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Abstract: The environmental impact of uncultured phages is shaped by their preferred life cycle (lytic
or lysogenic). However, our ability to predict it is very limited. We aimed to discriminate between
lytic and lysogenic phages by comparing the similarity of their genomic signatures to those of their
hosts, reflecting their co-evolution. We tested two approaches: (1) similarities of tetramer relative
frequencies, (2) alignment-free comparisons based on exact k = 14 oligonucleotide matches. First, we
explored 5126 reference bacterial host strains and 284 associated phages and found an approximate
threshold for distinguishing lysogenic and lytic phages using both oligonucleotide-based methods.
The analysis of 6482 plasmids revealed the potential for horizontal gene transfer between different
host genera and, in some cases, distant bacterial taxa. Subsequently, we experimentally analyzed
combinations of 138 Klebsiella pneumoniae strains and their 41 phages and found that the phages
with the largest number of interactions with these strains in the laboratory had the shortest genomic
distances to K. pneumoniae. We then applied our methods to 24 single-cells from a hot spring biofilm
containing 41 uncultured phage–host pairs, and the results were compatible with the lysogenic life
cycle of phages detected in this environment. In conclusion, oligonucleotide-based genome analysis
methods can be used for predictions of (1) life cycles of environmental phages, (2) phages with the
broadest host range in culture collections, and (3) potential horizontal gene transfer by plasmids.

Keywords: genomic signatures; bacteriophages; lytic phages; lysogenic phages; single-cell genomics

1. Introduction

During the last decade, metagenomic sequencing has revealed a tremendous quantity
of uncultured bacteria, which has also led to the discovery of novel bacteriophages (or
phages), viruses of bacteria, making us shift from the laboratory-based discoveries of phages
towards the culture-independent identification of phages in metagenomic sequences [1,2].
This has resulted in an enormous expansion of the phage reference databases. Nevertheless,
it is already obvious that our ability to gather knowledge on phage biology is not catching
up to speed with the sequence-based discoveries.

Phages are the most abundant and variable biological entities and play important
roles in global ecosystems, modulating bacterial community composition and mediating
horizontal gene transfer [3]. The identification of their hosts and the elucidation of their life
cycle are fundamental for assessing their environmental impact [4]. Traditionally, the host
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range has been evaluated by testing phages against cultures of different host strains, which
results in the determination of their preferred life cycle. Phages can either integrate into
the bacterial genome and replicate along with the host genome as prophages (temperate
phages, lysogenic life cycle), or can form virion particles which are released from the cell,
causing cell death (lytic life cycle). Phages can also switch between these two life cycles
depending on the growth conditions of the hosts, and some phage families, e.g., Inoviridae,
release progeny without killing the host cell [3]. Laboratory studies of cultured phages have
yielded a list of genes typically associated with lytic or lysogenic life cycle, which boosted
the development of computational tools for their detection in the genomes of uncultured
phages [5–7]. However, most phage genes are poorly conserved; thus, partial matches to
these genes do not guarantee their functionality [8]. Phage genomes contain a tremendous
variety of genes with unknown functions; most of them are totally unique [9], which
suggests that novel types of genes related to lysis or lysogeny are likely to be discovered.
Nevertheless, real environmental settings often hide unprecedented phage lifestyles. An
example is the crAssphage, the most abundant phage in the human gut, which lacks genes
for lysogeny and showed lytic behavior in laboratory settings; however, it does not reduce
the population size of its Bacteroidetes host [10].

A small portion of the bacterial cells in any environment is infected by phages; thus,
they can provide evidence for the actual phage–host links for unculturable bacteria [11].
The presence of a phage in a bacterial cell can be confirmed by the MetaHiC method, which
involves the fixation of DNA fragments in close proximity in a single cell [12], digital
PCR targeting the presence of specific phages in collected single cells [13], or microbial
single-cell genomics, which involves applying phage mining bioinformatic tools to the
genome assemblies of single cells [14]. In a previous study, we applied the single-cell
genomics approach to reveal the presence of viral contigs in bacterial cells collected from
a hot spring microbial mat formed mostly by previously unknown bacteria [15]. This
approach allowed us to detect phage–host relationships that could not be discovered by
computational tools nor culture-based methods. Then, we analyzed the genome coverage of
the detected phages compared to their associated hosts in metagenomes from the same mat
layer and adjacent layers, aiming to assess the life cycle of the detected uncultured phages.
For most pairs, we detected a close to 1:1 genome coverage ratio, which suggested that
phages from these low-mobility environments with high microbial abundance maintain
peaceful relationships with their bacterial hosts. Nevertheless, the prediction of the phage
life cycle of uncultured phages from metagenomic and single-cell genomic data is limited
to studies in which temporal or spatial sample series are available. Therefore, there is a
need to develop computational methods for predicting the preferred life cycle of phages
from their genome sequences.

Our present study focuses on predicting the preferred lifestyle of phages from their
genomic signatures and those of their hosts. Genomic signatures are defined as frequen-
cies of oligonucleotides, and these measures have multiple applications in comparative
genomics and evolutionary biology [16]. In 2010, Deschavanne et al. published a genome
signature distance approach for predicting the phage life cycle [17], which was based on
the “amelioration” hypothesis. This hypothesis posits that the genes acquired by horizontal
gene transfer evolve to match the molecular characteristics of the host genome [18] and,
consequently, predicts that viral tetranucleotide frequencies are similar to those of their
hosts [19]. They investigated a set of 189 cultured phages of Escherichia coli, Pseudomonas
aeruginosa, Staphylococcus aureus, and Mycobacterium smegmatis and observed that phages
with a lysogenic life cycle have a shorter genomic signature distance from their host than
the lytic phages of the same host.

