
Vol.:(0123456789)

Computational Optimization and Applications (2022) 83:319–348
https://doi.org/10.1007/s10589-022-00395-7

1 3

A product space reformulation with reduced dimension
for splitting algorithms

Rubén Campoy1

Received: 3 March 2022 / Accepted: 29 June 2022 / Published online: 15 July 2022
© The Author(s) 2022

Abstract
In this paper we propose a product space reformulation to transform monotone
inclusions described by finitely many operators on a Hilbert space into equivalent
two-operator problems. Our approach relies on Pierra’s classical reformulation with
a different decomposition, which results in a reduction of the dimension of the out-
coming product Hilbert space. We discuss the case of not necessarily convex feasi-
bility and best approximation problems. By applying existing splitting methods to
the proposed reformulation we obtain new parallel variants of them with a reduction
in the number of variables. The convergence of the new algorithms is straightfor-
wardly derived with no further assumptions. The computational advantage is illus-
trated through some numerical experiments.

Keywords Pierra’s product space reformulation · Splitting algorithm · Douglas–
Rachford algorithm · Monotone inclusions · Feasibility problem · Projection
methods

Mathematics Subject Classification 47H05 · 47J25 · 49M27 · 65K10 · 90C30

1 Introduction

A problem of great interest in optimization and variational analysis is the mono-
tone inclusion consisting in finding a zero of a monotone operator. In many practical
applications, such operator can be decomposed as a sum of finitely many maximally
monotone operators. The problem takes then the form

(1.1)Find x ∈ H such that 0 ∈ A1(x) + A2(x) +⋯ + Ar(x),

 * Rubén Campoy
 ruben.campoy@uv.es

1 Department of Statistics and Operational Research, Universitat de València, C. Dr. Moliner, 50,
46100 Burjassot, Valencia, Spain

http://orcid.org/0000-0002-1275-7831
http://crossmark.crossref.org/dialog/?doi=10.1007/s10589-022-00395-7&domain=pdf

320 R. Campoy

1 3

where H is a Hilbert space and A1,A2,… ,Ar ∶ H ⇉ H are maximally monotone.
When the sum is itself maximally monotone, in theory, inclusion (1.1) could be
numerically solved by the well-known proximal point algorithm [38]. However, this
method requires the computation of the resolvent of the operator A1 +⋯ + Ar at
each iteration, which is not usually available. In fact, computing the resolvent of a
sum at a given point q ∈ H , i.e.,

where JA denotes the resolvent of an operator A, is a problem of interest itself which
arises in some optimization subroutines as well as in direct applications such as best
approximation, image denoising and partial differential equations (see, e.g., [7]).

Splitting algorithms take advantage of the decomposition and activate each
operator separately, either by direct evaluation (forward steps) or via its resol-
vent (backward steps), to construct a sequence that converges to a solution of
the problem. Splitting algorithms include, in particular, the so-called projection
methods, which permit to find a point (or the closest point) in the intersection
of a collection of sets by computing individual projections onto them. Classi-
cal splitting algorithms for monotone inclusions include the Forward-Backward
algorithm and its variants, see, e.g., [9, 15, 30, 40], and the Douglas–Rachford
algorithm [22, 29], among others (see, e.g., [9, Chapter 23]). On the other hand,
different splitting algorithms for computing the resolvent of a sum can be found
in, e.g, [1, 5, 16, 19]. See also the recent unifying framework [7].

Most splitting algorithms in the literature are devised for a sum of two opera-
tors, whereas there exist just a few three-operator extensions, see, e.g., [8, 20, 37,
39]. In general, problems (1.1) and (1.2) are tackled by splitting algorithms after
applying Pierra’s product space reformulation [34, 35]. This technique constructs
an equivalent two-operator problem, embedded in a product Hilbert space, that
preserves computational tractability in the sense that the resolvents of the new
operators can be readily computed. However, since each operator in the original
problem requires one dimension in the product space, this technique may result
numerically inefficient when the number of operators is too large.

In this work we propose an alternative reformulation, based on Pierra’s clas-
sical one, which reduces the dimension of the resulting product Hilbert space.
Our approach consists in merging one of the operators with the normal cone to
the diagonal set, what allows to remove one dimension in the product space. In
fact, in contrast to Pierra’s reformulation, the one proposed in this work repro-
duces exactly the original problem when this is initially defined by two opera-
tors (see Remark 3.4). We would like to note that this reformulation has already
been used in other frameworks. For instance, it was employed in [27] for deriv-
ing necessary conditions for extreme points of a collection of closed sets. Our
main contribution is showing that the computability of the resolvents of the new
defined operators is kept with no further assumptions. This result allows us to
implement known splitting algorithms under this reformulation, which entails
the elimination of one variable defining the iterative scheme in comparison to
Pierra’s approach.

(1.2)Find p ∈ J∑r

i=1
Ai
(q),

321

1 3

A product space reformulation with reduced dimension for…

After the publication of the first preprint version of this manuscript we became aware
of [17], where the authors suggest an analogous dimension reduction technique for
structured optimization problems. Although that reformulation is different, the derived
parallel Douglas–Rachford (DR) algorithm seems to lead to a scheme equivalent to the
one obtained from Theorem 5.1 in this context. Notwithstanding, our analysis is devel-
oped in the more general framework of monotone inclusions. Furthermore, we provide
detailed proofs of the equivalency and resolvents formulas, as well as numerical com-
parison to the classical Pierra’s reformulation. On the other hand, Malitsky and Tam
independently proposed in [31] another r-operator DR-type algorithm embedded in a
reduced-dimensional space. This algorithm, which can be seen as an attempt to extend
Ryu’s splitting algorithm [39] (see Remark 5.2), differs from the one proposed in this
work and it will also be tested in our experiments.

It is worth mentioning that a similar idea for feasibility problems was previously
developed in [18]. In there, the dimensionality reduction was obtained by replacing
a pair of constraint sets in the original problem by their intersection before applying
Pierra’s reformulation. However, the convergence of some projection algorithms may
require a particular intersection structure of these sets. Our approach has the advantage
of being directly applicable to any splitting algorithm with no additional requirements.

The remainder of the paper is organized as follows. In Sect. 2 we recall some pre-
liminary notions and auxiliary results. Then Sect.3 is divided into Sect. 3.1, where we
first recall Pierra’s standard product space reformulation, and Sect. 3.2, in which we
propose an alternative reformulation with reduced dimension. We discuss and illus-
trate the particular case of feasibility and best approximation problems in Sect. 4. In
Sect. 5, we apply our reformulation to construct new parallel variants of some splitting
algorithms. Finally, in Sect. 6 we perform some numerical experiments that exhibit the
advantage of the proposed reformulation.

2 Preliminaries

Throughout this paper, H is a Hilbert space endowed with inner product ⟨⋅, ⋅⟩ and
induced norm ‖ ⋅ ‖ . We abbreviate norm convergence of sequences in H with → and we
use ⇀ for weak convergence.

2.1 Operators

Given a nonempty set D ⊆ H , we denote by A ∶ D ⇉ H a set-valued operator that
maps any point x ∈ D to a set A(x) ⊆ H . In the case where A is single-valued we write
A ∶ D → H . The graph, the domain, the range and the set of zeros of A, are denoted,
respectively, by graA , domA , ranA and zerA ; i.e.,

322 R. Campoy

1 3

The inverse of A, denoted by A−1 , is the operator defined via its graph by
graA−1 ∶= {(u, x) ∈ ℝ

n ×ℝ
n ∶ u ∈ A(x)} . We denote the identity mapping by Id.

Definition 2.1 (Monotonicity) An operator A ∶ H ⇉ H is said to be

 (i) Monotone if

 Furthermore, A is said to be maximally monotone if it is monotone and there
exists no monotone operator B ∶ H ⇉ H such that graB properly contains
graA.

 (ii) Uniformly monotone with modulus � ∶ ℝ+ → [0,+∞] if � is increasing, van-
ishes only at 0, and

 (iii) �-strongly monotone for 𝜇 > 0 , if A − �Id is monotone; i.e.,

Clearly, strong monotonicity implies uniform monotonicity, which itself implies
monotonicity. The reverse implications are not true.

Remark 2.2 The notions in Definition 2.1 can be localized to a subset of the domain.
For instance, A ∶ H ⇉ H is �-strongly monotone on C ⊆ domA if

Lemma 2.3 Let A,B ∶ H ⇉ H be monotone operators. The following hold.

 (i) If A is uniformly monotone on dom(A + B) , then A + B is uniformly monotone
with the same modulus than A.

 (ii) If A is �-strongly monotone on dom(A + B) , then A + B is �-strongly monotone.

Proof Let (x, u), (y, v) ∈ gra(A + B) , i.e., u = u1 + u2 and v = v1 + v1 with
(x, u1), (y, v1) ∈ graA and (x, u2), (y, v2) ∈ graB . (i): Suppose that A is uniformly
monotone on dom(A + B) with modulus � . Since x, y ∈ dom(A + B) , we get that

graA ∶= {(x, u) ∈ ℝ
n ×ℝ

n ∶ u ∈ A(x)},

domA ∶=
{
x ∈ ℝ

n ∶ A(x) ≠ �
}
,

ranA ∶= {x ∈ ℝ
n ∶ x ∈ A(z) for some z ∈ ℝ

n}

and zerA ∶= {x ∈ ℝ
n ∶ 0 ∈ A(x)}.

⟨x − y, u − v⟩ ≥ 0, ∀(x, u), (y, v) ∈ graA;

⟨x − y, u − v⟩ ≥ �(‖x − y‖), ∀(x, u), (y, v) ∈ graA.

