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The premarshalling problem consists of sorting the containers placed in a bay of the container yard so
that they can be retrieved in the order in which they will be required. We study the premarshalling
problem with crane time minimization objective and develop a beam search algorithm, with some new
elements adapted to the characteristics of the problem, to solve it. We propose various evaluation cri-
teria, depending on the type of container movement, for its local evaluation; a new heuristic algorithm
including local search for blue its global evaluation; and several new dominance rules. The computational
study shows the contribution of each new element. The performance of the complete algorithm is tested
on well-known benchmarks. The beam search algorithm matches all known optimal solutions, improves
on the known suboptimal solutions, and obtains solutions for the largest instances, for which no solution
had previously been found.
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1. Introduction

Maritime transport accounts for more than 80% of international
trade, with 11.08 billion tonnes transported in 2019 (UNCTAD,
2020). An increasing part of this volume corresponds to con-
tainerized transport. Containers are nowadays used for all kinds of
goods, not only manufactured goods, but also fresh products. Con-
tainer terminals handled 827 million TEUs (Twenty-foot Equivalent
Unit) in 2020, with ports such as Shanghai moving more than 43
million TEUs (Statista, 2021).

The daily operation of container terminals faces increasing pres-
sure from ship operators. On the one hand, vessel size is constantly
increasing. The vessel HMM Algeciras can carry 23,964 TEUs and
many similar vessels are being built and will be operational in the
near future. On the other hand, the time a vessel spends in port
is continuously decreasing, with a median of 0.97 days in 2019
(UNCTAD, 2020). To serve these large vessels with the required
speed, terminals are continuously upgrading their facilities and
machinery. On the seaside, they are installing larger quay cranes
which can handle two 40-foot containers in one move, thus in-
creasing the rate of moves per hour (Yue, Fan, & Ma, 2021). How-
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ever, optimizing one subsystem is not effective if other subsystems
remain deficient. In this respect, the container yard, in which con-
tainers are temporarily stored, is considered the bottleneck of the
terminal. As storage space is limited and containers are stacked on
top of each other, to retrieve a container that is not on top of a
stack all the containers above it must be moved, resulting in un-
productive and time-consuming movements. Therefore, an effec-
tive way to smooth out peak workloads once the ship arrives, and
thus speed up the loading and unloading of vessels, is to use the
yard cranes prior to the arrival of the ship to sort the container
yard.

The problem of sorting the containers in the yard so that they
will be available in the order in which they will be required is
known as the Container Premarshalling Problem (CPMP). In its
classical version the objective is to minimize the number of con-
tainer moves required to sort the bay and several exact methods,
and many heuristic and metaheuristic algorithms have been pro-
posed to solve it. However, the number of moves does not cor-
rectly reflect the time required by the crane to sort the containers,
which depends on their positions. Parrefio-Torres, Alvarez-Valdes,
Ruiz, & Tierney (2020) proposed a variant of the problem, the
Container Premarshalling Problem with Crane Times, CPMPCT, in
which the objective is to minimize the time the crane takes to sort
the containers. The computational analysis carried out by the au-
thors shows the gain in precision that can be obtained using this
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objective function, as opposed to the one that minimizes the num-
ber of moves, reducing the crane time by 24% in some cases.

In this paper, we address the CPMPCT and develop a beam
search algorithm (Reddy et al, 1977). The basic beam search
framework is embedded into an iterative procedure and problem-
specific elements are added, such as considering different selec-
tion criteria for different types of container moves and develop-
ing an efficient heuristic algorithm, including local search, for the
global evaluation phase. An extensive computational study on well-
known benchmarks shows that the proposed beam search proce-
dure matches the optimal solutions provided by the branch and
bound algorithm of Parrefio-Torres et al. (2020) and outperforms it
on large instances.

The paper is structured as follows. The relevant literature is re-
viewed in Section 2. In Section 3, we formally describe the new
problem of minimizing the crane times and show how these crane
times are calculated. Section 4 introduces new dominance criteria
which would be used to reduce the search. The beam search algo-
rithm is presented in Section 5. The computational results are de-
scribed in Section 6 and conclusions and future work are discussed
in Section 7.

2. Literature review

Stacking problems, in which items are placed on top of each
other and only the one on top is directly accessible, occur in many
environments, not only in container terminals. Ge, Meng, Liu, Tang,
& Zhao (2020) address the problem of stacking slabs in the steel
industry and Maniezzo, Boschetti, & Gutjahr (2021) the problem
of stacking boxes in a warehouse. As for the stacking problems in
container terminals, which are the subject of this paper, a recent
survey by Caserta, Schwarze, & Vol (2020) classifies them into
three types: premarshalling, re-marshalling, and block relocation
problem. The premarshalling problem is concerned with finding
the shortest sequence of moves that sorts the containers within a
bay according to a known retrieval sequence. It is solved for a sin-
gle bay since moving the crane between bays is time consuming
and can produce safety problems due to crane-crane or human-
crane interactions. The re-marshalling problem is concerned with
finding the minimum length sequence of moves for retrieving con-
tainers from a source bay and positioning them in a target bay.
Finally, the block relocation problem aims to retrieve all the con-
tainers from a bay in the prescribed order while minimizing the
number of rehandles. Caserta et al. (2020) review the relevant lit-
erature on the three problems, so here we will focus on premar-
shalling problems.

In the classical approach to the premarshalling problem, the
purpose of the objective function has been to minimize the num-
ber of container moves required to sort the bay. Integer linear
models have been proposed by Lee & Hsu (2007), van Brink &
van der Zwaan (2014), de Melo da Silva, Toulouse, & Calvo (2018),
and Parrefio-Torres, Alvarez-Valdes, & Ruiz (2019). Other exact
procedures are the A* algorithm of Expdsito-lzquierdo, Melian-
Batista, & Moreno-Vega (2012), the iterative deepening A* (IDA*)
of Tierney, Pacino, & Vol (2017), and the branch and bound algo-
rithms of Prandtstetter (2013), Zhang, Jiang, & Yun (2015), Tanaka
& Tierney (2018), and Tanaka, Tierney, Parrefio-Torres, Alvarez-
Valdes, & Ruiz (2019). Many heuristic and metaheuristic algo-
rithms have also been proposed, such as the heuristic algorithm of
Caserta & Vol3 (2009), based on the Corridor Method, the neigh-
borhood search algorithm of Lee & Chao (2009), or the heuristic
tree search procedure of Bortfeldt & Forster (2012). More recently,
Jovanovic, Tuba, & Vof§ (2017) have proposed a deterministic al-
gorithm based on the randomized greedy procedure by Expdsito-
Izquierdo et al. (2012), Hottung & Tierney (2016) a biased random-
key genetic algorithm, Wang, Jin, & Lim (2015), Wang, Jin, Zhang,
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& Lim (2017) propose target-guided procedures embedded in beam
search algorithms, and Hottung, Tanaka, & Tierney (2020) a deep
learning tree search procedure. Zweers, Bhulai, & van der Mei
(2020) study an interesting version of the problem in which the
time to perform the moves is limited, but even in this case the
time is approximated by the number of moves.

However, Parrefo-Torres et al. (2020) have shown that the
number of moves does not accurately represent the time the crane
needs to rearrange the bay. Therefore, they propose a new vari-
ant of the problem in which the objective is to minimize the crane
time, in line with other studies in the closely related Block Relo-
cation Problems in which crane time is considered in the objec-
tive function (Jovanovic, Tuba, & VoR3, 2019; Lee & Lee, 2010; Lin,
Lee, & Lee, 2015; da Silva Firmino, de Abreu Silva, & Times, 2019).
The results reported by Parrefio-Torres et al. (2020) indicate that
the problem is more difficult to solve than the classical CPMP and
their integer model and branch and bound algorithm do not per-
form well on the largest test instances in the literature. In this pa-
per we propose a metaheuristic algorithm which obtains optimal
or near-optimal solutions for all types of instances.

3. Problem description

The container yard is divided into several blocks consisting of
parallel bays. Each bay has the same number of columns or stacks
in which containers are piled up in several tiers. The maximum
number of tiers or maximum number of containers each stack can
hold is limited by the height of the cranes operating in the yard. As
a consequence of stacking, in order to reach a specific container, it
may be necessary to handle other containers above it. Fig. 1 shows
a schematic representation of a container yard.

The container premarshalling problem with crane time mini-
mization objective, CPMPCT, seeks to obtain the sequence of move-
ments that requires the least crane time to arrange the contain-
ers located in a bay in the order in which they will be required
later, considering that no container can leave the bay during that
sequence.

We assume the set C of all the containers placed in a bay to be
the same size, therefore the bay can be seen as a matrix T x S,
where T represents the highest tier of the stacks and S the to-
tal number of stacks. Let S be the set of stacks in the bay and 7
the set of tiers. We describe each move by a quadruple (o, t,d, ),
where 0,d € S and t,1 € 7. The pair (o,t) defines the origin of the
move and (d,l) defines its destination. Therefore, a sequence of
n moves is represented as s = (01, t1,dq,11) ... (0n, tn, dn, ln), ¢; €C
being the container moved in (o;, t;, d;, l;). Since the order in which
the containers leave the bay is known in advance, each container
is assigned a number, its group, indicating the order in which it
will be required. The set of container groups is denoted as G =
{1, ..., G}, where containers in group 1 will be required first and
those in group G last. The group of container ¢; is indicated by
function group(c;). The sequence s is a solution of the problem if
the bay is sorted after the sequence. A bay is sorted if there are no
blocking containers, i.e, containers blocking the removal of others.
A container at a position (o, t) blocks the removal of others if its
group is higher than that of any of the containers at lower posi-
tions, (o,t”) such that t’ <t. Fig. 2 shows an example of the solu-
tion of a premarshalling problem. The solution shown in the fig-
ure is optimal for both the CPMP and the CPMPCT. An alternative
optimal solution for the CPMP is (2,2,1,4)(3,4,2,2)(4,3,2,3), which is
not optimal for the CPMPCT.

We calculate the time needed for the crane to perform a
movement following the procedure developed by Parrefio-Torres
et al. (2020). The crane specifications correspond to the Rubber
Tyred Gantry (RTG) cranes used in the Noatum terminal in the
port of Valencia in Spain. More specifically, they correspond to a
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Fig. 1. Container yard scheme.
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Fig. 2. Example solution s = (2,2,1,4)(3,4,2,2)(4,3, 3,4) for the CPMPCT. Blocking containers are highlighted.

Konecranes RTG Transtainer 79. The authors distinguish between
loaded/unloaded vertical and horizontal moves. The times are not
proportional to the distances, as the acceleration of the crane is
also taken into account. What is directly proportional to the tier in
which the container is placed is the twistlock time, because the os-
cillation of the crane spreader depends on the length of the cable,
due to the sway motion of the suspended load.

