
Gravitational wave content and stability of uniformly, rotating, triaxial
neutron stars in general relativity

Antonios Tsokaros,1 Milton Ruiz,1 Vasileios Paschalidis,2 Stuart L. Shapiro,1,3 Luca Baiotti,4 and Kōji Uryū5
1Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA

2Department of Physics, Princeton University, Princeton, New Jersey 08544, USA
3Department of Astronomy & NCSA, University of Illinois at Urbana-Champaign,

Urbana, Illinois 61801, USA
4Graduate School of Science, Osaka University, 560-0043 Toyonaka, Japan

5Department of Physics, University of the Ryukyus, Senbaru, Nishihara, Okinawa 903-0213, Japan
(Received 30 March 2017; published 30 June 2017)

Targets for ground-based gravitational wave interferometers include continuous, quasiperiodic sources
of gravitational radiation, such as isolated, spinning neutron stars. In this work, we perform evolution
simulations of uniformly rotating, triaxially deformed stars, the compressible analogs in general relativity
of incompressible, Newtonian Jacobi ellipsoids. We investigate their stability and gravitational wave
emission. We employ five models, both normal and supramassive, and track their evolution with different
grid setups and resolutions, as well as with two different evolution codes. We find that all models are
dynamically stable and produce a strain that is approximately one-tenth the average value of a merging
binary system. We track their secular evolution and find that all our stars evolve toward axisymmetry,
maintaining their uniform rotation, rotational kinetic energy, and angular momentum profiles while losing
their triaxiality.
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I. INTRODUCTION

The discovery of gravitational waves (GWs) from a
binary black-hole system [1] was a triumph that initiated a
new era in astronomy and astrophysics. Although the prime
candidates for the ground-based interferometers are binary
systems, GWs from isolated neutron stars (NSs) can also be
detected and help reveal the nature of these objects. Out of
the ∼2500 currently known pulsars in our Galaxy, approx-
imately 90% are isolated. Many of these single rotating
stars may be promising sources of GWs [2–4].
A single NS can become an emitter of GWs as long as it

has a nonspherical time-changing quadrupole moment. The
lack of symmetry can arise in various scenarios [5–7]. For
example, a pulsar can have a “small mountain” that could
develop following a starquake in the NS [8,9], or it can
exhibit different kinds of nonspherical oscillations [10].
Another possibility is binary NS mergers, which are
themselves prime candidates for the production of GWs.
When the two component stars do not have large masses,
the remnant may not undergo “prompt” collapse but instead
form a hypermassive star and undergo “delayed collapse”
or form a spinning NS that is dynamically and secularly
stable [11]. At the formation, such remnants may be
nonaxisymmetric and strong GWemitters. A third scenario
arises in gravitational stellar collapse, where the bouncing
core can be rotating fast enough so that nonaxisymmetric
instabilities set in and deform the star into an ellipsoid [12].
Fallback accretion onto newly born magnetars also sup-
ports the existence of triaxial deformations and the efficient
production of GWs [13].

Despite the enormous amount of work done in the field
of rotating stars [14,15], full general relativistic (GR)
numerical simulations that investigate the stability and
accurately quantify the GW signature of single, uniformly
rotating, triaxial stars have not been performed. One of the
reasons is the scarcity of accurate initial models needed to
study their evolution. Typically, these objects are probed in
the context of binary mergers or collapse scenarios, which
involve a substantial amount of computational resources
and make a systematic parameter study difficult. In these
cases, one typically ends up with a differentially rotating
object, while for single, isolated NSs, one is often interested
in uniformly rotating stars, the GR analogs of Jacobi
ellipsoids in Newtonian theory. Such solutions have been
obtained for the first time by Nozawa [16], allowing
azimuthal dependence in the spacetime metric but restricted
to an axisymmetric form. Using a different method, triaxial
quasiequilibrium models have been computed without such
a restriction in the conformal flatness approximation [17]
and in the waveless approximation [18] as part of the
COCAL code.
The ab initio computation of such nonaxisymmetric

objects presents a number of challenges. First, these objects
are not stationary equilibria, since they emit GWs, and
therefore an approximate scheme has to be applied in order
to find quasistationary solutions. This choice has to be
compatible with the fact that the radiated energy within one
rotational period is much smaller than the binding energy of
the star. Second, such models are known to exist only for
stiff equations of state (EoS). If we assume a polytropic law
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p ¼ kρΓ0 , where ρ0 is the rest-mass density and k and Γ are
constants, then Γ needs to be larger than 2.24 in the
Newtonian limit [19]. For softer EoS, mass shedding
appears at lower angular velocity than the one needed to
reach the triaxial state. GR increases the critical value of the
polytropic index by a small amount (to Γ ∼ 2.8) [20]. Third,
uniformly rotating, nonaxisymmetric solutions exist only
for high spin rates, i.e., β ≔ T=jWj larger than 0.14 in the
Newtonian case [21]. Here, T is the rotational kinetic
energy, and W is the gravitational potential energy. In GR,
this critical value is higher [22–28]. The combination of the
above characteristics implies that an evolutionary follow-up
will also be nontrivial, since the first challenge described
above will imply the presence of junk initial radiation,
which must be controlled, while the second and third
challenges require higher resolution than for slowly rotat-
ing stars. Since the GW time scale to radiate the rotational
energy is tGW=M ≳ ðM=RÞ−4, only highly compact objects
can be evolved to their end point state, while lower
compaction stars can be studied only partially. High
compaction requires higher resolution, which increases
the computational demands even more.
The dynamical stability of the quasiequilibrium sol-

utions obtained in Refs. [17,18] is not yet known. If
these objects are dynamically unstable, do they undergo
prompt collapse to black holes, or do they evolve to
significantly different, stable, axisymmetric equilibria by
rearranging their mass and/or angular momentum pro-
files? If they are dynamically stable, their secular fate is
still unknown. Being nonaxisymmetric and rotating,
they will generate GWs, which will radiate both energy
and angular momentum. Will this lead to delayed
collapse to a black hole, or will it lead to the formation
of a Dedekind-like configuration or something less
exotic?
In Refs. [29,30], the dynamical stability of axisymmet-

ric, differentially rotating stars (even including an initial
perturbation) has been studied numerically in GR, and it
was found that they are stable against quasiradial collapse
and bar-mode formation for sufficiently small β. GR
enhances the dynamical bar-mode formation since the
critical value for β ¼ βdyn above which the stars become
dynamically unstable was found to be ∼0.24, slightly less
than the corresponding Newtonian value 0.27 for incom-
pressible Maclaurin spheroids. A precise determination of
the threshold for the dynamical instability, the effects of
stellar compaction on that, and the time scale of the
persistence of the bar deformation have been studied in
Refs. [31–34]. In Refs. [35–37], linear stability analysis
and simulations have been performed to analyze the
occurrence of the dynamical instability against nonaxisym-
metric bar-mode deformation for differentially rotating
stars. It was found that when differential rotation is high
the stars are dynamically unstable even when β is of order
of 0.01. This dynamical instability does not create spiral

arms [38–43] or fragmentation but drives the star into a
quasistationary ellipsoid that emits GWs.
The secular bar-mode instability induced by GWs with a

polytropic (Γ ¼ 2) EoS in the 2.5 post-Newtonian frame-
work for rapidly rotating stars with β ∼ 0.2�0.25 has been
investigated in Ref. [44].1 They tracked the evolution of
the bar mode up until the final object was a deformed
ellipsoid which was still emitting GWs (therefore was not a
Dedekind-like star). At the same time, the nonlinear
development of the secular bar-mode instability using a
stiffer EoS (Γ ¼ 3) and similarly including post-Newtonian
terms for the gravitational radiation reaction was inves-
tigated in Ref. [46]. Although they were able to reach a
“Dedekind-like” state, this was destroyed after ten dynami-
cal times. According to the authors, the reason could be
either the nonlinear coupling of various oscillatory modes
in the star or an “elliptic flow” instability which manifests
itself when the fluid flow is forced along elliptic
streamlines.
In a previous work [47], we computed for the first time

triaxial supramassive NSs (uniformly rotating models with
rest mass higher than the maximum rest mass of a non-
rotating star but lower than the maximum rest mass when
allowing for maximal uniform rotation), by using a piece-
wise polytropic EoS. In this work, we perform the first
evolutions of such stars and try to investigate their stability
and GW content. Following Ref. [47], we carefully con-
struct five such models: two normal ones (uniformly
rotating but not supramassive) with compactions 0.1 and
0.252 adopting a stiff (Γ ¼ 4) EoS and three supramassive
models with compactions M=R ¼ 0.23, 0.24, 0.26 adopt-
ing a two-piece polytrope that has a soft core. Although
these EoS are rather extreme, our goal is to prove a matter
of principle rather than focus on realistic EoS. For a single
polytrope, a stiffer EoS can sustain a larger triaxial
deformation, and hence the maximum mass of the triaxial
star relative to that of the spherical star is expected to be
larger. However, for the two-piece polytropic EoS, the
maximum mass of the triaxial star relative to the spherical
counterpart increases, even though the overall averaged
stiffness of the EoS is softer. If the mass difference between
the maximum axisymmetric and triaxial solutions is ∼10%
or less, then that implies that the EoS of high-density matter
become substantially softer in the core of NSs [47].
We were able to follow the evolution of these objects for

more than 20 rotation periods, proving that they are
dynamically stable. After an initial short period of time
during which junk radiation in the initial data propagates
away, the NS evolves along quasiequilibrium states that
satisfy the first law, dM ¼ ΩdJ. Along this trajectory, the

1The critical β for instability in Newtonian Maclaurin sphe-
roids is βsec ∼ 0.14 but decreases in GR as the compaction
increases [45].

