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On the friction/tangential restitution problem: Independent 
friction-restitution modeling of sphere rebound with arbitrary spin 
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H I G H L I G H T S  G R A P H I C A L  A B S T R A C T  

• The concept of tangential coefficient of 
restitution is critically examined. 

• Independent friction-restitution modeling 
is applied to sphere rebound with arbi-
trary spin. 

• A unique set of coefficients of friction 
and restitution independent on the 
impact angle is used. 

• The resulting modeling satisfactorily 
reproduces experimental data in recent 
oblique impact literature.  
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A B S T R A C T   

Most descriptions of collision events introduce coefficients of friction and tangential restitution which vary 
significantly with the impact angle, in contrast with the independence of the normal coefficient of restitution 
with this parameter. A redefinition of the coefficients of friction and tangential restitution based on the idea that 
friction and restitution effects can be treated as being mutually independent, provides a satisfactory description 
of experimental data using a ‘constant’ restitution coefficient independent on the impact angle. This independent 
friction-restitution modeling is developed here for the rebound of a homogeneous sphere having an arbitrary spin 
on a rough massive plane. The reported closure permits the interpretation of experimental data recently reported 
in literature.   

1. Introduction 

Along the last decades, the analysis of experimental data on planar 
collisions under moderate incoming velocities and in the absence of 
adhesive and viscous effects has been based on the models of Walton [1] 
and Maw et al. [2,3]. Both models are aimed to describe both the 

sticking and sliding regimes of impact and use the coefficient of 
tangential restitution, defined by analogy to the well-known coefficient 
of normal restitution and the coefficient of friction, based in the 
Amontons-Coulomb approach to friction [4,5]. 

The Walton’s model implies a twofold asymmetry: by the first token, 
the tangential coefficient of restitution is taken as a constant in collisions 
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in stick regime while it varies with the impact angle for collisions in 
sliding regime. By the second token, the friction coefficient depends on 
the impact angle for collisions in sticking regime while it is taken as a 
constant in sliding regime. Experimental data on the rebound of spheres 
on massive planes have provided abundant evidence for the variation of 
the tangential coefficient of restitution [6–29] and the coefficient of 
friction (or its equivalent, the tangential to normal impulse ratio, vide 
infra) [7,8,14,24,26] with the angle of impact. Additionally, experi-
mental data on non-planar collisions reveal that the tangential coeffi-
cient of restitution and the coefficient of friction defined in the Walton’s 
model also varies with the rotation rate of the sphere [14,26,27]. These 
features are in sharp contrast with the normal coefficient of restitution, 
which remains essentially independent on the impact angle and the 
initial spin of the sphere within a wide range of experimental conditions 
in the majority of cases. 

The above operational problem is accompanied by a conceptual one 
as far as, in principle, friction and restitution, can differently be 
conceived. The normal and tangential coefficients of restitution can be 
related with the mechanical properties of the materials (Young’s 
modulus, Poisson’s coefficient) via Hertz-type contact force models 
[30–37]. Although these models predict a variation of the normal co-
efficient of restitution with the incoming velocity of the colliding bodies, 
this variation can be neglected under most ‘ordinary’ conditions. On the 
contrary, the friction impulses can be seen as depending on surface 
properties such as asperity, roughness, etc. [30]. Then, although both 
influencing the impact dynamics, restitution and friction can be viewed 
as separate mechanisms operating separately, as expressed in spring- 
damping contact models [33,37]. 

In this context, it was formulated a different theoretical closure based 
on the idea that friction and restitution operate conjointly but inde-
pendently through the impact [38,39]. The model defines the co-
efficients of restitution (friction) in terms of the normal and tangential 
velocities of the contact point in the absence of friction (in the absence of 
restitution) effects. These idealized definitions permit to obtain a series 
of dynamic equations in agreement with experimental data using resti-
tution coefficients independent on the incidence angle. This formulation 
permitted the interpretation of a series of experimental data considered 
as ‘anomalous’ in literature [7,8,12,14,16], as becoming within the 
‘ordinary’ impact behavior described by the so-called independent 
friction-restitution (IFR) model. Successive refinements on friction ef-
fects were subsequently reported [40–43] allowing for the interpreta-
tion of new experimental details on the rebound of macrospheres 
[7,9,11,14] and microspheres [6,10,15,19,20,24] on massive half- 
planes. 

The proposed IFR model, as the Walton’s one, uses the phenome-
nological coefficients of restitution and friction which can be deter-
mined from experimental data obtained during the impact event. This 
is a difference with the Maw et al. model [2,3], which was formulated 
in terms of the Young’s modulus and Poisson’s coefficients of the 
colliding bodies, needing to be known, as emphasized by Kim and Dunn 
[15], independently from the experimental data recorded in the impact 
event. 

The purpose of the current work is: a) to analyze with some detail the 
conceptual and operational problems associated to the view of the co-
efficient of tangential restitution in the aforementioned friction- 
restitution (in the following FR) models; b) provide a general IFR 
formulation of the rebound of a homogeneous sphere on a rough, 
massive plane when an arbitrary spin has been imparted to the sphere; c) 
analyze experimental data in recent literature [23–29] which has not 
been previously examined under the IFR modeling. As a result, it is 
concluded that, based on the IFR redefinition of tangential coefficient of 
restitution, new experimental data can also be satisfactorily interpreted 
using ‘constant’ tangential restitution coefficients. 