Given a solution s= (0q,t;,d1,1)...(0n,tn,dn,ly), the total
time taken by the crane to perform the moves in solution s is cal-
culated according to Eq. (1).

t(s) = h%(01) + Y _h°(di_y,0) + ) _v'(t) + ) _h'(0;, dy)
iz i1 i1

n
+ Y 1) (1)

i=1

Consider the movement of a single container ¢; from (o;,t;)
to (d;,l;). First, the crane spreader moves horizontally along the
upper path line from the destination stack of the previous move
(d;_1) to the corresponding stack (o;); this time is represented by
ho(d;_1, 0;). It then moves down to reach the container in tier t;,
twistlocks it, and hoists it up to the upper travel line; this time
is represented by v!(t;). Once the container is at the upper travel
line, the loaded crane moves horizontally from stack o; to the des-
tination stack (d;), taking a time h'(o;, d;). Finally, the container is
hoisted down to its new position in tier /; and the spreader is po-
sitioned again at the upper travel line, all requiring a time 1°(J;).
In addition to the moves required to change the positions of con-
tainers, the crane makes an initial move in which it moves hor-
izontally along the upper travel line from its initial position, on
the left of the first stack, to the origin of the first container to be
moved. The time taken for this initial move is denoted as h%(o;).
A lower bound for the time spent to make a move, €, consists of
moving the crane to an adjacent stack, picking up a container from
the topmost tier, and moving it to the topmost tier of an adjacent
stack. Hence, ¢ :=h%(1,2) + v1(T) + k1 (2, 1) + 19(T).

Let n be the total number of blocking containers, 71, ..., Ty, in
the initial bay layout and ¢, the tier in which the blocking con-
tainer t; is initially placed. We represent by 7; the lower bound
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for the time taken by the crane to retrieve and move them. The
time needed to retrieve them is bounded below by considering
that the unloaded crane moves horizontally n times to an adja-
cent stack, moves down to reach each of the blocking containers,
twistlock it, and hoist it to the upper travel line. The time needed
to move them to non-blocking positions is bounded below by con-
sidering that the loaded crane is moved horizontally 1 times to an
adjacent stack, lowered to place each of the blocking containers
in the highest tier to which it can be moved above non-blocking
containers in the initial layout, and lifting the crane spreader to
the upper travel line. Let us consider the example in Fig. 3(1a).
Stacks 1, 2 and 3 each have one non-blocking container on tier 1
and two blocking containers on tiers 2 and 3. Overall, there are 6
blocking containers in the layout. To obtain a feasible solution, all
blocking containers must be moved to non-blocking positions. Let
us consider the move of the first blocking container. In the best
case, the highest tier where it could be well placed above a non-
blocking container is tier 2. Then there would be two non-blocking
containers placed in one stack and one non-blocking container in
the other two. The next blocking container could be moved to the
stack with two non-blocking containers, on tier 3. Then, the high-
est tiers to which 2 of the remaining blocking containers could be
moved to the same stack on tiers 4 and 5, and then, as this stack
would be full, the last two blocking containers would go to tiers 2
and 3 in another stack. Therefore,

6
=6 (h°(1, 2) +h'(1, 2)) +3 0 (6
i=1

+ (2 02) +2-10(3) +10(4) + v°(5)>

Let Iby, be the lower bound for the number of moves described
in Tanaka et al. (2019). The first lower bound for the time spent by
the crane proposed in Parrefio-Torres et al. (2020), lb¢, is described
in the following equation,

n
by = € - (lbmfn>+n - (ho(l, 2)400(T) + h' (1, 2)) 30 (8
i=1

(2)
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Fig. 3. Example of a sequence dominated by another, satisfying Proposition 3.

Table 1
Notation used for problem inputs.

S Set of stacks. S :=|S] is the total number of stacks

T Set of tiers. T := |T| represents the highest tier of the stacks.

g Set of group values. G := |G| represents the highest group value and 1 the lowest group value.

[ Set of containers. C :=|C| is the total number of containers stored in the bay.

n Number of blocking containers, 7, ..., Ty, in the initial layout.

tr, Tier in which the blocking container t; is initially placed.

Ne Lower bound for the time taken by the crane to move the blocking containers in the initial layout.

lby Lower bound for the number of moves to solve the CPMP starting from the initial bay layout.

b, Lower bound for the time taken by the crane to solve the CPMPCT from the initial bay layout.

€ Lower bound for the time taken by the crane to perform a move.

vi(t) Time the crane takes to lower the spreader from the upper travel line to tier t of the container to be moved, twistlock the container and hoist it
to the upper travel line.

vo(l) Time the crane takes to lower a container from the upper travel line to tier t, leave it and return the spreader to the upper travel line.

h'(o,d) Time taken by the crane to move a container along the upper travel line from stack o to stack d.

ho(d, 0) Time taken by the crane to move the spreader (unloaded) from stack d to stack o.

Table 1 summarizes the notation already presented.

4. Dominance rules

The effectiveness of dominance rules in solving the CPMP has
been well studied in the literature (Tanaka & Tierney, 2018; Tanaka
et al,, 2019; Tierney et al., 2017), showing a large reduction in the
number of explored nodes when using tree search algorithms. In
this section we review two dominance rules for the CPMPCT pro-
posed in Parrefio-Torres et al. (2020) and add nine new dominance
rules.

Let § be the Kronecker delta defined as 6xy =0 if x #y and
Sxy=11if x=y. If y is a tuple y = (y1.¥2), then &y, ,) =0 if
x#yr and x #y,, and & (y, ) =1 if x=y; or x =y,. Consider
also the function f(xq,x;, X3, X4) defined as follows:

X1 — 1 [sz = X3
Fx1,%0,%3,%4) = {x1 + 1 Ifxy = x4
X1 Otherwise

To formulate the proposed dominance rules, we consider the
definition of stack invariant to a sequence of moves proposed by
Tanaka et al. (2019).

Definition 1. A stack s is invariant to a sequence of moves
(01,t1,dq,l1) ... (On, ty, dy, In), i.e, from move 1 to n, if its layout
before and after the sequence of moves is the same and none of
the containers placed in it have been moved by the sequence.
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Let k be a stack invariant to the sequence s=
(01,t1,dy,l1) ... (0n, tg,dy, ). The maximum number of tem-
porary containers that are simultaneously assigned to stack k
during the sequence is:

J

Z (Sk.di - Sk.o,v)

i=1

We represent as ngi (s) the number of containers in stack d; af-
ter the nth move of sequence s. In the propositions in this section,
the first move of the sequences, (o01,t;,d;,11), or the last move
(on, tn, dn, Iy), or both, are not changed. They are included because
the calculation of the crane time requires taking into account the
crane movements from the previous position before the changes
and to the next position after the changes.

4.1. Transitive movement dominance

This kind of dominance arises in sequences in which the same
container is moved twice, once from stack a to stack b and then
from stack b to stack c. Proposition 1 (Parrefio-Torres et al., 2020)
refers to the simplest case in which the same container undergoes
two consecutive moves.

Proposition 1. A sequence s; = (01,t1,dq,11)...(0;, 8, d;, 1) (d;, L,
dij1.lig1) ... (dn, ln,dn, ln) is dominated by the sequence s;=
(01, t1,dy, 1) .. (03, . diy1, liyr) - (dn, Iy di, In)
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However, more complex cases can be identified. Let us look
at Fig. 3 illustrating Proposition 2 and consider the top-side se-
quence (1a)-(1g), s;1 = (@3,3,2,4)(3,2,2,5) (31,1,4)(2,5,3,1)(1,4,3,2)
(2,4,1,4)(2,3,1,5), composed of 7 moves. The container with group
value 5 is moved from stack 3 to stack 2 in move 1 and then
from stack 2 to stack 1 in move 6. Stacks 1 and 2 are invariant
to the sequence sj=(3,2,2,5)(3,1,1,4)(2,5,3,1)(1,4,3,2)
(moves from 2 to 5) as can be seen in Fig. 3(1b) and (1f).
Since the number of containers in stack 1 before the move
(2,41,4) is 3, and there is only one temporary container as-
signed to stack 1 during sj, this temporary container could still
be assigned to stack 1 if it had one more container. There-
fore, the same final configuration is obtained by sequence
s5=(3,3,1,4)(3,2,2,4)(3,1,1,5)(2,4,3,1)(1,5,3,2)(2,3,1,5)
(Fig. 3(2a) and (2f)), as can be seen by comparing Fig. 3(1g) and
(2f). Sequence s, in the example dominates sequence s, since
the time taken by the crane to perform it is shorter. Note that if
move (3,3,1,4) is made first (Fig. 3(2a)), instead of move (3,3,2,4)
(Fig. 3(1a)), stack 2 will have one less container during the fol-
lowing moves (tiers highlighted in blue) and stack 1 will have one
more container (tiers highlighted in red).

Proposition 2. The sequence s; = (01,t1,dq,11)...(0;t,d;, 1) ...
(di,li,dy_1,lh-1)(0n, ty, dn, ln) is dominated by s, = (01,1tq,
dn—] ) ln—]) oo (Ois t{s di) I;/) oo (On—2s tr/],Zs dn—zy 1;1,2)(01‘!’ tﬂs dﬂv lﬂ)

in which t := f(t;,0;,dqy,dp_q) and I := f(l;. d;, dy.dy_q) if the
following conditions are satisfied:

1.
2.

3.

dq and d,,_q are invariant from move 2 to n — 2 in s.

ngn‘_zl (s1)+1+ t;;':z (s1)<T

val; > valy, where

val; =h'(01,dy) + h°(dy, 02) + h°(dn_2. d1) + h'(d1. dp_1)

+h°(dp_1, 00) +0° (L) + v (1)
n-2
+y (301‘(d1,d,,,1) V() + 8, dydy 1) VO (Ii))
i=2
val, =h' (01, dn_1) + h°(dy_1, 02) + h°(dy_3. 0n)
n-2
+ Z ((Soiv(dhdn—l) V! (tl/) + Sdiv(dbdn—l) : vo(ll/))
i=2
If the bay is sorted after (dq,l;,dy_1,l,_1) in sequence sq, the
same proposition holds without considering (on, tn, dn, Iy) in either s;
or s, with h9(d,_q, 0n) = h®(d,_. 0,) = 0.

The idea of the next proposition is analogous: there is a
container moved twice, from stack a to b and then from b to c.
Here the origin stack of the first move of this container (stack
a) and the stack to which the container is temporarily moved
(stack b) are invariant to the sequence of moves between them,
but the destination stack of the second move of the container
(stack c) is not. The container can be moved directly from a
to c after the sequence to which a and b are invariant. Start-
ing from the initial bay layout in Fig. 3(1a), in sequence s; =
(1,3,3,4)(1,2,2,4)(3,4,1,2)(3,3,2,5)(1,2,3,3)(2,5,3,4)(2,4,3,5)
a container is moved twice in moves 2 and 7 (in bold). It
is dominated by s;=1(1,3,3,4)3,4,1,3)(3,3,2,4)(1,3,3,3)
(2,4,3,4) (1,2, 3,5) in which the container is moved once
at the end of the sequence. However, in sequence s,, move 2
simply reverses move 1, so s, is dominated in turn by (3,3,2,4)
(1,3,3,3)(2,4,3,4)(1,2,3,5).

Proposition 3. The sequence s; = (01,t1,dy,11)(02,t5,d3,15) ... (0;,
ti,di, ;) ... (dy, Ip,dn, Iy) is dominated by sequence sy =
(O], tl, d], l])(Og, té, d3, lé) - (Oj, ti/’ d,’, ll/) - (02, tz, dn, ln) where
t/ := f(t;, 0;.dy, 02) and I := f(l;, d;, dy. 05) if the following condi-
tions are satisfied:
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. 05 and d, are invariant to moves 3 ton—1 in sy.
2. (s1) + 1418, (s) =T
. valy > valy, where

valy =h0(d1, 0y) + h! (0y,dy) + ho(dz, 03) + ho(dn,l, dy)
+h'(dy, dn) +1°(L) + ' (1)

n—1
+y (80,'.(02,(12) V() + 84,00, - UO(L’))
i=3
val, =h0(d1, 03) + ho(dn—lv 02) + h! (02, dn)

n—-1
+ Z (80;’,(02,42) ! (tl/) + adi‘(oz.dz) : Uo(ll/))
i=3

The proposition also holds if there is no move (o1,ty,dy,11) be-
fore (0y,t,dy, 1) and the crane starts from its initial position, with
h%(dy, 02) = h%(0,) and h%(dy, 03) = h(0s3).