2These are the corresponding compactions of the spherical
solutions.
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orbital angular velocity remains constant inside the NS, the
triaxial shape of which evolves toward axisymmetry.
During this period, the GW amplitude decreases signifi-
cantly, especially in the highly compact models. The
question that arises is whether we are probing the secular
fate of the stars or if this clear monotonic amplitude
decrease is an artifact of numerical dissipation.
We do not think that the decrease of the GWamplitude is

due to numerical viscosity. We performed a resolution
study which did not alter the main description above. We
discuss the trigger for the declining amplitude below.
If our models are imagined to sample bar-mode pertur-

bations of an axisymmetric configuration with β > βsec,
then according to well-known results [45], our stars should
be secularly unstable. We were not able to find any growth
of a bar mode. As in Ref. [48], in which evolutions of
models with β larger than βsec with an initial bar-mode
perturbation were performed, we find the decay of the
initial perturbation.
Here, we employ geometric units in which G ¼ c ¼

M⊙ ¼ 1, unless stated otherwise. Greek indices denote
spacetime dimensions (0,1,2,3), while latin indices denote
spatial ones (1,2,3).

II. METHODS AND PHYSICAL PARAMETERS

The numerical methods used here are those implemented
in the COCAL and ILLINOIS GRMHD codes and have been
described in great detail in our previous works [49–59], so
we only summarize the most important features here.

A. Initial data

Our initial rotating star spacetimes possess a helical
Killing vector, kα, that Lie drags the fluid variables,

LkðhuαÞ ¼ Lkρ0 ¼ Lks ¼ 0: ð1Þ

Here, uα is the 4-velocity of the fluid; ρ0, h, and s are the
rest-mass density, enthalpy, and the entropy per unit rest
mass. We have ρ0h ¼ ρþ p, where ρ is the total energy
density and p is the pressure.
For the helical Killing vector, we follow the definition of

Ref. [60] (see also Ref. [61]). We decompose kα as

kα ¼ tα þ Ωϕα; ð2Þ

where we choose tα and ϕα to be the time and azimuthal
coordinate basis vectors associated with an asymptotically
inertial observer and Ω is the angular velocity of the fluid
with respect to the same observer. In a chart ft; xig, where
xi are Cartesian coordinates, it is tα¼ δα0 , and ϕ

α ¼ð0;ϕiÞ¼
ð0;−y;x;0Þ. The 4-velocity of the fluid will then be along
the helical Killing vector; i.e., there is a scalar ut such that

uα ¼ utkα ¼ utðtα þ vαÞ ¼ αutðnα þUαÞ: ð3Þ

In the above, vi ¼ Ωϕi is the velocity with respect to the
inertial frame, while Uα is the spatial velocity with respect
to normal observers (those with 4-velocity nα). In the last
equality, α is the lapse function that normalizes the normal
vector to the spacelike hypersurfaces which foliate the
spacetime, nα ¼ −α∇αt.
For a perfect gas stress-energy tensor and an isentropic

initial configuration, the equations of motion yield a first
integral,

h
ut

¼ E; ð4Þ

where E is a constant. The two constants that appear in our
equations fΩ; Eg are determined via an iterative scheme.
For the gravitational fields, we use the Isenberg-Wilson-
Mathews (IWM) approximation [62,63], which assumes a
flat conformal metric and maximal slicing. The resulting
five elliptic equations are solved together with Eq. (4) and
coupled to a piecewise EoS as described in Refs. [17,18].
A number of diagnostics are used to describe the initial

solutions, and explicit formulas are given in the Appendix
of Ref. [18] and will not be repeated here. Since the IWM
formulation is used, we have that γij ¼ ψ4fij, where γij is
the spatial metric on the hypersurface, ψ is the conformal
factor, and fij is the flat metric in spherical coordinates.
The angular momentum J ¼ JADM [where JADM is the
Arnowitt-Deser-Misner (ADM) angular momentum] is
computed via a surface integral at infinity or a volume
integral over the spacelike hypersurface. The kinetic rota-
tional energy is defined as T ≔ 1

2
JΩ (although we are not in

axisymmetry, we still use this formula because it is gauge
invariant), and the gravitational potential energy is defined
asW ≔ MADM −MP − T. Here,MADM ¼ M is the (ADM)
mass, and MP is the rest mass plus internal energy of the
star (see, e.g., Ref. [64]). These expressions are used then to
compute the rotation parameter β. Also, the moment of
inertia is defined as I ≔ J=Ω. As a measure of accuracy of
the initial data, we provide two diagnostics: the first one is
the difference between the Komar and ADM mass,

δM ¼ jMK −MADMj
MK

: ð5Þ

For stationary and asymptotically flat spacetimes, MK ¼
MADM

3 [66]. The second diagnostic is the relativistic virial
equation (VE) [67].

3Although for nonaxisymmetric systems the helical Killing
vector (stationarity in the rotating frame) is incompatible with
asymptotic flatness [65], one can define an approximate asymp-
totic region in which the GW energy is small compared with the
total energy of the system. The same argument holds for the
existence of the Komar mass that is associated with a timelike
Killing field tα.
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The initial-data GW diagnostics involve the second mass
moments

Iij ≔
Z
Σt

ρ0uαxixjdSα ð6Þ

with dSα ¼ ∇αt
ffiffiffiffiffiffi−gp

d3x. In Appendix, we have derived
some useful quantities such as the quadrupole approxima-
tion for the luminosity and the GWamplitude, which can be
computed on a spacelike hypersurface in the presence of a
helical Killing vector. However, full GW output, including
the “junk” radiation inherent in the initial data, is computed
in full GR as part of the integration of the field equations
via the Baumgarte-Shapiro-Shibata-Nakamura (BSSN)
formalism [68,69].
As in Ref. [47], we employ the same “benchmark” EoS.

The first one is a simple Γ ¼ 4 polytrope, while the second
is a piecewise-polytropic EoS with two pieces and a soft
core, where fΓ1;Γ2g ¼ f2.5; 4g. Characteristics of the
maximum mass solutions for spherical stars using these
two EoS are reported in Table I. The adiabatic constant k is
chosen so that the value of the rest mass becomesM0 ¼ 1.5
(in units of solar mass) at the compaction M=R ¼ 0.2. By
choosing different values of k, one can attain larger
maximum masses. A well-known fact that relates the
maximum masses of those models is that a stiffer EoS
can sustain a larger maximum mass (see below). The same
result holds for the maximum masses of the axisymmetric
solutions. The values of Γ used are simply to prove a point
of principle, rather than address physical EoS parameters:
stiffness is necessary in order for these triaxial solutions to
exist. A higher value of Γ satisfies the necessary conditions
for uniformly rotating triaxial solutions to exist, and this is
the main reason behind such a choice. As discussed in
Ref. [47], the softening of the core enables us to compute
for the first time supramassive, triaxially deformed, uni-
form rotating stars, without increasing further the maxi-
mum polytropic exponent Γ. This was made possible from
the following counterintuitive fact, which does not depend
on the values of the specific polytropic indices. Assume a

simple (any Γ > 2.24) polytrope which in most cases does
not support supramassive triaxial solutions. Then, consider
a second two piece polytropic EoS fΓ1;Γ2g, with Γ2 ¼ Γ
and a soft core with Γ1 < Γ. This second EoS is effectively
softer than the first. Thus, one expects that the piecewise
EoS does not exhibit triaxial solutions with mass larger
than the maximum-mass spherical solution. This was
proven not to be the case [47], and if the relative difference
between the maximum triaxial and axisymmetric masses is
less than 10%,4 it provides strong evidence of softening in
the core of the compact object.
To investigate the stability and GW signature of such

solutions, we consider five models, G4C010, G4C025,
pwC023, pwC024, and pwC026, the characteristics of
which are reported in Table II.5 The last three columns
are supramassive solutions, while the others are normal
ones. The triaxiality6 is larger for the first column model
and diminishes as we move to more compact stars. This
means that the amplitude of the GW will be larger for the
first model and smaller for the last one.
The models have been computed with the COCAL code, a

second-order finite-difference code of which the methods
are explained in Refs, [50–54]. For single compact
objects, it employs a single spherical patch ðr; θ;ϕÞ with
r ∈ ½ra; rb�, θ ∈ ½0; π�, and ϕ ∈ ½0; 2π�, where ra ¼ 0,
rb ¼ Oð106MÞ, and M is the total mass of the system
(no compactification used). The grid structure in the
angular dimensions is equidistant but not in the radial
direction. The definitions of the grid parameters can be seen
in Table III, along with the specific values used to obtain
the quasiequilibrium solutions of this work.

