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A B S T R A C T   

The estimation of biophysical variables is at the core of remote sensing science, allowing a close monitoring of 
crops and forests. Deriving temporally resolved and spatially explicit maps of parameters of interest has been the 
subject of intense research. However, deriving products from optical sensors is typically hampered by cloud 
contamination and the trade-off between spatial and temporal resolutions. In this work we rely on the HIghly 
Scalable Temporal Adaptive Reflectance Fusion Model (HISTARFM) algorithm to generate long gap-free time 
series of Landsat surface reflectance data by fusing MODIS and Landsat reflectances. An artificial neural network 
is trained on PROSAIL inversion to predict monthly biophysical variables at 30 m spatial resolution with asso
ciated, realistic uncertainty bars. We emphasize the need for a more thorough analysis of uncertainty, and 
propose a general and scalable approach to combine both epistemic and aleatoric uncertainties by exploiting 
Monte Carlo (MC) dropout techniques from the trained artificial network and the propagation of HISTARFM 
uncertainties through the model, respectively. A model recalibration was performed in order to provide reliable 
uncertainties. We provide new high resolution products of several key variables to quantify the terrestrial 
biosphere: Leaf Area Index (LAI), Fraction of Absorbed Photosynthetically Active Radiation (FAPAR), Canopy 
Water Content (CWC) and Fractional Vegetation Cover (FVC) are at 30 m Landsat spatial resolution and over 
large continental areas. Two study areas are considered: the large heterogeneous but moderately cloud covered 
contiguous United States, and the homogeneous but largely cloud covered Amazonia. The produced vegetation 
products largely agree with the test dataset (R = 0.90, RMSE = 0.80 m2/m2 and ME = 0.12 m2/m2 for LAI, and R 
= 0.98, RMSE = 0.07 and ME = 0.01 for FAPAR) providing low error and high accuracy. Additionally, the 
validation considers a thorough comparison with operational and largely validated medium resolution products, 
such as the Moderate-Resolution Imaging Spectroradiometer (MODIS) and Copernicus Global Land Service. Our 
products presented a good agreement and consistency with both MODIS (R = 0.84 and R = 0.85 for LAI and 
FAPAR, respectively) and Copernicus (R = 0.92 and R = 0.91 for LAI and FAPAR, respectively). To foster a wider 
adoption and reproducibility of the methodology we provide an application in GEE and source code at:https:// 
github.com/IPL-UV/ee_BioNet/   

1. Introduction 

Quantifying vegetation biochemistry, structure and functioning 
globally is key to study and understand global change, biodiversity and 
agriculture. Remote sensing science serves these purposes by deriving 

products with estimates of biophysical variables from satellite sensors 
and models. The derived products may constitute an excellent timely 
tool for monitoring of crops and forests in space and time. Deriving maps 
of biophysical variables of interest in terms of sufficient spatial and 
temporal resolution has been the subject of intense research and a 
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central problem in Earth monitoring of the terrestrial biosphere (Lille
sand et al., 2008; Liang, 2004, 2008; Camps-Valls et al., 2011; Verger 
et al., 2011). 

The Global Climate Observing System (GCOS) identified 50 Essential 
Climate Variables (ECVs) (GCOS, 2011; Spence and Townshend, 1996) 
considered to be feasible for global climate observation. Among these 
ECVs, the Leaf Area Index (LAI) and the Fraction of Absorbed Photo
synthetically Active Radiation (FAPAR) are the most widely used bio
physical vegetation variables to study the land surface, being routinely 
estimated at global and regional scales using remote sensing data. LAI is 
a quantitative measure of the amount of live green leaf material present 
in the canopy, it is defined as half the total area of green elements per 
unit horizontal ground area (Chen and Black, 1992) and accounts for the 
amount of green vegetation that absorbs or scatters solar radiation. 
FAPAR accounts for the fraction of solar radiation absorbed by plants, it 
constitutes an indicator of the vegetation health status and thereby its 
primary productivity (Asner, 1998; GCOS, 2011). In addition, there are 
other related variables of interest as the Fraction of Vegetation Cover 
(FVC), which can be applied in cropland areas (Verger et al., 2009; Sun 
et al., 2021), and the Canopy Water Content (CWC), used for measuring 
canopy status in droughts (Martin et al., 2018). FVC represents the green 
vegetation fraction that covers a unit area of horizontal soil, and can be 
estimated from the gap fraction at nadir view (Bonham, 2013). FVC does 
not depend on variables such as the geometry of illumination, thus being 
a good alternative to vegetation indices for monitoring Earth’s green 
vegetation (Baret et al., 2013; García-Haro et al., 2018). Canopy status, 
water stress and health can be monitored by estimating the amount of 
water in the leaves per unit ground area which is provided by the CWC. 
CWC is usually computed as the product of leaf water content Cw and LAI 
(García-Haro et al., 2020; Clevers et al., 2010; Knyazikhin et al., 1998b). 
Closely monitoring all these four variables serves to characterize the 
structure and functioning of vegetation, which are key inputs for a broad 
variety of biosphere and land applications, from climate, forestry and 
agriculture, to environmental and natural hazards management (Peng 
et al., 2019; Haboudane et al., 2004). 

