
using Et3N-deactivated silica gel. e0.12 mmol of 1a was used. f0.1
mmol of 1a and 0.12 mmol of 2a were used. gReaction performed
under darkness. hReaction performed under air atmosphere.
iComplex reaction mixture. j1.5 equiv of TEMPO were added.
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excellent yields (58 and 95%, respectively). Moreover, 1,4-
disubstituted-3,4-dihydroquinoxalin-2-ones could be used
under the optimized reaction conditions giving the corre-
sponding products 3ha and 3ia with high yield, even with the
presence of a strong electron-withdrawing group (CF3) at the
C-7 position of the aromatic ring of the 3,4-dihydroquinoxalin-
2-one.
Subsequently, the scope and limitation of para-quinone

methides 2 were explored (Scheme 3). Initially, we envisioned
that it would be of interest to carry out this photochemical
reaction with all the regioisomeric MeO-substituted para-
quinone methides at the aromatic ring (2b−2d). Independ-
ently of the position of methoxy group, we could isolate the
corresponding products with excellent yields (86−97%). Next,
we evaluated the incorporation of electron-withdrawing groups
such as halogens (Cl or Br), NO2, or CN on the benzene ring
of the para-quinone methide 2, and we observed that the
presence of these groups had no remarkable impact on the
reaction and the corresponding products (3ae − 3ah) were
obtained very high yields. Moreover, the reaction tolerates
para-quinone methides bearing different hydroxyl groups
protected with tert-butyldimethylsilyl or acetyl groups. Besides,
a para-quinone methide with an alkyl group (Me) at the
electrophilic position was tolerated under the optimized
reaction conditions providing the expected product (3ak) in
quantitative yield. Finally, we demonstrated the utility of our
protocol for the late-stage functionalization of structurally
diverse pharmaceutically relevant substances using a sophisti-
cated para-quinone methide 2l resulting from the incorpo-
ration of the indomethacin core, a nonsteroidal anti-
inflammatory drug. This derivative was subjected to our
organophotoredox 1,6-radical addition protocol furnishing the
desired dihydroquinoxalin-2-one derivative 3al bearing the
indomethacin scaffold in 79% yield.

To gain insight into the mechanism of the reaction, we first
examined the reduction potential values of each component in
the reaction mixture. According to the literature, [Mes-Acr-
Me]*+ has a reduction potential of +1.88 V (vs SCE) from its
T1 excited state and a reduction potential of +2.18 V (vs SCE)
from its S1 excited state.47,48 Curiously, since [Mes-Acr-Me]+
does not exhibit reductive abilities, it can only participate in
reductive quenching cycles. Regarding both substrates, the
reduction potential of 3,4-dihydroquinoxalin-2-one 1a was
already determined by us,35 and it was +0.80 V (vs SCE). The
reduction potential of para-quinone methide 2a was
determined by Tang, Cai, and co-workers, and it was found
to be −1.18 V (vs SCE).27 Hence, according to these data, the
most probable pathway involves a single electron transfer
between the excited state of [Mes-Acr-Me]+ and 1a. To prove
this thermodynamic assumption, we decided to perform
steady-state luminescence quenching experiments. The study
of the luminescence quenching of [Mes-Acr-Me]+ by 2a was
already reported in the bibliography by Ao, Liu, and co-
workers.23 They found that para-quinone methide 2a was not
able to quench the excited state of [Mes-Acr-Me]+. Therefore,
we only tested the ability of 3,4-dihydroquinoxalin-2-one 1a to

Scheme 2. Scope of the 1,6-Radical Addition Reaction
Regarding the Dihydroquinoxalin-2-one Derivatives 1a

aReaction conditions: 1 (0.15 mmol), 2a (0.1 mmol), [Mes-Acr-
Me][BF4] (5 mol %), DCM (1 mL), under argon atmosphere and
under HP Single LED (455 nm) irradiation for 6−16 h.
Diastereomeric ratio was determined by 1H NMR of the crude
reaction mixture. Yield determined after purification by column
chromatography using Et3N-deactivated silica gel.