2. Theory 

2.1. General approach 

Let us consider the planar oblique impact of a homogeneous sphere 
of mass m, radius R, and inertia moment I (= (2/5)mR2) on an infinitely 
massive, rough wall, as schematized in Fig. 1. It will be assumed that 
there is contact through a single point of the sphere without significant 
deformation. Let u and v the pre-impact and post-impact center of mass 
velocities and U, V, the respective velocities of the contact point. 

The general description of the impact dynamics is based on the 
Newton’s laws for linear and angular impulses. These can be expressed 
here on saying that the total impulse (i.e., the sum of individual impulses 
due to different factors) acting on the sphere will determine the change 
in its center of mass velocity and the total angular impulse the change in 
the rotation rates. To complete the description of the impact event, 
however, constitutive definitions of the individual forces/impulses (i.e., 
those due to friction, restitution, or even other possible factors) are 
needed. Accordingly, the normal and tangential center of mass velocities 
(denoted in the following by the subscripts n, t) will change under the 
action of normal and tangential impulses, Pn, Pt, as, 

Pn = m(vn − un) (1)  

Pt = m(vt − ut) (2) 

It will be assumed that the center of mass velocity is directed along 
the x-axis and that, as schematized in Fig. 1, arbitrary spins ωx, ωy, ωz, 
have been imparted to the sphere before the impact. Accordingly, the 
prerebound velocity of the contact point will have three components: 

Ux = usinγ +Rωy; Uy = Rωx; Uz = ucosγ (3) 

The angular velocities, Ωx, Ωy, Ωz, after the impact can be derived 
from the classical law of angular impulse: the net angular impulses 
acting on the sphere in the x, y, and z directions will equal the product of 
the inertia moment of the sphere by the change in the corresponding 
angular velocities. Taking I = (2/5)mR2, this law yields, 

RΩx =
5
2

Pty

m
; RΩy =

5
2

Ptx

m
; Ωz = ωz (4)  

where Ptx, Pty represent the x- and y-components of the tangential im-
pulse. The contact point velocities, Vx, Vy, Vz, satisfy the relationships Vx 
= vx + RΩy; Vy = vy + RΩx; Vz = vz. 

The normal coefficient of restitution can be defined in several ways 
[4,5]. Here, the canonical kinematic definition in terms of the normal 
components of the contact point velocity will be used: 

en = −
Vn

Un
(5) 

Then, the normal impulse will be: 

Pen = − m(1+ en)Un = − m(1+ en)ucosγ (6)  

2.2. Friction & restitution modeling 

To complete the dynamic study, there is need of defining constitutive 
impulse functions [34–36]. This is the crucial point where the proposed 
models differ. For our purposes, the relevant point to emphasize is that 
there are no restrictions to be imposed a priori to the different forces/ 
impulses; the unique condition is that their sum satisfies the afore-
mentioned Newton’s laws. Accordingly, i) it is possible to independently 
define impulses due to restitution and friction; ii) these impulses can 
freely be associated to different impact parameters such as the center of 
mass and/or the contact point velocities. This arbitrary definitional 
character is reflected in the fact that different definitions of the 
tangential coefficient of restitution are used in literature, including ki-
nematic, dynamic, and energetic [5], and kinematic definitions in terms 
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of contact point and center of mass velocities [14,17,23,24]. 
For simplicity, we will present here the results for planar rebounds; i. 

e., when the pre- and postrebound linear velocity vectors are all placed 
within a common plane. This implies that, according to the scheme in 
Fig. 1, the tangential direction is coincident with the x-axis (i.e., that the 
subscripts x and t have identical meaning). This not will be valid for non- 
planar collisions which will be treated in the next section for the IFR 
model. In the first model accounting for the discrimination between 
stick and slip collisions, due to Brach [4,44], it was assumed that in 
sliding regime, the tangential impulse was the coefficient of friction (μ) 
times the normal impulse, i.e., 

Px = ± μm(1+ en)ucosγ (7)  

while the condition of stick regime was Vt = 0. This implies that vx +

RΩy = 0. Since Eqs. (1)–(4) permit to write: vx = ux + Px/m and RΩy =

Rωy + (5/2)Px/m, the above condition implies that the tangential im-
pulse equals to, 

Px = ±
2
7

m
(
usinγ +Rωy

)
(8) 

It is pertinent to note that the direction of the tangential impulse is 
that opposite to the direction of Ut; i.e., the tangential component of the 
velocity of the contact point before the impact. For simplicity, the case 
where vx + Rω > 0 will be considered in the following. 

