
European Journal of Operational Research 302 (2022) 1063–1078

Contents lists available at ScienceDirect

European Journal of Operational Research

journal homepage: www.elsevier.com/locate/ejor

Production, Manufacturing, Transportation and Logistics

A beam search algorithm for minimizing crane times in

premarshalling problems

Consuelo Parreño-Torres a , ∗, Ramon Alvarez-Valdes a , Francisco Parreño

b

a Department of Statistics and Operations Research, University of Valencia, Doctor Moliner 50, Burjassot, Valencia, 46100, Spain
b Department of Mathematics, University of Castilla-La Mancha, Albacete, Spain

a r t i c l e i n f o

Article history:

Received 15 June 2021

Accepted 24 January 2022

Available online 31 January 2022

Keywords:

Logistics

Container premarshalling

Crane time

Beam search

a b s t r a c t

The premarshalling problem consists of sorting the containers placed in a bay of the container yard so

that they can be retrieved in the order in which they will be required. We study the premarshalling

problem with crane time minimization objective and develop a beam search algorithm, with some new

elements adapted to the characteristics of the problem, to solve it. We propose various evaluation cri-

teria, depending on the type of container movement, for its local evaluation; a new heuristic algorithm

including local search for blue its global evaluation; and several new dominance rules. The computational

study shows the contribution of each new element. The performance of the complete algorithm is tested

on well-known benchmarks. The beam search algorithm matches all known optimal solutions, improves

on the known suboptimal solutions, and obtains solutions for the largest instances, for which no solution

had previously been found.

© 2022 The Author(s). Published by Elsevier B.V.

This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/)

1

t

2

t

g

t

U

m

s

i

m

n

i

(

s

m

w

c

e

e

r

t

t

t

s

p

t

t

y

y

w

k

c

t

a

p

r

w

R

h

0

(

. Introduction

Maritime transport accounts for more than 80% of international

rade, with 11.08 billion tonnes transported in 2019 (UNCTAD,

020). An increasing part of this volume corresponds to con-

ainerized transport. Containers are nowadays used for all kinds of

oods, not only manufactured goods, but also fresh products. Con-

ainer terminals handled 827 million TEUs (Twenty-foot Equivalent

nit) in 2020, with ports such as Shanghai moving more than 43

illion TEUs (Statista, 2021).

The daily operation of container terminals faces increasing pres-

ure from ship operators. On the one hand, vessel size is constantly

ncreasing. The vessel HMM Algeciras can carry 23,964 TEUs and

any similar vessels are being built and will be operational in the

ear future. On the other hand, the time a vessel spends in port

s continuously decreasing, with a median of 0.97 days in 2019

 UNCTAD, 2020). To serve these large vessels with the required

peed, terminals are continuously upgrading their facilities and

achinery. On the seaside, they are installing larger quay cranes

hich can handle two 40-foot containers in one move, thus in-

reasing the rate of moves per hour (Yue, Fan, & Ma, 2021). How-
∗ Corresponding author.

E-mail addresses: consuelo.parreno@uv.es (C. Parreño-Torres), ramon.alvarez@uv.

s (R. Alvarez-Valdes), francisco.parreno@uclm.es (F. Parreño).

C

w

t

t

ttps://doi.org/10.1016/j.ejor.2022.01.038

377-2217/© 2022 The Author(s). Published by Elsevier B.V. This is an open access article

 http://creativecommons.org/licenses/by-nc-nd/4.0/)
ver, optimizing one subsystem is not effective if other subsystems

emain deficient. In this respect, the container yard, in which con-

ainers are temporarily stored, is considered the bottleneck of the

erminal. As storage space is limited and containers are stacked on

op of each other, to retrieve a container that is not on top of a

tack all the containers above it must be moved, resulting in un-

roductive and time-consuming movements. Therefore, an effec-

ive way to smooth out peak workloads once the ship arrives, and

hus speed up the loading and unloading of vessels, is to use the

ard cranes prior to the arrival of the ship to sort the container

ard.

The problem of sorting the containers in the yard so that they

ill be available in the order in which they will be required is

nown as the Container Premarshalling Problem (CPMP). In its

lassical version the objective is to minimize the number of con-

ainer moves required to sort the bay and several exact methods,

nd many heuristic and metaheuristic algorithms have been pro-

osed to solve it. However, the number of moves does not cor-

ectly reflect the time required by the crane to sort the containers,

hich depends on their positions. Parreño-Torres, Alvarez-Valdes,

uiz, & Tierney (2020) proposed a variant of the problem, the

ontainer Premarshalling Problem with Crane Times, CPMPCT, in

hich the objective is to minimize the time the crane takes to sort

he containers. The computational analysis carried out by the au-

hors shows the gain in precision that can be obtained using this
under the CC BY-NC-ND license

https://doi.org/10.1016/j.ejor.2022.01.038
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ejor
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ejor.2022.01.038&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:consuelo.parreno@uv.es
mailto:ramon.alvarez@uv.es
mailto:francisco.parreno@uclm.es
https://doi.org/10.1016/j.ejor.2022.01.038
http://creativecommons.org/licenses/by-nc-nd/4.0/

C. Parreño-Torres, R. Alvarez-Valdes and F. Parreño European Journal of Operational Research 302 (2022) 1063–1078

o

b

s

f

s

t

i

g

k

d

b

o

v

p

t

w

r

s

i

2

o

e

&

i

o

c

s

t

p

t

b

g

a

c

fi

t

F

t

n

e

s

p

b

m

v

a

p

B

o

r

&

V

r

C

b

t

J

g

I

k

&

s

l

(

t

t

n

n

a

t

c

t

L

T

t

t

f

p

o

3

p

i

n

h

a

m

a

m

m

e

l

s

t

w

t

t

w

m

n

b

t

i

w

{

t

f

t

b

A

g

t

t

u

o

n

m

e

T

p

bjective function, as opposed to the one that minimizes the num-

er of moves, reducing the crane time by 24% in some cases.

In this paper, we address the CPMPCT and develop a beam

earch algorithm (Reddy et al., 1977). The basic beam search

ramework is embedded into an iterative procedure and problem-

pecific elements are added, such as considering different selec-

ion criteria for different types of container moves and develop-

ng an efficient heuristic algorithm, including local search, for the

lobal evaluation phase. An extensive computational study on well-

nown benchmarks shows that the proposed beam search proce-

ure matches the optimal solutions provided by the branch and

ound algorithm of Parreño-Torres et al. (2020) and outperforms it

n large instances.

The paper is structured as follows. The relevant literature is re-

iewed in Section 2 . In Section 3, we formally describe the new

roblem of minimizing the crane times and show how these crane

imes are calculated. Section 4 introduces new dominance criteria

hich would be used to reduce the search. The beam search algo-

ithm is presented in Section 5 . The computational results are de-

cribed in Section 6 and conclusions and future work are discussed

n Section 7 .

. Literature review

Stacking problems, in which items are placed on top of each

ther and only the one on top is directly accessible, occur in many

nvironments, not only in container terminals. Ge, Meng, Liu, Tang,

 Zhao (2020) address the problem of stacking slabs in the steel

ndustry and Maniezzo, Boschetti, & Gutjahr (2021) the problem

f stacking boxes in a warehouse. As for the stacking problems in

ontainer terminals, which are the subject of this paper, a recent

urvey by Caserta, Schwarze, & Voß (2020) classifies them into

hree types: premarshalling, re-marshalling, and block relocation

roblem. The premarshalling problem is concerned with finding

he shortest sequence of moves that sorts the containers within a

ay according to a known retrieval sequence. It is solved for a sin-

le bay since moving the crane between bays is time consuming

nd can produce safety problems due to crane-crane or human-

rane interactions. The re-marshalling problem is concerned with

nding the minimum length sequence of moves for retrieving con-

ainers from a source bay and positioning them in a target bay.

inally, the block relocation problem aims to retrieve all the con-

ainers from a bay in the prescribed order while minimizing the

umber of rehandles. Caserta et al. (2020) review the relevant lit-

rature on the three problems, so here we will focus on premar-

halling problems.

In the classical approach to the premarshalling problem, the

urpose of the objective function has been to minimize the num-

er of container moves required to sort the bay. Integer linear

odels have been proposed by Lee & Hsu (2007) , van Brink &

an der Zwaan (2014) , de Melo da Silva, Toulouse, & Calvo (2018) ,

nd Parreño-Torres, Alvarez-Valdes, & Ruiz (2019) . Other exact

rocedures are the A

∗ algorithm of Expósito-Izquierdo, Melián-

atista, & Moreno-Vega (2012) , the iterative deepening A

∗ (IDA

∗)

f Tierney, Pacino, & Voß (2017) , and the branch and bound algo-

ithms of Prandtstetter (2013) , Zhang, Jiang, & Yun (2015) , Tanaka

 Tierney (2018) , and Tanaka, Tierney, Parreño-Torres, Alvarez-

aldes, & Ruiz (2019) . Many heuristic and metaheuristic algo-

ithms have also been proposed, such as the heuristic algorithm of

aserta & Voß (2009) , based on the Corridor Method, the neigh-

orhood search algorithm of Lee & Chao (2009) , or the heuristic

ree search procedure of Bortfeldt & Forster (2012) . More recently,

ovanovic, Tuba, & Voß (2017) have proposed a deterministic al-

orithm based on the randomized greedy procedure by Expósito-

zquierdo et al. (2012) , Hottung & Tierney (2016) a biased random-

ey genetic algorithm, Wang, Jin, & Lim (2015) , Wang, Jin, Zhang,
1064
 Lim (2017) propose target-guided procedures embedded in beam

earch algorithms, and Hottung, Tanaka, & Tierney (2020) a deep

earning tree search procedure. Zweers, Bhulai, & van der Mei

2020) study an interesting version of the problem in which the

ime to perform the moves is limited, but even in this case the

ime is approximated by the number of moves.

However, Parreño-Torres et al. (2020) have shown that the

umber of moves does not accurately represent the time the crane

eeds to rearrange the bay. Therefore, they propose a new vari-

nt of the problem in which the objective is to minimize the crane

ime, in line with other studies in the closely related Block Relo-

ation Problems in which crane time is considered in the objec-

ive function (Jovanovic, Tuba, & Voß, 2019; Lee & Lee, 2010; Lin,

ee, & Lee, 2015; da Silva Firmino, de Abreu Silva, & Times, 2019).

he results reported by Parreño-Torres et al. (2020) indicate that

he problem is more difficult to solve than the classical CPMP and

heir integer model and branch and bound algorithm do not per-

orm well on the largest test instances in the literature. In this pa-

er we propose a metaheuristic algorithm which obtains optimal

r near-optimal solutions for all types of instances.

. Problem description

The container yard is divided into several blocks consisting of

arallel bays. Each bay has the same number of columns or stacks

n which containers are piled up in several tiers. The maximum

umber of tiers or maximum number of containers each stack can

old is limited by the height of the cranes operating in the yard. As

 consequence of stacking, in order to reach a specific container, it

ay be necessary to handle other containers above it. Fig. 1 shows

 schematic representation of a container yard.

The container premarshalling problem with crane time mini-

ization objective, CPMPCT, seeks to obtain the sequence of move-

ents that requires the least crane time to arrange the contain-

rs located in a bay in the order in which they will be required

ater, considering that no container can leave the bay during that

equence.

We assume the set C of all the containers placed in a bay to be

he same size, therefore the bay can be seen as a matrix T × S,

here T represents the highest tier of the stacks and S the to-

al number of stacks. Let S be the set of stacks in the bay and T
he set of tiers. We describe each move by a quadruple (o, t, d, l) ,

here o, d ∈ S and t, l ∈ T . The pair (o, t) defines the origin of the

ove and (d, l) defines its destination. Therefore, a sequence of

 moves is represented as s = (o 1 , t 1 , d 1 , l 1) . . . (o n , t n , d n , l n) , c i ∈ C
eing the container moved in (o i , t i , d i , l i) . Since the order in which

he containers leave the bay is known in advance, each container

s assigned a number, its group , indicating the order in which it

ill be required. The set of container groups is denoted as G =

 1 , . . . , G } , where containers in group 1 will be required first and

hose in group G last. The group of container c i is indicated by

unction group(c i) . The sequence s is a solution of the problem if

he bay is sorted after the sequence. A bay is sorted if there are no

locking containers, i.e, containers blocking the removal of others.

 container at a position (o, t) blocks the removal of others if its

roup is higher than that of any of the containers at lower posi-

ions, (o, t ′) such that t ′ ≤ t . Fig. 2 shows an example of the solu-

ion of a premarshalling problem. The solution shown in the fig-

re is optimal for both the CPMP and the CPMPCT. An alternative

ptimal solution for the CPMP is (2,2,1,4)(3,4,2,2)(4,3,2,3), which is

ot optimal for the CPMPCT.

We calculate the time needed for the crane to perform a

ovement following the procedure developed by Parreño-Torres

t al. (2020) . The crane specifications correspond to the Rubber

yred Gantry (RTG) cranes used in the Noatum terminal in the

ort of Valencia in Spain. More specifically, they correspond to a

C. Parreño-Torres, R. Alvarez-Valdes and F. Parreño European Journal of Operational Research 302 (2022) 1063–1078

Fig. 1. Container yard scheme.

Fig. 2. Example solution s = (2 , 2 , 1 , 4)(3 , 4 , 2 , 2)(4 , 3 , 3 , 4) for the CPMPCT. Blocking containers are highlighted.

K

l

p

a

w

c

d

t

c

t

t

u

(

h

t

i

l

t

h

s

I

t

i

t

m

A

m

t

s

t

t

f

t

t

c

t

t

s

a

i

c

t

S

a

b

b

u

c

b

c

t

s

e

m

w

a

η

i

t

i

l

onecranes RTG Transtainer 79. The authors distinguish between

oaded/unloaded vertical and horizontal moves. The times are not

roportional to the distances, as the acceleration of the crane is

lso taken into account. What is directly proportional to the tier in

hich the container is placed is the twistlock time, because the os-

illation of the crane spreader depends on the length of the cable,

ue to the sway motion of the suspended load.

Given a solution s = (o 1 , t 1 , d 1 , l 1) . . . (o n , t n , d n , l n) , the total

ime taken by the crane to perform the moves in solution s is cal-

ulated according to Eq. (1) .

(s) = h

0 (o 1) +

n ∑

i =2

h

0 (d i −1 , o i) +

n ∑

i =1

v 1 (t i) +

n ∑

i =1

h

1 (o i , d i)

+

n ∑

i =1

v 0 (l i) (1)

Consider the movement of a single container c i from (o i , t i)

o (d i , l i) . First, the crane spreader moves horizontally along the

pper path line from the destination stack of the previous move

 d i −1) to the corresponding stack (o i); this time is represented by

0 (d i −1 , o i) . It then moves down to reach the container in tier t i ,

wistlocks it, and hoists it up to the upper travel line; this time

s represented by v 1 (t i) . Once the container is at the upper travel

ine, the loaded crane moves horizontally from stack o i to the des-

ination stack (d i), taking a time h 1 (o i , d i) . Finally, the container is

oisted down to its new position in tier l i and the spreader is po-

itioned again at the upper travel line, all requiring a time v 0 (l i) .

n addition to the moves required to change the positions of con-

ainers, the crane makes an initial move in which it moves hor-

zontally along the upper travel line from its initial position, on

he left of the first stack, to the origin of the first container to be

oved. The time taken for this initial move is denoted as h 0 (o 1) .

 lower bound for the time spent to make a move, εt , consists of

oving the crane to an adjacent stack, picking up a container from

he topmost tier, and moving it to the topmost tier of an adjacent

tack. Hence, εt := h 0 (1 , 2) + v 1 (T) + h 1 (2 , 1) + v 0 (T) .