The literature of variable estimation in remote sensing is vast, and 
can be categorized under different approaches and methodologies. 
While sample estimators exploit a sample to produce the estimates (see 
e.g. Weiss and Baret (2016)), point estimators use one single measure
ment and a set to produce such estimates (see e.g. Clerici et al. (2010)). 
Statistical and machine learning methods, both parametric and 
nonparametric methods have been vastly used (Verrelst et al., 2015). 
Recent methods like the kernel distribution regression (Adsuara et al., 
2019) and invertible neural networks (Ardizzone et al., 2019) are 
nonparametric models that can work as both sample and point estima
tors. The parametric regression methods aim at explicitly parameter
izing the relationship between spectral bands and the biophysical 
parameters (Glenn et al., 2008). This is mainly performed using vege
tation indices regressed with the biophysical parameters using a 
regression function. The field of vegetation indices is very active and has 
recently developed unifying frameworks to deal with nonlinear relations 
(Camps-Valls et al., 2021a). The non-parametric methods make use of 
machine learning regression techniques to establish a mapping function 
from input variables represented in the spectral bands and the output 
biophysical parameters through a training phase (Verrelst et al., 2012). 
The third and most traditional approach to parameter estimation is to 
invert a radiative transfer model (RTM) (Knyazikhin et al., 1998a), but 
this has shown to be a complex ill-posed inverse problem. The RTM 
inversion has found application in local campaigns, but they typically 
require site-specific information (e.g., leaf and canopy information) for 
proper model parameterization (Campos-Taberner et al., 2016), which 
is not always available. 

The field of variable estimation has considered the combined use of 
model simulations that are inverted with machine learning regression 
algorithms (Camps-Valls et al., 2011). This approach reports flexibility 
and computational efficiency. Within such a scheme, one uses physically 

constrained calibration data for training a machine learning (ML) 
regression method. This approach has been widely adopted recently to 
estimate biophysical parameters with all kinds of machine learning al
gorithms, such as Gaussian processes (Camps-Valls et al., 2016; Verrelst 
et al., 2015, 2012), random forests (Campos-Taberner et al., 2018), and 
neural networks (Baret et al., 2007). In this paper, we propose machine 
learning parameter estimation approach based on RTM inversion with 
neural networks. 

Deriving global products fulfilling GCOS requirements for spatial and 
temporal resolution (daily products at 50 m for adaptation studies and 
200-500 m for modelling studies) from optical sensors faces two 
important challenges: (1) the important trade-off between spatial and 
temporal resolution, often calls for fusion of multisensor data to exploit 
multimodalities and improve resolution; and (2) variable estimation is 
severely hampered by cloud contamination, which leads to scenarios 
with limited observations. To address both issues, in this paper we will 
rely on the HIghly Scalable Temporal Adaptive Reflectance Fusion 
Model (HISTARFM) algorithm, which combines multispectral images of 
different sensors (e.g. MODIS and Landsat) to reduce noise and produce 
monthly gap free high resolution (30 m) reflectance data to be used for 
parameter retrieval Moreno-Martínez et al., 2020). The algorithm is 
based on an unbiased Kalman filter, it is implemented in the Google 
Earth Engine (GEE) cloud computing platform (Gorelick et al., 2017), 
and yields reflectance data and associated uncertainty estimates. 

Having access to input uncertainties is a key aspect of our proposal, 
and addresses an important limitation with most of the state of the art 
remote sensing data products, especially at high spatial resolution: 
quantifying the uncertainty of the estimates. We propose an holistic 
treatment of uncertainty, focusing both on epistemic uncertainty (model 
uncertainty) which refers to the confidence a model has about its pre
dictions and is related to the choice of parameters and aleatoric uncer
tainty (data uncertainty) that stems from noise in the input data, priors 
or errors in RTM and is a consequence of unaccounted factors that 
introduce variability in the inputs or targets (Caers, 2011). While 
epistemic uncertainty has been usually computed as an output of RTM 
inversion approaches (Verrelst et al., 2012; Camps-Valls et al., 2016; 
García-Haro et al., 2018), aleatoric uncertainty is rarely estimated in 
these models or empirical procedures are used to do so (Knyazikhin 
et al., 1998b). In this paper, we capitalize on a more rigorous approach 
for the uncertainty propagation of the inputs to capture the influence of 
the combined uncertainties of the input bands used for the estimation of 
biophysical variables and produce realistic uncertainty estimates. Hav
ing access to high resolution reflectance data with associated data un
certainties is crucial in this context, as it will allow us to propagate them 
through our neural network retrieval model. 

Neural networks have shown an excellent trade-off between 
epistemic uncertainty and efficiency at the product (test) time, and have 
outperformed traditional models in Earth environmental monitoring 
(Reichstein et al., 2019; Camps-Valls et al., 2021b). However, standard 
neural networks cannot deal with uncertainty quantification. A full 
Bayesian treatment of uncertainty for model inversion is computation
ally very costly and often impractical in real applications, but still useful 
for validation processes. We propose to use dropout for neural networks, 
which prevents overfitting during the training phase (Srivastava et al., 
2014) and, when applied in the test phase, is called Monte Carlo (MC) 
dropout. This approach can be interpreted, under certain assumptions, as 
a Bayesian approximation to quantify model uncertainty (Gal and 
Ghahramani, 2016). 

In this work we argue and hypothesize that the problem of high- 
resolution long-term and gap-free parameter estimation can be 
resolved with new machine learning models that fuse multisource data 
to alleviate the gaps in time series, operate in a cloud computing plat
form to provide products at high spatial resolution, and can estimate and 
propagate uncertainties. Our goal is thus to build a processing chain for 
efficient derivation of high spatial resolution products of several key 
variables to quantify the terrestrial biosphere (LAI, FAPAR, FVC and 
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CWC) at 30 m Landsat scale and over large continental areas. We used 
neural networks as nonparametric regression models using physically- 
based calibration data from the PROSAIL RTM (Berger et al., 2018) 
model runs. Special attention is given to the quantification of the com
ponents of uncertainty (both epistemic and aleatoric) of the products. 
We illustrate resulting monthly maps in large complicated areas with 
spatial heterogeneity and moderate-to-high cloud cover, like the 
Contiguous US (CONUS) and Amazonia. Biophysical variables estimates 
are compared with other operational products (e.g. MODIS and Coper
nicus) (Knyazikhin, 1999; Baret et al., 2013) in the representative 
BELMANIP sites database (Baret et al., 2006) and a model calibration 
analysis is performed in order to provide reliable uncertainty estimates. 

