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2Theoretical Physics Institute, University of Jena, 07743 Jena, Germany
(Received 26 March 2010; published 7 June 2010)

We show that the phenomenon of spontaneous scalarization predicted in neutron stars within the

framework of scalar-tensor tensor theories of gravity, also takes place in boson stars without including a

self-interaction term for the boson field (other than the mass term), contrary to what was claimed before.

The analysis is performed in the physical (Jordan) frame and is based on a 3þ 1 decomposition of

spacetime assuming spherical symmetry.
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I. INTRODUCTION

Scalar-tensor theories of gravity (STT) are alternative
metric theories of gravitation where a spin-0 gravitational
degree of freedom � accompanies the usual tensor spin-2
modes (see Ref. [1] for a review). In the so-called Jordan
frame, the scalar field � couples nonminimally to the
curvature while in the Einstein frame, it couples nonmini-
mally to the ordinary matter fields. Scalar-tensor theories
are perhaps the most analyzed and competitive theories of
gravitation after general relativity, the most prominent
example being the well-known Brans-Dicke theory [2].
Nevertheless, it is only recently that many issues and
theoretical discoveries concerning STT have been settled.
In the cosmological context, STT have been proposed as
alternatives to dark energy in order to explain the accel-
erated expansion of the Universe while avoiding the so-
called coincidence problem, which is associated with a
cosmological constant [3–8]. In the astrophysical context,
Damour and Esposito-Farèse [9,10] discovered that neu-
tron star models (polytropes) within STT may undergo a
phase transition that consists in the appearance of a non-
trivial configuration of the scalar field � in the absence of
sources and with vanishing asymptotic value. Such con-
figurations are endowed with a new global quantity termed
scalar charge. Because of the similarities of this scalariza-
tion process with the spontaneous magnetization in ferro-
magnets at low temperatures, these authors coined the term
spontaneous scalarization (SC) to describe this phenome-
non. Further analysis [11–13] confirmed that this phe-
nomenon also takes place in realistic neutron star models
and occurs independently of the details of the equation of
state used to describe the nuclear matter.

The stability analysis for the transition to SC was first
performed by Harada [14,15]. It is now understood that SC
arises under certain conditions where the appearance of the

scalar-field gives rise to a configuration that minimizes the
star’s energy (the Arnowitt-Deser-Misner [ADM] mass)
with fixed baryon number. This interpretation can in fact
accommodate the Newtonian expectations despite the fact
that the effective gravitational constant decreases during
the transition [13]. Following the analogy with ferromag-
netism, the ADM mass plays the same role as the (free)
energy of the ferromagnet, while the baryon mass is the
analogue of the inverse of the temperature. The order
parameter is the scalar charge, which mirrors the magne-
tization. One important aspect of this phenomenon is that it
occurs even when the parameters of the theory satisfy the
stringent bounds put by the solar system experiments. The
important point is that SC appears precisely when the
asymptotic (cosmological) value �0 of the scalar field
vanishes. Therefore, the phenomenon arises even when
the associated effective Brans-Dicke parameter of the the-
ory is arbitrarily large (see Sec. V). On the other hand, the
binary pulsar does put limits on the magnitude of SC. In
some classes of STT, these bounds restrict the nonminimal
coupling to the curvature. However, the bounds are not so
stringent since the couplings can still be of order unity [10].
More recently, studies of neutron star oscillations within

STT reveal that, in addition to the emission of scalar
gravitational waves, SC can also disturb the quadrupolar
gravitational radiation as compared to the corresponding
signals in general relativity (GR). Therefore, even if the
detection channels of scalar gravitational waves are
‘‘switched off,’’ the detection of gravitational waves of
spin-2 coming from these sources might validate STT or
put even more stringent bounds on their parameters. Of
course, the direct detection (or lack) of scalar gravitational
waves would also help to discriminate between several
alternative theories. In this regard it is important to empha-
size another striking feature of STT. While GR predicts
only quadrupolar gravitational radiation in the ‘‘far zone,’’
STT predicts monopolar gravitational waves [16], so that
even in spherical symmetry scalar waves can be emitted.
This is in part because Birkhoff’s theorem does not apply
in this case. The new polarization scalar mode is of the
breathing type since it affects all the directions isotropi-
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cally [16]. In particular, during the SC process in spherical
neutron stars this kind of radiation might be emitted. In
fact, using a fully relativistic spherically symmetric (SS)
code, Novak [12] not only confirmed the dynamical tran-
sition to the scalarization state but also the emission of
such scalar waves.

