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Fragmentation of highly differentially rotating massive stars that undergo collapse has been suggested as

a possible channel for binary black hole formation. Such a scenario could explain the formation of the new

population of massive black holes detected by the LIGO/VIRGO gravitational wave laser interferometers.

We probe that scenario by performing general relativistic magnetohydrodynamic simulations of differ-

entially rotating massive stars supported by thermal radiation pressure plus a gas pressure perturbation. The

stars are initially threaded by a dynamically weak, poloidal magnetic field confined to the stellar interior.

We find that magnetic braking and turbulent viscous damping via magnetic winding and the magneto-

rotational instability in the bulk of the star redistribute angular momentum, damp differential rotation and

induce the formation of a massive and nearly uniformly rotating inner core surrounded by a Keplerian

envelope. The coreþ disk configuration evolves on a secular timescale and remains in quasistationary

equilibrium until the termination of our simulations. Our results suggest that the high degree of differential

rotation required for m ¼ 2 seed density perturbations to trigger gas fragmentation and binary black hole

formation is likely to be suppressed during the normal lifetime of the star prior to evolving to the point of

dynamical instability to collapse. Other cataclysmic events, such as stellar mergers leading to collapse, may

therefore be necessary to reestablish sufficient differential rotation and density perturbations to drive

nonaxisymmetric modes leading to binary black hole formation.

DOI: 10.1103/PhysRevD.99.064057

I. INTRODUCTION

The multiple detections by the LIGO/VIRGO Scientific
Collaboration (LVSC) of gravitational wave (GW) signals
produced by binary black hole (BH) mergers [1–6] pro-
vides the clearest evidence of the existence and common
occurrence of close binary BHs. These detections also point
to a new population of stellar-mass binary BHs whose
masses are larger than those of the twenty x-ray BH
binaries with masses ≲20 M⊙ [7], and it raises a puzzle
regarding the origin of these massive BH binaries.

There are various scenarios proposed to explain the

formation of massive BH binaries, such as the coalescence

of primordial black holes [8–11] and failed supernova

explosion [12]. The collapse of a massive star

(M ≳ 10 M⊙) has been suggested as one of the most

plausible formation channels for BHs observed by the

LVSC [12–14]. As the final mass of the BH remnant

depends sensitively on the mass and metallicity of the

progenitor stars [15], it is somehow expected that the direct–

collapse of Population III (Pop III) stars form the most

massive BHs [16,17]. This hypothesis was confirmed

by population synthesis simulations of Pop III stars [18],

where binary BHs with typical mass of ∼30 M⊙ were

formed from 106 Pop III binary evolutions with masses

ranging between 10 M⊙ to 100 M⊙. The study in [19]

suggests that a binary containing massive stars with masses

M1 ≈ 96 M⊙ and M2 ≈ 60 M⊙ at redshift z ≈ 3.2 may be

the progenitor of the first BH binary detected by the LVSC

(event GW150914) [1]. Later, it was shown in [20] that the

events GW150914 and GW151226, as well as the lower-

confidence event LVT151012, may be explained by the

isolated binary evolution channel (i.e., assuming that the

binary never interacts with another star) from progenitor

stellar binarieswithmasses between 60 M⊙−160 M⊙. This

channel involves the formation of a common envelope

through which mass is transferred between the secondary

star and its companion via stellar winds. However, such a

common-envelope phase is not well understood and results

in great physical uncertainties for the BH formation rate due

to the lack of observational evidence [21]. To avoid this

phase, an evolution channel including massive overcontact

binaries, where two tightly bound stars are sufficiently

mixed due to their tidally induced high spin, has been

considered [22]. Prior to collapse, the massive close binary

components are fully mixed and achieve chemical

homogeneity. As the hydrogen burning ends nearly simul-

taneously for the two binary components, the post-main-

sequence expansion is suppressed due to the absence of a

hydrogen-rich envelope. According to the mass exchange

mechanism, this evolution route is therefore likely to
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produce BH binaries with a large mass ratio, as in

GW150914 [23].