Notice that the above model applies to tangential impulses the well- 
known formalism of Amontons-Coulomb friction: in sliding regime the 
tangential impulse is μ times the normal impulse and in sticking regime 
the tangential impulse equals that necessary to maintain the surfaces in 
contact relatively at rest. This friction-based model (F-model), however, 
cannot entirely explain the postrebound velocities appearing in stick 
regime, where in general Vt ∕= 0. The Walton’s model attempted to 
reproduce these experimental features [1] assuming that restitution ef-
fects also operate in the tangential direction. Here, in collisions with 
sticking, the tangential impulse was expressed in terms of the coefficient 
of tangential restitution, defined by analogy to the coefficient of normal 

u
v

P

P
P

P
P

P

PP
P
P

uv

Fig. 1. Schemes of the oblique impact of a homogeneous sphere on an infinitely massive rough plane for the case of arbitrary initial spins. a) Lateral view along the y- 
axis; b) view along the x-axis; c) zenithal view (along the z-axis). 
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restitution as, 

β = −
Vt

Ut
= −

Vx

Ux
(9) 

In several cases, β is defined with the opposite sign and, in others, 
replacing the contact point by the center of mass velocities 
[14,17,23,24]. Using the definition in Eq. (9), that the tangential im-
pulse is, 

Px = −
2
7
(1+ β)mUt = −

2
7
(1+ β)m

(
usinγ +Rωy

)
(10) 

In turn, when the collision takes place in sliding regime, Eq. (7) 
applies, thus defining a friction-restitution (FR) closure. For brevity, the 
expressions for the postimpact linear and angular velocities are listed in 
the Appendix A1. Remarkably, in sticking regime the FR coefficient of 
tangential restitution possesses a constant value β, while in sliding 
regime it varies significantly with the impact angle, being related to the 
coefficient of sliding friction by the relationship, 

β =
7
2

μ(1+ en)

(
cosγ

sinγ + Rωy
/

u

)

− 1 (11)  

i.e., the as-defined coefficient of tangential restitution can be expressed 
as a function of the impact angle and the coefficient of sliding friction. 
For the case of rebound without initial spin, and assuming that μ is 
constant, Eq. (11), predicts a linear variation of β with cotanγ. The FR 
model reduces to the F one taking β = 0 and can be interpreted, as far as 
Vt ∕= 0, as implying that the coefficient of friction varies with the impact 
angle in sticking regime. Strictly, the friction coefficient can only be 
defined in sliding regime as the tangential impulse to normal impulse 
ratio (in absolute value), i.e., μ = ∣Pt∣/∣Pn∣. If this is extended to the 
sticking regime, friction coefficients depending on the impact angle are 
obtained (for instance, in [26]). The measurement of the coefficient of 
sliding friction in impact events has to be made, however, from the 
directly measured quantities, usually the center of mass velocities. Then, 
operationally, μ is defined/measured in planar impacts as the absolute 
value of the (vx-ux)/(vz-uz) ratio. Under this view of the Walton’s model, 
the coefficient of sliding friction will be equal toμ, regardless the inci-
dent angle value in sliding regime but, in sticking regime, it will vary 
with the impact angle according to, 

μ =
|vx − ux|

|vz − uz|
=

2
7

(
1 + β
1 + en

)(

tanγ +
Rωy

ucosγ

)

(12) 

As will be discussed below, in the IFR model this definition, as in-
corporates both friction and tangential restitution effects, yields an 
‘apparent’ coefficient of friction. 

2.3. Conceptual and operational problems 

The above modeling provides a satisfactory agreement with experi-
mental data except in several ‘anomalous’ cases [7,8,12,14,16]. How-
ever, this treatment involves several conceptual problems. As previously 
noted, the model leads to an intriguing situation condensed in Eqs. (11) 
amd (12): i) the tangential coefficient of restitution is constant in 
sticking regime while varies with the impact angle in sliding regime, and 
ii) the coefficient of friction is constant in sliding regime while depends 
on the impact angle in sticking regime. These variations abruptly con-
trasts with the constancy assumed for the coefficient of normal restitu-
tion in both sticking and sliding regimes of impact. In fact, experimental 
data reveal that β values exhibit gross changes with the impact angle for 
collisions in sliding regime [8,9,14,16,19–29] and, when impact with 
initial spin is studied [14,26,27], with the initial rotation rate, both in 
contrast with the constancy of en in the same set of experiments. Simi-
larly, the friction coefficient (or its equivalent tangential to normal 
impulse ratio) significantly varies with the impact angle in collisions in 
sticking regime [7,8,14,24,26]. This leads to a first conceptual problem: 

since in principle friction and restitution are mechanisms influencing the 
dynamics of impact events, how they behave so differently when 
sticking and sliding regimes are considered? 

The second problem is more subtle. De facto, friction and restitution 
are seen as different physical mechanisms acting throughout the impact 
[4,5] at least at the so-called mesoscopic scale [28]. At this scale, friction 
depends on the surface properties (asperities, roughness) whereas 
restitution should be dependent on the ‘elastic’ properties (Young’s 
modulus, Poisson’s coefficient) of the bulk of the material. In fact, much 
literature emphasizes the difference between these mechanisms on 
describing impact in terms of spring plus dashpot assemblies [33,37] 
(see, for instance, Fig. A1 in ref. [33]), as schematized in Fig. 2. 

In this context, one possible operational view of the Walton’s FR 
model is that tangential restitution operates solely in the sticking regime 
whereas friction operates in the sliding regime. The question around this 
view is: why each one of the mechanisms operates in one of the two 
possible impact regimes? A second interpretation of the FR closure is 
that friction and restitution, although conceptually different, cannot be 
separately treated. This second view is also problematic, as can be dis-
cussed around the interpretation of Eqs. (11) and (12). In principle, 
these equations mean not only that the restitution and friction mecha-
nisms are directly related, but also that they are equivalent (but with 
different equivalence relationships in sticking and sliding regimes). If 
this view is adopted, why is the reason for this equivalence?, why 
tangential restitution (and friction) changes so drastically its behavior 
from sticking to sliding conditions? As described in the next section, 
these questions can be treated differently by adopting a new definition 
of the tangential restitution coefficient just expressing the conceptual 
difference between friction and tangential restitution. 

