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Abstract: For many years, convolutional neural networks dominated the field of computer vision,
not least in the medical field, where problems such as image segmentation were addressed by such
networks as the U-Net. The arrival of self-attention-based networks to the field of computer vision
through ViTs seems to have changed the trend of using standard convolutions. Throughout this work,
we apply different architectures such as U-Net, ViTs and ConvMixer, to compare their performance
on a medical semantic segmentation problem. All the models have been trained from scratch on the
DRIVE dataset and evaluated on their private counterparts to assess which of the models performed
better in the segmentation problem. Our major contribution is showing that the best-performing
model (ConvMixer) is the one that shares the approach from the ViT (processing images as patches)
while maintaining the foundational blocks (convolutions) from the U-Net. This mixture does not
only produce better results (DICE = 0.83) than both ViTs (0.80/0.077 for UNETR/SWIN-Unet) and
the U-Net (0.82) on their own but reduces considerably the number of parameters (2.97M against
104M/27M and 31M, respectively), showing that there is no need to systematically use large models
for solving image problems where smaller architectures with the optimal pieces can get better results.

Keywords: segmentation; medical image; ConvMixer; U-Net; vision transformer

1. Introduction

Image segmentation is one of the main tasks in the field of computer vision and image
analysis. It consists of dividing an image into several regions, each of which corresponds to
a different object or background. To do this, each pixel is assigned a label which it shares
with pixels of similar characteristics.

Although there are numerous applications of image segmentation, such as satellite
image segmentation [1,2] or flood segmentation [3], one of the most important lies in
the medical field [4–6]. Medical image segmentation refers to the process of dividing a
medical image into different sections or regions containing similar medical features or
structures. This technique is essential in medical image interpretation and decision-making
in the diagnosis and treatment of diseases. In this work, we assess the problem of diabetic
retinopathy, which is a medical disease related to certain morphological attributes of the
retinal blood vessels, such as the length, thickness, branching or different angles formed by
these vessels [7].

Prior to the use of artificial intelligence in the field of computer vision, researchers
used traditional image processing algorithms to perform segmentation [8]. These classical
algorithms were based on different classical techniques, such as threshold segmentation,
which sets a threshold to determine which pixels belong to an object and which do not [9,10];
edge segmentation, which uses image analysis techniques to detect edges and lines in an
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image and subsequently segment it [11,12]; or clustering segmentation, which seeks to
group pixels into different clusters or groups based on certain characteristics [13,14].

However, in recent decades, image segmentation has evolved significantly from
classical algorithms, which had difficulties facing complex images or multiple overlapping
objects, to deep learning-based techniques, which are currently the state of the art in
image segmentation [15] and in the majority of computer vision tasks. Among the deep
learning segmentation algorithms, those based on convolutional neural networks (CNNs),
such as U-Net [16], was the most famous and used in the first years of the 2020s, when
transformers (models based on self-attention mechanisms) appeared in [17] and were
applied to computer vision (vision transformers or ViTs) [18]. In recent years, these have
proven to be very effective in segmentation tasks, achieving results comparable or higher to
CNNs [18,19]. For this reason, the majority of computer vision applications have changed
from using CNNs to using transformer-based architectures despite requiring much more
computational capacity. In order to find a balance between complexity and performance, a
novel model, ConvMixer [20], emerged last year. It tries to copy the patch-representation
from the ViTs, which they thought to be the source of their high performance rather than the
mechanisms of self-attention itself and combine it with the feature extraction of CNNs that
has already proven to be successful. They also introduce, inspired by the work of the MLP-
mixer [21], the idea of combining feature information extracted through point-wise and
depth-wise convolutions.

In this work, we have chosen the DRIVE (Digital Retinal Images for Vessel Extraction)
dataset as a reference to present the results obtained by the different models [22]. It
is, together with STARE [23] and CHASE [24], an image dataset frequently used in the
study of ocular diabetic retinopathy segmentation and as a benchmark for medical image
segmentation models.

