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Abstract Several interesting astrophysical phenomena are symmetric with respect
to the rotation axis, like the head-on collision of compact bodies, the collapse and/or
accretion of fields with a large variety of geometries, or some forms of gravitational
waves. Most current numerical relativity codes, however, cannot take advantage of
these symmetries due to the fact that singularities in the adapted coordinates, either at
the origin or at the axis of symmetry, rapidly cause the simulation to crash. Because
of this regularity problem it has become common practice to use full-blown Cartesian
three-dimensional codes to simulate axi-symmetric systems. In this work we follow
a recent idea of Rinne and Stewart and present a simple procedure to regularize the
equations both in spherical and axi-symmetric spaces. We explicitly show the regular-
ity of the evolution equations, describe the corresponding numerical code, and present
several examples clearly showing the regularity of our evolutions.

Keywords Spherical and axial evolutions · Regularization · Numerical relativity

1 Introduction

After 40 years of research, the black hole collision problem can finally be considered
solved. Though there are certainly still many details to be worked out, the results from
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Pretorius [18], the Brownsville and the Goddard groups [5,10], and other groups that
have followed, show that it is now possible to follow the numerical evolution of two
black holes for several orbits, through the merger and subsequent ringing of the final
merged black hole.

Such tremendous progress in full three-dimensional (3D) numerical relativity, how-
ever, does not imply that there are no more interesting astrophysical situations that can
be studied in spherical or axial symmetry, such as for example gravitational collapse
or accretion onto compact objects. Accurate 3D simulations still require large compu-
tational resources, so that exploiting the existing symmetries should allow important
savings in computational time. Using coordinates adapted to the symmetry, the num-
ber and complexity of the evolution equations are reduced and thus the computational
cost is also reduced.

Nevertheless, the development of general purpose spherical/axi-symmetric codes in
numerical relativity has been hampered by the lack of a generic method to deal with the
singularities associated with the symmetry-adapted coordinate systems. For example,
in the spherically symmetric case described with spherical coordinates (r, θ, φ), the
coordinates become singular at the origin r = 0. This implies that several terms in
the evolution equations diverge as 1/r , and even though local flatness guarantees that
analytically all those terms should cancel, such exact cancellation usually fails to hold
in the numerical description. A similar problem arises in systems with axial symmetry
when approaching the axis of symmetry.

Several methods to deal with this problem have been proposed in the past. For
example, one can choose specific gauges that either eliminate or ameliorate the reg-
ularity problem such as the areal (or radial) gauge in spherical symmetry, where the
radial coordinate r is chosen in such a way that the proper area of spheres of constant r
is always 4πr2. Similarly, in axial symmetry one can use the shift vector to guarantee
that some metric components always vanish thus reducing the problem of regularity
at the axis (for details see e.g. [1,6,13]). Furthermore, there has been a lot of work
on the construction of axial codes that ensure that the metric remains smooth on the
axis. For example, Garfinkle and Duncan describe in [14] a method that consists on the
introduction of auxiliary variables which allow one to impose all the required regularity
conditions on the extrinsic curvature. However, this method requires to solve, on every
time slice, an elliptic equation for the lapse, the shift components and the conformal
factor. A similar algorithm was presented by Choptuik et al. [11], but adapted to the
(2 + 1) + 1 formulation. Recently, another regularization procedure was described in
detail for the Z4 system [7,8], by Rinne and Stewart in [19,20], again also adapted to
the (2+1)+1 formulation. A different idea is the so-called “Cartoon method”, which
consists in evolving three adjacent planes in Cartesian coordinates and then perform-
ing a tensor rotation to obtain boundary conditions [2]. However, as this method uses
a tridimensional code, it is still more computationally more expensive than an axial
code (and requires one to write a full 3D code in the first place). We believe that there
is still a need for a code able to keep the equations regular in curvilinear coordinates
while still allowing quite general gauge choices.

Recently, one of us [4] presented a general procedure to deal with the irregularities
at the origin in the case of spherical symmetry. Such procedure essentially consists
in the introduction of auxiliary variables which allow one to impose all the required
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regularity conditions on the metric coefficients. This method, however, cannot be
easily extended to the case of axial symmetry without spoiling the hyperbolicity of
the system evolution equations.

In this paper we follow the idea presented in [19,20], and we use the general form
of the tensor components in an axially symmetric spacetime to show that one can
develop a generic algorithm for regularizing the evolution equations in both axial
and spherical symmetry. We start by writing the general form of the spatial metric
with the corresponding symmetry. After that, we analyze the different conditions that
the geometric variables must satisfy at the origin or the axis of symmetry. These
conditions arise both from parity considerations and local flatness. We then introduce
new variables as combinations of metric components whose parity properties guarantee
that both types of conditions are satisfied at the same time, and evolve those variables
instead of the original metric components.

This paper is organized as follows. In Sect. 2 we present the dynamical variables
and the evolution equations, both for the ADM system and for a strongly hyperbolic
formulation. In Sect. 3 we introduce the regularization procedure for the particular case
of spherical symmetry. Later, in Sect. 4 we generalize this regularization procedure
for the case of axi-symmetric spaces. In Sect. 5 we show some numerical examples
in both spherical and axial symmetry. We conclude in Sect. 6. In addition, in the
Appendix A we show explicitly that our equations system, in the spherical case, is
manifestly regular.