The last proposition in this section refers to sequences in which
a container is moved twice, from stack a to stack b and then from
b to ¢, but neither the origin stack of the first container move
(stack a) nor the destination stack of the second container move
(stack b) are invariant to the sequence between these moves. The
container cannot be moved just once, but there could be another
temporary stack ¢’ to which the container could be moved, instead
of b, with a shorter crane time. For instance, suppose there is a
fourth empty stack in the bay layout shown in Fig. 3(1a). Sequence
(3,3,4,1)(1,3,3,3)(4,1,1,3) moves a container twice, from stack 3 to
stack 4 in move 1 and then from stack 4 to stack 1 in move 3.
It is dominated by (3,3,2,4)(1,3,3,3)(2,4,1,3), in which the container
in stack 3 is also moved twice, but first to stack 2 and then from
stack 2 to stack 1. The final layout is the same but is reached in
less time in the second sequence.

Proposition 4. The sequence s; = (01,t1,dq,11)...(0;t,d;, 1) ...
(d1,1y,dn, In) is dominated by s; = (0y,t,d,l')...(0;,t],d;, I)...
(d.l'.dn, ln) where t/ := f(t;, 0;,dy,d) and I := f(l;, d;, dy. d) if the
following conditions are satisfied:

1. dy and d are invariant from move 2 to n —1 in s;.
2.1 (s) + 147" (sy) < T
. valy > valy, where

valy = h'(oy,dy) +hO(dy, 03) + hO(d,_1.dy) + h' (dy, dn)
n-1
#00) + 0" 1)+ 3 (S0, 0" ) + 80,0 10D
i=2
val, = h'(01,d) +h°(d, 02) + h(dp_q.d) + h' (d. dn)+

n-1
+RO) +0 )+ Y (501,’@1,6,) ) + 844y a) uo(zg))
i=2

4.2. Unrelated movement dominance

This kind of dominance arises in sequences in which one
(or more) of the moves can be made in a different order,
without altering the final layout of the bay and requiring less
crane time. The simplest case involves moving a container from
stack a to stack b and then another container from stack c to
stack d. If stacks a, b, ¢, and d are all different and the se-
quence in which first the container is moved from c¢ to d and
then other container is moved from a to b takes less crane
time, the former sequence is dominated by the latter. This
simple case, and other more complex ones, are identified in
Propositions 5 and 6. On the one hand, Proposition 5 identifies
the dominance that occurs when a move can be made in an ear-
lier position in the sequence. For instance, if Fig. 4a represents
the initial bay layout, sequence (3,4,2,5)(3,3,2,6)(1,4,4,5)(3,2,4,6) is
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(b) Layout to illustrate Propositions 8 to 11.

Fig. 4. Bay layout examples.

dominated by (1,4,4,5)(3,4,2,5)(3,3,2,6)(3,2,4,6) in which the move
that was previously the third is now the first. On the other hand,
Proposition 6 identifies the dominance that occurs when a move
can be made at a later position in the sequence. For instance, con-
sidering again the initial layout of a bay in Fig. 4a, the first move in
the sequence (4,4,2,5)(1,4,4,4)(1,3,3,5)(4,4,3,6)(4,3,1,3) can be per-
formed in fourth place, leading to the same layout and taking less
crane time. Therefore, that sequence is dominated by the sequence
(1,4,4,5)(1,3,3,5)(4,5,3,6)(4,4,2,5)(4,3,1,3).

Proposition 5. The sequence s; = (01,t1,dq,11)...(0;t,d; 1) ...
(0n, tg, dy, In) is dominated by s, = (01,t1,dq,11)(0n_1,tn_1,dn_1,
li1)(02, 85, dy, 1) . (0, 8. di, ) .. (On—a, b5, dn_z, I _5) (0n, tn, dn,
In) where t{ := f(t;, 04, 051, dn—q) and I := f(l;, d;, 0n_1, dn_1) if the
following conditions are satisfied:

1. 0,_1 and d,_; are invariant from move 2 to n — 2 in sy.
2072 (sp) +1+67"2(sy) < T

n-1 n-1
3. valy > val,, where

valy = h(dy. 02) + h°(dy-. 0n-1) + h*(dn-1. 0n)
+ g (‘So.«on,j,dh,l) V) + 84, 0y 1y ) - vo(li)>
i=2
valy = hOI(dl, 0n1) +h°(dn_1.05) +h(dy_2, 0p)
+ g (5of,<onf1,dm> V) + 84,0, 1) - UO(ll{))
i=2

The proposition also holds if there is no move (oq,ty,dy,l;) be-

fore (0y,t5,dy, ) and the crane starts from its initial position, with
h9(dy, 05) = h%(0y) and h°(dy,0,_1) = h9(0,_1). Moreover, if the
bay is sorted after move (05_1,tq_1,dn_1,ln_1) in sequence sq, the
same proposition holds without considering (on, tyn, dn, In) either in s,
or in sy, with h%(d,_1, 0n) = h%(d,_, 0n) = 0.
Proposition 6. The sequence s; = (01,t1,dq,11)... (05 t,di 1) ...
(0n. tn, dn, In) is dominated by s, = (01.t1,dy, 1) (03.t}.d3.13) ... (05,
ti/’ d,‘, ll/) . (On,1 s tl/,‘_1 s dn—l’ I;I—l)(oz’ ty, dz, Iz)(On, tn, dn, In) where
t{ := f(t, 04, da,02) and I := f(l;, d;, d3, 03) if the following condi-
tions are satisfied:

1. 0, and d, are invariant from move 3 to n—1 in s;.
2. 03 (s) + 1416, (sy) < T
3. valy > val,, where

val; = h°(dy, 02) + h°(dz. 03) + h°(dy_1, 0n)
n-1
+ Z (6Oiv(02.d2) V! (t) + Sdi»(oz.dz) v (l'))
i=3

val, = ho(d1, 03) + ho(dn_1, 07) + ho(dz, On)
n-1

+) (5ol,<oz~d2> V) + 84, 0pty) - Vo(’D)

i=3

The proposition also holds if there is no move (oq,t;,dy,l;) be-
fore (0y,t,d5, 1) and the crane starts from its initial position, with
hO(dy, 05) = h%(0y) and h°(d;, 03) = h%(03). Moreover, if the bay is
sorted after move (0,_1,tq_1,dn_1,1,_1) in sequence sq, the same
proposition holds without considering (o, tn, dn, In) either in sy or in
s9, with h9(d,,_1, 0n) = h%(dy, 0,) = 0.

4.3. Same group movement dominance

This kind of dominance arises in sequences in which two con-
tainers in the same group are relocated in two different moves.
A simple case is described in Proposition 7 (Parrefio-Torres et al.,
2020), in which a container with group value g is moved first from
one stack a to another stack b, and in the next move, a container
with the same group value g is moved to stack a from another
stack c. The same layout is obtained with a lower crane time by
moving a container with group value g directly from c to b.

Proposition 7. A sequence sy = (01,t1,dq,l1)... (05 &, di, ;) (041,
tiy1, 05, di) ... (On, tn, dn, In)  such  that  group(c;) = group(ci,q)
is dominated by sequence s = (01,t1,dq,l)...(0i_1,ti_1,di_1,
lii1) (01, i1, diy 1) (042 tiga, dig, liga) -+ (On, tn, dn, In)

Propositions 8 and 9 generalize this for cases where there is
an intermediate sequence between movements from a to b and
from c to a. If stacks ¢ and a are both invariant to the interme-
diate sequence, the containers temporarily assigned to a during
that intermediate sequence still fit with one more container, and
the total time taken by the crane is lower, it is better to move
a container with group value g from stack c¢ to b and then per-
form the intermediate sequence (see Proposition 8). For exam-
ple, consider the initial bay layout in Fig. 4b, with a=2, b=5,
and ¢ = 3. The sequence (2,6,5,4)(4,2,5,5)(3,4,2,6)(4,1,3,4) is dom-
inated by the sequence (3,4,5,4)(4,2,5,5)(4,1,3,4). If stacks a and
b are invariant, the containers temporarily assigned to a during
that intermediate sequence still fit with one more container, and
the total time taken by the crane is lower, it is better to per-
form the intermediate sequence and then to move a container with
group value g from stack ¢ to b, (see Proposition 9). Considering
again the initial layout in Fig. 4b, with a=1, b=4, and c = 3, the
sequence (4,2,5,4)(1,6,4,2)(3,4,5,5)(3,3,1,6)(2,6,3,3) is dominated by
the sequence (4,2,5,4)(3,4,5,5)(3,3,4,2)(2,6,3,3).

Proposition 8. The sequence s; = (01,t1,dq1,11)(02,t5,d3,15) ... (0;,
tidi. ;) ... (0p_1,ty_1,02.6)(0n, tn.dn.ln) such that group(c;) =
group(c,_1) is dominated by sequence s, = (01, t1,dq,11)(0n_1, tn_1,
dy, ) ... (o;, ti/v di. 1)) (0n_2,t)_5, dn_a, l;,,z)(onv tn, dn, ln) where
t] := f(t;, 04, 04_1,02) and I := f(l;, d;, 05_1, 03) if the following con-
ditions are satisfied:

1. 0, and o0,,_1 are invariant from move 3 to n —2 in Sy.
2. n3 2 (s) + 14165, 2(sy) < T
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3. valy > val,, where
val; = h°(dy, 02) + h'(02. d3) + h®(dy—2. 0n_1) + h' (0p_1. 02)
+ h%(0z, 00) +1°(t2) + V' (t2)

n-2
+ Z (80,-,(02,0,,,1) : vl (ti) + 8di~(°2,0n71) ’ UO (ll))
i=3

val, = h°(dy, 0n_1) +h'(0n_1, d3) + h°(dy_5, 0n)
n-2
+ Z (801’(020"71) ' vl (tl/) + adi,(Oz,O,,,l) ’ vo(ll/)>
i3

The proposition also holds if there is no move (oq,ty,dy,l;) be-
fore (0y,t5,dy, ;) and the crane starts from its initial position, with
h9(dy,05) = h%(0y) and h®(dy,0,_1) = h9(0,_1). Moreover, if the
bay is sorted after move (0,,_1,tq_1,02,tp) in sequence sy, the same
proposition holds without considering (o, tn, dn, In) either in sq or in
s9, with h9(03, 0n) = h%(d,,_5, o) = 0.

Proposition 9. The sequence si = (01,t1,dqy,11)(02,t5,d2, 1) ...
(0j,t;, di, ;) ... (0n_1, th_1, 02, t2) (On, tn, dn, In) such that group(cy) =
group(c,_1) is dominated by sequence s, = (01.t;.dq,17)(03.t5,
ds, 15)... (05, t],di, 1)) ... (0p_1, ty_1, d2, 1) (On, tn, dn, In) where t] :=
f(t;,0,dy,07) and I := f(l;, d;, dy, 07) if the following conditions are
satisfied:

1
2.
3.