In a more recent analysis, Whinnett [17] corroborated
that SC can also occur in boson stars (see Ref. [18] for a
thorough introduction to the subject), but only if these are
endowed with a self-interaction. In that work the spacetime
was assumed to be static and spherically symmetric,
although the boson stars were only stationary.

In this paper we want to report that by performing a
dynamical transition to SC in boson stars where the real
scalar field � is excited to a nontrivial configuration, we
find that the self-interaction term for the boson field (other
than the mass term) is not required, contrary to what was
found by Whinnett. This result is not the only novelty. In
order to perform our analysis we have developed several
new tools. Unlike Novak’s work, we always work in the
Jordan frame where the interpretation of results has a more
direct physical meaning. To achieve this goal we have
constructed a new code based on a 3þ 1 approach for
STT developed in [19] and adapted to a Baumgarte-
Shapiro-Shibata-Nakamura formulation [20,21], in which
we have implemented constraint preserving boundary con-
ditions. In this regard, it is important to mention that STT
have been proved to possess a well-posed Cauchy problem
in the Jordan frame [19,22]. In particular, we shall show
elsewhere [23], that the SS equations used in this paper are
strongly hyperbolic and therefore the Cauchy problem is
well posed as well for this particular case.

The paper is organized as follows: In Sec. II, we intro-
duce the scalar-tensor theories and discuss briefly some
properties associated with the Jordan frame. In Sec. III, we
describe the boson-star model. Section IV describes the
numerical results. Finally, Sec. V contains the conclusions.

II. SCALAR-TENSOR THEORIES OF GRAVITY

The general action for STT with a single scalar field is
given by

S½gab; �; c � ¼
Z �

Fð�Þ
16�

R� 1

2
ðr�Þ2 � Vð�Þ

� ffiffiffiffiffiffiffi�g
p

d4x

þ Smatt½gab; c �; (2.1)

with � the nonminimally coupled scalar field, and where
c represents collectively the ordinary matter fields (i.e.
fields other than �; we use units such that c ¼ 1 ¼ G0).
For the problem at hand, c will represent the complex
scalar field that we use to model the boson star (see
Sec. III).

The representation of the STT given by Eq. (2.1) is
called the Jordan frame representation. The field equations
obtained from the action (2.1) are given by

Gab ¼ 8�Tab; (2.2)

h�þ 1
2f

0R ¼ V0; (2.3)

where a prime indicates @�, h :¼ gabrarb is the cova-

riant d’Alambertian operator, Gab ¼ Rab � 1
2 gabR, and

Tab :¼ GeffðTf
ab þ T�

ab þ Tmatt
ab Þ; (2.4)

Tf
ab

:¼ raðf0rb�Þ � gabrcðf0rc�Þ; (2.5)

T�
ab

:¼ ðra�Þðrb�Þ � gab½12ðr�Þ2 þ Vð�Þ�; (2.6)

Geff :¼ 1

8�f
; f :¼ F

8�
; (2.7)

where Tmatt
ab is the stress-energy tensor for all matter fields

other than �.
Using Eq. (2.2), the Ricci scalar can be expressed in

terms of the energy-momentum tensor Eq. (2.4). Equation
(2.3) then takes the final form

h� ¼ fV 0 � 2f0V � 1
2 f

0ð1þ 3f00Þðr�Þ2 þ 1
2 f

0Tmatt

fð1þ 3f02=2fÞ ;