Let η be the total number of blocking containers, τ1 , . . . , τη , in

he initial bay layout and t τi
the tier in which the blocking con-

ainer τ is initially placed. We represent by ηt the lower bound
i

1065
or the time taken by the crane to retrieve and move them. The

ime needed to retrieve them is bounded below by considering

hat the unloaded crane moves horizontally η times to an adja-

ent stack, moves down to reach each of the blocking containers,

wistlock it, and hoist it to the upper travel line. The time needed

o move them to non-blocking positions is bounded below by con-

idering that the loaded crane is moved horizontally η times to an

djacent stack, lowered to place each of the blocking containers

n the highest tier to which it can be moved above non-blocking

ontainers in the initial layout, and lifting the crane spreader to

he upper travel line. Let us consider the example in Fig. 3 (1a).

tacks 1, 2 and 3 each have one non-blocking container on tier 1

nd two blocking containers on tiers 2 and 3. Overall, there are 6

locking containers in the layout. To obtain a feasible solution, all

locking containers must be moved to non-blocking positions. Let

s consider the move of the first blocking container. In the best

ase, the highest tier where it could be well placed above a non-

locking container is tier 2. Then there would be two non-blocking

ontainers placed in one stack and one non-blocking container in

he other two. The next blocking container could be moved to the

tack with two non-blocking containers, on tier 3. Then, the high-

st tiers to which 2 of the remaining blocking containers could be

oved to the same stack on tiers 4 and 5, and then, as this stack

ould be full, the last two blocking containers would go to tiers 2

nd 3 in another stack. Therefore,

t = 6 ·
(

h

0 (1 , 2) + h

1 (1 , 2)
)

+

6 ∑

i =1

v 1 (t τi
)

+

(
2 · v 0 (2) + 2 · v 0 (3) + v 0 (4) + v 0 (5)

)
Let lb m

be the lower bound for the number of moves described

n Tanaka et al. (2019) . The first lower bound for the time spent by

he crane proposed in Parreño-Torres et al. (2020) , lb t , is described

n the following equation,

 b t = εt ·
(

l b m

−η
)

+ η ·
(

h

0 (1 , 2) + v 0 (T) + h

1 (1 , 2)
)

+

η∑

i =1

v 1 (t τi
)

(2)

C. Parreño-Torres, R. Alvarez-Valdes and F. Parreño European Journal of Operational Research 302 (2022) 1063–1078

Fig. 3. Example of a sequence dominated by another, satisfying Proposition 3.

Table 1

Notation used for problem inputs.

S Set of stacks. S := |S| is the total number of stacks

T Set of tiers. T := |T | represents the highest tier of the stacks.

G Set of group values. G := |G| represents the highest group value and 1 the lowest group value.

C Set of containers. C := |C| is the total number of containers stored in the bay.

η Number of blocking containers, τ1 , . . . , τη , in the initial layout.

t τi
Tier in which the blocking container τi is initially placed.

ηt Lower bound for the time taken by the crane to move the blocking containers in the initial layout.

lb m Lower bound for the number of moves to solve the CPMP starting from the initial bay layout.

lb t Lower bound for the time taken by the crane to solve the CPMPCT from the initial bay layout.

εt Lower bound for the time taken by the crane to perform a move.

v 1 (t) Time the crane takes to lower the spreader from the upper travel line to tier t of the container to be moved, twistlock the container and hoist it

to the upper travel line.

v 0 (l) Time the crane takes to lower a container from the upper travel line to tier t , leave it and return the spreader to the upper travel line.

h 1 (o, d) Time taken by the crane to move a container along the upper travel line from stack o to stack d.

h 0 (d, o) Time taken by the crane to move the spreader (unloaded) from stack d to stack o.

4

b

e

n

t

p

r

δ

x

a

d

T

D

(

b

t

(

p

d

t

t

t

(

t

c

a

4

c

f

r

t

P

d

(

Table 1 summarizes the notation already presented.

. Dominance rules

The effectiveness of dominance rules in solving the CPMP has

een well studied in the literature (Tanaka & Tierney, 2018; Tanaka

t al., 2019; Tierney et al., 2017), showing a large reduction in the

umber of explored nodes when using tree search algorithms. In

his section we review two dominance rules for the CPMPCT pro-

osed in Parreño-Torres et al. (2020) and add nine new dominance

ules.

Let δ be the Kronecker delta defined as δx,y = 0 if x � = y and

x,y = 1 if x = y . If y is a tuple y = (y 1 , y 2) , then δx, (y 1 ,y 2)
= 0 if

 � = y 1 and x � = y 2 , and δx, (y 1 ,y 2)
= 1 if x = y 1 or x = y 2 . Consider

lso the function f (x 1 , x 2 , x 3 , x 4) defined as follows:

f (x 1 , x 2 , x 3 , x 4) =

{

x 1 − 1 If x 2 = x 3
x 1 + 1 If x 2 = x 4
x 1 Otherwise

To formulate the proposed dominance rules, we consider the

efinition of stack invariant to a sequence of moves proposed by

anaka et al. (2019) .

efinition 1. A stack s is invariant to a sequence of moves

o 1 , t 1 , d 1 , l 1) . . . (o n , t n , d n , l n) , i.e, from move 1 to n , if its layout

efore and after the sequence of moves is the same and none of

he containers placed in it have been moved by the sequence.
1066
Let k be a stack invariant to the sequence s =

o 1 , t 1 , d 1 , l 1) . . . (o n , t n , d n , l n) . The maximum number of tem-

orary containers that are simultaneously assigned to stack k

uring the sequence is:

1 ,n
k

(s) := max
j∈{ 1 , ... ,n }

{

j ∑

i =1

(
δk,d i

− δk,o i

)}

We represent as n n
d i
(s) the number of containers in stack d i af-

er the n th move of sequence s . In the propositions in this section,

he first move of the sequences, (o 1 , t 1 , d 1 , l 1) , or the last move

o n , t n , d n , l n) , or both, are not changed. They are included because

he calculation of the crane time requires taking into account the

rane movements from the previous position before the changes

nd to the next position after the changes.

.1. Transitive movement dominance

This kind of dominance arises in sequences in which the same

ontainer is moved twice, once from stack a to stack b and then

rom stack b to stack c. Proposition 1 (Parreño-Torres et al., 2020)

efers to the simplest case in which the same container undergoes

wo consecutive moves.

roposition 1. A sequence s 1 = (o 1 , t 1 , d 1 , l 1) . . . (o i , t i , d i , l i)(d i , l i ,

 i +1 , l i +1) . . . (d n , l n , d n , l n) is dominated by the sequence s 2 =
o 1 , t 1 , d 1 , l 1) . . . (o i , t i , d i +1 , l i +1) . . . (d n , l n , d n , l n)

C. Parreño-Torres, R. Alvarez-Valdes and F. Parreño European Journal of Operational Research 302 (2022) 1063–1078

a

q

(

v

f

t

(

S

(

s

b

f

s

(

(

t

m

(

l

m

P

(

d

i

f

s

o

c

H

a

(

b

(

t

i

(

a

i

(

a

s

(

P

t

(

t

t

f

h

a

b

(

(

c

t

o

f

(

s

I

i

s

l

P

(

(

f

4

(

w

c

s

s

q

t

t

s

P

t

l

t

However, more complex cases can be identified. Let us look

t Fig. 3 illustrating Proposition 2 and consider the top-side se-

uence (1a)-(1g), s 1 = (3 , 3 , 2 , 4)(3 , 2 , 2 , 5) (3,1,1,4)(2,5,3,1)(1,4,3,2)

2,4,1,4)(2,3,1,5), composed of 7 moves. The container with group

alue 5 is moved from stack 3 to stack 2 in move 1 and then

rom stack 2 to stack 1 in move 6. Stacks 1 and 2 are invariant

o the sequence s ∗
1

= (3 , 2 , 2 , 5)(3 , 1 , 1 , 4)(2 , 5 , 3 , 1)(1 , 4 , 3 , 2)

moves from 2 to 5) as can be seen in Fig. 3 (1b) and (1f).

ince the number of containers in stack 1 before the move

2,4,1,4) is 3, and there is only one temporary container as-

igned to stack 1 during s ∗1 , this temporary container could still

e assigned to stack 1 if it had one more container. There-

ore, the same final configuration is obtained by sequence

 2 = (3 , 3 , 1 , 4)(3 , 2 , 2 , 4)(3 , 1 , 1 , 5)(2 , 4 , 3 , 1)(1 , 5 , 3 , 2)(2 , 3 , 1 , 5)

 Fig. 3 (2a) and (2f)), as can be seen by comparing Fig. 3 (1g) and

2f). Sequence s 2 in the example dominates sequence s 1 , since

he time taken by the crane to perform it is shorter. Note that if

ove (3,3,1,4) is made first (Fig. 3 (2a)), instead of move (3,3,2,4)

 Fig. 3 (1a)), stack 2 will have one less container during the fol-

owing moves (tiers highlighted in blue) and stack 1 will have one

ore container (tiers highlighted in red).

roposition 2. The sequence s 1 = (o 1 , t 1 , d 1 , l 1) . . . (o i , t i , d i , l i) . . .

d 1 , l 1 , d n −1 , l n −1)(o n , t n , d n , l n) is dominated by s 2 = (o 1 , t 1 ,

 n −1 , l n −1) . . . (o i , t
′
i
, d i , l

′
i
) . . . (o n −2 , t

′
n −2 , d n −2 , l

′
n −2)(o n , t n , d n , l n)

n which t ′
i

:= f (t i , o i , d 1 , d n −1) and l ′
i

:= f (l i , d i , d 1 , d n −1) if the

ollowing conditions are satisfied:

1. d 1 and d n −1 are invariant from move 2 to n − 2 in s 1 .

2. n n −2
d n −1

(s 1) + 1 + t 2 ,n −2
d n −1

(s 1) ≤ T

3. v al 1 > v al 2 , where

v al 1 = h

1 (o 1 , d 1) + h

0 (d 1 , o 2) + h

0 (d n −2 , d 1) + h

1 (d 1 , d n −1)

+ h

0 (d n −1 , o n) + v 0 (l 1) + v 1 (l 1)

+

n −2 ∑

i =2

(
δo i , (d 1 ,d n −1) · v 1 (t i) + δd i , (d 1 ,d n −1) · v 0 (l i)

)
v al 2 = h

1 (o 1 , d n −1) + h

0 (d n −1 , o 2) + h

0 (d n −2 , o n)

+

n −2 ∑

i =2

(
δo i , (d 1 ,d n −1) · v 1 (t ′ i) + δd i , (d 1 ,d n −1) · v 0 (l ′ i)

)
If the bay is sorted after (d 1 , l 1 , d n −1 , l n −1) in sequence s 1 , the

ame proposition holds without considering (o n , t n , d n , l n) in either s 1
r s 2 , with h 0 (d n −1 , o n) = h 0 (d n −2 , o n) = 0 .

The idea of the next proposition is analogous: there is a

ontainer moved twice, from stack a to b and then from b to c.

ere the origin stack of the first move of this container (stack

) and the stack to which the container is temporarily moved

stack b) are invariant to the sequence of moves between them,

ut the destination stack of the second move of the container

stack c) is not. The container can be moved directly from a

o c after the sequence to which a and b are invariant. Start-

ng from the initial bay layout in Fig. 3 (1a), in sequence s 1 =
1 , 3 , 3 , 4) (1,2,2,4) (3 , 4 , 1 , 2)(3 , 3 , 2 , 5)(1 , 2 , 3 , 3)(2 , 5 , 3 , 4) (2,4,3,5)

 container is moved twice in moves 2 and 7 (in bold). It

s dominated by s 2 = (1 , 3 , 3 , 4)(3 , 4 , 1 , 3)(3 , 3 , 2 , 4)(1 , 3 , 3 , 3)

2 , 4 , 3 , 4) (1, 2 , 3, 5) in which the container is moved once

t the end of the sequence. However, in sequence s 2 , move 2

imply reverses move 1, so s 2 is dominated in turn by (3,3,2,4)

1,3,3,3)(2,4,3,4)(1,2,3,5).

roposition 3. The sequence s 1 = (o 1 , t 1 , d 1 , l 1)(o 2 , t 2 , d 2 , l 2) . . . (o i ,

 i , d i , l i) . . . (d 2 , l 2 , d n , l n) is dominated by sequence s 2 =
o 1 , t 1 , d 1 , l 1)(o 3 , t

′
3
, d 3 , l

′
3
) . . . (o i , t

′
i
, d i , l

′
i
) . . . (o 2 , t 2 , d n , l n) where

′
i

:= f (t i , o i , d 2 , o 2) and l ′
i

:= f (l i , d i , d 2 , o 2) if the following condi-

ions are satisfied:
1067
1. o 2 and d 2 are invariant to moves 3 to n − 1 in s 1 .

2. n n −1
o 2

(s 1) + 1 + t 3 ,n −1
o 2

(s 1) ≤ T

3. v al 1 > v al 2 , where

v al 1 = h

0 (d 1 , o 2) + h

1 (o 2 , d 2) + h

0 (d 2 , o 3) + h

0 (d n −1 , d 2)

+ h

1 (d 2 , d n) + v 0 (l 2) + v 1 (l 2)

+

n −1 ∑

i =3

(
δo i , (o 2 ,d 2) · v 1 (t i) + δd i , (o 2 ,d 2) · v 0 (l i)

)
v al 2 = h

0 (d 1 , o 3) + h

0 (d n −1 , o 2) + h

1 (o 2 , d n)

+

n −1 ∑

i =3

(
δo i , (o 2 ,d 2) · v 1 (t ′ i) + δd i , (o 2 ,d 2) · v 0 (l ′ i)

)
The proposition also holds if there is no move (o 1 , t 1 , d 1 , l 1) be-

ore (o 2 , t 2 , d 2 , l 2) and the crane starts from its initial position, with

0 (d 1 , o 2) = h 0 (o 2) and h 0 (d 1 , o 3) = h 0 (o 3) .

The last proposition in this section refers to sequences in which

 container is moved twice, from stack a to stack b and then from

to c, but neither the origin stack of the first container move

stack a) nor the destination stack of the second container move

stack b) are invariant to the sequence between these moves. The

ontainer cannot be moved just once, but there could be another

emporary stack c ′ to which the container could be moved, instead

f b, with a shorter crane time. For instance, suppose there is a

ourth empty stack in the bay layout shown in Fig. 3 (1a). Sequence

3,3,4,1)(1,3,3,3)(4,1,1,3) moves a container twice, from stack 3 to

tack 4 in move 1 and then from stack 4 to stack 1 in move 3.

t is dominated by (3,3,2,4)(1,3,3,3)(2,4,1,3), in which the container

n stack 3 is also moved twice, but first to stack 2 and then from

tack 2 to stack 1. The final layout is the same but is reached in

ess time in the second sequence.

roposition 4. The sequence s 1 = (o 1 , t 1 , d 1 , l 1) . . . (o i , t i , d i , l i) . . .

d 1 , l 1 , d n , l n) is dominated by s 2 = (o 1 , t 1 , d, l ′) . . . (o i , t
′
i
, d i , l

′
i
) . . .

d, l ′ , d n , l n) where t ′
i

:= f (t i , o i , d 1 , d) and l ′
i

:= f (l i , d i , d 1 , d) if the

ollowing conditions are satisfied:

1. d 1 and d are invariant from move 2 to n − 1 in s 1 .