In this work, we trained from scratch and compare the performance of different segmen-
tation models on a well-known medical retinal image dataset (which was created with the
aim of assisting medical specialists in diabetic retinopathy diagnosis). Some of the models
are based on CNNs, such as the popular U-Net, others are based on ViTs and, finally, we
also used a segmentation-adapted version of the ConvMixer model, which can be seen as a
combination of both types of architectures. We obtain that a reduced version of the ConvMixer
model achieves a good or better result than the other tested models while having around
two orders of magnitude fewer parameters and taking less time to train. To the best of our
knowledge, this is one of the few works that make use of the ConvMixer model for a medical
segmentation task [25,26] and the first to perform a from scratch training comparative of
models based on different architectures on a retinopathy problem.

More specifically, the paper is organized as follows: first, in Section 2, we describe
the dataset, the different model architectures and the loss function and metric we used to
train and evaluate the models. Then, in Section 3, we describe the results of the different
models and finally, in Section 4 we discuss the results and their implications. The code
to reproduce the results of this work is available at: https://github.com/alberto-solano/
drive-convmixer (accessed on 28 March 2023).

2. Materials and Methods

In this section, we develop and explain the dataset and the different model archi-
tectures. Furthermore, we specify the evaluation metric and the loss function and other
considerations involved in the training of the models.

2.1. DRIVE Dataset

In this work, we have chosen the DRIVE (Digital Retinal Images for Vessel Extraction)
dataset as a reference to present the results obtained by the different models [22]. It
is, together with STARE [23] and CHASE [24], an image dataset frequently used in the
study of ocular diabetic retinopathy segmentation and as a benchmark for medical image
segmentation models.

https://github.com/alberto-solano/drive-convmixer
https://github.com/alberto-solano/drive-convmixer
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The DRIVE dataset consists of 40 high-resolution images of 584 × 565 pixels (see
Table 1) whose blood vessels have been labeled by eye medical experts. Figure 1 shows one
of the images and its corresponding label, which is actually a binary mask. More specifically,
this dataset is intended to assist specialists in the diagnosis of diabetic retinopathy, where it
is necessary to isolate the blood vessels from the retinal fundus in order to proceed with
the subsequent inspection. Therefore, the goal to be achieved with this dataset involves
a binary semantic segmentation task, in which each pixel must be classified according to
whether or not it belongs to a blood vessel.

Table 1. Table summary of the DRIVE dataset main features.

Dataset Training (Labeled) Images Testing (Unlabeled) Images Resolution

DRIVE 20 20 584× 565

Figure 1. Example of one of the train set images (left) and its corresponding label (right). The blood
vessels are segmented in white and the retinal background in black.

Out of the 40 images that make up the dataset, 20 are distributed without labels and
used as test partitions. In order to obtain the test metrics, the results of these images have to
be submitted to the DRIVE platform [27]. Then, the dice-coefficient is calculated for every
image in the test set and results can be seen in a leaderboard sorted by highest average
dice-coefficient. The other 20 labeled images are split between a training (16 images) and
a validation (4 images) set. In addition to this, as the amount of images available is very
small, we used different data augmentation techniques that we describe in Section 2.1.1 in
order to enhance the training set.

2.1.1. Data Augmentation

We perform different data augmentation transformations to the training set images
due to the lack of variability of the dataset (only 20 images available for training) and thus
increase the generalization capability of the models and prevent over-fitting. We can find
this to be a common technique in the literature when dealing with DRIVE and similar
datasets. However, unlike other authors, we have not employed cropping and scaling
techniques in small image portions [28], so the detail of specific regions of the eye is not
explicitly provided to the networks (the zoom applied is very small and, even with the
maximum, we always capture the entire eye). Although the values of the transformations
applied have been slightly modified depending on the model (specified at Table 2), a
generic description of the employed techniques is given below:

• Random rotation: Always applied, with lower and upper bounds for the rotation
angle α given by parameter θ, i.e., α ∈ [−θ, θ] rad.

• Random horizontal flip: With probability ph f .
• Brightness adjustment: Being applied 10% of the time with a random factor β between

an upper and lower bound [βmin, βmax], where β = 0 gives a complete black image,
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β = 1 leaves the original image unchanged and β > 1 increases the brightness by
that factor.

