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A B S T R A C T   

Consumption and abuse of drugs is a general problem, which concerns our entire society. In some cases, drugs are used for recreational purposes; but in others, they 
are used to commit crimes such as Drug-Facilitated Sexual Assault (DFSA). In other cases, this consumption alters the consumer mood in such a way that risky 
situations can rise. In any case, detection of drugs in different environment is worthwhile. Here, two new chromogenic and fluorescent probes are reported. Detection 
of both cathinone derivatives and γ-hydroxybutyric acid (GHB) can be carried out with naked-eye with limits of detection of 0.4 μM and 0.3 μM for GHB and 2.0 μM 
for ephedrone. Selectivity in the presence of other drugs has been tested. Sensing mechanisms have been studied using different spectroscopic techniques and they 
have been also corroborated through theoretical calculations.   

1. Introduction 

Over the last years, the number of drug users in our society has 
increased alarmingly. According to the statistics from European Moni-
toring Center for Drugs and Drug Addiction (EMCDDA), around 97 
million people aged 15–64 in European Union (EU), almost the third of 
the population, have consumed illicit drugs at some moment of their 
lives [1]. Related to this latter issue, it is also considerably worrying the 
quick emergence of illegal substances known as New Psychoactive 
Substances (NPS). NPS consist of a noticeably extensive range of un-
controlled and illegal drugs. Not only their consumption has increased in 
the last three decades, but also their easy replacement for another de-
rivative and their illegal trafficking. In fact, in 2015, 34,000 seizures in 
EU took place, which implied 4.6 tonnes of seized NPS [2]. In this sense, 
the importance of synthetic cathinones has risen in the last 10 years. 

Synthetic cathinones (SCs), commonly known as “bath salts”, are 
substances chemically related to cathinone (Fig. 1), a stimulant drug 
found in the khat plant. The synthetic variants of cathinone can be more 
potent as drugs than the parent natural compound and, in some cases, 
much more dangerous due to their cardiac and neurological effects. 

Some examples of SCs are ephedrone, 3,4-MDPHP (3′,4′-methyl-
enedioxy-α-pyrrolidinohexiophenone), MPHP (4′-methyl-α-pyrrolidi-
nohexiophenone) and MDMC (3,4-methylenedioxy-N- 
methylcathinone). The qualitative identification of these drugs is usu-
ally carried out by the Zimmermann test, which uses 1,3-dinitrobenzene 
in basic medium to induce a colour change by the formation of a Mei-
senheimer complex. However, this test is non-specific giving rise to 
many false positive responses. Therefore, the preparation of more se-
lective sensors to detect these compounds is a hot field in the sensing 
area [3]. 

On the other hand, another drug that is generating significantly 
troublesome situations to law enforcement agencies and authorities is 
γ-hydroxybutyric acid (GHB or liquid ecstasy). GHB (Fig. 1), a natural 
product generated during the γ-aminobutyric acid (GABA) metabolism, 
is involved in the regulation of a high number of neurotransmitters such 
as GABA, dopamine or 5-hydroxytryptamine. However, this little fatty 
acid is also an illicit drug whose use has increased considerably. In 2020, 
GHB was reported as the fifth most consumed drug by Euro-DEN Plus 
hospitals [4]. This substance was found in 35% of critical care admis-
sions and 11% of drug acute intoxications, highlighting how easy is to 
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overdose during its consumption. The number of seizures of GHB in 
Europe also rose to 2000. Furthermore, this compound is implicated in 
other criminal acts, such as Drug-Facilitated Sexual Assault (DFSA). In 
that respect, GHB is one of the drugs known as “rape drugs” [5]. Usually, 
these substances are added to the victims’ drinks without their consent, 
undermining thus their will after ingesting them since they are not able 
to notice their presence in the drinks. Due to this fact, the number of 
reports in literature regarding the detection of GHB has increased in the 
last few years [6,7]. SCs are also likely to be found as “rape drugs” [8]. 