⟨x − y, u − v⟩ ≥ �‖x − y‖2, ∀(x, u), (y, v) ∈ graA.

⟨x − y, u − v⟩ ≥ �‖x − y‖2, ∀x, y ∈ C,∀u ∈ A(x),∀v ∈ A(y).

⟨x − y, u − v⟩ = ⟨x − y, u1 − v1⟩ + ⟨x − y, u2 − v2⟩ ≥ �(‖x − y‖),

323

1 3

A product space reformulation with reduced dimension for…

which proves that A + B is uniformly monotone with the same modulus. The proof
of (ii) is analogous and, thus, omitted. ◻

Definition 2.4 (Resolvent) The resolvent of an operator A ∶ H ⇉ H with parameter
𝛾 > 0 is the operator J�A ∶ H ⇉ H defined by

The following result collects some properties of the resolvents of monotone oper-
ators. The second assertion corresponds to the well-known Minty’s theorem.

Fact 2.5 Let A ∶ H ⇉ H be monotone and let 𝛾 > 0 . Then

 (i) J�A is single-valued,
 (ii) domJ�A = H if and only if A is maximally monotone.

Proof See, e.g., [9, Proposition 23.8]. ◻

The resolvent of the sum of two monotone operators has no closed expression in
terms of the individual resolvents except for some particular situations. The follow-
ing fact, which is fundamental in our results, contains one of those special cases.

Fact 2.6 Let A,B ∶ H ⇉ H be maximally monotone operators such that
B(y) ⊆ B(JA(y)) , for all y ∈ domB. Then, A + B is maximally monotone and

Proof See, e.g., [9, Proposition 23.32(i)]. ◻

2.2 Functions

Let f ∶ H →] − ∞,+∞] be a proper, lower semicontiuous and convex function.
The subdifferential of f is the operator �f ∶ H ⇉ H defined by

The proximity operator of f (with parameter �), prox�f ∶ H ⇉ H , is defined at
x ∈ H by

Fact 2.7 Let f ∶ H →] − ∞,+∞] be proper, lower semicontiuous and convex.
Then, the subdifferential of f, �f , is a maximally monotone operator whose resolvent
becomes the proximity operator of f, i.e.,

J�A ∶= (Id + �A)−1.

JA+B(x) = JA(JB(x)), ∀x ∈ H.

�f (x) ∶= {u ∈ H ∶ ⟨y − x, u⟩ + f (x) ≤ f (y), ∀y ∈ H}.

prox�f (x) ∶= argminu∈H

�
f (u) +

1

2�
‖x − u‖2

�
.

324 R. Campoy

1 3

Proof See, e.g., [9, Theorem 20.25 and Example 23.3]. ◻

2.3 Sets

Given a nonempty set C ⊆ H , we denote by dC the distance function to C; that is,
dC(x) ∶= infc∈C ‖c − x‖ , for all x ∈ H . The projection mapping (or projector) onto
C is the possibly set-valued operator PC ∶ H ⇉ C defined at each x ∈ H by

Any point p ∈ PC(x) is said to be a best approximation to x from C (or a projection
of x onto C). If a best approximation in C exists for every point in H , then C is said
to be proximinal. If every point x ∈ H has exactly one best approximation from C,
then C is said to be Chebyshev. Every nonempty, closed and convex set is Cheby-
shev (see, e.g., [9, Theorem 3.16]).

The next results characterizes the projection onto a closed affine subspace.

Fact 2.8 Let D ⊆ H be a closed affine subspace and let x ∈ H . Then

Proof See, e.g., [9, Corollary 3.22]. ◻

The indicator function of a set C ⊆ H , �C ∶ H →] − ∞,+∞] , is defined as

If C is closed and convex, �C is convex and its differential turns to the normal cone to
C, which is the operator NC ∶ H ⇉ H defined by

Fact 2.9 Let C ⊆ H be nonempty, closed and convex. Then, the normal cone to C,
NC , is a maximally monotone operator whose resolvent becomes the projector onto
C, i.e.,

Proof See, e.g., [9, Examples 20.26 and 23.4]. ◻

We conclude this section with the following result that characterizes the projector
onto the intersection of a proximinal set (not necessarily convex) and a closed affine

J��f (x) = prox�f (x), ∀x ∈ H.

PC(x) ∶=
�
p ∈ C ∶ ‖x − p‖ = dC(x)

�
.

p = PD(x) ⟺ p ∈ D and ⟨x − p, d − p⟩ = 0, ∀d ∈ D.

�C(x) ∶=

{
0, if x ∈ C,

+∞, if x ∉ C.

NC(x) ∶=

�
{u ∈ H ∶ ⟨u, c − x⟩ ≤ 0, ∀c ∈ C}, if x ∈ C,

�, otherwise.

J�NC
(x) = PC(x), ∀x ∈ H.

325

1 3

A product space reformulation with reduced dimension for…

subspace under particular assumptions. It is a refinement of [18, Theorem 3.1(c)],
whose proof needs to be barely modified.

Lemma 2.10 Let C ⊆ H be nonempty and proximinal and let D ⊆ H be a closed aff-
ine subspace. If PC(d) ∩ D ≠ � for all d ∈ D , then

Proof Fix x ∈ H . By assumption we have that PC(PD(x)) ∩ D ≠ � . Pick any
c ∈ PC(PD(x)) ∩ D and let p ∈ PC∩D(x) . Then c ∈ PC(d) ∩ D , where d = PD(x) .
Since D is an affine subspace and d = PD(x) , we derive from Fact 2.8 applied to
c ∈ D and p ∈ D , respectively, that ⟨x − d, c − d⟩ = 0 and ⟨x − d, p − d⟩ = 0 .
Therefore,

Since c ∈ PC(d) and p ∈ C then ‖c − d‖ ≤ ‖p − d‖ . This combined with (2.1) yields
‖x − c‖ ≤ ‖x − p‖ . Note that p ∈ PC∩D(x) and c ∈ C ∩ D , so it must be

It directly follows from (2.2) that c ∈ PC∩D(x) . Furthermore, by combining (2.2)
with (2.1) we arrive at ‖c − d‖ = ‖p − d‖ , which implies that p ∈ PC(d) ∩ D and
concludes the proof. ◻

3 Product space reformulation for monotone inclusions

In this section we introduce our proposed reformulation to convert problems (1.1)–(1.2)
into equivalent problems with only two operators. To this aim, we first recall the stand-
ard product space reformulation due to Pierra [34, 35].

3.1 Standard product space reformulation

Consider the product Hilbert space Hr = H ×
(r)
⋯ ×H , endowed with the inner product

and define

which is a closed subspace of Hr commonly known as the diagonal. We
denote by jr ∶ H → Dr the canonical embedding that maps any x ∈ H to
jr(x) = (x, x,… , x) ∈ Dr . The following result collects the fundamentals of Pierra’s
standard product space reformulation.

PC∩D(x) = PC(PD(x)) ∩ D, ∀x ∈ H.

(2.1)
‖x − c‖2 = ‖x − d‖2 + ‖c − d‖2 and ‖x − p‖2 = ‖x − d‖2 + ‖p − d‖2.

(2.2)‖x − c‖ = ‖x − p‖.

⟨x, y⟩ ∶=
r�

i=1

⟨xi, yi⟩, ∀x = (x1, x2,… , xr), y = (y1, y2,… , yr) ∈ H
r,

Dr ∶= {(x, x,… , x) ∈ H
r ∶ x ∈ H},

326 R. Campoy

1 3

Fact 3.1 (Standard product space reformulation) Let A1,A2,… ,Ar ∶ H ⇉ H be
maximally monotone and let 𝛾 > 0 . Define the operator A ∶ H

r
⇉ H

r as

Then the following hold.

 (i) A is maximally monotone and

 (ii) The normal cone to Dr is given by

 It is a maximally monotone operator and

 (iii) zer
�
A + NDr

�
= jr

�
zer

�∑r

i=1
Ai

��
.

 (iv) J�(A+NDr
)(x) = jr

�
J �

r

∑r

i=1
Ai
(x)

�
, ∀x = jr(x) ∈ Dr.

Proof See, e.g., [9, Proposition 26.4] and [5, Proposition 4.1]. 3, 6, 10, 23–25, 28
 ◻

According to the previous result, the product space reformulation is a convenient
trick for reducing problems (1.1) and (1.2) to equivalent problems with two opera-
tors that keep maximal monotonicity and computational tractability. However, this
approach relies on working in a product Hilbert space in which each operator of
the problem requires one product dimension. This may become computationally
inefficient when the number of operators increases. In the next section we will ana-
lyze an alternative reformulation in a product Hilbert space with lower dimension.
Before that, we include the following technical result regarding additional monoto-
nicity properties that are inherited by the product operator defined in the standard
reformulation.

Lemma 3.2 Let A1,A2,… ,Ar ∶ H ⇉ H be monotone operators and let
A ∶ H

r
⇉ H

r be the product operator defined in (3.1). Then the following hold.

(3.1)A(x) ∶= A1(x1) × A2(x2) ×⋯ × Ar(xr), ∀x = (x1, x2,… , xr) ∈ H
r.

J�A(x) =
(
J�A1

(x1), J�A2
(x2),⋯ , J�Ar

(xr)
)
, ∀x = (x1, x2,… , xr) ∈ H

r.

NDr
(x) =

�
D⟂

r
= {u = (u1, u2,… , ur) ∈ H

r ∶
∑r

i=1
ui = 0}, if x ∈ Dr,

�, otherwise.