2 Evolution equations

Since we are interested in finding a regularization algorithm that is generic in the sense
that it can be used with any formulation of the evolution equations, we will introduce
here two different systems of evolution equations as test cases, namely the standard
ADM system and a strongly hyperbolic system.

2.1 ADM evolution system

We will start from the standard ADM evolution equations in vacuum

d

dt
gi j = −2αKi j , (1)

d

dt
Ki j = −∇i∇ jα + α

(
Ri j − 2Kil K l

j + K Ki j

)
, (2)

where α is the lapse function, β i the shift vector, gi j the spatial metric, ∇i the covariant
derivative associated with gi j , K = gi j Ki j the trace of the extrinsic curvature and
Ri j the 3D Ricci tensor. In the above equations we have introduced the notation
d/dt := ∂/∂t − Lβ , with Lβ the Lie derivative with respect to the shift.

These evolution equations are subject to the Hamiltonian and momentum con-
straints, which in vacuum take the form
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H := R − Ki j K i j + K 2 = 0, (3)

Mi := ∇ j

(
K i j − gi j K

)
= 0. (4)

It is now well-known that the ADM system of evolution equations presented above
is not strongly hyperbolic. However, the question of well-posedness is independent
from the issue of the regularity of the evolution system at the axis of symmetry, and
in what follows we will come back to the ADM system in order to show that the
regularization procedure proposed here will work for arbitrary formulations of the
evolution equations. However, we will also introduce below a strongly hyperbolic
system.

2.2 Hyperbolic evolution system

Having a well-posed system of evolution equations is crucial in order to have a
successful evolution code. Many different well-posed formulations of the 3+1 evolu-
tion equations have been proposed in the literature. For simplicity, here we will follow
the work of Nagy et al. [17], but will adapt it to the case of axial symmetry.

We start by defining the new dynamical quantities

∆i := gmn∆i
mn = gmn

(
Γ i

mn − Γ i
mn |flat

)
, (5)

with Γ i
mn the Christoffel symbols associated to the metric gi j in some curvilinear

coordinate system, and Γ i
mn |flat the Christoffel symbols for flat space in the same

coordinate system. As already mentioned in [3], the quantities ∆i
mn are components

of a well-defined tensor, while the Γ i
mn are not and in fact are not even regular in

spherical coordinates. One must also remember that the contraction used to construct
the vector ∆i = gmn∆mn must be done with the full metric associated with the space
under study, instead of the flat metric.

We will now promote the ∆i to independent variables. Using the evolution
equation (1) we find the following evolution equation for the vector ∆i

d

dt
∆i = −∇m

[
α

(
2K im − gim K

) ]
+ 2 α K lm ∆i

lm . (6)

In order to study the hyperbolicity of the system, we must also say something about
the evolution of the gauge variables α and β i . For the lapse, we will choose a slicing
condition of the Bona–Masso family [9] of the form

d

dt
α = −α2 f (α) K , (7)

where f (α) is a positive but otherwise arbitrary function of α. We will also assume
that the shift vector is an a priori known function of spacetime β i (t, x j ), so that its
derivatives can be considered as source terms for the hyperbolicity analysis.
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Since we want to work with a first-order system of equations, we define the auxiliary
variables

Di jk := 1

2
∂i g jk, Fi := ∂i ln α. (8)

The evolution equations for Fi and Di jk can be obtained directly from (1) and (7).
Up to principal part these evolution equations take the form

∂0 Di jk � −α ∂i K jk, (9)

∂0 Fi � −α f ∂i K , (10)

where now ∂0 = ∂t − β i∂i , and where the symbol � indicates equal up to principal
part.

In order to obtain a hyperbolic system, we will also modify the evolution equa-
tions (6) for the vector ∆i by adding to them a multiple of the momentum con-
straints (4):

∂0∆i � −α
(

2 ∂m K m
i − ∂i K

)
+ 2 αMi � −α∂i K . (11)

For the evolution equations for the extrinsic curvature Ki j we start by writing the
Ricci tensor as

Ri j = −1

2
glk ∂l∂k gi j + gk(i∂ j)

{
∆k + Γ k |flat

}

+ gl m Γ k
i lΓk m j + 1

2
∂l gi j

{
∆l + Γ l |flat

}

+ 1

2
gkl gmn {

2 ∂(i gln∂m g j)k − ∂(i gln∂ j)gkm
}
, (12)

where Γ l |flat ≡ gi j Γ l
i j |flat. In the last expression the symmetrization refers to the

i, j indexes only. The principal part of Ricci tensor becomes

Ri j � −1

2
glm∂l∂m gi j + ∂(i∆ j) = −∂m Dm

i j + ∂(i∆ j). (13)

The evolution equation for Ki j can then be written as

∂0 Ki j � −α ∂kΛ
k
i j , (14)

where we have defined

Λk
i j := Dk

i j + δk
(i

[
Fj) − ∆ j)

]
. (15)
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Our system of evolution equations then takes the final form

∂0 Fi � −α f ∂i K , (16)

∂0 Di jk � −α ∂i K jk, (17)

∂0∆i � −α ∂i K , (18)

∂0 Ki j � −α ∂kΛ
k
i j . (19)