From this perspective, we focused our effort and attention on the 
development of chemosensors to detect these drugs: GHB and SCs. In 
that regard, the use of optical molecular sensors has proved to be very 
useful, reliable and inexpensive systems for a large number of analytes 
detection [9,10]. Following our experience in this field [11–13], we now 
report the preparation and evaluation of two new dyes based on a 4, 
4-difluoro-4-bora-3a,4a-diaza-s-indacene (borodipyrromethene or 
BODIPY) moiety functionalized in the alpha position with an hydrazine 
derivative (Fig. 1). Functionalization has been chosen, on one hand, to 
explore the acid-base properties of the compounds and their application 
in GHB detection. On the other hand, the capability of hydrazones to 
complex Cu(II) salts [14] combined with the well-established redox 
properties of cathinones, able to reduce Cu(II) to Cu(I), prompted us to 
study the possibility of using the prepared compounds in combination 
with Cu(II) to also detect these drugs [15]. 

2. Material and methods 

2.1. Materials 

The reagents employed in the synthesis were acquired from Sigma 
Aldrich and used without further purification. 1H NMR, 13C NMR and 
19F NMR spectra were registered with Bruker Avance 300 MHz or 500 
MHz spectrometers, all of them referenced to solvent peak, DMSO(d6). 
All photophysical analyses were carried out in air-equilibrated DMSO or 
MeCN at 298 K, unless otherwise specified. UV–vis absorption spectra 
were recorded with a PerkinElmer λ40 or Shimadzu UV-2600 spectro-
photometers using quartz cells with path length of 1.0 cm. Luminescence 
spectra were performed with a PerkinElmer LS-50 or FluoroMax-4 
Spectrofluorometer. Lifetimes shorter than 10 μs were measured with 
an Edinburgh FLS920 spectrofluorometer using time-correlated single- 
photon counting (TCSPC) technique. Quantum yields were determined 
with the method of Demas and Crosby [16] using Rhodamine B and 
Rhodamine 101 as standards (φfl = 0.7, 0.915, in MeOH and EtOH, 
respectively). The estimated experimental errors were 2 nm on the band 
maximum, 5% on the molar absorption coefficient and luminescence 

lifetime and 20% on emission quantum yields. Mass spectrometry 
spectra were carried out with a TripleTOFTM 5600 LC/MS/MS System, 
with 2 gas sources (both to 35 psi), 450 ◦C and ion gas voltage of 5500 V. 
Origin 2020 was the program used to plot titrations and to calculate 
complexation constants. 

2.2. Synthesis of compounds 1 and 2 

The synthesis of chemosensors 1 and 2 from BODIPY 3 is summa-
rized in Scheme 1. 

2.2.1. Synthesis of 2,6-diethyl-1,3,5,7,8-pentamethyl-4,4-difluoro-4-bora- 
3a,4a-diaza-s-indacene (3) [17] 

2.2 mL (16.30 mmol) of 3-ethyl-2,4-dimethyl-1H-pyrrole were dis-
solved in 8 mL of dry DCM under inert atmosphere. 3.44 mL (48.38 
mmol) of acetyl chloride were added dropwise and the mixture was 
refluxed for 75 min. Then, the mixure was poured over 40 mL of hexane 
and solvents were removed under vacuum. The red oil was dissolved in 
92 mL of dry DCM under inert atmosphere and 12 mL (86.10 mmol) of 
NEt3 were added. After stirring 10 min at room temperature, 12 mL 
(97.23 mmol) of BF3OEt2 were added dropwise and the stirring was kept 
for 2 h at room temperature. Then, the solvent was removed and the 
crude was purified by chromatographic column using silical gel as sta-
tionary phase and a mixture of hexane:AcOEt 9:1 as eluent. Compound 3 
was obtained as an orange solid (1.98 g, 76% yield). 1H NMR (300 MHz, 
CDCl3) δ 2.60 (s, 3H), 2.49 (s, 3H), 2.40 (q, J = 7.6 Hz, 4H), 2.33 (s, 3H), 
1.04 (t, J = 7.6 Hz, 6H). 13C NMR (126 MHz, CDCl3) δ 151.95, 139.86, 
136.47, 132.50, 131.80, 17.26, 17.09, 15.05, 14.52, 12.51. 