2.4. IFR modeling 

The IFR model assumes that the impulses due to friction and resti-
tution act independently throughout the impact. Now, let us consider 
the general case in which a homogeneous sphere rebounds on an infi-
nitely massive plane with arbitrary rotation rates. It will be assumed that 
the center of mass initial velocity is directed along the x-axis and that the 
normal impulse is directed in the z-direction. This can be expressed as: 

Pen⋅n = − m(1+ en)(U⋅n)sign[U⋅n] (13) 

Here, sign [] represents the sign function [12,35] and n the unit 
vector in the normal direction. In the IFR closure, the tangential coef-
ficient of restitution, et, is redefined as the negative ratio of the post-
impact to preimpact tangential velocities of the contact point in the 
absence of frictional effects, V*t, U*t, as [38,39], 

e

e

P

P P

Fig. 2. Schematics of the spring plus dashpot representation used to describe 
impact dynamics. 
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et = −
Vt

*

Ut
* (14) 

Then, the tangential impulse due to tangential restitution, Pet, can be 
expressed as, 

Pet⋅t = −
2
7

m(1+ et)(U⋅t)sign[U⋅t] (15) 

where t is the unit vector in the tangential direction. The net 
tangential impulse will be the sum of Pet with the impulse due to friction, 
Pf. Following the Amontons-Coulomb view of friction, it will be assumed 
that, when the impact occurs in sliding regime, the frictional impulse 
will be μ times the normal impulse. This means that the friction coeffi-
cient is defined as the tangential to normal impulse ratio in the absence of 
tangential restitution effects [38,39]. Then, 

Pf⋅t = − μm(1+ et)(U⋅n)sign[U⋅t] (16) 

Following the same view of friction, the friction impulse operating in 
sticking regime will be approximated by the percussion center approach 
[40] as, 

Pf⋅t = −
2
5

m(U⋅t)sign[U⋅t] (17) 

Assuming, as before, that there are no significant effects of rolling 
and pivoting friction, the above impulses can be rewritten in function of 
the angle of lateral deviation at the contact point, σ, defined as, 

tanσ =
Rωx

usinγ + Rωy
=

Rωx/u
sinγ + Rωy

/
u

(18) 

This angle is representative of the direction of the contact point 
initial velocity vector in the xy plane, Uxy, whose absolute value is, 

Uxy =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(
usinγ + Rωy

)2
+ (Rωx)

2
√

= u
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(
sinγ + Rωy

/
u
)2

+ (Rωx/u)2
√

(19) 

where, as in Eq. (18), the non-dimensional coefficients Rωx/u and 
Rωy/u have being introduced. Accordingly, the normal impulse is again 
given by Eq. (6) and the tangential impulse due to restitution can be 
separated into x- and y-components (Pex, Pey) given by the expressions, 

Pex = −
2
7

m(1+ et)Uxycosσ; Pey = −
2
7

m(1+ et)Uxysinσ (20) 

In turn, the frictional impulses acting in sliding and sticking regimes 
in the x- and y-direction are, respectively, 

Pfx = μm(1+ en)ucosγcosσ; Pfy = μm(1+ en)ucosγsinσ (21)  

Pfx =
2
5

mUxycosσ; Pfy =
2
5
mUxysinσ (22) 

The corresponding expressions for the postcollision linear and 
angular velocities are shown in the Appendix A1. These equations 
reduce to those previously reported [40] for planar impacts taking σ = 0. 
In the case of sliding impacts, the same equations reduce to the FR model 
taking et = − 1. An interesting particular case is obtained when the 
normal coefficient of restitution becomes zero. In this case, the center of 
mass rebound velocity in the z-direction becomes zero and the sphere 
will move along the massive plane (i.e., the rebound angle δ = 0). 
However, assuming that the coefficients of tangential restitution and 
friction are independent on en, the postrebound velocities in the x- and y- 
directions will not be zero and will be dependent on the incidence angle 
(see Appendix A1). 

The transition between the sticking and sliding regimes takes place at 
an impact angle γT satisfying the relationship, 

cosγT =
2
5

(
Uxy

u

)(
1

μ(1 + en)

)

(23) 

For the case of planar impacts without initial spin, the above 

equation reduces to, 

tanγT =
5
2

μ(1+ en) (24)  

2.5. Tangential coefficients of restitution 

The restitution coefficient defined in the FR closure, β, is now given 
by, 

β = −

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
V2

x + V2
y

√

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅(
usinγ + Rωy

)2
+ (Rωx)

2
√ (25) 

This ‘apparent’ FR tangential coefficient of restitution will be 
dependent on the impact angle and the initial rotation rates. It can be 
expressed as a function of the ‘constant’ coefficient of tangential resti-
tution defined in the IFR formalism, et, from the velocity expressions in 
the Appendix A1. In the simplest case of planar impacts eq. (25) reduces 
to, for collisions in sliding regime: 

β = et +
7
2

μ(1+ en)

(
cosγ

sinγ + Rωy
/

u

)

(26) 

This equation reduces to the FR Eq. (11) taking, as previously noted, 
ωy = 0, and et = − 1. For collisions in sticking regime, 

β =

(
7
5
+ et

)

(27) 

Eq. (26) means that the variation of the FR tangential coefficient of 
restitution (β) on the impact angle observed in sliding regime can be re- 
interpreted as ‘apparent’, the ‘true’ tangential coefficient of restitution 
(et) being constant. 