0, and d, are invariant from move 3 to n — 2 in s;.
g 2(s) +1+16," () < T

val; > val,, where
Ual1 = ho(d1, 02) + h1 (02, dz) + ho(dz, 03)

+ h'(0n-1,02) + h°(02. 00) +1°(t2) + V' (t2)
n-2
+y (30,-,(02,(12) V) + 84, (0p.y) - Uo(li))
i=3
val, = ho(db 03) + h! (0p-1,d2) + ho(dz, On)

n-2
+ Z (601'1(02.612) V! (tl/) + (de.(oz,dz) : vO([{))
i=3

The proposition also holds if there is no move (0q,ty,dy,l;) be-
fore (05,t5,dy, 1) and the crane starts from its initial position, with
ho(d;, 05) = h9%(0,) and h°(dy, 03) = h®(03). Moreover, if the bay is
sorted after move (0,_1,ty_1, 02, t) in Sequence sy, the same propo-
sition holds without considering (on, tn, dn, Iy) either in s; or in s,
with h%(0,, 0y) = h9(dy, 0) = 0.

The following propositions consider the movement of contain-
ers with the same group value in two distinct moves, that is,
a container with group value g is moved from a to b and, af-
ter a sequence of moves, another container with group value g
is moved from c to d. If the origin stacks of the moves, a and c,
are invariant to the intermediate sequence and the containers that
are temporarily allocated to a still fit if there is one more con-
tainer, the origin stacks can be swapped, resulting in the same
layout. Therefore, the sequence that takes less crane time dom-
inates the other (see Proposition 10). For example, considering
the layout in Fig. 4b and a=3, b=5, c=2, and d =5, the se-
quence (3,4,5,4)(4,2,5,5)(1,6,4,2)(2,6,5,6) is dominated by the se-
quence (2,6,5,4)(4,2,5,5)(1,6,4,2)(3,4,5,6). Similarly, if the destina-
tion stacks of the moves, b and d, are invariant to the inter-
mediate sequence and the containers that are temporarily allo-
cated in d still fit if there is one more container, the destina-
tion stacks can be swapped, resulting in the same layout. There-
fore, the sequence that takes less crane time dominates the other
sequence (see Proposition 11). For example, considering the lay-
out in Fig. 4b and a=4, b=5, c=3, and d = 2, the sequence
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(2,6,5,4)(4,2,5,5)(1,6,4,2)(3,4,2,6)(4,2,1,6) is dominated by the se-
quence (2,6,5,4)(4,2,2,6)(1,6,4,2)(3,4,5,5)(4,2,1,6).

Proposition 10. The sequence s| = (01, t1,dq,11)(02,t2,d3, 15) ... (0;,
ti,d;i, ;) ... (0on, tn, dn, In) such that group(cy) = group(cy) is domi-
nated by sequence s, = (01,t1,dq.11)(0n, ta.dp, 1) ... (05, t], di, 1))
... (02,85, dn, In) where t] := f(t;, 0;,0n,07) and I := f(l;, d;, 0n, 02)
if the following conditions are satisfied:

1

2.
3.

0, and oy are invariant from move 3 to n — 1 in s;.
ng s1) + 165" 1(s1) < T
val; > valy, where
valy = h°(dy, 02) + h' (02, d3) + h%(dn_1, 0n) + h' (0n, dn)
n-1
+y (501‘(02,%) V' (t) + 84, (0y.00) - VO(L’))
i=3
valy = h°(dy, 0n) + h' (0n, d2) + h°(dy_1. 02) + h' (02, dn)

n-1
+ Z (80,-,(02,0") V() + 84, 0y.00) 'vo(li/))
i—3

The proposition also holds if there is no move (oq,ty,dy,l;) be-
fore (0,,t5,dy, 1) and the crane starts from its initial position, with
h%(dy, 05) = h%(0,) and h°(dy, o) = h®(on).

Proposition 11. The sequence s; = (01,t1,dq,11) ... (05, 8, d;, 1) ...
(On-1,ta-1,dn-1,ln-1)  (On,tn,dn,ln)  such  that  group(c;) =
group(c,_1) is dominated by the sequence s, = (01, t1,dn_1,lh_1) ...
(0;, t,'/~ d;, l,/) o (0p1. g1, dy, ) (0n, ty, dn, In) where fi/ = f(t. 05,
dy,dy_q) and I := f(l;, d;, dy, dn_q) if the following conditions are
satisfied:

1
2.
3.

di and d,,_1 are invariant from move 2 to n— 2 in sy.
2 (s) + 1467 2(s1) < T
dn—l dn—l
val; > val,, where
val; = h'(01.d1) + h°(dy. 03) + h' (0n_1.dn_1) + h°(dn_1. 0p)

n-2
+ (5of‘(d1,dn4> V(&) + 8.ty ) -V (L—))
i=2

valy = h'(01,dn_1) + h°(dn_1,02) + h' (0n_1,d1) +h0(dy, 0y)
n-2
+ Z ((Soiv(dbdn—l) V! (tl/) + Sdh(dbd;H) : vo(ll/))
i=2

If the bay is sorted after move (0,_1,tq_1,dn_1,1ln_1) in sequence
sy, the same proposition holds without considering (on, tn, dp, Iy) ei-
ther in sq or in s, with h9(d,_1, 0n) = h°(d;, 0p) = 0.

5. A beam search-based algorithm

The Beam Search algorithm (BS) uses breadth-first search (BFS)
to explore the solution tree. Unlike standard BFS, the BS algorithm
only keeps a reduced set of 8 promising nodes at each level, where
B is known as beam width. The remaining nodes are permanently
discarded. Consequently, the path to the optimal solution could be
pruned by discarding the node leading to it, in which case the op-
timality of the best solution found is not guaranteed. The selection
of nodes is usually done in two steps. First, a fast local evaluation
selects a subset of nodes from among all those generated at a given
level. Then a more time-consuming global evaluation selects from
this subset the B promising nodes to keep at this level.

Beam search algorithms have been very successful in related
problems in which solutions are represented by sequences of
moves, such block relocation (Bacci, Mattia, & Ventura, 2019) or
cutting and packing problems (Libralesso & Fontan, 2021; Par-
refio, Alonso, & Alvarez-Valdes, 2020). For other variants of pre-
marshalling problems, similar tree search structures are the basis
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Table 2
Main notation used throughout the algorithms in Section 5.
B Beam width.
T Best solution found.
u(m) Upper bound on the number of moves to solve the CPMPCT.
sv Sequence performed to reach node w.
m(s) Number of moves in sequence s.
t(s) Time taken by the crane to perform sequence s.
n(w) Number of blocking containers in the layout of node w.
Iby (W) Lower bound for the number of moves to solve the CPMP from the layout of node w.
b (W) Lower bound for the time taken by the crane to solve the CPMPCT from the layout of node w.
CPUmax Maximum computing time.

of recent high-performing algorithms (Hottung et al., 2020). In this
section, we describe the proposed algorithm based on the beam
search structure, along with the node comparison criteria and the
global evaluation algorithm used. Table 2 summarizes the main no-
tation used throughout the section.

5.1. Algorithm description

Algorithm 1 shows the pseudocode of our proposed algorithm.
It iteratively runs a beam search algorithm (lines 11 to 19), increas-

Algorithm 1 Pseudocode of the algorithm based on beam search.
1: function BEAMSEARCH(root)

2: T <@ > Best solution found
3 B<«S > Initial beam width
4: opt < false > Flag to indicate if the optimal solution has
been reached

5: u<1.5-1bp > Upper bound on the number of moves.
6: while opt = false and time < CPUpqx do

7: depth <1 > Depth
8: opt « true

9: list. push_back (root )

10: sublist < @

11: while list # o and time < CPUpqy do

12: w <« list. front()

13: list.pop_front ()

14: sublist < DESCENDANTS(depth, w, sublist, T, u)

15: > All non-dominated neighbours from node w
16: if list # o then

17: depth < depth + 1

18: list < GLOBALEVAL(sublist, B, , depth, u)

19: if list.size() = B then opt < false
20: sublist < @
21: ifr=cthenu<« 15 .u
22: B<«15-8
23: if time > CPUpqx then opt < false

24: return v

ing the beam width 8 at each iteration. The algorithm ends when
the time limit is reached or an optimal solution is found. A so-
lution is optimal if during one iteration of the beam search, the
number of nodes generated at each depth is less than or equal to
the current beam width.

The beam width is initially set to the number of stacks S in
the bay (line 3) and increased 1.5 times on each iteration (line 21).
This increment is in line with what was reported by Libralesso &
Fontan (2021). Throughout the algorithm, a parameter u is used
to limit the maximum number of levels to explore. Initially, u is
set to 1.5 times the lower bound on the number of moves at the
root node root (line 5). As this initial value is only an estimation,
it must be increased if no possible solution is found (line 20), and
is updated to a valid bound for the number of moves as soon as a

1070

feasible solution is obtained. Moreover, the value of u is also up-
dated each time a better feasible solution is obtained to reduce the
solution space. Let t(s™) be the time taken by the crane to perform
sequence s, n the number of blocking containers in the initial bay
layout, n; a lower bound for the time taken by the crane to move
them, and ¢; a lower bound for the time taken to perform a move.
Eq. (3) provides a valid upper bound on the number of moves to
solve the CPMPCT as shown in Parrefio-Torres et al. (2020).

J

Each of the beam search iterations starts from the root node,
which corresponds to the initial layout of the bay (line 9). The
DESCENDANTS() function generates all non-dominated descendants
of node w at line 14. A node is a descendant of another node if it
is obtained after the movement of a single container. Moreover, a
node w is dominated if one of the following conditions holds:

ts™)—n"+n-€
€t

ui=u(r) = L (3)

1. At least one of the criteria described in Section 4 is satisfied.

Thus, the sequence of movements performed to reach the node

is dominated by another sequence leading to the same layout

and requiring less crane time.

. The lower bound for the number of moves to solve the CPMP
at node w plus the number of moves to reach that node is
greater than the current upper bound on the number of moves:

" (W) + m(s¥) > u.

Non-dominated nodes are sorted into four groups in sublist de-
pending on the type of the last move performed: bad-bad (BB),
good-bad (GB), good-good (GG), or bad-good (BG). This classifica-
tion was introduced by Bortfeldt (2004). Bad-bad moves are those
in which a blocking container moves to a stack in which it also
blocks the removal of others. Bad-good moves refer to moves in
which a blocking container is moved to a stack in which it is no
longer blocking. Similarly, good-bad and good-good moves involve
moving of a non-blocking container to a position where it blocks
the removal of others and to a position where it does not, respec-
tively. Different tie-breaking criteria are used for sorting the nodes
within each group as described in Section 5.2.

Once all of the descendants at depth have been generated in
sublist, we move to the global evaluation in line 17. It is carried
out by the GLOBALEvVAL() function, which runs a heuristic algo-
rithm to obtain feasible solutions as well as a local search algo-
rithm to improve them. This function returns the most promis-
ing B nodes stored in list. Algorithms 2, 3, and 4 show the pseu-
docode of the global evaluation, the heuristic algorithm, and the
local search. They all are further described in Section 5.3. If the
number of nodes contained in list after line 17 equals S, the opti-
mality of the solution reached cannot be guaranteed and therefore
flag opt is set to false in line 18. List sublist is cleared at line 19 as
it will be used again to store the descendants of the beam nodes at
depth, that is, the descendants of the (at most) 8 nodes stored in
list. If the beam search ends and no solution has been found, the
upper bound on the number of moves is increased in line 20. If
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Algorithm 2 Global evaluation algorithm.