J�NDr
(x) = PDr

(x) = jr

(
1

r

r∑
i=1

xi

)
, ∀x = (x1, x2,… , xr) ∈ H

r.

327

1 3

A product space reformulation with reduced dimension for…

 (i) If Ai is uniformly monotone with modulus �i for all i ∈ I0 ⊆ {1,… , r} , then A
is uniformly monotone on dom(A) ∩ Dr with modulus

∑
i∈I0

�i(
⋅√
r
).

 (ii) If Ai is �i-strongly monotone for all i ∈ I0 ⊆ {1,… , r} , then A is �-strongly
monotone on dom(A) ∩ Dr with � ∶=

1

r

∑
i∈I0

�i.

Proof

 (i) Suppose that Ai is uniformly monotone with modulus �i for all
i ∈ I0 ⊆ {1,… , r} . Let x = jr(x), y = jr(y) ∈ Dr , for some x, y ∈ H , and let
u = (u1,… , ur), v = (v1,… , vr) ∈ H

r such that (x, u), (y, v) ∈ graA . Then,

 which implies that A is uniformly monotone on dom(A) ∩ Dr with modulus ∑
i∈I0

�i

�
⋅√
r

�
.

 (ii) Follows from (i) by taking �i = �i(⋅)
2 for all i ∈ I0 . ◻

3.2 New product space reformulation with reduced dimension

We introduce now our proposed reformulation technique which permits to eliminate
one space in the product with respect to Pierra’s classical trick. More specifically,
our approach reformulates problems (1.1) and (1.2) in the product Hilbert space

To this aim, consider its diagonal Dr−1 , with canonical embedding jr−1 ∶ H → Dr−1.

Theorem 3.3 (Product space reformulation with reduced dimension) Let 𝛾 > 0
and let A1,A2,… ,Ar ∶ H ⇉ H be maximally monotone. Consider the operators
B,K ∶ H

r−1
⇉ H

r−1 defined, at each x = (x1,… , xr−1) ∈ H
r−1 , by

 Then the following .

 (i) B is maximally monotone and

⟨x − y, u − v⟩ =
r�

i=1

⟨x − y, ui − vi⟩ ≥
�
i∈I0

⟨x − y, ui0 − vi0⟩

≥
�
i∈I0

�i(‖x − y‖) = �
i∈I0

�i

�
1√
r
‖x − y‖

�
,

H
r−1 = H ×

(r−1)
⋯ ×H.

(3.2a)B(x) ∶=A1(x1) ×⋯ × Ar−1(xr−1),

(3.2b)K(x) ∶=
1

r−1
Ar(x1) ×⋯ ×

1

r−1
Ar(xr−1) + NDr−1

(x).

J�B(x) =
(
J�A1

(x1),… , J�Ar−1
(xr−1)

)
, ∀x = (x1,… , xr−1) ∈ H

r−1.

328 R. Campoy

1 3

 (ii) K is maximally monotone and

 If, in addition, Ar is uniformly monotone (resp. �-strongly monotone), then K
is uniformly monotone (resp. �-strongly monotone).

 (iii) zer(B + K) = jr−1
�
zer

�∑r

i=1
Ai

��
.

 (iv) J�(B+K)(x) = jr−1

�
J �

r−1

∑r

i=1
Ai
(x)

�
, ∀x = jr−1(x) ∈ Dr−1.

Proof Note that (i) directly follows from Fact 3.1(i). For the remaining assertions,
let us define the operator S ∶ H

r−1
⇉ H

r−1 as

so that K = S + NDr−1
.

(ii): Fix x = (x1,… , xr−1) ∈ H
r−1 . On the one hand, from Fact 3.1(i) we get that S

is maximally monotone with

On the other hand, Fact 3.1(ii) asserts that

is maximally monotone with

Now pick any y ∈ domNDr−1
= Dr−1 . It must be that y = jr−1(y) for some y ∈ H and

thus

Hence, we have that

Since y was arbitrary in domNDr−1
 we can apply Fact 2.6 to obtain that S + NDr−1

 is
maximally monotone and

J�K(x) = jr−1

(
J �

r−1
Ar

(
1

r − 1

r−1∑
i=1

xi

))
, ∀x = (x1,… , xr−1) ∈ H

r−1.

S(x) ∶=
1

r−1
Ar(x1) ×⋯ ×

1

r−1
Ar(xr−1), ∀x = (x1,… , xr−1) ∈ H

r−1,

J�S(x) =
(
J �

r−1
Ar
(x1),… , J �

r−1
Ar
(xr−1)

)
.

NDr−1
(x) =

�
D⟂

r−1
= {u = (u1,… , ur−1) ∈ H

r−1 ∶
∑r−1

i=1
ui = 0}, if x ∈ Dr−1,

�, otherwise,

(3.3)J�NDr−1

(x) = PDr−1
(x) = jr−1

(
1

r − 1

r−1∑
i=1

xi

)
.

(3.4)J�S(y) = jr−1

(
J �

r−1
Ar
(y)

)
∈ Dr−1.

NDr−1
(y) = D⟂

r−1
= NDr−1

(
J�S(y)

)
.

329

1 3

A product space reformulation with reduced dimension for…

where the last equality follows from combining (3.3) and (3.4).
If, in addition, Ar is uniformly monotone (resp. �-strongly monotone), then S is

uniformly monotone (resp. �-strongly monotone) on dom(S) ∩ Dr−1 according to
Lemma 3.2(i) (resp. Lemma 3.2(ii)). Since NDr−1

 is a maximally monotone operator
with domain Dr−1 , the result follows from Lemma 2.3(i) (resp. Lemma 2.3(ii)).

(iii): To prove the direct inclusion, take any x ∈ zer(B + K) = zer
(
B + S + NDr−1

)
 .

It necessarily holds that x ∈ domNDr−1
= Dr−1 , so x = jr−1(x) for some x ∈ H . There

exist u ∈ B(x) , v ∈ S(x) and w ∈ NDr−1
(x) with u + v + w = 0 . By definition of these

operators u = (u1,… , ur−1) , with ui ∈ Ai(x) for i ∈ {1,… , r − 1} , v = jr−1(
1

r−1
v) ,

with v ∈ Ar(x) , and w = (w1,… ,wr−1) , with
∑r−1

i=1
wi = 0 . Hence,

Summing up all these equations we arrive at

which yields x ∈ zer(
∑r

i=1
Ai).

For the reverse inclusion, take any x ∈ zer(
∑r

i=1
Ai) and let x = jr−1(x) ∈ Dr−1 .

Then there exists ui ∈ Ai(x) , for each i ∈ {1, 2,… , r} , with
∑r

i=1
ui = 0 . Define

Since u + v + w = 0 it follows that x ∈ zer
(
B + S + NDr−1

)
.

(iv): Fix any x ∈ H and let x = jr−1(x) ∈ Dr−1 and p ∈ J�(B+S+NDr−1
)(x) . Then

It must be that p = jr−1(p) ∈ Dr−1 for some p ∈ H . Hence, we can rewrite the previ-
ous inclusion as

with
∑r−1

i=1
ui = 0 . Summing up all the inclusions in (3.5) and dividing by a factor of

r − 1 we arrive at

J�K(x) = J�(S+NDr−1
)(x)

= J�S

(
J�NDr−1

(x)
)
= jr−1

(
J �

r−1
Ar

(
1

r − 1

r−1∑
i=1

xi

))
,

ui +
1

r − 1
v + wi = 0, for each i ∈ {1,… , r − 1}.

0 =

r−1∑
i=1

(
ui +

1

r − 1
v + wi

)
=

r−1∑
i=1

ui + v ∈

r∑
i=1

Ai(x),

u ∶=(u1,… , ur−1) ∈ B(x),

v ∶=jr−1

(
1

r − 1
ur

)
∈ S(x),

w ∶= − u − v ∈ D⟂

r−1
= NDr−1

(x).

x ∈ p + �B(p) + �S(p) + NDr−1
(p).

(3.5)x ∈ p + �Ai(p) +
�

r − 1
Ar(p) + ui, for each i ∈ {1,… , r − 1},

330 R. Campoy

1 3

which implies that p ∈ J �

r−1

∑r

i=1
Ai
(x).

For the reverse inclusion, take any p ∈ J �

r−1

∑r

i=1
Ai
(x) so that there exist ai ∈ Ai(p) ,

for i ∈ {1, 2,… , r} , such that

Define the vectors v ∶= (a1,… , ar−1) , w ∶= jr−1

(
1

r−1
ar

)
 and u ∶= x − p − �v − �w .

Hence, x = p + �v + �w + u , with v ∈ B(p) , w ∈ S(p) and, in view of (3.6),
u ∈ NDr−1

 . This implies that p ∈ J�(B+S+NDr−1
)(x) and concludes the proof. ◻

Remark 3.4 Consider problem (1.1) with only two operators, i.e.,

where A1,A2 ∶ H ⇉ H are maximally monotone. Although splitting algorithms can
directly tackle (3.7), the product space reformulations are still applicable. Indeed,
the standard reformulation in Fact 3.1 produces the problem

with A = A1 × A2 . Then (3.8) is equivalent to (3.7) in the sense that their solution
sets can be identified to each other. However, they are embedded in different ambi-
ent Hilbert spaces. In contrast, the problem generated by applying Theorem 3.3
becomes

where B = A1 and K = A2 + ND1
 . Since D1 = H , then ND1

= {0} and (3.9) recovers
the original problem (3.7).