B. Evolution

For the evolution, we use the ILLINOIS GRMHD code,7

which solves the Einstein field equations in the BSSN
formalism [64,68,69]. The code is built on the CACTUS [72]
infrastructure and uses CARPET

8 for mesh refinement,
which allows us to focus numerical resolution on the

TABLE I. Characteristic quantities for the maximum mass
spherical solutions of the two EoS considered in this work.
Here, Γ denotes the polytropic index, ðp=ρ0Þc is the central
pressure-to-rest-mass-density ratio, ρc is the central total energy
density,M0 is the rest mass,M is the gravitational mass, andM=R
is the compaction of the star. The first line refers to simple
polytrope models G4C010 and G4C025, while the second line
refers to piecewise models pwC023, pwC024, and pwC026. To
convert to cgs units, multiply mass, density, and pressure by
1.989×1033 g, 6.173×1017 g=cm3, and 5.548×1038 g=ðcmsec2Þ,
respectively.

Γ ðp=ρ0Þc ρc ðρ0Þc M0 M M=R

4 1.334 0.004658 0.003224 2.882 2.250 0.3552
(4,2.5) 0.5674 0.006175 0.004536 1.960 1.657 0.2871

4The maximum mass of triaxial solutions is always smaller
than the maximum mass of axisymmetric ones.

5As we mentioned in the Introduction, all quantities reported
are in G ¼ c ¼ M⊙ ¼ 1 units. This means that if one wants to
convert mass to geometric G ¼ c ¼ 1 units one has to multiply
by 1.477 km. For the angular velocity Ω, one divides by
1.477 km. Similarly, to get Ω in cgs units, again one divides
by 4.927 μs.

6Triaxiality is not used in any quantitative way in this paper. It
can be defined in various ways, like Ry=Rx; ez, or εz (see Table II)
and signifies the departure from axisymmetry. In GW detection
studies, triaxiality is measured by the ellipticity εz. Notice that the
ellipticities of the models we consider here are larger than typical
limits set by LIGO [70]. However, as isolated pulsars are dim and
hard to find, there could exist a population of undetected pulsars
that LIGO has not probed, yet.

7We do not use ILLINOIS GRMHD, which is the version of the
code embedded in the Einstein Toolkit [71].

8http://www.carpetcode.org.
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strong-gravity regions while also placing outer boundaries
at large distances well into the wave zone for accurate
GW extraction and stable boundary conditions. The
evolved geometric variables are the conformal metric ~γij;
the conformal factor ϕ, (γij ¼ e4ϕ ~γij); the conformally

rescaled, trace-free part of the extrinsic curvature, ~Aij;

the trace of the extrinsic curvature, K; and three auxiliary
variables ~Γi ¼ −∂j ~γ

ij, a total of 17 functions. For the
kinematic variables, we adopt the puncture gauge con-
ditions [73–75], which are part of the family of gauge
conditions using an advective “1þ log” slicing for the
lapse and a “Gamma driver” for the shift [76].
The equations of hydrodynamics are solved in conser-

vation-law form adopting high-resolution shock-capturing
methods [56,57]. The primitive, hydrodynamic matter
variables are the rest-mass density ρ0, the pressure p,
and the coordinate 3-velocity vi ¼ ui=u0. The enthalpy is
written as h ¼ 1þ ϵþ p=ρ0, and therefore the stress
energy tensor is Tαβ ¼ ρ0huαuβ þ pgαβ. Here, ϵ is the
specific internal energy.9

To close the system, an EoS needs to be provided, and
for that we follow Refs. [58,59], where the pressure is
decomposed as a sum of a cold and a thermal part,

p ¼ pcold þ pth ¼ pcold þ ðΓth − 1Þρ0ðϵ − ϵcoldÞ; ð7Þ

where

ϵcold ¼ −
Z

pcolddð1=ρ0Þ ¼
k

Γ − 1
ρΓ−10 þ const: ð8Þ

Here, k and Γ are the polytropic constant and exponent of
the cold part (same as the initial data EoS), and Γth ¼ 5=3.
The constant that appears in the formula above is zero for a
single EoS but takes different values in a piecewise
polytrope where one has to account for the continuity of
pressure at the joint between the different pieces.
The grid structure used in these evolutions is summa-

rized in Table IV. Typically, we use six refinement levels

TABLE II. Models G4C010 and G4C025 are described by a
Γ ¼ 4 EoS, while models pwC023, pwC024, and pwC026 are
described by a piecewise-polytropic EoS with polytropic indices
ðΓ1;Γ2Þ ¼ ð4; 2.5Þ and are supramassive. Here, ρ0 is the rest-
mass density, ρ is the total energy density, Ri are the coordinate

radii, ez ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ðRy=RxÞ2

q
is the eccentricity with respect to the

z axis, Ω is the angular velocity of the fluid, P is the period, M is
the ADM mass, M0 is the rest mass, J is the ADM angular
momentum, ðM=RÞs is the corresponding spherical compaction,
β ¼ T=jWj is the rotational-to-gravitational-potential-energy ra-
tio, I is the moment of inertia, εz is the ellipticity with respect to
the z axis [Eq. (A9)], _E is the luminosity, _J is the angular
momentum loss rate, h is the GW maximum amplitude as
predicted by the quadrupole approximation applied on the initial
data configurations, r is the distance to the source, td is the
dynamical time scale [see. Eq. (9)], and ts the secular time scale
[see Eq. (12)]. Finally, δM and VE are diagnostics to measure the
accuracy of the initial data defined in Eq. (5) and in Eq. (A14)
of Ref. [18], respectively. To convert to geometric G ¼ c ¼ 1
or cgs units, use the fact that 1 ¼ 1.477 km ¼ 4.927 μs ¼
1.989 × 1033 g.

Initial data models

G4C010 G4C025 pwC023 pwC024 pwC026

ρ0ð×10−3Þ 1.005 1.565 1.902 1.991 2.226
ρð×10−3Þ 1.019 1.644 2.065 2.176 2.477
Rx 7.677 7.429 7.774 7.625 7.266
Rz=Rx 0.4727 0.4957 0.4977 0.5015 0.5108
Ry=Rx 0.7500 0.9063 0.9219 0.9375 0.9688
ez 0.8812 0.8685 0.8673 0.8652 0.8597
ΩM 0.01823 0.08043 0.07850 0.08237 0.09138
P (period) 193.8 138.3 140.8 137.7 130.4
M 0.5623 1.771 1.760 1.805 1.896
M0 0.5900 2.012 1.989 2.047 2.169
J=M2 1.109 0.8516 0.8279 0.8202 0.8003
ðM=RÞs 0.1000 0.2500 � � � � � � � � �
M=Rx 0.07324 0.2383 0.2264 0.2367 0.2610
T=jWj 0.1543 0.1773 0.1666 0.1661 0.1633
I 10.81 58.77 57.46 58.51 59.70
εz 0.2320 0.05581 0.02771 0.0191 0.006200
δMð×10−4Þ 0.8237 0.9893 1.129 1.063 1.007
VEð×10−4Þ 12.13 5.463 8.047 7.753 7.546

Quadrupole estimates

_Eð×10−8Þ 2.846 14.01 2.918 1.548 0.2017
_Jð×10−7Þ 8.778 30.84 6.540 3.391 0.4186
rh=Mð×10−3Þ 14.63 7.357 3.441 2.389 0.7774

Time scales

td=M 50 10 10 10 10
ts=M 105 105 106 106 107

TABLE III. Summary of grid parameters used by COCAL to
produce the five models. Nf

r ¼ 128 is the number of points across
the largest star radius which extends from r ¼ 0 to r ¼ 1 in
COCAL coordinates, while Nr ¼ 384 is the total number of radial
points. The radial grid is equidistant from r ¼ 0 to r ¼ rc and
nonequidistant thereafter. The angular grids are equidistant with
Δθj ¼ π=Nθ and Δϕk ¼ 2π=Nϕ in the θ and ϕ directions,
respectively. For more details on the grids used by COCAL, see
Ref. [18].

ra ¼ 0 : Radial coordinate where the radial grids start.
rb ¼ 106 : Radial coordinate where the radial grids end.
rc ¼ 1.25 : Radial coordinate between ra and rb

where the radial grid spacing changes.
Nr ¼ 384 : Number of intervals Δri in r ∈ ½ra; rb�.
Nf

r ¼ 128 : Number of intervals Δri in r ∈ ½ra; 1�.
Nm

r ¼ 160 : Number of intervals Δri in r ∈ ½ra; rc�.
Nθ ¼ 96 : Number of intervals Δθj in θ ∈ ½0; π�.
Nϕ ¼ 96 : Number of intervals Δϕk in ϕ ∈ ½0; 2π�.
L ¼ 12 : Order of included multipoles.

