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This paper studies the memory mechanisms in recurrent neural architectures when attention models are
included. Pure-attention models like Transformers are more and more popular as they tend to outper-
form models with recurrent connections in many different tasks. Our conjecture is that attention pre-
vents the recurrent connections from transferring information properly between consecutive next
steps. This conjecture is empirically tested using five different models, namely, a model without atten-
tion, a standard Loung attention model, a standard Bahdanau attention model, and our proposal to add
attention to the inputs in order to fill the gap between recurrent and parallel architectures (for both
Luong and Bahdanau attention models). Eight different problems are considered to assess the five mod-
els: a sequence-reverse copy problem, a sequence-reverse copy problem with repetitions, a filter
sequence problem, a sequence-reverse copy problem with bigrams and four translation problems
(English to Spanish, English to French, English to German and English to Italian). The achieved results
reinforce our conjecture on the interaction between attention and recurrence.
� 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Recurrent neural networks (RNN) and more specifically systems
based on Long Short-Term Memory (LSTM) [8] and Gated Recur-
rent Unit (GRU) [4] were widely used in many state-of-the-art
algorithms in the past decade. One specific application of these
systems arises in a special type of sequence-to-sequence learning
problems where the alignment between the input and the output
sequences is not known. Machine translation [13] is a common
example of this kind of systems in Natural Language Processing
(NLP). This type of sequence-to-sequence learning is commonly
solved with an encoder-decoder architecture where two different
RNN-based networks are built for the input and output sequences.
Even with good learning algorithms and big amounts of data, naive
encoder-decoder architectures perform poorly in these problems
as the sequence length grows [4]. Therefore, these architectures
are combined with attention-based models in order to learn the
alignments between the encoder and decoder outputs thus avoid-
ing the need of memorizing an excessive amount of information
[10,3].
In the last years, self-attention Transformer-based neural net-
works [14] have been stablished as the preferred approach for
many sequence-based tasks because of their excellent performance
[12,14,5]. Although this architecture introduces a wide range of
different features which makes it different from the RNN-based
models, like multi-head attention or residual connections, the most
important difference is the removal of the recurrent architecture
and the adoption of a fully parallel one. Transformer-based models
are deeper and many times trained in larger amounts of data due
to the speed-up achieved with the parallel architecture; current
LSTM-based models do not reach the same performance as Trans-
formers in many sequence-based tasks despite being more natural
architectures for them [12,14,5].

In the present work we conjecture that one of the possible rea-
sons for the worse performance of the RNN-based architectures is
their bad synergy with the attention mechanism. We will empiri-
cally explore the hypothesis that the attention connections prevent
the recurrent connections from working properly and, in the limit
case, they do not allow the recurrent connection to transfer any
information whatsoever from one time step to the next one. This
will, ultimately, not allow the memory to work properly and hence
converts the RNN-based architecture in a simple feedforward net-
work making it very similar to a Transformer-like architecture but
without all the extra features that defines it (multi-heading,
multi-layers, etc.). For the empirical analysis we propose a novel
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architecture of direct input attentions which closes the gap
between parallel attention architectures and recurrent attention
architectures.

The motivation behind our work is that one of the main reasons
to use the Transformer architecture is the lack of parallelizability in
recurrent-based architectures [14]. However, this is a pure compu-
tational motivation which apparently does not discard recurrent
architectures. Although the computational issue to train recurrent
networks efficiently may be solved with future hardware and soft-
ware improvements, according to the results presented in this
paper, their natural sequence-based architecture is not enough to
improve the performance in sequence-to-sequence tasks because
the attention part does not fit properly with the recurrent
architecture.

The rest of the paper is structured as follows; Section 2
describes the theoretical motivation of our proposal; the proposed
methodology for the empirical analysis is shown in Section 3, and
the achieved results in Section 4. Section 5 describes the conclu-
sions drawn from the work and some suggestions for future
research. For the sake of brevity, Section 4 focuses on the results
achieved in the English-to-Spanish translation problem; Appendix
B shows the results for the other seven problems.

2. Theoretical framework

2.1. Encoder-decoder paradigm

The hypothesis presented here is based on some observations
about the currently used RNN architectures. In this paper we
worked with the original LSTM architecture presented in [8] with
the variations proposed in [6] and the full-gradient method of
training them [7]. The LSTM setup usually makes use of a sequence
of symbols X ¼ fx1; x2; . . . ; xTg as inputs and Y ¼ fy1; y2; . . . ; yT0g as
outputs, being each output dependent on all past inputs and out-
puts. The encoder-decoder LSTM based architecture is commonly
used, by fitting two separate LSTM networks; the first one, the
encoder, takes the input sequence and computes an output vector
ht and a state vector st at each time step:

ht; st ¼ encoderðxt ;ht�1; st�1Þ ð1Þ

The last states obtained from the input xt , i.e., st and ht , are then
used as st�1 and ht�1 on the new time step. Inside the LSTM cell
architecture, the ht vector is obtained using the output gate trans-
formation as:

ht ¼ ot � tanhðstÞ ð2Þ
where ot is the vector of output gate layer activations and tanhð�Þ is
the nonlinear function used. The decoder can be expressed as:

h0t ; s0t ¼ decoderðx0t ;h0t�1; s0t�1Þ ð3Þ
where x0t stands for the decoder inputs (which usually are the pre-
vious decoder outputs). The decoder outputs h0t are then trans-
formed by linear or non-linear layers to the space desired in the
output. The attention mechanism is applied after the decoder using
the encoder outputs for computing, with a scoring function, soft
alignments between the current output and all encoder outputs:

zt ¼ scoreðH;h0tÞ ð4Þ

where H is a T � d matrix obtained from a concatenation of encoder
outputs hi. Here d is the hidden size of the RNN network, and it is
the same as the size of the ot . There are different ways to choose
the scoring functions, but the two most common ones are the Loung
attention scores [10]:
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zt ¼ HTh0t ð5Þ
and the Bahdanau attention scores, where each score i for each
input symbol is computed as:

zðiÞt ¼ vT tanhðWT
khi þWT

qh0tÞ ð6Þ
hereWk andWq are trainable weight d� dmatrices, and v is a train-
able d-dimensional vector [3]. These scores are normalized to a
probability distribution:

at ¼ softmaxðztÞ ð7Þ
and then used as weights for obtaining a context vector ct from the
encoder outputs:

ct ¼ diagðatÞH ð8Þ
This vector together with the current h0t is used to compute the cur-
rent output in the decoder network:

yt ¼ /ð½ct ;h0t�Þ ð9Þ
where /ð�Þ is usually a dense layer for mapping to the decoder out-
put vocabulary space and ½ct;h0t� is the concatenation of both atten-
tion and decoder outputs [3]. It is important to note that in order to
retrieve the output, the decoder can use ct;h0t or both of them, so it
is always possible to build a parameter configuration where one of
the parts of this architecture, either the attention or the recurrent
one, is not used for the output computation (setting the aproppiate
weights to 0).

From the encoder point of view, the use of attention adds two
extra connections for the encoder output ht . Eqs. (2)–(4) show that
the same ht vector is used to compute both outputs, creating two
different paths to the loss function from there. While in the naive
encoder-decoder implementation the only connection between
the encoder output and the loss function is the encoder recurrent
connection, new connections through the attention layer appear
in the attention architecture; these connections act like an addi-
tional role for ht which now is in charge not only to carry the mem-
ory information but also the information needed to construct the
attention alignments.

2.2. Attention influence on the encoder network

The encoder state vector st receives updates at each time step
from the current input xt and past ht�1 which decides its change.
If the current input is relevant, the update in the st will be large;
if some information is no longer useful for the future predictions
then the forget gate will delete it from the state. The state update
in the LSTM architecture is defined by:

st ¼ f t � st�1 þ it � ct ð10Þ
where f t is the current forget gate activation, it is the current input
gate activation and ct is the candidate state. After this, the state is
transformed into ht through the output gate. Due to the split in
ht , the exploration of the local error flow between successive st
and stþ1 shows that the state vector receives error signals from
the next time steps through its input and through the recurrent
connection (Fig. 1). Besides, if the attention is used, an additional
signal from the attention split also appears. The expression for the
error signal becomes then:

dst ¼ ðdyt þ dntÞ � ot � tanh 0ðstÞ þ dstþ1 � f tþ1 ð11Þ
where the dyt is referred to the gradient accumulation until that
point of the network and dnt is the delta referred to the recurrent
input gradient. Our conjecture works around the interaction of
the recurrent gradient dstþ1 � f tþ1 and the output gradient
dyt � ot � tanh 0ðstÞ. Note that in a non-attention setup the state gra-
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Fig. 1. Output gate and the connections to the next time step, corresponding with the forward pass (blue) and backward pass (red) of the LSTM cell. The full gradient of the
current time step depends on three different gradients: the next input gradient dnt , the next state gradient dst and the current output gradient dyt .
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dient only receives the dstþ1 � f tþ1 update. If we expand the latter
expression for several time steps, and being
dct ¼ ðdyt þ dntÞ � ot � tanh 0ðstÞ:
dst ¼ dct þ dstþ1 � f tþ1 ð12Þ

¼ dct þ ðdctþ1 þ dstþ2 � f tþ2Þ � f tþ1 ð13Þ
¼ dct þ ðdctþ1 þ ðdctþ2 þ � � �Þ � f tþ2Þ � f tþ1 ð14Þ

¼ dct þ dctþ1 � f tþ1 þ � � � þ dcT �
YT

i¼tþ1

f i þ ds01 �
YT

i¼tþ1

f i � f 01 ð15Þ

Therefore, all terms of this expansion (except the first one) will tend
to vanish due to the succesive multiplication by the forget activa-
tion which is bounded in ½0;1�. In a naive LSTMmodel only the term
ds01 �

QT
i¼tþ1f i is present and it transfers the information from the

output to update the encoder gates. In the attention model, dct is
unaltered by the forget gate, being the term that mostly contributes
to the upgrade in the gate layers. A direct consequence of this, is
that the gate activation will be corrected based on the attention gra-
dients more than the recurrent gradients. Our conjecture here is
that the attention state management (which depends on the gates)
and the recurrent state management differ.