2. n n −1
d

(s 1) + 1 + t 2 ,n −1
d

(s 1) ≤ T

3. v al 1 > v al 2 , where

v al 1 = h 1 (o 1 , d 1) + h 0 (d 1 , o 2) + h 0 (d n −1 , d 1) + h 1 (d 1 , d n)

+ v 0 (l 1) + v 1 (l 1) +

n −1 ∑

i =2

(
δo i , (d 1 ,d) · v 1 (t i) + δd i , (d 1 ,d) · v 0 (l i)

)
v al 2 = h 1 (o 1 , d) + h 0 (d, o 2) + h 0 (d n −1 , d) + h 1 (d, d n)+

+ v 0 (l ′) + v 1 (l ′) +

n −1 ∑

i =2

(
δo i , (d 1 ,d) · v 1 (t ′ i) + δd i , (d 1 ,d) · v 0 (l ′ i)

)

.2. Unrelated movement dominance

This kind of dominance arises in sequences in which one

or more) of the moves can be made in a different order,

ithout altering the final layout of the bay and requiring less

rane time. The simplest case involves moving a container from

tack a to stack b and then another container from stack c to

tack d. If stacks a , b, c, and d are all different and the se-

uence in which first the container is moved from c to d and

hen other container is moved from a to b takes less crane

ime, the former sequence is dominated by the latter. This

imple case, and other more complex ones, are identified in

ropositions 5 and 6 . On the one hand, Proposition 5 identifies

he dominance that occurs when a move can be made in an ear-

ier position in the sequence. For instance, if Fig. 4 a represents

he initial bay layout, sequence (3,4,2,5)(3,3,2,6)(1,4,4,5)(3,2,4,6) is

C. Parreño-Torres, R. Alvarez-Valdes and F. Parreño European Journal of Operational Research 302 (2022) 1063–1078

Fig. 4. Bay layout examples.

d

t

P

c

s

t

f

c

(

P

(

l

l

f

f

h

b

s

o

P

(

t

t

t

f

h

s

p

s

4

t

A

2

o

w

s

m

P

t

i

l

a

f

d

t

t

a

f

p

a

i

b

t

t

f

g

a

s

t

P

t

g

d

t

d

ominated by (1,4,4,5)(3,4,2,5)(3,3,2,6)(3,2,4,6) in which the move

hat was previously the third is now the first. On the other hand,

roposition 6 identifies the dominance that occurs when a move

an be made at a later position in the sequence. For instance, con-

idering again the initial layout of a bay in Fig. 4 a, the first move in

he sequence (4,4,2,5)(1,4,4,4)(1,3,3,5)(4,4,3,6)(4,3,1,3) can be per-

ormed in fourth place, leading to the same layout and taking less

rane time. Therefore, that sequence is dominated by the sequence

1,4,4,5)(1,3,3,5)(4,5,3,6)(4,4,2,5)(4,3,1,3).

roposition 5. The sequence s 1 = (o 1 , t 1 , d 1 , l 1) . . . (o i , t i , d i , l i) . . .

o n , t n , d n , l n) is dominated by s 2 = (o 1 , t 1 , d 1 , l 1)(o n −1 , t n −1 , d n −1 ,

 n −1)(o 2 , t
′
2 , d 2 , l

′
2) . . . (o i , t

′
i
, d i , l

′
i
) . . . (o n −2 , t

′
n −2 , d n −2 , l

′
n −2)(o n , t n , d n ,

 n) where t ′
i

:= f (t i , o i , o n −1 , d n −1) and l ′
i

:= f (l i , d i , o n −1 , d n −1) if the

ollowing conditions are satisfied:

1. o n −1 and d n −1 are invariant from move 2 to n − 2 in s 1 .

2. n n −2
d n −1

(s 1) + 1 + t 2 ,n −2
d n −1

(s 1) ≤ T

3. v al 1 > v al 2 , where

v al 1 = h

0 (d 1 , o 2) + h

0 (d n −2 , o n −1) + h

0 (d n −1 , o n)

+

n −2 ∑

i =2

(
δo i , (o n −1 ,d n −1) · v 1 (t i) + δd i , (o n −1 ,d n −1) · v 0 (l i)

)
v al 2 = h

0 (d 1 , o n −1) + h

0 (d n −1 , o 2) + h

0 (d n −2 , o n)

+

n −2 ∑

i =2

(
δo i , (o n −1 ,d n −1) · v 1 (t ′ i) + δd i , (o n −1 ,d n −1) · v 0 (l ′ i)

)
The proposition also holds if there is no move (o 1 , t 1 , d 1 , l 1) be-

ore (o 2 , t 2 , d 2 , l 2) and the crane starts from its initial position, with

0 (d 1 , o 2) = h 0 (o 2) and h 0 (d 1 , o n −1) = h 0 (o n −1) . Moreover, if the

ay is sorted after move (o n −1 , t n −1 , d n −1 , l n −1) in sequence s 1 , the

ame proposition holds without considering (o n , t n , d n , l n) either in s 1
r in s 2 , with h 0 (d n −1 , o n) = h 0 (d n −2 , o n) = 0 .

roposition 6. The sequence s 1 = (o 1 , t 1 , d 1 , l 1) . . . (o i , t i , d i , l i) . . .

o n , t n , d n , l n) is dominated by s 2 = (o 1 , t 1 , d 1 , l 1)(o 3 , t
′
3 , d 3 , l

′
3) . . . (o i ,

′
i
, d i , l

′
i
) . . . (o n −1 , t

′
n −1

, d n −1 , l
′
n −1

)(o 2 , t 2 , d 2 , l 2)(o n , t n , d n , l n) where

′
i

:= f (t i , o i , d 2 , o 2) and l ′
i

:= f (l i , d i , d 2 , o 2) if the following condi-

ions are satisfied:

1. o 2 and d 2 are invariant from move 3 to n − 1 in s 1 .

2. n n −1
o 2

(s 1) + 1 + t 3 ,n −1
o 2

(s 1) ≤ T

3. v al 1 > v al 2 , where

v al 1 = h

0 (d 1 , o 2) + h

0 (d 2 , o 3) + h

0 (d n −1 , o n)

+

n −1 ∑

i =3

(
δo i , (o 2 ,d 2) · v 1 (t i) + δd i , (o 2 ,d 2) · v 0 (l i)

)
v al 2 = h

0 (d 1 , o 3) + h

0 (d n −1 , o 2) + h

0 (d 2 , o n)

+

n −1 ∑

(
δo i , (o 2 ,d 2) · v 1 (t ′ i) + δd i , (o 2 ,d 2) · v 0 (l ′ i)

)

i =3

1068
The proposition also holds if there is no move (o 1 , t 1 , d 1 , l 1) be-

ore (o 2 , t 2 , d 2 , l 2) and the crane starts from its initial position, with

0 (d 1 , o 2) = h 0 (o 2) and h 0 (d 1 , o 3) = h 0 (o 3) . Moreover, if the bay is

orted after move (o n −1 , t n −1 , d n −1 , l n −1) in sequence s 1 , the same

roposition holds without considering (o n , t n , d n , l n) either in s 1 or in

 2 , with h 0 (d n −1 , o n) = h 0 (d 2 , o n) = 0 .

.3. Same group movement dominance

This kind of dominance arises in sequences in which two con-

ainers in the same group are relocated in two different moves.

 simple case is described in Proposition 7 (Parreño-Torres et al.,

020), in which a container with group value g is moved first from

ne stack a to another stack b, and in the next move, a container

ith the same group value g is moved to stack a from another

tack c. The same layout is obtained with a lower crane time by

oving a container with group value g directly from c to b.

roposition 7. A sequence s 1 = (o 1 , t 1 , d 1 , l 1) . . . (o i , t i , d i , l i)(o i +1 ,

 i +1 , o i , d i) . . . (o n , t n , d n , l n) such that group(c i) = group(c i +1)

s dominated by sequence s 2 = (o 1 , t 1 , d 1 , l 1) . . . (o i −1 , t i −1 , d i −1 ,

 i −1)(o i + i , t i +1 , d i , l i)(o i +2 , t i +2 , d i +2 , l i +2) . . . (o n , t n , d n , l n)

Propositions 8 and 9 generalize this for cases where there is

n intermediate sequence between movements from a to b and

rom c to a . If stacks c and a are both invariant to the interme-

iate sequence, the containers temporarily assigned to a during

hat intermediate sequence still fit with one more container, and

he total time taken by the crane is lower, it is better to move

 container with group value g from stack c to b and then per-

orm the intermediate sequence (see Proposition 8). For exam-

le, consider the initial bay layout in Fig. 4 b, with a = 2 , b = 5 ,

nd c = 3 . The sequence (2,6,5,4)(4,2,5,5)(3,4,2,6)(4,1,3,4) is dom-

nated by the sequence (3,4,5,4)(4,2,5,5)(4,1,3,4). If stacks a and

are invariant, the containers temporarily assigned to a during

hat intermediate sequence still fit with one more container, and

he total time taken by the crane is lower, it is better to per-

orm the intermediate sequence and then to move a container with

roup value g from stack c to b, (see Proposition 9). Considering

gain the initial layout in Fig. 4 b, with a = 1 , b = 4 , and c = 3 , the

equence (4,2,5,4)(1,6,4,2)(3,4,5,5)(3,3,1,6)(2,6,3,3) is dominated by

he sequence (4,2,5,4)(3,4,5,5)(3,3,4,2)(2,6,3,3).

roposition 8. The sequence s 1 = (o 1 , t 1 , d 1 , l 1)(o 2 , t 2 , d 2 , l 2) . . . (o i ,

 i , d i , l i) . . . (o n −1 , t n −1 , o 2 , t 2)(o n , t n , d n , l n) such that group(c 2) =
roup(c n −1) is dominated by sequence s 2 = (o 1 , t 1 , d 1 , l 1)(o n −1 , t n −1 ,

 2 , l 2) . . . (o i , t
′
i
, d i , l

′
i
) . . . (o n −2 , t

′
n −2

, d n −2 , l
′
n −2

)(o n , t n , d n , l n) where

′
i

:= f (t i , o i , o n −1 , o 2) and l ′
i

:= f (l i , d i , o n −1 , o 2) if the following con-

itions are satisfied:

1. o 2 and o n −1 are invariant from move 3 to n − 2 in s 1 .

2. n n −2
o (s 1) + 1 + t 3 ,n −2

o (s 1) ≤ T

2 2

C. Parreño-Torres, R. Alvarez-Valdes and F. Parreño European Journal of Operational Research 302 (2022) 1063–1078

f

h

b

p

s

P

(

g

d

s

f

h

s

s

w

e

a

t

i

a

a

t

l

i

t

q

q

t

m

c

t

f

s

o

(

q

P

t

n

.

i

f

h

P

(

g

(

d

s

s

t

5

t

o

β
d

p

t

o

s

l

t

p

m

c

r

m

3. v al 1 > v al 2 , where

v al 1 = h

0 (d 1 , o 2) + h

1 (o 2 , d 2) + h

0 (d n −2 , o n −1) + h

1 (o n −1 , o 2)

+ h

0 (o 2 , o n) + v 0 (t 2) + v 1 (t 2)

+

n −2 ∑

i =3

(
δo i , (o 2 ,o n −1) · v 1 (t i) + δd i , (o 2 ,o n −1) · v 0 (l i)

)
v al 2 = h

0 (d 1 , o n −1) + h

1 (o n −1 , d 2) + h

0 (d n −2 , o n)

+

n −2 ∑

i =3

(
δo i , (o 2 ,o n −1) · v 1 (t ′ i) + δd i , (o 2 ,o n −1) · v 0 (l ′ i)

)
The proposition also holds if there is no move (o 1 , t 1 , d 1 , l 1) be-

ore (o 2 , t 2 , d 2 , l 2) and the crane starts from its initial position, with

0 (d 1 , o 2) = h 0 (o 2) and h 0 (d 1 , o n −1) = h 0 (o n −1) . Moreover, if the

ay is sorted after move (o n −1 , t n −1 , o 2 , t 2) in sequence s 1 , the same

roposition holds without considering (o n , t n , d n , l n) either in s 1 or in

 2 , with h 0 (o 2 , o n) = h 0 (d n −2 , o n) = 0 .

roposition 9. The sequence s 1 = (o 1 , t 1 , d 1 , l 1)(o 2 , t 2 , d 2 , l 2) . . .

o i , t i , d i , l i) . . . (o n −1 , t n −1 , o 2 , t 2)(o n , t n , d n , l n) such that group(c 2) =
roup(c n −1) is dominated by sequence s 2 = (o 1 , t 1 , d 1 , l 1)(o 3 , t

′
3
,

 3 , l
′
3
) . . . (o i , t

′
i
, d i , l

′
i
) . . . (o n −1 , t n −1 , d 2 , l 2)(o n , t n , d n , l n) where t ′

i
:=

f (t i , o i , d 2 , o 2) and l ′
i

:= f (l i , d i , d 2 , o 2) if the following conditions are

atisfied:

1. o 2 and d 2 are invariant from move 3 to n − 2 in s 1 .

2. n n −2
o 2

(s 1) + 1 + t 3 ,n −2
o 2

(s 1) ≤ T

3. v al 1 > v al 2 , where

v al 1 = h

0 (d 1 , o 2) + h

1 (o 2 , d 2) + h

0 (d 2 , o 3)

+ h

1 (o n −1 , o 2) + h

0 (o 2 , o n) + v 0 (t 2) + v 1 (t 2)

+

n −2 ∑

i =3

(
δo i , (o 2 ,d 2) · v 1 (t i) + δd i , (o 2 ,d 2) · v 0 (l i)

)
v al 2 = h

0 (d 1 , o 3) + h

1 (o n −1 , d 2) + h

0 (d 2 , o n)

+

n −2 ∑

i =3

(
δo i , (o 2 ,d 2) · v 1 (t ′ i) + δd i , (o 2 ,d 2) · v 0 (l ′ i)

)
The proposition also holds if there is no move (o 1 , t 1 , d 1 , l 1) be-

ore (o 2 , t 2 , d 2 , l 2) and the crane starts from its initial position, with

0 (d 1 , o 2) = h 0 (o 2) and h 0 (d 1 , o 3) = h 0 (o 3) . Moreover, if the bay is

orted after move (o n −1 , t n −1 , o 2 , t 2) in sequence s 1 , the same propo-

ition holds without considering (o n , t n , d n , l n) either in s 1 or in s 2 ,

ith h 0 (o 2 , o n) = h 0 (d 2 , o n) = 0 .