Even though the Λk
i j are not independent quantities, it is very useful for the subse-

quent analysis to write down their evolution equations. Using (16), (17) and (18) we
find

∂0Λ
k
i j � −α

[
gkl ∂l Ki j + ( f − 1) δk

(i∂ j)K
]
. (20)

We then have a system of 30 equations to study, corresponding to the 3 components
of Fi , the 18 independent components of Di jk , the 6 independent components of Ki j ,
and the 3 components of ∆i . To proceed with the hyperbolicity analysis we will choose
a specific direction, say x , and ignore derivatives along the other directions. The idea is
then to find 30 independent eigenfunctions that will allow us to recover the 30 original
quantities, where by eigenfunctions here we mean linear combinations of the original
quantities u = (Fi , Di jk, Ki j ,∆i ), of the form wa = ∑

b Cabub, that up to principal
part evolve as ∂twa + λa∂xwa � 0, with λa the corresponding eigenspeeds.

Taking then into account only derivatives along the x direction we immediately see
that there are 14 eigenfunctions that propagate along the time lines with speed −βx ,
namely Fq and Dqi j for q �= x . Furthermore, taking f times the trace of (17) and
subtracting it from (16), we find that the three functions Fi − f Dim

m also propagate
along the time lines. Finally, subtracting the trace of (17) from (18), we find that the
Di

m
m − ∆i are three more eigenfunctions that propagate along the time lines. Thus,

we end up with 20 eigenfunctions propagating along the time lines with speed −βx .
The remaining ten eigenfunctions are obtained by combining the evolution equation

for the extrinsic curvature (19) with the evolution equation for the Λq
i j , Eq. (20). For

simplicity, we assume that β i = 0. Therefore, if q �= x we obtain the system

∂0 Kqi � −α ∂xΛ
x
qi , (21)

∂0Λ
x
qi � −α gxx∂x Kqi , (22)

from which is clear that we have 8 new eigenfunctions of the form

√
gxx Kqi ∓ Λx

qi , (23)

with characteristic speed given by ±α
√

gxx . Finally, taking the trace of the extrinsic
curvature and of Λk

i j , we find

∂0 K � −α ∂xΛ
x , (24)

∂0Λ
x � −α f gxx∂x K , (25)
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with Λx := gmnΛx
mn . So that our final pair of eigenfunctions are

√
f gxx K ∓ Λx , (26)

with characteristic speed ±α
√

f gxx .
In this way we see that for the evolution system where the vector ∆i has been

promoted to an independent variable, and a multiple of the momentum constraint has
been added to its evolution equation, one can obtain a complete set of independent
eigenfunctions, showing that the system is indeed strongly hyperbolic.

3 Regularity in spherical symmetry

3.1 Parity conditions

There are in fact two types of regularity conditions for the metric components. One set
of conditions comes directly from symmetry considerations. In spherical symmetry
we can write the metric quite generally as

ds2 = − (
α − βrβ

r ) dt2 + 2 βr drdt + grr dr2 + gθθ dΩ2, (27)

where α, βr , grr and gθθ are functions of r and t only, and dΩ2 is the solid angle
element: dΩ2 = dθ + sin θ dφ2. Spherical symmetry means that a reflection through
the origin should leave the metric unchanged. By making the transformation r → −r
in the above metric we see that this implies that

α(r) = α(−r), (28)

βr (r) = −βr (−r), (29)

grr (r) = grr (−r), (30)

gθθ (r) = gθθ (−r), (31)

or in other words, α, grr and gθθ must be even functions of r , while βr must be odd. The
parity of the spatial metric coefficients clearly must be inherited by the corresponding
components of the extrinsic curvature, so that Krr and Kθθ must also be even functions
of r .

3.2 Local flatness

Parity considerations are not enough in order to have a regular evolution. There are
extra regularity conditions that the geometric variables (gi j , Ki j ) have to satisfy at the
origin that are a consequence of the fact that the manifold must be locally flat.

Local flatness implies that close to the origin one should be able to write the spatial
metric as

dl2 = dr̃2 + r̃2dΩ2, (32)
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with r̃ a radial coordinate that measures proper distance from the origin. If we now
change the radial coordinate to some new coordinate r related to r̃ through r̃ = r̃(r),
the metric will transform into

dl2 =
(

dr̃

dr

)2

dr2 + r2
(

r̃

r

)2

dΩ2. (33)

Expanding now r̃ in Taylor around the origin we find

r̃ � r

(
dr̃

dr

)

r=0
, (34)

so that close to the origin we will have

dl2 =
(

dr̃

dr

)2

r=0

(
dr2 + r2dΩ2

)
. (35)

In other words, for any arbitrary radial coordinate r the metric at the origin must
be proportional to the flat metric (i.e. it must be conformally flat). Taking this result
together with the parity conditions derived in the last section we see that we can rewrite
the spatial metric in spherical symmetry as

dl2 = Adr2 + r2T dΩ2, (36)

where A and T are such that close to the origin

A = A0 + r2 A1, T = T0 + r2T1, (37)

with A0 = T0 functions of t only.
The results just described where in fact already presented in [4]. In that reference the

condition that A0(t) = T0(t) was implemented by defining a new dynamical variable
that is odd at the origin:

λ := 1

r

(
1 − A

T

)
, (38)

and deriving an evolution equation for it. Such a regularization procedure works well in
spherical symmetry, but its direct generalization to the case of axial symmetry has one
very serious drawback. The problem arises because such an algorithm introduces terms
of the form ∂zλ/ρ, with ρ and z cylindrical coordinates, that change the characteristic
structure of the evolution equations and can therefore spoil the hyperbolicity of a given
formulation.