(2.8)

where Tmatt stands for the trace of T
matt
ab . It is important to

stress the fact that, although we have included here a
potential Vð�Þ for the STT, for the actual analysis of SC
in boson stars that we shall present below it was not taken
into account.
Using a modified harmonic gauge [19], it has been

proved that the previous equations (in vacuum) can be
put in a quasilinear diagonal hyperbolic form. Moreover,
such equations can also be put in a full first order 3þ 1
form, from which one can prove directly their strong
hyperbolic character [22]. Therefore, the Cauchy problem
is well posed in the Jordan frame.
The Bianchi identities directly imply

rcT
ca ¼ 0: (2.9)

However, the use of the field equations leads to the con-
servation of the energy-momentum tensor of the matter
alone

rcT
ca
matt ¼ 0; (2.10)

which implies the fulfillment of the (weak) equivalence
principle (i.e. test particles follow geodesics of the metric
gab.)

III. BOSON STARS

As we mentioned in the introduction, the phenomenon
of SC was first discovered in static neutron star models.
Afterwards, the dynamic transition from the unscalarized
to the scalarized state was also analyzed [12]. In this paper,
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we propose to study a similar transition but using boson
stars instead of neutron stars. In some way this matter
model is even more fundamental than neutron stars in
that one does not have to assume a perfect fluid, but rather
a field theory. It is also simpler since one does not have to
deal with the equation of state for the nuclear matter
(where uncertainties in the model are always an issue), as
well as the technical difficulties associated with the nu-
merical simulation of shock fronts.

In a previous investigation, Whinnett [17] constructed
stationary configurations of boson stars within a STT, and
showed that SC was only possible if one included a self-
interaction potential for the boson field. He carried out the
analysis for three different classes of STT, one of which in
fact is almost identical to the one we use in this paper. In
our case, instead of constructing stationary configurations
of scalarized boson stars, we analyze the dynamical tran-
sition from the unscalarized state to the one with scalariza-
tion. The final state of this process corresponds in principle
to one of the stationary states that one would found using
the method by Whinnett. Nevertheless, unlike Whinnett’s
results, we find SC without the need of a self-interaction. A
possible explanation for this will be elucidated in Sec. V.
We point out that boson-star models have been constructed
in the past within STT [24–27], but apart from Whinnett’s
work none other study has looked at the spontaneous
scalarization of such objects.

We shall consider boson stars described by the following
energy-momentum tensor

Tmatt
ab ¼ 1

2½ðrac
�Þðrbc Þ þ ðrbc

�Þðrac Þ�
� gab½12jrc j2 þ Vc ðjc j2Þ�; (3.1)

where c is a complex-valued scalar field that represents
the bosons, jrc j2 :¼ gabðrac Þðrbc

�Þ and jc j2 :¼
c �c . This model arises from the Lagrangian Lmatt ¼
� ffiffiffiffiffiffiffi�g
p ½12 jrc j2 þ Vc ðjc j2Þ�. The potential Vc ðc �c Þ

will be taken to be of the form

Vc ðc �c Þ ¼ 1
2m

2
c c

�c ; (3.2)

which includes a mass term but no self-interaction poten-
tial (which is typically associated with a term 1

4�ðc �c Þ2)
[28].

The boson field obeys the Klein-Gordon equation:

hc �m2
c c ¼ 0: (3.3)

Notice that the problem we wish to study involves two
different scalar fields, a real-valued field � coupled non-
minimally to the curvature, and a complex-valued field c
(the boson field) coupled only minimally.