2.2.2. Synthesis of 2,6-diethyl-1,5,7,8-tetramethyl-4,4-difluoro-4-bora- 
3a,4a-diaza-s-indacene-3-carbaldehyde (4) [18] 

300 mg (0.94 mmol) of compound 3 were dissolved in 8.5 mL of THF 
and cooled to 0 ◦C. Then, a solution of 1.074 g (4.71 mmol) of DDQ in 2 
mL of THF were added dropwise and, after that, 3.5 mL of THF were 
added. The mixture was stirred while it was leading to warm slowly to 
room temperature. The solvent was removed under vacuum and the 
crude was purified by chromatographic column using silical gel as sta-
tionary phase and a mixture of hexane:AcOEt 8:2 as eluent. Compound 4 
was isolated as an orange powder (221 mg, 71% yield). 1H NMR (300 
MHz, CDCl3) δ 10.34 (t, J = 2.1 Hz, 1H), 2.82 (q, J = 7.5 Hz, 2H), 2.71 (s, 
3H), 2.61 (s, 3H), 2.45 (q, J = 7.6 Hz, 2H), 2.40 (s, 3H), 2.34 (s, 3H), 
1.09 (m, 6H). 13C NMR (126 MHz, CDCl3) δ 186.01, 163.99, 142.02, 
141.91, 138.88, 137.43, 136.93, 132.01, 17.80, 17.62, 17.17, 14.98, 
14.63, 14.33, 13.50, 13.16. 

2.2.3. Synthesis of compound 1 
100 mg (0.30 mmol) of compound 4 were mixed with 65 mg (0.39 

mmol) of 2-hydrazinobenzothiazole and 26 mg (0.32 mmol) of sodium 
acetate in 13 mL of EtOH and refluxed overnight. The solvent was 
removed under vacuum and the crude was purified by column chro-
matography on silical gel, using a mixture of hexane/AcOEt 7:3 as 
eluent. After drying at 40 ◦C for 1 day, compound 1 was isolated as a 
dark green powder (99 mg, 68% yield). 1H NMR (500 MHz, DMSO‑d6) δ 
12.63 (s, 1H), 8.56 (s, 1H), 7.93–7.70 (m, 1H), 7.49 (s, 1H), 7.31 (t, J =
7.6 Hz, 1H), 7.13 (t, J = 7.6 Hz, 1H), 2.89 (q, J = 7.3 Hz, 2H), 2.70 (s, 
3H), 2.48 (s, 3H), 2.43 (q, J = 7.5 Hz, 2H), 2.38 (s, 3H), 1.18 (t, J = 7.3 
Hz, 3H), 1.02 (t, J = 7.5 Hz, 3H). 13C NMR (126 MHz, DMSO‑d6) δ 
155.53, 141.20, 139.43, 135.86, 134.10, 133.05, 126.08, 121.94, 
121.67, 118.15, 115.50, 17.90, 17.01, 16.41, 14.60, 14.33, 14.23, 
13.25, 12.51. 19F NMR (471 MHz, DMSO‑d6) δ − 137.95, − 138.01, 
− 138.09, − 138.15. HRMS (ESI+): m/z calcd for C25H29BF2N5S [M+H]+: 
480.2210; found: 480.2190. UV–Vis: λmax (DMSO) = 584 nm. Fluores-
cence emission (DMSO): λmax = 616 nm (λexc = 500 nm), φfl: 0.39, τ: 2.5 
ns. 