In order to define the state management by the attention-based
networks, attentional distributions in real-world problems can be
considered. For instance, in many problems, like translations, the
at distribution is closer to a discrete distribution centred in some
specific time steps than to a uniform one. More formally we can
say that the entropy of this distribution tends to be lower than a
random uniform distribution on the attention weights [3]. This is
even often used as a validation method for the translation prob-
lem: if the network aligns the decoder outputs to the encoder
inputs properly, then the network is performing the translation
in a correct way [3,10]. It has also been employed for the construc-
tion of new attention architectures that favour these distributions
[11]; however, in order to get these distributions, the score from
Eq. (4) must change between some time steps. If, for example,
we have two consecutive words where the first must be aligned
but not the second, we need the vectors hi�1 and hi to be different
so that the final scores are also different. Applying Eq. (4) to two
consecutive hi�1 and hi, we get:

ai�1
t ¼ softmaxðzi�1Þ ¼ softmaxðhT

i�1h
0
tÞ ð16Þ

ai
t ¼ softmaxðziÞ ¼ softmaxðhT

i h
0
tÞ ð17Þ
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where t indicates the output sequence time step and i the input
sequence time step. As h0t is the same for both align scores, the
information of the change between alignments is carried entirely
by the hi�1 and hi. Therefore, if in the final alignment, ai�1

t is differ-
ent from ai

t , which usually happens in translation tasks, then this
implies that hi�1 must be sufficiently different from hi to enable
the attention layer to transform it to the proper final a.

However, this fact is contrary to the philosophy of the encoder
as information accumulator. Although theoretically they are not
completely incompatible, that is, the state can change but still
accumulate information, our hypothesis is that this change will
be higher only to fulfil the attention layer needs for building the
appropiate alignment. As we will show experimentally in Sec-
tion 4.2, this situation will lead to a faster vanishing in the recur-
rent gradient making the encoder to work rather as a
feedforward network than a recurrent network. This will make
the recurrent connection to carry less weight in the final prediction
thus supporting the fact that architectures without any recurrence
(like Transformer networks) can achieve similar or even better
results than their recurrent counterparts.

An example of this rationale with a hypothetical situation in
translation would be a time step where the previous time step
had a word like ‘‘go” and the next word is ‘‘to” with Spanish trans-
lations ‘‘ir” and ‘‘a”, respectively. In the naive (without attention)
encoder-decoder architecture the update on the state for the word
‘‘to” should not be necessary big as it can be predicted from the
past word easily (‘‘go to” is a common bi-gram in the English lan-
guage), but the decoder must align ‘‘ir” to ‘‘go” and ‘‘a” to ‘‘to”;
therefore, in the attention architecture, the state will receive an
extra update to differentiate both states for the attention layer
which would introduce a state change in the forward pass. How-
ever, as the state is limited in size, this will only be achieved by
erasing information in the state vector through the forget gate.
We simulate a similar situation to this example in one of our
sequence problems in Section 4.3.

Note that this situation is not dependent on the final model per-
formance as long as the attention distribution premise follows, that
is, the network reaches a training state where the distribution of
the align vector has low entropy. Although using or not using the
recurrent connection may not necessarily lead to a worse perfor-
mance, the point here is that if that connection is not working as
it is expected to be, or even, not working at all then this connection
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does not lead to any architectural benefit and architectures with-
out this connection can be taken into account. Our main interest
in this study is to analyse the differences between how the state
should work in naive recurrent architectures and how it is working
in attention ones.

In conclusion, we will follow the next argument: due to the
usual alignment distributions, we conjecture that the state vector
should change between time steps. Although several factors can
influence the difference between ht�1 and ht , the forget activation
function is sufficient to justify the alignment distribution. If this
activation is closer to 0 than to 1, it is not only changing the state
on the forward pass through Eq. (10), but it also prevents the LSTM
from learning on the backward, using the last term in Eq. 12).
Although the state change must not necessary mean memory loss,
in a limited memory setup, as the one in usual RNN architectures
where the size of the embedding representation and the memory
is usually similar or the same, this will lead to an underuse of this
memory. As we will show, this underuse is mainly due to an exces-
sive forget gate activation that we interpret in terms of memory
degradation.

Our proposal is that recurrent architectures are not using the
recurrent connection as it is expected, what justifies, in the limit
situation, the usage of parallel architectures, like Transformer,
where this connection is not present.