9This should not be confused with the ellipticity εz.
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with the innermost level half-side length being approx-
imately ∼1.25 times larger than the radius of the star in the
initial data (Rx). We use 240 × 240 × 120 points for the
innermost refinement level, which means that we have
approximately 190 points across the NS largest diameter.
(For the initial data construction, we used 256 points across
the largest NS diameter.) For the innermost refinement
level, this implies a Δx ∼ 0.07916̄ ¼ 117 m. This number
of points was necessary in order to have accurate evolutions
of such stiff EoS (Γ ¼ 4), which present a challenge for any
evolution code.
For the last model pwC026, we have done two extra

simulations, as the compaction in this case was very high
and the triaxiality was very low. In this model, the GW
signal was very weak (rh=M ∼ 10−4), and therefore we
wanted to corroborate our findings by using different
resolutions and box sizes for the outer boundary conditions.
On the last two lines of Table IV, the lower resolution
simulation has the same outer boundary distance (288) but
80 points across the star radius, while we have also a
simulation with seven refinement levels and the outer
boundary at much larger distance (1152.0) than all other
cases. In all our models, we impose equatorial symmetry.

III. RESULTS

NS mergers remnants can be nonaxisymmetric configu-
rations which are initially differentially rotating. However,
it is expected that magnetically induced turbulence drives
the star toward uniform rotation. This motivates a study of
the stability of uniformly rotating, triaxial configurations
and an estimate of their GW emission. In particular, it
motivates the following questions that we want to address
in this work. Can a uniformly rotating triaxial star be
dynamically stable? If that is possible, what is the secular
fate of such a configuration?

A. Dynamic stability

The dynamical time scale for our stars is

td
M

∼
1

ΩM
∼
�
M
R

�
−3=2

; ð9Þ

and values range from ∼10 for the most compact cases to
∼50 for G4C010, the least compact model (see Table II).
We find that all of the models considered are dynamically
stable. Figure 1 shows typical contour plots at t ¼ 0
(dashed colored lines) as well as the same contour plots
after ten rotation periods (solid colored lines). The black
dashed line signifies the initial data surface of the star in the
xy plane as calculated by COCAL. Of particular impor-
tance are the lowest density contours at ρ0 ¼ 0.0002 ¼
9.16788 × 10−15 cm−2 (magenta colored). The choice of
this particular value can be considered as one of the largest
densities that follow closely the initial data profile (black
dashed line). By following the evolution of this contour,
one can have an accurate picture of the surface of the star.
After the junk radiation has propagated away, the stars still
retain their triaxiality. But by t ¼ 10P, all contours tend to
circularize (the one of the highest density is initially
circular). All these contours contract in the x direction
and expand in the y direction. The amount of contraction/
expansion diminishes as one moves toward the center of the
star. Thus, the star becomes more axisymmetric. After ten
periods, the x axis has lost 9%–8% of its length. For the
supramassive models, this picture still holds, although,
since the ellipticities there are much smaller, the amount of
contraction/expansion is somewhat diminished. For the
most supramassive model, pwC026, after ten rotation
periods, the decrease is ∼4%, and the object is essentially
axisymmetric. While density contours are not gauge
invariant, they yield a qualitative picture that agrees with
the GW signature that we discuss in the next section.
The constant angular velocity profile is well preserved

(Fig. 2). The angular velocity across the x axis (bottom
panels) and the y axis (top panels) is plotted for the
G4C010 and G4C025 models. Red curves correspond to
Ω after one rotation period, while blue curves correspond
after ten rotation periods. Vertical brown dashed curves
denote the initial data star radii, and the green curve is
the Keplerian limit ΩK ¼ ðM=r3Þ1=2. The less compact
the star, the closest to the Kepler limit the “atmospheric
tail” outside the surface of the star is. Although the y axis
starts shorter than the x axis after ten rotation periods, it
has “closed the gap,” and the two axes have essentially

TABLE IV. Grid parameters used for the evolution of each model. Parameter N corresponds to the number of points used to cover the
largest radius of the star. Parameter dx is the step interval in the coarser level. We impose reflection symmetry across the equatorial
plane. To convert to physical units, multiply by 1 ¼ 1.477 km.

Model xmin xmax ymin ymax zmin zmax Grid hierarchy dx N

G4C010 −304 304 −304 304 0 304 f9.5; 19.0; 38.0; 76.0; 152.0; 304.0g 2.53̄ 96
G4C025 −304 304 −304 304 0 304 f9.5; 19.0; 38.0; 76.0; 152.0; 304.0g 2.53̄ 93
pwC023 −304 304 −304 304 0 304 f9.5; 19.0; 38.0; 76.0; 152.0; 304.0g 2.53̄ 98
pwC024 −304 304 −304 304 0 304 f9.5; 19.0; 38.0; 76.0; 152.0; 304.0g 2.53̄ 96
pwC026 −288 288 −288 288 0 288 f9.0; 18.0; 36.0; 72.0; 144.0; 288.0g 2.4 96
pwC026-I −288 288 −288 288 0 288 f9.0; 18.0; 36.0; 72.0; 144.0; 288.0g 2.88 80
pwC026-II −1152 1152 −1152 1152 0 1152 f9.0; 18.0; 36.0; 72.0; 144.0; 288.0; 576.0g 9.6 96
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identical angular velocity profiles (this gap is the space
between vertical brown dashed and gray dotted lines).
This effect is more evident in the G4C010 model but can
be clearly seen in the other most compact cases like
G4C025.

B. Secular fate

Although dynamic stability was straightforward to
establish, that has not been the case with secular stability.
After evolving for more than 20 rotational periods, one can
see in Fig. 3 the major characteristics of GWemission. The

FIG. 1. Contour plots on the xy plane of the rest-mass density ρ0 for the normal models G4C010 and G4C025. Distances are
normalized by the initial data radius along the x axis Rxðt ¼ 0Þ. The black dashed line signifies the initial data surface, while dashed
color lines correspond to t ¼ 0 level lines of densities f0.2; 0.4; 0.6; 0.8; 1.0g × 10−3 for the G4C010 model. The same color but solid
lines correspond to the same density levels after ten rotation periods. The contour plots of the G4C025 model correspond to
f0.2; 0.5; 1.0; 1.3; 1.53g × 10−3. To convert densities to cgs units, multiply by 6.173 × 1017 g=cm3.

FIG. 2. Angular velocity profile across the x axis (bottom) and the y axis (top) for the normal models G4C010 and G4C025. The
horizontal gray, dashed line corresponds to the initial data Ω and extends only in the interior of the star (this curve is difficult to see since
it coincides with the red and blue curves inside the star). Red and blue solid lines correspond to the angular velocity after one and ten
rotation periods, while the green line is the Keplerian limit ðM=r3Þ1=2. Vertical brown dashed lines correspond to the initial data radii
along the x and y axes. Vertical dotted gray lines on the top figures denote the initial radii along the x axis. To convert Ω in cgs units,
divide by 4.927 μs.
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ordinate in the plots is the retarded time tret ¼ t − r⋆, where
r⋆ ¼ Ra þ 2M lnðRa=ð2MÞ − 1Þ is the tortoise coordinate
corresponding to areal radius Ra from the source. The
frequency of the dominant (l ¼ m ¼ 2) GW mode is twice
the rotational frequency and has amplitude approximately
one-tenth of the average value of a merging binary system.
The quadrupole-approximation prediction for the GW
strain based on the initial configurations is given by
Eq. (A6) and is shown in the plots as a dashed horizontal
green line. This approximate value for the strain is about
50%–60% of the maximum amplitude found in the evo-
lution (see also Fig. 4). The GW amplitude in the more

compact models (G4C025) experiences a more rapid
decrease (almost ten times more) than in the G4C010
case, which has the smallest compaction (M=R ¼ 0.1).
Similar behavior is exhibited in the luminosity and radiated
angular momentum plots. In all cases, after an initial period
that lasts a little over 500M⊙ (M⊙ ¼ 4.927 μs) _E and _J
intersect the predictions from the quadrupole approxima-
tion based on the initial data [in the plots, these are denoted
by the horizontal blue and red dashed lines, Eqs. (A2)].
However, _E and _J undergo exponential decay in close
agreement with the corresponding exponential decay in the
GW amplitude, i.e.,