• Contrast adjustment: Furthermore, being applied with a probability of 10%, based
on a factor κ between an upper and lower bound [κmin, κmax], where κ = 0 gives a
solid gray image, κ = 1 leaves the original image unchanged and κ > 1 increases the
contrast by that factor.

• Gamma correction: Known as Power Law Transform, applied again with a probability
of 10% with a fixed gain factor of 1 and a random γ factor, again between some upper
and lower bounds around 1. Values smaller than 1 make the dark regions lighter while
values larger than 1 make the shadows darker.

• Random affine: Transformation of the image with probability pα, keeping the center
invariant. It combines a translation in both x and y directions, i.e., [tx, ymin, tx, ymax]
and t ∈, plus a random zoom of the image up to a maximum and, also, an x-shearing
parameterized between two values [smin, smax].

• Random gaussian noise: With a fixed zero-mean (µ = 0) and a variable standard
deviation σ.

Table 2. Table summary of the hyperparameters used for data augmentation for each model.

Model [−θ, θ] ph f [βmin, βmax] [κmin, κmax] [γmin, γmax] pα [txmin, txmax] [tymin, tymax] zoommax [smin, smax] σ

U-Net [−180, 180] 0.4 [0.8, 1.2] [0.8, 1.2] [0.9, 1.1] 0.3 [0, 0] [−0.1, 0.1] ×1.20 [0, 0] 0.1
UNETR [−15, 15] 0.3 [0.5, 1.5] [0.6, 1.5] [0.7, 1.3] 0.2 [−0.1, 0.1] [−0.1, 0.1] ×1.25 [0, 0] 0.08

Swin-Unet [−45, 45] 0.5 [0.6, 1.4] [0.6, 1.4] [0.7, 1.3] 0.2 [−0.05, 0.05] [−0.05, 0.05] ×1.20 [0, 0] 0.05
ConvMixer [−45, 45] 0.3 [0.3, 1.7] [0.3, 1.8] [0.5, 1.5] 0.15 [−0.2, 0.2] [−0.2, 0.2] ×1.25 [−0.1, 0.1] 0.1

ConvMixer-Light [−45, 45] 0.3 [0.6, 1.6] [0.6, 1.6] [0.7, 1.5] 0.15 [−0.1, 0.1] [−0.1, 0.1] ×1.25 [0, 0] 0.05

Figure 2 shows an example of the different transformations applied to one of the
images so that the effect can be seen.

Figure 2. Example of the different data augmentation transformations applied to one of the training
images.

2.2. Data Augmentation Hyperparameter Tuning

For the hyperparameter optimization of the whole set of models, we have used a grid
search-based approach. Starting from a wide grid, i.e., in which the jumps are larger in
magnitude from one value to its contiguous value for the same hyperparameter within



Appl. Sci. 2023, 13, 4445 5 of 14

the set of possible combinations, we have gradually been decreasing the grid size until
converging to a local minimum. We did this process by training the models with the
different hyperparameter combinations and we keep the ones that achieve higher results in
the validation split.

We have used Weights & Biases [29] for experiment tracking and visualizations to
develop insights for this paper, including this hyperparameter tuning task.

2.3. Evaluation Metric

The metric used in this work is the Sørensen-Dice coefficient, commonly known as
DICE. It is, in conjunction with the Intersection over Union (IoU), a highly used metric in
semantic segmentation problems, preferred when robustness at evaluation time is desired.
The main advantage of such metrics, compared to simpler ones such as accuracy, is that
they are more robust to class imbalances, which are frequently present in the segmentation
context. DICE is calculated as the intersection between the ground truth label and the
prediction over the sum of both areas, which is expressed as

DICE =
2|X ∩Y|
|X|+ |Y| =

2TP
2TP + FP + FN

(1)

where X and Y are the real and predicted labels. In our problem, both are binary masks
with values 0 for the retinal background and 1 for the blood vessels. It should be noted that
DICE values can range from 0, when there is no overlap between the real and predicted
labels, to 1, when there is a perfect prediction of the label.

It is worth mentioning that the metric can also be computed by using True Positive
(TP), False Positive (FP) and False Negative (FN) values of the confusion matrix between
the two classes represented by 0 and 1 mask pixels. In this binary scenario, the DICE
coefficient is equivalent to the F1 classification score, so the problem can be interpreted as a
semantic segmentation problem evaluated with the DICE metric or even as a pixel-wise
classification task evaluated with the F1 score.