2. Material and methods 

The proposed methodology is based on a simulated reflectance 
dataset from the PROSAIL model. A non-linear regression predictor is 
built between the vegetation variables of interest and simulated re
flectances in Landsat wavelengths. Training a neural network with 
dropout to invert the PROSAIL database and then using gap-free data at 
Landsat resolution derived from the HISTARFM algorithm, allows us to 
obtain estimates at 30 m of all considered variables, and the associated 
data and model uncertainty maps applying MC dropout and uncertainty 
propagation. Working with petabytes of datasets (8x109 pixels per 
image) is a challenging task and has storing, accessing and computing 
requirements that can be managed by using High Performance 
Computing (HPC). Fig. 1 shows a schematic of the approach, which is 
further detailed in the following sections. 

2.1. High-resolution gap-filled data 

We begin with the use of high-resolution gap-filled surface reflec
tance data derived from the fusion of Landsat and MODIS with the 
HISTARFM algorithm presented in Moreno-Martínez et al. (2020). 
HISTARFM provides expected value and one standard deviation pre
diction intervals of reflectance over land for bands required as input to 
the network predictor (Moreno-Martínez et al., 2020). This approach 
allows to combine two estimators operating synergistically to filter out 
random noise and reduce the bias of Landsat spectral reflectances. The 
first estimator is an optimal interpolator that produces estimates of 

Landsat reflectance values for a given time by combining a Landsat 
climatology, pre-computed from the available Landsat record, and a 
fusion of MODIS and Landsat reflectances obtained from the respective 
satellite overpasses closest to the time of interest. The second estimator 
is a Kalman filter that corrects the bias of the reflectance produced by the 
first estimator. HISTARFM was implemented and designed to work on a 
per-pixel basis to allow for scalability in cloud computing environments 
such as GEE. 

The direct validation of HISTARFM at a continental scale over a 
thousand locations representing major vegetation types over the 
contiguous US proved the reliability of the method, with relative mean 
errors (rME) below 1.5% for all bands and with relative mean absolute 
errors (rMAE) and relative root mean squared errors (rRMSE) being low 
or moderate (Moreno-Martínez et al., 2020). In addition, HISTARFM 
also provides uncertainty estimates along with the predicted reflectance 
as ancillary data. These predicted uncertainties were also validated, and 
showed high consistency with the errors over the validation data set. 
The validation of these spatially and temporally explicit realistic un
certainties is especially relevant for the present study, as it provides a 
solid foundation for the reliable use of HISTARFM in error propagation 
tasks. Adding high quality uncertainty estimates in our model inputs will 
help to provide more realistic uncertainty estimates at the end of the 
proposed processing stream. 

2.2. Inversion of PROSAIL 

We used neural networks for inverting the PROSAIL radiative 
transfer model. PROSAIL couples two RTMS: PROSPECT (Feret et al., 
2008) and SAIL (Verhoef, 1984). PROSAIL simulates the scene bidirec
tional reflectance taking into account the leaf biophysical properties 
using PROSPECT, and the canopy architecture, soil background, and hot 
spot using SAIL, for a given set of illumination and sensor (observation) 
geometry conditions. In this study we used the PROSPECT-5B, and 
4SAILH versions (see Appendix A for further details). 

We created a database of spectral simulations representative of a 
wide range of vegetation conditions. The simulations were obtained 
after the PROSAIL execution in forward mode, which requires the set up 
of the following input parameters: 

Fig. 1. Processing chain proposed in this paper. We exploit high-resolution cloud-free data derived from the HISTARFM. The reflectances are used for the neural 
network to produce high-resolution (30 m) estimates of biophysical parameters (LAI, FAPAR, FVC, CWC). The neural network is trained inverting PROSAIL. The 
HISTARFM also provides high-resolution reflectance uncertainties, which are propagated through the neural network using the network Jacobians, and yield the 
aleatoric uncertainty σa. Applying a MC dropout strategy to the network we derive the epistemic uncertainty σe. Both uncertainties are summed up and, together with 
the ground truth and variable estimates, are the inputs for a model calibration step that will provide a recalibrated total uncertainty estimates. The methodology yield 
both the total high-resolution uncertainty maps accompanying the high-resolution biophysical parameter products. 

L. Martínez-Ferrer et al.                                                                                                                                                                                                                       



Remote Sensing of Environment 280 (2022) 113199

4

1) Within PROSPECT: A set of leaf optical properties, given by the 
mesophyll structural parameter (N), leaf chlorophyll (Chl), dry 
matter (Cm), water (Cw), carotenoid (Car) and brown pigment (Cbr) 
contents. It is worth mentioning that we used the PROSPECT-5B 
model, which allows to deal with Chl and Car contents separately.  

2) Within SAIL: A set of canopy level and geometry characteristics, 
determined by leaf area index (LAI), the average leaf angle inclina
tion (ALA), the hot-spot parameter (Hotspot), the solar zenith angle 
(θs), view zenith angle (θv), and the relative azimuth angle between 
both angles (ΔΘ). 

We considered PROSAIL for simulating Landsat-5 spectra for the sake 
of consistency with the high-resolution data coming from HISTARFM 
which is subsequently ingested for production and uncertainty propa
gation. Reflectances were simulated for each wavelength and filtered in 
accordance with the spectral response of the Landsat-5 channels (see 
Fig. A.1 in Appendix A). Hence, the resulting data base mimics six 
Landsat-5 Thematic Mapper (TM) spectral bands with wavelengths 
ranging from 0.45μm to 2.35μm (blue, green, red, NIR, SWIR-1, and 
SWIR-2 channels) and took into account the orbit characteristics of 
Landsat to simulate satellite angular sampling. 