The following propositions consider the movement of contain-

rs with the same group value in two distinct moves, that is,

 container with group value g is moved from a to b and, af-

er a sequence of moves, another container with group value g

s moved from c to d. If the origin stacks of the moves, a and c,

re invariant to the intermediate sequence and the containers that

re temporarily allocated to a still fit if there is one more con-

ainer, the origin stacks can be swapped, resulting in the same

ayout. Therefore, the sequence that takes less crane time dom-

nates the other (see Proposition 10). For example, considering

he layout in Fig. 4 b and a = 3 , b = 5 , c = 2 , and d = 5 , the se-

uence (3,4,5,4)(4,2,5,5)(1,6,4,2)(2,6,5,6) is dominated by the se-

uence (2,6,5,4)(4,2,5,5)(1,6,4,2)(3,4,5,6). Similarly, if the destina-

ion stacks of the moves, b and d, are invariant to the inter-

ediate sequence and the containers that are temporarily allo-

ated in d still fit if there is one more container, the destina-

ion stacks can be swapped, resulting in the same layout. There-

ore, the sequence that takes less crane time dominates the other

equence (see Proposition 11). For example, considering the lay-

ut in Fig. 4 b and a = 4 , b = 5 , c = 3 , and d = 2 , the sequence
1069
2,6,5,4)(4,2,5,5)(1,6,4,2)(3,4,2,6)(4,2,1,6) is dominated by the se-

uence (2,6,5,4)(4,2,2,6)(1,6,4,2)(3,4,5,5)(4,2,1,6).

roposition 10. The sequence s 1 = (o 1 , t 1 , d 1 , l 1)(o 2 , t 2 , d 2 , l 2) . . . (o i ,

 i , d i , l i) . . . (o n , t n , d n , l n) such that group(c 2) = group(c n) is domi-

ated by sequence s 2 = (o 1 , t 1 , d 1 , l 1)(o n , t n , d 2 , l 2) . . . (o i , t
′
i
, d i , l

′
i
)

 . . (o 2 , t 2 , d n , l n) where t ′
i

:= f (t i , o i , o n , o 2) and l ′
i

:= f (l i , d i , o n , o 2)

f the following conditions are satisfied:

1. o 2 and o n are invariant from move 3 to n − 1 in s 1 .

2. n n −1
o 2

(s 1) + 1 t 3 ,n −1
o 2

(s 1) ≤ T

3. v al 1 > v al 2 , where

v al 1 = h

0 (d 1 , o 2) + h

1 (o 2 , d 2) + h

0 (d n −1 , o n) + h

1 (o n , d n)

+

n −1 ∑

i =3

(
δo i , (o 2 ,o n) · v 1 (t i) + δd i , (o 2 ,o n) · v 0 (l i)

)
v al 2 = h

0 (d 1 , o n) + h

1 (o n , d 2) + h

0 (d n −1 , o 2) + h

1 (o 2 , d n)

+

n −1 ∑

i =3

(
δo i , (o 2 ,o n) · v 1 (t ′ i) + δd i , (o 2 ,o n) · v 0 (l ′ i)

)
The proposition also holds if there is no move (o 1 , t 1 , d 1 , l 1) be-

ore (o 2 , t 2 , d 2 , l 2) and the crane starts from its initial position, with

0 (d 1 , o 2) = h 0 (o 2) and h 0 (d 1 , o n) = h 0 (o n) .

roposition 11. The sequence s 1 = (o 1 , t 1 , d 1 , l 1) . . . (o i , t i , d i , l i) . . .

o n −1 , t n −1 , d n −1 , l n −1) (o n , t n , d n , l n) such that group(c 1) =
roup(c n −1) is dominated by the sequence s 2 = (o 1 , t 1 , d n −1 , l n −1) . . .

o i , t
′
i
, d i , l

′
i
) . . . (o n −1 , t n −1 , d 1 , l 1)(o n , t n , d n , l n) where t ′

i
:= f (t i , o i ,

 1 , d n −1) and l ′
i

:= f (l i , d i , d 1 , d n −1) if the following conditions are

atisfied:

1. d 1 and d n −1 are invariant from move 2 to n − 2 in s 1 .

2. n n −2
d n −1

(s 1) + 1 + t 2 ,n −2
d n −1

(s 1) ≤ T

3. v al 1 > v al 2 , where

v al 1 = h

1 (o 1 , d 1) + h

0 (d 1 , o 2) + h

1 (o n −1 , d n −1) + h

0 (d n −1 , o n)

+

n −2 ∑

i =2

(
δo i , (d 1 ,d n −1) · v 1 (t i) + δd i , (d 1 ,d n −1) · v 0 (l i)

)
v al 2 = h

1 (o 1 , d n −1) + h

0 (d n −1 , o 2) + h

1 (o n −1 , d 1) + h

0 (d 1 , o n)

+

n −2 ∑

i =2

(
δo i , (d 1 ,d n −1) · v 1 (t ′ i) + δd i , (d 1 ,d n −1) · v 0 (l ′ i)

)
If the bay is sorted after move (o n −1 , t n −1 , d n −1 , l n −1) in sequence

 1 , the same proposition holds without considering (o n , t n , d n , l n) ei-

her in s 1 or in s 2 , with h 0 (d n −1 , o n) = h 0 (d 1 , o n) = 0 .

. A beam search-based algorithm

The Beam Search algorithm (BS) uses breadth-first search (BFS)

o explore the solution tree. Unlike standard BFS, the BS algorithm

nly keeps a reduced set of β promising nodes at each level, where

is known as beam width. The remaining nodes are permanently

iscarded. Consequently, the path to the optimal solution could be

runed by discarding the node leading to it, in which case the op-

imality of the best solution found is not guaranteed. The selection

f nodes is usually done in two steps. First, a fast local evaluation

elects a subset of nodes from among all those generated at a given

evel. Then a more time-consuming global evaluation selects from

his subset the β promising nodes to keep at this level.

Beam search algorithms have been very successful in related

roblems in which solutions are represented by sequences of

oves, such block relocation (Bacci, Mattia, & Ventura, 2019) or

utting and packing problems (Libralesso & Fontan, 2021; Par-

eño, Alonso, & Alvarez-Valdes, 2020). For other variants of pre-

arshalling problems, similar tree search structures are the basis

C. Parreño-Torres, R. Alvarez-Valdes and F. Parreño European Journal of Operational Research 302 (2022) 1063–1078

Table 2

Main notation used throughout the algorithms in Section 5 .

β Beam width.

π Best solution found.

u (π) Upper bound on the number of moves to solve the CPMPCT.

s w Sequence performed to reach node w .

m (s) Number of moves in sequence s .

t(s) Time taken by the crane to perform sequence s .

η(w) Number of blocking containers in the layout of node w .

lb m (w) Lower bound for the number of moves to solve the CPMP from the layout of node w .

lb t (w) Lower bound for the time taken by the crane to solve the CPMPCT from the layout of node w .

CPU max Maximum computing time.

o

s

s

g

t

5

I

A

1

1

1

1

1

1

2

2

2

2

2

i

t

l

n

t

t

T

F

t

s

r

i

i

f

d

s

s

l

t

E

s

u

w

D

o

i

n

p

g

t

i

b

w

l

m

t

t

w

s

o

r

r

i

d

l

n

m

fl

i

d

l

u

f recent high-performing algorithms (Hottung et al., 2020). In this

ection, we describe the proposed algorithm based on the beam

earch structure, along with the node comparison criteria and the

lobal evaluation algorithm used. Table 2 summarizes the main no-

ation used throughout the section.

.1. Algorithm description

Algorithm 1 shows the pseudocode of our proposed algorithm.

t iteratively runs a beam search algorithm (lines 11 to 19), increas-

lgorithm 1 Pseudocode of the algorithm based on beam search.

1: function BeamSearch (root)

2: π ← ∅ � Best solution found

3: β ← S � Initial beam width

4: opt ← false � Flag to indicate if the optimal solution has

been reached

5: u ← 1 . 5 · lb m

� Upper bound on the number of moves.

6: while opt = false and time < CP U max do

7: depth ← 1 � Depth

8: opt ← true

9: list.push _ back (root)

0: sublist ← ∅

11: while list � = ∅ and time < CP U max do

2: w ← list . f ront ()

3: list.pop _ f ront()

14: sublist ← Descendants (depth , w, sublist, π, u)

5: � All non-dominated neighbours from node w

6: if list � = ∅ then

17: depth ← depth + 1

18: l ist ← GlobalEval (subl ist, β, π, depth , u)

9: if list.size () = β then opt ← false

0: sublist ← ∅

1: if π = ∅ then u ← 1 . 5 · u

2: β ← 1 . 5 · β
3: if time ≥ CP U max then opt ← false

4: return π

ng the beam width β at each iteration. The algorithm ends when

he time limit is reached or an optimal solution is found. A so-

ution is optimal if during one iteration of the beam search, the

umber of nodes generated at each depth is less than or equal to

he current beam width.

The beam width is initially set to the number of stacks S in

he bay (line 3) and increased 1.5 times on each iteration (line 21).

his increment is in line with what was reported by Libralesso &

ontan (2021) . Throughout the algorithm, a parameter u is used

o limit the maximum number of levels to explore. Initially, u is

et to 1.5 times the lower bound on the number of moves at the

oot node root (line 5). As this initial value is only an estimation,

t must be increased if no possible solution is found (line 20), and

s updated to a valid bound for the number of moves as soon as a
1070
easible solution is obtained. Moreover, the value of u is also up-

ated each time a better feasible solution is obtained to reduce the

olution space. Let t(s π) be the time taken by the crane to perform

equence s π , η the number of blocking containers in the initial bay

ayout, ηt a lower bound for the time taken by the crane to move

hem, and εt a lower bound for the time taken to perform a move.

q. (3) provides a valid upper bound on the number of moves to

olve the CPMPCT as shown in Parreño-Torres et al. (2020) .

 := u (π) =

⌊
t (s π) − ηt + η · εt

εt

⌋
(3)

Each of the beam search iterations starts from the root node,

hich corresponds to the initial layout of the bay (line 9). The

escendants () function generates all non-dominated descendants

f node w at line 14. A node is a descendant of another node if it

s obtained after the movement of a single container. Moreover, a

ode w̄ is dominated if one of the following conditions holds:

1. At least one of the criteria described in Section 4 is satisfied.

Thus, the sequence of movements performed to reach the node

is dominated by another sequence leading to the same layout

and requiring less crane time.

2. The lower bound for the number of moves to solve the CPMP

at node w̄ plus the number of moves to reach that node is

greater than the current upper bound on the number of moves:

lb m (̄w) + m (s ̄w) > u .

Non-dominated nodes are sorted into four groups in sublist de-

ending on the type of the last move performed: bad-bad (BB),

ood-bad (GB), good-good (GG), or bad-good (BG). This classifica-

ion was introduced by Bortfeldt (2004) . Bad-bad moves are those

n which a blocking container moves to a stack in which it also

locks the removal of others. Bad-good moves refer to moves in

hich a blocking container is moved to a stack in which it is no

onger blocking. Similarly, good-bad and good-good moves involve

oving of a non-blocking container to a position where it blocks

he removal of others and to a position where it does not, respec-

ively. Different tie-breaking criteria are used for sorting the nodes

ithin each group as described in Section 5.2 .

Once all of the descendants at depth have been generated in

ublist , we move to the global evaluation in line 17. It is carried

ut by the GlobalEval () function, which runs a heuristic algo-

ithm to obtain feasible solutions as well as a local search algo-

ithm to improve them. This function returns the most promis-

ng β nodes stored in list . Algorithms 2 , 3 , and 4 show the pseu-

ocode of the global evaluation, the heuristic algorithm, and the

ocal search. They all are further described in Section 5.3 . If the

umber of nodes contained in list after line 17 equals β , the opti-

ality of the solution reached cannot be guaranteed and therefore

ag opt is set to false in line 18. List sublist is cleared at line 19 as

t will be used again to store the descendants of the beam nodes at

epth , that is, the descendants of the (at most) β nodes stored in

ist . If the beam search ends and no solution has been found, the

pper bound on the number of moves is increased in line 20. If

C. Parreño-Torres, R. Alvarez-Valdes and F. Parreño European Journal of Operational Research 302 (2022) 1063–1078

Algorithm 2 Global evaluation algorithm.

1: function GlobalEval (sublist, β, π, depth , u)

2: list ← ∅

3: βprior ← α% · β
4: count ← 0

5: while count < βprior and sublist � = ∅ do

6: for i in { BG,GG,BB,GB } do

7: w̄ = sublist [i] . f ront () � Take the first element of each

sublist

8: if depth + lb m

(̄w) ≤ u then

9: count ← count + 1

10: w̄ .pr ior ity ← true

11: w̄ .identi f ier ← count

12: w̄ .heur ← Heuristic (̄w , π, d)

13: l ist ← InsertNode (l ist, β, w̄)

14: sublist[i] .pop _ f ront()

15: for i in { BG,GG,BB,GB } do

16: count ← 0

17: for w̄ = sublist[i] .begin () to sublist[i] .end() do � Take all

the elements of each sublist

18: if depth + lb m

(̄w) ≤ u then

19: count ← count + 1

20: w̄ .pr ior ity ← false

21: w̄ .identi f ier ← count

22: w̄ .heur ← Heuristic (̄w , π, u, d)

23: l ist ← InsertNode (l ist, β, w̄)

24: return list

Algorithm 3 A heuristic algorithm to obtain feasible solutions.

1: function Heuristic (̄w , π , u , depth) � Partial solution

2: if π = ∅ then c ← depth else c ← 0

3: f lag ← true

4: s ← s ̄w and w ← w̄

� Let mt/ mm be the maximum improvement in time/number

of moves achieved by the local search.

5: while t(s) + εt · η(w) − mt < t(s π) and m (s) + η(w) −
mm − c < u and f lag = true do

6: if ∃ (o, t, d, l) in BG moves then Add (o, t, d, l) to s and

Update w and f lag ← true

7: else if ∃ (o, t, d, l) in GG moves then Add (o, t, d, l) to s

and Update w and f lag ← true

8: else EmptyStack (w) Add moves to s and Update w and

f lag ← true

9: if η(w) = 0 then

10: s ← LS(s, d)

11: f l ag ← fal se

12: if t(s) < t(s π) then Update (π) � Update the best

solution so far

13: if η(w) � = 0 then

14: t ← ∞

15: else

16: t ← t(s)

17: return t

n

a

u

5

f

G

Algorithm 4 Improvement phase.

1: function LS (s, depth)

2: s 0 ← ∅ � Empty sequence

3: for i = depth + 1 to m (s) do

4: Let (o i , t i , d i , l i) be movement i of sequence s

5: s 0 ← Add movement (o i , t i , d i , l i) to sequence s 0
6: bet ter ← t rue

7: while better do

8: better ← false

9: if Direct dominance then bet ter ← t rue and Modify

sequence s 0

10: if better = false and Proposition 5 or 11 then

bet ter ← t rue and Modify sequence s 0

11: if better = false and Proposition 6, 8, 9, or 10 then

bet ter ← t rue and Modify sequence s 0

12: if better = false and Proposition 2 then bet ter ← t rue

and Modify sequence s 0

13: if better = false and Proposition 3 then bet ter ← t rue

and Modify sequence s 0

14: if better = false and Proposition 4 then bet ter ← t rue

and Modify sequence s 0

15: s ← s 0
16: for i = m (s) to 1 do

17: Let (o i , t i , d i , l i) be movement i of sequence s

18: if ∃ d not in o i +1 , . . . , o m (s) , in which the container is

well placed at tier l with a lower crane time then

19: Replace (o i , t i , d i , l i) by (o i , t i , d, l) in sequence s

20: return s

t

b

t

t

g

either the time limit nor the optimal solution has been reached,

 new beam search algorithm is run with an increased beam width

pdated in line 21.