2.4. Loss Function

To train the different models, we employed a loss function that consists of a weighted
combination of the DICE (1) and the Binary Cross-Entropy (BCE) Loss (2), with adjustable
weights (θ) for the minority class. The loss function, then, is given by the expression:

BCEθ(y, ŷ) = −θ y log(ŷ)− (1− y) log(1− ŷ) (2)

Loss(y, ŷ) = αDICE(y, ŷ) + (1− α)BCEθ(y, ŷ). (3)

where α and θ are hyperparameters that we fine-tuned individually for each model, and (y, ŷ)
correspond to the ground-truth label and the prediction made by the model, respectively.

2.5. Models

In this subsection, we aim to describe the four models trained with the DRIVE dataset.

2.5.1. CNN’s Models: U-Net

The first model we trained is the U-Net [16], which is a fully convolutional model. It
is one of the most famous segmentation architectures and when it was released it obtained
SOTA results in different segmentation tasks. It is still highly used in the medical field due
to its good performance in situations where little data are available. U-Net benefits greatly
from data augmentation techniques that allow to artificially increase the number of images
available for the training process. Here we used the original architecture developed for
medical image segmentation which has approximately 31M trainable parameters [16].

We trained this architecture on our training set for 1000 epochs using an initial learning
rate of 0.002, Adam optimizer, and a batch size of 2 images. We reduce the learning rate by
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a factor of two after not improving the validation DICE for 80 epochs. We found that the
best hyperparameters for the loss function are θ = 1 and α = 0, which implies that for this
model the best result is obtained when the DICE is not included in the loss function.

2.5.2. ViT Models: UNETR and Swin-UNET

After the CNN model, we tried to outperform the results obtained through two
different models based on self-attention mechanisms, i.e., two vision transformers.

On the one hand, we trained a model called UNETR, which is a transformer-based
architecture developed for 3D medical image segmentation [30]. The main contribution
of this model is to include skip connections between the transformer encoder and the
convolutional decoder. We used a feature size of 64 and a dropout rate of 0.2 in this
architecture, reaching a total of 104M trainable parameters.

For the training process, we conducted a total of 1000 epochs using an initial learning
rate of 0.002, Adam optimizer and a batch of 1 image. We found that the best hyperparame-
ters for the loss function are θ = 1 and α = 0.7.

On the other hand, we have also trained a model called Swin-Unet [31], which is
a U-Net-like pure Transformer for medical image segmentation. The main difference
between the UNETR and the Swin-Unet models is that the Swin-Unet uses a transformer-
like architecture not only for the encoder but also for the decoder while the UNETR uses a
convolutional decoder. It also includes a novel multi-head self-attention module based on
shifted window named the “swin transformer block”. In this case, we used the original
Swin-Unet architecture which has 27M trainable weights.

We have trained it for 3000 epochs using an initial learning rate of 0.002, Adam
optimizer, and a batch size of 4 images. We found that the best hyperparameters for the
lost function are θ = 2 and α = 0.75.

2.5.3. ConvMixer

Finally, we trained the ConvMixer model [20]. It is an extremely simple model that is
similar in spirit to the ViT (input patches representation and isotropic architecture repeating
the same block structure) but relies exclusively on convolutions to extract image features
and to combine the information across the multiple layers. More specifically, it makes
use of depth-wise and point-wise convolutions for mixing the extracted features across
spatial and channel dimensions, respectively. Furthermore, it maintains equal size and
resolution throughout the network. When this model was presented, it outperformed
different ViTs and ResNets on ImageNet 1k [20]. This model was originally developed to
perform classification problems so we had to adapt the last part of the model in order to
be able to address a segmentation problem. To achieve this, we added a final transpose
convolution layer (symmetrical to the initial one that divides the image into patches) which
goes from h channels to a single channel, using a kernel size and stride equal to the patches
size. The result of this layer is a single-channel mask of the same size as the input image.
An additional skip connection is added to this mask which sums (instead of concatenates)
the result of this layer with a channel mean of the input image. This is done to improve
the convergence during the training. Figure 3 shows the ConvMixer with the additional
segmentation output modification.