The tangential coefficient of restitution referred to the center of mass 
velocities, βCM (βCM = − (vt/ut)), used by several authors [14,17,23,24], 
can also be obtained for planar collisions as, 

Sticking regime : βCM =

[
2
7
(1+ et)+

2
5

](

1+
Rωy

usinγ

)

− 1 (28)  

Sliding regime : βCM =
2
7
(1+ et)

(

1+
Rωy

usinγ

)

+ μ(1+ en)cotanγ − 1

(29) 

These authors combine the tangential and normal coefficients of 
restitution to define a total (center of mass) coefficient of restitution, 
βtot, as βtot = [(encosγ)2 + (βsinγ)2]1/2. 

2.6. Friction coefficients 

Experimental data on collisions are unanimously taken from velocity 
measurements using different devices [6–29]. As briefly discussed in the 
section 2.1, the ‘apparent’ coefficient of friction defined in the FR 
closure [12,26] will be calculated as the ratio (vx-ux)/(vz-uz) which is 
equivalent to the Ptx/Pn tangential to normal impulse ratio. In the IFR 
modeling, the expressions for planar collisions in sliding and sticking 
regimes are, 

μapp = μ+
2
7

(
1 + et

1 + en

)(

tanγ +
Rωy

ucosγ

)

(30)  

μapp =

⎡

⎢
⎣

2
7 (1 + et) +

2
5

1 + en

⎤

⎥
⎦

(

tanγ +
Rωy

ucosγ

)

(31)  

respectively. 
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2.7. Rebound angles 

The general expressions for rebound angle in the xz plane (see 
Fig. 1a) will be, for collisions in sticking regime, 

tanδ =
1
en

tanγ −
1
en

[
2
5
+

2
7
(1+ et)

](
Uxy

u

)(
cosσ
cosγ

)

(32) 

and, for collisions in sliding regime, 

tanδ =
1
en

tanγ −
2
7

(
1 + et

en

)(
Uxy

u

)(
cosσ
cosγ

)

− μ
(

1 + en

en

)

cosσ (33) 

These equations become notably simplified for planar collisions (ωx 
= 0). If ωx ∕= 0, there will be a lateral deviation of the sphere after the 
impact as schematized in Fig. 1c. The angle of deviation,λ, will be given, 
for rebounds in sticking and sliding regimes, by the relationships, 

tanλ =

[
2
5 +

2
7 (1 + et)

]( Uxy
u

)
sinσ

sinγ −
[

2
5 +

2
7 (1 + et)

]( Uxy
u

)
cosσ

(34)  

tanλ =
− 2

7 (1 + et)
( Uxy

u

)
sinσ − μ(1 + en)cosγsinσ

sinγ − 2
7 (1 + et)

( Uxy
u

)
cosσ − μ(1 + en)cosγcosσ

(35)  

respectively. For testing experimental data, it is frequent to use the 
representation of the impact angle at the contact point after the impact, 
ψafter, vs. that angle just before the impact, ψbefore. In the case of planar 
collisions, tanψafter = Vx/Uz, and tanψbefore = Ux/Uz, and the corre-
sponding expressions for rebounds without initial spin are, 

Sticking regime : tanψafter = −

(
7
5
+ et

)

tanψbefore (36)  

Sliding regime : tanψafter = − ettanψbefore −
7
2

μ(1+ en) (37)  

3. Comparison with experimental data 

3.1. Tangential coefficient of restitution 

Fig. 3 shows the variation of the FR tangential restitution coefficient 

with the incidence angle for collisions of a 20 mm diameter steel ball 
obliquely projected without initial spin on a polished granite block re-
ported by Cross [26]. In this figure, the experimental data are super-
imposed to the theoretical lines from Eqs. (26) (sticking regime) and 
(27) (sliding regime) taking ωy = 0 and the values of en (0.94) and μ. 
(0.12) calculated by this author and et = − 0.98. One can see that, despite 
relatively large dispersion in experimental data, the theoretical IFR lines 
satisfactorily reproduce the experimental results. 

Similar agreement between experimental data and theoretical ex-
pectances was obtained for the oblique impact of γ-Al2O3 granules of 
1.74 mm diameter on a glass plate target reported by Buck et al. [23]. 
Experimental data in Fig. 4a can be fitted to Eq. (27) taking en = 0.78, et 
= − 0.80, and μ = 0.01. Experimental data for the collisions of a 20 mm 
diameter steel ball impacting a steel plate reported by Hashemnia and 
Askari [27] can also be fitted to Eq. (27) taking en = 0.60, et = − 0.75, 
and μ = 0.15 (notice the definition of β and βCM in literature differing by 
a minus sign from those used here). The agreement between these data 
and the theoretical curve can be seen in Fig. 4b, where -β is plotted vs. 
the ratio Ut/Un (= tanγ). 