It also has been suggested that stellar-massive BHs can

be formed via dynamical interactions in dense clusters. In

clusters with low metallicities, such as the cores of

globular clusters (GCs) or dense AGNs [24] it is possible

to form binary systems dynamically via gravitational

interactions among a population of stellar-mass BHs

[25,26] or hierarchical mergers of smaller BHs [27]. In

particular, a simulation of GCs of mass M ∼ 105 −
106 M⊙ with many-body dynamics and stellar evolution

has provided an evolutionary channel for BH binaries

similar to GW150914 [28]. It is expected that the two

mechanisms described above can be distinguished by the

binary spins from a large, future sample of BH mergers.

The BH binaries formed from direct collapse of massive

stars are more likely to result in aligned spins due to tidal

interactions and/or mass transfer, while dynamically

formed binaries will have randomly oriented spins. In

addition, the further merging of the massive BH remnants

in GCs may finally form more massive intermediate-mass

black holes (IMBHs), defined as BHs with mass 102 −
105 M⊙ [29]. An all-sky survey of GW signals from

binary IMBHs has been performed by LVSC. For such

systems, the merger rate is constrained to be

≳0.3 GC−1 Gyr−1 in the local Universe with 90% con-

fidence [30]. Other evolution channels, such as the direct

collapse of very massive Pop III stars, can also form

IMBHs [29,31].

Among the binary BH detections by LVSC,

GW150914 and GW170104 are possibly associated with

electromagnetic (EM) counterparts [32,33]. Although the

EM emission is unexpected for binary BHs mergers in

pure vacuum (see e.g., [34]), in these two events, gamma-

ray signals with isotropic energy ∼1049–1050 erg have

been observed shortly after the peak GW signals [32,33].

With the assumption that the EM transient is connected to

the GW events, fully general relativistic magnetohydro-

dynamic (GRMHD) simulations in [35] show that mag-

netized disk accretion onto a BH binary could explain

GW and EM counterparts such as the GBM hard x-ray

signal reported 0.4s after GW150914. Massive star

fragmentation during gravitational collapse has been

proposed as an alternative scenario [36]. However,

numerical simulations and analytic studies have shown

that binary BHs coalescence within a dense stellar gas

(ρ ≳ 107 g cm−3) produces a waveform different from one

in vacuum due to gas drag [37,38]. To rectify this effect,

the single-progenitor scenario with an accretion rate ∼3 ×
109 times the Eddington rate prior to merger has been

suggested [39]. This so-called giga-Eddington accretion

can drive out the stellar gas as well as alter the time delay

between GW and EM signals. However, that scenario

may not account for all the physical processes involved,

in particular magnetically-driven processes (see e.g.,

[35,40,41]), which can have a dynamical impact on the

evolution channel.

Returning to the collapse of massive stars as the origin

of massive BHs and massive BH binaries, we note

that massive stars are radiation dominated and well-

approximated by an n ∼ 3 (Γ ∼ 4=3) polytrope. During

their evolution, very massive (and supermassive) stars cool

and contract until they ultimately encounter a relativistic,

dynamical instability leading to catastrophic collapse to

BHs (see [42–48]). Massive stars that are uniformly rotating

remain nearly axisymmetric during the collapse, as shown

by post-Newtonian [44] and fully general relativistic

(GR) simulations [49,50]. However, massive stars that

are differentially rotating with a sufficiently high ratio of

rotational kinetic energy to gravitational potential energy

(T=jWj≳ 0.14) are secularly unstable to forming m ¼ 2

bar modes during the course of their evolution [51–53]. In

addition, differentially rotating massive stars with non-

axisymmetric (e.g., bar mode) density perturbations and

undergoing collapse can fragment into self-gravitating,

collapsing components that form seed BHs [45,54]. In

some cases, this fragmentation may lead to the formation of

massive BH binaries [55].