The method for distinguishing lytic and lysogenic phages proposed by Deschavanne
et al. (2010) is based on similarities of tetramer frequencies in the genomes of the phages
and their hosts. Longer k-mers could not be used for this purpose, because they result
in large data structures (e.g., k = 15 results in a data table with a size of 4 GB) containing
a large number of frequencies equal to zero, which hampers comparing genome pairs.
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Nevertheless, long k-mers can be used for a different approach—the alignment-free com-
parisons of genomes, which reveal similarities at the genome level without the need for
linear alignments or the presence of homologous sequences [20]. For this reason, this
approach might be useful for detecting cases of horizontal gene transfer, which is mediated
by phages and plasmids [21]. The genomic distances between phages and their hosts
obtained by alignment-free comparison do not necessarily correlate with the genomic
distances obtained by oligonucleotide frequencies, because two genomes with similar
oligonucleotide frequencies do not necessarily have sequences of longer k-mers in common.
Therefore, we aimed to explore whether the alignment-free comparison based on matches
of longer k-mers reflects the lifestyle of the inferred phages. We hypothesized that there is
a universal genomic signature distance threshold which would distinguish phages with
lytic and lysogenic life cycles with high precision.

Initially, we obtained a set of bacterial reference genomes with their associated phages
in order to: (i) use Deschavanne’s method [17] for calculating genomic distances between
bacterial species and their phages based on tetranucleotide frequencies and extend the
reference dataset to the bacterial strain level; (ii) calculate genomic distances of inquired
bacterial strains to phages not associated with them; (iii) calculate genomic distances of
inquired bacterial strains to plasmids that are directly associated or not to these strains.
We applied the same methods for phages and plasmids because of the reduced capability
of computational tools for distinguishing between phage-like and plasmid-like contigs in
metagenomic assemblies of environmental microbiomes. In order to test the resolution of
the distance threshold determined from our NCBI reference genome dataset at the strain
level, we used a large set of Klebsiella pneumoniae genomes and their phages, which were
tested in our laboratory to assess their lytic interactions [22]. Knowing that phages can
switch their life cycles between lytic and lysogenic and evolve to adapt to their new hosts in
a new environment [23], we decided to apply our computational methods to samples from
natural environments that are known to contain a large portion of uncultured microbes [24].
We used the dataset from our previous hot spring microbial mat study [15], containing
phage–host links obtained by single-cell genomics and information about their lifestyle
assessed from a series of related metagenomic samples. The last objective of our study was
to analyze the bacterial and phages genomes by a new alignment-free method based on
exact matches of longer oligonucleotides and compare it to Deschavanne’s method [17].

2. Results
2.1. Set of Reference Genomes Used for Predicting Phage Life-Cycles

For preparing the set of reference bacterial genomes and their phages and plasmids, we
considered all strains of bacterial genera with at least five lytic- and five lysogenic-associated
phages available in NCBI Virus RefSeq. This resulted in a collection of 5186 bacterial
genomes belonging to the genera Escherichia (n = 2342), Lactococcus (n = 75), Listeria (n = 343),
Pseudomonas (n = 727), Salmonella (n = 71), Shigella (n = 111), Staphylococcus (n = 918),
and Vibrio (n = 539), which were associated with 284 phages and 6482 plasmids in total
(Supplementary Tables S1–S3). The first step was to modify the approach developed by
Deschavanne et al. (2010) for distinguishing lytic and lysogenic phages by calculating
the genomic signature distances (Euclidian distances) based on similarities of tetramer
frequencies (k4freq). While Deschavanne et al. (2010) used only one representative bacterial
genome for each bacterial species tested, we extended this set to all available strains of
the host genera in NCBI RefSeq, aiming to analyze the reactivity of phages with different
bacterial strains [25]. We worked with all strains belonging to the included bacterial
genera, because most phage genomes deposited in the NCBI Virus RefSeq database are
associated with their host only at the genus level, and the strain- or species-level resolution
is not provided.

The methods described next were developed in our study for their application to
metagenomic samples, in which the phage host range is not known a priori. We tested the
uniformity of the genomic content of all strains in our NCBI reference genome set. Principal
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component analysis (PCA) based on the k = six genomic signatures of the downloaded
bacterial genomes (see Methods) showed a separation of the reference genomes from eight
bacterial genera into nine clusters (Supplementary Figure S1, Supplementary Table S1):
Salmonella (Salmonella n = 71), Escherichia/Shigella (Escherichia n = 2342, Shigella n = 111),
Listeria (Lactococcus n = 5, Listeria n = 343), Vibrio1 (Vibrio n = 228), Vibrio2 (Vibrio n = 311),
Pseudomonas1 (Pseudomonas n = 498), Pseudomonas2 (Pseudomonas n = 229), Staphylococcus
(Staphylococcus n = 918), Lactococcus (Lactococcus n = 70). Merging genomes classified as
Escherichia and Shigella into one hexamer-based cluster is not surprising, since there is
increasing phylogenetic evidence demonstrating the need for the reclassification of these
similar taxa [26]. The genera Pseudomonas and Vibrio were split into two groups, which
is a consequence of their diverse genetic composition, allowing it to colonize various
environments [27,28]. The PCA also identified 60 genomes that did not form part of
any cluster (Supplementary Figure S1), probably belonging to distant species with an
insufficient number of representatives to form a cluster, which were removed from our
analysis. In summary, the clustering based on hexamer frequencies allowed us to obtain
clusters with a similar genomic content, independent of their taxonomic classification.