Algorithm 4 Improvement phase.

1: function GLOBALEVAL(sublist, B, 7w, depth, u)
2: list < &

3 Bprior < a%- B
4: count < 0
5: while count < B, and sublist # & do
6: for i in {BG,GG,BB,GB} do
7: w = sublist[i]. front () > Take the first element of each
sublist
8: if depth + by (W) < u then
9: count <« count + 1
10: w.priority <« true
11: w.identifier < count
12: w.heur < HEURISTIC(W, 7T, d)
13: list < INSERTNODE(list, B, W)
14: sublist[i].pop_front ()
15: for i in {BG,GG,BB,GB} do
16: count < 0
17: for w = sublist[i].begin() to sublist[i].end() do > Take all
the elements of each sublist
18: if depth + Ibym (W) < u then
19: count < count + 1
20: w.priority < false
21: w.identifier < count
22: w.heur < HEURISTIC(W, 7T, U, d)
23: list < INSERTNODE (list, 8, W)

24: return list

Algorithm 3 A heuristic algorithm to obtain feasible solutions.

1: function HEurisTIC(W, 7T, U, depth)
if 7 = o then c < depth else c < 0
flag < true
s<—sVand w« w
> Let mt/mm be the maximum improvement in time/number
of moves achieved by the local search.
5: while t(s) + ¢ -n(w) —mt < t(s7)
mm-—c <u and flag = true do

> Partial solution

AW N

and m(s) +n(w) —

6: if 3 (o,t,d, 1) in BG moves thenAdd (o,t,d,l) to s and
Update w and flag < true

7: else if 3 (o,t,d,l) in GG moves then Add (o,t,d,l) to s
and Update w and flag < true

8: else EMPTYSTACK(W) Add moves to s and Update w and
flag < true

9: if n(w) =0 then

10: s < LS(s,d)

11: flag < false

12: if t(s) < t(s™) then UPDATE (1) > Update the best

solution so far
13: if n(w) # 0 then

14: t <~ o0
15: else

16: t < t(s)
17: return t

neither the time limit nor the optimal solution has been reached,
a new beam search algorithm is run with an increased beam width
updated in line 21.

5.2. Node comparison criteria
Non-dominated descendants of the beam nodes are divided into

four groups according to the type of the last move made: BB, BG,
GG, and GB. We consider 11 different tie-breaking criteria to order

—_

: function LS(s, depth)

2: Sg < 9 > Empty sequence

3: fori=depth+1 to m(s) do

4 Let (o;, t;, d;, l;) be movement i of sequence s

5: Sp < Add movement (o;, t;, d;, l;) to sequence sy

6: better < true

7: while better do

8: better < false

9: if Direct dominance then better < true and Modify
sequence Sg

10: if better = false and Proposition 5 or 11 then
better < true and Modify sequence sq

11: if better = false and Proposition 6, 8, 9, or 10 then
better < true and Modify sequence sg

12: if better = false and Proposition 2 then better < true
and Modify sequence sg

13: if better = false and Proposition 3 then better < true
and Modify sequence sg

14: if better = false and Proposition 4 then better < true
and Modify sequence sq

15: S« $So

16: fori=m(s) to 1do

17 Let (o;,t;, d;,l;) be movement i of sequence s

18: if 3d not in 0,1,...,0p), in which the container is
well placed at tier | with a lower crane time then

19: Replace (o;, t;, d;, I;) by (0;,t;,d, 1) in sequence s

20: return s

the nodes. They are evaluated one by one in order until the tie is
broken. Within each group, only the appropriate criteria are used
to evaluate the type of move performed in it. Table 3 shows all
the criteria defined, the order in which they are evaluated, and the
groups in which they are (v') and are not used ( - ).

1. Previous movement type. In the BB group, first the nodes whose
last two moves are BB, with identical origin stack. In the GB
group, first the nodes whose last two moves are BB or GB, with
identical origin stack. The underlying idea is that if one con-
tainer is moved from one stack s to another where it blocks
the removal of others, it is in order to free a lower position in
stack s so that other containers can be correctly allocated. Once
such a move has been made from s, it is convenient to continue
with this type of move until the required position is freed, even
if the move does not reduce the lower bound.

2. Lower bound for the moves. First, the nodes with the lowest
lower bound for the number of moves.

3. Containers to unload from the origin stack. First, the nodes with
the lowest number of containers to be unloaded from the ori-
gin stack s such that it would be possible to place a container
with group g in this stack, where g is the highest group be-
tween the topmost containers in the blocking stacks and the
blocking containers in stack s. This criterion applies only to BB
and GB and is considered for the explanation given for criterion
1. The fewer containers that need to be removed from one stack
to free up the desired position, the better.

4, Containers in the origin stack. First, the nodes with the lowest
number of containers in the origin stack. This criterion applies
only to BB and GB and is considered for the explanation given
for criterion 1. The fewer containers the stack has, the more
containers will fit above the position to be freed.

5. Containers placed upside down. First, the nodes in which a con-
tainer is moved to a stack in which it is placed on top of a con-
tainer with a lower group value (these containers are said to
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Tie-breaking criteria to order the nodes. A tick indicates that the criterion applies.

Order  Criterion

BB GB BG GG

Previous move type

Containers in the origin stack
Container placed upside down

—_ = O 00NV WN =

- o

Crane time spent so far

Lower bound for the number of moves
Containers to unload from the origin stack

Maximum blocking group value of the origin stack
Gap topmost destination - topmost origin

Gap topmost destination - container moved
Topmost container in the origin stack

Lower bound for the time spent by the crane

I NENENENENEN
N NENENEN
.

AR

BN
o

NENENEENE

be placed “upside down”). If two containers are upside down,
they are accessible to be resorted correctly in another stack.
This criterion applies only to BB and GB, where the container
will block the removal of others in the destination stack.

6. Maximum group value of a blocking container in the origin stack.
First, the nodes with the highest group value of a blocking con-
tainer. This criterion applies only to BB and BG where the con-
tainer being moved is a blocking container.

7. Gap between the topmost destination and the topmost origin.
First, the nodes with the smallest difference between the group
value of the topmost container in the destination stack before
the move and the group value of the topmost container in the
origin stack. This criterion applies to GG. The smaller the differ-
ence between consecutive containers in a well-sorted stack, the
better.

8. Gap between the topmost destination and the container being
moved. First, the nodes with the smallest difference between
the group value of the topmost container in the destination
stack before the move and the group value of the container be-
ing moved. This criterion applies to BG; the smaller the differ-
ence, the greater the flexibility to include new containers.

9. Topmost container in the origin stack. First, the nodes with the
largest container group value of the topmost container in the
origin stack. This criterion applies to GB and GG; the larger the
value, the wider the range of group values that could be ac-
cepted on top.

10. Lower bound for the time spent by the crane. First, the nodes
with the lowest lower bound for the time required by the crane
to rearrange the bay.

11. Crane time spent so far. First, the nodes with the lowest crane
time taken by the crane to reach the node.

5.3. Global evaluation approach

The global evaluation phase is carried out using the
GLOBALEvAL() function. Our global evaluation basically con-
sists in completing the sequence of moves of a node until a
feasible solution is found, using the HEURISTIC() function, with
two specific features. On the one hand, a given percentage of
nodes belonging to each class is kept to ensure diversity. On the
other, the heuristic algorithm does not go on indefinitely, but stops
as soon as it becomes clear that a good solution will not be found.

The GroBaLEvAL() function is outlined in Algorithm 2. Let
sublist be a vector of four lists, each containing the nodes of one
group (BG, GG, BB, or GB). This function goes through the nodes
in each list and evaluates those that are not dominated by num-
ber of moves or by crane time (see lines 8 and 18). The first nodes
of each group will be added to the beam’s node list until a% of
the beam is occupied (see lines 5 to 14). The remaining (100-o)%
will be occupied by any of the remaining nodes. To discriminate
between the nodes that are in the «% and the remaining nodes in

lines 10 and 20, a priority variable is used. We assign each node an
identifier with the order in which it is added on line 11 and with
its position in sublist[i] on line 21. Next, we try to obtain a feasible
solution using the HEurisTic() function described in Section 5.3.1.
The time it takes for the crane to rearrange the bay is stored in
w.heur in lines 12 and 23. This value is unbounded if a feasible so-
lution has not been found. Using INSERTNODE(), node w is inserted
in list where the nodes are ordered according to the following cri-
teria, which are evaluated in order until ties are broken:

1. The highest priority value.

2. The lowest lower bound for the number of moves to solve the
CPMP.

3. The lowest value returned by HEURISTIC().

4, The lowest position it occupies within its corresponding list in
sublist.

5. The lowest crane time it takes for the crane to reach the node,
plus the lower bound for the time the crane still requires to
rearrange the bay.

The INSERTNODE() function returns only the 8 most promising
nodes, discarding the remaining ones.

5.3.1. A heuristic algorithm to obtain a feasible solution

Algorithm 3 shows the pseudocode of the heuristic used in the
global evaluation. It makes moves starting from the partial solution
w for as long as the following three conditions are satisfied:

1. There still are blocking containers.

2. The estimate of the time required to obtain a feasible solution
does not exceed the crane time of the best solution obtained so
far. This estimate is calculated by adding the time taken by the
crane to reach the current node and the lower bound for the
time the crane still needs to rearrange the bay, and subtracting
the maximum improvement in crane time achieved so far by
the local search. This subtraction makes it possible to obtain
solutions that are initially worse than the best known solution
but that could be improved later by the local search.

3. The estimate of the number of moves required to obtain a fea-
sible solution is less than the upper bound on the number
of moves to solve the CPMPCT. The estimate is calculated by
adding the number of moves involved in w and the number
of blocking containers at the current node, and subtracting the
maximum reduction in the number of moves resulting from the
local search. If no feasible solution has yet been found, we add
the depth of the node being evaluated to the upper bound, to
give the heuristic more leeway to obtain a solution.

The HEeurisTic() function makes BG moves first (line 6), in the
following order of preference:

1. The move with the smallest difference in group value between
the container at the top of the destination stack and the con-
tainer moved.
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2. The move with the largest blocking group of containers in the
origin stack.
3. The move requiring the shortest crane time.

If no more BG moves are possible, it starts making GG moves
(line 7), according to the following order of preference:

1. The move with the largest difference in group value between
the new top of the origin stack and the top of the destination
stack before the move. Only moves where the difference is at
least one are considered.

. The move in which the priority of the new top of the origin
stack is highest.

. The move requiring the shortest crane time.

If neither BG moves nor GG moves are possible, the heuris-
tic tries to empty the stack from which the least number of con-
tainers have to be removed to free a position in order to allocate
the blocking container with maximum group value (line 8). Dur-
ing stack emptying, the destination of the relocated container is
selected according to the following preferences:

1. The stacks in which the container will be upside down.

2. The stacks with the highest topmost container.

3. The stacks to which the movement involves the shortest crane
time

If a stack cannot be emptied according to these criteria, the
heuristic ends without obtaining a feasible solution. If the algo-
rithm ends with a feasible solution, the local search algorithm LS()
described in Section 5.3.2 is applied to improve it (line 10), updat-
ing mt and mm values whenever necessary. If the improved solu-
tion is better than s, the best solution found, 7, is updated as well
as the upper bound on the number of moves to solve the CPMPCT
(line 12).