Fig. 1. New prepared probes and structures of selected drugs.  
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2.2.4. Synthesis of compound 2 
100 mg (0.30 mmol) of compound 4 were mixed with 72 mg (0.65 

mmol) of semicarbazide hydrochloride and 79 mg (0.97 mmol) of so-
dium acetate in 12 mL of EtOH. The mixture was refluxed for 3 h and, 
after cooling, was filtered under vacuum and dried at 40 ◦C for 1 day. 
104 mg of compound 2 were obtained as a pink solid (83% yield). 1H 
NMR (500 MHz, DMSO‑d6) δ 10.68 (s, 1H), 8.30 (s, 1H), 2.73 (q, J = 7.4 
Hz, 2H), 2.69 (s, 3H), 2.45 (s, 3H), 2.41 (q, J = 7.6 Hz, 2H), 2.37 (s, 3H), 
2.35 (s, 0H), 1.10–0.96 (m, 6H). 13C NMR (126 MHz, DMSO‑d6) δ 
156.10, 155.15, 141.44, 141.35, 139.25, 135.92, 133.94, 133.61, 
132.82, 132.30, 131.89, 118.15, 115.50, 17.77, 17.01, 16.40, 14.62, 
14.21, 14.05, 13.27, 12.46. 19F NMR (471 MHz, DMSO‑d6) δ − 138.25, 
− 138.31, − 138.39, − 138.45. HRMS (ESI+): m/z, calcd for 
C19H27BF2N5O [M + H]+: 390.2282; found: 390.2268. UV–Vis: λmax 
(DMSO) = 559 nm. Fluorescence emission (DMSO): λmax = 580 nm (λexc 
= 450 nm), φfl: 0.94, τ: 4.7 ns. 

2.3. Sensing experiments 

2.3.1. NaGHB detection 
In a 3 mL quartz cell (1 cm of path length), 2410 μL of DMSO were 

mixed with 90 μL of sensor from a 139 μM solution in DMSO. After that, 
increasing quantities of NaGHB were added from a 1.25 mM solution in 
DMSO until saturation point was reached. 

2.3.2. Interferents measurements (NaGHB) 
In a 3 mL quartz cell (1 cm of path length), 90 μL of 139 μM solution 

of sensor in DMSO were mixed with each interferent (0.3% w/v citric 
acid, 0.01% w/v sodium ascorbate and 10% sucrose) and diluted until 
2500 μL with DMSO. 

2.3.3. Real samples (NaGHB) 
Initially, drinks were spiked in a 12 mM concentration of NaGHB. 

Next, an aliquot of 50 μL of each drink was mixed with 50 μL of NaHCO3 
(1 mM in H2O). 50 μL of this latter mixture were taken and added to a 
second mixture of 900 μL of DMSO and 50 μL of the sensor (1 mM in 
DMSO). The whole process was carried out at room temperature and the 
described changes took place immediately. 

2.3.4. Copper complexation 

2.3.4.1. Copper(II) titrations. In a 3 mL quartz cell (1 cm of path length), 
2410 μL of MeCN were mixed with 90 μL of sensor from a 139 μM so-
lution in MeCN. After that, increasing quantities of Cu(OTf)2 were added 
from a 1.25 mM solution in MeCN until saturation point was reached. 

2.3.4.2. Copper(I) titrations. In a 3 mL quartz cell (1 cm of path length), 
2220 μL of DMSO were mixed with 100 μL of ultra pure water, and 180 
μL of sensor from a 139 μM solution in DMSO. After that, increasing 
quantities of CuBr were added from a 2.5 mM solution in DMSO, with a 
3-min period of incubation after each addition, until arriving to satu-
ration point. 

2.3.5. Synthetic cathinone titrations 
In a 3 mL quartz cell (1 cm of path length), 2220 μL of DMSO were 

mixed with 100 μL of ultra pure water, 180 μL of sensor from a 139 μM 

solution in DMSO and 80 μL of Cu(OTf)2 from a 1.25 mM solution in 
DMSO. After that, increasing quantities of ephedrone were added from a 
2.5 mM solution in ultra pure water, with a 5-min period of incubation 
after each addition, until arriving to saturation point. 

2.3.6. Interferents measurements (SCs) 
In a 3 mL quartz cell (1 cm of path of length), 2220 μL of DMSO were 

mixed with 100 μL of ultra pure water, 180 μL of sensor from a 139 μM 
solution in DMSO and 80 μL of Cu(OTf)2 from a 1.25 mM solution in 
DMSO. After that, 1 equiv. of ephedrone, NaGHB, SCs or other abuse 
drugs were added, with a 5-min period of incubation after each addition. 

