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Abstract
In this paper we propose a product space reformulation to transform monotone 
inclusions described by finitely many operators on a Hilbert space into equivalent 
two-operator problems. Our approach relies on Pierra’s classical reformulation with 
a different decomposition, which results in a reduction of the dimension of the out-
coming product Hilbert space. We discuss the case of not necessarily convex feasi-
bility and best approximation problems. By applying existing splitting methods to 
the proposed reformulation we obtain new parallel variants of them with a reduction 
in the number of variables. The convergence of the new algorithms is straightfor-
wardly derived with no further assumptions. The computational advantage is illus-
trated through some numerical experiments.

Keywords Pierra’s product space reformulation · Splitting algorithm · Douglas–
Rachford algorithm · Monotone inclusions · Feasibility problem · Projection 
methods

Mathematics Subject Classification 47H05 · 47J25 · 49M27 · 65K10 · 90C30

1 Introduction

A problem of great interest in optimization and variational analysis is the mono-
tone inclusion consisting in finding a zero of a monotone operator. In many practical 
applications, such operator can be decomposed as a sum of finitely many maximally 
monotone operators. The problem takes then the form

(1.1)Find x ∈ H such that 0 ∈ A1(x) + A2(x) +⋯ + Ar(x),
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where H is a Hilbert space and A1,A2,… ,Ar ∶ H ⇉ H are maximally monotone. 
When the sum is itself maximally monotone, in theory, inclusion (1.1) could be 
numerically solved by the well-known proximal point algorithm [38]. However, this 
method requires the computation of the resolvent of the operator A1 +⋯ + Ar at 
each iteration, which is not usually available. In fact, computing the resolvent of a 
sum at a given point q ∈ H , i.e.,

where JA denotes the resolvent of an operator A, is a problem of interest itself which 
arises in some optimization subroutines as well as in direct applications such as best 
approximation, image denoising and partial differential equations (see, e.g., [7]).

Splitting algorithms take advantage of the decomposition and activate each 
operator separately, either by direct evaluation (forward steps) or via its resol-
vent (backward steps), to construct a sequence that converges to a solution of 
the problem. Splitting algorithms include, in particular, the so-called projection 
methods, which permit to find a point (or the closest point) in the intersection 
of a collection of sets by computing individual projections onto them. Classi-
cal splitting algorithms for monotone inclusions include the Forward-Backward 
algorithm and its variants, see, e.g.,  [9, 15, 30, 40], and the Douglas–Rachford 
algorithm [22, 29], among others (see, e.g., [9, Chapter 23]). On the other hand, 
different splitting algorithms for computing the resolvent of a sum can be found 
in, e.g, [1, 5, 16, 19]. See also the recent unifying framework [7].

Most splitting algorithms in the literature are devised for a sum of two opera-
tors, whereas there exist just a few three-operator extensions, see, e.g., [8, 20, 37, 
39]. In general, problems (1.1) and  (1.2) are tackled by splitting algorithms after 
applying Pierra’s product space reformulation [34, 35]. This technique constructs 
an equivalent two-operator problem, embedded in a product Hilbert space, that 
preserves computational tractability in the sense that the resolvents of the new 
operators can be readily computed. However, since each operator in the original 
problem requires one dimension in the product space, this technique may result 
numerically inefficient when the number of operators is too large.

In this work we propose an alternative reformulation, based on Pierra’s clas-
sical one, which reduces the dimension of the resulting product Hilbert space. 
Our approach consists in merging one of the operators with the normal cone to 
the diagonal set, what allows to remove one dimension in the product space. In 
fact, in contrast to Pierra’s reformulation, the one proposed in this work repro-
duces exactly the original problem when this is initially defined by two opera-
tors (see Remark 3.4). We would like to note that this reformulation has already 
been used in other frameworks. For instance, it was employed in [27] for deriv-
ing necessary conditions for extreme points of a collection of closed sets. Our 
main contribution is showing that the computability of the resolvents of the new 
defined operators is kept with no further assumptions. This result allows us to 
implement known splitting algorithms under this reformulation, which entails 
the elimination of one variable defining the iterative scheme in comparison to 
Pierra’s approach.

(1.2)Find p ∈ J∑r

i=1
Ai
(q),
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After the publication of the first preprint version of this manuscript we became aware 
of [17], where the authors suggest an analogous dimension reduction technique for 
structured optimization problems. Although that reformulation is different, the derived 
parallel Douglas–Rachford (DR) algorithm seems to lead to a scheme equivalent to the 
one obtained from Theorem 5.1 in this context. Notwithstanding, our analysis is devel-
oped in the more general framework of monotone inclusions. Furthermore, we provide 
detailed proofs of the equivalency and resolvents formulas, as well as numerical com-
parison to the classical Pierra’s reformulation. On the other hand, Malitsky and Tam 
independently proposed in [31] another r-operator DR-type algorithm embedded in a 
reduced-dimensional space. This algorithm, which can be seen as an attempt to extend 
Ryu’s splitting algorithm [39] (see Remark 5.2), differs from the one proposed in this 
work and it will also be tested in our experiments.

It is worth mentioning that a similar idea for feasibility problems was previously 
developed  in  [18]. In there, the dimensionality reduction was obtained by replacing 
a pair of constraint sets in the original problem by their intersection before applying 
Pierra’s reformulation. However, the convergence of some projection algorithms may 
require a particular intersection structure of these sets. Our approach has the advantage 
of being directly applicable to any splitting algorithm with no additional requirements.

The remainder of the paper is organized as follows. In Sect. 2 we recall some pre-
liminary notions and auxiliary results. Then Sect.3 is divided into Sect. 3.1, where we 
first recall Pierra’s standard product space reformulation, and Sect. 3.2, in which we 
propose an alternative reformulation with reduced dimension. We discuss and illus-
trate the particular case of feasibility and best approximation problems in Sect. 4. In 
Sect. 5, we apply our reformulation to construct new parallel variants of some splitting 
algorithms. Finally, in Sect. 6 we perform some numerical experiments that exhibit the 
advantage of the proposed reformulation.

2  Preliminaries

Throughout this paper, H is a Hilbert space endowed with inner product ⟨⋅, ⋅⟩ and 
induced norm ‖ ⋅ ‖ . We abbreviate norm convergence of sequences in H with → and we 
use ⇀ for weak convergence.

2.1  Operators

Given a nonempty set D ⊆ H , we denote by A ∶ D ⇉ H a set-valued operator that 
maps any point x ∈ D to a set A(x) ⊆ H . In the case where A is single-valued we write 
A ∶ D → H . The graph, the domain, the range and the set of zeros of A, are denoted, 
respectively, by graA , domA , ranA and zerA ; i.e.,
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The inverse of A, denoted by A−1 , is the operator defined via its graph by 
graA−1 ∶= {(u, x) ∈ ℝ

n ×ℝ
n ∶ u ∈ A(x)} . We denote the identity mapping by Id.

Definition 2.1 (Monotonicity) An operator A ∶ H ⇉ H is said to be 

 (i) Monotone if 

 Furthermore, A is said to be maximally monotone if it is monotone and there 
exists no monotone operator B ∶ H ⇉ H such that graB properly contains 
graA.

 (ii) Uniformly monotone with modulus � ∶ ℝ+ → [0,+∞] if � is increasing, van-
ishes only at 0, and 

 (iii) �-strongly monotone for 𝜇 > 0 , if A − �Id is monotone; i.e., 

Clearly, strong monotonicity implies uniform monotonicity, which itself implies 
monotonicity. The reverse implications are not true.

Remark 2.2 The notions in Definition 2.1 can be localized to a subset of the domain. 
For instance, A ∶ H ⇉ H is �-strongly monotone on C ⊆ domA if

Lemma 2.3 Let A,B ∶ H ⇉ H be monotone operators. The following hold. 

 (i) If A is uniformly monotone on dom(A + B) , then A + B is uniformly monotone 
with the same modulus than A.

 (ii) If A is �-strongly monotone on dom(A + B) , then A + B is �-strongly monotone.