2.3. Direct input attentions

Our conjecture will be tested by making use of model configu-
rations that are similar in all but the attention part. The training
times and the overall performance are different when using atten-
tion or using the naive encoder-decoder architecture. Therefore, in
order to compare two almost equivalent models we designed a
novel, as far as we know, direct input attention encoder-decoder
network. This model uses the standard encoder-decoder architec-
ture with a LSTM cell and attention, but in this case the attention
is not connected to the encoder outputs but to its inputs. The
expression for the score vector for each time step using a dot-
product attention becomes:

zt ¼ Xh0t ð18Þ
where X is a matrix of input vectors set in a row-wise manner. This
configuration implies that the encoder output connection and the
whole encoder network are not supervised by the attention layer.
We observed that this configuration performs similar, or even bet-
ter in some cases, than the classical version of the attention layer.
We consider three situations, namely, with attentions connected
to the encoder output, with attention connected to encoder inputs
and without attentions. We expect the last two situations to pro-
vide similar results in our tests (more state similarity and less gate
activations). The three architectures are depicted in Fig. 2.

3. Methods

3.1. Exploration of the encoder LSTM function

The main challenge to test the different architectures and atten-
tion scores is to come up with a suitable metric. It is common to
perform ablation or sensitivity-to-noise studies when testing the
usage of parts of a neural architecture. There are two main reasons
why we cannot use such techniques in the present paper:

1. The architectures we test have different performance on our
test tasks, which means that any performance measure will
not be comparable between them.
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2. As noted in Section 2.2 the performance is not a relevant mea-
sure for our theoretical setup, being enough for the alignments
distribution to have a low entropy.

Therefore, we focus on Eqs. (12) and (16), that were the basis of our
conjectures. In particular, Eq. (16) shows that the scores are differ-
ent if ht and htþ1 are different. And, in turn, the sufficient condition
for this (note that not necessary condition because the output gate
can also change the state) is that st and stþ1 are different, too.

The state difference was assessed by means of the cosine metric
similarity between each si and siþ1. Higher similarity between con-
tiguous states means less average change between state vectors
and more unchanged information in that time step:

Di ¼ sTi siþ1

ksikksiþ1k ð19Þ

where k � k stands for the L2-norm. It is possible to have information
retention without state similarity if the future layers of the network
(e.g., decoder output layers) can map two arbitrarily different states
to the same output. However, in our case, according to Eq. (12) and
taking into account that the recurrent update tends to be degraded
by the reset gate, and most of the influence on the gate gradients
come in a feedforward way, together with the fact that both the
attention model and the naive model deal with state similarity in
a similar way, we can conclude that the metric is actually informa-
tive of the state usage. Also, note that the resolution of this metric is
dependent on the state size. For a sufficiently large state size, the
LSTMwill be able to work without using most of its neurons, chang-
ing them randomly and keeping the D values low. We show this
effect in a naive encoder-decoder architecure in our first experi-
ment in Section 4.1. The idea of this metric is to set a specific state
size where the problem is learnable for both, the input attention
models and the standard attention models, so that it is possible to
evaluate the differences between them and the naive model for that
specific state size. As the distribution of all D does not describe the
one-to-one differences between architectures, an alternative metric
was taken into account:

H ¼
X

si2S

I½Di < D0i�
N

ð20Þ

where S is the set of all sequences of states for the input implemen-
tation and the classical implementation, I½�� is an indicator function,
D and D0 are the cosine similarity obtained for both models and N is
the total number of timesteps used to estimate the H value. This
basically measures how many state differences, in a one-to-one
manner (over the same samples) are lower in the naive and input
models compared to the attention model.

As mentioned earlier, in order to validate this metric we per-
formed an additional experiment with a naive encoder-decoder
architecture. We selected one of the test problems and trained
encoder-decoder LSTMs for different state size values on this prob-
lem. When the state is much larger than the size needed to achieve
the maximum accuracy on the problem we can suppose that most
of the state values are redundant. In order to characterize this
behaviour we represented the progression of Di distributions for
different state sizes. This representation characterized the distribu-
tion in situations ranging from the full state usage, when state size
is not enough to achieve high accuracy to low state usage, when
the state size is much higher than the problem complexity. We
expect that attention architectures will have a similar behaviour
as that of naive encoder-decoder architectures with low state
usage.



Fig. 2. Representation of the architectures used in the experiments. The attention connection differs from the standard and input attention setups, red for input attentions
and green for standard attentions. One time step from the encoder and one time step from the decoder is represented. For the naive architectures no attention module is used.
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We also explored the gate activation distributions in the test
data. Our interest was to find out if the activation values, specially
for the forget gate, were able to explain the differences in the state
vector, as a high forget gate activation is a sufficient condition to
have different states between consecutive time steps. Specifically,
we made use of a box-plot to compare the activation distribution
graphically for different time steps on several sample sequences.