The matter Lagrangian is invariant with respect to a
global phase transformation c ! e{qc (with q a real
constant). Noether’s theorem then implies the local con-
servation of the boson number raJ a ¼ 0, where the
number-density current is given by J a ¼ {

2 g
ab½crbc

� �

c �rbc �. This means that the total boson number

N ¼ �
Z
�t

naJ a
ffiffiffi
h

p
d3x (3.4)

is conserved, where na is the normal vector to the spatial
Cauchy hypersurfaces �t and h is the determinant of the
induced metric on �t. The total boson mass is then given
byMbos ¼ mbN , with mb :¼ @mc =c the mass of a single

boson (where we have restored the speed of light c and the
Planck’s constant @).
In fact, when the scalar field � acquires a nontrivial

value one can define another global quantity associated to
it, which for asymptotically flat spacetimes is given by

Qscalar ¼ lim
r!1

1

4�

Z
S
sara�ds; (3.5)

where sa is the unit outward normal to a topological 2-
sphere S embedded in �t, and r is a radial coordinate that
provides the area of S asymptotically.

IV. NUMERICAL RESULTS

For the analysis at hand, we shall consider a SS space-
time with a metric given by

ds2 ¼ �N2dt2 þ A2dr2 þ r2B2ðd�2 þ sin2�d’2Þ; (4.1)

where the metric coefficients ðN;A; BÞ are all functions of
the coordinates t and r. The scalar-field variables will be
functions of t and r as well. As can be seen from the form
of (4.1), we consider a null shift vector. Also, the area of 2-
spheres is given by A ¼ 4�r2B2, which only coincides
with the area coordinates when B � 1.
We have constructed a spherically symmetric evolution

code based on the BSSN system of equations, together with
a 3þ 1 formulation of the STT equations developed in
Ref. [19]. The details of this system, including its hyper-
bolicity properties, will be reported elsewhere [23].
For the evolution we have also used a generalization of

the Bona-Masso slicing condition [29] that led to a well-
behaved hyperbolic system [22].
We have constructed initial data for stationary boson

stars like in GR, by assuming c ðt; rÞ ¼ �ðrÞe{!t and
�ðt; rÞ � 0, and solving the eigenvalue problem resulting
from Eq. (3.3) using a shooting method to find !. Notice
that in the absence of a potential and for the class of STT
we use (see below), �ðt; rÞ � 0, solves exactly Eq. (2.8).
The resulting configuration corresponds to a strictly static
spacetime. In order to study the dynamic transition to SC,
we then considered a small Gaussian perturbation for the
scalar field �. We then solved the new Hamiltonian con-
straint for this perturbed initial data. The momentum con-
straints are trivially satisfied initially by assuming a
moment of time symmetry for which the extrinsic curvature
vanishes, as well as the momenta associated with the real
scalar field � and the boson field c .
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For the dynamical simulation presented below, we have
taken the nonminimal coupling function to be of the form
Fð�Þ ¼ 8�fð�Þ ¼ 1þ 8���2, with � a positive
constant.

Several scenarios can happen depending on the initial
configuration. Figure 1 (top panel) depicts a curve that
represents the boundary (i.e. the critical values) of the
transition to SC for different values of the constant � and
the central value of the norm of the complex scalar field
�ð0Þ. Initial configurations below the critical line are
stable with respect to the perturbations and do not lead to
a SC transition. This means that for such configurations the
scalar field � simply radiates away during the evolution
and leaves behind a stable stationary configuration with a
globally null �. On the other hand, initial configurations
above the critical line (but below the line marked ‘‘maxi-
mum mass’’) are unstable, and when perturbed lead to a
dynamical transition to SC where the final configuration is
a stationary boson star endowed with a nontrivial scalar
field �.

The horizontal line marked ‘‘maximum mass’’ in Fig. 1
denotes the maximum mass for stable boson-star configu-
rations. For boson stars with no perturbation from the
scalar field� the mass increases with increasing�ð0Þ until
a threshold value �ð0Þcrit is reached, after which the
masses start to decrease for larger �ð0Þ. This value sepa-
rates two regions, the values with �ð0Þ<�ð0Þcrit repre-
sent stable boson stars, while the configurations with
�ð0Þ>�ð0Þcrit are unstable and either collapse to a black
hole or migrate to a configuration on the stable branch [30].
The maximum mass is 0:633 m�1