Proof Let (x, u), (y, v) ∈ gra(A + B) , i.e., u = u1 + u2 and v = v1 + v1 with 
(x, u1), (y, v1) ∈ graA and (x, u2), (y, v2) ∈ graB . (i): Suppose that A is uniformly 
monotone on dom(A + B) with modulus � . Since x, y ∈ dom(A + B) , we get that

graA ∶= {(x, u) ∈ ℝ
n ×ℝ

n ∶ u ∈ A(x)},

domA ∶=
{
x ∈ ℝ

n ∶ A(x) ≠ �
}
,

ranA ∶= {x ∈ ℝ
n ∶ x ∈ A(z) for some z ∈ ℝ

n}

and zerA ∶= {x ∈ ℝ
n ∶ 0 ∈ A(x)}.

⟨x − y, u − v⟩ ≥ 0, ∀(x, u), (y, v) ∈ graA;

⟨x − y, u − v⟩ ≥ �(‖x − y‖), ∀(x, u), (y, v) ∈ graA.

⟨x − y, u − v⟩ ≥ �‖x − y‖2, ∀(x, u), (y, v) ∈ graA.

⟨x − y, u − v⟩ ≥ �‖x − y‖2, ∀x, y ∈ C,∀u ∈ A(x),∀v ∈ A(y).

⟨x − y, u − v⟩ = ⟨x − y, u1 − v1⟩ + ⟨x − y, u2 − v2⟩ ≥ �(‖x − y‖),
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which proves that A + B is uniformly monotone with the same modulus. The proof 
of (ii) is analogous and, thus, omitted.   ◻

Definition 2.4 (Resolvent) The resolvent of an operator A ∶ H ⇉ H with parameter 
𝛾 > 0 is the operator J�A ∶ H ⇉ H defined by

The following result collects some properties of the resolvents of monotone oper-
ators. The second assertion corresponds to the well-known Minty’s theorem.

Fact 2.5 Let A ∶ H ⇉ H be monotone and let 𝛾 > 0 . Then 

 (i) J�A is single-valued,
 (ii) domJ�A = H if and only if A is maximally monotone.

Proof See, e.g., [9, Proposition 23.8].   ◻

The resolvent of the sum of two monotone operators has no closed expression in 
terms of the individual resolvents except for some particular situations. The follow-
ing fact, which is fundamental in our results, contains one of those special cases.

Fact 2.6 Let A,B ∶ H ⇉ H be maximally monotone operators such that 
B(y) ⊆ B(JA(y)) , for all y ∈ domB. Then, A + B is maximally monotone and

Proof See, e.g., [9, Proposition 23.32(i)].   ◻

2.2  Functions

Let f ∶ H → ] − ∞,+∞] be a proper, lower semicontiuous and convex function. 
The subdifferential of f is the operator �f ∶ H ⇉ H defined by

The proximity operator of f (with  parameter  � ), prox�f ∶ H ⇉ H , is defined at 
x ∈ H by

Fact 2.7 Let f ∶ H → ] − ∞,+∞] be proper, lower semicontiuous and convex. 
Then, the subdifferential of f, �f  , is a maximally monotone operator whose resolvent 
becomes the proximity operator of f, i.e.,

J�A ∶= (Id + �A)−1.

JA+B(x) = JA(JB(x)), ∀x ∈ H.

�f (x) ∶= {u ∈ H ∶ ⟨y − x, u⟩ + f (x) ≤ f (y), ∀y ∈ H}.

prox�f (x) ∶= argminu∈H

�
f (u) +

1

2�
‖x − u‖2

�
.



324 R. Campoy 

1 3

Proof See, e.g., [9, Theorem 20.25 and Example 23.3].   ◻

2.3  Sets

Given a nonempty set C ⊆ H , we denote by dC the distance function to C; that is, 
dC(x) ∶= infc∈C ‖c − x‖ , for all x ∈ H . The projection mapping (or projector) onto 
C is the possibly set-valued operator PC ∶ H ⇉ C defined at each x ∈ H by

Any point p ∈ PC(x) is said to be a best approximation to x from C (or a projection 
of x onto C). If a best approximation in C exists for every point in H , then C is said 
to be proximinal. If every point x ∈ H has exactly one best approximation from C, 
then C is said to be Chebyshev. Every nonempty, closed and convex set is Cheby-
shev (see, e.g., [9, Theorem 3.16]).

The next results characterizes the projection onto a closed affine subspace.

Fact 2.8 Let D ⊆ H be a closed affine subspace and let x ∈ H . Then

Proof See, e.g., [9, Corollary 3.22].   ◻

The indicator function of a set C ⊆ H , �C ∶ H → ] − ∞,+∞] , is defined as

If C is closed and convex, �C is convex and its differential turns to the normal cone to 
C, which is the operator NC ∶ H ⇉ H defined by

Fact 2.9 Let C ⊆ H be nonempty, closed and convex. Then, the normal cone to C, 
NC , is a maximally monotone operator whose resolvent becomes the projector onto 
C, i.e.,

Proof See, e.g., [9, Examples 20.26 and 23.4].   ◻

We conclude this section with the following result that characterizes the projector 
onto the intersection of a proximinal set (not necessarily convex) and a closed affine 

J��f (x) = prox�f (x), ∀x ∈ H.

PC(x) ∶=
�
p ∈ C ∶ ‖x − p‖ = dC(x)

�
.

p = PD(x) ⟺ p ∈ D and ⟨x − p, d − p⟩ = 0, ∀d ∈ D.

�C(x) ∶=

{
0, if x ∈ C,

+∞, if x ∉ C.

NC(x) ∶=

�
{u ∈ H ∶ ⟨u, c − x⟩ ≤ 0, ∀c ∈ C}, if x ∈ C,

�, otherwise.

J�NC
(x) = PC(x), ∀x ∈ H.
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subspace under particular assumptions. It is a refinement of [18, Theorem  3.1(c)], 
whose proof needs to be barely modified.

Lemma 2.10 Let C ⊆ H be nonempty and proximinal and let D ⊆ H be a closed aff-
ine subspace. If PC(d) ∩ D ≠ � for all d ∈ D , then

Proof Fix x ∈ H . By assumption we have that PC(PD(x)) ∩ D ≠ � . Pick any 
c ∈ PC(PD(x)) ∩ D and let p ∈ PC∩D(x) . Then c ∈ PC(d) ∩ D , where d = PD(x) . 
Since D is an affine subspace and d = PD(x) , we derive from Fact  2.8 applied to 
c ∈ D and p ∈ D , respectively, that ⟨x − d, c − d⟩ = 0 and ⟨x − d, p − d⟩ = 0 . 
Therefore,

Since c ∈ PC(d) and p ∈ C then ‖c − d‖ ≤ ‖p − d‖ . This combined with (2.1) yields 
‖x − c‖ ≤ ‖x − p‖ . Note that p ∈ PC∩D(x) and c ∈ C ∩ D , so it must be

It directly follows from (2.2) that c ∈ PC∩D(x) . Furthermore, by combining (2.2) 
with (2.1) we arrive at ‖c − d‖ = ‖p − d‖ , which implies that p ∈ PC(d) ∩ D and 
concludes the proof.   ◻

3  Product space reformulation for monotone inclusions

In this section we introduce our proposed reformulation to convert problems (1.1)–(1.2) 
into equivalent problems with only two operators. To this aim, we first recall the stand-
ard product space reformulation due to Pierra [34, 35].

3.1  Standard product space reformulation

Consider the product Hilbert space Hr = H ×
(r)
⋯ ×H , endowed with the inner product

and define

which is a closed subspace of Hr commonly known as the diagonal. We 
denote by jr ∶ H → Dr the canonical embedding that maps any x ∈ H to 
jr(x) = (x, x,… , x) ∈ Dr . The following result collects the fundamentals of Pierra’s 
standard product space reformulation.

PC∩D(x) = PC(PD(x)) ∩ D, ∀x ∈ H.

(2.1)
‖x − c‖2 = ‖x − d‖2 + ‖c − d‖2 and ‖x − p‖2 = ‖x − d‖2 + ‖p − d‖2.

(2.2)‖x − c‖ = ‖x − p‖.

⟨x, y⟩ ∶=
r�

i=1

⟨xi, yi⟩, ∀x = (x1, x2,… , xr), y = (y1, y2,… , yr) ∈ H
r,

Dr ∶= {(x, x,… , x) ∈ H
r ∶ x ∈ H},
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Fact 3.1 (Standard product space reformulation) Let A1,A2,… ,Ar ∶ H ⇉ H be 
maximally monotone and let 𝛾 > 0 . Define the operator A ∶ H

r
⇉ H

r as

Then the following hold. 