On top of the distributions, we were also interested in measur-
ing the amount of information kept by each of the architectures
from the first state to the end of the source sequence processing.
Expanding Eq. (10), and considering the final factor of Eq. (12),
we can find that the product of the forget gate vectors is the one
controlling the information flow from the first encoder state to
the first decoder state in the forward pass, and vice versa in the
backward pass. Therefore, we studied this factor averaged on a
trained architecture among the test samples:

ct ¼
1
d

Xd

i¼0

YT

t¼1

f it ð21Þ

where d is the dimensionality of the state vector and T is the
sequence length. The idea behind this measure is to analyse if the
attention network is more prone to forget past information than
the other architectures. As the activation value information is
highly dependant on the size of the state vector, the experiments
to obtain ct were repeated for different state sizes. We expect that,
as the state size becomes bigger, the distributions will be more
spread between ½0;1�.

3.2. Datasets and model parameters

In order to test the robustness of our proposals, we tested the
models in different environments, namely, where the sequence
symbols are independent, where some sequences symbols are
irrelevant for the output and finally a real-world problem which
mixed the previous environments. Eight different problems, where
the alignment vector distribution has low entropy (close to sparse),
were considered:
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1. Sequence-reverse copy problem: the goal is to copy a randomly
drawn sequence of symbols from a vocabulary into reverse
order. This problem can be considered as easy for the LSTM
architecture as it can reach a 100% accuracy even without
attention.

2. Sequence-reverse copy problem with repetitions: the same
problem but adding repetitions to the sequence of symbols.

3. Filter-sequence problem: similarly to the sequence-reverse
copy problem the goal is to copy a sequence but in this case
the copy must not include some of the symbols that are prede-
fined in a tabu vocabulary. This problem adds the factor that
now some of the inputs are completely redundant creating a
limited version of the previous problem.

4. Sequence-reverse copy problem with bigrams: this problem is
similar to the sequence-reverse copy problem but some of the
symbols are predefined highly-frequent bigrams, and hence,
some pairs of symbols appear together with high frequency.
This problem is evaluated separately as it is a particular case
of the translation example exposed in Section 2.2. This is the
case where the sequence can be efficiently learnt without state
change but we expect that the attention will try to align the
common bigrams even at the cost of changing the state and
not exploiting the recurrent connection memory.

5. Four translation problems: we selected an English-to-Spanish,
English-to-French, English-to-German and English-to-Italian
translation datasets in order to perform the experiment in a
real-world problem. The datasets were obtained from [2]. We
used a small dataset like this one mainly because of the training
time, as we were interested in carrying out many experiments.
As these datasets are comparable to any large-scale translation
dataset except from the sequence lengths and sample sizes, we
expect the achieved results to be generalizable other sequence-
to-sequence tasks as long as the attention distribution premise
follows. Not only does the translation problem offer all the fea-
tures seen in the previous problems but it is also a mapping task
between source and target language where the alignment is not
obvious.



Table 1
Examples of the problems used for testing. Generic symbols si and s0i are used for
representing the problem tokens. The Sequence-reverse copy problem with bigrams
is the same as Sequence-reverse copy problem but with some bigrams of symbols set
to appear together frequently.

Problem name Sources
sentence

Target sentence

Sequence-reverse copy problem s1 s2 s3 s4 s5 s6 s7 s7 s6 s5 s4 s3 s2 s1
Sequence-reverse copy problem with

repetitions
s1 s1 s1 s2 s2 s3 s3 s3 s3 s2; s2 s1 s1 s1

Filter-sequence problem s1 s2 s3 s4 s5 s6 s7 s2 s4 s5 s6
Translation ENG-SPA/FRA/GER/ITA

problem
s1 s2 s5 s1 s3 s03 s07 s02 s01,

Fig. 3. D values for different state sizes on the sequence-reverse copy problem with the n
distribution of the state differences become more spread suggesting that not all the sta

(a) Copy without repetitions

(c) Filtering

(e) Translation ENG-SPA

(g) Translation ENG-GER

Fig. 4. Box-plots representing the distributions of Dvalues (cosine similarities) between c
represented around 5% of the samples of each problem, were not included for a better
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We generated 30;000 different sequences of length between 5 to 18
for the first four problems and extracted the first 30; 000 sentences
in the translation problem datasets. A random split of 75%=25%
was used for constructing training/validation datasets for all eight
problems. An example of input and target sequences for each
sequence task is shown in Table 1.

All the implementations were carried out using Tensorflow
python module [1]. The input sequence was padded and trans-
formed from a one-hot symbol representation in RjV j, where V is
the encoder input vocabulary into a Rd embedding space, being d
the embedding size:

xemb
t ¼ WT

emb1½xt¼j� ð22Þ
aive encoder-decoder architecture. We can observe that as the state size grows, the
te is used in building the output.