.2. Node comparison criteria

Non-dominated descendants of the beam nodes are divided into

our groups according to the type of the last move made: BB, BG,

G, and GB. We consider 11 different tie-breaking criteria to order
1071
he nodes. They are evaluated one by one in order until the tie is

roken. Within each group, only the appropriate criteria are used

o evaluate the type of move performed in it. Table 3 shows all

he criteria defined, the order in which they are evaluated, and the

roups in which they are (�) and are not used (-).

1. Previous movement type . In the BB group, first the nodes whose

last two moves are BB, with identical origin stack. In the GB

group, first the nodes whose last two moves are BB or GB, with

identical origin stack. The underlying idea is that if one con-

tainer is moved from one stack s to another where it blocks

the removal of others, it is in order to free a lower position in

stack s so that other containers can be correctly allocated. Once

such a move has been made from s , it is convenient to continue

with this type of move until the required position is freed, even

if the move does not reduce the lower bound.

2. Lower bound for the moves. First, the nodes with the lowest

lower bound for the number of moves.

3. Containers to unload from the origin stack. First, the nodes with

the lowest number of containers to be unloaded from the ori-

gin stack s such that it would be possible to place a container

with group g in this stack, where g is the highest group be-

tween the topmost containers in the blocking stacks and the

blocking containers in stack s . This criterion applies only to BB

and GB and is considered for the explanation given for criterion

1. The fewer containers that need to be removed from one stack

to free up the desired position, the better.

4. Containers in the origin stack. First, the nodes with the lowest

number of containers in the origin stack. This criterion applies

only to BB and GB and is considered for the explanation given

for criterion 1. The fewer containers the stack has, the more

containers will fit above the position to be freed.

5. Containers placed upside down. First, the nodes in which a con-

tainer is moved to a stack in which it is placed on top of a con-

tainer with a lower group value (these containers are said to

C. Parreño-Torres, R. Alvarez-Valdes and F. Parreño European Journal of Operational Research 302 (2022) 1063–1078

Table 3

Tie-breaking criteria to order the nodes. A tick indicates that the criterion applies.

Order Criterion BB GB BG GG

1 Previous move type � � - -

2 Lower bound for the number of moves � � � �

3 Containers to unload from the origin stack � � - -

4 Containers in the origin stack � � - -

5 Container placed upside down � � - -

6 Maximum blocking group value of the origin stack � - � -

7 Gap topmost destination - topmost origin - - - �

8 Gap topmost destination - container moved - � - -

9 Topmost container in the origin stack - � - �

10 Lower bound for the time spent by the crane � � � �

11 Crane time spent so far � � � �

1

1

5

G

s

f

t

n

o

a

s

g

i

b

o

t

w

b

l

i

i

s

T

w

l

i

t

n

5

g

w

f

be placed “upside down”). If two containers are upside down,

they are accessible to be resorted correctly in another stack.

This criterion applies only to BB and GB, where the container

will block the removal of others in the destination stack.

6. Maximum group value of a blocking container in the origin stack.

First, the nodes with the highest group value of a blocking con-

tainer. This criterion applies only to BB and BG where the con-

tainer being moved is a blocking container.

7. Gap between the topmost destination and the topmost origin.

First, the nodes with the smallest difference between the group

value of the topmost container in the destination stack before

the move and the group value of the topmost container in the

origin stack. This criterion applies to GG. The smaller the differ-

ence between consecutive containers in a well-sorted stack, the

better.

8. Gap between the topmost destination and the container being

moved. First, the nodes with the smallest difference between

the group value of the topmost container in the destination

stack before the move and the group value of the container be-

ing moved. This criterion applies to BG; the smaller the differ-

ence, the greater the flexibility to include new containers.

9. Topmost container in the origin stack. First, the nodes with the

largest container group value of the topmost container in the

origin stack. This criterion applies to GB and GG; the larger the

value, the wider the range of group values that could be ac-

cepted on top.

0. Lower bound for the time spent by the crane. First, the nodes

with the lowest lower bound for the time required by the crane

to rearrange the bay.

1. Crane time spent so far. First, the nodes with the lowest crane

time taken by the crane to reach the node.

.3. Global evaluation approach

The global evaluation phase is carried out using the

lobalEval () function. Our global evaluation basically con-

ists in completing the sequence of moves of a node until a

easible solution is found, using the HEURISTIC() function, with

wo specific features. On the one hand, a given percentage of

odes belonging to each class is kept to ensure diversity. On the

ther, the heuristic algorithm does not go on indefinitely, but stops

s soon as it becomes clear that a good solution will not be found.

The GlobalEval () function is outlined in Algorithm 2 . Let

ublist be a vector of four lists, each containing the nodes of one

roup (BG, GG, BB, or GB). This function goes through the nodes

n each list and evaluates those that are not dominated by num-

er of moves or by crane time (see lines 8 and 18). The first nodes

f each group will be added to the beam’s node list until α% of

he beam is occupied (see lines 5 to 14). The remaining (100- α)%

ill be occupied by any of the remaining nodes. To discriminate

etween the nodes that are in the α% and the remaining nodes in
1072
ines 10 and 20, a pr ior ity variable is used. We assign each node an

dentifier with the order in which it is added on line 11 and with

ts position in sublist[i] on line 21. Next, we try to obtain a feasible

olution using the Heuristic () function described in Section 5.3.1 .

he time it takes for the crane to rearrange the bay is stored in

¯ . heur in lines 12 and 23. This value is unbounded if a feasible so-

ution has not been found. Using InsertNode () , node w̄ is inserted

n list where the nodes are ordered according to the following cri-

eria, which are evaluated in order until ties are broken:

1. The highest priority value.

2. The lowest lower bound for the number of moves to solve the

CPMP.

3. The lowest value returned by Heuristic () .

4. The lowest position it occupies within its corresponding list in

sublist .

5. The lowest crane time it takes for the crane to reach the node,

plus the lower bound for the time the crane still requires to

rearrange the bay.

The InsertNode () function returns only the β most promising

odes, discarding the remaining ones.

.3.1. A heuristic algorithm to obtain a feasible solution

Algorithm 3 shows the pseudocode of the heuristic used in the

lobal evaluation. It makes moves starting from the partial solution

¯ for as long as the following three conditions are satisfied:

1. There still are blocking containers.

2. The estimate of the time required to obtain a feasible solution

does not exceed the crane time of the best solution obtained so

far. This estimate is calculated by adding the time taken by the

crane to reach the current node and the lower bound for the

time the crane still needs to rearrange the bay, and subtracting

the maximum improvement in crane time achieved so far by

the local search. This subtraction makes it possible to obtain

solutions that are initially worse than the best known solution

but that could be improved later by the local search.

3. The estimate of the number of moves required to obtain a fea-

sible solution is less than the upper bound on the number

of moves to solve the CPMPCT. The estimate is calculated by

adding the number of moves involved in w and the number

of blocking containers at the current node, and subtracting the

maximum reduction in the number of moves resulting from the

local search. If no feasible solution has yet been found, we add

the depth of the node being evaluated to the upper bound, to

give the heuristic more leeway to obtain a solution.

The Heuristic () function makes BG moves first (line 6), in the

ollowing order of preference:

1. The move with the smallest difference in group value between

the container at the top of the destination stack and the con-

tainer moved.

C. Parreño-Torres, R. Alvarez-Valdes and F. Parreño European Journal of Operational Research 302 (2022) 1063–1078

(

t

t

t

i

s

h

r

d

i

t

a

(

5

u

q

s

r

n

m

S

i

m

m

n

t

1

t

i

t

t

m

s

6

g

i

r

o

T

e

G

t

t

t

a

6

o

Z

d

a

s

d

V

i

e

t

T

r

r

e

e

i

T

a

b

a

c

e

6

s

f

t

v

s

r

1

1

v

r

t

B

W

6

B

a

h

s

a

c

r

g

m

α
l

2. The move with the largest blocking group of containers in the

origin stack.

3. The move requiring the shortest crane time.

If no more BG moves are possible, it starts making GG moves

line 7), according to the following order of preference:

1. The move with the largest difference in group value between

the new top of the origin stack and the top of the destination

stack before the move. Only moves where the difference is at

least one are considered.

2. The move in which the priority of the new top of the origin

stack is highest.

3. The move requiring the shortest crane time.

If neither BG moves nor GG moves are possible, the heuris-

ic tries to empty the stack from which the least number of con-

ainers have to be removed to free a position in order to allocate

he blocking container with maximum group value (line 8). Dur-

ng stack emptying, the destination of the relocated container is

elected according to the following preferences:

1. The stacks in which the container will be upside down.

2. The stacks with the highest topmost container.

3. The stacks to which the movement involves the shortest crane

time

If a stack cannot be emptied according to these criteria, the

euristic ends without obtaining a feasible solution. If the algo-

ithm ends with a feasible solution, the local search algorithm LS()

escribed in Section 5.3.2 is applied to improve it (line 10), updat-

ng mt and mm values whenever necessary. If the improved solu-

ion is better than π , the best solution found, π , is updated as well

s the upper bound on the number of moves to solve the CPMPCT

line 12).

.3.2. An algorithm to improve feasible solutions

Algorithm 4 shows the pseudocode of the improvement phase

sed in the heuristic algorithm. First, it replaces dominated se-

uences in the solution with sequences that dominate them, con-

idering Propositions 1 to 11 in lines 9 to 14. Direct dominance

efers to Propositions 1 and 7, and to Propositions 5 and 6 with

 = 4 . These direct dominances apply to two consecutive move-

ents, so they are quicker to check and are therefore checked first.

ince the solution up to the depth -th move has been built tak-

ng into account the dominance rules, we check the rules for the

oves added by the heuristic, that is, for moves from depth + 1 to

 (s) . Next, the improvement phase tries to replace the last desti-

ation stack of each container by another stack in which the con-

ainer is also well placed but which involves less crane time (lines

6–19). We only consider as candidate stacks those that are not

he origin stacks of a subsequent movement. If the candidate stack

s the destination stack of a subsequent movement, the group of

he container moved must be larger than the group of the con-

ainer moved in the next move involving that stack. In addition, it

ust be ensured that all containers entering the stack during sub-

equent movements fit into the stack height.

. Computational results

In order to test the performance of the Beam Search based al-

orithm, BS, as well as the effect of each of the elements of which

t is composed, an extensive computational analysis has been car-

ied out, comparing the results of the BS algorithm with the results

btained by the branch and bound algorithm proposed by Parreño-

orres et al. (2020) , CTA. We coded the algorithms in C++ and ex-

cuted them on virtual machines with 4 virtual processors and 16
1073
igabytes of RAM each. The virtual machines ran Windows 10 En-

erprise 64 bits. Virtual machines were run in an OpenStack vir-

ualization platform supported by several blade servers, each with

wo 18-core Intel Xeon Gold 5220 processors running at 2.2 GHz

nd 384 Gigabytes of RAM.

.1. Test instances

We focus on five well-known datasets from the literature:

n the one hand, the three datasets from van Brink & van der

waan (2014) (BZ dataset), Expósito-Izquierdo et al. (2012) (EMM

ataset), and Zhang et al. (2015) (ZJY dataset), in which the branch

nd bound algorithm by Parreño-Torres et al. (2020) obtains a fea-

ible or optimal solution in every instance, and on the other, the

atasets from Bortfeldt & Forster (2012) (BF dataset) and Caserta &

oß (2009) (CV dataset), which contain the most difficult instances

n the literature. The BF dataset is not considered in Parreño-Torres

t al. (2020) , and from the CV dataset only instances of up to 8

iers are considered, that is, 760 instances out of the total, 840.

he specific details of each dataset are as follows:

BZ dataset. This includes 960 instances with a number of tiers

anging from 4 to 6, with 3, 5, 6, and 9 stacks, with container fill

ates of 50 % and 70 % , and with 2, 3, or 6 container groups.

EMM dataset. As the original instances from Expósito-Izquierdo

t al. (2012) were lost, we consider those re-generated by Tierney

t al. (2017) , which use a similar distribution. This includes 450

nstances with 4 tiers and 4, 7, or 10 stacks, filled to 50 % or 75 % .

he number of container groups ranges from 2 to 8.

ZJY dataset. This dataset comprises 100 instances, with 4 tiers

nd 6, 7, 8, or 9 stacks, and with 5 tiers and 6 stacks. There may

e several containers with the same group, and the stacks are usu-

lly filled up to | T | − 1 tiers. Containers of 10 different groups are

onsidered.

CV dataset. This dataset has 840 instances divided into 21 cat-

gories of 40 instances each, containing 5 tiers and 3 to 8 stacks,

 tiers and 5 to 7 stacks, 7 tiers and 4 to 9, 8 tiers and 6 or 10

tacks, and 12 tiers and 8 or 10 stacks. All the containers have dif-

erent group values and stacks are filled to the same height with

he two highest tiers empty.

BF dataset. This dataset contains 681 instances which are di-

ided into 37 categories, 32 belonging to subset BF, with 20 in-

tances each, and 5 belonging to LC, 4 with 10 instances and the

emainder with 1 instance. The BF categories have 5 or 8 tiers and

6 or 20 stacks and the LC categories have 5 or 6 tiers and 10 or

2 stacks. There can be multiple containers with the same group

alue.

In total, 3031 instances were used to test the proposed algo-

ithm. Moreover, to avoid overfitting these datasets, we created a

raining set consisting of 152 randomly selected instances in the

F and CV datasets, as these contain the most complex instances.

e denote the training set as T S throughout this section.

.2. Assessing the effect of each element on the proposed algorithm,

S.

In order to set the parameters of the proposed BS algorithm,

s well as to assess the effect that each of the elements included

as on its performance, we test different variants of the algorithm,

hown in Table 4 , over the training set. Taking the full BS algorithm

s a reference, in BS 0 and BS 1 the dominance rules are removed,

ompletely in BS 0 and partially, leaving only the direct dominance

ules, in BS 1 . BS-NH does not include the heuristic used in the

lobal evaluation and in BS-NLS only the local search phase is re-

oved. The last four variants only change the percentage of nodes,

% , which are given priority because they are the best in each sub-

ist. In algorithm BS, α = 10 ; in the variants, this value is changed

C. Parreño-Torres, R. Alvarez-Valdes and F. Parreño European Journal of Operational Research 302 (2022) 1063–1078

Table 4

Algorithm variants directly compared on the training set.

Algorithm Dominance α Heuristic () LS ()

BS All 10 � �

BS 0 None 10 � �

BS 1 Direct 10 � �

BS-NH All 10 ✗ �

BS-NLS All 10 � ✗

BS 0% All 0 � �

BS 30% All 30 � �

BS 50% All 50 � �

BS 100% All 100 � �

t

t

e

v

t

a

p

t

w

f

i

o

o

d

t

0

i

n

7

T

l

d

i

s

S

a

t

o

w

p

i

e

t

v

α

6

b

a

o

C

s

B

b

a

t

s

t

p

p

m

o 0, 30, 50, and 100. The algorithms are compared with BS in

erms of their average relative percentage deviation (AVRPD). For

ach algorithm ALG and each instance I, the relative percentage de-

iation is calculated as ALG (I) −BS(I)
BS(I)

∗ 100 .