Because of this, we will introduce here a different regularization procedure that can
be generalized more directly to the case of axi-symmetry. Let us start by defining the
variables

H := A + T

2
, J := A − T

2r2 . (39)
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The results derived above imply that both H and J are regular functions that are even
at the origin. The definitions of H and J can easily be inverted to give

A := H + r2 J, T := H − r2 J, (40)

so that the spatial metric can be rewritten as

dl2 = (
H + r2 J

)
dr2 + r2(H − r2 J

)
dΩ2. (41)

In order for this form of the metric to be maintained in time, one must ask for the
extrinsic curvature to behave in the same way. We will then take the extrinsic curvature
to be

Ki j =
⎛
⎝

K A 0 0
0 r2 KT 0
0 0 r2 KT sin2 θ

⎞
⎠, (42)

where K A ≡ K H + r2 K J and KT ≡ K H − r2 K J , and with (K H , K J ) even functions
at the origin.

The ∆i vector in this case takes the simple form ∆i = (∆r (t, r), 0, 0), where

∆r = 1

A

(
Drrr

A
− 2 (Drθθ − 2 r J )

T

)
. (43)

In this last expression we used the definition (8) for the spatial derivatives. The parity
properties of ∆r follow directly from those of the metric, and one finds that ∆r must
be odd at the origin.

3.3 Regularization algorithm

The main idea of the regularization algorithm is simply to evolve directly the variables
(H, J, ∂r H, ∂r J, K H , K J ,∆r ) imposing the appropriate parity conditions on these
variables, which will automatically guarantee that local flatness is maintained.

The parity conditions are in fact very easy to implement numerically. The easiest
way to do this is to stagger the origin, with a fictitious grid point located at r = −∆r/2.
One then implements the parity conditions across the origin by simply copying the
value of a given variable from r = ∆r/2 to r = −∆r/2, with the appropriate sign.

The evolution equations for H , J , ∂r H and ∂r J are in fact trivial to obtain. For
example, in the case of zero shift, they have the form

∂t H = −2 α K H , (44)

∂t J = −2 α K J , (45)

∂t DH = −2 ∂r
(
α K H

)
, (46)

∂t DJ = −2 ∂r
(
α K J

)
, (47)

where we defined ∂r H ≡ DH and ∂r J ≡ DJ . The evolution equations for K H and
K J can also be obtained directly from those of K A and KT . The resulting equations
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are again trivial to derive but rather long, and we will write them explicitly in the
Appendix. However, the evolution equation for K H looks like

∂t K H = α H3

2 r A2 T 2

(
∆r H2 − Fr H − 2 DH

) + H, (48)

where H stands for terms that are not divided by r . By simple inspection one can see
that all terms in the evolution equation for K H are manifestly regular. The evolution
equation for K J , on the other hand, takes the form

∂t K J = −
α H4

(
H ∆r − Fr

)

2 r3 A2 T 2 +
α H4

(
H ∂r∆

r − ∂r Fr

)

2 r2 A2 T 2 + J , (49)

where J stands for terms that either have no divisions by r , or else involve terms of
the form (DH )2/r2, DJ /r , etc., which are manifestly regular.

In the above equation, one must remember that because of the behavior of ∆r and
Fr , ∂r∆

r and ∂r Fr are even functions at the origin. One can now see that the first two
terms in (49) are regular by first noticing that they can be joined in pairs to form a
single derivative, so that the equation becomes

∂t K J = α H5

2 r A2 T 2 ∂r

(
∆r

r

)
− α H4

2 r A2 T 2 ∂r

(
Fr

r

)
+ J . (50)

It is now easy to see that this last evolution equation is manifestly regular, due to the fact
that ∆r/r ∼ constant + O(r2), so that ∂r (∆r/r) ∼ O(r), and Fr/r ∼ constant +
O(r2), so that ∂r (Fr/r) ∼ O(r).

One can also see that the evolution equation for ∆r , and both the Hamiltonian
and momentum constraints, are trivially regular. On the other hand, if one uses the
regularization procedure of [4], the momentum constraint remains irregular.

4 Regularity in axial symmetry

4.1 Parity conditions

In the case of axial symmetry, the spacetime metric can be written in cylindrical
coordinates (ρ, z, φ) as

ds2 = −
(
α − βiβ

i
)

dt2 + 2
(
βρdρ + βzdz + βφdφ

)
dt

+ gρρdρ2 + gzzdz2 + gφφdφ2

+ 2
(
gρzdρdz + gρφdρdφ + gzφdzdφ

)
. (51)
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As before, axial symmetry implies that the metric should remain unchanged under the
transformation ρ → −ρ, which implies

α(ρ) = α(−ρ), (52)

βρ(ρ) = −βρ(−ρ), (53)

βz(ρ) = βz(−ρ), (54)

βφ(ρ) = βφ(−ρ), (55)

gρρ(ρ) = gρρ(−ρ), (56)

gzz(ρ) = gzz(−ρ), (57)

gφφ(ρ) = gφφ(−ρ), (58)

gρz(ρ) = −gρz(−ρ), (59)

gρφ(ρ) = −gρφ(−ρ), (60)

gzφ(ρ) = gzφ(−ρ). (61)

Again, the components of the extrinsic curvature inherit their parity properties from
the corresponding metric coefficients.