The parameter distributions were obtained from previous studies 
(García-Haro et al., 2018, 2020; Campos-Taberner et al., 2018) to be 
representative of realistic cases. In particular, the leaf parameters were 
set up by exploiting the information of a global scale database of leaf 
properties (TRY) (Kattge et al., 2020) to optimize our prior information 
on RTM modelling to better constrain the retrievals (see Table A.1 in 
Appendix A) (Combal et al., 2003). We have adopted a random Latin 
hypercube sampling design allowed to populate more evenly the canopy 
realization space (Mckay et al., 2000). Altogether 3303 cases of surface 
reflectances and associated biophysical variables were simulated. 

2.3. Neural networks for biophysical parameter retrieval 

Artificial neural networks are powerful nonlinear and non- 
parametric regression methods and widely used in Earth sciences, 
from remote sensing to general-purpose geoscientific problems (Good
fellow et al., 2016; Reichstein et al., 2019; Camps-Valls et al., 2021b). 
Their application for biophysical parameter retrieval has been wide
spread and has shown uncertainties comparable with existing ap
proaches (Gong, 1999; Fang and Liang, 2003; Danson et al., 2003; 
Walthall et al., 2004; Combal et al., 2003). Neural networks are well 
suited for model inversion and parameter estimation as they are able to 
model complex relationships between land surface reflectance and the 
biophysical parameters, which are known to be highly non-linear by 
nature. 

Feedforward neural networks are formed by a hierarchical structure 
of basic operation units (or neurons) distributed in layers (Bishop et al., 
1995). Neural networks, once trained, can be readily applied to test data 
and produce output predictions quickly. They are easy to implement, 
scale and run in high-performance platforms like GEE, where only a set 
of weights are stored and prediction only involves some matrix multi
plications, summations and data transformations (such as non-linear 
functions). A network with a sufficient number of hidden layers and 
units is capable of approximating any bounded, continuous function to 
an arbitrary level of precision over a finite domain so they are regarded 
as universal function approximations (Bishop et al., 1995). Current 
training algorithms and regularization strategies allow us for complexity 
control and avoid overfitting (Srivastava et al., 2014; Montavon et al., 
2012). In addition, as we will see later, neural networks allow for effi
cient uncertainty propagation and, thanks to recent developments in 
machine learning, account for model uncertainty too (Gal and Ghahra
mani, 2016). 

Let us fix the notation, where for simplicity we assume a shallow, one 
hidden layer network. The n input features x ∈ ℝn to a neuron are 
weighted times w ∈ ℝn, then translated with a bias term b, and finally 

passed through an activation (or link) nonlinear function f: 

y = g

(
∑m

j=1
vjf

(
∑n

i=1
wijxi + bj

)

+ c

)

, (1)  

where the input feature vector is x = [x1,x2,…,xn] and xi is the ith input 
feature, n is the number of variables/features, wij is the weight con
necting the ith input with the jth node in the hidden layer, bi is the bias 
term of the ith node, m is the number of nodes in the hidden layer, f(⋅) is 
the transfer function of the neurons in the hidden layer, vi are the 
weights between the ith hidden node and the output node, c is the bias of 
the output node, and g(⋅) is the transfer function of the outputs node. 
Typically the transfer functions f are sigmoid functions, f(z) = tanh (z), 
while the output link g is chosen to be a linear link, g(z) = z in regression 
settings. 

Training the network weights and biases can be done with many 
different algorithms. We used the Adam algorithm which is a very 
efficient method, providing state-of-the-art performance (Kingma and 
Ba, 2014). The network architecture was selected by cross-validation 
and finally yielded a rather simple network with m = 4 neurons and 
one single hidden layer, which worked well for all variables. The 
network was trained with early stopping on cross-validation: 85% of the 
data for training (N = 2807) and 15% for validation (N = 496). We used 
the least squares error as a loss function, a batch size of 64 and 1000 
epochs. Dropout was used during training (Srivastava et al., 2014); it is 
customary to use a dropout factor of 0.2, but we fixed it to γ = 0.01 due 
to the small number of nodes in the network as proposed in Piotrowski 
et al. (2020). In order to quantify model uncertainty, MC dropout is 
applied in the test phase (Gal and Ghahramani, 2016). We sampled bi
nary variables for every input example and for every network unit in 
each layer. Each binary variable takes values 1 with probability 1 − γ. 
Then a unit is dropped for a given input if its corresponding binary 
variable takes value 0 drawn from a Bernoulli distribution. Due to the 
requirement for reproducibility in GEE, the prediction module is 
composed of the most probable models, that in this case were five 
models; the ones where one neuron is dropped (four models) plus the 
one where all neurons are active.1 The neural network weights obtained 
in this process for all biophysical parameter models were transferred to 
the GEE platform, where the prediction module was implemented 
therein for production. We also computed the differences in the esti
mates between the full model and the prediction module finally 
considered in this work, concluding that the differences were negligible 
(<1%) while computation efficiency was greatly improved. Therefore, 
the final prediction for point x* is the weighted mean of the predictions 
yi

* = f(x*;θi) of the i = 1, …, M submodels parameterized with model 
weights θ := {w,v,b,c} obtained for each case of dropping neurons, and 
multiplied by the probability pi that this model takes place, μ* =
∑M

i=1yi
*pi. 