5.3.2. An algorithm to improve feasible solutions

Algorithm 4 shows the pseudocode of the improvement phase
used in the heuristic algorithm. First, it replaces dominated se-
quences in the solution with sequences that dominate them, con-
sidering Propositions 1 to 11 in lines 9 to 14. Direct dominance
refers to Propositions 1 and 7, and to Propositions 5 and 6 with
n = 4. These direct dominances apply to two consecutive move-
ments, so they are quicker to check and are therefore checked first.
Since the solution up to the depth-th move has been built tak-
ing into account the dominance rules, we check the rules for the
moves added by the heuristic, that is, for moves from depth + 1 to
m(s). Next, the improvement phase tries to replace the last desti-
nation stack of each container by another stack in which the con-
tainer is also well placed but which involves less crane time (lines
16-19). We only consider as candidate stacks those that are not
the origin stacks of a subsequent movement. If the candidate stack
is the destination stack of a subsequent movement, the group of
the container moved must be larger than the group of the con-
tainer moved in the next move involving that stack. In addition, it
must be ensured that all containers entering the stack during sub-
sequent movements fit into the stack height.

6. Computational results

In order to test the performance of the Beam Search based al-
gorithm, BS, as well as the effect of each of the elements of which
it is composed, an extensive computational analysis has been car-
ried out, comparing the results of the BS algorithm with the results
obtained by the branch and bound algorithm proposed by Parrefio-
Torres et al. (2020), CTA. We coded the algorithms in C++ and ex-
ecuted them on virtual machines with 4 virtual processors and 16
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Gigabytes of RAM each. The virtual machines ran Windows 10 En-
terprise 64 bits. Virtual machines were run in an OpenStack vir-
tualization platform supported by several blade servers, each with
two 18-core Intel Xeon Gold 5220 processors running at 2.2 GHz
and 384 Gigabytes of RAM.

6.1. Test instances

We focus on five well-known datasets from the literature:
on the one hand, the three datasets from van Brink & van der
Zwaan (2014) (BZ dataset), Expoésito-Izquierdo et al. (2012) (EMM
dataset), and Zhang et al. (2015) (ZJY dataset), in which the branch
and bound algorithm by Parrefio-Torres et al. (2020) obtains a fea-
sible or optimal solution in every instance, and on the other, the
datasets from Bortfeldt & Forster (2012) (BF dataset) and Caserta &
Vol (2009) (CV dataset), which contain the most difficult instances
in the literature. The BF dataset is not considered in Parrefio-Torres
et al. (2020), and from the CV dataset only instances of up to 8
tiers are considered, that is, 760 instances out of the total, 840.
The specific details of each dataset are as follows:

BZ dataset. This includes 960 instances with a number of tiers
ranging from 4 to 6, with 3, 5, 6, and 9 stacks, with container fill
rates of 50% and 70%, and with 2, 3, or 6 container groups.

EMM dataset. As the original instances from Expdésito-Izquierdo
et al. (2012) were lost, we consider those re-generated by Tierney
et al. (2017), which use a similar distribution. This includes 450
instances with 4 tiers and 4, 7, or 10 stacks, filled to 50% or 75%.
The number of container groups ranges from 2 to 8.

ZJY dataset. This dataset comprises 100 instances, with 4 tiers
and 6, 7, 8, or 9 stacks, and with 5 tiers and 6 stacks. There may
be several containers with the same group, and the stacks are usu-
ally filled up to |T| — 1 tiers. Containers of 10 different groups are
considered.

CV dataset. This dataset has 840 instances divided into 21 cat-
egories of 40 instances each, containing 5 tiers and 3 to 8 stacks,
6 tiers and 5 to 7 stacks, 7 tiers and 4 to 9, 8 tiers and 6 or 10
stacks, and 12 tiers and 8 or 10 stacks. All the containers have dif-
ferent group values and stacks are filled to the same height with
the two highest tiers empty.

BF dataset. This dataset contains 681 instances which are di-
vided into 37 categories, 32 belonging to subset BF, with 20 in-
stances each, and 5 belonging to LC, 4 with 10 instances and the
remainder with 1 instance. The BF categories have 5 or 8 tiers and
16 or 20 stacks and the LC categories have 5 or 6 tiers and 10 or
12 stacks. There can be multiple containers with the same group
value.

In total, 3031 instances were used to test the proposed algo-
rithm. Moreover, to avoid overfitting these datasets, we created a
training set consisting of 152 randomly selected instances in the
BF and CV datasets, as these contain the most complex instances.
We denote the training set as TS throughout this section.

6.2. Assessing the effect of each element on the proposed algorithm,
BS.

In order to set the parameters of the proposed BS algorithm,
as well as to assess the effect that each of the elements included
has on its performance, we test different variants of the algorithm,
shown in Table 4, over the training set. Taking the full BS algorithm
as a reference, in BS® and BS! the dominance rules are removed,
completely in BS® and partially, leaving only the direct dominance
rules, in BS'. BS-NH does not include the heuristic used in the
global evaluation and in BS-NLS only the local search phase is re-
moved. The last four variants only change the percentage of nodes,
a%, which are given priority because they are the best in each sub-
list. In algorithm BS, o = 10; in the variants, this value is changed
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Table 4

Algorithm variants directly compared on the training set.
Algorithm  Dominance « HEURISTIC() LS()
BS All 10 v v
BS° None 10 v v
BS! Direct 10 v v
BS-NH All 10 X v
BS-NLS All 10 v X
BSox All 0 v v
BS30x All 30 v v
BSs0y All 50 v v
BS100% All 100 v v

to 0, 30, 50, and 100. The algorithms are compared with BS in
terms of their average relative percentage deviation (AVRPD). For
each algorithm ALG and each instance I, the relative percentage de-
viation is calculated as %&’fs(') * 100.

We first run a beam-search-based algorithm considering only
the criteria common to all groups and without the global evalu-
ation. This simple version of BS fails to find a solution in 11.1%
percent of the instances tested and finds none at all in any of
the instances of the training set with 12 tiers. Moreover, in those
where it does find a solution, it remains at an AVRPD of 3.15%
from the full BS algorithm. Next, we run the variants contained
in Table 4. Table 5 shows their AVRPD from our final algorithm
on the training set grouped by number of tiers and by number
of stacks. First, we check whether applying the dominance rules
described in Section 4 has any effect. The solutions provided by
the algorithm without the dominance rules, BS?, have an AVRPD of
0.77%, and those provided by the algorithm using only direct dom-
inance, BS! (Propositions 1 and 2 together with Proposition 5 with
n = 2, Propositions 10 and 11 with n =3, and Proposition 6 (or
7) with n=4) have an AVRPD of 0.22% from the BS algorithm.
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Thus, the use of dominance rules contributes to finding better so-
lutions. If we remove the heuristic for obtaining feasible solutions
described in Section 5.3.1 from the algorithm, BS-NH, the AVRPD
increases to 4.65%, reaching an AVRPD of around 18% in the in-
stances with 12 tiers. If only the improvement phase described in
Section 5.3.2 is removed, the solutions also become worse, with
an AVRPD of 0.96%. The last element we compare in the table is
the inclusion of different selection criteria depending on the type
of movement. If the same criteria are used on all candidate nodes
when selecting the 8 most promising, taking « = 0, the algorithm’s
performance worsens, with an AVRPD of 0.31%. On the other hand,
if we increase the percentage of selected nodes that are the best in
each subgroup, the algorithm performance also worsens. The last
three columns in Table 5 show that o =30 and « = 50 produce
very similar results to those obtained with the reference value of
o = 10, but they are clearly worse if the value is increased to 100.

6.3. Comparing the results obtained by BS with the results obtained
by the CTA algorithm

We compare here the results obtained by the full Beam Search
algorithm, BS, considering time limits of 60, 300, and 3600 sec-
onds, with those obtained by the branch and bound algorithm,
CTA, run on the same machines with a fixed time limit of 3600
seconds. Table 6 shows the results on the 1510 instances of the
BZ, EMM, and ZJY datasets grouped by number of tiers and num-
ber of stacks. The first three columns show the number of tiers
and stacks and the number of instances in each class. The rest of
the table is divided into two parts. Columns 4-11 show the re-
sults for the instances solved optimally by CTA and columns 12-19
those for the instances not optimally solved. Columns CTA and BS
provide the average crane times and columns AVRPD the average
percentage deviations (average of the crane times provided by BS
minus those of CTA divided by the crane time provided by CTA).

Table 5
Average percentage relative deviation (AVRPD) from the BS algorithm proposed.
Dominances Heuristic Groups
7] 18] #1 BS? BS! BS-NH BS-NLS BSoy BS30y BSs0y BS100%
BF dataset
5 16 16 0.31 0.06 4.89 1.36 0.24 0.11 0.14 1.59
5 20 16 1.22 0.38 7.35 2.32 0.48 0.45 0.43 1.69
8 16 16 0.73 -0.12 4.90 1.23 -0.24 0.11 0.28 1.27
8 20 16 0.24 0.31 8.79 1.35 0.51 -0.28 -0.13 1.17
Tot/Avg 64 0.63 0.16 6.48 1.57 0.25 0.10 0.18 1.43
CV dataset
5 3 4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
5 4 4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
5 5 4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
5 6 4 0.00 0.00 0.06 0.00 0.00 0.00 0.00 0.00
5 7 4 0.14 0.08 0.69 0.16 0.00 0.00 0.00 -0.07
5 8 4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
6 4 4 0.00 0.00 1.28 0.00 0.00 0.00 0.00 0.77
6 5 4 0.30 0.00 0.63 0.00 0.00 0.00 0.00 0.52
6 6 4 0.41 -0.13 1.14 0.00 -0.03 0.00 0.00 0.91
6 7 4 0.81 0.05 1.23 -0.09 -0.49 -0.61 0.00 0.82
6 12 4 0.06 -0.10 1.97 -0.28 -0.07 -0.09 -0.36 0.72
7 4 4 1.25 0.00 5.08 0.26 0.00 0.00 0.00 3.19
7 5 4 0.21 0.15 5.63 0.00 1.05 0.81 -0.36 1.24
7 6 4 2.93 0.79 1.97 1.83 -0.23 0.17 0.35 2.12
7 7 4 -0.06 0.88 2.81 1.23 0.02 0.02 0.04 1.35
7 8 4 1.71 0.68 3.13 1.38 0.12 -0.15 -0.07 1.72
7 9 4 2.39 1.30 5.52 2.06 0.23 1.13 0.66 2.56
7 10 4 1.36 0.24 3.35 1.29 0.20 -0.37 1.06 1.66
8 6 4 0.66 -0.85 117 -0.53 0.46 -1.11 -1.23 -0.35
8 10 4 135 -0.55 1.84 2.02 -0.82 -0.97 -0.94 0.84
12 6 4 1.40 -0.02 22.12 0.23 443 0.46 -0.80 0.28
12 10 4 2.37 332 13.24 1.68 3.04 1.24 2.12 2.97
Tot/Avg 88 0.79 0.27 3.31 0.51 0.36 0.02 0.02 0.97
Tot/Avg 152 0.72 0.22 4.65 0.96 0.31 0.05 0.09 1.16
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Table 6
Comparing the BS algorithm with CTA algorithm on BZ, EMM, and ZJY datasets.