Even though intensive studies of the evolution channels

and the interactions of collapsing massive stars have been

studied previously, our understanding of the role of the

magnetically driven instabilities during their stellar evolu-

tion prior to collapse remains poor.

Newtonian simulations of magnetic braking (i.e., wind-

ing) and viscous damping of an incompressible, differ-

entially rotating infinite cylinder model were performed

in [56]. It was found that differential rotation could

generate toroidal Alfvén waves that convert an appreci-

able fraction of rotational kinetic energy to magnetic

energy and drive the star toward uniform rotation (“mag-

netic braking”). The destruction of differential rotation

was also demonstrated later on in a compressible cylinder

model [57] and in relativistic, neutron star models, both

incompressible [58] and compressible [59]. The role of

turbulent viscosity in damping differential rotation in

rapidly spinning, neutron stars obeying a “stiff”

(Γ ¼ 2) equation of state (EOS) was demonstrated by

simulations in axisymmetry in [60], where the Navier-

Stokes equations with a shear viscosity were solved

in full GR. They found that the viscosity drives the

neutron stars to a high density, uniformly rotating core

surrounded by a Keplerian disk in which the core could

either collapse to a BH or remain stable depending on its

mass and the viscous build-up of thermal pressure.

Subsequently, the role of magnetic fields in driving

viscous turbulence via the magneto-rotational instability

(MRI), which damps the differential rotation in a hyper-

massive neutron star, was demonstrated by GRMHD

simulations in axisymmetry in [59,61–63]. They showed

that the magnetic energy is amplified both by the winding
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of field lines and MRI, and that the differential rotation is

significantly reduced due to the magnetic braking and

MRI-induced turbulent viscous damping.

In this paper, we explore this braking and damping

scenario in weakly magnetized, differentially rotating

massive stars in hydrostatic equilibrium. In particular,

we perform GRMHD simulations to probe the effects of

magnetic winding and magnetic-induced turbulent vis-

cosity that can break the differential rotation in massive

stars. We consider massive stars governed by a soft n≲ 3

(Γ≳ 4=3) EOS. We first show that, for magnetized stars

with characteristic masses greater than several hundred

M⊙, the hierarchy of physical timescales meets the

criteria for the magnetic damping of differential rotation

within stellar lifetimes. Then we construct stable equi-

librium stars with the same differentially rotating profiles

as in the initial (collapsing) configurations employed in

[55], where fragmentation of m ¼ 2 seed density pertur-

bations into BH binaries occurs. We endow the stars with

a dynamically weak, dipole magnetic field confined to the

stellar interior and evolve the resulting magnetized

equilibrium configuration in 3þ 1 dimensions using

our Illinois GRMHD code. We find that well prior to

collapse, magnetic braking and turbulent viscosity indu-

ces the formation of an inner core surrounded by a thick,

Keplerian, circumstellar disk after several Alfvén time-

scales. As anticipated, magnetic braking, induced by the

toroidal winding of the magnetic field, and viscous

damping, induced by magnetic turbulence triggered by

the MRI, drive the inner core to uniform rotation. The

newborn coreþ disk configuration evolves on a secular

(viscous) timescale and remains in quasistationary equi-

librium until we terminate the simulations. Our results

suggest that a stellar fragmentation scenario for a

massive star that evolves in isolation is not a plausible

formation channel for binary BHs. Other cataclysmic

events, such as the merger of two massive stars, may be

necessary to reestablish sufficient differential rotation to

drive nonaxisymmetric modes leading to fragmentation of

a dynamically unstable remnant into binaries during

collapse. Our results apply for stars prior to BH formation

with characteristic masses greater than several hundred

solar masses. The masses in our simulations are chosen

for demonstration purposes and were selected for their

microphysical simplicity and computational practicality.

However, we do expect qualitative similar outcomes to

apply for lower masses relevant to the LIGO/Virgo BH

progenitors.