2.4. Uncertainty quantification and propagation 

Understanding what a model does not know is a critical part of many 
machine learning systems, and has strong implications in real-life ap
plications. Good uncertainty estimates quantify when one can trust a 
model’s predictions. There are two main types of uncertainty: epistemic 
uncertainty and aleatoric uncertainty (Pearce et al., 2020; Caers, 2011):  

• Epistemic uncertainty. We represent this uncertainty by placing a 
distribution over the neural network weights θ. This distribution 
depends on the training dataset, D :=

{(
xi, yi

)⃒
⃒i = 1,…,N

}
. 

1 The probabilities of other cases occurring (two dropped neurons, three 
dropped neurons, all neurons dropped and their respective commutations) were 
not considered as the probability of these cases was lower than 10− 4. 
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Therefore, the weight distribution after training can be written as 
p(θ|D ), which is intractable except in trivial cases. In order to 
approximate this distribution we followed a p ~ Bern(θ;γ), where γ is 
the dropout rate on the weights. Following this assumption, the 
model (epistemic) uncertainty for prediction μ is given by the vari
ance as follows: 

σe =
∑M

i=1
pi
(
yi

* − μ*
)2
, (2)  

where yi
* are the predictions for x* of the ith submodel obtained in the 

MC dropout process.  

• Aleatoric uncertainty. HISTARFM provides not only high resolution 
reflectances but associated uncertainty estimates as generated by the 
bias-aware Kalman filter algorithm (Moreno-Martínez et al., 2020). 
We propagate these data uncertainties through the nonlinear func
tion implemented by the neural networks before. Estimating the 
propagation of the uncertainties for arbitrarily complex nonlinear 
functions can be a computationally costly problem. Denoting the 
arbitrary nonlinear function implemented by a network as F, a 
distortion in the input space Δx propagates through F giving rise to a 
distortion in the output F(x + Δx), which can be approximated with 
the Taylor’s expansion of the function where ∂F/∂xi denotes the 
partial derivative of F with respect to the ith component, evaluated at 
the mean values of all components of x. In matrix notation, the 
truncated linear approximation reduces to F ≈ F0 + J where J is the 
Jacobian matrix. Therefore, to propagate the input uncertainties, we 
used the neural network Jacobian which contains the first de
rivatives of the network errors with respect to the weights and biases, 
which is a quite standard approach in remote sensing (Aires et al., 
2004). Moreover, Jacobians provide information on the relevance of 

Fig. 2. LAI calibration curves (top) and prediction with uncertainties (bottom) using uncalibrated (left) and calibrated model (right). Only 50 observations form the 
calibration independent set are represented for illustrative purposes. 

Table 1 
Metrics obtained in calibration: mean absolute calibration error (MACE[m2/ 
m2]), root mean squared calibration error (RMSCE[m2/m2]) and miscalibration 
area (MA).   

MACE RMSCE MA 

Uncalibrated 0.14 0.16 0.14 
Calibrated 0.04 0.05 0.04  

Table 2 
Results for BioNet methodology: mean error ME; root-mean-square error RMSE; 
Pearson’s correlation coefficient ρ, Spearman’s correlation coefficient ρS, mutual 
information MI, and distance correlation Dcorr over an independent test set.  

Variable ME RMSE ρ ρS MI Dcorr 

LAI (m2/m2) − 0.12 0.80 0.90 0.92 0.83 0.92 
FVC − 0.01 0.07 0.98 0.97 1.73 0.98 
FAPAR − 0.01 0.07 0.98 0.96 1.64 0.98 
CWC (g/cm2) 0.00 0.02 0.84 0.89 0.62 0.88  
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network inputs and can therefore be used to select the most signifi
cant inputs. 

Deriving the output of a network F wrt the input features in (1), and 
using the chain rule, we obtain 

Ji :=
∂y
∂xi

=
∑m

j=1
vij
(
1 − f 2( aj

) )
wij, (3)  

where aj =
∑n

i wijxi + bj and we assumed a liner output layer g(z) = z. 
This expression depends on the neural network weights and biases θ 
(which are fixed after training), and allows us to estimate the propa
gation of the uncertainty through the network. Hence we compute the 
aleatoric uncertainty as follows: 

σa =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1
J2

i e2

√

, (4)  

where Ji are the Jacobians of the network and e are the uncertainties of 
the inputs, which depend on the band and the time step as proved by the 
HISTARFM algorithm. The combination of the two types of uncertainties 
can be done in many ways. However, according (Loquercio et al., 2020), 
which follows the definition of the expected value and covariance, ap
proximates the posterior over the network weights as a Bernoulli dis
tribution and finally approximates the integral by Monte Carlo methods, 
the total uncertainty can be generated by summing the two components 
of data and model uncertainty: 

σT = σe + σa. (5) 

In our experiments we report both uncertainty components as well as 
the total uncertainty. 

2.5. Model calibration 

Assessing the reliability of uncertainty estimates implies the quan
tification of how well the derived predictive confidence represents the 
actual probability. Therefore, in order to make use of uncertainty 
quantification methods, one has to be sure that the network is well 
calibrated (Guo et al., 2017). Calibration curves and calibration metrics 
permit to assess the calibration analysis by determining the agreement 
between predictions and observations in different percentiles of the 
predicted values. Fig. 2 shows the calibration curves and the prediction 
plots for the output LAI. It can be seen that when the model is uncali
brated we are reporting too little uncertainty so that the predictor is 
overconfident. In order to calibrate it, we computed a scaling factor 
which uniformly recalibrates predicted standard deviations by mini
mizing (see Coleman and Li (1996); Dennis (1977)) the metric of interest 
that in this case was mean absolute calibration error (see Fig. 2 bottom). 
The method searches the standard deviation scale factor (τ) which 
produces the best recalibration, and the updated standard deviation is 
simply rewritten as τ*σT. Table 1 shows how all the metric values 
decrease when a recalibration is performed. Calibration analysis for the 
rest of biophysical variables can be found in Appendix B. Even though 
FAPAR model does not need recalibration, we decided to sistematically 

Fig. 3. Scatter plots over an independent test set for all considered variables. The fit line is shown in yellow and the bisector in red. (For interpretation of the 
references to colour in this figure legend, the reader is referred to the web version of this article.) 
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Fig. 4. BioNet results of prediction and uncertainties for LAI, FAPAR and FVC. For illustrative purposes only August 2016 are shown.  
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apply it to all the variables. Note that this just implies a multiplication 
times a scalar in the production (test) phase, which is computationally 
efficient. 