FIG. 3. All plots correspond to the normal models G4C010 and G4C025, and horizontal dashed lines are the initial data qua-
drupole estimates. The top left is GW power emitted; the top right is the dominant l ¼ m ¼ 2 mode of the GW strain for the least
compact model G4C010, with vertical dashed lines corresponding to rotational periods; the bottom left is the emitted angular
momentum; the bottom right is the strain for the G4C025 model. Also denoted are exponential fitting curves. The GW time scales for the
G4C010 and G4C025 models are 1=0.0002 ¼ 8895M and 1=0.0011 ¼ 513M, respectively. To convert _E and _J=M to cgs units, multiply
by 1 ¼ 3.629 × 1059 ergs= sec and 8.988 × 1020 ergs=g, respectively.
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_E ∝ _J ∝ ðrhÞ2: ð10Þ

In Fig. 3, we denote the exponential fits for all relevant
functions. The evolutionary path of these rotating objects
occurs along quasiequilibrium states as seen in the left
panel of Fig. 5, which shows dE ¼ ΩdJ. After an initial
period of ∼500M⊙, this law is satisfied in all cases, apart
from a small perturbation at 1050M⊙ for the most supra-
massive case pwC026. As we see from Table IV, the grid
structure of pwC026 is very close to that of models
G4C010, G4C025, pwC023, and pwC024. However,
pwC026 is only slightly nonaxisymmetric, and as a result,
its GW signal is very weak—approximately 1 order of
magnitude smaller than the rest. Therefore, if the outer

boundary is not sufficiently far away, reflections from there
can alter this weak signal and produce the perturbation seen
using the grid pwC026. When we push the outer boundary
to larger values like in pwC026-II, this artifact is greatly
diminished (blue curve on bottom of Fig. 5). As a final
check for the model pwC026 which is the most compact,
supramassive, and almost axisymmetric, we performed a
third run using the coarser resolution pwC026-I. Through
this lower-resolution run, we were able to confirm that the
GW characteristics and quantities we quote here are
invariant with resolution.
The kinetic (rotational)-to-gravitational-potential-energy

ratio β remains essentially constant and is equal to the
initial value (see the right panel of Fig. 5) during the whole

FIG. 4. GW strain for the supramassive models and the l ¼ m ¼ 2mode. Vertical dashed lines correspond to rotational periods, while
the horizontal dashed lines denote the quadrupole approximation values.

FIG. 5. Left plot: the first law for the triaxially deformed, uniformly rotating NSs. The top panel corresponds to the normal models
G4C010 and G4C025, while the bottom one corresponds to the most supramassive case for two different grid setups pwC026 and
pwC026-II from Table IV. Dashed lines denote the corresponding initial data angular velocities. To convert dE=dJ is cgs units, divide by
4.927 μs. Right plot: rotational-to-gravitational-potential-energy ratio for the same models. Dashed lines denote the initial data values.
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evolution. For the less compact case G4C010, β slightly
decays, which is consistent with the quasiequilibrium
studies of Ref. [18].
The thermal energy generated by shocks was also

measured in these simulations by inspecting the entropy
parameter K ≔ p=pcold, where pcold ¼ kρΓ0 . With ϵth ¼
ϵ − ϵcold ¼ ðK − 1ÞðΓ − 1Þϵcold=ðΓth − 1Þ, then K > 1
implies shock heated gas [77]. Since we did not have any
mergers in our problem, we did not expect any shocks, and
this was the case for the bulk of the stars (K ∼ 1.0).
Although we clearly see that triaxially deformed stars

evolve in a quasiequilibrium manner toward axisymmetric
objects, the key question is whether this evolution is due
mainly to GW emission or to a hydrodynamical reconfig-
uration. Using the exponential fitting functions in Fig. 3, we
read off the GW decay time scales. These are 5000M⊙ ∼
104M for the G4C010 and 900M⊙ ∼ 500M for the G4C025
models. The GW-driven bar-mode instability occurs for stars
rotating with β > βsec and βsec ≈ 0.14 in the Newtonian
incompressible limit. This value decreases in GR as the
compaction increases [45]. The two models discussed here
have β ¼ 0.15, 0.18 (see Table II) and are thus greater than
the Newtonian critical value βsec. The GW time scale is [78]

τGWbar
M

∼ 2 × 10−3
�
M
R

�
5

ðMΩÞ−6ðβ − βsecÞ−5; ð11Þ

where βsec may be approximated by βsec ¼ 0.115 −
0.048M=Msph

max [79]. Here, Msph
max is the maximum spherical

mass for the given EoS. For our cases, values are taken from
Table I, which imply that τGWbar ∼ 108 M for the G4C010 and
τGWbar ∼ 105M for the G4C025 models. Supramassive models
pwC023, pwC024, and pwC026 have time scales
τGWbar ∼ 105M, too. We also note that the GW time scales
as calculated from the crude quadrupole estimate,

ts ∼
T

j _Ej ; ð12Þ

and reported in Table II, are in most cases (except for
G4C010) longer than the time scales obtained from Eq. (11).
Moreover, our configurations do not evolve toward
Dedekind-like ellipsoids as in the case of the bar-mode
unstable Newtonian configurations [12,80]. It is possible that
the nonlinear growth of the instability is halted by mode-
mode coupling, as our triaxial configuration contains modes
beyond m ¼ 2.
Another possibility for a GW-driven secular instability is

the nonaxisymmetric r mode. For the l ¼ m ¼ 2 mode, the
time scale is [81]

τGWr
M

∼ 10

�
M
R

�
4

ðMΩÞ−6; ð13Þ

which implies τGWr ∼ 107M for the G4C010 and τGWbar ∼
105M for the G4C025. These time scales again are much

longer than the time scales found numerically. Also,
in this case, the wave frequency fGW ¼ 4=3frot; therefore,
this possibility is also ruled out by our data, for
which fGW ¼ 2frot.
Numerical viscosity, although nonzero, can in principle

be responsible. The presence of viscosity can damp a GW
radiation reaction-induced bar-mode instability [82],
although it needs to be properly tuned. However, we
evolved with two different resolutions and found no change
in the behavior, which might have been expected if
numerical viscosity were significant. Also, we repeated
the calculation with the WHISKY code [83–86] and got very
similar results. It may be that even a small numerical
viscosity over time is sufficient to damp the mode, given
the long time scale (≫ tdyn) for GW emission. If we
modeled numerical viscosity by a turbulent viscosity
ν ∼ αRcs ∼ αðR=MÞ1=2, where cs is the sound speed, then
a damping time of 104M associated with this would only
require α ∼ 10−3 to be effective. Such a small value might
go unnoticed by a modest resolution study. On the other
hand, if viscosity were to dominate GW dissipation, one
still expects that the bar mode will be triggered above
β ¼ βsec, since viscosity alone can drive the instability, and
the triaxiality would grow [87], but this is not observed.
Hence, we conclude that, although our triaxial stars evolve
toward axisymmetry, it is not the bar or r-mode secular
effects that are mainly responsible for this fate but rather a
hydrodynamical reconfiguration of the initial data.