4 The case of feasibility and best approximation problems

Given a family of sets C1,C2,… ,Cr ⊆ H , the feasibility problem aims to find a
point in the intersection of the sets, i.e.,

A related problem, known as the best approximation problem, consists in finding,
not only a point in the intersection, but the closest one to a given point q ∈ H , i.e.,

x ∈ p +
�

r − 1

r∑
i=1

Ai(p),

(3.6)x = p +
�

r − 1

r∑
i=1

ai ⟺ 0 =

r−1∑
i=1

(
x − p − �ai −

�

r − 1
ar

)
.

(3.7)Find x ∈ H such that 0 ∈ A1(x) + A2(x),

(3.8)Find x ∈ H
2 such that 0 ∈ A(x) + ND2

(x),

(3.9)Find x ∈ H such that 0 ∈ B(x) + K(x),

(4.1)Find x ∈

r⋂
i=1

Ci.

331

1 3

A product space reformulation with reduced dimension for…

The feasibility problem (4.1) can be seen as a particular instance of the monotone
inclusion (1.1) when specialized to the normal cones to the sets. Indeed, one can
easily check that

Similarly, under a constraint qualification, problem (4.2) turns out to be (1.2) applied
to the normal cones, that is,

According to Fact 2.9, if the involved sets C1,C2,… ,Cr are closed and convex then
NCi

 is maximally monotone with JNCi

= PCi
 , for all i = 1,… , r . Therefore, Fact 3.1

and Theorem 3.3 can be applied in order to reformulate problems (4.1) and (4.2) as
equivalent problems involving only two sets. This is illustrated in the following
example.

Example 4.1 (Convex feasibility problem) Consider a feasibility problem consisting
of finding a point in the intersection of three closed intervals

where C1 ∶= [0.5, 2] , C2 ∶= [1.5, 2] and C3 ∶= [1, 3] . By applying Fact 3.1 to the
normal cones NC1

 , NC2
 and NC3

 , the latter is equivalent to

(4.2)Find p ∈

r�
i=1

Ci, such that ‖p − q‖ = inf{‖x − q‖ ∶ x ∈ ∩r
i=1

Ci}.

x ∈

r⋂
i=1

Ci ⟺ 0 ∈

r∑
i=1

NCi
(x).

p ∈ P∩r
i=1

Ci
(q) ⟺ p ∈ J∑r

i=1
NCi

(q).

(4.3)Find x ∈ C1 ∩ C2 ∩ C3 ⊆ ℝ,

(4.4)
Find (x, x, x) ∈ (C1 × C2 × C3) ∩ D3 ⊆ ℝ

3, where D3 = {(x, x, x) ∶ x ∈ ℝ}

(a) Standard product space reformu-
lation

(b) Product space reformulation with
reduced dimension

Fig. 1 Product space reformulations of the convex feasibility problem in Example 4.1

332 R. Campoy

1 3

In contrast, if we apply Theorem 3.3 to the normal cones, it can be easily shown that
problem (4.3) is also equivalent to

Both reformulations are illustrated in Fig. 1. Furthermore, the usefulness of the
reformulations is that the projectors onto the new sets can be easily computed.
Indeed, the projections onto C1 × C2 × C3 or C1 × C2 are computed component-
wise in view of Fact 3.1(i), while the projectors onto D3 and K are derived from
Fact 3.1(ii) and Theorem 3.3(ii), respectively, as

 Observe that, under a constraint qualification guaranteeing the so-called strong
CHIP holds (i.e. NC1

+ NC3
+ NC3

= NC1∩C2∩C3
), the reformulations in (4.4) and (4.5)

can also be applied for best approximation problems in view of Fact 3.1(iv) and
Theorem 3.3(iv), respectively.

Although the theory of projection algorithms is developed under convexity
assumptions of the constraint sets, some of them has been shown to be very efficient
solvers in a wide variety of nonconvex applications. In special, the Douglas–Rach-
ford algorithm has attracted particular attention due to its well behavior on noncon-
vex scenarios including some of combinatorial nature; see, e.g., [3, 6, 10, 23–25,
28]. In most of these applications, feasibility problems are described by more than
two sets and need to be tackled by Pierra’s product space reformulation. Indeed, as
we recall in the next result, the reformulation is still valid under the more general
assumption that the sets are proximinal but not necessarily convex.

Proposition 4.2 (Standard product space reformulation for not necessarily convex
feasibility and best approximation problems) Let C1,C2,… ,Cr ⊆ H be nonempty
and proximinal sets and define the product set

 Then the following hold.

 (i) C is proximinal and

 If, in addition, C1,C2,… ,Cr are closed and convex then so is C.
 (ii) Dr is a closed subspace with

(4.5)Find (x, x) ∈ (C1 × C2) ∩ K ⊆ ℝ
2, where K = {(x, x) ∶ x ∈ C3}.

(4.6a)PD3
(x1, x2, x3) =

(
x1 + x2 + x3

3
,
x1 + x2 + x3

3
,
x1 + x2 + x3

3

)
,

(4.6b)

PK(x1, x2) = PC3×C3

(
PD2

(x1, x2)
)
=

(
PC3

(
x1 + x2

2

)
,PC3

(
x1 + x2

2

))
.

(4.7)C = C1 × C2 ×⋯ × Cr ⊆ H
r.

PC(x) = PC1
(x1) × PC2

(x2) ×⋯ × PCr
(xr), ∀x = (x1, x2,… , xr) ∈ H

r.

333

1 3

A product space reformulation with reduced dimension for…

 (iii) C ∩ Dr = jr
(
∩r
i=1

Ci

)
.

 (iv) PC∩Dr
(x) = jr

(
P∩r

i=1
Ci
(x)

)
, ∀x = jr(x) ∈ Dr.

Proof

 (i) Let x = (x1, x2,… , xr) ∈ H
r . By direct computations on the definition of pro-

jector we obtain that

 The remaining assertion easily follows from the definition of (topological)
product space.

 (ii) Follows from Fact 3.1(ii).
 (iii) Let x ∈ C ∩ Dr . Then x = jr(x) ∈ Dr with x ∈ Ci for all i = 1, 2,… , r . The

reverse inclusion is also straightforward.
 (iv) Let x = jr(x) ∈ Dr . Reasoning as in (i) and taking into account (iii) we get that

 as claimed. ◻

Analogously, we show the validity of the product space reformulation with
reduced dimension for feasibility and best approximation problems with arbitrary
proximinal sets.

Proposition 4.3 (Product space reformulation with reduced dimension for non nec-
essarily convex feasibility and best approximation problems) Let C1,C2,… , Cr ⊆ H
be nonempty and proximinal sets and define

 Then the following hold.

PDr
(x) = jr

(
1

r

r∑
i=1

xi

)
, ∀x = (x1, x2,… , xr) ∈ H

r.

PC(x) = argminc∈C‖x − c‖2 = argmin(c1,c2,…,cr)∈C

r�
i=1

‖xi − ci‖2

=

r�
i=1

argminci∈Ci
‖xi − ci‖2

= PC1
(x1) × PC2

(x2) ×⋯ × PCr
(xr).

PC∩Dr
(x) = argminc∈C∩Dr

‖x − c‖
= jr

�
argminc∈∩r

i=1
Ci
‖x − c‖

�
= jr

�
P∩r

i=1
Ci
(x)

�
,

(4.8a)B ∶=C1 ×⋯ × Cr−1 ⊆ H
r−1,

(4.8b)K ∶={(x,… , x) ∈ H
r−1 ∶ x ∈ Cr} ⊆ H

r−1.

334 R. Campoy

1 3

 (i) B is proximinal and

 If, in addition, C1,… ,Cr−1 are closed and convex then so is B.
 (ii) K is proximinal and

 If, in addition, Cr is closed and convex then so is K.
 (iii) B ∩ K = jr−1

(
∩r
i=1

Ci

)
.

 (iv) PB∩K(x) = jr−1

(
P∩r

i=1
Ci
(x)

)
, ∀x = jr−1(x) ∈ Dr−1.

Proof

 (i) Follows from Proposition 4.2(i).
 (ii) First, let us rewrite

 Fix x = (x1,… , xr−1) ∈ H
r−1. By Propositions 4.2(i)-(ii), Cr−1

r
 is a proximi-

nal set and Dr−1 is a closed subspace with

 Observe that, for any arbitrary point y = jr−1(y) ∈ Dr−1 , it holds that

 In particular, PCr−1
r
(y) ∩ Dr−1 ≠ � for all y ∈ Dr−1 . Hence, by applying

Lemma 2.10 we derive that

 In addition, if Cr is closed and convex then so is Cr−1
r

 according to Proposi-
tion 4.2(i). Since Dr−1 is a closed subspace, the convexity and closedness of
K follows.

 (iii)-(iv) Their proofs are straightforward and analogous to the proofs of Proposi-
tion 4.2(iii)-(iv), respectively, so they are omitted. ◻

Example 4.4 (Nonconvex feasibility problem) Consider the feasibility problem

PB(x) = PC1
(x1) ×⋯ × PCr−1

(xr−1), ∀x = (x1,… , xr−1) ∈ H
r−1.

PK(x) = j
r−1

(
P
C
r

(
1

r − 1

r−1∑
i=1

x
i

))
, ∀x = (x1,… , x

r−1) ∈ H
r−1

.

K = jr−1(Cr) = Cr−1
r

∩ Dr−1 = (Cr ×
(r−1)
⋯ × Cr) ∩ Dr−1 ⊆ H

r−1.

PCr−1
r
(x) = PCr

(x1) ×⋯ × PCr
(xr−1) and PDr−1

(x) = jr−1

(
1

r − 1

r−1∑
i=1

xi

)
.

jr−1(p) ∈ PCr−1
r
(y) ∩ Dr−1, ∀p ∈ PCr

(y).