European Journal of Operational Research 302 (2022) 1063-1078

60 seconds 300 seconds 3600 seconds 60 seconds 300 seconds 3600 seconds
|71 |S] #1 #0 CTA BS AVRPD BS AVRPD BS AVRPD #SF CTA BS AVRPD BS AVRPD BS AVRPD
BZ dataset
4 3 120 120 374 374 0.00 374 0.00 374 0.00 0 - - - - - - -
4 5 120 120 445 445 0.00 445 0.00 445 0.00 0 - - - - - - -
4 7 120 119 547 547 0.00 547 0.00 547 0.00 1 1380 1380 0.00 1380 0.00 1380 0.00
4 9 120 98 600 600 0.00 600 0.00 600 0.00 22 1279 1280 0.06 1280 0.06 1279 -0.01
6 3 120 120 949 949 0.00 949 0.00 949 0.00 0 - - - - - -

6 5 120 105 1102 1102 0.00 1102 0.00 1102 0.00 15 2154 2158 0.15 2154 0.00 2154 0.00
6 7 120 56 996 996 0.00 996 0.00 996 0.00 64 1994 1999 0.17 1996 0.08 1994 0.02
6 9 120 21 918 918 0.00 918 0.00 918 0.00 99 2148 2140 -0.32 2136 -044 2134 -0.52
Tot/Avg 960 759 694 694 0.00 694 0.00 694 0.00 201 2000 1998 -0.09 1995 -0.19 1994 -0.25
EMM dataset
4 4 150 150 473 473 0.00 473 0.00 473 0.00 0 - - - - - - -
4 7 150 125 658 658 0.00 658 0.00 658 0.00 25 2146 2169 111 2163 082 2159 0.64
4 10 150 83 692 692 0.00 692 0.00 692 0.00 67 1879 1888 0.37 1884 0.18 1880 0.06
Tot/Avg 450 358 588 588 0.00 588 0.00 588 0.00 92 1951 1965 057 1960 036 1956 0.22
ZJY dataset
4 6 20 20 1053 1053 0.00 1053 0.00 1053 0.00 0 - - - - - - -
4 7 20 18 1072 1072 0.00 1072 0.00 1072 0.00 2 1577 1583 035 1578 0.08 1578 0.08
4 8 20 17 977 977 0.00 977 0.00 977 0.00 3 1493 1494 0.11 1493 0.00 1493 0.00
4 9 20 10 1079 1079 0.00 1079 0.00 1079 0.00 10 1453 1453 0.00 1453 0.00 1453 0.00
5 6 20 15 1448 1449 0.03 1448 0.00 1448 0.00 5 1984 1984 0.00 1984 0.00 1984 0.00
Tot/Avg 100 80 1118 1119 0.01 1118 0.00 1118 0.00 20 1604 1605 0.05 1604 0.01 1604 0.01
Tot/Avg 1510 1197 691 691 0.00 691 0.00 691 0.00 313 1960 1963 0.12 1960 -0.01 1958 -0.10
Table 7
Comparing the BS and CTA algorithm on CV dataset.
All 60 seconds 300 seconds 3600 seconds 60s 300s 3600s
|T] |S] |c| #1 #0 CTA AVRPD #SF CTA BS AVRPD BS AVRPD BS AVRPD #NSF BS BS BS
5 3 9 40 40 984 0.00 - - - - - - - - - - - -
5 4 12 40 40 1043 0.00 - - - - - - - - - - - -
5 5 15 40 40 1188 0.00 - - - - - - - - - - - -
5 6 18 40 35 1270 0.00 5 1822 1822 0.00 1822 0.00 1822 0.00 - - - -
5 7 21 40 25 1375 0.00 15 1792 1795 0.18 1794 011 1792 0.03 - - - -
5 8 24 40 11 1327 0.00 29 1750 1751 0.10 1750 0.04 1750 0.03 - - - -
6 4 16 40 35 1830 0.00 5 2369 2372 0.15 2372 0.15 2369 0.00 - - - -
6 5 20 40 9 1790 0.00 31 2342 2345 0.10 2343 0.02 2342 0.00 - - - -
6 6 24 40 3 1600 0.00 37 2471 2488 0.68 2483 0.44 2476 0.18 - - - -
6 7 28 40 0 - - 40 2766 2799 1.16 2788 0.79 2779 0.47 - - - -
7 4 20 40 6 2221 0.00 34 3059 3102 1.36 3091 1.01 3082 0.72 - - - -
7 5 25 40 1 1876 0.00 37 3244 3331 2.70 3301 1.80 3286 1.30 2 3533 3533 3533
7 6 30 40 0 - - 37 3926 3977 147 3953 089 3919 -0.01 3 4377 4376 4344
7 7 35 40 0 - - 36 4283 4346 1.59 4308 0.75 4281 0.13 4 4912 4879 4793
7 8 40 40 0 - - 36 4973 4979 025 4948 -0.37 4910 -1.10 4 5391 5336 5330
7 9 45 40 0 - - 32 5589 5565 -0.10 5544 -0.48 5495 -1.34 8 5688 5636 5620
7 10 50 40 0 - - 30 5865 5894 048 5816 -0.78 5785 -1.32 10 6668 6566 6527
8 6 36 40 0 - - 2 5252 5616 7.04 5495 491 5495 491 38 5673 5634 5561
8 10 60 40 0 - - 3 9134 8560 -5.58 8497 -6.31 8221 -9.08 37 8708 8621 8496
12 8 80 40 0 - - - - - - - - - - 40 17,098 16,678 16,414
12 10 100 40 0 - - - - - - - - - - 40 24,781 24,357 24,030
Tot/Avg 840 245 1315 0.00 409 3590 3616 087 3594 037 3573 -0.09 186 12,831 12,614 12,442

The instances in these datasets are considered simple in the liter-
ature, since state-of-the-art branch and bound algorithms for the
standard CPMP can solve all of them optimally in a few seconds,
and CTA solves 79.2% of them optimally for the CPMPCT. Although
the margin for improvement is small, it is observed that the BS al-
gorithm is able to reach the optimal solution in all the instances
solved to optimality by CTA considering a time limit of 300 sec-
onds and in all but two by considering a limit of 60 seconds. In
addition, in the instances not optimally solved by CTA, BS cuts the
crane time relative to CTA by 0.01% with a time limit of 300 sec-
onds and 0.10% with one of 3600 seconds, although the crane time
is slightly worse if BS runs for only 60 seconds.

Let us now focus on the most challenging datasets. We start
with CV; the results can be seen in Table 7. The first four columns
show the characteristics of the instances: tiers, stacks, containers,

1075

and number of instances in each group. The rest of the table is di-
vided into three parts. Columns 5 to 7 compare CTA and BS on the
instances optimally solved by CTA. Their number is shown in col-
umn #0, the average optimal value in column CTA and the AVRPD
of BS relative to CTA in column AVRPD. The CTA algorithm solves
245 out of the 840 instances to optimality. The algorithm’s perfor-
mance worsens as the number of tiers increases. For these 245 in-
stances, BS reaches all the optimal solutions even with a time limit
of 60 seconds. The second part of the table, columns 8-15, shows
the 409 instances for which CTA obtains a solution but does not
reach optimality. For these instances, the average percentage devi-
ation is 0.87% running BS with a time limit of 60 seconds, 0.37%
running it with 300 seconds, and -0.09% with 3600 seconds. The
third part of the table, columns 16-19, corresponds to the 186 in-
stances for which CTA does not find a solution. BS finds a solution
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Table 8
Comparing the BS algorithm with CTA algorithm on BF dataset.

60 seconds 300 seconds 3600 seconds 60s 300s 3600s
Set 71 1Sl el #1 #SF CTA BS AVRPD  BS AVRPD  BS AVRPD  #NSF  BS BS BS
BF1 5 16 48 20 20 3422 3300 -3.53 3289 -3.88 3274 -4.31 0 - - -
BF2 5 16 48 20 20 4300 4163 -3.17 4134 -3.85 4114 -4.30 0 - - -
BF3 5 16 48 20 20 3436 3344 -2.67 3333 -2.99 3321 -3.32 0 - - -
BF4 5 16 48 20 20 4321 4155 -3.80 4140 -4.15 4120 -4.61 0 - - -
BF5 5 16 64 20 20 4907 4801 -2.18 4774 -2.72 4745 -3.32 0 - - -
BF6 5 16 64 20 20 5859 5858 -0.01 5817 -0.70 5787 -1.21 0 - - -
BF7 5 16 64 20 20 5049 5016 -0.63 4989 -1.16 4954 -1.87 0 - - -
BF8 5 16 64 20 20 6059 5998 -0.98 5945 -1.86 5905 -2.51 0 - - -
BF9 8 16 77 20 19 8193 7952 -2.90 7907 -3.45 7872 -3.89 1 8863 8631 8631
BF10 8 16 77 20 20 9329 9044 -3.08 8987 -3.67 8949 -4.07 0 - - -
BF11 8 16 77 20 20 8364 8117 -2.86 8070 -3.40 8025 -3.94 0 - - -
BF12 8 16 77 20 20 9425 9111 -3.33 9064 -3.83 9006 -4.44 0 - - -
BF13 8 16 103 20 4 11,460 11,048 -3.59 11,000 -4.00 10,884 -5.02 16 11,214 11,071 10,977
BF14 8 16 103 20 0 - - - - - - - 20 14,155 13,936 13,762
BF15 8 16 103 20 1 11,125 11,227 0.92 11,227 0.92 10,856 -2.42 19 11,469 11,302 11,131
BF16 8 16 103 20 0 - - - - - - - 20 14,347 14,042 13,803
BF17 5 20 60 20 20 4410 4245 -3.71 4223 -4.22 4198 -4.78 0 - - -
BF18 5 20 60 20 20 5443 5259 -3.34 5233 -3.82 5197 -4.49 0 - - -
BF19 5 20 60 20 20 4402 4265 -3.10 4239 -3.69 4197 -4.65 0 - - -
BF20 5 20 60 20 20 5445 5286 -2.90 5262 -3.34 5233 -3.88 0 - - -
BF21 5 20 80 20 18 6283 6164 -1.87 6123 -2.52 6080 -3.21 2 6077 6067 6016
BF22 5 20 80 20 20 7590 7414 -2.30 7342 -3.24 7276 -4.11 0 - - -
BF23 5 20 80 20 20 6222 6104 -1.84 6040 -2.88 5990 -3.68 0 - - -
BF24 5 20 80 20 20 7621 7520 -1.31 7451 -2.23 7370 -3.29 0 - - -
BF25 8 20 96 20 20 10,247 9877 -3.60 9829 -4.07 9759 -4.75 0 - - -
BF26 8 20 96 20 20 11,836 11,393 -3.75 11,314 -4.42 11,253 -4.93 0 - - -
BF27 8 20 96 20 20 10,263 9957 -2.94 9917 -3.34 9833 -4.15 0 - - -
BF28 8 20 96 20 20 12,000 11,566 -3.62 11,477 -4.35 11,403 -4.96 0 - - -
BF29 8 20 128 20 4 14,847 13,950 -6.04 13,875 -6.56 13,587 -8.48 16 14,326 14,075 13,856
BF30 8 20 128 20 1 16,893 16,594 -1.77 16,303 -3.50 15,928 -5.71 19 17,682 17,250 16,958
BF31 8 20 128 20 2 14,485 14,097 -2.55 13,901 -3.94 13,634 -5.78 18 14,282 14,047 13,919
BF32 8 20 128 20 0 - - - - - - - 20 17,620 17,254 17,036
LC1 5 10 35 1 1 1702 1702 0.00 1702 0.00 1702 0.00 0 - - -
LC2a 6 12 50 10 10 2770 2737 -1.10 2731 -1.34 2722 -1.64 0 - - -
LC2b 6 12 50 10 10 4994 4933 -1.25 4900 -1.92 4876 -2.39 0 - - -
LC3a 6 12 54 10 10 2844 2811 -1.18 2802 -1.46 2801 -1.51 0 - - -
LC3b 6 12 54 10 9 5395 5388 -0.12 5362 -0.58 5345 -0.90 1 5659 5518 5518
Tot/Avg 681 529 6779 6595 -2.54 6554 -3.12 6508 -3.74 152 14,268 14,004 13,814

in all of these instances. With a time limit of 60 seconds, the av-
erage crane time is 12,831 seconds, and it is reduced by 1.7% with
300 and by 3.0% with 3600 seconds.