IV. DISCUSSION

In this work, we investigated the stability properties and
gravitational wave signatures of uniformly rotating, triaxial
NSs in GR. Using the COCAL code, we have constructed
normal as well as supramassive solutions in quasiequili-
brium, and we evolved them for the first time with the
ILLINOIS GRMHD code.
All five solutions that we considered are dynamically

stable and evolve secularly toward an axisymmetric con-
figuration. Although we monitored the evolution for more
than 20 rotation periods, we were unable to probe the final
(secular) fate of these stars, which is orders of magnitude
longer. We corroborated our findings by using different
resolutions, placement of outer boundary conditions,
atmospheric treatments, and simulations with a different
(WHISKY) code.
According to Ref. [45]. a perturbed axisymmetric star

with β > βsec will be secularly unstable and develop a bar
mode. In our case, the initial models already contain a bar
perturbation and are rotating beyond the secular bar-mode
instability limit, but we found no further growth of a bar
mode in the time frame of our simulations, which was
shorter than the predicted, theoretical secular time scale. On
the contrary, we observed the decay of the star’s triaxiality,
which is in accordance with previous investigations [48].
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On the other hand, in Ref. [18], we constructed sequences
of axisymmetric and triaxial stars using both the conformal
flatness and the waveless approximation for a simple Γ ¼ 4
polytrope with compactionsM=R ¼ 0.1, 0.2, 0.3 (see Fig. 6
in Ref. [18]). As we have seen, triaxial sequences for the
larger compactions have essentially constant T=jWj all the
way from the bifurcation point to the mass shedding limit.
The sequence of smaller compaction (M=R ¼ 0.1) exhibits a
small increase in T=jWj as one moves toward the mass
shedding limit. This is consistent with right panel of Fig. 5.
Our initial (t ¼ 0) triaxial models are highly rotating and are
close to the mass shedding limit. The most compact ones
(G4C025, pwC026) evolve toward the bifurcation point with
a constantT=jWj, while the less compact one (G4C010) loses
a small amount of rotational energy. Therefore, the quasie-
quilibrium picture is in agreement with the actual dynamical
evolution of such systems in full general relativity.
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APPENDIX: QUADRUPOLE FORMULAS IN
HELICAL SYMMETRY

For an estimate of the GWs, one can compute the time
derivatives of the quadrupole mass moments. Typically, the
quadrupole formula reads

hijðt; xaÞ ¼
2

r

�
d2�ITTij
dt2

�
ret
; ðA1Þ

where �Iij ≔ Iij − 1
3
fijIkk, and �ITTij is the transverse trace-

less reduced quadrupole moment [88]. The second time
derivatives are computed at a retarded time. The corre-
sponding gravitational wave luminosity and the angular
momentum carried away per unit time are

dE
dt

¼ 1

5
h�I…ij�I

…

iji;
dJi

dt
¼ 2

5
ϵijkh�̈Ija�I

…

kai; ðA2Þ

where h·i denote an average over several wavelengths. In
full dynamical spacetimes, there is no unique definition of
the quadrupole moment, but typically one uses Eq. (6) as a
generalized integral over the hypersurface Σ [89], which
can be thought of as a Euclidean integral over a weighted
density ρ� ¼ ρ0ut

ffiffiffiffiffiffi−gp
. Its time derivative

d
dt

Iij ¼
Z
Σ
ρ0uαðxivj þ xjviÞdSα ðA3Þ

can be obtained by using the conservation of rest mass
∂tρ� þ ∂iðρ�viÞ ¼ 0 and integration by parts [90].
Another way to obtain the same result is to employ the

transport theorem that says that for any density ρ� that
satisfies the above continuity equation and any function
Qðt; xiÞ we have

d
dt

Z
Vt

ρ�QdV ¼
Z
Vt

ρ�
DQ
Dt

dV; ðA4Þ

where DQ
Dt ¼ ∂tQþ vi∂iQ is the Lagrangian derivative of

Q. For a fluid velocity vi ¼ Ωϕi, we haveDQ=Dt ¼ LkQ,
and thus we can write a fully four-dimensional version of
the classical theorem as

d
dt

Z
Σt

Qρ0uαdSα ¼
Z
Σt

LkQρ0uαdSα: ðA5Þ

A straightforward proof of Eq. (A5) can be obtained if we
consider fðtÞ¼ R

Σt
Qρ0uαdSα. Let Σ ¼ Σ0 and Σt ¼ ψ tðΣÞ,

where tα is the generator of the diffeomorphism family ψ t.
Then,

f0ð0Þ ¼ lim
t→0

1

t

�Z
Σt

Qρ0uαdSα −
Z
Σ
Qρ0uαdSα

�

¼ lim
t→0

1

t

�Z
Σ
ψ−tðQρ0uαdSαÞ −

Z
Σ
Qρ0uαdSα

�

¼
Z
Σ
lim
t→0

1

t
fψ−tðQρ0uαdSαÞ − ðQρ0uαdSαÞg

¼
Z
Σ
LtðQρ0uαdSαÞ ¼

Z
Σ
LtðQρ0ut

ffiffiffiffiffiffi
−g

p Þd3x

¼
Z
Σ
LkðQρ0ut

ffiffiffiffiffiffi
−g

p Þd3x −Ω
Z
Σ
LϕðQρ0ut

ffiffiffiffiffiffi
−g

p Þd3x

¼
Z
Σ
LkðQρ0ut

ffiffiffiffiffiffi
−g

p Þd3x −Ω
Z
Σ
DiðQρ0utαϕiÞdS

¼
Z
Σ
LkðQÞρ0uαdSα:

To obtain the last line, we converted the second integral in
the previous line over a divergence, to a surface integral that
vanishes, and also used the continuity equation in the
form Lkðρ0ut ffiffiffiffiffiffi−gp Þ ¼ 0.
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For the computation of Eq. (A2), we need to compute the
third material derivatives of xixj. We denote by ϕi ¼
ðϕA; 0Þ where capital letters take values in f1; 2g. Then,
ϕA ¼ −ϵABxB, and the nonzero components are

DxA

Dt
¼ ΩϕA ≔ vA

DvA

Dt
¼ −Ω2xA ≔ aA

DaA

Dt
¼ −Ω3ϕA:

Setting ϖi ¼ ðxA; 0Þ, we have

_Iijð0Þ¼Ω
Z
Σ
ρ0uαðxiϕjþxjϕiÞdSα;

Ïijð0Þ¼−Ω2

Z
Σ
ρ0uαðϖixj−2ϕiϕjþxiϖjÞdSα;

I
…ijð0Þ¼−Ω3

Z
Σ
ρ0uαðϕixjþ3ϖiϕjþ3ϕiϖjþxiϕjÞdSα:

Using the derivatives of the multiple moments above,
one can compute the luminosity or the angular momentum
radiated from Eq. (A2). For the GW strain, assuming
rotation around the z axis, we have

½hAB� ¼
2

r

� ð̈I11 − ̈I22Þ=2 ̈I12
̈I21 −ð̈I11 − ̈I22Þ=2

�

¼
�
hþ h×
h× −hþ

�
:

For the case of an exact triaxial ellipsoid, the two
elliptical polarization modes for head-on observation along
the z axis, we set

hðþ;×Þ ¼
4Ω2

r
ðI1 − I2Þðcosð2ΩtÞ; sinð2ΩtÞÞ; ðA6Þ

where Ik are the principal moments of inertia. Then, the
emitted power and angular momentum will be

j _Ej ¼ 32

5
ðI1 − I2Þ2Ω6; ðA7Þ

j _Jj ¼ 32

5
ðI1 − I2Þ2Ω5: ðA8Þ

A parameter which is often mentioned is called ellipticity
of the source and is defined as ε ≔ jI1 − I2j=I3. Although
there is no rigorous counterpart in GR, we can generalize as

εz ≔
jI11 − I22j
I11 þ I22

: ðA9Þ

This is the quantity that is reported in Table II.

[1] B. P. Abbott et al., Phys. Rev. Lett. 116, 061102 (2016).
[2] https://einsteinathome.org/.
[3] J. Aasi et al., Phys. Rev. D 87, 042001 (2013).
[4] M. A. Papa et al., arXiv:1608.08928.
[5] J. D. E. Creighton and W. G. Anderson, Gravitational-Wave

Physics and Astronomy: An Introduction to Theory, Experi-
ment and Data Analysis (Wiley-VCH Verlag GmbH & Co.
KGaA, Weinheim, Germany, 2011).

[6] N. Andersson, V. Ferrari, D. I. Jones, K. D. Kokkotas, B.
Krishnan, J. S. Read, L. Rezzolla, and B. Zink, Gen. Relativ.
Gravit. 43, 409 (2011).

[7] K. Kokkotas, Gravity Astrophysics and Strings 2002, edited
by P. P. Fiziev and M. D. Todorov (St. Kliment Ohridski
University Press, Sofia, Bulgaria, 2003).

[8] S. Shapiro and S. Teukolsky, Black Holes, White Dwarfs,
and Neutron Stars (Wiley, New York, 1983).

[9] B. Haskell, D. I. Jones, and N. Andersson, Mon. Not. R.
Astron. Soc. 373, 1423 (2006).

[10] J. L. Friedman and N. Stergioulas, Instabilities of Relativ-
istic Stars General Relativity, Cosmology and Astrophysics,
Fundamental Theories of Physics (Springer International
Publishing, Switzerland, 2014), Vol. 177.

[11] L. Baiotti and L. Rezzolla, arXiv: 607.03540.
[12] D. Lai and S. L. Shapiro, Astrophys. J. 442, 259 (1995).
[13] A. L. Piro and C. D. Ott, Astrophys. J. 736, 108 (2011).
[14] J. L. Friedman and N. Stergioulas, Rotating Relativistic

Stars, Cambridge Monographs on Mathematical Physics
(Cambridge University Press, Cambridge, England, 2013).