PK(x) = P
Cr−1
r

∩D
r−1
(x) = P

Cr−1
r

(
PD

r−1
(x)

)
∩ D

r−1

= P
Cr−1
r

(
j
r−1

(
1

r − 1

r−1∑
i=1

x
i

))
∩ D

r−1 = j
r−1

(
P
C
r

(
1

r − 1

r−1∑
i=1

x
i

))
.

335

1 3

A product space reformulation with reduced dimension for…

where C1 ∶= [0.5, 2] , C2 ∶= [1.5, 2] and Ĉ3 ∶= {1, 2, 3} ; that is, the problem consid-
ered in Example 4.1 but replacing C3 by the nonconvex set Ĉ3 . According to Prop-
ositions 4.2 and 4.3, the product space reformulations in (4.4) and (4.5), with C3
replaced by Ĉ3 , are still valid to reconvert (4.9) into an equivalent problem described
by two sets. Both formulations are illustrated in Fig. 2, where now we denote

Due to the nonconvexity, the projector onto Ĉ3 may be set-valued. In view of Propo-
sition 4.3(ii), the projector onto K̂ is described by

We emphasize that, in contrast to (4.6b), in the nonconvex case P
K̂
≠ P

Ĉ3×Ĉ3
◦PD2

 .
Indeed, consider for instance the point x ∶= (2, 1) ∈ ℝ

2 . Then,

Therefore, P
Ĉ3×Ĉ3

(PD2
(x)) ≠ P

K̂
(x) = P

Ĉ3×Ĉ3
(PD2

(x)) ∩ D2.

5 Application to splitting algorithms

In this section, we apply our proposed reformulation in Theorem 3.3 in order to
derive two new parallel splitting algorithms, one for solving problem (1.1), and
another one for (1.2). In the first case, we consider the Douglas–Rachford (DR) algo-
rithm [22, 29] (see also [11, 12] for recent results in the inconsistent case). The DR

(4.9)Find x ∈ C1 ∩ C2 ∩
�C3 ⊆ ℝ,

K̂ = {(x, x) ∶ x ∈ Ĉ3} = (Ĉ3 × Ĉ3) ∩ D2 = {(1, 1), (2, 2), (3, 3)}.

P
K̂
(x1, x2) =

{
(p, p) ∶ p ∈ P

Ĉ3

(
x1 + x2

2

)}
.

P
K̂
(x) = {(1, 1), (2, 2)},

P
Ĉ3×Ĉ3

(PD2
(x)) = P

Ĉ3×Ĉ3
((1.5, 1.5)) = {(1, 1), (1, 2), (2, 1), (2, 2)}.

(a) Standard product space reformu-
lation

(b) Product space reformulation
with reduced dimension

Fig. 2 Product space reformulations of the nonconvex feasibility problem in Example 4.4

336 R. Campoy

1 3

algorithm permits to find a zero of the sum of two maximally monotone operators.
When it is applied to Pierra’s standard reformulation the resulting method takes the
form in [9, Proposition 26.12]. In contrast, if the problem is reformulated via Theo-
rem 3.3 we obtain the following iterative scheme, which requires one variable less.

Theorem 5.1 (Parallel Douglas/Peaceman–Rachford splitting algorithm)
Let A1,A2,… ,Ar ∶ H ⇉ H be maximally monotone operators such that
zer(

∑r

i=1
Ai) ≠ � . Let 𝛾 > 0 and let � ∈]0, 2] . Given x1,0,… , xr−1,0 ∈ H , set

 Then the following hold.

 (i) If � ∈]0, 2[, then pk ⇀ p⋆ and zi,k ⇀ p⋆ , for i = 1,… , r − 1 , with
p⋆ ∈ zer(

∑r

i=1
Ai).

 (ii) If Ar is uniformly monotone, then pk → p⋆ and zi,k → p⋆ , for i = 1,… , r − 1 ,
where p⋆ is the unique point in zer(

∑r

i=1
Ai).

Proof Consider the product Hilbert space Hr−1 and let B,K ∶ H
r−1

⇉ H
r−1

be the operators defined in (3.2). By Theorem 3.3(i), (ii) and (iii), we get that B
and K are maximally monotone with zer(B + K) = jr−1(zer(

∑r

i=1
Ai)) ≠ � . For

each k = 0, 1, 2,… , set xk ∶= (x1,k,… , xr−1,k), zk ∶= (z1,k,… , zr−1,k) ∈ H
r−1 and

pk = jr−1(pk) ∈ Dr−1 . Hence, according to Theorem 3.3(i) and (ii), we can rewrite
(5.1) as

Note that (5.2) is the Douglas–Rachford (or Peaceman–Rachford) iteration applied
to the operators B and K . If � ∈]0, 2[, we apply [9, Theorem 26.11(iii)] to obtain
that pk ⇀ p⋆ and zk ⇀ p⋆ , with p⋆ ∈ zer(B + K) . Hence, p⋆ = jr−1(p

⋆) with
p⋆ ∈ zer

�∑r

i=1
Ai

�
 , which implies (i).

Suppose in addition that Ar is uniformly monotone. Then so is K according to
Theorem 3.3(ii). Hence, (ii) follows from [9, Theorem 26.11(vi)], when � ∈]0, 2[,
and [9, Proposition 26.13] when � = 2 . ◻

Remark 5.2 (Frugal resolvent splitting algorithms with minimal lifting) Consider
the problem of finding a zero of the sum of three maximally monotone operators

(5.1)

for k = 0, 1, 2,… ∶

⎢⎢⎢⎢⎢⎣

pk = J �

r−1
Ar

�
1

r−1

∑r−1

i=1
xi,k

�
,

for i = 1, 2,… , r − 1 ∶�
zi,k = J�Ai

�
2pk − xi,k

�
,

xi,k+1 = xi,k + �
�
zi,k − pk

�
.

(5.2)

for k = 0, 1, 2,… ∶

⎢⎢⎢⎣

pk = J�K(xk),

zk = J�B
�
2pk − xk

�
,

xk+1 = xk + �
�
zk − pk

�
.

337

1 3

A product space reformulation with reduced dimension for…

A,B,C ∶ H ⇉ H . The classical procedure to solve it has been to employ the stand-
ard product space reformulation (Fact 3.1) to construct a DR algorithm on H3 . The
question of whether it is possible to generalize the DR algorithm to three operators
without lifting, that is, without enlarging the ambient space, was solved with a nega-
tive answer by Ryu in [39]. The generalization is considered in the sense of devising
a frugal splitting algorithm which uses the resolvent of each operator exactly once
per iteration. In the same work, the author demonstrated that the minimal lifting is
2-fold (in H2) by providing the following splitting algorithm. Given � ∈]0, 1[and
x0, y0 ∈ H , set

Then uk ⇀ w⋆ , vk ⇀ w⋆ and wk ⇀ w⋆ , with w⋆ ∈ zer(A + B + C) (see [39, Theo-
rem 4] or [7, Appendix A] for an alternative proof in an infinite-dimensional space).

A few days after the publication of our preprint first version (ArXiv: https://
arxiv. org/ abs/ 2107. 12355), Malitsky and Tam [31] generalized Ryu’s result by
showing that for an arbitrary number of r operators the minimal lifting is (r − 1)

-fold. In addition, they proposed another frugal splitting algorithm that attains
this minimal lifting, whose iteration is described as follows. Given � ∈]0, 1[and
z0 = (z1,0,… , zr−1,0) ∈ H

r−1 , set

Then, for each i ∈ {1,… , r} , xi,k ⇀ x∗ ∈ zer(
∑r

j=1
Aj) (see [31, Theorem 4.5]).

It is worth to notice that the Malitsky–Tam iteration (5.4) does not generalize
Ryu’s scheme (5.3), which seems to be difficult to extend to more than three opera-
tors as explained in [31, Remark 4.7]. Furthermore, both of these algorithms are
different from the one in Theorem 5.1. The main conceptual difference is that (5.4)
can be implemented in a distributed decentralized way whereas algorithm (5.1) uses
the operator Ar as a central coordinator (see [31, Sect. 5]). Nevertheless, for the
applications considered in this work, the dimensionality reduction obtained through

(5.3)

for k = 0, 1, 2,… ∶

⎢⎢⎢⎢⎢⎢⎣

uk = J�A(xk)

vk = J�B(uk + yk)

wk = J�C(uk − xk + vk − yk)

xk+1 = xk + �(wk − uk)

yk+1 = yk + �(wk − vk).

(5.4)

for k = 0, 1, 2,… ∶

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Compute zk+1 = (z1,k+1,… , zr−1,k+1) ∈ H
r−1 as

zk+1 = zk + �

⎛⎜⎜⎜⎝

x2,k − x1,k
x3,k − x2,k

⋮

xr,k − xr−1,k

⎞⎟⎟⎟⎠
,

where xk = (x1,k, x2,k,… , xr,k) ∈ H
r is given by

x1,k = J�A1
(z1,k),

for k = 2,… , r − 1 ∶�
xi,k = J�Ai

(zi,k − zi−1,k + xi−1,k),

xr,k = J�Ar
(x1,k + xr−1,k − zr−1,k).

https://arxiv.org/abs/2107.12355
https://arxiv.org/abs/2107.12355

338 R. Campoy

1 3

the new product space reformulation seems to be more effective for accelerating the
convergence of the algorithm, especially when the number of operators is large as
we shall show in Sect. 6.