Fig. 5 depicts the experimental βtot data reported by Reagle et al. [21] 
for the planar (ωx = 0) collisions of Arizona road dust of 20–40 μm 
diameter on polished SAE 304 stainless steel at 27 m s− 1 and reproduced 

Fig. 3. Dependence of β on the impact angle at this for planar oblique collisions 
of 20 mm diameter steel ball projected without initial spin on a polished granite 
block reported by Cross [26]. Continuous lines correspond to theoretical pre-
dictions using Eqs. (26) (sticking regime) and (27) (sliding regime) taking ωy =

0, en = 0.94, et = − 0.98, μ. = 0.12. 

e e

U U

e
e

Fig. 4. a) Dependence of -β on: a) the impact angle for γ-Al2O3 granules of 1.74 
mm diameter on a glass plate reported by Buck et al. [23], and, b) the ratio Ut/ 
Un (= tanγ) incidence angle for oblique collisions of 20 mm diameter steel ball 
projected without initial spin on a steel plate reported by Hashemnia and Askari 
[27]. Continuous lines correspond to theoretical predictions using Eq. (27) 
(sliding regime) taking ωy = 0 and the values of the coefficients of friction and 
restitution indicated in the graphs. 
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by Yu and Tafti [22]. The experimental data are superimposed to the 
theoretical ones calculated by these authors (see ref. [22] for details) 
and the IFR model using Eqs. (28) and (29) taking ωy = 0, en = 0.38, et =

− 0.95 and μ = 0.10. One can see here that the IFR closure can also 
satisfactorily reproduce experimental data when center of mass resti-
tution coefficients are used. 

The IFR model also applies satisfactorily for sphere rebounds with 
initial spin. In Fig. 6, the β vs. γ plots using experimental data for the 
rebound of a steel ball on a polished granite block with different initial 
spins in ref. [26], are depicted. In these experiments, a 20 mm diameter 
steel ball was projected with linear velocity of 2.0 ± 0.5 m s− 1 and 
rotation rate of 45 ± 15 rad s− 1 (circles), and linear velocity of 1.5 ± 0.6 
m s− 1 and rotation rate of 125 ± 25 rad s− 1 (slid circles), respectively. In 

the first case, Rωy/u = 0.225, the sticking and sliding regimes take place 
depending on the impact angle whereas in the second, Rωy/u = 0.833, 
and only the sliding regime was attained. Both sets of data can satis-
factorily be reproduced by theoretical lines from Eqs. (26) (sticking 
regime) and (27) (sliding regime) inserting the same set of values of the 
friction and restitution coefficients: en = 0.94, et = − 0.98, μ. = 0.14. 

3.2. Rebound angles and apparent friction coefficients 

Fig. 7 illustrates the variation of the rebound angle on the impact 
angle for planar oblique collisions without initial spin of spherical glass 
particles of diameter 165 μm on polished steel surface reported by Wang 
et al. [28]. Here, the impact velocity ranged between 5.9 m s− 1 and 6.1 
m s− 1. The reported experimental data can be reproduced using Eq. (33) 
(sliding regime) taking en = 0.80, et = − 0.98, μ. = 0.11. 

Plots of rebound angle at the contact point vs. the impact angle at this 
point for planar oblique collisions of 20 mm diameter steel ball projected 
without initial spin on a polished granite block [26] are depicted in 
Fig. 8. Experimental data can satisfactorily be fitted to Eqs. (36) (sticking 
regime) and (37) (sliding regime) taking en = 0.94, et = − 0.98, μ. = 0.12. 
Similar agreement was obtained for the variation of the apparent coef-
ficient of friction with the impact angle corresponding to the same set of 
experiments [26]. In this figure, experimental data points are super-
imposed in the sticking region to the theoretical line from Eq. (30) 
taking en = 0.94 and et = − 0.98. In the sliding region, the prediction of 
the FR model (dotted line, et = − 1) is accompanied by the theoretical 
lines from Eq. (31) taking en = 0.94, μ. = 0.12, and four different values 
of et. One can see in this figure that, despite relatively high data 
dispersion in the sliding regime, experimental points diverge from the 
expectance from the FR model. This is just the ‘anomalous’ result 
underlined in literature [7,8,12,14,16]. 

The ‘apparent’ variation of the coefficient of friction with the impact 
angle is illustrated in Fig. 9, where experimental data for oblique colli-
sions of a steel ball colliding on a projected granite block reported by 
Cross [26] are superimposed in the sticking region (low impact angles) 
to the theoretical line from Eq. (30) taking en = 0.94, et = − 0.98. In the 
sliding region (high impact angles) several theoretical lines calculated 

Fig. 5. Variation of βtot on the impact angle reported by Reagle et al. [21] for 
the collisions of Arizona road dust of 20–40 μm diameter on polished SAE 304 
stainless steel at 27 m s− 1, (solid squares) and theoretical expectances from the 
model of Yu and Tafti [22] (solid triangles). The circles correspond to the 
theoretical points calculated from Eqs. (28) and (29) taking ωy = 0, en = 0.38, 
et = − 0.95 and μ = 0.10. 