[15] V. Paschalidis and N. Stergioulas, arXiv:1612.03050.
[16] T. Nozawa, Ph.D. thesis, University of Tokyo, 1997.
[17] X. Huang, C. Markakis, N. Sugiyama, and K. Uryu, Phys.

Rev. D 78, 124023 (2008).
[18] K. Uryū, A. Tsokaros, F. Galeazzi, H. Hotta, M. Sugimura,

K. Taniguchi, and S. I. Yoshida, Phys. Rev. D 93, 044056
(2016).

[19] R. A. James, Astrophys. J. 140, 552 (1964).
[20] S. Bonazzola, J. Frieben, and E. Gourgoulhon, Astrophys. J.

460, 379 (1996).
[21] S. Chandrasekhar, Ellipsoidal Figures of Equilibrium (Yale

University Press, New Haven, 1969).
[22] S. L. Shapiro and S. Zane, Astrophys. J. 460, 379

(1996).
[23] S. Bonazzola, J. Frieben, and E. Gourgoulhon, Astron.

Astrophys. 331, 280 (1998).

ANTONIOS TSOKAROS et al. PHYSICAL REVIEW D 95, 124057 (2017)

124057-12

https://doi.org/10.1103/PhysRevLett.116.061102
https://einsteinathome.org/
https://einsteinathome.org/
https://doi.org/10.1103/PhysRevD.87.042001
http://arXiv.org/abs/1608.08928
https://doi.org/10.1007/s10714-010-1059-4
https://doi.org/10.1007/s10714-010-1059-4
https://doi.org/10.1111/j.1365-2966.2006.10998.x
https://doi.org/10.1111/j.1365-2966.2006.10998.x
http://arXiv.org/abs/ 607.03540
https://doi.org/10.1086/175438
https://doi.org/10.1088/0004-637X/736/2/108
http://arXiv.org/abs/1612.03050
https://doi.org/10.1103/PhysRevD.78.124023
https://doi.org/10.1103/PhysRevD.78.124023
https://doi.org/10.1103/PhysRevD.93.044056
https://doi.org/10.1103/PhysRevD.93.044056
https://doi.org/10.1086/147949
https://doi.org/10.1086/176977
https://doi.org/10.1086/176977
https://doi.org/10.1086/176977
https://doi.org/10.1086/176977


[24] T. Di Girolamo and M. Vietri, Astrophys. J. 581, 519
(2002).

[25] M. Saijo and E. Gourgoulhon, Phys. Rev. D 74, 084006
(2006).

[26] D. Gondek-Rosinska and E. Gourgoulhon, Phys. Rev. D 66,
044021 (2002);

[27] D. Skinner and L. Lindblom, Astrophys. J. 461, 920
(1996).

[28] S. Yoshida and Y. Eriguchi, Astrophys. J. 490, 779 (1997).
[29] T. W. Baumgarte, S. L. Shapiro, and M. Shibata, Astrophys.

J. 528, L29 (2000).
[30] M. Shibata, T. W. Baumgarte, and S. L. Shapiro, Astrophys.

J. 542, 453 (2000).
[31] L. Baiotti, R. De Pietri, G. M. Manca, and L. Rezzolla,

Phys. Rev. D 75, 044023 (2007).
[32] G. M. Manca, L. Baiotti, R. De Pietri, and L. Rezzolla,

Classical Quantum Gravity 24, S171 (2007).
[33] R. De Pietri, A. Feo, L. Franci, and F. Löffler, Phys. Rev. D

90, 024034 (2014).
[34] F. Löffler, R. De Pietri, A. Feo, F. Maione, and L. Franci,

Phys. Rev. D 91, 064057 (2015).
[35] M. Shibata, S. Karino, and Y. Eriguchi, Mon. Not. R.

Astron. Soc. 334, L27 (2002).
[36] S. Karino and Y. Eriguchi, Astrophys. J. 592, 1119

(2003).
[37] M. Shibata, S. Karino, and Y. Eriguchi, Mon. Not. R.

Astron. Soc. 343, 619 (2003).
[38] J. M. Centrella, C. B. N. Kimberly, L. L. Lowe, and J. D.

Brown, Astrophys. J. 550, L193 (2001).
[39] M. Saijo, T. W. Baumgarte, and S. L. Shapiro, Astrophys. J.

595, 352 (2003).
[40] C. D. Ott, S. Ou, J. E. Tohline, and A. Burrows, Astrophys.

J. 625, L119 (2005).
[41] S. Ou and J. E. Tohline, Astrophys. J. 651, 1068 (2006).
[42] V. Paschalidis, W. E. East, F. Pretorius, and S. L. Shapiro,

Phys. Rev. D 92, 121502(R) (2015).
[43] W. E. East, V. Paschalidis, and F. Pretorius, Classical

Quantum Gravity 33, 244004 (2016).
[44] M. Shibata and S. Karino, Phys. Rev. D 70, 084022

(2004).
[45] N. Stergioulas and J. L. Friedman, Astrophys. J. 492, 301

(1998).
[46] S. Ou, J. E. Tohline, and L. Lindblom, Astrophys. J. 617,

490 (2004).
[47] K. Uryū, A. Tsokaros, L. Baiotti, F. Galeazzi, N. Sugiyama,

K. Taniguchi, and S. Yoshida, Phys. Rev. D 94, 101302
(2016).

[48] M. D. Duez, Y. T. Liu, S. L. Shapiro, and B. C. Stephens,
Phys. Rev. D 69, 104030 (2004).

[49] A. Tsokaros and K. Uryū, Phys. Rev. D 75, 044026 (2007).
[50] K. Uryū and A. Tsokaros, Phys. Rev. D 85, 064014 (2012).
[51] K. Uryū, A. Tsokaros, and P. Grandclément, Phys. Rev. D

86, 104001 (2012).
[52] A. Tsokaros and K. Uryū, J. Eng. Math. 82, 133 (2013).
[53] A. Tsokaros and K. Uryū, Phys. Rev. D 91, 104030 (2015).
[54] A. Tsokaros, B. C. Mundim, F. Galeazzi, L. Rezzolla, and

K. Uryū, Phys. Rev. D 94, 044049 (2016).
[55] Z. B. Etienne, J. A. Faber, Y. T. Liu, S. L. Shapiro, K.

Taniguchi, and T.W. Baumgarte, Phys. Rev. D 77,
084002 (2008).

[56] Z. B. Etienne, Y. T. Liu, and S. L. Shapiro, Phys. Rev. D 82,
084031 (2010).

[57] Z. B. Etienne, V. Paschalidis, Y. T. Liu, and S. L. Shapiro,
Phys. Rev. D 85, 024013 (2012).

[58] V. Paschalidis, Z. Etienne, Y. T. Liu, and S. L. Shapiro,
Phys. Rev. D 83, 064002 (2011).

[59] V. Paschalidis, Y. T. Liu, Z. Etienne, and S. L. Shapiro,
Phys. Rev. D 84, 104032 (2011).

[60] S. Bonazzola, E. Gourgoulhon, and J. Marck, Phys. Rev. D
56, 7740 (1997).

[61] J. L. Friedman, K. Uryū, and M. Shibata, Phys. Rev. D 65,
064035 (2002).

[62] J. Isenberg, Int. J. Mod. Phys. D 17, 265 (2008); J. Isenberg
and J. Nester, Gen. Relativ. Gravit., edited by A. Held
(Plenum, New York, 1980), Vol. 1.

[63] J. R. Wilson and G. J. Mathews, Frontiers in Numerical
Relativity, edited by C. R. Evans, L. S. Finn, and D.W.
Hobill (Cambridge University Press, Cambridge, England,
1989).

[64] T. W. Baumgarte and S. L. Shapiro, Numerical Relativity:
Solving Einsteins Equations on the Computer (Cambridge
University Press, Cambridge, England, 2010).

[65] G. Gibbons and J. Stewart, Classical General Relativity,
edited byW. B. Bonnor, J. N. Islam, andM. A. H.MacCallum
(Cambridge University Press, Cambridge, England, 1984).

[66] R. Beig, Phys. Lett. 69A, 153 (1978).
[67] E. Gourgoulhon and S. Bonazzola, Classical Quantum

Gravity 11, 443 (1994).
[68] M. Shibata and T. Nakamura, Phys. Rev. D 52, 5428 (1995).
[69] T. W. Baumgarte and S. L. Shapiro, Phys. Rev. D 59,

024007 (1998).
[70] B. P. Abbott et al., arXiv:1701.07709.
[71] Z. B. Etienne, V. Paschalidis, R. Haas, P. Mösta, and S. L.