(b) Copy with repetitions

(d) Copy with repetitions with bigrams

(f) Translation ENG-FRA

(h) Translation ENG-ITA

ontiguous states, for all eight problems and the five studied models. Outliers, which
readability.
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where Wemb is a jV j � d embedding matrix. Here j is a specific index
in the vocabulary corresponding to the sequence symbol xt . The size
of the embedding vector was selected to be the same as the size of
the hidden dimension in the LSTM cells, which was selected to be
Table 2
Mean values and standard deviations between experiments of H for the experiments carr

Luong Attent

Problem name Naive Luong Inputs

Sequence reverse copy problem 0:77� 0:05 0:99� 0:01
Sequence reverse copy problem with repetitions 0:55� 0:09 0:89� 0:08
Filter-sequence problem 0:97� 0:02 0:92� 0:02
Sequence-reverse copy problem with bigrams 0:82� 0:08 1:00� 0:00
Translation problem ENG-SPA 0:87� 0:10 0:96� 0:04
Translation problem ENG-FRA 0:95� 0:04 0:99� 0:02
Translation problem ENG-GER 0:98� 0:02 1:00� 0:01
Translation problem ENG-ITA 0:90� 0:03 0:92� 0:04

Fig. 5. Translation English-to-Spanish problem: box-plots representing the distribution
input attention) at each time step of the sequence.
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50 for the first four problems and 100 for translation problems. In
the case of the input attention model we appended a position vector
when computing the attention scores for a proper identification of
the different input positions even if the symbols were equal; we
ied out on the different problems.

ion Bahdanau Attention

Bahdanau Inputs Naive Luong Inputs Bahdanau Inputs

0:97� 0:03 0:72� 0:11 0:99� 0:01 0:97� 0:02
0:83� 0:04 0:32� 0:09 0:76� 0:16 0:61� 0:05
0:96� 0:02 0:98� 0:01 0:94� 0:03 0:97� 0:02
0:99� 0:01 0:59� 0:16 0:97� 0:03 0:97� 0:05
1:00� 0:00 0:95� 0:04 0:98� 0:02 1:00� 0:00
1:00� 0:00 0:97� 0:02 0:99� 0:02 1:00� 0:00
1:00� 0:00 0:99� 0:01 0:99� 0:02 1:00� 0:00
1:00� 0:01 0:89� 0:04 0:90� 0:03 0:99� 0:02

of the forget gate activations for three models (naive, Luong attention and Luong



Fig. 6. English-to-Spanish translation problem: ct values for three models (naive, Luong attention and Luong input attention) at each time step in the sequence.

Fig. 7. Heatmaps of attention distributions for the sequence-reverse copy problem with bigrams using Luong attention. The specific symbols which are set a priori in the
dataset as bigrams are shown in the title of the plot together with the cosine similarity of their LSTM states.
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used a size of 10 for the first four problems and 20 for the transla-
tion problems. These appended vector was not used in the LSTM
input, only for the computation of the attention scores, as shown
in Fig. 2. A linear layer was used for mapping the augmented vector
to a d dimensional space for the dot products of the attention layer.
This layer was also used in the attentional setups. The size of d was
equal to the hidden size of the LSTM network. Then, the final score
function for the standard and input attention was:

zt ¼ SWT
inpht ð23Þ

whereWinp is the linear layer transformation matrix with the size of
d� d or d� dþm depending on using the Luong attention or input
attention, respectively. Herem is the size of the position vector. Also
S is the memory matrix which is H (a matrix of encoder outputs) for
the Luong approach and ½X;P� (a matrix of concatenation of input
embeddings and position embeddings) for the input attention
Fig. 8. Sequence-reverse copy problem: box-plots representing the distribution of the
attention) at each time step of the sequence.
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approach. Although we used the parameter values exposed earlier,
our results were stable for large choices of parameters as long as the
attention distribution hypothesis followed. The output in the deco-
der was obtained by concatenating the context vector ct and the
decoder output ht and using a linear layer to the target vocabulary
space with a softmax activation.

A teacher-forcing procedure was used for training, based on
feeding the correct past output symbol to the next decoding time
step as input. We also used this procedure in the decoding. Adam
optimization algorithm [9] was used for training the stochastic
gradient descent with a batch size of 32 samples and a learning
rate of 0:001. We used an early stopping criterion finishing the
training if the train loss had not changed more that 0:01 for more
than 300 time steps or the training steps reached 3;500 for atten-
tional architectures and 10; 000 for the naive encoder-decoder
architectures. We saw that our results were stable for many
choices of stopping criteria once the alignment criterion was
forget gate activations for three models (naive, Luong attention and Luong input
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met, which usually occurred around the first 500 time steps. This
fact was mainly due to the fact that our experiments depend on
the alignments and not on the final performance scores.

For the forget gate distribution experiments we expanded the
study on hidden sizes and repeated the same procedure for the fol-
lowing hidden sizes: 30;50;80 and 100. For representation pur-
poses we only report these distributions for naive encoder-
decoder, Loung standard attention and Luong input attention
architectures, but similar results were achieved for the Bahdanau
attention score function.