2.2. Distinguishing between Lytic and Lysogenic Phages from the Reference Dataset by the
k4freq Method

Our first objective was to distinguish between lytic and lysogenic (temperate) phages
by analyzing genomic distances of the reference phages to the resulting bacterial clusters as
well as to the original genus-level bacterial groups (respecting the NCBI taxonomic classi-
fication). Our test set consisted of phages of Escherichia (72 lytic, 48 lysogenic), followed
by Salmonella (38 lytic, 19 lysogenic), Staphylococcus (6 lytic, 29 lysogenic), Listeria (6 lytic, 8
lysogenic), Pseudomonas (8 lytic, 10 lysogenic), Lactococcus (6 lytic, 11 lysogenic), Shigella (7
lytic, 4 lysogenic), and Vibrio (12 lytic, 6 lysogenic). The average distance of the lysogenic
phages to their host group, calculated by the k4freq method, ranged from 0.014 ± 0.002
in Escherichia/Shigella to 0.024 ± 0.004 in Staphylococcus hexamer-based clusters (Figure 1),
which were similar to the values obtained by genus-level clustering—ranging from 0.014
± 0.002 in the Shigella genus group to 0.024 ± 0.002 in the Staphylococcus genus group
(Supplementary Figure S2).

The genomic distances obtained for the lytic phages by the k4freq method ranged
from 0.031 ± 0.008 in Escherichia/Shigella to 0.046 ± 0.009 in Pseudomonas1 hexamer-based
clusters, and similar values were obtained by genus-level groups (minimum 0.032 ±
0.007 in Escherichia and maximum 0.042 ± 0.008 in Pseudomonas genus-level groups). In
summary, lysogenic phages had significantly shorter k4freq-based genomic distances to
their hosts than the lytic phages if the host–phage pairs were analyzed globally across
all hexamer-based clusters or genus-level groups (global comparisons in Supplementary
Table S4). Nevertheless, the Kruskal–Wallis H-test showed that Lactococcus, Staphylococcus,
and Vibrio2 clusters did not have statistical differences between their lytic and lysogenic
phages (p-values 0.55, 0.90, and 0.15, respectively). Altogether, the results indicate that it is
easier to differentiate between lytic and lysogenic phages of bacterial genera belonging to
the phylum Pseudomonadota—formerly Proteobacteria (Escherichia, Pseudomonas, Salmonella,
Shigella, Vibrio) than those from the phylum Bacillota—formerly Firmicutes (Lactococcus,
Listeria, Staphylococcus). The average k4freq genomic distances of lytic and lysogenic phages
to all strains of their associated hosts were 0.030 ± 0.008 and 0.019 ± 0.005, which sets the
threshold for distinguishing the two groups to 0.026 (Supplementary Figure S3).

The clustering of bacterial genomes into hexamer-based groups (Supplementary
Figure S1) helped to uncover the different reactivity of phages associated with a single
bacterial genus. The differences in the genomic distances for the lytic and lysogenic phages
were 1.8× greater in the Pseudomonas1 cluster than in the Pseudomonas2 cluster, due to the
decrease in the k4freq values of the seven lytic phages when compared to the Pseudomonas2
strains (Figures 1 and 2). The most striking differences were observed for the Pseudomonas
phage phiKMV—its k4freq genomic distances to the strains in the Pseudomonas1 cluster
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were within the values of the lytic phages; however, these distances decreased in the case
of strains belonging to the Pseudomonas2 cluster reaching the lysogenic area (Figure 2).

Viruses 2023, 15, x FOR PEER REVIEW 5 of 17 
 

 

 

Figure 1. k4freq-based distances of the strains belonging to nine bacterial clusters to their own lys-

ogenic phages, their own lytic phages, and the lysogenic and lytic phages associated with bacteria 

from other clusters. The figure shows larger differences between lytic and lysogenic phages of Pseu-

domonadota (Escherichia, Pseudomonas, Salmonella, Shigella, Vibrio) than between those of Bacillota (Lac-

tococcus, Listeria, Staphylococcus). 

The genomic distances obtained for the lytic phages by the k4freq method ranged 

from 0.031 ± 0.008 in Escherichia/Shigella to 0.046 ± 0.009 in Pseudomonas1 hexamer-based 

clusters, and similar values were obtained by genus-level groups (minimum 0.032 ± 0.007 

in Escherichia and maximum 0.042 ± 0.008 in Pseudomonas genus-level groups). In sum-

mary, lysogenic phages had significantly shorter k4freq-based genomic distances to their 

hosts than the lytic phages if the host–phage pairs were analyzed globally across all hex-

amer-based clusters or genus-level groups (global comparisons in Supplementary Table 

S4). Nevertheless, the Kruskal–Wallis H-test showed that Lactococcus, Staphylococcus, and 

Vibrio2 clusters did not have statistical differences between their lytic and lysogenic 

phages (p-values 0.55, 0.90, and 0.15, respectively). Altogether, the results indicate that it 

is easier to differentiate between lytic and lysogenic phages of bacterial genera belonging 

to the phylum Pseudomonadota—formerly Proteobacteria (Escherichia, Pseudomonas, Salmo-

nella, Shigella, Vibrio) than those from the phylum Bacillota—formerly Firmicutes (Lactococ-

cus, Listeria, Staphylococcus). The average k4freq genomic distances of lytic and lysogenic 

phages to all strains of their associated hosts were 0.030 ± 0.008 and 0.019 ± 0.005, which 

sets the threshold for distinguishing the two groups to 0.026 (Supplementary Figure S3). 