Table 8 compares BS and CTA on the 681 BF test instances. In
this case, since CTA does not solve any of them optimally, the ta-
ble is divided into two parts. Columns 6-13 show the results of
the instances for which a solution is found by CTA. The number of
such instances appears in column #SF and then the average value
obtained by CTA in 3600 seconds and by BS running for 60, 300,
and 3600 seconds. BS reduces the average crane time by 2.54%
with a time limit of 60 seconds, by 3.12% with 300 seconds, and
by 3.74% with 3600 seconds. Columns 13-14 show the results for
the instances in which CTA does not find a solution. The number
of these instances appears in column #NSF, 152 in total. BS finds a
solution for all of them. The average crane time for these instances
is 14,268 seconds, considering a time limit of 60 seconds. This time
is reduced by 1.85% when running for 600 seconds, and by 3.18% if
it runs for 3600 seconds.

As in previous datasets, the algorithm keeps improving the so-
lutions if the running time increases. In the iterative process, the
beam width is enlarged, more nodes are considered at each level
and this makes it possible to obtain solutions that were discarded
when the beam width was smaller.

7. Conclusions

Premarshalling problems are gaining greater importance due to
the increasing size of vessels and the pressure to reduce their stay

in port by minimizing the time needed for loading and unloading
operations. We have addressed the premarshalling problem with
the objective of minimizing the time the yard crane takes to rear-
range a bay and have developed a beam search algorithm.

Beam search algorithms, in particular, and tree search struc-
tures, in general, are appropriate when solutions consist of a se-
quence of moves that produces a feasible solution step by step. The
main challenge for a beam search algorithm is to avoid discarding
moves that apparently do not produce an immediate improvement,
for instance moves emptying a stack, but that could lead to good
solutions later in the tree. We have developed two mechanisms. On
the one hand, we use various criteria to evaluate the four types
of moves, BB, BG, GB, and GG. On the other hand, we designed
a simple but powerful heuristic for the global evaluation. In ad-
dition, we have developed a new set of dominance rules which
help to identify and eliminate nodes that cannot lead to better
solutions.

The extensive computational study on several literature bench-
marks shows that the beam search algorithm is able to ob-
tain all the optimal solutions identified by the existing branch
and bound algorithm, improves on the known suboptimal so-
lutions, and obtains good solutions for the largest instances in
which the branch and bound algorithm could not reach a feasible
solution.

The ideas developed for this variant of the premarshalling prob-
lem can be applied to other variants such as the time-limited case
studied by Zweers et al. (2020), and also to related problems, such
as the block relocation problem.
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Appendix A. Proofs of the dominance rules provided in
Section 4

Proof of Proposition 2 Since d; and d,_; are invariant to the
sequence (0y,ty,d, 1) ... (0p_2,th_2, dy_2,1,_5) of s, their layout
before and after it is the same, and none of the containers placed
in d; or in d,_; before (or after) the sequence are handled dur-
ing the sequence. Moreover, the containers that are temporarily
placed on stack d,_; during the sequence from move 2 to n—2
still fit if d,,_; has one more container. In that case, the same final
layout is obtained by the feasible sequence s, in which the con-
tainer ¢y, which is moved first from o; to d; and then from d; to
d,_1 in sequence sq, is moved directly from stack o to d,,_; prior
to the sequence of moves (0,t),dy, 1)) ... (04_2. ) 5.dn_2, 1 ;) in
sequence s,. The primes indicate that the tiers from which a con-
tainer is taken or in which it is left in the sequence from move
2 to n — 2 of s; are modified so that moves involving stack d; are
made at a lower tier and moves involving stack d,,_; are made at a
higher tier. Since s; and s, lead to the same layout, s; is dominated
by s, if the time taken by the crane to carry out the sequence is
longer, which is satisfied if condition 3 is satisfied.

Proof of Proposition 3 Since 0, and d, are invariant to the se-
quence (o03,t3,ds,l3)...(0p_1,tn_1, dy_1.lp_1) of s; and the con-
tainers that are temporarily placed on stack o, during that se-
quence (from move 3 to n — 1) still fit if 0o, has one more container,
the same final layout is obtained by the feasible sequence s, in
which container c,, which is moved first from 0, to d, and then
from d, to d, in sequence s, is directly moved from stack o, to dj
after the sequence of moves (03, t5,ds. 15) ... (0p_1.t},_1. dn1. ).
The primes indicate that the tiers from which a container is taken
or in which it is left in the sequence from move 3 to n—1 of s;
are modified, so that moves involving stack d, are made at a lower
tier and moves involving stack o, are made at a higher tier. Since
s1 and s, lead to the same layout, s; is dominated by s, if the time
spent by the crane in carrying out the sequence is longer, which is
satisfied if condition 3 is satisfied.

Proof of Proposition 4 Since stacks d; and d are invariant to the
sequence (0y,t5,dy, ) ... (041, ty_1,dy_1,ln_1) of s; and the con-
tainers that are temporarily placed on stack d during that sequence
(from move 2 to n—1) still fit if d has one more container, the
same final layout is obtained by the feasible sequence s,. Whereas
container ¢; is moved first from stack oy to d; and then from d;
to d, in sequence s;, container c; is temporarily moved to stack
d instead of to stack d; in sequence s,. The primes indicate that
the tiers from which a container is taken or in which it is left in
the sequence from move 2 to n — 1 of s; are modified so that now
moves involving stack d; are made at a lower tier and moves in-
volving stack d are made at a higher tier. Since s; and s, lead to
the same layout, s; is dominated by s, if the time spent by the
crane in carrying out the sequence is longer, which is satisfied if
condition 3 is satisfied.

Proof of Proposition 5 Since o0,_1 and d,_; are invariant to the
sequence (0y,ty,dy, 1) ... (04_2, th_2,dy_2,1,_3) in s; and the con-
tainers that are temporarily placed on stack d,_; during that se-
quence still fit if d,_; has one more container, the same final lay-
out is obtained by moving container c,_; from 0,_1 to d,_1 in sec-
ond position. The primes indicate that the tiers from which a con-
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tainer is taken or in which it is left in the sequence from move
2 to n—2 of s; are modified so that now moves involving stack
0,1 are made at a lower tier and moves involving stack d,_; are
made at a higher tier. Since s; and s, lead to the same layout, s;
is dominated by s, if the time spent by the crane in carrying out
the sequence is longer, which is satisfied if condition 3 is satisfied.

Proof of Proposition 6 Since o, and d, are invariant to the se-
quence (0,,ty,ds, 1) ... (0n_1,th_1, dy_1,ly_1) in s; and the con-
tainers that are temporarily placed on stack o, during that se-
quence still fit if 0, has one more container, the same final lay-
out is obtained by moving container ¢, from stack o, to stack d,
in penultimate position, that is, just before the move (op, t;, dn, I).
The primes indicate that the tiers from which a container is taken
or in which it is left in the sequence from move 2 to n—1 of s,
are modified so that now moves involving stack d, are made at a
lower tier and moves involving stack o, are made at a higher tier.
Since s; and s, lead to the same layout, s; is dominated by s, if
the time spent by the crane in carrying out the sequence is longer,
which is satisfied if condition 3 is satisfied.

Proof of Proposition 8 A container c, of group value g=
group(cy) is first moved from stack o, to d, and, after a se-
quence of moves, another container c,_; of the same group
value group(c,_1) =group(cy) =g is moved from o,_; to stack
0, in sj. Since o, and o0, are invariant to the sequence
(03,t3,d3,13) ... (0p_2,th_2, dn_2,l_5) in s; and the containers
that are temporarily placed on stack o, during that sequence still
fit if o, has one more container, the same final layout is obtained
by moving container c,_; in second position directly from stack
0,1 to stack d,. The primes indicate that the tiers from which a
container is taken or in which it is left in the sequence from move
3 to n—2 of s; are modified so that now moves involving stack
0,_1 are made at a lower tier and moves involving stack o, are
made at a higher tier. Since s; and s, lead to the same layout, s;
is dominated by s, if the time spent by the crane in carrying out
the sequence is longer, which is satisfied if condition 3 is met.

Proof of Proposition 9 A container c, of group value g=
group(cy) is first moved from stack o, to d, and, after a se-
quence of moves, another container c,_; of the same group
value group(c,_1) = group(cp) =g is moved from o, 1 to stack
0, in s;. Since o0, and d, are invariant to the sequence
(03,t3,d3,13)... (0p_2, th_2, dy_2,l,_3) in s; and the containers
that are temporarily placed on stack o, during that sequence still
fit if o, has one more container, the same final layout is obtained
by moving container ¢, of group value group(cy) in penultimate
position, that is, just before moving (op, ts, dn, In), directly from
stack 0,_; to stack d,. The primes indicate that the tiers from
which a container is taken or in which it is left in the sequence
from move 3 to n — 2 of s; are modified so that now moves involv-
ing stack d, are made at a lower tier and moves involving stack
0, are made at a higher tier. Since s; and s, lead to the same
layout, s; is dominated by s, if the time taken by the crane to
carry out the sequence is longer, which is satisfied if condition 3
is met.

Proof of Proposition 10 Two containers of the same group
value are moved in (0y,t;,d5, ) and in (op, ty, dn, Iy). Since o,
and o, are invariant to the sequence (o0s,t3,d3,[3)...(0p_1,tq_1,
dn_1,1l,_1) in s; and the containers that are temporarily placed on
stack o0, during that sequence still fit if 0, has one more container,
the same final layout is obtained by moving container ¢, in penul-
timate position, that is, just before the move (oy, ty, dn, In), to stack
dn, and moving container ¢, in second position to stack d,. The
primes indicate that the tiers from which a container is taken or
in which it is left in the sequence from move 3 to n—1 of s; are
modified so that now moves involving stack o, are made at a lower
tier and moves involving stack o, are made at a higher tier. Since
sy and s, lead to the same layout, s; is dominated by s, if the time
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take by the crane to perform the sequence is longer, which is sat-
isfied if condition 3 is met.

Proof of Proposition 11 Two containers of the same group value
are moved in (oq,t7,dq,1;) and in (0,_1,ty_1,dp_1, 7). Since d,
and dj are invariant to the sequence (0,,t,ds, 1) ... (04 2, th 2,
dn_1,1,_1) in s; and the containers that are temporarily placed on
stack d,_; during that sequence still fit if d,_; has one more con-
tainer, the same final layout is obtained by moving container c¢; to
stack d,,_y and container c,_4 to stack d;. The primes indicate that
the tiers from which a container is taken or in which it is left in
the sequence from move 2 to n — 2 of s; are modified so that now
moves involving stack d; are made at a lower tier and moves in-
volving stack d,,_; are made at a higher tier. Since s; and s, lead
to the same layout, s; is dominated by s, if the time spent by the
crane in carrying out the sequence is longer, which is satisfied if
condition 3 is met.
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