 (i) A is maximally monotone and 

 (ii) The normal cone to Dr is given by 

 It is a maximally monotone operator and 

 (iii) zer
�
A + NDr

�
= jr

�
zer

�∑r

i=1
Ai

��
.

 (iv) J�(A+NDr
)(x) = jr

�
J �

r

∑r

i=1
Ai
(x)

�
, ∀x = jr(x) ∈ Dr.

Proof See, e.g., [9, Proposition 26.4] and [5, Proposition 4.1]. 3, 6, 10, 23–25, 28 
 ◻

According to the previous result, the product space reformulation is a convenient 
trick for reducing problems (1.1) and (1.2) to equivalent problems with two opera-
tors that keep maximal monotonicity and computational tractability. However, this 
approach relies on working in a product Hilbert space in which each operator of 
the problem requires one product dimension. This may become computationally 
inefficient when the number of operators increases. In the next section we will ana-
lyze an alternative reformulation in a product Hilbert space with lower dimension. 
Before that, we include the following technical result regarding additional monoto-
nicity properties that are inherited by the product operator defined in the standard 
reformulation.

Lemma 3.2 Let A1,A2,… ,Ar ∶ H ⇉ H be monotone operators and let 
A ∶ H

r
⇉ H

r be the product operator defined in (3.1). Then the following hold. 

(3.1)A(x) ∶= A1(x1) × A2(x2) ×⋯ × Ar(xr), ∀x = (x1, x2,… , xr) ∈ H
r.

J�A(x) =
(
J�A1

(x1), J�A2
(x2),⋯ , J�Ar

(xr)
)
, ∀x = (x1, x2,… , xr) ∈ H

r.

NDr
(x) =

�
D⟂

r
= {u = (u1, u2,… , ur) ∈ H

r ∶
∑r

i=1
ui = 0}, if x ∈ Dr,

�, otherwise.

J�NDr
(x) = PDr

(x) = jr

(
1

r

r∑
i=1

xi

)
, ∀x = (x1, x2,… , xr) ∈ H

r.
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 (i) If Ai is uniformly monotone with modulus �i for all i ∈ I0 ⊆ {1,… , r} , then A 
is uniformly monotone on dom(A) ∩ Dr with modulus 

∑
i∈I0

�i(
⋅√
r
).

 (ii) If Ai is �i-strongly monotone for all i ∈ I0 ⊆ {1,… , r} , then A is �-strongly 
monotone on dom(A) ∩ Dr with � ∶=

1

r

∑
i∈I0

�i.

Proof 

 (i) Suppose that Ai is uniformly monotone with modulus  �i for all 
i ∈ I0 ⊆ {1,… , r} . Let x = jr(x), y = jr(y) ∈ Dr , for some x, y ∈ H , and let 
u = (u1,… , ur), v = (v1,… , vr) ∈ H

r such that (x, u), (y, v) ∈ graA . Then, 

 which implies that A is uniformly monotone on dom(A) ∩ Dr with modulus ∑
i∈I0

�i

�
⋅√
r

�
.

 (ii) Follows from (i) by taking �i = �i(⋅)
2 for all i ∈ I0 .   ◻

3.2  New product space reformulation with reduced dimension

We introduce now our proposed reformulation technique which permits to eliminate 
one space in the product with respect to Pierra’s classical trick. More specifically, 
our approach reformulates problems (1.1) and (1.2) in the product Hilbert space

To this aim, consider its diagonal Dr−1 , with canonical embedding jr−1 ∶ H → Dr−1.

Theorem  3.3 (Product space reformulation with reduced dimension) Let 𝛾 > 0 
and let A1,A2,… ,Ar ∶ H ⇉ H be maximally monotone. Consider the operators 
B,K ∶ H

r−1
⇉ H

r−1 defined, at each x = (x1,… , xr−1) ∈ H
r−1 , by 

 Then the following  . 

 (i) B is maximally monotone and 

⟨x − y, u − v⟩ =
r�

i=1

⟨x − y, ui − vi⟩ ≥
�
i∈I0

⟨x − y, ui0 − vi0⟩

≥
�
i∈I0

�i(‖x − y‖) = �
i∈I0

�i

�
1√
r
‖x − y‖

�
,

H
r−1 = H ×

(r−1)
⋯ ×H.

(3.2a)B(x) ∶=A1(x1) ×⋯ × Ar−1(xr−1),

(3.2b)K(x) ∶=
1

r−1
Ar(x1) ×⋯ ×

1

r−1
Ar(xr−1) + NDr−1

(x).

J�B(x) =
(
J�A1

(x1),… , J�Ar−1
(xr−1)

)
, ∀x = (x1,… , xr−1) ∈ H

r−1.
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 (ii) K  is maximally monotone and 

 If, in addition, Ar is uniformly monotone (resp. �-strongly monotone), then K 
is uniformly monotone (resp. �-strongly monotone).

 (iii) zer(B + K) = jr−1
�
zer

�∑r

i=1
Ai

��
.

 (iv) J�(B+K)(x) = jr−1

�
J �

r−1

∑r

i=1
Ai
(x)

�
, ∀x = jr−1(x) ∈ Dr−1.

Proof Note that (i) directly follows from Fact 3.1(i). For the remaining assertions, 
let us define the operator S ∶ H

r−1
⇉ H

r−1 as

so that K = S + NDr−1
.

(ii): Fix x = (x1,… , xr−1) ∈ H
r−1 . On the one hand, from Fact 3.1(i) we get that S 

is maximally monotone with

On the other hand, Fact 3.1(ii) asserts that

is maximally monotone with

Now pick any y ∈ domNDr−1
= Dr−1 . It must be that y = jr−1(y) for some y ∈ H and 

thus

Hence, we have that

Since y was arbitrary in domNDr−1
 we can apply Fact 2.6 to obtain that S + NDr−1

 is 
maximally monotone and

J�K(x) = jr−1

(
J �

r−1
Ar

(
1

r − 1

r−1∑
i=1

xi

))
, ∀x = (x1,… , xr−1) ∈ H

r−1.

S(x) ∶=
1

r−1
Ar(x1) ×⋯ ×

1

r−1
Ar(xr−1), ∀x = (x1,… , xr−1) ∈ H

r−1,

J�S(x) =
(
J �

r−1
Ar
(x1),… , J �

r−1
Ar
(xr−1)

)
.

NDr−1
(x) =

�
D⟂

r−1
= {u = (u1,… , ur−1) ∈ H

r−1 ∶
∑r−1

i=1
ui = 0}, if x ∈ Dr−1,

�, otherwise,

(3.3)J�NDr−1

(x) = PDr−1
(x) = jr−1

(
1

r − 1

r−1∑
i=1

xi

)
.

(3.4)J�S(y) = jr−1

(
J �

r−1
Ar
(y)

)
∈ Dr−1.

NDr−1
(y) = D⟂

r−1
= NDr−1

(
J�S(y)

)
.
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where the last equality follows from combining (3.3) and (3.4).
If, in addition, Ar is uniformly monotone (resp. �-strongly monotone), then S is 

uniformly monotone (resp. �-strongly monotone) on dom(S) ∩ Dr−1 according to 
Lemma 3.2(i) (resp. Lemma 3.2(ii)). Since NDr−1

 is a maximally monotone operator 
with domain Dr−1 , the result follows from Lemma 2.3(i) (resp. Lemma 2.3(ii)).

(iii): To prove the direct inclusion, take any x ∈ zer(B + K) = zer
(
B + S + NDr−1

)
 . 

It necessarily holds that x ∈ domNDr−1
= Dr−1 , so x = jr−1(x) for some x ∈ H . There 

exist u ∈ B(x) , v ∈ S(x) and w ∈ NDr−1
(x) with u + v + w = 0 . By definition of these 

operators u = (u1,… , ur−1) , with ui ∈ Ai(x) for i ∈ {1,… , r − 1} , v = jr−1(
1

r−1
v) , 

with v ∈ Ar(x) , and w = (w1,… ,wr−1) , with 
∑r−1

i=1
wi = 0 . Hence,

Summing up all these equations we arrive at

which yields x ∈ zer(
∑r

i=1
Ai).

For the reverse inclusion, take any x ∈ zer(
∑r

i=1
Ai) and let x = jr−1(x) ∈ Dr−1 . 