We first run a beam-search-based algorithm considering only

he criteria common to all groups and without the global evalu-

tion. This simple version of BS fails to find a solution in 11.1%

ercent of the instances tested and finds none at all in any of

he instances of the training set with 12 tiers. Moreover, in those

here it does find a solution, it remains at an AVRPD of 3.15%

rom the full BS algorithm. Next, we run the variants contained

n Table 4 . Table 5 shows their AVRPD from our final algorithm

n the training set grouped by number of tiers and by number

f stacks. First, we check whether applying the dominance rules

escribed in Section 4 has any effect. The solutions provided by

he algorithm without the dominance rules, BS 0 , have an AVRPD of

.77%, and those provided by the algorithm using only direct dom-

nance, BS 1 (Propositions 1 and 2 together with Proposition 5 with

 = 2 , Propositions 10 and 11 with n = 3 , and Proposition 6 (or

) with n = 4) have an AVRPD of 0.22% from the BS algorithm.
Table 5

Average percentage relative deviation (AVRPD) from the BS algorithm pro

Dominances Heu

|T | |S| #I BS 0 BS 1 BS-

BF dataset

5 16 16 0.31 0.06 4

5 20 16 1.22 0.38 7

8 16 16 0.73 -0.12 4

8 20 16 0.24 0.31 8

Tot/Avg 64 0.63 0.16 6

CV dataset

5 3 4 0.00 0.00 0

5 4 4 0.00 0.00 0

5 5 4 0.00 0.00 0

5 6 4 0.00 0.00 0

5 7 4 0.14 0.08 0

5 8 4 0.00 0.00 0

6 4 4 0.00 0.00 1

6 5 4 0.30 0.00 0

6 6 4 0.41 -0.13 1

6 7 4 0.81 0.05 1

6 12 4 0.06 -0.10 1

7 4 4 1.25 0.00 5

7 5 4 0.21 0.15 5

7 6 4 2.93 0.79 1

7 7 4 -0.06 0.88 2

7 8 4 1.71 0.68 3

7 9 4 2.39 1.30 5

7 10 4 1.36 0.24 3

8 6 4 0.66 -0.85 1

8 10 4 1.35 -0.55 1

12 6 4 1.40 -0.02 22

12 10 4 2.37 3.32 13

Tot/Avg 88 0.79 0.27 3

Tot/Avg 152 0.72 0.22 4

1074
hus, the use of dominance rules contributes to finding better so-

utions. If we remove the heuristic for obtaining feasible solutions

escribed in Section 5.3.1 from the algorithm, BS-NH, the AVRPD

ncreases to 4.65%, reaching an AVRPD of around 18% in the in-

tances with 12 tiers. If only the improvement phase described in

ection 5.3.2 is removed, the solutions also become worse, with

n AVRPD of 0.96%. The last element we compare in the table is

he inclusion of different selection criteria depending on the type

f movement. If the same criteria are used on all candidate nodes

hen selecting the β most promising, taking α = 0 , the algorithm’s

erformance worsens, with an AVRPD of 0.31%. On the other hand,

f we increase the percentage of selected nodes that are the best in

ach subgroup, the algorithm performance also worsens. The last

hree columns in Table 5 show that α = 30 and α = 50 produce

ery similar results to those obtained with the reference value of

= 10 , but they are clearly worse if the value is increased to 100.

.3. Comparing the results obtained by BS with the results obtained

y the CTA algorithm

We compare here the results obtained by the full Beam Search

lgorithm, BS, considering time limits of 60, 300, and 3600 sec-

nds, with those obtained by the branch and bound algorithm,

TA, run on the same machines with a fixed time limit of 3600

econds. Table 6 shows the results on the 1510 instances of the

Z, EMM, and ZJY datasets grouped by number of tiers and num-

er of stacks. The first three columns show the number of tiers

nd stacks and the number of instances in each class. The rest of

he table is divided into two parts. Columns 4–11 show the re-

ults for the instances solved optimally by CTA and columns 12–19

hose for the instances not optimally solved. Columns CTA and BS

rovide the average crane times and columns AVRPD the average

ercentage deviations (average of the crane times provided by BS

inus those of CTA divided by the crane time provided by CTA).
posed.

ristic Groups

NH BS-NLS BS 0% BS 30% BS 50% BS 100%

.89 1.36 0.24 0.11 0.14 1.59

.35 2.32 0.48 0.45 0.43 1.69

.90 1.23 -0.24 0.11 0.28 1.27

.79 1.35 0.51 -0.28 -0.13 1.17

.48 1.57 0.25 0.10 0.18 1.43

.00 0.00 0.00 0.00 0.00 0.00

.00 0.00 0.00 0.00 0.00 0.00

.00 0.00 0.00 0.00 0.00 0.00

.06 0.00 0.00 0.00 0.00 0.00

.69 0.16 0.00 0.00 0.00 -0.07

.00 0.00 0.00 0.00 0.00 0.00

.28 0.00 0.00 0.00 0.00 0.77

.63 0.00 0.00 0.00 0.00 0.52

.14 0.00 -0.03 0.00 0.00 0.91

.23 -0.09 -0.49 -0.61 0.00 0.82

.97 -0.28 -0.07 -0.09 -0.36 0.72

.08 0.26 0.00 0.00 0.00 3.19

.63 0.00 1.05 0.81 -0.36 1.24

.97 1.83 -0.23 0.17 0.35 2.12

.81 1.23 0.02 0.02 0.04 1.35

.13 1.38 0.12 -0.15 -0.07 1.72

.52 2.06 0.23 1.13 0.66 2.56

.35 1.29 0.20 -0.37 1.06 1.66

.17 -0.53 0.46 -1.11 -1.23 -0.35

.84 2.02 -0.82 -0.97 -0.94 0.84

.12 0.23 4.43 0.46 -0.80 0.28

.24 1.68 3.04 1.24 2.12 2.97

.31 0.51 0.36 0.02 0.02 0.97

.65 0.96 0.31 0.05 0.09 1.16

C. Parreño-Torres, R. Alvarez-Valdes and F. Parreño European Journal of Operational Research 302 (2022) 1063–1078

Table 6

Comparing the BS algorithm with CTA algorithm on BZ, EMM, and ZJY datasets.

60 seconds 300 seconds 3600 seconds 60 seconds 300 seconds 3600 seconds

|T | |S| #I #O CTA BS AVRPD BS AVRPD BS AVRPD #SF CTA BS AVRPD BS AVRPD BS AVRPD

BZ dataset

4 3 120 120 374 374 0.00 374 0.00 374 0.00 0 - - - - - - -

4 5 120 120 445 445 0.00 445 0.00 445 0.00 0 - - - - - - -

4 7 120 119 547 547 0.00 547 0.00 547 0.00 1 1380 1380 0.00 1380 0.00 1380 0.00

4 9 120 98 600 600 0.00 600 0.00 600 0.00 22 1279 1280 0.06 1280 0.06 1279 -0.01

6 3 120 120 949 949 0.00 949 0.00 949 0.00 0 - - - - - -

6 5 120 105 1102 1102 0.00 1102 0.00 1102 0.00 15 2154 2158 0.15 2154 0.00 2154 0.00

6 7 120 56 996 996 0.00 996 0.00 996 0.00 64 1994 1999 0.17 1996 0.08 1994 0.02

6 9 120 21 918 918 0.00 918 0.00 918 0.00 99 2148 2140 -0.32 2136 -0.44 2134 -0.52

Tot/Avg 960 759 694 694 0.00 694 0.00 694 0.00 201 2000 1998 -0.09 1995 -0.19 1994 -0.25

EMM dataset

4 4 150 150 473 473 0.00 473 0.00 473 0.00 0 - - - - - - -

4 7 150 125 658 658 0.00 658 0.00 658 0.00 25 2146 2169 1.11 2163 0.82 2159 0.64

4 10 150 83 692 692 0.00 692 0.00 692 0.00 67 1879 1888 0.37 1884 0.18 1880 0.06

Tot/Avg 450 358 588 588 0.00 588 0.00 588 0.00 92 1951 1965 0.57 1960 0.36 1956 0.22

ZJY dataset

4 6 20 20 1053 1053 0.00 1053 0.00 1053 0.00 0 - - - - - - -

4 7 20 18 1072 1072 0.00 1072 0.00 1072 0.00 2 1577 1583 0.35 1578 0.08 1578 0.08

4 8 20 17 977 977 0.00 977 0.00 977 0.00 3 1493 1494 0.11 1493 0.00 1493 0.00

4 9 20 10 1079 1079 0.00 1079 0.00 1079 0.00 10 1453 1453 0.00 1453 0.00 1453 0.00

5 6 20 15 1448 1449 0.03 1448 0.00 1448 0.00 5 1984 1984 0.00 1984 0.00 1984 0.00

Tot/Avg 100 80 1118 1119 0.01 1118 0.00 1118 0.00 20 1604 1605 0.05 1604 0.01 1604 0.01

Tot/Avg 1510 1197 691 691 0.00 691 0.00 691 0.00 313 1960 1963 0.12 1960 -0.01 1958 -0.10

Table 7

Comparing the BS and CTA algorithm on CV dataset.

All 60 seconds 300 seconds 3600 seconds 60s 300s 3600s

|T | |S| |C| #I #O CTA AVRPD #SF CTA BS AVRPD BS AVRPD BS AVRPD #NSF BS BS BS

5 3 9 40 40 984 0.00 - - - - - - - - - - - -

5 4 12 40 40 1043 0.00 - - - - - - - - - - - -

5 5 15 40 40 1188 0.00 - - - - - - - - - - - -

5 6 18 40 35 1270 0.00 5 1822 1822 0.00 1822 0.00 1822 0.00 - - - -

5 7 21 40 25 1375 0.00 15 1792 1795 0.18 1794 0.11 1792 0.03 - - - -

5 8 24 40 11 1327 0.00 29 1750 1751 0.10 1750 0.04 1750 0.03 - - - -

6 4 16 40 35 1830 0.00 5 2369 2372 0.15 2372 0.15 2369 0.00 - - - -

6 5 20 40 9 1790 0.00 31 2342 2345 0.10 2343 0.02 2342 0.00 - - - -

6 6 24 40 3 1600 0.00 37 2471 2488 0.68 2483 0.44 2476 0.18 - - - -

6 7 28 40 0 - - 40 2766 2799 1.16 2788 0.79 2779 0.47 - - - -

7 4 20 40 6 2221 0.00 34 3059 3102 1.36 3091 1.01 3082 0.72 - - - -

7 5 25 40 1 1876 0.00 37 3244 3331 2.70 3301 1.80 3286 1.30 2 3533 3533 3533

7 6 30 40 0 - - 37 3926 3977 1.47 3953 0.89 3919 -0.01 3 4377 4376 4344

7 7 35 40 0 - - 36 4283 4346 1.59 4308 0.75 4281 0.13 4 4912 4879 4793

7 8 40 40 0 - - 36 4973 4979 0.25 4948 -0.37 4910 -1.10 4 5391 5336 5330

7 9 45 40 0 - - 32 5589 5565 -0.10 5544 -0.48 5495 -1.34 8 5688 5636 5620

7 10 50 40 0 - - 30 5865 5894 0.48 5816 -0.78 5785 -1.32 10 6668 6566 6527

8 6 36 40 0 - - 2 5252 5616 7.04 5495 4.91 5495 4.91 38 5673 5634 5561

8 10 60 40 0 - - 3 9134 8560 -5.58 8497 -6.31 8221 -9.08 37 8708 8621 8496

12 8 80 40 0 - - - - - - - - - - 40 17,098 16,678 16,414

12 10 100 40 0 - - - - - - - - - - 40 24,781 24,357 24,030

Tot/Avg 840 245 1315 0.00 409 3590 3616 0.87 3594 0.37 3573 -0.09 186 12,831 12,614 12,442

T

a

s

a

t

g

s

o

a

c

o

i

w

s

a

v

i

u

o

2

m

s

o

t

r

a

r

t

s

he instances in these datasets are considered simple in the liter-

ture, since state-of-the-art branch and bound algorithms for the

tandard CPMP can solve all of them optimally in a few seconds,

nd CTA solves 79.2% of them optimally for the CPMPCT. Although

he margin for improvement is small, it is observed that the BS al-

orithm is able to reach the optimal solution in all the instances

olved to optimality by CTA considering a time limit of 300 sec-

nds and in all but two by considering a limit of 60 seconds. In

ddition, in the instances not optimally solved by CTA, BS cuts the

rane time relative to CTA by 0.01% with a time limit of 300 sec-

nds and 0.10% with one of 3600 seconds, although the crane time

s slightly worse if BS runs for only 60 seconds.

Let us now focus on the most challenging datasets. We start

ith CV; the results can be seen in Table 7 . The first four columns

how the characteristics of the instances: tiers, stacks, containers,
1075
nd number of instances in each group. The rest of the table is di-

ided into three parts. Columns 5 to 7 compare CTA and BS on the

nstances optimally solved by CTA. Their number is shown in col-

mn #O , the average optimal value in column CTA and the AVRPD

f BS relative to CTA in column AVRPD . The CTA algorithm solves

45 out of the 840 instances to optimality. The algorithm’s perfor-

ance worsens as the number of tiers increases. For these 245 in-

tances, BS reaches all the optimal solutions even with a time limit

f 60 seconds. The second part of the table, columns 8–15, shows

he 409 instances for which CTA obtains a solution but does not

each optimality. For these instances, the average percentage devi-

tion is 0.87% running BS with a time limit of 60 seconds, 0.37%

unning it with 300 seconds, and -0.09% with 3600 seconds. The

hird part of the table, columns 16–19, corresponds to the 186 in-

tances for which CTA does not find a solution. BS finds a solution

C. Parreño-Torres, R. Alvarez-Valdes and F. Parreño European Journal of Operational Research 302 (2022) 1063–1078

Table 8

Comparing the BS algorithm with CTA algorithm on BF dataset.