The structure of the remainder of the paper is as

follows. In Sec. II, we calculate several key physical

timescales and show that the hierarchy of timescales for

plausible initial configurations satisfy conditions inevi-

tably leading to the magnetic destruction of differential

rotation. In Sec. III, we discuss the properties of typical

initial configurations and describe the initial models used

in our simulations. In Sec. IV, we describe the numerical

tools we use, the numerical implementation of the initial

data and evolution, and some of the diagnostics employed

to verify the reliability of our simulations. We summarize

our results and compare them with previous work in

Sec. V. Finally, we offer conclusions in Sec. VI. We adopt

geometrized units (G ¼ c ¼ 1) throughout the paper

except where stated explicitly. Greek indices denote all

four spacetime dimensions, while Latin indices imply

spatial parts only.

II. TIMESCALES

There are four important timescales related to the evolu-

tion of magnetized, differentially rotating, massive stars:

(1) The dynamical timescale tdyn determines the rate of

collapse (“free-fall”) of the star to a BH after the

onset of dynamical radial instability. It is also the

timescale for a perturbed, stable star to relax to

hydrostatic equilibrium. In order to guarantee that

the star maintains hydrostatic equilibrium while

undergoing magnetic braking or other secular

perturbations, tdyn must be shorter than these other

timescales.

(2) The Alfvén timescale tA is the winding timescale of a

poloidal magnetic field in a differentially rotating star

[56]. The magnetic braking of differential rotation

usually requires several changes in the direction of

magnetic field rotation, therefore tA is an appreciable

fraction of the total braking timescale.

(3) The viscous timescale tvis represents the time over

which the turbulent viscosity, induced by magnetic

field instabilities, damps differential rotation.

(4) The thermal timescale tth determines the lifetime of

a very massive star, which radiates at the Eddington

limit. This timescale must be longer than the above

timescales in order for the magnetic braking and

damping of differential rotation to be completed

during the lifetime of a stable star.

The above timescales depend on various factors such as

the equation of state, radius, degree of differential

rotation, and initial magnetic field strength. In a poly-

trope, they can be described approximately by several

parameters: polytropic index n, typical density ρ, char-
acteristic mass M, compaction C≡M=R, where R is the

characteristic radius, and the ratio of magnetic energy to

gravitational potential energy M=jWj. To establish the

physical hierarchy of timescales, we scale the parameters

above as in our canonical model N29 (see Table I).

In addition, we scale our estimates to a characteristic mass

of 104 M⊙ following our analysis of an n ¼ 2.9 polytrope

at the onset of collapse in [50]. Since the ratio of

rotational kinetic energy to gravitational potential energy

T=jWj ≪ 1, we can use spherical models in making our

rough analytic estimates. So, the above timescales can be

estimated as follows:
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(1) The dynamical timescale is

tdyn ∼ hρi−1=2 ∼
�
M

R

�−3=2
M

∼ 102

�
M

104 M⊙

��
C

6 × 10−3

�−3=2
s: ð1Þ

(2) The Alfvén timescale can be calculated as

tA∼R=vA

∼104

�
M=jWj
2×10−4

�−1=2� M

104 M⊙

��
C

6×103

�−3=2
s;

ð2Þ

where vA ¼ B=
ffiffiffiffiffiffiffiffi
4πρ

p
is the Alfvén speed and ρ is

the characteristic density of conducting plasma (here

the stellar gas). For our canonical model (see

Sec. III), the Alfvén timescale is typically two orders

of magnitude longer than the dynamical timescale.