Then there exists ui ∈ Ai(x) , for each i ∈ {1, 2,… , r} , with 
∑r

i=1
ui = 0 . Define

Since u + v + w = 0 it follows that x ∈ zer
(
B + S + NDr−1

)
.

(iv): Fix any x ∈ H and let x = jr−1(x) ∈ Dr−1 and p ∈ J�(B+S+NDr−1
)(x) . Then

It must be that p = jr−1(p) ∈ Dr−1 for some p ∈ H . Hence, we can rewrite the previ-
ous inclusion as

with 
∑r−1

i=1
ui = 0 . Summing up all the inclusions in (3.5) and dividing by a factor of 

r − 1 we arrive at

J�K(x) = J�(S+NDr−1
)(x)

= J�S

(
J�NDr−1

(x)
)
= jr−1

(
J �

r−1
Ar

(
1

r − 1

r−1∑
i=1

xi

))
,

ui +
1

r − 1
v + wi = 0, for each i ∈ {1,… , r − 1}.

0 =

r−1∑
i=1

(
ui +

1

r − 1
v + wi

)
=

r−1∑
i=1

ui + v ∈

r∑
i=1

Ai(x),

u ∶=(u1,… , ur−1) ∈ B(x),

v ∶=jr−1

(
1

r − 1
ur

)
∈ S(x),

w ∶= − u − v ∈ D⟂

r−1
= NDr−1

(x).

x ∈ p + �B(p) + �S(p) + NDr−1
(p).

(3.5)x ∈ p + �Ai(p) +
�

r − 1
Ar(p) + ui, for each i ∈ {1,… , r − 1},
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which implies that p ∈ J �

r−1

∑r

i=1
Ai
(x).

For the reverse inclusion, take any p ∈ J �

r−1

∑r

i=1
Ai
(x) so that there exist ai ∈ Ai(p) , 

for i ∈ {1, 2,… , r} , such that

Define the vectors v ∶= (a1,… , ar−1) , w ∶= jr−1

(
1

r−1
ar

)
 and u ∶= x − p − �v − �w . 

Hence, x = p + �v + �w + u , with v ∈ B(p) , w ∈ S(p) and, in view of (3.6), 
u ∈ NDr−1

 . This implies that p ∈ J�(B+S+NDr−1
)(x) and concludes the proof.   ◻

Remark 3.4 Consider problem (1.1) with only two operators, i.e.,

where A1,A2 ∶ H ⇉ H are maximally monotone. Although splitting algorithms can 
directly tackle (3.7), the product space reformulations are still applicable. Indeed, 
the standard reformulation in Fact 3.1 produces the problem

with A = A1 × A2 . Then (3.8) is equivalent to (3.7) in the sense that their solution 
sets can be identified to each other. However, they are embedded in different ambi-
ent Hilbert spaces. In contrast, the problem generated by applying  Theorem  3.3 
becomes

where B = A1 and K = A2 + ND1
 . Since D1 = H , then ND1

= {0} and (3.9) recovers 
the original problem (3.7).

4  The case of feasibility and best approximation problems

Given a family of sets C1,C2,… ,Cr ⊆ H , the feasibility problem aims to find a 
point in the intersection of the sets, i.e.,

A related problem, known as the best approximation problem, consists in finding, 
not only a point in the intersection, but the closest one to a given point q ∈ H , i.e.,

x ∈ p +
�

r − 1

r∑
i=1

Ai(p),

(3.6)x = p +
�

r − 1

r∑
i=1

ai ⟺ 0 =

r−1∑
i=1

(
x − p − �ai −

�

r − 1
ar

)
.

(3.7)Find x ∈ H such that 0 ∈ A1(x) + A2(x),

(3.8)Find x ∈ H
2 such that 0 ∈ A(x) + ND2

(x),

(3.9)Find x ∈ H such that 0 ∈ B(x) + K(x),

(4.1)Find x ∈

r⋂
i=1

Ci.
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The feasibility problem (4.1) can be seen as a particular instance of the monotone 
inclusion (1.1) when specialized to the normal cones to the sets. Indeed, one can 
easily check that

Similarly, under a constraint qualification, problem (4.2) turns out to be (1.2) applied 
to the normal cones, that is,

According to Fact 2.9, if the involved sets C1,C2,… ,Cr are closed and convex then 
NCi

 is maximally monotone with JNCi

= PCi
 , for all i = 1,… , r . Therefore, Fact 3.1 

and Theorem 3.3 can be applied in order to reformulate problems (4.1) and (4.2) as 
equivalent problems involving only two sets. This is illustrated in the following 
example.

Example 4.1 (Convex feasibility problem) Consider a feasibility problem consisting 
of finding a point in the intersection of three closed intervals

where C1 ∶= [0.5, 2] , C2 ∶= [1.5, 2] and C3 ∶= [1, 3] . By applying Fact  3.1 to the 
normal cones NC1

 , NC2
 and NC3

 , the latter is equivalent to

(4.2)Find p ∈

r�
i=1

Ci, such that ‖p − q‖ = inf{‖x − q‖ ∶ x ∈ ∩r
i=1

Ci}.

x ∈

r⋂
i=1

Ci ⟺ 0 ∈

r∑
i=1

NCi
(x).

p ∈ P∩r
i=1

Ci
(q) ⟺ p ∈ J∑r

i=1
NCi

(q).

(4.3)Find x ∈ C1 ∩ C2 ∩ C3 ⊆ ℝ,

(4.4)
Find (x, x, x) ∈ (C1 × C2 × C3) ∩ D3 ⊆ ℝ

3, where D3 = {(x, x, x) ∶ x ∈ ℝ}

(a) Standard product space reformu-
lation

(b) Product space reformulation with
reduced dimension

Fig. 1  Product space reformulations of the convex feasibility problem in Example 4.1
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In contrast, if we apply Theorem 3.3 to the normal cones, it can be easily shown that 
problem (4.3) is also equivalent to

Both reformulations are illustrated in Fig.  1. Furthermore, the usefulness of the 
reformulations is that the projectors onto the new sets can be easily computed. 
Indeed, the projections onto C1 × C2 × C3 or C1 × C2 are computed component-
wise in view of Fact  3.1(i), while the projectors onto D3 and K are derived from 
Fact 3.1(ii) and Theorem 3.3(ii), respectively, as 

 Observe that, under a constraint qualification guaranteeing the so-called strong 
CHIP holds (i.e. NC1

+ NC3
+ NC3

= NC1∩C2∩C3
 ), the reformulations in (4.4) and (4.5) 

can also be applied for best approximation problems in view of Fact  3.1(iv) and 
Theorem 3.3(iv), respectively.

Although the theory of projection algorithms is developed under convexity 
assumptions of the constraint sets, some of them has been shown to be very efficient 
solvers in a wide variety of nonconvex applications. In special, the Douglas–Rach-
ford algorithm has attracted particular attention due to its well behavior on noncon-
vex scenarios including some of combinatorial nature; see, e.g.,  [3, 6, 10, 23–25, 
28]. In most of these applications, feasibility problems are described by more than 
two sets and need to be tackled by Pierra’s product space reformulation. Indeed, as 
we recall in the next result, the reformulation is still valid under the more general 
assumption that the sets are proximinal but not necessarily convex.

Proposition 4.2 (Standard product space reformulation for not necessarily convex 
feasibility and best approximation problems)  Let C1,C2,… ,Cr ⊆ H be nonempty 
and proximinal sets and define the product set

 Then the following hold. 

 (i) C is proximinal and 

 If, in addition, C1,C2,… ,Cr are closed and convex then so is C.
 (ii) Dr is a closed subspace with 

(4.5)Find (x, x) ∈ (C1 × C2) ∩ K ⊆ ℝ
2, where K = {(x, x) ∶ x ∈ C3}.

(4.6a)PD3
(x1, x2, x3) =

(
x1 + x2 + x3

3
,
x1 + x2 + x3

3
,
x1 + x2 + x3

3

)
,

(4.6b)

PK(x1, x2) = PC3×C3

(
PD2

(x1, x2)
)
=

(
PC3

(
x1 + x2

2

)
,PC3

(
x1 + x2

2

))
.

(4.7)C = C1 × C2 ×⋯ × Cr ⊆ H
r.

PC(x) = PC1
(x1) × PC2

(x2) ×⋯ × PCr
(xr), ∀x = (x1, x2,… , xr) ∈ H

r.
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 (iii) C ∩ Dr = jr
(
∩r
i=1

Ci

)
.