4. Results

Two main results are shown in this section. Firstly, an assess-
ment of the state change in the five analysed models, namely, a
standard attention model, our proposal based on an input atten-
tion, both with Loung and Bahdanau attentions, and the naive
encoder-decoder model. Secondly, an analysis of how these
changes are produced, basically analysing the activation of the for-
get gate and the cumulative product of forget gate activations.
Fig. 9. Sequence-reverse copy problem with repetitions: box-plots representing the dist
Luong input attention) at each time step of the sequence.
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4.1. State difference evaluation

Differences in the state are based on the factor D, described in
Eq. (19). D values were tested on 10;000 samples for the copy
reverse problem on the naive encoder-decoder architecture. The
results can be found in Fig. 3, that shows that the bigger the state
size, the more spread the distribution of D as the model reaches
high-accuracy perfomances, situation in which we can assume
most of the state is not used in the output computing.

Fig. 4 shows D values for all models in all eight problems. The
representation was computed from 10;000 different test
sequences from each problem and from 10 independent model
trainings for each problem, i.e., 100;000 samples for each model
and problem. High values of this metric mean that the contiguous
states are similar and, therefore, the change between the two steps
is low. The state vector was obtained for non-padding samples, as
in the padding samples the processing is masked and the state is
directly copied to the next time step. As Fig. 4 shows, the input
attention and the naive model keeps the states more similar than
the standard attention model. This supports our theoretical
ribution of the forget gate activations for three models (naive, Luong attention and
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proposal described in Section 2.2. Note that Luong and Bahdanau
standard models have the distribution of the state changes similar
to the naive encoder-decoder architecture with a high number of
state size. We can deduce from this observation that most of the
state is not used for the final output decoding. It is also remarkable
the need of the alignment criteria for this analysis, that is, the
alignments must have low entropy for this behaviour to happen,
as shown in Fig. 4b. In this problem, repetitions of the same symbol
are present, and hence, the alignments do not have low entropy for
the repeated symbols (the model only aligned properly the first of
the symbols), transferring the functionality of the architecture to
the memory instead of to the attention.

As the graphical evaluation contains some overlapping between
the box whiskers, the metric H proposed in Eq. (20) was also con-
sidered; the mean values of this metric and the corresponding
standard deviations are shown in Table 2. For the first problem,
we have that in a one-to-one fashion, 99:0% of Di values were
lower for the Luong input attention model than for the Luong
attention model. In general, for most cases of the eight problems,
the difference between two contiguous state values was higher
for the standard attention model than naive or input attention
Fig. 10. Filter-sequence problem: box-plots representing the distribution of the forget ga
each time step of the sequence.
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models. This suggests that the attention connection to the output
of the encoder, with independence of the problem, forces the state
to change for fulfilling the alignment requirements, and this
involves, in turn, that the information inside the state degrades fas-
ter due to the new information update in the standard attention
models. Furthermore, the standard deviations indicate that these
results are stable among different trainings. These experiments
were also conducted with different hidden sizes obtaining similar
values which are not reported here.

4.2. Gate activation evaluation

The state change can be obtained by two main ways: either by
an update vector it � ct , or by the forget gate activation f t . Although
we did not find relevant differences in the values of it � ct between
the models, interesting disagreements did appear in f t vectors. By
way of example, we focus on the translation problem; the equiva-
lent results for the other seven problems, as shown in appendix B.
Fig. 5 shows the activation distribution of the forget gate values for
four different state sizes and the naive, Luong attention and Luong
input attention models. The forget values of the naive and the
te activations for three models (naive, Luong attention and Luong input attention) at
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input attention models have a similar convergence to 1 as the
sequence position grows for various hidden-size models. This
behaviour is due to the fact that the state receives all the forget
activation products from the first time steps, and, the encoder, in
order to keep this information for decoding, must ensure that it
is not completely erased. In contrast, the Luong attention yields a
much wider range of forget values, supporting the idea of a more
frequent state change present in those models as most of the
responsability of building the output falls on the attention connec-
tion and not on the recurrent one.

Fig. 6 analyses ct values, introduced in Eq. (21), for the English-
to-Spanish translation problem. As expected, the memory decay of
the Luong model is faster than the input attention and naive mod-
els. The figures for the rest of the problems can be found in appen-
dix B. This result is congruent with our first experiment using the
naive architecture. As the state size grows, the forget activation
values become more spread and the similarity between contiguous
Fig. 11. Sequence-reverse copy problem with bigrams: box-plots representing the distr
Luong input attention) at each time step of the sequence.
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states is lower because the model is able to completely learn the
problem without using its full capacity.

In summary, it can be concluded that the Luong attention archi-
tecture tends to change the state by resetting it faster and more
frequently than the other two architectures, thus vanishing the
state vector from the first time steps.