(3) The viscous timescale is

tvis ∼
R2

ν
∼

R

αsscs
; ð3Þ

where ν ¼ αssHcs is the shear viscosity. Here cs ¼
ð∂P=∂ρÞ1=2 denotes the sound speed. We take the

dimension of a viscous vortexH to be comparable to

the stellar radius. The quantity αss denotes the

Shakura–Sunyaev αss-disk parameter computed as

(see Eq. 26 in [64])

αss ¼
TEM

r̂ ϕ̂

Pþ Pmag

∼
TEM

r̂ ϕ̂

P
; ð4Þ

where P is the matter þ radiation pressure, Pmag is

the magnetic pressure, and TEM is the electromag-

netic stress energy tensor defined as

TEM
μν ¼ b2uμuν þ b2gμν=2 − bμbν; ð5Þ

where bμ ¼ B
μ
ðuÞ=ð4πÞ1=2 is the magnetic field mea-

sured by an observer comoving with the fluid,

b2 ¼ bμbμ, and uμ denotes the 4-velocity of the

plasma (see [65] for discussion). Using Eq. (5), and

the fact that cs ∼ ðP=ρÞ1=2 ∼ ðM=RÞ1=2, αss can be

estimated as

αss ∼
Br̂Bϕ̂

P
: ð6Þ

Accordingly,

tvis ∼
1

αss
M−1=2R3=2 ∼

1

αss
tdyn: ð7Þ

Using Eq. (1) and an effective viscous parameter

αss ∼ 10−4, which is the maximum mean value for

αss during our simulations, we obtain

tvis ∼ 105

�
αss
10−4

�−1� M

104 M⊙

��
C

6 × 103

�−3=2
s;

ð8Þ

In our canonical model, the viscous timescale is one

order of magnitude longer than the Alfvén timescale

[see Eq. (2)]. However, this estimate is very crude

due to the local variations of αss, which may vary by

an order of magnitude at different locations.

(4) The thermal timescale is defined as

tth ≡ Eth

LEdd

; ð9Þ

where Eth is the thermal energy of the star and

LEdd ¼ 4πM=κ is the Eddington luminosity with κ
the opacity [42]. The thermal energy can be esti-

mated from the Newtonian virial theorem

2T þW þ 3ðΓ − 1ÞEth þM ¼ 0: ð10Þ

TABLE I. Initial model parameters. Here n denotes the polytropic index, M is the characteristic mass, M̄ADM is the ADM mass, ρ̄c is
the rest-mass central density, Rpol is the polar radius, J̄ADM is the ADM angular momentum, M=jWj denotes the ratio of magnetic

energy to gravitational potential energy, and T=jWj the ratio of rotational kinetic energy to gravitational potential energy. In these cases
we have set M̄ ¼ 3.711 × 10−6.

d

Case n M=M⊙ M̄ADM
a ρ̄c

b
Rpol=MADM J̄ADM

c
M=jWj T=jWj

N29 2.9 ∼104 4.139 4 × 10−8 161 36.92 1.88 × 10−4 0.091

N295 2.95 ∼105 4.801 2 × 10−8 192 52.44 1.82 × 10−4 0.085

a
M̄ADM ¼ K−n=2MADM where K ¼ P=ρΓ

0
.

bρ̄c ¼ Knρc.
c
J̄ADM ¼ Kn=2JADM.
d
M̄ ¼ K−n=2M, Nondimensional quantities have been rescaled with the polytropic gas constant K and are denoted with a bar.
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For small T=jWj, M=jWj and Γ≳ 4=3, the virial

theorem gives

W þ Eth ≈ 0: ð11Þ

Therefore, we obtain Eth ≈ jWj ∼M2=R, and Eq. (9)
becomes

tth ∼ 1012

�
C

6 × 10−3

�
s ∼ 105

�
C

6 × 10−3

�
yrs;

ð12Þ

where we have assumed κ ¼ 0.4 cm2 g−1, appro-
priated for Thomson scattering in a hydrogen gas,

and hence LEdd ∼ 1042ðM=104 M⊙Þ erg s−1. In our

canonical case N29 the thermal timescale tth is

therefore about ∼107 times larger than the viscous

timescale [see Eq. (8)].