60 seconds 300 seconds 3600 seconds 60s 300s 3600s

Set |T | |S| |C| #I #SF CTA BS AVRPD BS AVRPD BS AVRPD #NSF BS BS BS

BF1 5 16 48 20 20 3422 3300 -3.53 3289 -3.88 3274 -4.31 0 - - -

BF2 5 16 48 20 20 4300 4163 -3.17 4134 -3.85 4114 -4.30 0 - - -

BF3 5 16 48 20 20 3436 3344 -2.67 3333 -2.99 3321 -3.32 0 - - -

BF4 5 16 48 20 20 4321 4155 -3.80 4140 -4.15 4120 -4.61 0 - - -

BF5 5 16 64 20 20 4907 4801 -2.18 4774 -2.72 4745 -3.32 0 - - -

BF6 5 16 64 20 20 5859 5858 -0.01 5817 -0.70 5787 -1.21 0 - - -

BF7 5 16 64 20 20 5049 5016 -0.63 4989 -1.16 4954 -1.87 0 - - -

BF8 5 16 64 20 20 6059 5998 -0.98 5945 -1.86 5905 -2.51 0 - - -

BF9 8 16 77 20 19 8193 7952 -2.90 7907 -3.45 7872 -3.89 1 8863 8631 8631

BF10 8 16 77 20 20 9329 9044 -3.08 8987 -3.67 8949 -4.07 0 - - -

BF11 8 16 77 20 20 8364 8117 -2.86 8070 -3.40 8025 -3.94 0 - - -

BF12 8 16 77 20 20 9425 9111 -3.33 9064 -3.83 9006 -4.44 0 - - -

BF13 8 16 103 20 4 11,460 11,048 -3.59 11,000 -4.00 10,884 -5.02 16 11,214 11,071 10,977

BF14 8 16 103 20 0 - - - - - - - 20 14,155 13,936 13,762

BF15 8 16 103 20 1 11,125 11,227 0.92 11,227 0.92 10,856 -2.42 19 11,469 11,302 11,131

BF16 8 16 103 20 0 - - - - - - - 20 14,347 14,042 13,803

BF17 5 20 60 20 20 4410 4245 -3.71 4223 -4.22 4198 -4.78 0 - - -

BF18 5 20 60 20 20 5443 5259 -3.34 5233 -3.82 5197 -4.49 0 - - -

BF19 5 20 60 20 20 4402 4265 -3.10 4239 -3.69 4197 -4.65 0 - - -

BF20 5 20 60 20 20 5445 5286 -2.90 5262 -3.34 5233 -3.88 0 - - -

BF21 5 20 80 20 18 6283 6164 -1.87 6123 -2.52 6080 -3.21 2 6077 6067 6016

BF22 5 20 80 20 20 7590 7414 -2.30 7342 -3.24 7276 -4.11 0 - - -

BF23 5 20 80 20 20 6222 6104 -1.84 6040 -2.88 5990 -3.68 0 - - -

BF24 5 20 80 20 20 7621 7520 -1.31 7451 -2.23 7370 -3.29 0 - - -

BF25 8 20 96 20 20 10,247 9877 -3.60 9829 -4.07 9759 -4.75 0 - - -

BF26 8 20 96 20 20 11,836 11,393 -3.75 11,314 -4.42 11,253 -4.93 0 - - -

BF27 8 20 96 20 20 10,263 9957 -2.94 9917 -3.34 9833 -4.15 0 - - -

BF28 8 20 96 20 20 12,000 11,566 -3.62 11,477 -4.35 11,403 -4.96 0 - - -

BF29 8 20 128 20 4 14,847 13,950 -6.04 13,875 -6.56 13,587 -8.48 16 14,326 14,075 13,856

BF30 8 20 128 20 1 16,893 16,594 -1.77 16,303 -3.50 15,928 -5.71 19 17,682 17,250 16,958

BF31 8 20 128 20 2 14,485 14,097 -2.55 13,901 -3.94 13,634 -5.78 18 14,282 14,047 13,919

BF32 8 20 128 20 0 - - - - - - - 20 17,620 17,254 17,036

LC1 5 10 35 1 1 1702 1702 0.00 1702 0.00 1702 0.00 0 - - -

LC2a 6 12 50 10 10 2770 2737 -1.10 2731 -1.34 2722 -1.64 0 - - -

LC2b 6 12 50 10 10 4994 4933 -1.25 4900 -1.92 4876 -2.39 0 - - -

LC3a 6 12 54 10 10 2844 2811 -1.18 2802 -1.46 2801 -1.51 0 - - -

LC3b 6 12 54 10 9 5395 5388 -0.12 5362 -0.58 5345 -0.90 1 5659 5518 5518

Tot/Avg 681 529 6779 6595 -2.54 6554 -3.12 6508 -3.74 152 14,268 14,004 13,814

i

e

3

t

b

t

s

o

a

w

b

t

o

s

i

i

i

l

b

a

w

7

t

i

o

t

r

t

q

m

m

f

s

t

o

a

d

h

s

m

t

a

l

w

s

l

s

a

n all of these instances. With a time limit of 60 seconds, the av-

rage crane time is 12,831 seconds, and it is reduced by 1.7% with

00 and by 3.0% with 3600 seconds.

Table 8 compares BS and CTA on the 681 BF test instances. In

his case, since CTA does not solve any of them optimally, the ta-

le is divided into two parts. Columns 6–13 show the results of

he instances for which a solution is found by CTA. The number of

uch instances appears in column #SF and then the average value

btained by CTA in 3600 seconds and by BS running for 60, 300,

nd 3600 seconds. BS reduces the average crane time by 2.54%

ith a time limit of 60 seconds, by 3.12% with 300 seconds, and

y 3.74% with 3600 seconds. Columns 13–14 show the results for

he instances in which CTA does not find a solution. The number

f these instances appears in column #NSF , 152 in total. BS finds a

olution for all of them. The average crane time for these instances

s 14,268 seconds, considering a time limit of 60 seconds. This time

s reduced by 1.85% when running for 600 seconds, and by 3.18% if

t runs for 3600 seconds.

As in previous datasets, the algorithm keeps improving the so-

utions if the running time increases. In the iterative process, the

eam width is enlarged, more nodes are considered at each level

nd this makes it possible to obtain solutions that were discarded

hen the beam width was smaller.

. Conclusions

Premarshalling problems are gaining greater importance due to

he increasing size of vessels and the pressure to reduce their stay
1076
n port by minimizing the time needed for loading and unloading

perations. We have addressed the premarshalling problem with

he objective of minimizing the time the yard crane takes to rear-

ange a bay and have developed a beam search algorithm.

Beam search algorithms, in particular, and tree search struc-

ures, in general, are appropriate when solutions consist of a se-

uence of moves that produces a feasible solution step by step. The

ain challenge for a beam search algorithm is to avoid discarding

oves that apparently do not produce an immediate improvement,

or instance moves emptying a stack, but that could lead to good

olutions later in the tree. We have developed two mechanisms. On

he one hand, we use various criteria to evaluate the four types

f moves, BB, BG, GB, and GG. On the other hand, we designed

 simple but powerful heuristic for the global evaluation. In ad-

ition, we have developed a new set of dominance rules which

elp to identify and eliminate nodes that cannot lead to better

olutions.

The extensive computational study on several literature bench-

arks shows that the beam search algorithm is able to ob-

ain all the optimal solutions identified by the existing branch

nd bound algorithm, improves on the known suboptimal so-

utions, and obtains good solutions for the largest instances in

hich the branch and bound algorithm could not reach a feasible

olution.

The ideas developed for this variant of the premarshalling prob-

em can be applied to other variants such as the time-limited case

tudied by Zweers et al. (2020) , and also to related problems, such

s the block relocation problem.

C. Parreño-Torres, R. Alvarez-Valdes and F. Parreño European Journal of Operational Research 302 (2022) 1063–1078

A

o

1

n

a

B

A

S

s

b

i

i

p

s

l

t

d

t

s

t

2

m

h

b

l

q

t

q

t

w

f

a

T

o

a

t

s

s

s

s

t

(

s

c

t

d

t

t

m

v

t

c

c

s

t

q

o

o

t

2

o

m

i

t

q

t

q

o

i

T

o

a

l

S

t

w

g

q

v

o

(

t

fi

b

o

c

3

o

m

i

t

g

q

v

o

(

t

fi

b

p

s

w

f

i

o

l

c

i

v

a

d

s

t

t

d

p

i

m

t

s
cknowledgments

This work has been partially supported by the Spanish Ministry

f Science, Innovation, and Universities, project RTI2018-094940-B-

00, partially financed with FEDER funds, by the Junta de Comu-

idades de Castilla-La Mancha, project SBPLY/17/180501/0 0 0282,

nd by the Junta de Comunidades de Castilla y León, project

U056P20, partially financed with FEDER funds.

ppendix A. Proofs of the dominance rules provided in

ection 4

Proof of Proposition 2 Since d 1 and d n −1 are invariant to the

equence (o 2 , t 2 , d 2 , l 2) . . . (o n −2 , t n −2 , d n −2 , l n −2) of s 1 , their layout

efore and after it is the same, and none of the containers placed

n d 1 or in d n −1 before (or after) the sequence are handled dur-

ng the sequence. Moreover, the containers that are temporarily

laced on stack d n −1 during the sequence from move 2 to n − 2

till fit if d n −1 has one more container. In that case, the same final

ayout is obtained by the feasible sequence s 2 in which the con-

ainer c 1 , which is moved first from o 1 to d 1 and then from d 1 to

 n −1 in sequence s 1 , is moved directly from stack o 1 to d n −1 prior

o the sequence of moves (o 2 , t
′
2 , d 2 , l

′
2) . . . (o n −2 , t

′
n −2 , d n −2 , l

′
n −2) in

equence s 2 . The primes indicate that the tiers from which a con-

ainer is taken or in which it is left in the sequence from move

 to n − 2 of s 1 are modified so that moves involving stack d 1 are

ade at a lower tier and moves involving stack d n −1 are made at a

igher tier. Since s 1 and s 2 lead to the same layout, s 1 is dominated

y s 2 if the time taken by the crane to carry out the sequence is

onger, which is satisfied if condition 3 is satisfied.

Proof of Proposition 3 Since o 2 and d 2 are invariant to the se-

uence (o 3 , t 3 , d 3 , l 3) . . . (o n −1 , t n −1 , d n −1 , l n −1) of s 1 and the con-

ainers that are temporarily placed on stack o 2 during that se-

uence (from move 3 to n − 1) still fit if o 2 has one more container,

he same final layout is obtained by the feasible sequence s 2 in

hich container c 2 , which is moved first from o 2 to d 2 and then

rom d 2 to d n in sequence s 1 , is directly moved from stack o 2 to d n
fter the sequence of moves (o 3 , t

′
3
, d 3 , l

′
3
) . . . (o n −1 , t

′
n −1

, d n −1 , l
′
n −1

) .

he primes indicate that the tiers from which a container is taken

r in which it is left in the sequence from move 3 to n − 1 of s 1
re modified, so that moves involving stack d 2 are made at a lower

ier and moves involving stack o 2 are made at a higher tier. Since

 1 and s 2 lead to the same layout, s 1 is dominated by s 2 if the time

pent by the crane in carrying out the sequence is longer, which is

atisfied if condition 3 is satisfied.

Proof of Proposition 4 Since stacks d 1 and d are invariant to the

equence (o 2 , t 2 , d 2 , l 2) . . . (o n −1 , t n −1 , d n −1 , l n −1) of s 1 and the con-

ainers that are temporarily placed on stack d during that sequence

from move 2 to n − 1) still fit if d has one more container, the

ame final layout is obtained by the feasible sequence s 2 . Whereas

ontainer c 1 is moved first from stack o 1 to d 1 and then from d 1
o d n in sequence s 1 , container c 1 is temporarily moved to stack

instead of to stack d 1 in sequence s 2 . The primes indicate that

he tiers from which a container is taken or in which it is left in

he sequence from move 2 to n − 1 of s 1 are modified so that now

oves involving stack d 1 are made at a lower tier and moves in-

olving stack d are made at a higher tier. Since s 1 and s 2 lead to

he same layout, s 1 is dominated by s 2 if the time spent by the

rane in carrying out the sequence is longer, which is satisfied if

ondition 3 is satisfied.

Proof of Proposition 5 Since o n −1 and d n −1 are invariant to the

equence (o 2 , t 2 , d 2 , l 2) . . . (o n −2 , t n −2 , d n −2 , l n −2) in s 1 and the con-

ainers that are temporarily placed on stack d n −1 during that se-

uence still fit if d n −1 has one more container, the same final lay-

ut is obtained by moving container c n −1 from o n −1 to d n −1 in sec-

nd position. The primes indicate that the tiers from which a con-
1077
ainer is taken or in which it is left in the sequence from move

 to n − 2 of s 1 are modified so that now moves involving stack

 n −1 are made at a lower tier and moves involving stack d n −1 are

ade at a higher tier. Since s 1 and s 2 lead to the same layout, s 1
s dominated by s 2 if the time spent by the crane in carrying out

he sequence is longer, which is satisfied if condition 3 is satisfied.

Proof of Proposition 6 Since o 2 and d 2 are invariant to the se-

uence (o 2 , t 2 , d 2 , l 2) . . . (o n −1 , t n −1 , d n −1 , l n −1) in s 1 and the con-

ainers that are temporarily placed on stack o 2 during that se-

uence still fit if o 2 has one more container, the same final lay-

ut is obtained by moving container c 2 from stack o 2 to stack d 2
n penultimate position, that is, just before the move (o n , t n , d n , l n) .

he primes indicate that the tiers from which a container is taken

r in which it is left in the sequence from move 2 to n − 1 of s 1
re modified so that now moves involving stack d 2 are made at a

ower tier and moves involving stack o 2 are made at a higher tier.

ince s 1 and s 2 lead to the same layout, s 1 is dominated by s 2 if

he time spent by the crane in carrying out the sequence is longer,

hich is satisfied if condition 3 is satisfied.

Proof of Proposition 8 A container c 2 of group value g =

roup(c 2) is first moved from stack o 2 to d 2 and, after a se-

uence of moves, another container c n −1 of the same group

alue group(c n −1) = group(c 2) = g is moved from o n −1 to stack

 2 in s 1 . Since o 2 and o n −1 are invariant to the sequence

o 3 , t 3 , d 3 , l 3) . . . (o n −2 , t n −2 , d n −2 , l n −2) in s 1 and the containers

hat are temporarily placed on stack o 2 during that sequence still

t if o 2 has one more container, the same final layout is obtained

y moving container c n −1 in second position directly from stack

 n −1 to stack d 2 . The primes indicate that the tiers from which a

ontainer is taken or in which it is left in the sequence from move

 to n − 2 of s 1 are modified so that now moves involving stack

 n −1 are made at a lower tier and moves involving stack o 2 are

ade at a higher tier. Since s 1 and s 2 lead to the same layout, s 1
s dominated by s 2 if the time spent by the crane in carrying out

he sequence is longer, which is satisfied if condition 3 is met.

Proof of Proposition 9 A container c 2 of group value g =

roup(c 2) is first moved from stack o 2 to d 2 and, after a se-

uence of moves, another container c n −1 of the same group

alue group(c n −1) = group(c 2) = g is moved from o n −1 to stack

 2 in s 1 . Since o 2 and d 2 are invariant to the sequence

o 3 , t 3 , d 3 , l 3) . . . (o n −2 , t n −2 , d n −2 , l n −2) in s 1 and the containers

hat are temporarily placed on stack o 2 during that sequence still

t if o 2 has one more container, the same final layout is obtained

y moving container c 2 of group value group(c 2) in penultimate

osition, that is, just before moving (o n , t n , d n , l n) , directly from

tack o n −1 to stack d 2 . The primes indicate that the tiers from

hich a container is taken or in which it is left in the sequence

rom move 3 to n − 2 of s 1 are modified so that now moves involv-

ng stack d 2 are made at a lower tier and moves involving stack

 2 are made at a higher tier. Since s 1 and s 2 lead to the same

ayout, s 1 is dominated by s 2 if the time taken by the crane to

arry out the sequence is longer, which is satisfied if condition 3

s met.