The clustering of bacterial genomes into hexamer-based groups (Supplementary Fig-

ure S1) helped to uncover the different reactivity of phages associated with a single bac-

terial genus. The differences in the genomic distances for the lytic and lysogenic phages 

were 1.8× greater in the Pseudomonas1 cluster than in the Pseudomonas2 cluster, due to the 

decrease in the k4freq values of the seven lytic phages when compared to the Pseudomo-

nas2 strains (Figures 1 and 2). The most striking differences were observed for the Pseudo-

monas phage phiKMV—its k4freq genomic distances to the strains in the Pseudomonas1 

Figure 1. k4freq-based distances of the strains belonging to nine bacterial clusters to their own
lysogenic phages, their own lytic phages, and the lysogenic and lytic phages associated with bacteria
from other clusters. The figure shows larger differences between lytic and lysogenic phages of
Pseudomonadota (Escherichia, Pseudomonas, Salmonella, Shigella, Vibrio) than between those of Bacillota
(Lactococcus, Listeria, Staphylococcus).

Viruses 2023, 15, x FOR PEER REVIEW 6 of 17 
 

 

cluster were within the values of the lytic phages; however, these distances decreased in 

the case of strains belonging to the Pseudomonas2 cluster reaching the lysogenic area (Fig-

ure 2). 

 

Figure 2. Details of the k4freq-based distances of the two Pseudomonas clusters to their own phages. 

We also analyzed the k4freq-based genomic distances between bacterial genomes 

and phages that are not associated with these bacteria (third and fourth violin plots in 

Figures 1 and S2). The vast majority of phages that were not associated with the inquired 

host group had k4freq-based distances that were larger than the average value calculated 

for the lysogenic phages associated with the inquired host group. Nevertheless, there were 

no significant differences between the non-associated phages and lytic phages of the in-

quired bacterial group. 

2.3. Comparison of k14exact and k4freq Methods 

We began by calculating the optimal length of k-mers for the new method for distin-

guishing lytic and lysogenic phages, for which we had to consider the length of bacterial 

genomes, aiming to obtain the lowest rate of possible random matches between bacterial 

and phage genomes. The equations proposed by Swain & Vickers et al. [29] revealed that 

the k-mers of 14 and 15 nucleotides would result in <2% of random matches. However, 

the option with k = 15 would require 4x longer computational time (Supplementary Figure 

S4); thus, we opted for oligonucleotides k = 14 (k14exact). The differences between the 

average genomic distances of lytic and lysogenic phages were larger with the k14exact 

than with the k4freq method in all tested groups, except for Vibrio1 and Vibrio2 clusters, in 

which lytic and lysogenic phages had similar genomic distances from their host using 

both methods (Figures 1 and 3). The average k14exact genomic distances of lytic and lys-

ogenic phages to all strains of their associated hosts were 0.965 ± 0.020 and 0.895 ± 0.059, 

which sets the threshold for distinguishing the two groups to 0.955 (Supplementary Fig-

ure S3). We observed an important advantage of the k14exact method compared to 

k4freq—it provided better distinguishing between lytic and lysogenic phages for the Ba-

cillota phylum. While no statistical differences were detected for lytic and lysogenic 

phages of Staphylococcus with k4freq (Figure 1), the k14exact method (Figures 3 and S5) 

yielded values with significant differences (p = 0.025, Supplementary Table S4). Similar to 

the k4freq method, the k14exact method yielded no significant differences between lytic 

phages of the inquired bacterial group and phages not associated with this bacterial 

group. 

Figure 2. Details of the k4freq-based distances of the two Pseudomonas clusters to their own phages.

We also analyzed the k4freq-based genomic distances between bacterial genomes
and phages that are not associated with these bacteria (third and fourth violin plots in
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Figures 1 and S2). The vast majority of phages that were not associated with the inquired
host group had k4freq-based distances that were larger than the average value calculated
for the lysogenic phages associated with the inquired host group. Nevertheless, there
were no significant differences between the non-associated phages and lytic phages of the
inquired bacterial group.

2.3. Comparison of k14exact and k4freq Methods

We began by calculating the optimal length of k-mers for the new method for distin-
guishing lytic and lysogenic phages, for which we had to consider the length of bacterial
genomes, aiming to obtain the lowest rate of possible random matches between bacterial
and phage genomes. The equations proposed by Swain & Vickers et al. [29] revealed that
the k-mers of 14 and 15 nucleotides would result in <2% of random matches. However, the
option with k = 15 would require 4x longer computational time (Supplementary Figure S4);
thus, we opted for oligonucleotides k = 14 (k14exact). The differences between the average
genomic distances of lytic and lysogenic phages were larger with the k14exact than with
the k4freq method in all tested groups, except for Vibrio1 and Vibrio2 clusters, in which lytic
and lysogenic phages had similar genomic distances from their host using both methods
(Figures 1 and 3). The average k14exact genomic distances of lytic and lysogenic phages
to all strains of their associated hosts were 0.965 ± 0.020 and 0.895 ± 0.059, which sets
the threshold for distinguishing the two groups to 0.955 (Supplementary Figure S3). We
observed an important advantage of the k14exact method compared to k4freq—it provided
better distinguishing between lytic and lysogenic phages for the Bacillota phylum. While
no statistical differences were detected for lytic and lysogenic phages of Staphylococcus with
k4freq (Figure 1), the k14exact method (Figures 3 and S5) yielded values with significant
differences (p = 0.025, Supplementary Table S4). Similar to the k4freq method, the k14exact
method yielded no significant differences between lytic phages of the inquired bacterial
group and phages not associated with this bacterial group.
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2.4. Reference Genomes Set Tested for the Strain-Level Association of Plasmids