 (iv) PC∩Dr
(x) = jr

(
P∩r

i=1
Ci
(x)

)
, ∀x = jr(x) ∈ Dr.

Proof 

 (i) Let x = (x1, x2,… , xr) ∈ H
r . By direct computations on the definition of pro-

jector we obtain that 

 The remaining assertion easily follows from the definition of (topological) 
product space.

 (ii) Follows from Fact 3.1(ii).
 (iii) Let x ∈ C ∩ Dr . Then x = jr(x) ∈ Dr with x ∈ Ci for all i = 1, 2,… , r . The 

reverse inclusion is also straightforward.
 (iv) Let x = jr(x) ∈ Dr . Reasoning as in (i) and taking into account (iii) we get that 

 as claimed.   ◻

Analogously, we show the validity of the product space reformulation with 
reduced dimension for feasibility and best approximation problems with arbitrary 
proximinal sets.

Proposition 4.3 (Product space reformulation with reduced dimension for non nec-
essarily convex feasibility and best approximation problems) Let C1,C2,… , Cr ⊆ H 
be nonempty and proximinal sets and define 

 Then the following hold. 

PDr
(x) = jr

(
1

r

r∑
i=1

xi

)
, ∀x = (x1, x2,… , xr) ∈ H

r.

PC(x) = argminc∈C‖x − c‖2 = argmin(c1,c2,…,cr)∈C

r�
i=1

‖xi − ci‖2

=

r�
i=1

argminci∈Ci
‖xi − ci‖2

= PC1
(x1) × PC2

(x2) ×⋯ × PCr
(xr).

PC∩Dr
(x) = argminc∈C∩Dr

‖x − c‖
= jr

�
argminc∈∩r

i=1
Ci
‖x − c‖

�
= jr

�
P∩r

i=1
Ci
(x)

�
,

(4.8a)B ∶=C1 ×⋯ × Cr−1 ⊆ H
r−1,

(4.8b)K ∶={(x,… , x) ∈ H
r−1 ∶ x ∈ Cr} ⊆ H

r−1.
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 (i) B is proximinal and 

 If, in addition, C1,… ,Cr−1 are closed and convex then so is B.
 (ii) K is proximinal and 

 If, in addition, Cr is closed and convex then so is K.
 (iii) B ∩ K = jr−1

(
∩r
i=1

Ci

)
.

 (iv) PB∩K(x) = jr−1

(
P∩r

i=1
Ci
(x)

)
, ∀x = jr−1(x) ∈ Dr−1.

Proof 

 (i) Follows from Proposition 4.2(i).
 (ii) First, let us rewrite 

 Fix x = (x1,… , xr−1) ∈ H
r−1. By Propositions 4.2(i)-(ii), Cr−1

r
 is a proximi-

nal set and Dr−1 is a closed subspace with 

 Observe that, for any arbitrary point y = jr−1(y) ∈ Dr−1 , it holds that 

 In particular, PCr−1
r
(y) ∩ Dr−1 ≠ � for all y ∈ Dr−1 . Hence, by applying 

Lemma 2.10 we derive that 

 In addition, if Cr is closed and convex then so is Cr−1
r

 according to Proposi-
tion 4.2(i). Since Dr−1 is a closed subspace, the convexity and closedness of 
K follows.

 (iii)-(iv) Their proofs are straightforward and analogous to the proofs of Proposi-
tion 4.2(iii)-(iv), respectively, so they are omitted.   ◻

Example 4.4 (Nonconvex feasibility problem) Consider the feasibility problem

PB(x) = PC1
(x1) ×⋯ × PCr−1

(xr−1), ∀x = (x1,… , xr−1) ∈ H
r−1.

PK(x) = j
r−1

(
P
C
r

(
1

r − 1

r−1∑
i=1

x
i

))
, ∀x = (x1,… , x

r−1) ∈ H
r−1

.

K = jr−1(Cr) = Cr−1
r

∩ Dr−1 = (Cr ×
(r−1)
⋯ × Cr) ∩ Dr−1 ⊆ H

r−1.

PCr−1
r
(x) = PCr

(x1) ×⋯ × PCr
(xr−1) and PDr−1

(x) = jr−1

(
1

r − 1

r−1∑
i=1

xi

)
.

jr−1(p) ∈ PCr−1
r
(y) ∩ Dr−1, ∀p ∈ PCr

(y).

PK(x) = P
Cr−1
r

∩D
r−1
(x) = P

Cr−1
r

(
PD

r−1
(x)

)
∩ D

r−1

= P
Cr−1
r

(
j
r−1

(
1

r − 1

r−1∑
i=1

x
i

))
∩ D

r−1 = j
r−1

(
P
C
r

(
1

r − 1

r−1∑
i=1

x
i

))
.
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where C1 ∶= [0.5, 2] , C2 ∶= [1.5, 2] and Ĉ3 ∶= {1, 2, 3} ; that is, the problem consid-
ered in Example 4.1 but replacing C3 by the nonconvex set Ĉ3 . According to Prop-
ositions  4.2 and 4.3, the product space reformulations in (4.4) and (4.5), with C3 
replaced by Ĉ3 , are still valid to reconvert (4.9) into an equivalent problem described 
by two sets. Both formulations are illustrated in Fig. 2, where now we denote

Due to the nonconvexity, the projector onto Ĉ3 may be set-valued. In view of Propo-
sition 4.3(ii), the projector onto K̂ is described by

We emphasize that, in contrast to (4.6b), in the nonconvex case P
K̂
≠ P

Ĉ3×Ĉ3
◦PD2

 . 
Indeed, consider for instance the point x ∶= (2, 1) ∈ ℝ

2 . Then,

Therefore, P
Ĉ3×Ĉ3

(PD2
(x)) ≠ P

K̂
(x) = P

Ĉ3×Ĉ3
(PD2

(x)) ∩ D2.

5  Application to splitting algorithms

In this section, we apply our proposed reformulation in Theorem  3.3 in order to 
derive two new parallel splitting algorithms, one for solving problem (1.1), and 
another one for (1.2). In the first case, we consider the Douglas–Rachford (DR) algo-
rithm [22, 29] (see also [11, 12] for recent results in the inconsistent case). The DR 

(4.9)Find x ∈ C1 ∩ C2 ∩
�C3 ⊆ ℝ,

K̂ = {(x, x) ∶ x ∈ Ĉ3} = (Ĉ3 × Ĉ3) ∩ D2 = {(1, 1), (2, 2), (3, 3)}.

P
K̂
(x1, x2) =

{
(p, p) ∶ p ∈ P

Ĉ3

(
x1 + x2

2

)}
.

P
K̂
(x) = {(1, 1), (2, 2)},

P
Ĉ3×Ĉ3

(PD2
(x)) = P

Ĉ3×Ĉ3
((1.5, 1.5)) = {(1, 1), (1, 2), (2, 1), (2, 2)}.

(a) Standard product space reformu-
lation

(b) Product space reformulation
with reduced dimension

Fig. 2  Product space reformulations of the nonconvex feasibility problem in Example 4.4
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algorithm permits to find a zero of the sum of two maximally monotone operators. 
When it is applied to Pierra’s standard reformulation the resulting method takes the 
form in [9, Proposition 26.12]. In contrast, if the problem is reformulated via Theo-
rem 3.3 we obtain the following iterative scheme, which requires one variable less.

Theorem  5.1 (Parallel Douglas/Peaceman–Rachford splitting algorithm) 
Let A1,A2,… ,Ar ∶ H ⇉ H be maximally monotone operators such that 
zer(

∑r

i=1
Ai) ≠ � . Let 𝛾 > 0 and let � ∈ ]0, 2] . Given x1,0,… , xr−1,0 ∈ H , set

 Then the following hold. 

 (i) If � ∈ ]0, 2[ , then pk ⇀ p⋆ and zi,k ⇀ p⋆ , for i = 1,… , r − 1 , with 
p⋆ ∈ zer(

∑r

i=1
Ai).

 (ii) If Ar is uniformly monotone, then pk → p⋆ and zi,k → p⋆ , for i = 1,… , r − 1 , 
where p⋆ is the unique point in zer(

∑r

i=1
Ai).