Scheme 3. Scope of the 1,6-Radical Addition Reaction
Regarding the para-Quinone Methides Derivatives 2a

aReaction conditions: 1a (0.15 mmol), 2 (0.1 mmol), [Mes-Acr-
Me][BF4] (5 mol %), DCM (1 mL), under argon atmosphere and
under HP Single LED (455 nm) irradiation for 6−16 h.
Diastereomeric ratio was determined by 1H NMR of the crude
reaction mixture. Yield determined after purification by column
chromatography using Et3N-deactivated silica gel.
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quench the excited photocatalyst. Luminescence quenching
experiments are summarized in Figure 1A.49 According to

these studies, 3,4-dihydroquinoxalin-2-one 1a could quench
the photoexcited [Mes-Acr-Me]+ effectively, and therefore, we
can establish a Stern−Volmer constant (KSV) of 127 M−1

(Figure 1B). Additionally, to confirm the participation of a
closed photoredox catalytic cycle and exclude a radical chain
process, we determined the quantum yield of the process.49 We
found out that the quantum yield of our photochemical
reaction is as low as Φ = 0.040 ± 0.004, showing that the
participation of a chain mechanism is unlikely.
With all this information, we were able to postulate a

plausible reaction mechanism for our photochemical protocol
(Scheme 4). Dihydroquinoxalin-2-one 1a, can be engaged in a
single electron transfer (SET) with the excited state form of
[Mes-Acr-Me]*+ which results after the irradiation with 455
nm light. The SET results in the formation of the
corresponding radical cation I, which can suffer the loss of a
proton at its α position to generate the nucleophilic α-amino
radical II. This carbon centered radical II is nucleophilic
enough to react with the electrophilic exocyclic carbon of para-
quinone methide 2a in a 1,6-fashion. The product of this
radical 1,6-addition may be O-centered radical III. Taking into
account the oxidative potential of the radical intermediate
[Mes-Acr-Me]● (E1/2 = −0.57 V),50 the phenoxyl radical III
could readily oxidize it, via SET, into [Mes-Acr-Me]+,51,52 and

yield alkoxide IV. Finally, a proton transfer over IV affords the
desired product 3aa.
In summary, we have developed a 1,6- radical addition of

3,4-dihydroquinoxalin-2-one derivatives with several para-
quinone methides using visible-light organophotoredox
catalysis. Our methodology provides a rapid and efficient
access to functionalized phenols bearing a dihydroquinoxalin-
2-one moiety under mild reaction conditions and simple
operational protocol using the irradiation of HP single LED of
455 nm. Also a series of experiments have been carried out in
order to gain insights into the reaction mechanism.
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Valeǹcia, Spain; orcid.org/0000-0002-6137-866X;
Email: jose.r.pedro@uv.es

Figure 1. (A) Emission spectra of different DCM solutions containing
0.02 mM of [Mes-Acr-Me][BF4] and varying amounts of 3,4-
dihydroquinoxalin-2-one 1a. (B) Stern−Volmer plot of I0/I vs [1a].
Determination of KSV through linear regression.

Scheme 4. Mechanistic Hypothesis for the Photochemical
1,6-Radical Addition for the Synthesis of 3

ACS Organic & Inorganic Au pubs.acs.org/orginorgau Letter

https://doi.org/10.1021/acsorginorgau.2c00064
ACS Org. Inorg. Au 2023, 3, 130−135

133

https://pubs.acs.org/doi/10.1021/acsorginorgau.2c00064?goto=supporting-info
https://pubs.acs.org/doi/suppl/10.1021/acsorginorgau.2c00064/suppl_file/gg2c00064_si_001.pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Jose%CC%81+R.+Pedro"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0000-0002-6137-866X
mailto:jose.r.pedro@uv.es
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Carlos+Vila"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/doi/10.1021/acsorginorgau.2c00064?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acsorginorgau.2c00064?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acsorginorgau.2c00064?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acsorginorgau.2c00064?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acsorginorgau.2c00064?fig=sch4&ref=pdf
https://pubs.acs.org/doi/10.1021/acsorginorgau.2c00064?fig=sch4&ref=pdf
pubs.acs.org/orginorgau?ref=pdf
https://doi.org/10.1021/acsorginorgau.2c00064?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


Carlos Vila − Departament de Química Orgaǹica, Facultat de
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Gonzalo Blay − Departament de Química Orgaǹica, Facultat
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