The last step of the exploration of our NCBI genome reference dataset involved
calculating k4freq and k14exact distances for bacteria and their associated plasmids and
plasmids not associated with them, which, in total, comprised a set of 6482 plasmids
(Escherichia n = 4963, Lactococcus n = 253, Listeria n = 56, Pseudomonas n = 184, Salmonella
n = 57, Shigella n = 238, Staphylococcus n = 620, and Vibrio n = 111). In contrast to the phages
in the NCBI Virus RefSeq, plasmids are associated with concrete bacterial strains in this
database, although experimental data show that many of them can move between different
bacterial strains or species. We expected that each bacterial strain will have the shortest
genomic distance to the plasmid(s) precisely associated with it. Nevertheless, the results
of the k4freq analysis revealed no significant differences between the plasmids associated
with the inquired strain (0.021 ± 0.009) and the plasmids associated with the other strains
belonging to the same hexamer-based cluster (0.021 ± 0.008, Figures 4 and S4).

The same was observed for the k14exact distances: the genomic distances of the
associated plasmids (0.938 ± 0.058) did not differ from the distances of the plasmids
associated with the other strains from the same bacterial group (0.938 ± 0.058, Figure 5).
The group of plasmids associated with bacteria from other hexamer-based clusters had
significantly larger k4freq (0.045 ± 0.017, Figure 4) and k14exact (0.974 ± 0.017, Figure 5)
distances than the plasmids associated with the inquired bacterial group (with p < 0.0001).
The k14exact method proved to be very useful for the detection of plasmids that share
a large portion of their genetic information with most of the genomes in our reference
datasets, including distant taxa (visualized as outliers in Figure 5, e.g., Vibrio1).
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plasmids, to the plasmids associated with other bacterial genomes from the same cluster, and to the
plasmids associated with bacteria from other clusters.



Viruses 2023, 15, 1196 8 of 16Viruses 2023, 15, x FOR PEER REVIEW 9 of 17 
 

 

 

Figure 5. k14exact-based distances of the strains belonging to nine bacterial clusters to their own 

plasmids, to the plasmids associated with other bacterial genomes from the same cluster, and to the 

plasmids associated with bacteria from other clusters. 

2.5. Interactions of Klebsiella Pneumoniae Strains with Their Lytic Phages 

The genomic distance values obtained for all strains within their hexamer-based clus-

ters suggested that the k4freq and k14exact methods do not provide strain-level resolution 

of their association with the phages. In order to explore the strain-level resolution of the 

k4freq and k14exact methods, we included an additional experimental dataset, because 

the NCBI Virus RefSeq does not provide strain-level resolution of the phages–host inter-

actions. We analyzed a set of 5658 combinations of 41 Klebsiella phages and 138 Klebsiella 

strains that had been tested in our laboratory for their interactions [22]. This set contained 

phages that were capable of infecting from 1 to 17 Klebsiella strains. The strains had differ-

ent levels of resistance to the tested phages: there were 76 Klebsiella strains that resisted all 

tested phages, while the remaining 62 strains were lysed by at least one phage and maxi-

mally by nine phages from this collection. The genome analysis of these phages in our 

previous study showed that they belong to 13 genomic similarity groups. However, 

phages from the same genomic group did not react with the same Klebsiella strains. The 

k4freq and k14exact showed that phages from the same genomic group had similar ge-

nomic distances to the Klebsiella strains, which means that these genomic distances do not 

provide strain-level resolution of the phage specificity (Supplementary Figure S6). 

Nevertheless, our results showed that the genomic distances can identify phages with 

the highest number of lytic interactions with different strains of the same species. The lytic 

lifestyle of the Klebsiella phages was confirmed in the present study by the average values 

obtained for k4freq (0.032 ± 0.007) and k14exact (0.962 ± 0.011) genomic distances, which 

fell within the range calculated for the lytic phages using the NCBI reference dataset (Fig-

ures 6 and S7). 

Figure 5. k14exact-based distances of the strains belonging to nine bacterial clusters to their own
plasmids, to the plasmids associated with other bacterial genomes from the same cluster, and to the
plasmids associated with bacteria from other clusters.

2.5. Interactions of Klebsiella Pneumoniae Strains with Their Lytic Phages

The genomic distance values obtained for all strains within their hexamer-based clus-
ters suggested that the k4freq and k14exact methods do not provide strain-level resolution
of their association with the phages. In order to explore the strain-level resolution of the
k4freq and k14exact methods, we included an additional experimental dataset, because the
NCBI Virus RefSeq does not provide strain-level resolution of the phages–host interactions.
We analyzed a set of 5658 combinations of 41 Klebsiella phages and 138 Klebsiella strains
that had been tested in our laboratory for their interactions [22]. This set contained phages
that were capable of infecting from 1 to 17 Klebsiella strains. The strains had different levels
of resistance to the tested phages: there were 76 Klebsiella strains that resisted all tested
phages, while the remaining 62 strains were lysed by at least one phage and maximally
by nine phages from this collection. The genome analysis of these phages in our previous
study showed that they belong to 13 genomic similarity groups. However, phages from the
same genomic group did not react with the same Klebsiella strains. The k4freq and k14exact
showed that phages from the same genomic group had similar genomic distances to the
Klebsiella strains, which means that these genomic distances do not provide strain-level
resolution of the phage specificity (Supplementary Figure S6).