Proof Consider the product Hilbert space Hr−1 and let B,K ∶ H
r−1

⇉ H
r−1 

be the operators defined in (3.2). By Theorem  3.3(i), (ii) and (iii), we get that B 
and K are maximally monotone with zer(B + K) = jr−1(zer(

∑r

i=1
Ai)) ≠ � . For 

each k = 0, 1, 2,… , set xk ∶= (x1,k,… , xr−1,k), zk ∶= (z1,k,… , zr−1,k) ∈ H
r−1 and 

pk = jr−1(pk) ∈ Dr−1 . Hence, according to Theorem 3.3(i) and (ii), we can rewrite 
(5.1) as

Note that (5.2) is the Douglas–Rachford (or Peaceman–Rachford) iteration applied 
to the operators B and K . If � ∈ ]0, 2[ , we apply [9, Theorem 26.11(iii)] to obtain 
that pk ⇀ p⋆ and zk ⇀ p⋆ , with p⋆ ∈ zer(B + K) . Hence, p⋆ = jr−1(p

⋆) with 
p⋆ ∈ zer

�∑r

i=1
Ai

�
 , which implies (i).

Suppose in addition that Ar is uniformly monotone. Then so is K according to 
Theorem 3.3(ii). Hence, (ii) follows from [9, Theorem 26.11(vi)], when � ∈ ]0, 2[ , 
and [9, Proposition 26.13] when � = 2 .   ◻

Remark 5.2 (Frugal resolvent splitting algorithms with minimal lifting) Consider 
the problem of finding a zero of the sum of three maximally monotone operators 

(5.1)

for k = 0, 1, 2,… ∶

⎢⎢⎢⎢⎢⎣

pk = J �

r−1
Ar

�
1

r−1

∑r−1

i=1
xi,k

�
,

for i = 1, 2,… , r − 1 ∶�
zi,k = J�Ai

�
2pk − xi,k

�
,

xi,k+1 = xi,k + �
�
zi,k − pk

�
.

(5.2)

for k = 0, 1, 2,… ∶

⎢⎢⎢⎣

pk = J�K(xk),

zk = J�B
�
2pk − xk

�
,

xk+1 = xk + �
�
zk − pk

�
.
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A,B,C ∶ H ⇉ H . The classical procedure to solve it has been to employ the stand-
ard product space reformulation (Fact 3.1) to construct a DR algorithm on H3 . The 
question of whether it is possible to generalize the DR algorithm to three operators 
without lifting, that is, without enlarging the ambient space, was solved with a nega-
tive answer by Ryu in [39]. The generalization is considered in the sense of devising 
a frugal splitting algorithm which uses the resolvent of each operator exactly once 
per iteration. In the same work, the author demonstrated that the minimal lifting is 
2-fold (in H2 ) by providing the following splitting algorithm. Given � ∈ ]0, 1[ and 
x0, y0 ∈ H , set

Then uk ⇀ w⋆ , vk ⇀ w⋆ and wk ⇀ w⋆ , with w⋆ ∈ zer(A + B + C) (see [39, Theo-
rem 4] or [7, Appendix A] for an alternative proof in an infinite-dimensional space).

A few days after the publication of our preprint first version (ArXiv: https:// 
arxiv. org/ abs/ 2107. 12355), Malitsky and Tam [31] generalized Ryu’s result by 
showing that for an arbitrary number of r operators the minimal lifting is (r − 1)

-fold. In addition, they proposed another frugal splitting algorithm that attains 
this minimal lifting, whose iteration is described as follows. Given � ∈ ]0, 1[ and 
z0 = (z1,0,… , zr−1,0) ∈ H

r−1 , set

Then, for each i ∈ {1,… , r} , xi,k ⇀ x∗ ∈ zer(
∑r

j=1
Aj) (see [31, Theorem 4.5]).

It is worth to notice that the Malitsky–Tam iteration (5.4) does not generalize 
Ryu’s scheme (5.3), which seems to be difficult to extend to more than three opera-
tors as explained in [31, Remark  4.7]. Furthermore, both of these algorithms are 
different from the one in Theorem 5.1. The main conceptual difference is that (5.4) 
can be implemented in a distributed decentralized way whereas algorithm (5.1) uses 
the operator Ar as a central coordinator (see  [31, Sect.  5]). Nevertheless, for the 
applications considered in this work, the dimensionality reduction obtained through 

(5.3)

for k = 0, 1, 2,… ∶

⎢⎢⎢⎢⎢⎢⎣

uk = J�A(xk)

vk = J�B(uk + yk)

wk = J�C(uk − xk + vk − yk)

xk+1 = xk + �(wk − uk)

yk+1 = yk + �(wk − vk).

(5.4)

for k = 0, 1, 2,… ∶

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Compute zk+1 = (z1,k+1,… , zr−1,k+1) ∈ H
r−1 as

zk+1 = zk + �

⎛⎜⎜⎜⎝

x2,k − x1,k
x3,k − x2,k

⋮

xr,k − xr−1,k

⎞⎟⎟⎟⎠
,

where xk = (x1,k, x2,k,… , xr,k) ∈ H
r is given by

x1,k = J�A1
(z1,k),

for k = 2,… , r − 1 ∶�
xi,k = J�Ai

(zi,k − zi−1,k + xi−1,k),

xr,k = J�Ar
(x1,k + xr−1,k − zr−1,k).

https://arxiv.org/abs/2107.12355
https://arxiv.org/abs/2107.12355
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the new product space reformulation seems to be more effective for accelerating the 
convergence of the algorithm, especially when the number of operators is large as 
we shall show in Sect. 6.

We now turn our attention into splitting algorithms for problem (1.2). In particu-
lar, we concern on the averaged alternating modified reflections (AAMR) algorithm, 
originally proposed in [4] for best approximation problems, and later extended in 
[5] for monotone operators (see also [2, 7]). The parallel AAMR splitting iteration 
obtained from Pierra’s reformulation is given in [5, Theorem 4.1]. As we show in 
the following result, we can avoid one of the variables defining the iterative scheme 
if we use the product space reformulation in Theorem 3.3.

Theorem  5.3 (Parallel AAMR splitting algorithm) Let A1,A2,… ,Ar ∶ H ⇉ H be 
maximally monotone operators, let 𝛾 > 0 and let � ∈ ]0, 2] . Let � ∈ ]0, 1[ and sup-
pose that q ∈ ran

�
Id +

�

2(1−�)(r−1)

∑r

i=1
Ai

�
 . Given x1,0,… , xr−1,0 ∈ H , set

 Then 
(
pk
)∞
k=0

 converges strongly to J �

2(1−�)(r−1)

∑r

i=1
Ai
(q).

Proof Consider the product Hilbert space Hr−1 and let B,K ∶ H
r−1

⇉ H
r−1 be the 

operators defined in (3.2). We know that B and K are maximally monotone by Theo-
rem 3.3(i) and (ii), respectively. Set x

k
∶= (x1,k,… , x

r−1,k), zk ∶= (z1,k,… , z
r−1,k) ∈ H

r−1 and 
pk = jr−1(pk) ∈ Dr−1 , for each k = 0, 1, 2,… , and set q ∶= jr−1(q) ∈ Dr−1 . On the one 
hand, according to Theorem 3.3(i) and (ii), we can rewrite (5.5) as

On the other hand, from Theorem 3.3(iv) we obtain that

In particular, the latter implies that q ∈ ran
(
Id +

�

2(1−�)
(B + K)

)
 . Hence, by apply-

ing [7, Theorem 6 and Remark 10(i)], we conclude that 
(
pk
)∞
k=0

 converges strongly to 
J �

2(1−�)
(B+K)(q) and the result follows.   ◻

Remark 5.4 (On Forward-Backward type methods) Forward-Backward type meth-
ods permit to find a zero in A + B when A ∶ H → H is cocoercive (see, e.g., [9, 

(5.5)

for k = 0, 1, 2,… ∶

⎢⎢⎢⎢⎢⎣

pk = J �

r−1
Ar

�
�

r−1

∑r−1

i=1
xi,k + (1 − �)q

�
,

for i = 1, 2,… , r − 1 ∶�
zi,k = J�Ai

�
�(2pk − xi,k) + (1 − �)q

�
,

xi,k+1 = xi,k + �
�
zi,k − pk

�
.

for k = 0, 1, 2,… ∶

⎢⎢⎢⎣

pk = J�K
�
�xk + (1 − �)q

�
zk = J�B

�
�(2pk − xk) + (1 − �)q

�
xk+1 = xk + �(zk − pk).