Shapiro, Classical Quantum Gravity 32, 175009 (2015).
[72] Cactus Computational Toolkit, http://www.cactuscode.org.
[73] J. G. Baker, J. M. Centrella, D. I. Choi, M. Koppitz, and J. R.

van Meter, Phys. Rev. Lett. 96, 111102 (2006).
[74] M. Campanelli, C. O. Lousto, P. Marronetti, and Y.

Zlochower, Phys. Rev. Lett. 96, 111101 (2006).
[75] I. Hinder et al., Classical Quantum Gravity 31, 025012

(2014).
[76] M. Alcubierre, B. Brügmann, P. Diener, M. Koppitz, D.

Pollney, E. Seidel, and R. Takahashi, Phys. Rev. D 67,
084023 (2003).

[77] Z. B. Etienne, Y. T. Liu, S. L. Shapiro, and T.W. Baumgarte,
Phys. Rev. D 79, 044024 (2009).

[78] J. L. Friedman and B. F. Schutz, Astrophys. J. 199, L157
(1975).

[79] S. M. Morsink, N. Stergioulas, and S. R. Blattnig,
Astrophys. J. 510, 854 (1999).

[80] B. D. Miller, Astrophys. J. 181, 497 (1973).
[81] L. Lindblom, B. J. Owen, and S. M. Morsink, Phys. Rev.

Lett. 80, 4843 (1998).
[82] L. Lindblom and S. L. Detweiler, Astrophys. J. 211, 565

(1977).
[83] L. Baiotti, I. Hawke, P. J. Montero, F. Löffler, L. Rezzolla,

N. Stergioulas, J. A. Font, and E. Seidel, Phys. Rev. D 71,
024035 (2005).

[84] B. Giacomazzo and L. Rezzolla, Classical Quantum Gravity
24, S235 (2007).

GRAVITATIONAL WAVE CONTENT AND STABILITY OF … PHYSICAL REVIEW D 95, 124057 (2017)

124057-13

https://doi.org/10.1086/343038
https://doi.org/10.1086/343038
https://doi.org/10.1103/PhysRevD.74.084006
https://doi.org/10.1103/PhysRevD.74.084006
https://doi.org/10.1103/PhysRevD.66.044021
https://doi.org/10.1103/PhysRevD.66.044021
https://doi.org/10.1086/177113
https://doi.org/10.1086/177113
https://doi.org/10.1086/304918
https://doi.org/10.1086/312425
https://doi.org/10.1086/312425
https://doi.org/10.1086/309525
https://doi.org/10.1086/309525
https://doi.org/10.1103/PhysRevD.75.044023
https://doi.org/10.1088/0264-9381/24/12/S12
https://doi.org/10.1103/PhysRevD.90.024034
https://doi.org/10.1103/PhysRevD.90.024034
https://doi.org/10.1103/PhysRevD.91.064057
https://doi.org/10.1046/j.1365-8711.2002.05724.x
https://doi.org/10.1046/j.1365-8711.2002.05724.x
https://doi.org/10.1086/375768
https://doi.org/10.1086/375768
https://doi.org/10.1046/j.1365-8711.2003.06699.x
https://doi.org/10.1046/j.1365-8711.2003.06699.x
https://doi.org/10.1086/319634
https://doi.org/10.1086/377334
https://doi.org/10.1086/377334
https://doi.org/10.1086/431305
https://doi.org/10.1086/431305
https://doi.org/10.1086/507597
https://doi.org/10.1103/PhysRevD.92.121502
https://doi.org/10.1088/0264-9381/33/24/244004
https://doi.org/10.1088/0264-9381/33/24/244004
https://doi.org/10.1103/PhysRevD.70.084022
https://doi.org/10.1103/PhysRevD.70.084022
https://doi.org/10.1086/305030
https://doi.org/10.1086/305030
https://doi.org/10.1086/425296
https://doi.org/10.1086/425296
https://doi.org/10.1103/PhysRevD.94.101302
https://doi.org/10.1103/PhysRevD.94.101302
https://doi.org/10.1103/PhysRevD.69.104030
https://doi.org/10.1103/PhysRevD.75.044026
https://doi.org/10.1103/PhysRevD.85.064014
https://doi.org/10.1103/PhysRevD.86.104001
https://doi.org/10.1103/PhysRevD.86.104001
https://doi.org/10.1007/s10665-012-9585-6
https://doi.org/10.1103/PhysRevD.91.104030
https://doi.org/10.1103/PhysRevD.94.044049
https://doi.org/10.1103/PhysRevD.77.084002
https://doi.org/10.1103/PhysRevD.77.084002
https://doi.org/10.1103/PhysRevD.82.084031
https://doi.org/10.1103/PhysRevD.82.084031
https://doi.org/10.1103/PhysRevD.85.024013
https://doi.org/10.1103/PhysRevD.83.064002
https://doi.org/10.1103/PhysRevD.84.104032
https://doi.org/10.1103/PhysRevD.56.7740
https://doi.org/10.1103/PhysRevD.56.7740
https://doi.org/10.1103/PhysRevD.65.064035
https://doi.org/10.1103/PhysRevD.65.064035
https://doi.org/10.1142/S0218271808011997
https://doi.org/10.1016/0375-9601(78)90198-6
https://doi.org/10.1088/0264-9381/11/2/015
https://doi.org/10.1088/0264-9381/11/2/015
https://doi.org/10.1103/PhysRevD.52.5428
https://doi.org/10.1103/PhysRevD.59.024007
https://doi.org/10.1103/PhysRevD.59.024007
http://arXiv.org/abs/1701.07709
https://doi.org/10.1088/0264-9381/32/17/175009
http://www.cactuscode.org
http://www.cactuscode.org
http://www.cactuscode.org
https://doi.org/10.1103/PhysRevLett.96.111102
https://doi.org/10.1103/PhysRevLett.96.111101
https://doi.org/10.1088/0264-9381/31/2/025012
https://doi.org/10.1088/0264-9381/31/2/025012
https://doi.org/10.1103/PhysRevD.67.084023
https://doi.org/10.1103/PhysRevD.67.084023
https://doi.org/10.1103/PhysRevD.79.044024
https://doi.org/10.1086/181872
https://doi.org/10.1086/181872
https://doi.org/10.1086/306630
https://doi.org/10.1086/152065
https://doi.org/10.1103/PhysRevLett.80.4843
https://doi.org/10.1103/PhysRevLett.80.4843
https://doi.org/10.1086/154964
https://doi.org/10.1086/154964
https://doi.org/10.1103/PhysRevD.71.024035
https://doi.org/10.1103/PhysRevD.71.024035
https://doi.org/10.1088/0264-9381/24/12/S16
https://doi.org/10.1088/0264-9381/24/12/S16


[85] K. Dionysopoulou, D. Alic, C. Palenzuela, L. Rezzolla, and
B. Giacomazzo, Phys. Rev. D 88, 044020 (2013).

[86] D. Radice, L. Rezzolla, and F. Galeazzi, Classical Quantum
Gravity 31, 075012 (2014).

[87] S. L. Shapiro, Astrophys. J. 613, 1213 (2004).
[88] C. W. Misner, K. S. Thorne, and J. A. Wheeler, Gravitation

(Freeman, New York, 1973).
[89] M. Shibata and Y. Sekiguchi, Phys. Rev. D 68, 104020

(2003).

[90] L. S. Finn and C. R. Evans, Astrophys. J. 351, 588
(1990).

[91] A. Harten, P. Lax, and B. van Leer, SIAM Rev. 25, 35
(1983).

[92] B. van Leer, J. Comput. Phys. 23, 276 (1977).
[93] P. Colella and P. R. Woodward, J. Comput. Phys. 54, 174

(1984).
[94] C. R. Evans and J. F. Hawley, Astrophys. J. 332, 659

(1988).

ANTONIOS TSOKAROS et al. PHYSICAL REVIEW D 95, 124057 (2017)

124057-14

https://doi.org/10.1103/PhysRevD.88.044020
https://doi.org/10.1088/0264-9381/31/7/075012
https://doi.org/10.1088/0264-9381/31/7/075012
https://doi.org/10.1086/423236
https://doi.org/10.1103/PhysRevD.68.104020
https://doi.org/10.1103/PhysRevD.68.104020
https://doi.org/10.1086/168497
https://doi.org/10.1086/168497
https://doi.org/10.1137/1025002
https://doi.org/10.1137/1025002
https://doi.org/10.1016/0021-9991(77)90095-X
https://doi.org/10.1016/0021-9991(84)90143-8
https://doi.org/10.1016/0021-9991(84)90143-8
https://doi.org/10.1086/166684
https://doi.org/10.1086/166684