Nevertheless, our results showed that the genomic distances can identify phages with
the highest number of lytic interactions with different strains of the same species. The
lytic lifestyle of the Klebsiella phages was confirmed in the present study by the average
values obtained for k4freq (0.032 ± 0.007) and k14exact (0.962 ± 0.011) genomic distances,
which fell within the range calculated for the lytic phages using the NCBI reference dataset
(Figures 6 and S7).
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Interestingly, the Klebsiella phages showing the largest number of lytic interactions
had the shortest genomic distances to Klebsiella: four phages (S8b, S8c, S9a, S11a) were
below the lytic threshold established for k4freq (0.026), and five phages (A1a, S8c, S8b,
S9a, S13a) were below the lytic threshold established for k14exact (0.955). The phages
with more lytic interactions tended to have short k4free and k14exact distances, which
indicates that both methods can be used for the identification of highly reactive lytic phages
(Figure 6). Interestingly, these highly reactive lytic phages in the “lysogenic area” were in
fact later experimentally shown to have a lysogenic relation with other Klebsiella strains
(Supplementary Table S5). This shows that it is very difficult to draw a clear line to separate
phages with lytic and lysogenic lifestyles, which clearly depend on the host strain. These
difficulties were reflected in the disagreements of the phage lifestyle predictions made
by the four bioinformatic approaches (PhageAI, PHACTS, BACPHLIP, presence of genes
associated with lysogeny) used in our study (Supplementary Table S5). The genomic
distance methods developed in our study represent yet another bioinformatic approach,
which in some cases was more effective than the previously available tools. For example,
the other four bioinformatic tools indicated that the phage A1a was lytic; however, it was
detected in the “lysogenic area” by the k14exact method, and, in fact, its lysogenic activity
was observed in the laboratory with the K. pneumoniae strain 852 (Supplementary Table S5).

2.6. Host–Phage Interactions Predicted from Bacterial Single Cells

The knowledge on phage–bacteria genomic distances, gathered when testing the NCBI
reference genomes set and Klebsiella phages, was applied to a phage–host interaction matrix
obtained from single-cell genomics data from our previous study on a hot spring microbial
mat (Jarrett et al., 2020). We analyzed a set of 24 diverse bacterial species belonging to the
phyla Acidobacteria (n = 4), Armatimonadetes (n = 1), Bacteroidetes (n = 4), Desulfobacteraeota (n
= 4), Nitrospirae (n = 1), Patescibacteria (n = 2), Planctomycetes (n = 1), Pseudomonadota (n = 1),
Spirochaetes (n = 2), Verrucomicrobia (n = 2), and Zixibacteria (n = 1). We calculated k4freq
and k14exact distances between these 24 bacterial genomes and 41 phages detected in
single-cell assemblies (Supplementary Table S6), indicating that these phages were located
either inside the cells of their bacterial hosts or attached to the cell surface. In our previous
study, the analysis of their genome coverages in metagenomic samples from different layers
of the same microbial mat suggested that these phages had a temperate lifestyle, and in the
present study, we aimed to verify it by the k4freq and k14exact methods.

The average genomic distance of the phages to their single cell-associated hosts was
0.028 ± 0.015 for k4freq and 0.965 ± 0.032 for the k14exact method (Figure 7), which was
slightly above the lytic/lysogenic threshold established using the NCBI dataset of eight
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cultured Bacillota and Pseudomonadota genera described above (0.026 for k4freq and 0.955
for k14exact).
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line corresponds to the thresholds for distinguishing lytic and lysogenic phages calculated using
cultured bacteria.

Nevertheless, these values were still lower than the maximum genomic distances
of the lysogenic phages to their associated hosts detected in the NCBI dataset, which
means that the obtained genomic distances do not exclude the lysogenic lifestyle of these
phages. The genomic distances of the 24 bacterial genomes to the non-associated phages
from the same microbial mat (0.059 ± 0.026 for k4freq and 0.987 ± 0.032 for k14exact,
Figure 7) were higher than the average of the genomic distances of the NCBI reference
dataset bacteria to the non-associated phages from the same dataset (0.042 for k4freq and
0.97 for k14exact). The results from our small single-cell dataset suggest that the genomic
distance values calculated for associated and non-associated phages differ more in natural
microbiome settings than in our NCBI dataset. Nearly all (>95%) phages had k4freq and
k14exact genomic distances to their associated hosts that were shorter than the average of
the genomic distances of the same bacterial genomes to the non-associated phages from the
same microbial mat (Figure 7). This suggests that the results of the k4freq and k14exact
genomic distance calculations are in accordance with the temperate life cycle predicted
from the metagenomic spatial series in our previous study.