J �

2(1−�)
(B+K)(q) = jr−1

�
J �

2(1−�)(r−1)

∑r

i=1
Ai
(q)

�
.
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Theorem 26.14]) or Lipschitz continuous (see, e.g., [15, 30, 40]) and B ∶ H ⇉ H 
is maximally monotone. These algorithms make use of direct evaluations of A (for-
ward steps) and resolvent computations of B (backward steps). When dealing with 
finitely many operators of both nature (single-valued and set-valued), Pierra’s refor-
mulation (Fact  3.1) yields parallel algorithms which need to activate all of them 
through their resolvents, since all of them are combined into the product operator 
A in (3.1). In contrast, the product space reformulation in Theorem  3.3 allows to 
deal with the case when A1,… ,Ar−1 ∶ H → H are cocoercive/Lipschitz continuous 
and Ar ∶ H ⇉ H is maximally monotone. Indeed, it can be easily proved that the 
product operator B in (3.2a) keeps the cocoercivity/Lipschitz continuity property. 
However, the parallel algorithm obtained with this approach will coincide with the 
original Forward-Backward type algorithm applied to the operators 

∑r−1

i=1
Ai and Ar . 

It is worth mentioning that in the opposite case, that is, when one operator is cocoer-
cive and the remaining ones are maximally monotone, a parallel Forward-Backward 
algorithm was developed in [36].

6  Numerical experiments

In this section, we perform some numerical experiments to assess the advantage of 
the new proposed reformulation when applied to splitting or projection algorithms. 
In particular, we compare the performance of the proposed parallel Douglas–Rach-
ford algorithm in Theorem  5.1 with the standard parallel version in [9, Proposi-
tion 26.12], first on a convex minimization problem and then in a nonconvex feasi-
bility problem. We will refer to these algorithms as Reduced-DR and Standard-DR, 
respectively. In some experiments we will also test the algorithms in [39, Theo-
rem 4] and [31, Theorem 4.5], wich will be referred to as Ryu and Malitsky–Tam, 
respectively. All codes were written in Python 3.7 and the tests were run on an 
Intel Core i7-10700K CPU 3.80GHz with 64GB RAM, under Ubuntu 20.04.2 LTS 
(64-bit).

6.1  The generalized Heron problem

We first consider the generalized Heron problem, which is described as follows. 
Given Ω1,… ,Ωr ⊆ ℝ

n nonempty, closed and convex sets, we are interested in find-
ing a point in Ωr that minimizes the sum of the distances to the remaining sets; that 
is,

This problem was investigated with modern convex analysis tools in [32, 33], where 
it was solved by subgradient-type algorithms. It was later revisited in [14], where the 
authors implemented their proposed paralellized Douglas–Rachford-type primal-
dual methods for its resolution. Indeed, splitting algorithms such as Douglas–Rach-
ford can be employed to solve problem (6.1) as this is equivalent to the monotone 
inclusion (1.1) with

(6.1)Min
∑r−1

i=1
dΩi

(x)

s.t. x ∈ Ωr.
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According to Facts 2.7 and 2.9, J�Ar
= PΩr

 and J�Ai
= prox�dΩi

 , for i = 1,… , r − 1 . 
We recall that the proximity operator of the distance function to a closed and convex 
set C ⊆ H is given by

In our experiments, the constraint sets Ω1,… ,Ωr−1 in (6.1) were randomly generated 
hypercubes of centers (ci,1,… , ci,n),… , (cr−1,1,… , cr−1,n) ∈ ℝ

n with length side 
√
2 , 

while Ωr was chosen to be the closed ball centered at zero with radius 10; that is, 

 More precisely, the centers of the hypercubes were randomly generated with norm 
greater or equal than 12, so that the hypercubes did not intersect the ball. Two 
instances of the problem with r = 5 , in ℝ2 and ℝ3 , are illustrated in Fig. 3.

In our first numerical test, we generated 10 instances of the problem (6.1)–(6.2) in 
ℝ

100 with r = 3 . For each � ∈ {1, 10, 25, 50, 75, 100} and each � ∈ {0.1, 0.2,… , 1.9} , 
Standard-DR and Reduced-DR were run from 10 random starting points. For those val-
ues of � ≤ 1 , Ryu and Malitsky–Tam algorithms were also run from the same initial 
points. All algorithms were stopped when the monitored sequence {pk}∞k=0 verified the 
Cauchy-type stopping criteria

for the first time. For a fairer comparison, for each algorithm we monitored that 
sequence which is projected onto the feasible set Ωr so that all of them lay on the 

Ar = ��Ωr
= NΩr

and Ai = �dΩi
, for i = 1,… , r − 1.

prox𝛾dC (x) =

{
x +

𝛾

dC(x)

(
PC(x) − x

)
, if dC(x) > 𝛾 ,

PC(x), otherwise.

(6.2a)

Ωi ∶=

�
(x1,… , xn) ∈ ℝ

n ∶ �ci,j − xj� ≤
√
2

2
, j = 1,… , n

�
, i = 1,… , r − 1,

(6.2b)Ωr ∶= {x ∈ ℝ
n ∶ ‖x‖ ≤ 10}.

‖pk+1 − pk‖ < 𝜀 ∶= 10−6

Fig. 3  The generalized Heron problem consisting in finding a point in a ball in ℝ2 (left) or ℝ3 (right) that 
minimizes the sum of the distances to four squares (left) or cubes (right). A solution to the problem is 
represented by a red point
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same ambient space. The average number of iterations required by each algorithm 
among all problems and starting points is depicted in Fig. 4. In Table 1 we list the 
best results obtained by each algorithm and the value of the parameters at which 
those results were achieved.

(a) Standard-DR (b) Reduced-DR

(c) Malitsky–Tam (d) Ryu

Fig. 4  Performance of Standard-DR, Reduced-DR, Malitsky–Tam and Ryu algorithms for solving the 
generalized Heron problem in ℝ100 with r = 3 . For each pair of parameters (� , �) , we represent the aver-
age number of iterations among 10 problems and 10 random starting points each

Table 1  Best choice of parameters and minimum averaged number of iterations, among 10 problems and 
10 random starting points each, required by Standard-DR, Reduced-DR, Malitsky–Tam and Ryu algo-
rithms for solving the generalized Heron problem in ℝ100 with r = 3

Algorithm � � Average iterations

Standard-DR 25 1.2 44.15
Reduced-DR 25 1.3 13.41
Malitsky–Tam 25 0.9 25.00
Ryu 25 1.0 15.96
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Once the parameters had been tuned, we analyzed the effect of the dimension of 
the space (n), as well as the number of operators (r), on the comparison between all 
algorithms. For the first purpose, we fixed r = 3 and generated 20 problems in ℝn 
for each n ∈ {100, 200,… , 1000} . Then, for each problem we computed the aver-
age time, among 10 random starting points, required by each algorithm to converge. 
Parameters � and � were chosen as in Table 1 according to the previous experiment. 
The results, shown in Fig.  5a, confirm the consistent advantage of Reduced-DR 
and Ryu for all sizes. Indeed, these two algorithms were around 4 times faster than 
Standard-DR, whereas Malitsky–Tam was 2 times faster than Standard-DR.

For the second objective we repeated the experiment where now, for each number 
of operators r ∈ {3, 4,… , 20} , we generated 20 problems in ℝ100 . We did not con-
sider Ryu splitting algorithm since it is only devised for three operators. We show 
the results in Fig. 5b, from which we deduce that the superiority of Reduced-DR 
and Malitsky–Tam over Pierra’s standard reformulation is diminished as the number 
of operators increases. However, this drop is more drastic for the Makitsky–Tam 
algorithm. In fact, while Reduced-DR is still always preferable to Standard-DR for 
all the considered values of r, Malitsky–Tam algorithm turns even slower than the 
classical approach when the number of operators is greater than 6.

6.2  Sudoku puzzles

In this section we analyze the potential of the product space reformulation with 
reduced dimension for nonconvex feasibility problems  (Proposition  4.3). To this 
aim, we concern on Sudoku puzzles, which were first investigated by the Doug-
las–Rachford algorithm in  [24]. Since then, other formulations as feasibility 

(a) n ∈ {100, 200, . . . , 1000} and r = 3. (b) n = 100 and r ∈ {3, 4, . . . , 20}.