We now turn our attention into splitting algorithms for problem (1.2). In particu-
lar, we concern on the averaged alternating modified reflections (AAMR) algorithm,
originally proposed in [4] for best approximation problems, and later extended in
[5] for monotone operators (see also [2, 7]). The parallel AAMR splitting iteration
obtained from Pierra’s reformulation is given in [5, Theorem 4.1]. As we show in
the following result, we can avoid one of the variables defining the iterative scheme
if we use the product space reformulation in Theorem 3.3.

Theorem 5.3 (Parallel AAMR splitting algorithm) Let A1,A2,… ,Ar ∶ H ⇉ H be
maximally monotone operators, let 𝛾 > 0 and let � ∈]0, 2] . Let � ∈]0, 1[and sup-
pose that q ∈ ran

�
Id +

�

2(1−�)(r−1)

∑r

i=1
Ai

�
 . Given x1,0,… , xr−1,0 ∈ H , set

 Then
(
pk
)∞
k=0

 converges strongly to J �

2(1−�)(r−1)

∑r

i=1
Ai
(q).

Proof Consider the product Hilbert space Hr−1 and let B,K ∶ H
r−1

⇉ H
r−1 be the

operators defined in (3.2). We know that B and K are maximally monotone by Theo-
rem 3.3(i) and (ii), respectively. Set x

k
∶= (x1,k,… , x

r−1,k), zk ∶= (z1,k,… , z
r−1,k) ∈ H

r−1 and
pk = jr−1(pk) ∈ Dr−1 , for each k = 0, 1, 2,… , and set q ∶= jr−1(q) ∈ Dr−1 . On the one
hand, according to Theorem 3.3(i) and (ii), we can rewrite (5.5) as

On the other hand, from Theorem 3.3(iv) we obtain that

In particular, the latter implies that q ∈ ran
(
Id +

�

2(1−�)
(B + K)

)
 . Hence, by apply-

ing [7, Theorem 6 and Remark 10(i)], we conclude that
(
pk
)∞
k=0

 converges strongly to
J �

2(1−�)
(B+K)(q) and the result follows. ◻

Remark 5.4 (On Forward-Backward type methods) Forward-Backward type meth-
ods permit to find a zero in A + B when A ∶ H → H is cocoercive (see, e.g., [9,

(5.5)

for k = 0, 1, 2,… ∶

⎢⎢⎢⎢⎢⎣

pk = J �

r−1
Ar

�
�

r−1

∑r−1

i=1
xi,k + (1 − �)q

�
,

for i = 1, 2,… , r − 1 ∶�
zi,k = J�Ai

�
�(2pk − xi,k) + (1 − �)q

�
,

xi,k+1 = xi,k + �
�
zi,k − pk

�
.

for k = 0, 1, 2,… ∶

⎢⎢⎢⎣

pk = J�K
�
�xk + (1 − �)q

�
zk = J�B

�
�(2pk − xk) + (1 − �)q

�
xk+1 = xk + �(zk − pk).

J �

2(1−�)
(B+K)(q) = jr−1

�
J �

2(1−�)(r−1)

∑r

i=1
Ai
(q)

�
.

339

1 3

A product space reformulation with reduced dimension for…

Theorem 26.14]) or Lipschitz continuous (see, e.g., [15, 30, 40]) and B ∶ H ⇉ H
is maximally monotone. These algorithms make use of direct evaluations of A (for-
ward steps) and resolvent computations of B (backward steps). When dealing with
finitely many operators of both nature (single-valued and set-valued), Pierra’s refor-
mulation (Fact 3.1) yields parallel algorithms which need to activate all of them
through their resolvents, since all of them are combined into the product operator
A in (3.1). In contrast, the product space reformulation in Theorem 3.3 allows to
deal with the case when A1,… ,Ar−1 ∶ H → H are cocoercive/Lipschitz continuous
and Ar ∶ H ⇉ H is maximally monotone. Indeed, it can be easily proved that the
product operator B in (3.2a) keeps the cocoercivity/Lipschitz continuity property.
However, the parallel algorithm obtained with this approach will coincide with the
original Forward-Backward type algorithm applied to the operators

∑r−1

i=1
Ai and Ar .

It is worth mentioning that in the opposite case, that is, when one operator is cocoer-
cive and the remaining ones are maximally monotone, a parallel Forward-Backward
algorithm was developed in [36].

6 Numerical experiments

In this section, we perform some numerical experiments to assess the advantage of
the new proposed reformulation when applied to splitting or projection algorithms.
In particular, we compare the performance of the proposed parallel Douglas–Rach-
ford algorithm in Theorem 5.1 with the standard parallel version in [9, Proposi-
tion 26.12], first on a convex minimization problem and then in a nonconvex feasi-
bility problem. We will refer to these algorithms as Reduced-DR and Standard-DR,
respectively. In some experiments we will also test the algorithms in [39, Theo-
rem 4] and [31, Theorem 4.5], wich will be referred to as Ryu and Malitsky–Tam,
respectively. All codes were written in Python 3.7 and the tests were run on an
Intel Core i7-10700K CPU 3.80GHz with 64GB RAM, under Ubuntu 20.04.2 LTS
(64-bit).

6.1 The generalized Heron problem

We first consider the generalized Heron problem, which is described as follows.
Given Ω1,… ,Ωr ⊆ ℝ

n nonempty, closed and convex sets, we are interested in find-
ing a point in Ωr that minimizes the sum of the distances to the remaining sets; that
is,

This problem was investigated with modern convex analysis tools in [32, 33], where
it was solved by subgradient-type algorithms. It was later revisited in [14], where the
authors implemented their proposed paralellized Douglas–Rachford-type primal-
dual methods for its resolution. Indeed, splitting algorithms such as Douglas–Rach-
ford can be employed to solve problem (6.1) as this is equivalent to the monotone
inclusion (1.1) with

(6.1)Min
∑r−1

i=1
dΩi

(x)

s.t. x ∈ Ωr.

340 R. Campoy

1 3

According to Facts 2.7 and 2.9, J�Ar
= PΩr

 and J�Ai
= prox�dΩi

 , for i = 1,… , r − 1 .
We recall that the proximity operator of the distance function to a closed and convex
set C ⊆ H is given by

In our experiments, the constraint sets Ω1,… ,Ωr−1 in (6.1) were randomly generated
hypercubes of centers (ci,1,… , ci,n),… , (cr−1,1,… , cr−1,n) ∈ ℝ

n with length side
√
2 ,

while Ωr was chosen to be the closed ball centered at zero with radius 10; that is,

 More precisely, the centers of the hypercubes were randomly generated with norm
greater or equal than 12, so that the hypercubes did not intersect the ball. Two
instances of the problem with r = 5 , in ℝ2 and ℝ3 , are illustrated in Fig. 3.

In our first numerical test, we generated 10 instances of the problem (6.1)–(6.2) in
ℝ

100 with r = 3 . For each � ∈ {1, 10, 25, 50, 75, 100} and each � ∈ {0.1, 0.2,… , 1.9} ,
Standard-DR and Reduced-DR were run from 10 random starting points. For those val-
ues of � ≤ 1 , Ryu and Malitsky–Tam algorithms were also run from the same initial
points. All algorithms were stopped when the monitored sequence {pk}∞k=0 verified the
Cauchy-type stopping criteria

for the first time. For a fairer comparison, for each algorithm we monitored that
sequence which is projected onto the feasible set Ωr so that all of them lay on the

Ar = ��Ωr
= NΩr

and Ai = �dΩi
, for i = 1,… , r − 1.

prox𝛾dC (x) =

{
x +

𝛾

dC(x)

(
PC(x) − x

)
, if dC(x) > 𝛾 ,

PC(x), otherwise.

(6.2a)

Ωi ∶=

�
(x1,… , xn) ∈ ℝ

n ∶ �ci,j − xj� ≤
√
2

2
, j = 1,… , n

�
, i = 1,… , r − 1,

(6.2b)Ωr ∶= {x ∈ ℝ
n ∶ ‖x‖ ≤ 10}.

‖pk+1 − pk‖ < 𝜀 ∶= 10−6

Fig. 3 The generalized Heron problem consisting in finding a point in a ball in ℝ2 (left) or ℝ3 (right) that
minimizes the sum of the distances to four squares (left) or cubes (right). A solution to the problem is
represented by a red point

341

1 3

A product space reformulation with reduced dimension for…

same ambient space. The average number of iterations required by each algorithm
among all problems and starting points is depicted in Fig. 4. In Table 1 we list the
best results obtained by each algorithm and the value of the parameters at which
those results were achieved.

(a) Standard-DR (b) Reduced-DR

(c) Malitsky–Tam (d) Ryu

Fig. 4 Performance of Standard-DR, Reduced-DR, Malitsky–Tam and Ryu algorithms for solving the
generalized Heron problem in ℝ100 with r = 3 . For each pair of parameters (� , �) , we represent the aver-
age number of iterations among 10 problems and 10 random starting points each

Table 1 Best choice of parameters and minimum averaged number of iterations, among 10 problems and
10 random starting points each, required by Standard-DR, Reduced-DR, Malitsky–Tam and Ryu algo-
rithms for solving the generalized Heron problem in ℝ100 with r = 3

Algorithm � � Average iterations

Standard-DR 25 1.2 44.15
Reduced-DR 25 1.3 13.41
Malitsky–Tam 25 0.9 25.00
Ryu 25 1.0 15.96

342 R. Campoy

1 3

Once the parameters had been tuned, we analyzed the effect of the dimension of
the space (n), as well as the number of operators (r), on the comparison between all
algorithms. For the first purpose, we fixed r = 3 and generated 20 problems in ℝn
for each n ∈ {100, 200,… , 1000} . Then, for each problem we computed the aver-
age time, among 10 random starting points, required by each algorithm to converge.
Parameters � and � were chosen as in Table 1 according to the previous experiment.
The results, shown in Fig. 5a, confirm the consistent advantage of Reduced-DR
and Ryu for all sizes. Indeed, these two algorithms were around 4 times faster than
Standard-DR, whereas Malitsky–Tam was 2 times faster than Standard-DR.