3. Discussion

In the first part of our study, we determined genomic distance thresholds for distin-
guishing lytic and lysogenic phages using the NCBI reference dataset containing different
strains of eight bacterial genera, for which at least five lytic and five lysogenic phages were
available. The values of the k4freq-based genomic distances obtained in our study can be
compared directly with those from Deschavanne et al. (2010), who also investigated phages
of Escherichia, Pseudomonas, and Staphylococcus [17]. They set the k4freq-based genomic
distance threshold for distinguishing lytic and lysogenic phages of Escherichia coli and
Pseudomonas aeruginosa to 0.018, but the same threshold cannot be applied to Staphylococcus,
since some Podoviridae lytic phages had genomic distances from the S. aureus genome as
low as 0.015. The sets of Staphylococcus phages used in our study and in the study of De-
schavanne et al. (2010) overlapped by two-thirds (differences were due to different criteria
for reference genomes selection); however, both studies yielded similar results. Our result



Viruses 2023, 15, 1196 11 of 16

slightly differed from the threshold obtained in the study of Deschavanne et al. (2010),
in which a smaller dataset was used. Expanding the dataset to an even larger number of
taxa would surely result in a higher precision for defining the lytic-lysogenic threshold.
Nevertheless, many bacterial genera do not contain a sufficient number of associated lytic
and lysogenic phages to perform a proper comparison. The cultivation, experimentation,
and reporting biases in the NCBI Virus RefSeq are the reasons why the phages of many
well-studied bacterial genera, such as Streptococcus, Klebsiella, or Yersinia, could not be as-
sessed for distinguishing between lytic and lysogenic phages. The lytic-lysogenic threshold
might be adjusted in the future, after more knowledge about the lifestyle of uncultured
phages is gathered from experimental data on environmental samples (using single-cell
genomics and metagenomics). More data on uncultured phages will show whether it is
possible to specify a single lytic-lysogenic threshold for all phages or whether the threshold
must be adjusted according to the bacterial groups they infect (e.g., different thresholds for
different phyla).

Recently developed computational tools for predicting the phage lifestyle based on
their genomic signatures, such as PhagePred [30] and DeePhage [31], were designed to
function without the need to associate inquired phages with a bacterial host. Nevertheless,
these tools have been optimized using the whole NCBI Virus RefSeq database, in which
some bacterial groups contain only lytic phages, while others are associated with lysogenic
phages only. This suggests that the results generated by these host-free tools might be
influenced by the different genomic content of the bacterial hosts of these phages, even if
the host genome is not considered. Phages associated with different bacterial groups have
very different genomic signatures, which allows for the clusterization of their genomes into
groups and the identification of novel phages related to these clusters [32]. In contrast to the
above-mentioned host-free computational tools based on genomic signatures, we explored
strain-level differences of genomic distances between phages and bacteria. We showed that
all the strains from a given hexamer-based cluster had very similar genomic distances to
an inquired phage. We did not detect significant differences between genomic distances
calculated for the lytic phages associated with the inquired bacterial cluster and the phages
not associated with this bacterial cluster (both lytic and lysogenic), which indicates that, in
natural communities containing previously unknown phage–bacteria pairs, the true lytic
phages of an inquired bacterial group might be confused with lytic or lysogenic phages
not associated with that bacterial group. This indicates that before analyzing the phage
lifestyle in metagenomic studies, the correct phage–bacteria linkages must be provided at
least at the level of host hexamer-based frequencies clusters.

We need to underline that shorter genomic distances between phages and their hosts
do not automatically mean that these phages are lysogenic, and they do not exist in a
lytic form. Different evolutionary models suggested that there is an evolutionary pressure
on lytic phages to switch to lysogeny [33]. Many phages, which are observed in the 0.2
µm filtered fractions of environmental samples as numerous virions, can be detected in
the form of prophages integrated into the genomes of bacteria in some of the related
samples [34]. Lysogenic phages have the greatest ability to adapt to a variety of bacterial
host strains [18], which is evident from the number of highly similar prophages detected
across multiple bacterial strains or species [35]. Distant environments are more likely to
harbor more reactive phages [23]; therefore, in our previous Klebsiella study we aimed
to isolate new lytic phages of K. pneumoniae from environments distant from the human
respiratory tract, such as soil. Indeed, we managed to isolate broad host-range phages
with lytic interactions with up to 17 Klebsiella strains. Surprisingly, these highly reactive
phages had the shortest genomic distance from the Klebsiella genomes, falling into the
“lysogenic genomic distance zone”. The only exception was the S9a phage, which has not
been observed in the form of lysogens yet, which points to the reporting and experimental
biases mentioned above. Since it seems ambitious to draw a straight line between lytic
and lysogenic phages, we suggest that the k4frew and k14exact methods can have another
very practical application. For example, they can be used for predicting which phages will
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have the highest number of lytic interactions with a collection of bacterial host strains. This
will considerably reduce the efforts required for testing all the combinations of phages and
bacterial strains in the laboratory, aiming to decrease the time necessary for finding phages
suitable for personalized phage therapies [36].

Similar to phages, neither the k4freq nor k14exact genomic distance of plasmids to
bacterial genomes had strain-level resolution—not all bacterial strains had the shortest
distances to the phages associated with them. Nevertheless, we detected significant differ-
ences between plasmids associated with the inquired bacterial cluster and plasmids not
associated with this cluster, which means that we reached better resolution than the Plas-
Flow genomic signatures-based computation tool [37] and %GC content-based analysis [38]
that provided phylum-level resolution. Neither random forest method employed in the
PlasmidHostFinder tool [39] reaches strain-level resolution. Nevertheless, for the analysis
of metagenomic samples, linking plasmids to their bacterial host group (species-like group)
seems to be sufficient, because the binning of metagenome-assembled genomes (MAGs)
rarely provides strain-level resolution [40]. Some plasmids can be acquired by a wide range
of bacterial species or genera, which is reflected in their genomic signatures [41]. The detec-
tion of wide-range host plasmids is the most important application of the genomic distance
analysis; it can be used, for example, for predicting the dissemination of antimicrobial
resistance genes on a global scale, showing the potential of the acquisition of plasmids
from soil by bacteria from the human microbiome [42]. In our study, the k14exact method
was shown to be very efficient in identifying plasmids that share large portions of their
DNA sequence with non-associated bacteria. It means that this method identifies plasmids
actively contributing to the horizontal gene transfer across bacterial genera.