4.2 Local flatness

As in the spherical case, parity conditions are not enough. One also needs to consider
the conditions arising from the fact that space must be locally flat at the axis of
symmetry. We will derive those conditions here somewhat informally in order to have
a more intuitive idea of where they come from. For a more formal proof the reader can
look at [20], where the same conditions are arrived at by solving the Killing equation
for axial symmetry.

Let us start by considering the general spatial metric in Cartesian coordinates

dl2 = gxx dx2 + gyydy2 + gzzdz2

+ 2gxydxdy + 2gxzdxdz + 2gyzdydz. (62)

Axial symmetry implies, in particular, that the metric must be invariant under reflec-
tions about the x and y axes, and under exchange of x for y. Local flatness also implies
that the metric must be smooth. These two requirements together imply that for fixed
z we must have

gxx ∼ kρ + O(x2 + y2) ∼ kρ + O(ρ2), (63)

gyy ∼ kρ + O(x2 + y2) ∼ kρ + O(ρ2), (64)

gzz ∼ kz + O(x2 + y2) ∼ kz + O(ρ2), (65)

gxy ∼ O(xy) ∼ O(ρ2), (66)

gxz ∼ O(x) ∼ O(ρ), (67)

gyz ∼ O(y) ∼ O(ρ), (68)
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where kρ and kz are constants. Let us now consider a transformation to cylindrical
coordinates (ρ, z, φ):

x = ρ cos φ, y = ρ sin φ, z = z. (69)

Under such a transformation we have

gρρ = gxx cos2 φ + gyy sin2 φ + 2gxy sin φ cos φ, (70)

gzz = gzz, (71)

gφφ = ρ2
(

gxx sin2 φ + gyy cos2 φ − 2gxy sin φ cos φ
)
, (72)

gρz = gxz cos φ + gyz sin φ, (73)

gρφ = ρ
(
gyy − gxx

)
sin φ cos φ + ρ gxy

(
cos2 φ − sin2 φ

)
, (74)

gzφ = ρ
(−gxz sin φ + gyz cos φ

)
. (75)

From the behavior of the different Cartesian metric components near the axis we
then see that

gρρ ∼ kρ + O(ρ2), (76)

gzz ∼ kz + O(ρ2), (77)

gφφ ∼ ρ2
(

kρ + O(ρ2)
)
, (78)

gρz ∼ O(ρ), (79)

gρφ ∼ O(ρ3), (80)

gzφ ∼ O(ρ2). (81)

Therefore the spatial metric can be written as

dl2 = A dρ2 + B dz2 + ρ2T dφ2 + 2
(
ρ C dρ dz

+ ρ3 C1 dρ dφ + ρ2 C2 dz dφ
)
, (82)

with (A, B, T, C, C1, C2) all even functions of ρ on the axis. Again, let us define the
new variables

H := A + T

2
, J := A − T

2ρ2 . (83)

The results derived above imply that both H and J are regular functions that are even
in ρ. The definitions of H and J can easily be inverted to give

A := H + ρ2 J, T := H − ρ2 J, (84)
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so that the spatial metric (82) can be rewritten as

dl2 = (
H + ρ2 J

)
dρ2 + B dz2 + ρ2(H − ρ2 J

)
dφ2

+ 2
(
ρ C dρ dz + ρ3 C1 dρ dφ + ρ2 C2 dz dφ

)
. (85)

For the extrinsic curvature Ki j we take the similar form:

Ki j =
⎛
⎝

K A, ρ KC ρ3 KC1

ρ KC K B ρ2 KC2

ρ3 KC1 ρ2 KC2 ρ2 KT

⎞
⎠ , (86)

with K A = K H + ρ2 K J , KT = K H − ρ2 K J . The extrinsic curvature components
are given in such a way that all the functions are even, as in the metric case.

The ∆i vector takes the form (∆ρ,∆z,∆φ), and is a well-defined vector. The
general expression for ∆i can be obtained directly from its definition. In this way, we
find that ∆ρ is odd, while ∆z and ∆φ are even with respect to reflections on the axis.

4.3 Regularization algorithm

The main idea of the regularization algorithm is again to evolve directly (H, J, Dρ H,

Dρ J, Dz H, Dz J, K H , K J ), instead of (A, T, Dρρρ, Dρzz, Dzρρ, Dzzz, K A, KT ),
together with the other metric and extrinsic curvature coefficients and the ∆i . The
corresponding parity conditions can again be implemented numerically by staggering
the axis with a fictitious grid point located at ρ = −∆ρ/2.