For the second objective we repeated the experiment where now, for each number
of operators r ∈ {3, 4,… , 20} , we generated 20 problems in ℝ100 . We did not con-
sider Ryu splitting algorithm since it is only devised for three operators. We show
the results in Fig. 5b, from which we deduce that the superiority of Reduced-DR
and Malitsky–Tam over Pierra’s standard reformulation is diminished as the number
of operators increases. However, this drop is more drastic for the Makitsky–Tam
algorithm. In fact, while Reduced-DR is still always preferable to Standard-DR for
all the considered values of r, Malitsky–Tam algorithm turns even slower than the
classical approach when the number of operators is greater than 6.

6.2 Sudoku puzzles

In this section we analyze the potential of the product space reformulation with
reduced dimension for nonconvex feasibility problems (Proposition 4.3). To this
aim, we concern on Sudoku puzzles, which were first investigated by the Doug-
las–Rachford algorithm in [24]. Since then, other formulations as feasibility

(a) n ∈ {100, 200, . . . , 1000} and r = 3. (b) n = 100 and r ∈ {3, 4, . . . , 20}.

Fig. 5 Comparison of the performance of Standard-DR, Reduced-DR, Malitsky–Tam and Ryu algo-
rithms for solving 20 instances of generalized Heron problem with r sets in ℝn for different values of n
and r. For each problem we represent the ratio between the average time required by each algorithm over
Reduced-DR, among 10 random starting points. The colored lines connect the median of the ratios while
the dashed grey line represents ratios equal to 1

343

1 3

A product space reformulation with reduced dimension for…

problems have been studied. In this paper we consider the formulation with binary
variables described in [3, Sect. 6.2], which we explain next.

Recall that a Sudoku puzzle is defined by a 9 × 9 grid, composed by nine 3 × 3
subgrids, where some of the cells are prescribed with some given values. The objec-
tive is to fill the remaining cells so that each row, each column and each subgrid
contains the digits from 1 to 9 exactly once. Possible solutions to a given Sudoku
are encoded as a 3-dimensional multiarray X ∈ ℝ

9×9×9 with binary entries defined
componentwise as

for (i, j, k) ∈ I3 where I ∶= {1, 2,… , 9} . Let C ∶= {e1, e2,… , e9} be the standard
basis of ℝ9 , let J ⊆ I3 be the set of indices for the prescribed entries of the Sudoku,
and denote by vecM the vectorization, by columns, of a matrix M. Under encoding
(6.3), a solution to the Sudoku can be found by solving the feasibility problem

where the constraint sets are defined by

Observe that nonconvexity of problem (6.4) arises from the combinatorial struc-
ture of C1 , C2 , C3 , C4 ⊆ {0, 1}9×9×9 . Projections onto these sets can be computed by
means of the projector mapping onto C (see [3, Remark 5.1]). On the other hand, C5
is an affine subspace of ℝ9×9×9 whose projector can be readily computed component-
wise as

In our experiment we considered the 95 hard puzzles from the library top95.1 For
each puzzle, we run Standard-DR, Reduced-DR and Malitsky–Tam from 10 ran-
dom initial points. Parameter � was roughly tuned for good performance and it was
fixed to � = 1 for Standard-DR and Reduced-DR and � = 0.5 for Malitsky–Tam. The
algorithms were stopped when either they found a solution or when the CPU run-
ning time exceeded 5 minutes. A summary of the results can be found in Table 2.

(6.3)X[i, j, k] =

{
1, if digit k is assigned to the (i, j)th entry of the Sudoku,

0, otherwise;

(6.4)Find X ∈ C1 ∩ C2 ∩ C3 ∩ C4 ∩ C5 ⊆ ℝ
9×9×9,

C1 ∶=
{
X ∈ ℝ

9×9×9 ∶ X[i, ∶, k] ∈ C,∀i, k ∈ I
}
,

C2 ∶=
{
X ∈ ℝ

9×9×9 ∶ X[∶, j, k] ∈ C,∀j, k ∈ I
}
,

C3 ∶=
{
X ∈ ℝ

9×9×9 ∶ X[i, j, ∶] ∈ C,∀i, j ∈ I
}
,

C4 ∶=

{
X ∈ ℝ

9×9×9 ∶
vecX[3i + 1 ∶ 3(i + 1), 3j + 1 ∶ 3(j + 1), k] ∈ C,

∀i, j ∈ {0, 1, 2},∀k ∈ I

}
,

C5 ∶=
{
X ∈ ℝ

9×9×9 ∶ X[i, j, k] = 1,∀(i, j, k) ∈ J
}
.

PC5
(X)[i, j, k] =

{
1, if (i, j, k) ∈ J,

X[i, j, k], otherwise.

1 top95: http:// magic tour. free. fr/ top95.

http://magictour.free.fr/top95

344 R. Campoy

1 3

While the success of all three algorithms is very similar, the average CPU time and,
specially, the proportion of wins are clearly favorable to Reduced-DR.

In order to better visualize the results we turn to performance profiles (see [21]
and the modification proposed in [26]), which are constructed as explained next.

Performance profiles Let A denote a set of algorithms to be tested on a set
of N problems, denoted by P , for multiple runs (starting points). Let sa,p denote
the fraction of successful runs of algorithm a ∈ A on problem p ∈ P and let
ta,p be the averaged time required to solve those successful runs. Compute
t⋆
p
∶= mina∈A ta,p for all p ∈ P . Then, for any � ≥ 1 , define Ra(�) as the set of

problems for which algorithm a was at most � times slower than the best algo-
rithm; that is, Ra(𝜏) ∶= {p ∈ P, ta,p ≤ 𝜏t⋆

p
} . The performance profile function of

algorithm a is given by

The value �a(1) indicates the portion of runs for which a was the fastest algorithm.
When � → +∞ , then �a(�) gives the proportion of successful runs for algorithm a.

Performance profiles of the results of Sudoku experiment are shown in Fig. 6,
which confirm the conclusions drawn from Table 2. Furthermore, we can now
asses that Reduced-DR becomes consistently superior since its performance pro-
file is mostly above the one of the remaining two algorithms.

We would like to conclude with the following comment regarding the imple-
mentation of splitting algorithms on (6.4).

Remark 6.1 (On the order of the sets) Observe that Pierra’s classical reformulation
in Proposition 4.2, and thus Standard-DR, is completely symmetric on the order of
the sets C1,… ,C5 . However, this is not the case for the reformulation in Proposi-
tion 4.3, where one has to decide which of the sets will be merged to the diagonal
to construct the set K in (4.8b). In our test, we followed the arrangement in Proposi-
tion 4.3, that is,

�a ∶ [1,+∞) ⟼ [0, 1]

� ↦ �a(�) ∶=
1

N

∑
p∈Ra(�)

sa,p.

B ∶=C1 × C2 × C3 × C4 ⊆
(
ℝ

9×9×9
)4
,

K ∶={(x, x, x, x) ∈
(
ℝ

9×9×9
)4

∶ x ∈ C5} ⊆
(
ℝ

9×9×9
)4
.

Table 2 Results of the comparison between Standard-DR, Reduced-DR and Malitsky–Tam algorithm for
solving 95 Sudoku problems from 10 random starting points each

For each algorithm, we show the percentage of solved instances, the percentage of instances for which
the algorithm was fastest, and the median of the CPU time required among the solved instances.
Instances were labeled as unsolved after 5 min

Algorithm Solved (%) Wins (%) Time (median) (s)

Standard-DR 91.78 18.94 0.7423
Reduced-DR 91.78 55.47 0.5904
Malitsky–Tam 88.73 15.05 0.8836

345

1 3

A product space reformulation with reduced dimension for…

Note that this makes the constrained diagonal set K to be an affine subspace. Due to
the nonconvexity of the problem, the reformulation chosen may be crucial for the
success of the algorithm. For example, we tested all the remaining combinations, for
which Reduced-DR rarely found a solution on the considered problems within the
first 5 minutes of running time.

7 Concluding remarks

In this work we have introduced a new reformulation in a product space for finding a
zero in the sum of finitely many maximally monotone operators with splitting algo-
rithms. The new approach reduces one dimension of the ambient product Hilbert
space with respect to Pierra’s standard reformulation.

Having different techniques for reformulating monotone inclusions, which may
be of interest itself, lead to different algorithmic implementation. For the considered
applications in this work, that reduction of the dimension implied an acceleration of
the convergence of the Douglas–Rachford splitting algorithm. Further, our proposed
scheme also outperformed Ryu [39] and Malitsky–Tam [31] algorithms on these
problems. However, our numerical experiments are far from providing a complete
computational study. In fact, numerical comparison of the three algorithms for solv-
ing best approximation problems with three subspaces has been recently performed
in [13], where the reduced product space reformulation is not as advantageous as in
the experiments considered here. This motivate us to further investigate a compre-
hensive numerical analysis of these algorithms in a future work.

Acknowledgements The author would like to thank two anonymous referees for their careful reading and
their constructive comments which helped to improve this manuscript.