c and corresponds to

�ð0Þcrit ¼ 0:076 or �ð0Þcrit ¼ 0:27 with the usual normal-

ization (� ¼ ffiffiffiffiffiffiffi
4�

p
�). Similar behavior is expected to oc-

cur in STT [23].
Figure 2 depicts a series of snapshots taken at different

times during the evolution for the unstable case with � ¼ 6
and �ð0Þ ¼ 0:03. Note from this figure that initially the
scalar field � almost vanishes, whereas at the end of the
evolution it settles down into a stationary configuration
which results in a nontrivial profile that interpolates be-
tween a finite value �ðtfinal; r ¼ 0Þ at the center of the
boson star and a vanishing value �ðtfinal; r1Þ asymptoti-
cally. The final stationary configuration is also character-
ized by the appearance of a global scalar charge (see Fig. 1
bottom panel).

V. DISCUSSION

Boson stars are stable self-gravitating configurations of
a complex scalar field, and as such they could in principle
exist in nature. If the bosons are light (mb :¼ @mc =c�
eV=c2), one expects the mass of the boson star to be of
order M� 1020 kg, which is in the mass range of some
asteroids. On the other hand, for heavy bosons (mb �
100 GeV=c2) the boson-star mass turns out to be much
lower (M� 109 kg). However, by including self-
interactions it is possible to increase the mass of the boson
star to the order of the solar mass [31]. It has also been
speculated that supermassive boson stars instead of black
holes could be at the center of galaxies [32]. If boson stars
actually exist in nature, they could serve as natural ‘‘labo-
ratories’’ to test different alternative theories of gravity.
In this work we have used a scalar-tensor theory of

gravity to study dynamical simulations of boson stars.
We have found that, just like in the case of neutron stars,
boson stars can also undergo a spontaneous scalarization
process. We have analyzed this transition in a dynamical
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fashion using a fully relativistic code in spherical symme-
try. Unlike previous studies of stationary boson-star con-
figurations, we have found that self-interactions are in fact
not required to produce scalarization. We have imple-
mented a STT which is very similar to the one studied by
Whinnett, where scalarization was not found without self-
interaction. However, he used a value �W ¼ 1 [33] (corre-
sponding to our � ¼ 2) which is actually in the region of
Fig. 1 where scalarization does not ensue. He also used
�W ¼ 2 (ours � ¼ 4), where our results of Fig. 1 show that
there is a small region where scalarization is found.
Actually, from Whinnett’s Fig. 4 is not clear that scalari-
zation is not found for �W ¼ 2 since his coupling parame-
ter is not null. By increasing the value of the nonminimal
coupling parameter �, one can reach a threshold where the
energetically favorable configurations are those with the
presence of a nontrivial scalar field �. Note from Fig. 1
that the larger the value of the parameter �, the lower the
central energy density required to produce the transition to
scalarization.

At this point it is perhaps appropriate to mention that the
effective Brans-Dicke parameter given by !BD ¼
f=ðf0Þ2j�0

(where �0 is the asymptotic [cosmological]

value) takes the explicit form !BD ¼ ð1þ
8���2

0Þ=½32�ð��0Þ2�. Therefore, as the spontaneous sca-

larization ensues with �0 ! 0 with a finite value of �, one
has !BD ! 1, which obviously passes the constraints
imposed by the Cassini probe j�� 1j & 2:3� 10�5 [34],
where � is the post-Newtonian parameter, which in terms
of !BD is given by � ¼ ð!BD þ 1Þ=ð!BD þ 2Þ, implying
!BD * 4:3� 104. As was already mentioned in the intro-
duction, the phenomenon of spontaneous scalarization can
therefore appear independently of the bounds imposed on
!BD by the solar system experiments.
Though here we have focused mainly on such a phe-

nomenon and presented only our main results, in [23] we
will present a more detailed explanation of our code and
methods, together with a systematic study of the phenome-
non. Also, in a future work we will analyze the collapse of
a scalarized boson star to a black hole, and the correspond-
ing emission of scalar gravitational waves.
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