To achieve the magnetic damping of differential rotation

during the stellar lifetime of an equilibrium star prior to

reaching the onset of dynamical instability to radial

collapse, the evolution of the massive star should satisfy

the following hierarchy of timescales

tdyn < tA < tvisð∼tdampingÞ < tthð∼tlifetimeÞ: ð13Þ

In particular, the values for case N29 in Table I provide a

model which satisfies this typical hierarchy. In general,

stars with several hundred solar masses are radiation

dominated and have 2.9≲ n≲ 3 [see Eq. (15) below].

Hence, the hierarchy of timescales in Eq. (13) applies to

such stars and strongly suggests that differential rotation

will be damped prior to BH formation. This result is

demonstrated by our detailed simulation below.

III. INITIAL DATA

To numerically study magnetic braking and damping of

differential rotation in massive stars, we consider initial

data satisfying the following criteria:

(1) An EOS dominated by thermal radiation pressure

perturbed by thermal gas pressure. We consider a

polytropic EOS with n ¼ 2.9 and n ¼ 2.95 (see

Table I).

(2) Stars in hydrostatic equilibrium with a lifetime

longer than the viscosity timescale [see Eq. (8)].

(3) A small magnetic field to induce magnetic winding

and an effective turbulent viscosity. The stars are

seeded with a dynamically unimportant poloidal

magnetic field (M=jWj ∼ 10−4 (See Table I).

(4) A damping timescale realizable given our computa-

tional resources, which requires a significant initial

magnetic field, albeit one that is dynamically weak

with M=jWj ≪ 1. We aim to provide an “existence

proof” for the magnetic braking and damping of

differential rotation in massive stars with the finite

computational resources at our disposal.

A radiation-dominated stellar model with radiation

pressure Prad and a small perturbation due to gas pressure

Pgas can be described by a polytrope with polytropic index

n slightly less than 3 (or equivalently, with adiabatic index

Γ slightly greater than 4=3). In particular, the fraction of gas
pressure Pgas is quantified by the parameter

β ¼ Pgas=Prad: ð14Þ

The relation between n (Γ) and the characteristic massM is

given by

n ≈
3

1þ 4.242ðM=M⊙Þ−1=2
; ð15Þ

which strictly holds for nonrotating, spherical stars. We

build rotating equilibrium stellar models using the GR

equilibrium code described in [66–68]. We consider two

cases for illustrative purposes, choosing two polytropic

indices, n ¼ 2.9 (case N29) and n ¼ 2.95 (case N295).

According to [50], these choices describe stars with

β ∼ 10−3–10−2, which correspond to M ∼ 104–105 M⊙,

respectively. Their viscous timescales are computationally

realizable with the resources available to us. To match the

rotation profiles in [45,55], we choose the initial differential

stellar rotation law as

utuϕ ¼ R2
eq

9
ðΩ −ΩcÞ; ð16Þ

where Ω≡ uϕ=ut is the angular velocity, and Ωc is

the angular velocity along the rotating axis. For

nearly Newtonian configurations, the above rotation law

reduces to

Ω ≈
Ωc

1þ ð9þϖ=ReqÞ2
; ðNewtonianÞ ð17Þ

with ϖ2 ¼ x2 þ y2. We set the ratio of the polar to

equatorial radius to Rpol=Req ¼ 0.6 and the central density

low enough to guarantee dynamical radial stability. Both

models have T=jWj ≈ 0.09, which is both secularly and

dynamically stable to the m ¼ 2 mode, in contrast to the

secularly unstable models with T=jWj ¼ 0.227 in [45,55].