2.3.7. Computational methods 
The geometrical optimization of compounds 1 and 2 together with 

their deprotonated counterparts at the meso (1m and 2m) and hydra-
zone NH positions (1n and 2n) starting from different conformations for 
their hydrazone side-chain (-confx, where x is the conformation num-
ber) have been carried out using Gaussian16 rev. A03 program package 
[19] with the hybrid M062X functional of Truhlar and Zhao [20] using 
the split-valence triple-ζ 6-311+G(2d,2p) basis set [21–31]. At those 
conformations of compound 1 where a 1,4-syn-periplanar arrangement 
of nitrogen atoms of its side-chain is able to coordinate Cu(I) cation 
(-cu), the optimization has been carried out using Ahlrichs and co-
workers DEF2TZVP basis set [32,33] over the metal center. To take into 
account the effect of the solvent, DMSO, SMD solvation model was used 
[34]. Frequency calculations were performed over optimized structures 
to properly characterize minima structures (no imaginary frequencies). 

To explore the electronic transitions responsible for the UV–vis 
UV–Vis spectra, vertical excitation energies were computed over 
M062X/6-311+G(2d,2p)/SMD(DMSO) (DEF2TZVP over Cu(I) when 
present) geometries through single-point TD-DFT [35,36] calculations 
(15 states, singlets only) in solution using non-equilibrium formalism at 
the same theory level. From all the TD-DFT calculations submitted, 
GaussView [37] was used to visualize the results and generate the 
UV–vis plots using the excitation energies and the oscillator strength for 
each excited state. 

3. Results and discussion 

3.1. Synthesis and optical properties of BODIPY-probes 

Although there are several methods to synthesize BODIPYs [38], 
compounds 1 and 2 were synthesized as it is described in Scheme 1. In 
first place, 3-ethyl-2,4-dimethyl pyrrol was refluxed with acetyl chloride 
and TFA in DCM. NEt3 and BF3OEt2 were added consecutively and, after 
purification, derivative 3 was isolated. The synthesis of compound 4 was 
carried out through a selective oxidation of 3 using DDQ in THF at 0 ◦C. 
Finally, derivatives 1 and 2 were synthesized using the appropriate 
hydrazine derivatives in the presence of AcONa in refluxing EtOH. The 
structures of compounds 1 and 2 were established by HRMS and 1H, 19F 
and 13C NMR spectroscopy (see supporting information, Figs. S1–S6). 

Once compounds 1 and 2 were obtained, their optical properties 
were studied in MeCN and DMSO (5 μM both). Derivative 1 showed an 
absorption band centred at 584 nm and an emission band centred at 616 
nm in DMSO (λex = 500 nm). In this solvent, compound 1 presented a 
low intensity absorption band with maximum at 717 nm, most likely 

Scheme 1. Synthetic pathway to prepare compounds 1 and 2.  

S. Rodríguez-Nuévalos et al.                                                                                                                                                                                                                  



Dyes and Pigments 207 (2022) 110757

4

attributed to its deprotonated form. On the other hand, compound 2 
exhibited an absorption band centred at 559 nm and an emission profile 
centred at 580 nm (λex = 450 nm). The optical properties of both 
compounds studied in MeCN showed similar absorption and emission 
bands and, in any case, no significant solvatochromic effect was 
observed (see supporting information, Figs. S7–S10). High quantum 
yields were determined and lifetimes were measured in both solvents. 
Results obtained in DMSO are summarized in Table 1 (see Table S1 for 
ones in MeCN), which agree with those found in literature [39]. 