3. Results 

We evaluate the proposed retrieval algorithm (hereafter named 
BioNet) performance with a quantitative and qualitative analysis. We 
provide accuracy, fit and bias scores for the calibrated neural network 
training, as well as a thorough validation of the derived product esti
mates in time and space. We also compare the proposed methodology 
with MODIS (LAI, FAPAR) and Copernicus (LAI, FVC, FAPAR) opera
tional products. The spatial inspection of the products include two main 
regions. We mainly focused our study area in the Contiguous US 
(CONUS), a large and highly heterogeneous and representative area 
with a wide range of climatic regions and vegetation types. We com
plement this study in the more challenging area of Amazonia, where the 
heavy cloud contamination imposes difficulties in any biophysical var
iable estimation processing chain. Finally, we carried out a site level 
comparison with MODIS and Copernicus operational products in the 
Belmanip site network over long temporal records to check the temporal 
consistency among them. 

3.1. Quantitative analysis 

Table 2 and Fig. 3 illustrate the statistical performance and the 

scatterplots of BioNet over an independent out-of-sample test set con
sisting of N ≃ 500 observations for the four biophysical variables 
considered: LAI, FAPAR, FVC and CWC. Performance is evaluated with 
several standard measures of association: mean error (ME) reflecting the 
bias of the estimates, the root-mean-square-error (RMSE) capturing ac
curacy, the Pearson’s correlation coefficient for ρ linear goodness-of-fit. 
In addition, we also use nonlinear measures of fit like the Spearman’s 
correlation ρS (Hollander et al., 2013), mutual information MI (Cover 
and Thomas, 2006) and distance correlation Dcorr (Székely et al., 2007). 
Both linear and nonlinear measures of fit reflect good-to-outstanding 
results for all variables, with high correlations and shared informa
tion, low error levels and biases. Results for LAI, FVC and FAPAR are 
numerically similar and better than for CWC, which is a more chal
lenging problem as reported elsewhere (García-Haro et al., 2020). Sta
tistics are consistent with results previously reported in the literature 
(Kang et al., 2021; Djamai et al., 2019; García-Haro et al., 2018). Fig. 3 
confirms the low bias and very good fit of the models in general (small 
intercept and close to one slopes), with some slight underestimation for 
LAI and the impact of outliers in CWC. 

3.2. Qualitative analysis 

Here we illustrate the performance of our methodology in two 
challenging cases involving heterogeneous covers and high missing data 
and noise levels. 

Fig. 5. Boxplot representing the differences between BioNet and MODIS/Copernicus for the classes named in Tables C.3 for 2016.  
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3.2.1. Heterogeneous CONUS area 
The extent and heterogeneity of the CONUS area gives us the op

portunity to assess how the approach performs in different biome types. 
The time series of this study area comprises 10 years of monthly prod
ucts derived at high spatial resolution (30 m) from Landsat between 
2009 and 2019. For illustrative purposes, Fig. 4 shows an example of the 
results corresponding to August 2016, both the predictions, the two 
sources of uncertainty and the total uncertainty. 

The spatial patterns of predictions have similar behaviour obtaining 
high values in the East of the CONUS corresponding with areas of 
croplands and deciduous and mixed forests, and lower values for the 
western part corresponding with grasslands and shrublands. According 
to the uncertainty maps, it is remarkable that for the aleatoric one there 
is a substantial similarity for the higher values, since nearly all of them 
are located in the cropland area of the country conforming a common 
spatial pattern for the specific data shown in the figure. Grasslands, 
pastures, and crops have a significantly faster growth (and phenological 
cycles) than forests, yielding higher variance at the considered temporal 
resolution (monthly time steps). This increase in variance should not be, 
in fact, attributed to noise exclusively but also related with faster 
changes in vegetation canopy which occur within a monthly time step 
(Moreno-Martínez et al., 2020). 

In order to evaluate the similarities between BioNet and the opera
tional products from MODIS and Copernicus we computed the differ
ences for each class (acronyms in Appendix CTable C.3) and for each 
month. Results are shown in Figs. 5 and 6 for 2016 for illustrative 

purposes. The mean values for each biophysical product computed with 
BioNet and the mean of the MODIS products were calculated within the 
extent of the Copernicus pixels (1000 m pixel size) to match their spatial 
resolution for a more proper comparison. 

The comparisons with MODIS/Copernicus have been made at pixel 
level but this type of comparison introduces considerable errors due to: 
spatial differences and scale effects. They cause increased dispersion in 
our cross-product comparisons and are expected to be more pronounced 
in areas domitated by sub-pixel heterogeneity. Fig. 5 shows that the 
differences between BioNet and MODIS or Copernicus products are land 
cover class specific. For LAI estimation, BioNet underestimates over EBF 
for MODIS and over ENF, EBF and MF for Copernicus. No significant 
differences with MODIS are observed for the other land cover classes 
(DBF, MF, SHR, GRA and ENF), while the main discrepancies with 
Copernicus are observed over GRA and BRN. There is more variability 
for classes ENF, EBF, DNF, DBF and MF corresponding with the different 
types of forest in the CONUS. A possible explanation could be that our 
methodology is based on a turbid model so that our predictions are 
closer to an effective LAI, whereas both MODIS and Copernicus corre
spond to actual LAI. This becomes more visible in biomes with high 
vegetation content. Regarding FAPAR, higher discrepancies are 
observed with Copernicus in forests (ENF, EBF, DNF, DBF and MF) and 
Savanas (SVN) where the values of BioNet FAPAR estimates are lower. 
Fig. 6 reveals that there is practically no variation in the central months 
of the year between BioNet LAI estimates and MODIS and Copernicus 
estimates. Interestingly, a pattern can be seen that generates an upward 

Fig. 6. Boxplot representing the differences between BioNet and MODIS/Copernicus over the months of 2016.  