The evolution equations for K H and K J can again be obtained directly from those
of K A and KT . The resulting equations are very long so we will not write them here,
but they are again trivial to obtain. Consider, for example, the case of the hyperbolic
system without rotation and, by simplicity, shift vanish. That is, Eqs. (1), (2), (6) and
(7) with C1 = C2 = 0. In this case the evolution equation for K H is manifestly regular,
but the evolution equation for K J has terms that at first sight appear irregular and have
the form

∂t K J = − αB2 H4

2ρT 2(AB − ρ2C2)2

(
H∆ρ

ρ2 − H∂ρ∆ρ

ρ
− Fρ

ρ2 + ∂ρ Fρ

ρ

)
+ J , (87)

where again J stands for terms that either involve no divisions by ρ, or involve terms
like (Dρ H ∂ρ Fρ)/ρ2, Dρ J/ρ, which are manifestly regular.

Just as in the spherical case, one can see that the first terms in (87) are regular by
noticing that they can be joined in pairs to form a single derivative, so that the evolution
equation for K J becomes

∂t K J = α B2 H4

2ρT 2(AB − ρ2 C2)2

(
H ∂ρ

(
∆ρ

ρ

)
− ∂ρ

(
Fρ

ρ

))
+ J . (88)
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It is now easy to see that this last evolution equation is regular, due to the fact that
∆ρ/ρ ∼ constant + O(ρ2), so that, ∂ρ (∆ρ/ρ) ∼ O(ρ), and Fρ/ρ ∼ constant +
O(ρ2), so that ∂ρ(Fρ/ρ) ∼ O(ρ). On the other hand, by inspection one can see that
all terms in the remaining evolution equations are manifestly regular leaving us with
a regular system of equations for the axial symmetric case. As final comment, notice
that since the regularization algorithm is very general, one can use it in order to have a
regularized system in the ADM case. One obtain the similar evolution equation as in
the hyperbolic system. For example, the evolution equation without rotation and shift
vanish for K J looks like,

∂t K J = αB H4

2ρ A2T 2(AB − ρ2C2)2

(
∂ρ

(
Dρzz

ρ

)
− B ∂ρ

(
Fρ

ρ

))
+ J . (89)

One can see that the last equation is regular on the axis.

5 Examples

In the simulations shown below we will see how the regularization procedure
described in the previous sections works in practice. We will consider first an evolution
of Minkowski spacetime with a non-trivial slicing in order to compare with the algo-
rithm presented in [4]. We will perform similar simulations using both a spherically
symmetric and an axially symmetric code. Also, in order to see that the regularization
procedure is independent of the hyperbolicity of the system of evolution equations,
we will do the axi-symmetric simulation using both the ADM system and the strongly
hyperbolic system derived in Sect. 2.2. As a second example, we will consider a Brill
wave spacetime as a non-trivial test of the regularization procedure in axi-symmetry.

All runs have been performed using a method of lines with iterative Crank–
Nicholson integration in the time, and standard second-order centered differences
in space.

5.1 Minkowski in spherical symmetry

As a first example of the regularization method we evolve Minkowski spacetime with
a non-trivial slicing and vanishing shift, using the hyperbolic system presented in
Sect. 2.2. The initial data corresponds to a trivial slice so that

A = T = 1, (90)

K A = KT = 0, (91)

which implies,

H = 1, J = 0. (92)

K H = K J = 0. (93)
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Fig. 1 Evolution of Minkowski spacetime with a non-trivial slicing using a spherically symmetric code.
The plots show the evolution of the lapse function α at different times. Notice how smoothly the lapse
behaves as the Gaussian pulse goes through the origin

In order to have a non-trivial evolution, we chose a non-trivial initial lapse profile of
the form:

α(t = 0) = 1 + r2 R

(
exp

[
−

(
r − r0

σ

)2
]

+ exp

[
−

(
r + r0

σ

)2
])

. (94)

This specific lapse profile has been chosen because it guarantees that α(t = 0) is
regular at the origin. In the simulation shown below we have taken the Gaussian
parameters to be R = 0.001, r0 = 5.0 and σ = 1.0. We will evolve the lapse using
a Bona-Masso slicing condition but restricted to harmonic slicing, that is f (α) = 1.
Furthermore, we have used a grid spacing of ∆r = 0.1 with the outer boundaries at
r = 100, and a Courant factor of ∆t/∆r = 0.5.

Figure 1 shows the evolution of the lapse function α near the origin. One can clearly
see that the lapse remains perfectly smooth when the Gaussian pulse goes through the
origin. The system can in fact evolve for very long times and the behavior at the origin
remains well behaved.

5.2 Minkowski in axial symmetry using ADM

In this section we present a similar evolution to the one of the last section, but done
now with an axi-symmetric code using the ADM formulation. We again consider
initial data corresponding to a trivial slice of Minkowski, so that the initial metric and
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extrinsic curvature have the form

A = B = T = 1, (95)

C = C1 = C2 = 0, (96)

K A = K B = KT = 0, (97)

KC = KC1 = KC2 = 0, (98)

which implies,

H = 1, J = 0, (99)

K H = K J = 0, (100)

Again, we chose an initial non-trivial lapse profile which for simplicity is now centered
at the origin:

α(t = 0) = 1 + R exp

[
−

(
z

σz

)2

−
(

ρ

σρ

)2
]

. (101)

For the particular simulation presented here we have taken R = 0.015, σρ =
σz = 2.5. We will again evolve the lapse using harmonic slicing, f (α) = 1. For this
simulation we have used a grid spacing of ∆ρ = ∆z = 0.125, with a Courant factor
of ∆t/∆ρ = 0.25. The outer boundaries are at ρ = 129, z = ±129. Furthermore,
Kreiss-Oliger fourth order dissipation has been added for stability [15], whereby we
modify a given variable u in the new time-step by adding to its evolution equation

∂t ui, j → ∂t ui, j − ερ

∆ρ

(
ui+2, j − 4ui−1, j + 6ui, j − 4ui−1, j + ui−2, j

)

− εz

∆z

(
ui, j+2 − 4ui, j+2 + 6ui, j − 4ui, j−1 + ui, j−2

)
, (102)

where the indices i, j refer to the grid points along the ρ and z directions. For this
simulation the dissipation coefficients have been taken to be ερ = εz = 0.04.