Fig. 5  Comparison of the performance of Standard-DR, Reduced-DR, Malitsky–Tam and Ryu algo-
rithms for solving 20 instances of generalized Heron problem with r sets in ℝn for different values of n 
and r. For each problem we represent the ratio between the average time required by each algorithm over 
Reduced-DR, among 10 random starting points. The colored lines connect the median of the ratios while 
the dashed grey line represents ratios equal to 1
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problems have been studied. In this paper we consider the formulation with binary 
variables described in [3, Sect. 6.2], which we explain next.

Recall that a Sudoku puzzle is defined by a 9 × 9 grid, composed by nine 3 × 3 
subgrids, where some of the cells are prescribed with some given values. The objec-
tive is to fill the remaining cells so that each row, each column and each subgrid 
contains the digits from 1 to 9 exactly once. Possible solutions to a given Sudoku 
are encoded as a 3-dimensional multiarray X ∈ ℝ

9×9×9 with binary entries defined 
componentwise as

for (i, j, k) ∈ I3 where I ∶= {1, 2,… , 9} . Let C ∶= {e1, e2,… , e9} be the standard 
basis of ℝ9 , let J ⊆ I3 be the set of indices for the prescribed entries of the Sudoku, 
and denote by vecM the vectorization, by columns, of a matrix M. Under encoding 
(6.3), a solution to the Sudoku can be found by solving the feasibility problem

where the constraint sets are defined by

Observe that nonconvexity of problem (6.4) arises from the combinatorial struc-
ture of C1 , C2 , C3 , C4 ⊆ {0, 1}9×9×9 . Projections onto these sets can be computed by 
means of the projector mapping onto C (see [3, Remark 5.1]). On the other hand, C5 
is an affine subspace of ℝ9×9×9 whose projector can be readily computed component-
wise as

In our experiment we considered the 95 hard puzzles from the library top95.1 For 
each puzzle, we run Standard-DR, Reduced-DR and Malitsky–Tam from 10 ran-
dom initial points. Parameter � was roughly tuned for good performance and it was 
fixed to � = 1 for Standard-DR and Reduced-DR and � = 0.5 for Malitsky–Tam. The 
algorithms were stopped when either they found a solution or when the CPU run-
ning time exceeded 5 minutes. A summary of the results can be found in Table 2. 

(6.3)X[i, j, k] =

{
1, if digit k is assigned to the (i, j)th entry of the Sudoku,

0, otherwise;

(6.4)Find X ∈ C1 ∩ C2 ∩ C3 ∩ C4 ∩ C5 ⊆ ℝ
9×9×9,

C1 ∶=
{
X ∈ ℝ

9×9×9 ∶ X[i, ∶, k] ∈ C,∀i, k ∈ I
}
,

C2 ∶=
{
X ∈ ℝ

9×9×9 ∶ X[∶, j, k] ∈ C,∀j, k ∈ I
}
,

C3 ∶=
{
X ∈ ℝ

9×9×9 ∶ X[i, j, ∶] ∈ C,∀i, j ∈ I
}
,

C4 ∶=

{
X ∈ ℝ

9×9×9 ∶
vecX[3i + 1 ∶ 3(i + 1), 3j + 1 ∶ 3(j + 1), k] ∈ C,

∀i, j ∈ {0, 1, 2},∀k ∈ I

}
,

C5 ∶=
{
X ∈ ℝ

9×9×9 ∶ X[i, j, k] = 1,∀(i, j, k) ∈ J
}
.

PC5
(X)[i, j, k] =

{
1, if (i, j, k) ∈ J,

X[i, j, k], otherwise.

1 top95: http:// magic tour. free. fr/ top95.

http://magictour.free.fr/top95
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While the success of all three algorithms is very similar, the average CPU time and, 
specially, the proportion of wins are clearly favorable to Reduced-DR.

In order to better visualize the results we turn to performance profiles (see [21] 
and the modification proposed in [26]), which are constructed as explained next.

Performance profiles  Let A denote a set of algorithms to be tested on a set 
of N problems, denoted by P , for multiple runs (starting points). Let sa,p denote 
the fraction of successful runs of algorithm a ∈ A on problem p ∈ P and let 
ta,p be the averaged time required to solve those successful runs. Compute 
t⋆
p
∶= mina∈A ta,p for all p ∈ P . Then, for any � ≥ 1 , define Ra(�) as the set of 

problems for which algorithm a was at most � times slower than the best algo-
rithm; that is, Ra(𝜏) ∶= {p ∈ P, ta,p ≤ 𝜏t⋆

p
} . The performance profile function of 

algorithm a is given by

The value �a(1) indicates the portion of runs for which a was the fastest algorithm. 
When � → +∞ , then �a(�) gives the proportion of successful runs for algorithm a.

Performance profiles of the results of Sudoku experiment are shown in Fig. 6, 
which confirm the conclusions drawn from Table  2. Furthermore, we can now 
asses that Reduced-DR becomes consistently superior since its performance pro-
file is mostly above the one of the remaining two algorithms.

We would like to conclude with the following comment regarding the imple-
mentation of splitting algorithms on (6.4).

Remark 6.1 (On the order of the sets) Observe that Pierra’s classical reformulation 
in Proposition 4.2, and thus Standard-DR, is completely symmetric on the order of 
the sets C1,… ,C5 . However, this is not the case for the reformulation in Proposi-
tion 4.3, where one has to decide which of the sets will be merged to the diagonal 
to construct the set K in (4.8b). In our test, we followed the arrangement in Proposi-
tion 4.3, that is,

�a ∶ [1,+∞) ⟼ [0, 1]

� ↦ �a(�) ∶=
1

N

∑
p∈Ra(�)

sa,p.

B ∶=C1 × C2 × C3 × C4 ⊆
(
ℝ

9×9×9
)4
,

K ∶={(x, x, x, x) ∈
(
ℝ

9×9×9
)4

∶ x ∈ C5} ⊆
(
ℝ

9×9×9
)4
.

Table 2  Results of the comparison between Standard-DR, Reduced-DR and Malitsky–Tam algorithm for 
solving 95 Sudoku problems from 10 random starting points each

For each algorithm, we show the percentage of solved instances, the percentage of instances for which 
the algorithm was fastest, and the median of the CPU time required among the solved instances. 
Instances were labeled as unsolved after 5 min

Algorithm Solved (%) Wins (%) Time (median) (s)

Standard-DR 91.78 18.94 0.7423
Reduced-DR 91.78 55.47 0.5904
Malitsky–Tam 88.73 15.05 0.8836
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Note that this makes the constrained diagonal set K to be an affine subspace. Due to 
the nonconvexity of the problem, the reformulation chosen may be crucial for the 
success of the algorithm. For example, we tested all the remaining combinations, for 
which Reduced-DR rarely found a solution on the considered problems within the 
first 5 minutes of running time.

7  Concluding remarks

In this work we have introduced a new reformulation in a product space for finding a 
zero in the sum of finitely many maximally monotone operators with splitting algo-
rithms. The new approach reduces one dimension of the ambient product Hilbert 
space with respect to Pierra’s standard reformulation.

Having different techniques for reformulating monotone inclusions, which may 
be of interest itself, lead to different algorithmic implementation. For the considered 
applications in this work, that reduction of the dimension implied an acceleration of 
the convergence of the Douglas–Rachford splitting algorithm. Further, our proposed 
scheme also outperformed Ryu [39] and Malitsky–Tam [31] algorithms on these 
problems. However, our numerical experiments are far from providing a complete 
computational study. In fact, numerical comparison of the three algorithms for solv-
ing best approximation problems with three subspaces has been recently performed 
in [13], where the reduced product space reformulation is not as advantageous as in 
the experiments considered here. This motivate us to further investigate a compre-
hensive numerical analysis of these algorithms in a future work.

Acknowledgements The author would like to thank two anonymous referees for their careful reading and 
their constructive comments which helped to improve this manuscript.

Fig. 6  Performance profiles comparing Standard-DR, Reduced-DR and Malitsky–Tam algorithm 
for solving 95 Sudoku problems (left). For each problem, 10 random starting points were considered. 
Instances were labeled as unsolved after 5 minutes of CPU running time. For the sake of clarity we focus 
the view of the performance profiles to the values of � ∈ [1, 5] (right)
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