Figure 3. Original ConvMixer architecture plus the final modification to face segmentation problems.
Adapted with permission from Ref. [20]. 2021, Asher Trockman.
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We have trained two versions of this model, one called ConvMixer and another with
less trainable parameters, which we called ConvMixer-Light. In the ConvMixer architecture,
we selected a patch size of 3 pixels, an embedding dimension of 375, a depth of 20 layers
and kernels of size 3× 3. With this configuration, the number of trainable parameters
increases up to 2.97M.

For the training of this model, we iterated over a total of 1500 epochs, using an initial
learning rate of 0.002, Adam optimizer, and a batch size of 2 images. We found the best
hyperparameters for the lost function at θ = 7 and α = 0.8.

For the ConvMixer-light version, we decreased the depth from 20 to 14 layers and the
embedding dimension from 375 to 128. With this modification, we reduced the number of
trainable parameters to a total of just 270k.

We have trained the ConvMixer-light model for 1000 epochs, using an initial learning
rate of 0.002, Adam optimizer, and a batch size of 2 images. We found that the best
hyperparameters for the lost function are θ = 1.5 and α = 0.7.

2.6. Training Considerations

To avoid over-fitting, the DICE over the validation set is calculated after each epoch
and the best-performing model is stored. At the same time, the learning rate is reduced
by a certain factor (cut in half in our case) after not improving the validation DICE for
80 epochs, with a floor limit of 10−5. This helps the weight adjustment when the network
gets closer to the minimum. After the training, in order to evaluate the models we restore
the weights of the iteration in which the maximum DICE on the validation set was scored.

All the models have been trained with a single NVIDIA P100 GPU (Google Colab Pro).

3. Results

In the following section, we present the different results obtained with the differ-
ent models as well as the considerations taken into account when training the models.
The out of sample metrics shown are obtained from the DRIVE challenge platform after
uploading our predictions, so they are considered to be the most independent metric of
performance available.

3.1. U-Net

An interesting finding about the improvement produced by the data augmentation
techniques was found when removing the noise and zoom transformations. By using the
whole transformations set, the achieved DICE was 0.81 and 0.82 for the validation and test
sets, respectively, while reducing these metrics down to 0.80 and 0.79, respectively, after
removing the noise and zoom transformations.

By observing the results in Figure 4, it can be seen that the U-Net is able to correctly
segment the regions of the image that have the thickest blood vessels and even some areas
where a non-expert human eye would hardly be able to perceive the presence of these vessels.
It can also be noted that the major failure area is focused on the smallest blood vessels.



Appl. Sci. 2023, 13, 4445 8 of 14

Figure 4. Two validation images, its real mask and the U-Net prediction.

3.2. ViT’s: UNETR y Swin-UNET

ViT-based models obtained slightly worse results than CNN-based U-Net. More
specifically, the UNETR model obtained a DICE of 0.80 both for the validation and test
sets, which for the test results is an intermediate point between the U-Net performance
with and without the zoom and noisy transformations. The Swin-Unet obtained worse
results than the U-Net both in the validation and test sets, with a DICE of 0.76 and 0.77,
respectively. Figures 5 and 6, which show the prediction of UNETR and Swin-Unet on two
of the validation images, look noisier (look the edge of the eye in Swin-Unet prediction of
validation image 25) than the U-Net predictions of Figure 4.

Figure 5. Two validation images, its real mask and the UNETR prediction.



Appl. Sci. 2023, 13, 4445 9 of 14

Figure 6. Two validation images, its real mask and the Swin-Unet prediction.

3.3. Convmixer

The ConvMixer model, which has much fewer trainable parameters (3M and 270k
for the normal and light versions), gets the best results out of all the models. Its normal
version achieved a DICE of 0.82 and 0.83 for the validation and test sets, respectively. When
reducing the model size to the light version, its results only change slightly to a DICE
of 0.82 both for the validation and test sets. Figures 7 and 8 show the results of the two
ConvMixer models on two validation images. It is possible to see how it detects the smallest
blood vessels better than the U-Net model as well as getting less noisy predictions than
ViT models.