4.3. Sequence-reverse copy problem with bigrams

The fact that standard attention models are biased towards
alignment is explored in the sequence-reverse copy problem with
bigrams. We trained a Luong attention model and explored the
attention distribution for different input–output pairs. We also
computed the state similarity for the state between each two
bigram sequence symbols. We set the bigrams to have a random
prior probability within the range ½0:8; 0:9�. Although this is much
higher than in real language-based problems, it also stresses the
ibution of the forget gate activations for three models (naive, Luong attention and
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assumption exposed in Section 2.2 as it makes it easier to learn
these bigrams for the encoder. Fig. 7 shows that for some examples
of input–output sequences, despite the fact that the bigrams are
highly frequent, the Luong attention model tends to build specific
alignments for each of the bigram symbols, thus keeping the state
similarity low for these time steps. This observation further sup-
ports our results from the last sections.

5. Discussion and conclusions

This paper has presented an empirical analysis about memory
degradation in neural recurrent architectures. Our conjecture, sup-
ported by the results of our experiments, is that attention may
transform RNN architectures from their normal function as mem-
ory accumulators by forcing big changes in their memory due to
the additional output connection. This analysis reinforces the idea
of superiority of pure non-recurrent architectures like Transform-
ers since if the recurrent connection of the RNN networks does
not add any advantage, then it becomes redundant thus making
Fig. 12. Translation English-to-French: box-plots representing the distribution of the
attention) at each time step of the sequence.
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attention be the only relevant mechanism. It is also important to
note that this conclusion about the redundancy of the recurrent
connection may not be applicable if the remaining information in
the state is, for example, useful for alignment decoding; therefore,
the claims made in the paper refer to a limit situation rather than a
common one.

A remarkable finding that indirectly validates our results is the
use of the attention alignments as an interpretation of which input
is observed in order to obtain the output. This interpretation is
commonly used in almost all current literature. It is relevant to
note that even if this interpretation usually works and the distribu-
tion of the alignments coincides with the expected one (like in
translation or sentiment analysis problems), these alignments are
obtained from the output of the encoder network and not from
the input. This fact indicates that the output and the input of the
encoder are highly related to each other, which intuitively should
not happen. The output of the encoder must be more related to
the kept information than to the newly introduced information,
especially in the last time steps where the memory carries almost
forget gate activations for three models (naive, Luong attention and Luong input
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all the information of the sequence. The success of this attention
interpretation is just another way to suspect that LSTM is not
working as it is supposed to do in classical attention architectures,
basically becoming a feedforward network with additional
operations.

A promising future work can be the study of the real influence
of both output branches on the final output of the encoder. There is
not a direct way to measure this due to their hard interconnection
in this type of architectures. However, studying the norm of the
gradients among these branches can be a research experiment
for validating the results presented in this paper. We also hypoth-
esise that if we can balance the amount of usage of the recurrent
part of the RNN with the direct output part we will be paving
Fig. 13. Translation English-to-German box-plots representing the distribution of the
attention) at each time step of the sequence.
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the way to build hybrid recurrent-parallel architectures where
the recurrent part (memory) will take care of the alignment learn-
ing and the parallel part (attention) will be in charge of the trans-
formation learning without influencing on each other.
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Appendix A

In this appendix we will detail how the first four toy datasets in
our work were generated:
A.1. Sequence-reverse copy problem

For this problem we generated a vocabulary of 128 random
symbols and we built input sequences of random length between
3 and 18. The goal of this task was to transform the input sequence
into an output sequence which is the same but with the symbols in
a reverse order. The first and the last symbol were a generic
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‘‘< start >” and ‘‘< end >” symbol, respectively, which was not
reversed. We padded the sequences to be all of the same length.

A.2. Sequence-reverse copy problem with repetitions

This problem is similar to the last one, as we also used a vocab-
ulary of 128 random symbols and generated sequences of 18 sym-
bols which were to be reversed by the model. The difference with
the previous problem is that we first produced a sequence of 7
symbols, and then repeated each symbol of that sequence a ran-
dom number between 1 and 4 times. We ensured that the final
length was 18 by either dropping symbols or repeating the last
symbol the number of times needed to reach a length of 18.

A.3. Filter-sequence problem

In this problem we generated an additional tabu vocabulary T of
20 symbols, picking random symbols from a vocabulary V of size
128. We generated sequences of length 18 from V ensuring that a
random number between 1 and 7 symbols belong to T. The target
sequences were defined as the input sequences, but taking into
account that any symbol from T was filtered. The sequences were
padded to have a final length of 18.

A.4. Sequence-reverse copy problem with bigrams

This problem is similar to the sequence-reverse copy problem;
we also worked with random sequences of up to 18 symbols from
a vocabulary of 128. The goal was to copy the sequence in the
reverse order. The difference is that during the sequence genera-
tion we forced 15 random bigrams to have a random frequency
between 0:5 and 0:9 while keeping the rest of the bigrams
unaltered.

Appendix B

Figs. 8–14 show the activation exploration for the other seven
problems, namely, sequence-reverse copy problem, sequence-
reverse copy problem with repetitions, filter-sequence problem,
sequence-reverse copy problem with bigrams and English to
French, English to German and English to Italian translation
problems.
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