The star is seeded with a dipolelike, dynamically weak

magnetic field confined to the stellar interior (see left panels

in Fig. 1). The field is generated by the vector potential

[49,50],
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Aint
ϕ ¼ Abϖ

2 maxðP − Pcut; 0Þnb ; ð18Þ

where Ab, Pcut, and nb are constants that determine the

strength, the degree of central condensation, and the confine-

ment of the magnetic fields, respectively. Following [49,50],

Pcut is set to 10−4 times the initial maximum value of the

pressure and nb to 1=8. We then set the amplitude Ab such

thatM=W ≈ 2.0 × 10−4 for the two cases. The choice of the

field strength is based on a compromise between insuring

computationally achievable Alfvén and viscous damping

timescales and preventing significant departures from hydro-

static equilibrium triggered by a dynamically strong mag-

netic field.

We cover the computational grid with a tenuous atmos-

phere with constant density ρ0;atm ¼ 10−10ρ0;maxð0Þ follow-
ing the standard setup in hydrodynamic and MHD

simulations, where ρ0;maxð0Þ is the maximum rest-mass

density at t ¼ 0. The key initial parameters are summarized

in Tables I and II.

Before we start the numerical evolution of the above

stars, we verify that MRI will be properly captured in our

system. Following [40], we check that: (a) the magnetic

field generated by the vector potential in Eq. (18) satisfies

∂ϖΩ < 0, a condition need to trigger the instability. (b) The

wavelength of the fastest-growing mode λMRI should be

resolved by more than 10 grid points [63,69,70]. We plot

the quality factor Q ¼ λMRI=dx on the equatorial plane,

with dx the local grid spacing. As is shown in Fig. 2, we

resolved λMRI by more than 15 grid points in the bulk of our

stellar models except for the ring-shaped region where the

magnetic field flips direction. (c) The wavelength λMRI

should fit in the star. Figure 3 shows λMRI along with the

rest-mass density on the meridional plane. It is clear that the

FIG. 1. Meridional cut through a 3D volume rendering of the rest-mass density, normalized to its initial maximum value ρ0;max (log

scale) for initial (left panels) and final configurations (right panels) for cases N29 (top row) and N295 (bottom row). For details see

Table I. White solid lines denote the magnetic field lines. Here Pc denotes the initial central rotation period, which is Pc ¼ 8193M for

N29 and Pc ¼ 10582M for N29, with M ¼ 0.049ðM=104 M⊙Þ s ¼ 1.47 × 104ðM=104 M⊙Þ km.

TABLE II. Initial model parameters. Here ρc denotes the central rest-mass density, Rpol is the polar radius, Ωc is the central angular

velocity, and hBi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8πM=Vs

p

denotes the averaged magnetic field strength, where M is the magnetic energy and Vs ¼
R ffiffiffi

γ
p

d3x is

the initial proper volume of the star.

Case ρc ½ðM=104 M⊙Þ−2 g cm−3� Rpol ½ðM=104 M⊙Þ cm� Ωc ½ðM=104 M⊙Þ−1 s−1� hBi ½ðM=104 M⊙Þ−1 G�
N29 4.23 × 103 2.38 × 1011 0.016 2.68 × 109

N295 2.85 × 103 2.84 × 1011 0.012 1.90 × 109
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reaches a value of ∼2.5% of the binding energy in caseN29

and ∼4.0% in caseN295. The internal energy Eint increases

gradually with time, indicating continuous heating. The

major heating energy coincides with the decrease of

gravitational potential energy W due to the contraction

of the stellar core [see Eq. (11)]. Note that, M is not the

main heating source because M ≪ Eint throughout the

evolution.

The rotational kinetic energy T, on the other hand,

remains nearly constant throughout the whole simulation

inN29, where we observe very small fractional changes. As

shown in Fig. 4, after t≳ 20Pc, the inner core remnant

spins at ∼60% of the initial angular velocity of the star. In

contrast, T in N295 increases by around 10% of its initial

value. After t≳ 20Pc, the inner core remnant spins at

∼66% of the initial angular velocity of the star. Notice that

the gravitational potential energy W decreases faster in

N295 than N29. This behavior suggests that the increase of

T comes from W, indicating that the stiffer the EOS, the

more difficult it is to transfer potential energy. These results

display great differences from previous studies of magnetic

braking of differential rotation in infinite cylinders and

incompressible stars, where a substantial fraction of T is

transferred to M [56–58]. However, the energy evolution

of our models shares several similarities with the B1 model

in the study of magnetic braking and damping of neutron

stars [62], where a nonhypermassive and “ultraspinning”

(angular momentum exceeding the maximum for uniform

rotation at the same rest mass) Γ ¼ 2 polytrope with an

effective turbulent viscosity were evolved.