Fig. 6 Performance profiles comparing Standard-DR, Reduced-DR and Malitsky–Tam algorithm
for solving 95 Sudoku problems (left). For each problem, 10 random starting points were considered.
Instances were labeled as unsolved after 5 minutes of CPU running time. For the sake of clarity we focus
the view of the performance profiles to the values of � ∈ [1, 5] (right)

346 R. Campoy

1 3

Funding Open Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature.
The author was partially supported by the Ministry of Science, Innovation and Universities of Spain and
the European Regional Development Fund (ERDF) of the European Commission (PGC2018-097960-B-
C22), and by the Generalitat Valenciana (AICO/2021/165).

Data Availability The datasets generated during and/or analysed during the current study are available
from the corresponding author on reasonable request.

Declarations

Conflict of interest The author has no conflict of interests to declare that are relevant to the content of this
article.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is
not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission
directly from the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen
ses/ by/4. 0/.

References

 1. Adly, S., Bourdin, L.: On a decomposition formula for the resolvent operator of the sum of two set-
valued maps with monotonicity assumptions. Appl. Math. Opt. 80(3), 715–732 (2019)

 2. Alwadani, S., Bauschke, H.H., Moursi, W.M., Wang, X.: On the asymptotic behaviour of the Aragón
Artacho-Campoy algorithm. Oper. Res. Lett. 46(6), 585–587 (2018)

 3. Aragón Artacho, F.J., Borwein, J.M., Tam, M.K.: Recent results on Douglas-Rachford methods for
combinatorial optimization problem. J. Optim. Theory. Appl. 163(1), 1–30 (2014)

 4. Aragón Artacho, F.J., Campoy, R.: A new projection method for finding the closest point in the
intersection of convex sets. Comput. Optim. Appl. 69(1), 99–132 (2018)

 5. Aragón Artacho, F.J., Campoy, R.: Computing the resolvent of the sum of maximally monotone
operators with the averaged alternating modified reflections algorithm. J. Optim. Theory Appl.
181(3), 709–726 (2019)

 6. Aragón Artacho, F.J., Campoy, R., Tam, M.K.: The Douglas-Rachford algorithm for convex and
nonconvex feasibility problems. Math. Methods Oper. Res. 91(2), 201–240 (2020)

 7. Aragón Artacho, F.J., Campoy, R., Tam, M.K.: Strengthened splitting methods for computing resol-
vents. Comput. Optim. Appl. 80(2), 549–585 (2021)

 8. Aragón-Artacho, F.J., Torregrosa-Belén, D.: A direct proof of convergence of Davis-Yin split-
ting algorithm allowing larger stepsizes. Set-Valued Variat. Anal. (2022). https:// doi. org/ 10. 1007/
s11228- 022- 00631-6

 9. Bauschke, H.H., Combettes, P.L.: Convex Analysis and Monotone Operator Theory in Hilbert
Spaces, 2nd edn. Springer, Berlin (2017)

 10. Bauschke, H.H., Combettes, P.L., Luke, D.R.: Phase retrieval, error reduction algorithm, and Fienup
variants: a view from convex optimization. J. Opt. Soc. Am A 19(7), 1334–1345 (2002)

 11. Bauschke, H.H., Moursi, W.M.: On the Douglas-Rachford algorithm. Math. Program. 164(1–2),
263–284 (2017)

 12. Bauschke, H.H., Moursi, W.M.: On the Douglas-Rachford algorithm for solving possibly inconsist-
ent optimization problems. ArXiv preprint Arxiv: arXiv: 2106. 11547 (2021)

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/s11228-022-00631-6
https://doi.org/10.1007/s11228-022-00631-6
http://arxiv.org/abs/2106.11547

347

1 3

A product space reformulation with reduced dimension for…

 13. Bauschke, H.H., Singh, S., Wang, X.: The splitting algorithms by Ryu, by Malitsky–Tam, and by
Campoy applied to normal cones of linear subspaces converge strongly to the projection onto the
intersection. ArXiv preprint ArXiv: arXiv: 2203. 03832. (2022)

 14. Bot, R.I., Hendrich, C.: A Douglas-Rachford type primal-dual method for solving inclusions with
mixtures of composite and parallel-sum type monotone operators. SIAM J. Optim. 23(4), 2541–
2565 (2013)

 15. Cevher, V., Vu, B.C.: A reflected forward-backward splitting method for monotone inclusions
involving Lipschitzian operators. Set-Valued Var. Anal. 29(1), 163–174 (2021)

 16. Combettes, P.L.: Iterative construction of the resolvent of a sum of maximal monotone operators. J.
Convex Anal. 16(4), 727–748 (2009)

 17. Condat, L., Kitahara, D., Contreras, A., Hirabayashi, A: Proximal splitting algorithms for convex
optimization: a tour of recent advances, with new twists. ArXiv preprint Arxiv: arXiv: 1912. 00137
(2021)

 18. Dao, M., Dizon, N., Hogan, J., Tam, M.K.: Constraint reduction reformulations for projection algo-
rithms with applications to wavelet construction. J. Optim. Theory Appl. 190(1), 201–233 (2021)

 19. Dao, M.N., Phan, H.M.: Computing the resolvent of the sum of operators with application to best
approximation problems. Optim. Lett. 14(5), 1193–1205 (2020)

 20. Davis, D., Yin, W.: A three-operator splitting scheme and its optimization applications. Set-Valued
Var. Anal. 25(4), 829–858 (2017)

 21. Dolan, E.D., Moré, J.J.: Benchmarking optimization software with performance profiles. Math. Pro-
gram. 91(2), 201–213 (2002)

 22. Douglas, J., Rachford, H.H.: On the numerical solution of heat conduction problems in two and
three space variables. Trans. Am. Math. Soc. 82(2), 421–439 (1956)

 23. Elser, V.: Phase retrieval by iterated projections. J. Opt. Soc. Am. A 20(1), 40–55 (2003)
 24. Elser, V., Rankenburg, I., Thibault, P.: Searching with iterated maps. Proc. Natl. Acad. Sci. 104(2),

418–423 (2007)
 25. Franklin, D.J., Hogan, J.A., Tam, M.K.: Higher-dimensional wavelets and the Douglas–Rachford

algorithm. In: 13th International Conference on Sampling Theory and Applications (SampTA), pp.
1–4. IEEE (2019)

 26. Izmailov, A.F., Solodov, M.V., Uskov, E.T.: Globalizing stabilized sequential quadratic program-
ming method by smooth primal-dual exact penalty function. J. Optim. Theor. Appl. 169(1), 1–31
(2016)

 27. Kruger, A.Y.: Generalized differentials of nonsmooth functions, and necessary conditions for an
extremum. Sib. Math. J. 26(3), 370–379 (1985)

 28. Lamichhane, B.P., Lindstrom, S.B., Sims, B.: Application of projection algorithms to differential
equations: boundary value problems. ANZIAM J. 61(1), 23–46 (2019)

 29. Lions, P.L., Mercier, B.: Splitting algorithms for the sum of two nonlinear operators. SIAM J.
Numer. Anal. 16(6), 964–979 (1979)

 30. Malitsky, Y., Tam, M.K.: A forward-backward splitting method for monotone inclusions without
cocoercivity. SIAM J. Optim. 30(2), 1451–1472 (2020)

 31. Malitsky, Y., Tam, M.K.: Resolvent splitting for sums of monotone operators with minimal lifting.
ArXiv preprint Arxiv: arXiv: 2108. 02897 (2021)

 32. Mordukhovich, B.S., Nam, N.M., Salinas, J.: Solving a generalized Heron problem by means of
convex analysis. Amer. Math. Monthly 119(2), 87–99 (2012)

 33. Mordukhovich, B.S., Nam, N.M., Salinas, J.: Applications of variational analysis to a generalized
Heron problem. Appl. Anal. 91(10), 1915–1942 (2012)

 34. Pierra, G.: Méthodes de Décomposition et Croisement D’algorithmes Pour des Problèmes
D’optimisation. Doctoral Dissertation. Institut National Polytechnique de Grenoble-INPG, Univer-
sité Joseph-Fourier-Grenoble I (1976)

 35. Pierra, G.: Decomposition through formalization in a product space. Math. Program. 28(1), 96–115
(1984)

 36. Raguet, H., Fadili, J., Peyré, G.: A generalized forward-backward splitting. SIAM J. Imaging Sci.
6(3), 1199–1226 (2013)

 37. Rieger, J., Tam, M.K.: Backward-forward-reflected-backward splitting for three operator monotone
inclusions. Appl. Math. Comput. 381, 125248 (2020)

http://arxiv.org/abs/2203.03832
http://arxiv.org/abs/1912.00137
http://arxiv.org/abs/2108.02897

348 R. Campoy

1 3

 38. Rockafellar, R.T.: Monotone operators and the proximal point algorithm. SIAM J. Control Optim.
14(5), 877–898 (1976)

 39. Ryu, E.K.: Uniqueness of DRS as the 2 operator resolvent-splitting and impossibility of 3 operator
resolvent-splitting. Math. Program. 182(1), 233–273 (2020)

 40. Tseng, P.: A modified forward-backward splitting method for maximal monotone mappings. SIAM
J. Control Optim. 38(2), 431–446 (2000)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

	A product space reformulation with reduced dimension for splitting algorithms
	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Operators
	2.2 Functions
	2.3 Sets

	3 Product space reformulation for monotone inclusions
	3.1 Standard product space reformulation
	3.2 New product space reformulation with reduced dimension

	4 The case of feasibility and best approximation problems
	5 Application to splitting algorithms
	6 Numerical experiments
	6.1 The generalized Heron problem
	6.2 Sudoku puzzles

	7 Concluding remarks
	Acknowledgements
	References