Fig. 6. Plots of β vs. the incidence angle for oblique collisions of 20 mm 
diameter steel ball projected on a polished granite block reported by Cross [26]. 
Circles: linear velocity 2.0 ± 0.5 m s− 1, rotation rate 45 ± 15 rad s− 1; solid 
circles: linear velocity 1.5 ± 0.6 m s− 1, rotation rate 125 ± 25 rad s− 1. 
Continuous lines correspond to theoretical lines inserting en = 0.94, et = − 0.98, 
μ. = 0.14 into Eqs. (26) (sticking regime) and (27) (sliding regime) and Rωy/u 
= 0.225 (circles) and Rωy/u = 0.833 (solid circles), respectively. 

Fig. 7. Dependence of the rebound angle on the impact angle for planar obli-
que collisions without initial spin of spherical glass particles (diameter 165 μm) 
on polished steel wall with impact velocity between 5.9 m s− 1 and 6.1 m s− 1 
reported by Wang et al. [28]. The gross points correspond to theoretical pre-
dictions using Eqs. (32) (sticking regime) and (33) (sliding regime) taking en =

0.80, et = − 0.98, μ. = 0.11. 
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from Eq. (31) taking en = 0.94, μ. = 0.12, and different values of et are 
depicted. The conventional FR model corresponds to et = − 1. 

Experimental results on collisions are frequently characterized by 
relatively high levels of data dispersion [28]. This scattering has been 
attributed to particle material properties and minor imperfections or 
local inhomogeneities of the surfaces [45]. This is illustrated in Fig. 9, 
where one can see that minute changes in the et value determine sig-
nificant changes in the ‘apparent’ friction coefficient. A variety of factors 
can be responsible, including fluctuations in the direction and incoming 
velocity of the colliding bodies in replicate experiments. An additional 
factor to be considered is the possibility of (either randomized or biased) 
unexpected rotation rates. Although with except of few examples, 
experimental data on rebounds are carried out projecting the sphere 
without initial spin, there is possibility that, depending on the 

characteristics of the dropping or launching device, some initial angular 
velocities appear. Although there is no disposal of experimental data on 
rebounds with ωx ∕= 0 where lateral deviation occurs (i.e., λ ∕= 0), the 
current formulation predicts significant lateral deviations for Rωx/u 
values similar to the reported Rωy/u values in planar collisions [14,26]. 
This is treated as an appendix (Appendix A2). 

These factors could contribute to explain the relatively large 
dispersion in experimental data obtained in the determination of normal 
coefficients of restitution using the head-on impact of two aligned 
pendulums of equal length [46], a case of central impact without initial 
spin. This can be described using the IFR formalism as a head-on impact 
in the x-direction taking ωx = 0, ωy = 0, ωz = 0, uy = 0, uz = 0. Minute 
variations in the orientation of the oscillation plane and/or the length of 
the target pendulum and/or the acquisition of some initial spin during 
its ‘fly’ due to torsion effects would produce fluctuations in the impact 
parameters resulting in data dispersion. 

Conjointly considered, all these results suggest that the variation of 
the tangential coefficient of restitution with the impact angle in the FR 
model can be seen as ‘apparent’: in all cases, the experimental data can 
satisfactorily be reproduced using the ‘constant’ tangential restitution 
coefficient defined in the IFR closure. The use of ‘constant’ coefficients 
of friction and restitution obviously facilitates the normalization of 
materials in, for instance, physics of sports. It is pertinent to underline, 
however, that the coefficients of friction and restitution vary, strictly, 
with the incoming velocity [6,16,18,30–36] so that the IFR closure (as 
the FR formulations treated here) is of application within the ‘ordinary’ 
range of experimental conditions involving moderate velocities and 
negligible viscous or adhesive effects. 

4. Conclusions 

The presented formulation of impact events, based on the indepen-
dence of friction and restitution mechanisms, provides single expres-
sions for the post-collision linear and angular velocities as functions of 
the pre-collision velocities and the coefficients of restitution (normal 
and tangential) and friction for both the stick and sliding regimes of 
impact. This IFR modeling uses a unique set of ‘constant’ coefficients of 
restitution (normal and tangential) and friction, thus avoiding the 
abrupt variation of the coefficient of tangential restitution with the 
impact angle appearing in conventional FR modeling. 

Additionally, several experimental results considered as anomalous 
in literature can be interpreted as ‘ordinary’, in the proposed formula-
tion, and appearing as the result, ultimately, of the coexistence of in-
dependent tangential restitution and friction effects. In spite of its 
simplicity, this phenomenological modeling could be of interest in the 
fields of fluids, granular matter, physics of sports, etc. where operative 
descriptions of the mechanics of collisions apply. 
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Fig. 8. Plots of rebound angle at the contact point vs. the impact angle at this 
for planar oblique collisions of 20 mm diameter steel ball projected without 
initial spin on a polished granite block reported by Cross [26]. Continuous lines 
correspond to theoretical predictions using Eqs. (36) (sticking regime) and (37) 
(sliding regime) taking en = 0.94, et = − 0.98, μ. = 0.12. 