3.2. Acid-base properties and GHB detection 

The acid-base properties of compounds 1 and 2 were evaluated in 
DMSO solution with different bases: TBAOH, AcONa, DABCO and NEt3. 
Neither DABCO nor NEt3 gave rise to significant modifications in ab-
sorption or fluorescence emission (see Fig. S11). On the other hand, 
strong changes in colour and fluorescence emission were observed for 
compound 1 with TBAOH and AcONa, while compound 2 showed less 
intense ones. As can be seen in Fig. S11, the lowest energy absorption 
band, corresponding to the BODIPY core, disappeared after the addition 
of 1 equiv. of TBAOH in the case of compound 1 and decreased signif-
icantly for compound 2, being the effect on 1 stronger than in 2. In 
addition to this effect, in the case of compound 1 the absorption band 
peaked at 717 nm increased in intensity, whilst for compound 2 a new 
band appeared at lower wavelength (355 nm). A strong quenching of 
fluorescence was observed for both probes upon the base addition (see 
Fig. S12). 

These results indicated that whereas the anion generated from 
compound 1 led to an enhancement of the conjugation of the BODIPY 
core, resulting in a bathochromic shift of the main absorption band, that 
originated from compound 2 disrupted this conjugation, since an hyp-
sochromic effect was observed. This opposite behaviour suggested that 1 
underwent a deprotonation at the hydrazone NH, giving rise to an in-
crease in the electronic delocalization of the molecule, whereas 2 was 
deprotonated at the methyl group at the meso position of the BODIPY 
(Fig. 2), thereby justifying the loss of conjugation. 

This hypothesis was tested using both experimental and theoretical 
data. Thus, NMR spectra were registered for both probes with and 
without the presence of 1 equiv. of TBAOH. When the base is placed with 
compound 2, several changes were observed in both 1H and 13C NMR 
spectra: (a) only three signals (2.20, 2.13 and 2.10 ppm) of the methyl 
groups directly bond to the BODIPY core appeared instead of the four 
signals of the initial compound, (b) a couple of peaks at 5.05 ppm cor-
responding to two olefinic hydrogens appeared and (c) a signal around 
101 ppm in the 13C NMR spectrum corresponding to an olefinic carbon 
appeared (see Fig. 3 and S13), which clearly accords with the anion 
structure proposed in Fig. 2. 

By contrast, in the case of compound 1, the greatest portion of 
deprotonation took place at the NH of the hydrazone group since the 
signal around 12.66 ppm in the 1H NMR spectrum disappeared 
completely. At the same time, a small portion of compound 1 was also 
deprotonated at the meso position as a pair of peaks around 5.10 ppm 
were observed (see Fig. S14). 

To confirm these results, the acid-base properties of compounds 1 
and 2 were studied through theoretical calculations, computing the pKa 
of selected positions in both molecules in DMSO. Whereas in compound 
2 the H in meso position was, by far, the most acidic one; in compound 1 
there were two H with similar calculated acidity (Fig. 4). The slightly 

most acidic one was the H from the NH of the hydrazone group, which 
was in agreement with NMR experiments and UV–vis spectra since the 
largest deprotonation in that position has been demonstrated by the 
complete disappearance of the NH peak in the 1H NMR spectrum and the 
bathochromic shift of the main band observed in UV–vis spectra. 
Experimental maximum absorption bands shifts were compared to 
theoretical ones (see Table S2). 

Next, the utility of the new probes in detecting NaGHB was explored. 
To do that, absorption and emission titrations using both compounds 
were carried out (see Fig. 5 for absorption changes and Fig. S15 for 
emission ones). As can be observed in Fig. 5A, addition of increasing 
amounts of NaGHB to a 5 μM DMSO solution of compound 1 induced a 
linear decrease of the absorption band at 584 nm with a concomitant 
increase in the band at 717 nm. The increase of this band is responsible 
for the colour change observed in the solution (from purple to green). In 
the case of compound 2, the decrease of the band at 559 nm was 
observed with the simultaneous increase of the band at 355 nm, with its 
corresponding colour disappearance. 

From the titration experiments carried out, the limits of detection 
(LoD) could be determined, using the expression: LoD = 3⋅Sb

m , where Sb is 
the blank standard deviation and m the slope. The values obtained were 
0.4 μM for compound 1 and 0.3 μM for compound 2. Since these probes 
may be potentially able to detect GHB in real samples, it is worth 
noticing that these values are considerably lower than the amount of 
GHB necessary to induce severe effects (50 mg kg− 1), which is around 
75 mM (assuming an average weight of 62 kg in a standard volume of 
330 mL) [40]. 