Figure 2 shows the evolution of lapse function α along the ρ axis. Notice that again
there is no problem at the axis of symmetry: the lapse evolves as a wave, goes through
the origin, and finally returns to 1. The evolution time is only limited by the instabilities
produced from the fact that ADM is not strongly hyperbolic.

5.3 Minkowski in axial symmetry using a hyperbolic formulation

In our next example, we consider exactly the same situation as in the last section
but using now a hyperbolic formulation. As before, we have used a grid spacing of
∆ρ = ∆z = 0.125 and a Courant factor of ∆t/∆ρ = 0.25. Again, Kreiss–Oliger
second-order dissipation has been added for stability with dissipation coefficients
ερ = εz = 0.04.
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Fig. 2 Evolution of Minkowski spacetime with a non-trivial slicing using an axi-symmetric code with the
ADM formulation. The plots show the evolution of the lapse function α at different times along the ρ axis
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Fig. 3 Evolution of Minkowski spacetime with a non-trivial slicing using an axi-symmetric code with a
hyperbolic formulation. The plots show the evolution of the lapse function α at different times along the
ρ axis

Figures 3, 4 and 5 show the evolution of the lapse function α, the radial metric A,
and the variable ∆ρ along the ρ axis. We evolve the system until 50M and all variables
remain well behaved on the axis.
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Fig. 4 Evolution of Minkowski spacetime with a non-trivial slicing using an axi-symmetric code with a
hyperbolic formulation. The plots show the evolution of the metric function A at different times along the
ρ axis
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Fig. 5 Evolution of Minkowski spacetime with a non-trivial slicing using an axi-symmetric code with a
hyperbolic formulation. The plots show the evolution of the ∆ρ function at different times along the ρ axis
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5.4 Brill waves

For our last example we have considered a non-trivial Brill wave spacetime, which
corresponds to strong non-linear gravitational waves in vacuum. The construction of
such a spacetime starts by considering an axi-symmetric initial slice with a metric of
the form

ds2 = Ψ 4
[
e2q

(
dρ2 + dz2

)
+ ρ2dφ2

]
, (103)

where both q and Ψ are functions of (t, ρ, z) only. In order to solve for Ψ , we first
impose the condition of time symmetry, that is, Ki j = 0. This condition implies
that the momentum constraints (4) are identically satisfied. We then choose a specific
form for the function q and solve the Hamiltonian constraint for Ψ , which for the
metric (103) becomes

∆δΨ + 1

4

(
q,ρρ + q,zz

)
Ψ = 0, (104)

with ∆δ the flat space Laplacian. The function q is quasi-arbitrary, and must only
satisfy the following boundary conditions

q
∣∣
ρ=0 = 0, (105)

∂n
ρq

∣∣
ρ=0 = 0 for odd n, (106)

q |r→∞ = O(r−2). (107)

Once a function q has been chosen, all that is left for one to do is to solve the elliptic
equation (104) numerically.

Different forms of the function q have been used by different authors [12,16]. Here
we will consider the one introduced by Holz et al. [16], which has the form

q = aρ2e−(ρ2+z2), (108)

with a a constant that determines the initial amplitude of the wave (for small a the
waves disperse to infinity, while for large a they can collapse to form a black hole).
Figure 6 shows the value of Ψ along the equator z = 0 and axis ρ = 0 obtained by
solving equation (104) numerically for an amplitude of a = 2.0 (small enough so that
no black hole is formed, but large enough so that we are far from the linear regime).

For the evolution of this initial data we have used a grid spacing of ∆ρ = ∆z =
0.125 and a Courant factor of ∆t/∆ρ = 0.2, with the outer boundaries located at
ρ = 165, z = ±165. For the lapse evolution we use a 1+log slicing condition, which
corresponds to a Bona–Masso (7) slicing with f (α) = 2/α. Again, Kreiss–Oliger
second-order dissipation has been added for stability.