Proof of Proposition 10 Two containers of the same group

alue are moved in (o 2 , t 2 , d 2 , l 2) and in (o n , t n , d n , l n) . Since o 2
nd o n are invariant to the sequence (o 3 , t 3 , d 3 , l 3) . . . (o n −1 , t n −1 ,

 n −1 , l n −1) in s 1 and the containers that are temporarily placed on

tack o 2 during that sequence still fit if o 2 has one more container,

he same final layout is obtained by moving container c 2 in penul-

imate position, that is, just before the move (o n , t n , d n , l n) , to stack

 n , and moving container c n in second position to stack d 2 . The

rimes indicate that the tiers from which a container is taken or

n which it is left in the sequence from move 3 to n − 1 of s 1 are

odified so that now moves involving stack o n are made at a lower

ier and moves involving stack o 2 are made at a higher tier. Since

 1 and s 2 lead to the same layout, s 1 is dominated by s 2 if the time

C. Parreño-Torres, R. Alvarez-Valdes and F. Parreño European Journal of Operational Research 302 (2022) 1063–1078

t

i

a

a

d

s

t

s

t

t

m

v

t

c

c

R

B

B

B

v

C

C

E

G

H

H

J

J

L

L

L

L

L

M

P

P

P

P

R

d

d

S

T

T

T

U

W

W

Y

Z

Z

ake by the crane to perform the sequence is longer, which is sat-

sfied if condition 3 is met.

Proof of Proposition 11 Two containers of the same group value

re moved in (o 1 , t 1 , d 1 , l 1) and in (o n −1 , t n −1 , d n −1 , l n −1) . Since d 2
nd d n are invariant to the sequence (o 2 , t 2 , d 2 , l 2) . . . (o n −2 , t n −2 ,

 n −1 , l n −1) in s 1 and the containers that are temporarily placed on

tack d n −1 during that sequence still fit if d n −1 has one more con-

ainer, the same final layout is obtained by moving container c 1 to

tack d n −1 and container c n −1 to stack d 1 . The primes indicate that

he tiers from which a container is taken or in which it is left in

he sequence from move 2 to n − 2 of s 1 are modified so that now

oves involving stack d 1 are made at a lower tier and moves in-

olving stack d n −1 are made at a higher tier. Since s 1 and s 2 lead

o the same layout, s 1 is dominated by s 2 if the time spent by the

rane in carrying out the sequence is longer, which is satisfied if

ondition 3 is met.

eferences

acci, T., Mattia, S., & Ventura, P. (2019). The bounded beam search algorithm for
the block relocation problem. Computers and Operations Research, 103 , 252–264.

https://doi.org/10.1016/j.cor.2018.11.008 .

ortfeldt, A. (2004). A heuristic for the container pre-marshalling problem. In Pro-
ceedings of the 3rd international conference on computer and IT applications in the

martime industry (compit’04) (pp. 419–429) .
ortfeldt, A., & Forster, F. (2012). A tree search procedure for the container pre-

marshalling problem. European Journal of Operational Research, 217 (3), 531–540.
https://doi.org/10.1016/j.ejor.2011.10.005 .

an Brink, M., & van der Zwaan, R. (2014). A branch and price procedure for

the container premarshalling problem. In A. Schulz, & D. Wagner (Eds.), Pro-
ceedings of the Algorithms–ESA 2014 . In Lecture Notes in Computer Science:

vol. 8737 (pp. 798–809). Springer Berlin Heidelberg. https://doi.org/10.1007/
978- 3- 662- 44777-2 _ 66 .

aserta, M., Schwarze, S., & Voß, S. (2020). Container rehandling at maritime con-
tainer terminals: A literature update. In J. Böse (Ed.), Handbook of terminal plan-

ning . In Operations Research/Computer Science Interfaces Series: vol. 64 (pp. 343–

382). Springer Nature. https://doi.org/10.1007/978- 3- 030- 39990- 0 _ 16 .
aserta, M., & Voß, S. (2009). A corridor method-based algorithm for the pre-

marshalling problem. In M. Giacobini, A. Brabazon, S. Cagnoni, G. A. Di Caro,
A . Ekárt, A . I. Esparcia-Alcázar, . . . P. Machado (Eds.), Applications of evolutionary

computing (pp. 788–797). Springer Berlin Heidelberg. https://doi.org/10.1007/
978- 3- 642- 01129- 0 _ 89 .

xpósito-Izquierdo, C., Melián-Batista, B., & Moreno-Vega, M. (2012). Pre-

marshalling problem: Heuristic solution method and instances generator. Expert
Systems with Applications, 39 (9), 8337–8349. https://doi.org/10.1016/j.eswa.2012.

01.187 .
e, P., Meng, Y., Liu, J., Tang, L., & Zhao, R. (2020). Logistics optimisation of slab

pre-marshalling problem in steel industry. International Journal of Production Re-
search, 58 , 4050–4070. https://doi.org/10.1080/00207543.2019.1641238 .

ottung, A., Tanaka, S., & Tierney, K. (2020). Deep learning assisted heuristic tree

search for the container pre-marshalling problem. Computers & Operations Re-
search, 113 , 104781. https://doi.org/10.1016/j.cor.2019.104781 .

ottung, A., & Tierney, K. (2016). A biased random-key genetic algorithm for the
container pre-marshalling problem. Computers & Operations Research, 75 , 83–

102. https://doi.org/10.1016/j.cor.2016.05.011 .
ovanovic, R., Tuba, M., & Voß, S. (2017). A multi-heuristic approach for solving the

pre-marshalling problem. Central European Journal of Operations Research, 25 , 1–
28. https://doi.org/10.1007/s10100-015-0410-y .

ovanovic, R., Tuba, M., & Voß, S. (2019). An efficient ant colony optimization al-

gorithm for the blocks relocation problem. European Journal of Operational Re-
search, 274 (1), 78–90. https://doi.org/10.1016/j.ejor.2018.09.038 .

ee, Y., & Chao, S.-L. (2009). A neighborhood search heuristic for pre-marshalling
export containers. European Journal of Operational Research, 196 (2), 468–475.

https://doi.org/10.1016/j.ejor.2008.03.011 .
1078
ee, Y., & Hsu, N.-Y. (2007). An optimization model for the container pre-marshalling
problem. Computers & Operations Research, 34 (11), 3295–3313. https://doi.org/10.

1016/j.cor.20 05.12.0 06 .
ee, Y., & Lee, Y. (2010). A heuristic for retrieving containers from a yard. Comput-

ers & Operations Research, 37 (6), 1139–1147. https://doi.org/10.1016/j.cor.2009.10.
005 .

ibralesso, L. , & Fontan, F. (2021). An anytime tree search algorithm for the 2018
roadef/euro challenge glass cutting problem. European Journal of Operational Re-

search, 291 (3), 883–893 .

in, D.-Y., Lee, Y.-J., & Lee, Y. (2015). The container retrieval problem with respect to
relocation. Transportation Research Part C, 52 , 132–143. https://doi.org/10.1016/j.

trc.2015.01.024 .
aniezzo, V., Boschetti, M., & Gutjahr, W. (2021). Stochastic premarshalling of block

stacking warehouses. Omega, 102 , 102336. https://doi.org/10.1016/j.omega.2020.
102336 .

arreño, F., Alonso, M., & Alvarez-Valdes, R. (2020). Solving a large cutting problem

in the glass manufacturing industry. European Journal of Operational Research,
287 , 378–388. https://doi.org/10.1016/j.ejor.2020.05.016 .

arreño-Torres, C., Alvarez-Valdes, R., & Ruiz, R. (2019). Integer programming mod-
els for the pre-marshalling problem. European Journal of Operational Research,

274 (1), 142–154. https://doi.org/10.1016/j.ejor.2018.09.048 .
arreño-Torres, C. , Alvarez-Valdes, R. , Ruiz, R. , & Tierney, K. (2020). Minimizing crane

times in pre-marshalling problems. Transportation Research Part E: Logistics and

Transportation Review, 137 , 101917 .
randtstetter, M. (2013). A dynamic programming based branch-and-bound algo-

rithm for the container pre-marshalling problem. Technical Report . Technical re-
port, AIT Austrian Institute of Technology .

eddy, D. R. , et al. (1977). Speech understanding systems: A summary of results of the
five-year research effort p. 138. Department of Computer Science. Camegie-Mell

University, Pittsburgh, PA .

e Melo da Silva, M., Toulouse, S., & Calvo, R. W. (2018). A new effective unified
model for solving the pre-marshalling and block relocation problems. European

Journal of Operational Research, 276 (1), 40–56. https://doi.org/10.1016/j.ejor.2018.
05.004 .

a Silva Firmino, A., de Abreu Silva, R., & Times, V. (2019). A reactive GRASP meta-
heuristic for the container retrieval problem to reduce Crane’s working time.

Journal of Heuristics, 25 (2), 141–173. https://doi.org/10.1007/s10732- 018- 9390- 0 .

tatista (2021). Container shipping - statistics & facts. Accessed = 2021-05-14 https:
//www.statista.com/topics/1367/container-shipping/#dossierSummary .

anaka, S., & Tierney, K. (2018). Solving real-world sized container pre-marshalling
problems with an iterative deepening branch-and-bound algorithm. European

Journal of Operational Research, 264 (1), 165–180. https://doi.org/10.1016/j.ejor.
2017.05.046 .

anaka, S., Tierney, K., Parreño-Torres, C., Alvarez-Valdes, R., & Ruiz, R. (2019). A

branch and bound approach for large pre-marshalling problems. European Jour-
nal of Operational Research, 278 (1), 211–225. https://doi.org/10.1016/j.ejor.2019.

04.005 .
ierney, K., Pacino, D., & Voß, S. (2017). Solving the pre-marshalling problem to opti-

mality with A ∗ and IDA ∗ . Flexible Services and Manufacturing Journal, 29 (2), 223–
259. https://doi.org/10.1007/s10696- 016- 9246- 6 .

NCTAD (2020). Review of maritime transport 2020. In Proceedings of the United
Nations Conference on Trade and Development . https://unctad.org/webflyer/

review- maritime- transport- 2020

ang, N., Jin, B., & Lim, A. (2015). Target-guided algorithms for the container pre-
marshalling problem. Omega, 53 , 67–77. https://doi.org/10.1016/j.omega.2014.12.

002 .
ang, N., Jin, B., Zhang, Z., & Lim, A. (2017). A feasibility-based heuristic for the con-

tainer pre-marshalling problem. European Journal of Operational Research, 256 (1),
90–101. https://doi.org/10.1016/j.ejor.2016.05.061 .

ue, L., Fan, H., & Ma, M. (2021). Optimizing configuration and scheduling of double

40 ft dual-trolley quay cranes and AGVs for improving container terminal ser-
vices. Journal of Cleaner Production, 292 , 126019. https://doi.org/10.1016/j.jclepro.

2021.126019 .
hang, R. , Jiang, Z.-Z. , & Yun, W. Y. (2015). Stack pre-marshalling problem: A heuris-

tic-guided branch-and-bound algorithm. International Journal of Industrial Engi-
neering, 22 (5), 509–523 .

weers, B., Bhulai, S., & van der Mei, R. (2020). Pre-processing a container yard

under limited available time. Computers and Operations Research, 123 , 105045.
https://doi.org/10.1016/j.cor.2020.105045 .

https://doi.org/10.1016/j.cor.2018.11.008
http://refhub.elsevier.com/S0377-2217(22)00075-3/sbref0002
http://refhub.elsevier.com/S0377-2217(22)00075-3/sbref0002
https://doi.org/10.1016/j.ejor.2011.10.005
https://doi.org/10.1007/978-3-662-44777-2_66
https://doi.org/10.1007/978-3-030-39990-0_16
https://doi.org/10.1007/978-3-642-01129-0_89
https://doi.org/10.1016/j.eswa.2012.01.187
https://doi.org/10.1080/00207543.2019.1641238
https://doi.org/10.1016/j.cor.2019.104781
https://doi.org/10.1016/j.cor.2016.05.011
https://doi.org/10.1007/s10100-015-0410-y
https://doi.org/10.1016/j.ejor.2018.09.038
https://doi.org/10.1016/j.ejor.2008.03.011
https://doi.org/10.1016/j.cor.2005.12.006
https://doi.org/10.1016/j.cor.2009.10.005
http://refhub.elsevier.com/S0377-2217(22)00075-3/sbref0016
http://refhub.elsevier.com/S0377-2217(22)00075-3/sbref0016
http://refhub.elsevier.com/S0377-2217(22)00075-3/sbref0016
http://refhub.elsevier.com/S0377-2217(22)00075-3/sbref0016
https://doi.org/10.1016/j.trc.2015.01.024
https://doi.org/10.1016/j.omega.2020.102336
https://doi.org/10.1016/j.ejor.2020.05.016
https://doi.org/10.1016/j.ejor.2018.09.048
http://refhub.elsevier.com/S0377-2217(22)00075-3/sbref0021
http://refhub.elsevier.com/S0377-2217(22)00075-3/sbref0021
http://refhub.elsevier.com/S0377-2217(22)00075-3/sbref0021
http://refhub.elsevier.com/S0377-2217(22)00075-3/sbref0021
http://refhub.elsevier.com/S0377-2217(22)00075-3/sbref0021
http://refhub.elsevier.com/S0377-2217(22)00075-3/sbref0021
http://refhub.elsevier.com/S0377-2217(22)00075-3/sbref0022
http://refhub.elsevier.com/S0377-2217(22)00075-3/sbref0022
http://refhub.elsevier.com/S0377-2217(22)00075-3/sbref0023
http://refhub.elsevier.com/S0377-2217(22)00075-3/sbref0023
http://refhub.elsevier.com/S0377-2217(22)00075-3/sbref0023
https://doi.org/10.1016/j.ejor.2018.05.004
https://doi.org/10.1007/s10732-018-9390-0
https://www.statista.com/topics/1367/container-shipping/#dossierSummary
https://doi.org/10.1016/j.ejor.2017.05.046
https://doi.org/10.1016/j.ejor.2019.04.005
https://doi.org/10.1007/s10696-016-9246-6
https://unctad.org/webflyer/review-maritime-transport-2020
https://doi.org/10.1016/j.omega.2014.12.002
https://doi.org/10.1016/j.ejor.2016.05.061
https://doi.org/10.1016/j.jclepro.2021.126019
http://refhub.elsevier.com/S0377-2217(22)00075-3/sbref0034
http://refhub.elsevier.com/S0377-2217(22)00075-3/sbref0034
http://refhub.elsevier.com/S0377-2217(22)00075-3/sbref0034
http://refhub.elsevier.com/S0377-2217(22)00075-3/sbref0034
http://refhub.elsevier.com/S0377-2217(22)00075-3/sbref0034
https://doi.org/10.1016/j.cor.2020.105045

	A beam search algorithm for minimizing crane times in premarshalling problems
	1 Introduction
	2 Literature review
	3 Problem description
	4 Dominance rules
	4.1 Transitive movement dominance
	4.2 Unrelated movement dominance
	4.3 Same group movement dominance

	5 A beam search-based algorithm
	5.1 Algorithm description
	5.2 Node comparison criteria
	5.3 Global evaluation approach
	5.3.1 A heuristic algorithm to obtain a feasible solution
	5.3.2 An algorithm to improve feasible solutions

	6 Computational results
	6.1 Test instances
	6.2 Assessing the effect of each element on the proposed algorithm, BS.
	6.3 Comparing the results obtained by BS with the results obtained by the CTA algorithm

	7 Conclusions
	Acknowledgments
	Appendix A Proofs of the dominance rules provided in Section 4
	References