L. Martínez-Ferrer et al.                                                                                                                                                                                                                       



Remote Sensing of Environment 280 (2022) 113199

10

curve towards the middle months of the year, which might be related 
with the standard vegetation phenology so that, when the vegetation is 
at its maximum, BioNet cannot reach the higher values because it re
flects the effective LAI rather than the actual LAI. For FAPAR the more 
representative discrepancies are with Copernicus at the end of the year. 

Fig. 7 represents the relative differences between BioNet and the 
MODIS and Copernicus products for LAI and FAPAR during 2016. It is 
remarkable that in general the differences do not exceed 0.5 for LAI and 
0.15 for FAPAR. However, some forest biomes yield higher differences. 
This might be explained because MODIS is biome-dependent and 
therefore Copernicus too (indirectly), as it is trained with a combination 
of MODIS (for intermediate-dense vegetation) and CYCLOPES (sparse 
vegetation). 

3.2.2. High missing data region - Amazonia 
Let us now show the performance of our proposed scheme over the 

challenging Amazonia region, where the large abundance of clouds 
hamper the retrieval of parameters (Liu et al., 2019; López-Puigdollers 
et al., 2021), see Fig. 8. The use of the HISTARFM model allows us to 
alleviate this problem by providing high resolution reflectance data of 
the region, and hence allows us to derive parameter and uncertainty 

estimates. 
Fig. 9 shows an example of performance of BioNet for LAI. The dif

ficulty presented in this area translates into higher values of aleatoric 
uncertainty, caused by the elevated noise input level. This case study 
highlights the importance of propagating the input uncertainties 
through the model as they are the main source of uncertainty in the 
predictions and need to be accounted accordingly. While also repre
senting both components of the total parameter uncertainty, which 
together provide more comprehensive and meaningful estimates. 

3.3. Site-level comparison with other operational products 

An inter-comparison of LAI and FAPAR with the available LAI/ 
FAPAR product (MCD15A3H) on GEE and the Copernicus product 
(GEOV1) from the Copernicus Land Service was performed. For FVC we 
used just GEOV1 as it is the only operational product available. The 
inter-comparison was conducted over a selection of sites extracted from 
the BELMANIP-2.1 (Benchmark Land Multiuse Analysis and Intercom
parison of Products) for the study area. These sites were selected for 
representing the global variability of vegetation, making them suitable 
for global inter-comparison of land biophysical products (Baret et al., 

Fig. 7. Maps representing the relative differences between BioNet and MODIS/Copernicus.  

Fig. 8. Map of the available data (%) on the left and the original Landsat images for the same area.  
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2006). The sites are aimed to be representative of the different planet 
biomes over an 10 × 10 km2 area, mostly flat, and with minimum 
fractions of urban area and permanent water bodies. There are 27 sites 
in the CONUS that we used for validation. Reasonable results were ob
tained when calculating linear and non-linear measures of association 
(see Table 3) between BioNet and MODIS/Copernicus, with high cor
relations and low error values and biases. Interestingly, the mutual in
formation is higher with MODIS in both cases for LAI and FAPAR. 

Fig. 10 illustrates the full time series of the considered 10 years 
(2009 − 2019) over two illustrative sites: 1) site “Texas” with lat/lon 
coordinates (29.99, − 104.19); and 2) site “Arkansas” with coordinates 
lat/lon (35.79, 93.49). In terms of prediction/estimation, BioNet 
behaviour is similar to the official products with no big changes or 
discrepancies. Site “Arkansas” corresponds to an evergreen forest area 
and thus there is a large amount of vegetation mass which translates into 
high LAI values (sometimes so high that they can only be obtained with 
actual LAI). This is more evident during the summer season (when the 
forest cover is at its peak) and BioNet estimates are below both MODIS 
and GEOV1. As described previously, BioNet provides the effective 
values of LAI this could explain the considerable differences in the 
“Arkansas” site where MODIS and GEOV1 LAI values are higher than 
those predicted by the BioNet method. Site “Texas” is a shrubland area, 
dominated by perennial trees and shrubs, and hence LAI, FAPAR and 
FVC values are lower. This figure illustrates the consistency of the 

methodology as it performs with no noticeable discrepancies in two very 
different phenologies. The total uncertainty bars provided can be very 
useful not only to assess model and product robustness, but also to mask 
out eventual anomalous estimates by attributing them to either model, 
data or both uncertainties together. 

4. Conclusions 

This paper proposed a new methodology for the estimation of bio
physical variables such as LAI, FAPAR, FVC and CWC at high spatial 
resolution over large areas, along with realistic uncertainties composed 
of both aleatoric and epistemic contributions. The retrieval algorithm is 
a neural network trained to invert a dataset derived from representative 
PROSAIL simulations, and applied to high resolution (30 m) gap-filled 
reflectance data derived using the HISTARFM algorithm. This 
approach is not incidental; it not only allowed us to obtain prediction 
gap-free monthly maps of biophysical parameters of interest at 30 m and 
over large areas, but also (and very importantly) it allowed us to deal 
with data and model uncertainties effectively. First, because we can 
propagate data uncertainties through the neural network in a rigorous 
way, and second because by taking the model uncertainty into account 
through MC dropout, the two types of uncertainties can be combined. 
Calibration curves facilitate assessing the reliability of uncertainty es
timates. This analysis showed that for LAI MC dropout tends to 

Fig. 9. Results of LAI estimation and over the Amazonia region: Prediction ŷ, total uncertainty σT, epistemic σe and aleatoric σa, respectively.  