VI. CONCLUSIONS

The growth of m ¼ 2 seed density perturbations and

their fragmentation in massive stars with a high degree of

differential rotation undergoing collapse has been sug-

gested as a viable channel for binary black hole formation.

Here we illustrate the likely fate of such massive stars

during their prior, stable, evolutionary lifetime. We build

GR stellar models described by a polytropic EOS with

polytropic index n ¼ 2.9 and n ¼ 2.95, with the same

differential rotation law as in [45,54]. We endowed the stars

with a dynamically weak, poloidal magnetic field confined

to the stellar interior. The ratio of initial magnetic energy to

gravitational potential energy is ∼2 × 10−4.

We found that during the early phase of the evolution,

magnetic winding and the MRI greatly amplify the initial

magnetic field. During that period, the magnetic field is

increased by ∼50 times its initial value. At the same time,

angular momentum from the inner layers of the star is

transported outward. The inner layers then shrink and form

a massive inner core in which the differential rotation

eventually (around twenty rotation periods) is fully

damped. Therefore, prior to reaching the state of gravita-

tional radial instability, magnetic braking and turbulent

magnetic viscosity drive a massive star to a new

quasiequilibrium state. This state consists of a uniformly

rotating central core surrounded by a low-density Keplerian

disk. These are not the matter or rotation profiles that will

lead to growth and fragmentation of m ¼ 2 density per-

turbations during catastrophic collapse.

We estimated various physical timescales that determine

the stellar evolution of the stellar models considered here.

Using the initial parameters of our GR stellar models, we

found that the timescales obey a natural hierarchy [see

Eq. (13)]. This hierarchy shows that during the normal

evolutionary lifetime of a star, a sufficiently high degree of

differential rotation required to trigger m ¼ 2 perturbation

growth and fragmentation leading to binary BH formation

during collapse will be suppressed. Our numerical results

should describe the fate of stars with characteristic masses

greater than several hundred solar masses, which are

possible progenitors of binary massive stellar-mass BHs

and IMBHs that produce GW signals detectable by LVSC.

Given our numerical results, we conclude that the binary

black hole formation channel described in [55] is not likely,

assuming that the differentially rotating massive star that

might undergo fragmentation during collapse experienced a

long evolution phase in hydrostatic equilibrium before

arriving at radial instability to collapse. During such a

phase, even a small initial magnetic field will amplify and

ultimately damp the differential rotation required to grow

the m ¼ 2 seed perturbations that trigger fission or frag-

mentation. However, if a high degree of differential rotation

is resuscitated following some sudden catastrophic event,

such as a massive star binary collision and merger, followed

by a sudden collapse, then it may still be possible for the

fragmentation-binary BH formation mechanism to be

triggered. The likelihood of such an event remains to be

determined.

We remark that the values of the αSS parameter found

numerically depend strongly on the adopted resolution. As

it has been shown in [87–89] the higher the resolution, the

higher the alpha parameter. Therefore, it is expected that in

higher order numerical simulations the viscosity timescale,

the time over which the turbulent viscosity damps differ-

ential rotation, will be shortened. But, magnetic winding

and the MRI still will drive a massive star to a new

quasiequilibrium state that consists of a uniformly rotating

central core surrounded by a low-density Keplerian disk.

Our basic conclusion during its lifetime therefore will

remain unaffected, though the hierarchy of timescales in

Eq. (13) may change.
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