Figures 7, 8 and 9 show the evolution of the extrinsic curvature component Kzz , and
the metric components B and T along the ρ axis. Notice again that for this simulation
there is no problem at the axis of symmetry in the evolution of the different geometric
quantities.
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function q of the form (108) and an amplitude of a = 2

-0.4
-10 -5 0 5 10

-10 -5 0 5 10 -10 -5 0 5 10

-0.2

0

0.2

0.4

0.6 t=2 t=5

-0.4

-0.2

0

0.2

0.4

0.6 t=8 t=11

Fig. 7 Brill wave simulation. The plots show the evolution of the extrinsic curvature component Kzz at
different times along the ρ axis

6 Discussion

We have presented a regularization procedure for the numerical simulation of space-
times with either spherical or axial symmetry following an idea of Rinne and
Stewart [20]. This procedure enforces both the parity conditions and the conditions
arising from local flatness at the origin and the axis of symmetry. We paid particular
attention to the fact that our regularization procedure is independent of the system of
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Fig. 8 Brill wave simulation. The plots show the evolution of the metric function B at different times along
the ρ axis
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Fig. 9 Brill wave simulation. The plots show the evolution of the metric function T at different times along
the ρ axis

evolution equations chosen, explicitly showing this in the case of the ADM formula-
tion, as well as a strongly hyperbolic formulation similar to that of Nagy et al. [17]
(slightly modified in order to have all the dynamical variables well defined in curvi-
linear coordinates).
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We have also described numerical codes that follow such regularization procedure
both in spherical and axial symmetry, and presented several examples clearly showing
that all dynamical variables remain regular at the origin and axis of symmetry in each
case (similar numerical experiments using the regularized Z4 system of [19,20] have
also been carried out by Rinne and Stewart in [19]). These results show that one can
construct well-behaved numerical codes in both spherical and axial symmetry that
can allow the study of interesting astrophysical systems with quite modest computer
resources by using symmetry adapted coordinate systems.

We conclude by mentioning that one can also construct regular codes using spe-
cialized gauge choices which can even allow one to reduce the number of independent
components of the metric. Nevertheless, our interest here has been to find a regulariza-
tion procedure that works in the most general case, while leaving the choice of gauge
completely arbitrary.
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Appendix A: Evolution equation in the spherical case

In this appendix we give explicitly the evolution equations for the hyperbolic system
presented in the Sect. 2.2 in order to show that all equations are manifestly regular. We
only consider the case of spherical symmetry, since in axi-symmetry the final equations
are just too long to write down here (they have been calculated with Mathematica, and
some of them are dozens of lines long). For the spherical case, the resulting system of
evolution equations is, together with (47):

∂t K H = αH3

2r A2T 2

(
∆r H2 − Fr H − 2DH

)
+ α

2A2T 2

[
DH

2

4

(
3H2 − r2 J (A + 9H)

)
+ Ar4 DJ

2T

4

+ H2 Jr2 (J + 2K A K H − 2r Fr J ) +
(

A2 DH T 2 − r J
(

r2 H3 J + r2 AH J T + A2T 2
))

∆r

+ r DH J
(

5H2 + 8r2 H J + 13r4 J 2
)

+ r6 J 3 (−2K A K H + 3J (r Fr − 5)) − A2 Fr
2T 2

+ r2 DJ

(
AF − H2 J − 5r5 J 3

)
+ 2H3

(
J + 2r Fr J + K A

(
KT − r2 K J

))
− 4A2T 2∂r Fr

− 2r4 H J 2
(

2J (r Fr + 7) + K A

(
KT − r2 K J

))
+ r4 H DJ

2

(
DJ H − 36J 2r − 5DJ Jr2

)

+ 1

2
DH DJ r2

(
3H2 − 2H Jr2 + 7J 2r4

)
T 2 + A3T 2∂r ∆r − AT 2∂r DH

]
, (109)

∂t K J = αH5

2r A2T 2 ∂r

(
∆r

r

)
− αH4

2r A2T 2 ∂r

(
Fr

r

)
+ αH2 DH

8r2 A2T 2 (4Fr H − DH ) + αH2

2r A2T 2

×
(
−6H DJ + 11J DH − 2H J Fr + 3J H2∆r

)
+ D2

H

(
−5H J + 3J 2r2

2

)

+ DH

(
H2 (7DJ −2J Fr )+12H J 2r −2H J

(
DJ + Jr2 Fr

)
+14J 3r3+ J 2r4 (3DJ +2J Fr )

)

− 4H3 K A K J + H Jr2
(
−5D2

J r2 + 4J 2 (r Fr − 13) + 4Jr (−6DJ + K A K J r)
)
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+ 4H2

(
J K A (K H + KT ) − 3Jr DJ + J 2

(
2r2 F2

r − 9 − D2
J r2

4

))
− 2AT 2∂r DJ

− J 2r4
(

8J K A (K H + KT ) + 12r J DJ − 3D2
J r2 + 4J 2 (r Fr (r Fr + 1) + 5)

)

+ 2
(

A2 DJ T 2 + J 2r
(
−2Jr2 + T

) (
H2 + AT

))
∆r + 2

(
2H2 J 2r2 − J 4r6

)
∂r Fr

+ 2J
(
−H2 (A + H) Jr2 + AJ 3r6 + AH2T

)
∂r ∆r , (110)

∂t ∆
r = α

A3T 2

[
2H2r (6J K H + AK J ) + 12J 3r5 K H − 10AJ 2r5 K J

+ AFr T
(
−AK J r2 + K H

(
A + 2Jr2

))
+ 2DH K AT 2 + 2DJ K Ar2T 2 − A2T ∂r K H

− 2H
(

J 2
(
−4KT r3 + 4K J r5

)
+ AT

(
Fr K J r2 + ∂r K H

))

+ A (A + 2J ) r2T ∂r K J

]
. (111)

Considering the results of Sect. 3, we see that the above equations are manifestly
regular at the origin.
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