Table 3 
Results for the inter-comparison between BioNet methodology and MODIS/Copernicus (mean error, ME, root-mean-square error, RMSE, Pearson’s correlation co
efficient ρ) Spearman’s correlation coefficient ρS, mutual information MI, and distance correlation Dcorr.   

LAI(m2/m2) FAPAR  

ME RMSE ρ ρS MI Dcorr ME RMSE ρ ρS MI Dcorr 

MODIS 0.23 0.75 0.84 0.82 0.60 0.85 0.015 0.14 0.85 0.86 0.65 0.87 
Copernicus 0.02 0.69 0.92 0.84 0.92 0.91 0.0007 0.13 0.91 0.89 0.87 0.91  
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underestimate the uncertainties which results in an overconfident 
model. By recalibrating our trained neural network, we were able to 
accompany the prediction maps with its corresponding reliable uncer
tainty maps, which can be very useful to understand model perfor
mance, mask out errors and learn about potential sampling biases. 

We argue that the generation of global products at this unprece
dented high spatio-temporal accuracy requires large computing re
sources and efficient implementations, which was possible by using the 
GEE free platform. Other high-performance computing platforms could 
be eventually used. The huge amount of data (8x109 pixels per image) 
was exploited efficiently through the GEE platform, which offers distinct 
advantages mainly related to storage capacity and processing speed. 
Scaling and deployment would have been simply impossible without it. 
The methodology was applied mainly over large, heterogeneous and 
representative CONUS area, but the performance over areas where the 
data loss is around 60% like the Amazonia, demonstrates the versatility 
of the methodology. 

We performed an indirect site-level model intercomparison over 
Belmanip network located in CONUS between BioNet and the available 
operational products (Copernicus and MODIS) for LAI, FAPAR and FVC. 
The obtained results with our methodology showed spatial consistency 
and highlighted the general robustness of the method. In densely 
vegetated areas we observed some discrepancies between products, 
which could be attributed to the definition of the considered variables: e. 
g. BioNet LAI estimates are closer to an effective LAI rather than actual 
LAI, which are the MODIS/Copernicus estimates. 

Our study provides the framework and lends support for future 
studies to assess the uncertainty of its predictions, and opens the door to 
undertake gap free global studies for crop monitoring, carbon fluxes or 
high resolution phenologies. 
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Appendix A. PROSAIL simulation details

Fig. A.1. Spectral response functions of Landsat-5 bands (blue, green, red, nir, SWIR-1, and SWIR-2 channels). (For interpretation of the references to colour in this 
figure legend, the reader is referred to the web version of this article.)  

Table A.1 
Ranges and distributions of the PROSAIL parameters adopted in the EPS retrieval chain. (*) KDE refers to kernel density estimation method, which does not provide any 
parameters being a non parametric model of the marginal distributions. (**) A 5% of spectra representative of pure background (vCover = 0) were included to account 
for bare areas. KDE refers to kernel density estimation method, which does not provide any parameters being a non parametric model of the marginal distributions.  

Parameter Min Max Mode Std Type 

Leaf N 1.2 2.2 1.5 0.3 Gaussian 
Cab (μg⋅cm− 2) – – – – KDE* 
Car (μg⋅cm− 2) 0.6 16 5 7 Gaussian 
Cdm (g⋅cm− 2) – – – – KDE* 
Cw – – – – KDE* 
Cbp 0 0 0 0 – 

Canopy LAI (m2/m2) 0 8 3.5 4 Gaussian 
ALA (∘) 35 80 62 12 Gaussian 
Hotspot 0.1 0.5 0.2 0.2 Gaussian 
vCover 0.3 1 0.99 0.2 Truncated Gaussian** 

Soil βs 0.1 1 0.8 0.6 Gaussian   
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Appendix B. Calibration

Fig. B.2. FVC calibration curves (top) and prediction with uncertainties (bottom) using uncalibrated and calibrated model.   
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Fig. B.3. FAPAR calibration curves (top) and prediction with uncertainties (bottom) using uncalibrated and calibrated model.   
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Fig. B.4. CWC calibration curves (top) and prediction with uncertainties (bottom) using uncalibrated and calibrated model.   

Table B.2 
Metrics obtained in calibration: mean absolute calibration error MACE, root mean squared calibration error RMSCE and miscalibration area MA.   

FVC FAPAR CWC(g/cm2)  

MACE RMSCE MA MACE RMSCE MA MACE RMSCE MA 

Uncalibrated 0.13 0.15 0.13 0.05 0.06 0.05 0.11 0.13 0.11 
Calibrated 0.06 0.07 0.06 0.05 0.06 0.05 0.04 0.05 0.04  

Appendix C. Table of acronyms  

Table C.3 
Classes from the MODIS Land cover (MCD12Q1).  

Acronym Description 

ENF Evergreen Needleleaf Forests 
EBF Evergreen Broadleaf Forests 
DNF Deciduous Needleleaf Forests 
DBF Deciduous Broadleaf Forests 
MF Mixed Forests 
SHR Shrublands 
SVN Savannas 
GRA Grasslands 
CRP Croplands 
BRN Barren  
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Appendix D. Maps of results for CWC

Fig. D.5. Results of CWC estimation: Prediction ŷ, total uncertainty σT, epistemic σe and aleatoric σa, respectively.  
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