Fig. 9. Variation of the apparent friction coefficient on tanγ for oblique colli-
sions of 20 mm diameter steel ball projected without initial spin on a polished 
granite block reported by Cross [26]. Continuous lines: theoretical line from Eq. 
(30) (sticking regime) taking en = 0.94, et = − 0.98 and lines from Eq. (31) 
(sliding regime) taking en = 0.94, μ. = 0.12, and four different values of et. The 
dotted line corresponds to et = − 1, just the prediction of the FR model. 
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Appendix A.1. Expressions for the postimpact linear and velocities predicted by the FR and IFR models in the case of planar collisions of 
a homogeneous sphere on a massive half-space 

FR model, planar impact (ωx = 0): 

vz = enucosγ (A1.1)  

Sticking regime : vx = usinγ −
2
7
(1+ β)

(
usinγ +Rωy

)
(A1.2)  

Sliding regime : vx = usinγ − μ(1+ en)ucosγ (A1.3)  

Sticking regime : RΩy = Rωy −
5
7
(1+ β)

(
usinγ +Rωy

)
(A1.4)  

Sliding regime : RΩy = Rωy −
5
2

μ(1+ en)ucosγ (A1.5) (A1.5) 

Velocities of the contacting point will be, 

Sticking regime : Vt = − β
(
usinγ +Rωy

)
(A1.6)  

Sliding regime : Vt = usinγ +Rωy −
2
7

μ(1+ en)ucosγ (A1.7) 

IFR model, impact with arbitrary initial spin. The following equations reduce to those for planar impact taking ωx = 0 or, equivalently, σ = 90 deg. 
For both sliding and sticking regimes Eq. (A1.1) applies. 

Sliding regime: 

vx = usinγ −
2
7
(1+ et)Uxycosσ − μ(1+ en)ucosγcosσ (A1.8)  

vy = −
2
7
(1+ et)Uxysinσ − μ(1+ en)ucosγsinσ (A1.9)  

RΩy = Rωy −
5
7
(1+ et)Uxycosσ −

5
2

μ(1+ en)ucosγcosσ (A1.10)  

RΩx = Rωx −
5
7
(1+ et)Uxysinσ −

5
2

μ(1+ en)ucosγsinσ (A1.11)  

Vx = usinγ +Rωy − (1+ et)Uxycosσ −
7
2

μ(1+ en)ucosγcosσ (A1.12)  

Vy = Rωx − (1+ et)Uxysinσ −
7
2

μ(1+ en)ucosγsinσ (A1.13) 

Sticking regime: 

vx = usinγ −
[

2
5
+

2
7
(1+ et)

]

Uxycosσ (A1.14)  

vy = −

[
2
5
+

2
7
(1+ et)

]

Uxysinσ (A1.15)  

RΩy = Rωy −

[

1+
5
7
(1+ et)

]

Uxycosσ (A1.16)  

RΩx = Rωx −
5
7
(1+ et)Uxysinσ −

5
2

μ(1+ en)ucosγsinσ (A1.17)  

Vx = usinγ +Rωy − (1+ et)Uxycosσ −
7
2

μ(1+ en)ucosγcosσ (A1.18)  

Vy = Rωx −

[
7
5
+(1+ et)

]

Uxysinσ (A1.19) 

For the limiting case in which en = 0, the z-component of the center of mass velocity becomes zero and the sphere moves after the impact over the 
massive plane. This mean δ = 90 deg. but all other linear (and angular) velocity components do not cancel. The center of mass velocities will be, in the 
case of impact in sticking regime will be given by Eqs. (A1.14) and (A1.15) while in sliding regime, Eqs. (A1.8) and (A1.9) reduce to, 

vx = usinγ −
2
7
(1+ et)Uxycosσ − μucosγcosσ (A1.20) 
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vy = −
2
7
(1+ et)Uxysinσ − μucosγsinσ (A1.21) 

respectively. In the most drastic case, en = 0, et = 0, and the center of mass velocities before the impact in sticking regime will be, 

vx = usinγ − Uxycosσ (A1.22)  

vy = − Uxysinσ (A1.23) 

In turn, the corresponding equations in sliding regime will be, 

vx = usinγ −
2
7

Uxycosσ − μucosγcosσ (A1.24)  

vy = −
2
7

Uxysinσ − μucosγsinσ (A1.25)  

Appendix A2: 

The IFR model presented here predicts significant lateral deviations of the sphere when it is projected with initial ‘lateral’ spin; i.e., when ωx ∕= 0. 
This effect is particularly intense for small incidence angles, as can be seen in Fig. A1a. Here, the theoretically predicted variation of the lateral 
rebound angle λ with the incidence angle γ calculated from Eqs. (18), (19), (34), (35) taking en = 0.90, et = − 0.90, μ = 0.15, ωy = 0, and taking Rωx/u 
= 0.30, a value within the range of experimental Rωy/u values reported in literature (between 0.2 and 0.8, see [14,26]). The influence of the value of 
the rotation rate can be seen in Fig. A1b when shows the variation of λ with the Rωx/u ratio for rebounds also without forward/backward initial 
rotation (ωy = 0) when the impact angle is of γ = 45 deg. using the same values of the coefficients of friction and restitution.

Fig. A2.1. Theoretical variation of the lateral rebound angle λ in the xy plane with: a) the incidence angle γ, and b) the Rωx/u ratio calculated from Eqs. (18), (19), 
(34), (35) taking en = 0.90, et = − 0.90, μ = 0.15 when the impact takes place without forward/backward rotation (ωy = 0). a) Fixed value of Rωx/u = 0.30; b) fixed 
impact angle of γ = 45 deg. The circles represent idealized experimental data. Inset: zenithal view of the impact event. 
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