In conclusion, the genomic distance methods have several practical applications—they
can be used for predicting (i) the lifestyle of environmental phages if they are associated
with a bacterial host at least on a species-like level, which is important for assessing their
environmental impact, (ii) phages with a wide range of host strains, which is useful for
the development of personalized phage therapies, (iii) the detection of plasmids with
the largest potential for the dissemination of antimicrobial resistance genes across distant
bacterial taxa.

4. Methods
4.1. Datasets

The RefSeq genomes of phages were downloaded from NCBI Virus on 2 March 2022.
For the ensuing analyses, we selected only those phages that had information about their
life cycle provided by Mavrich & Hatfull [43]. Bacterial host genera were selected if
there were at least five lytic and five lysogenic phages associated with them. Complete
genomes or genomes at the chromosome assembly level of the associated host genera were
downloaded from RefSeq, along with their associated plasmids. In total, we worked with a
set of 291 phages, 6482 plasmids, and 5186 bacterial genomes from 8 genera.

In the second analysis, we used a set of genomes of 41 lytic phages isolated in our labo-
ratory on K. pneumoniae and 138 K. pneumoniae strains, reported in our previous study [22].

The last analysis was performed with pairs of environmental phages and their hosts
associated on a single-cell level from our previous study [15].

4.2. Genomic Signatures Based on Oligonucloetide Frequencies

For a given k-mer w, its occurrence in a contig X is defined as Xw and the relative
frequency of this k-mer is defined as:

f X
w =

Xw

∑w Xw

From these measurements, a principal component analysis was carried out, and the
resulting projection was analyzed using the DBSCAN (Density-based spatial clustering
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of applications with noise) clustering algorithm. Values of eps = 0.50 and MinPts = 10 in
DBSCAN were used in order to obtain a small number of relatively dense clusters.

The value k = 6 was chosen for the clustering of bacterial genomes in the NCBI
reference set. Afterwards, we calculated the distances of bacterial strains to the phages and
plasmids according to Deschavanne et al. (2010), which was adjusted to k = 4, taking into
the account the shorter length of the plasmids/phage genomes [17].

Following the guidelines of Vinga & Almeida (2003) [44], we calculated the Euclidean
distance (k4freq) between the pairs of genomes:

Eu(X, Y) =
√

∑
w∈Sk

| f X
w − f Y

w |
2

4.3. Alignment-Free Genomic Distances

In this study, we proposed a new distance of similarity for high values of k (k > 14),
which is a variation of the distance D2 defined by Swain &Vickers (2022) [29], where the
value of 4k is two orders of magnitude larger than the size of the largest genome.

SX = ∑
w

Xw

SY = ∑
w

Yw

If SX < SY, we define the similarity function SIM between two sequences as:

SIM(X, Y) = ∑w Xw

SX
∀(Yw > 0)

Finally, we define the distance measure DSW(k14exact) as the inverse of the Similarity
function, as follows:

DSW(X, Y) = (1− SIM(W, Y))

The obtained distance is normalized to values between 0 and 1. If the DSW = 0, it
means that the genome X is inserted into the genome Y. If DSW = 1, there is no similarity
between two genomes (they do not share any oligonucleotides of length k = 14).

4.4. Determination of Thresholds for Distinguishing Lytic and Lysogenic Phages

In order to estimate the performance of each classifier, its corresponding receiver
operating characteristic curve (ROC curve) was constructed, and the area under the curve
(AUC) was calculated. The best threshold was determined from the point on the curve
closest to the ideal classifier, which corresponds to the point (0, 1) in the ROC space.

4.5. Determination of Lysogenic Activity

The screening for lysogenic activity was conducted by evaluating 30 phage-resistant
colonies for the spontaneous release of phage particles, following the protocol of Gordillo
Altamirano & Barr (2021) [45].The preferred lifestyle of the lytic Klebsiella phages was
determined by the k14exact and k4freq methods, as described above, and by four other
bioinformatic approaches: (1) PhageAI [7], (2) PHACTS [5], (3) BACPHLIP [46], (4) looking
for the presence of proteins related to lysogenic lifestyle (replication and partition system
proteins ParA/B, integrase, excisionase, repressors, and Cro/C1-like proteins) by a semantic
search from functional annotation with PHROGS [47].

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/v15051196/s1. Figure S1: PCA of genomic signatures based on
hexamer frequencies of the reference bacteria; Figure S2: k4freq-based distances of the bacterial genera
to the reference phages; Figure S3: ROC curves for k4freq and k14exact; Figure S4: Statistical error
analysis for different k-mer options; Figure S5: k14exact-based distances of the bacterial genera to the
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reference phages; Figure S6: Distances of 75 Klebsiella strains to 41 Klebsiella phages; Table S1: Bacterial
genomes in the reference set; Table S2: Phage genomes in the reference set; Table S3: Plasmids
in the reference set; Table S4: Summary of statistical comparisons of genomic distances; Table S5:
Lysogenic activity of K. pneumoniae phages; Table S6: Bacterial single-cells and phages detected in
their assemblies
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