Aiming at exploring the possible usability of the sensor in beverages, 
several interferents present in these media (citric acid, sodium ascorbate 
and sucrose at their usual concentration in drinks) were analysed in 
presence and absence of NaGHB (see Fig. S16 for absorption changes for 
compounds 1 and 2 and Fig. S17 for fluorescence changes). No signifi-
cant absorption changes were observed in any case, after the addition of 
the interferents, and both compounds were still capable of detecting 
NaGHB in a much lower concentration than that usually used in a rec-
reational environment [40]. 

With these promising results in mind, we decided to test compounds 
1 and 2 in real samples, in order to ensure their use to detect GHB in 
drinks. For this reason, some soft drinks were spiked with NaGHB (12 
mM). An aliquot of each one was slightly neutralised with NaHCO3 and 
mixed with the sensor (100 μM in DMSO). The changes in the emission 
intensity were immediately observed at room temperature under a 
common UV lamp. Results for compound 1 are shown in Fig. 6. Those for 
compound 2 are summarized in supporting information (Fig. S18). 

3.3. Copper complexation and synthetic cathinone detection 

Going a step further, the utility of the new probes in detecting SCs 
was explored. First, studies of Cu(II) and Cu(I) complexation with li-
gands 1 and 2 in different solvents were carried out (see Figs. S19–S20 in 
supporting information for the studies carried out in MeCN). These 
studies showed that whereas compound 2 did not exhibit any interaction 
with either Cu(II) or Cu(I) in DMSO, compound 1 showed different 
behavior depending on the cation. Thus, Cu(II) gave rise to little 
changes, especially in absorbance, whereas Cu(I) induced notable 
changes in both the absorption and the emission spectra of compound 1 
(see Fig. S21). A bathochromic shift of the absorption band from 584 nm 
to 632 nm as well as a fluorescence emission quenching was observed for 
1 in the presence of an excess of Cu(I) (Fig. 7). This different behaviour 
could be used to detect cathinones since it has been described in the 
literature that these compounds are suitable reducing agents for Cu(II) 
[15]. In a first stage, complexation of compound 1 with Cu(I) was 
carefully studied. Thus, we carried out titration experiments with 
increasing amounts of Cu(I), observing the formation of a 1:1 complex, 
whose association constant was determined as 9.22⋅104 M− 1 [41]. The 

Table 1 
Absorption and emission maximums, quantum yields and lifetimes of com-
pounds 1 and 2 in DMSO.  

COMPOUND λabs (nm) λem (nm) φ τ (ns) 

1 584 616 0.39 2.5 
2 559 580 0.94 4.7  
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starting point of the titration (black line) showed a less intense ab-
sorption of the band centred at 717 nm most likely due to the presence of 
some water. 

Since different results were obtained during the complexation 
studies of Cu(II) and Cu(I) in DMSO, we decided to explore the detection 
of ephedrone through the reduction of a salt of Cu(II) in the presence of 
probe 1. To do so, sensing conditions were optimized and the mea-
surements were carried out using 10 μM of compound 1, 4 equiv. of Cu 
(OTf)2, a mixture of DMSO:H2O 96:4 as solvent and an incubation period 
of 5 min. 

As can be observed in Fig. 8, the addition of increasing amounts of 
ephedrone to a mixture of compound 1 and Cu(II) resulted in a 

progressive fluorescence emission quenching of 1. From the titration 
results (Fig. 8B), a LoD of 2.0 μM was found (see Fig. S22 for absorption 
titration results). Since a potential application of this probe could be the 
identification of SCs in seized materials, the visual observation of the 
fluorescence quenching under a simple and portable UV-lamp would 
allow the enforcement officers in few minutes to discover whether or not 
those substances are SCs. 

To verify whether the mixture of compound 1 and Cu(II) was a useful 
sensor for the detection of other cathinones, the behaviour of several SCs 
such as: 3,4-MDPHP MPHP and MDMC was studied under the previous 
experimental conditions. Emission changes are shown in Fig. 9 (see 
Fig. S23 for absorption changes). 

Fig. 2. Proposed anions generated by probes 1 and 2 in presence of TBAOH.  

Fig. 3. Changes observed in 1H NMR spectra of compound 2 (DMSO‑d6) upon the addition of 1 equiv. of TBAOH (showed from 5.10 to 2.05 ppm).  

Fig. 4. Calculated pKa of selected positions at each BODIPY-derivative in DMSO.  
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Fig. 5. A) Absorption changes observed in probe 1 (5 μM in DMSO) with increasing amounts of NaGHB (0–2.5 equiv.). B) Changes in absorbance at 584 nm of probe 
1 upon the addition of increasing amounts of NaGHB and its linear regression. C) UV–Visible spectra changes observed for compound 2 (5 μM in DMSO) with 
increasing amounts of NaGHB (0–4.5 equiv.). D) Absorption changes at 559 nm of compound 2 upon the addition of increasing amounts of NaGHB and its 
linear regression. 

Fig. 6. Changes in emission of probe 1 in the presence of NaGHB in soft drinks. Notice that left vial means non-spiked drink, whilst the right vial stands for the 
spiked ones. 

Fig. 7. A) Absorption and (B) emission (λex = 500 nm) changes observed for compound 1 (10 μM in DMSO:H2O 96:4) after the addition of increasing quantities of 
CuBr (0–4.5 equiv.) and their reaction profiles at 584 nm and 616 nm, respectively (insets). 
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As can be seen, the response promoted by the presence of 2 equiv. of 
ephedrone is similar to the rest of SCs, highlighting the potential 
application of compound 1 to detect any SCs. It is also noteworthy that, 
regardless of the type of substitution present in cathinone core as well as 
the type of amine (primary, secondary or tertiary) they present, these 
SCs are able to reduce Cu(II) to Cu(I) and the subsequent Cu(I) formed 
can be detected by probe 1. 

As compound 1 was able to recognize separately GHB and cathinone, 
we tried to detect GHB using the new established conditions, i.e. in the 
presence of Cu(II) and a mixture of 96:4 of DMSO:H2O. Satisfactory 
results were obtained since compound 1 demonstrated that was capable 
not only of detecting NaGHB alone, but also when both drugs were 
simultaneously present (absorption and emission changes are summa-
rized in Fig. S24). These results highlighted that the presence of Cu(II) 
did not affect the NaGHB detection and extends the scope of the pre-
pared sensor. 

Finally, other abuse drugs such as benzodiazepines, scopolamine and 
ketamine were tested as potential interferents (Fig. 10 and S25). No 
remarkable changes were observed in the presence of any of them. Only 
the mixture of NaGHB and ephedrone gave rise to a significant response, 
even in the presence of the other drugs. 

4. Conclusions 

Two novel compounds (1 and 2) based on a BODIPY-hydrazone core 

have been prepared and their photophysical properties studied in two 
different solvents: DMSO and MeCN. The acid-base properties of both 
compounds were evaluated by spectroscopic techniques and the 
observed results corroborated by theoretical calculations. These probes 
can be used to detect NaGHB through an acid-base reaction. In presence 
of this drug, both probes showed a significant quenching fluorescence 
that can be easily observed under a laboratory UV lamp or with the 
typical light in pubs or discos and a change of colour that can be 
appreciated with naked-eye. The LoD determined were 0.4 μM for 
compound 1 and 0.3 μM for compound 2, making them suitable to point 
out the presence of GHB in spiked drinks. Additionally, the different 
complexation behaviour of compound 1 toward Cu(I) and Cu(II) salts in 
DMSO makes it suitable to detect SCs. The sensing mechanism in this 
case is based on the capability of cathinones to reduce Cu(II) to Cu(I). 
The limit of detection determined was 2.0 μM. In this case, the detection 
of SCs could be focused on the identification of seized materials, since 
the quenching of the fluorescence is readily noticed using a laboratory 
UV lamp. Finally, the mixture of 1 and Cu(II) is also capable to detect 
SCs and NaGHB simultaneously. 
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