Figure 7. Two validation images, its real mask and the ConvMixer prediction.
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Figure 8. Two validation images, its real mask and the ConvMixer-Light prediction.

3.4. Summary

Finally, in order to see the results clearly, we show both a table and a comparative
figure with the results of all the models on three images from the test set.

Table 3 shows a comparison between the five models we have trained and other state-
of-the-art models on the DRIVE dataset competition. We include results in the validation
and test DICE as well as the type of the model, the number of trainable parameters and
the time to process one image. It shows how the ConvMixer model and its Light version
obtain the best results of the five models we trained, slightly above the U-Net but with
one and two orders of magnitude fewer parameters, respectively. We also saw that the
ConvMixer-Light model takes only 4 s per image to train, while other models such as U-Net
and UNETR take two and four times more on an NVIDIA T4.

Figure 9 shows the prediction images and DICE scores made by all the trained models
for three images of the test set. It can be seen how the segmentation performed by the
ConvMixer models (both the normal and the Light version) are the ones that show a higher
amount of cleaner blood vessels.

Table 3. Table summary of the results in validation and test DICE of the models we trained (top
panel). The models and results of some of the leaders of the DRIVE dataset competition are also
shown (bottom panel).

Network Type Params. Val DICE Test DICE Process. Time (s)

U-Net CNN 31M 81 82 8.1
UNETR ViT 104M 80 80 16.0

Swin-Unet ViT 27M 76 77 6.5
ConvMixer CNN 2.97M 82 83 11.0

ConvMixer-Light CNN 0.27M 82 82 4.2

IterNet [32] CNN 13.6M - 82.18 -
BCDU-Net [33] CNN-RNN 20.7M - 82.24 -
LadderNet [34] CNN 1.5M - 82.02 -
RV-GAN [35] GAN >14M - 86.90 -



Appl. Sci. 2023, 13, 4445 11 of 14

Figure 9. Prediction images and DICE scores of all the trained models in three of the test images.

4. Discussion

During this work, some of the image segmentation state-of-the-art models were
studied and applied to the well-known DRIVE vessel segmentation dataset. In addition, a
novel classification architecture not yet tested in segmentation problems, the ConvMixer,
was also analyzed and applied for the first time on these data, giving a total of five different
architectures that were trained to evaluate their performance.

The first model in our study was the U-Net, a convolutional architecture widely
used and known in many fields where deep learning is applied, particularly in medical
segmentation. In fact, many of the models used to tackle this type of problem are versions
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of this architecture. Our main findings when training and testing this model are that it can
achieve a good result while failing in the smallest vessels, as well as that its performance
can benefit from the use of data augmentation techniques such as zoom transformations
and noise addition.

In line with the development, the following two trained models were based on the
visual transformer architecture (ViT), so they are located in the frame of attention mecha-
nisms. In this case, we obtained slightly worse results than the first convolutional U-Net
model, probably due to the limited quantity of data available to train the transformers.
These models require a significant amount of data to prove their advantages, hence we
expect that a pre-trained version of these ViTs may improve the performance.

Finally, our main milestone was the finding of the ConvMixer net as a promising
architecture for segmentation problems. This model, although inspired by some of the
ideas on which ViT is based such as patch representation and isotropic architecture, is still
convolutional and can avoid the aforementioned drawbacks of transformers. While this
model is not state-of-the-art, we showed that a modified version adapted to segmentation
can outperform the other analyzed models despite having far fewer parameters (2.97M
trainable parameters compared to 31M for U-Net or 27M and up to 104M for visual
transformers). The power of this architecture is illustrated by the fact that we were able
to train a network even lighter in parameters (300k), called ConvMixer-Light, which still
shows better performance than U-Net and ViTs and yields just slightly worse results
than the larger ConvMixer version previously trained while taking only 4 s per image to
train. In this way, we proved that there is no need to systematically use large models to
address image segmentation problems, specifically when there is a limited amount of data
available. A smaller architecture with the optimal pieces can obtain better results than
other larger models, taking advantage of higher robustness against over-fitting and thus a
better generalization power over unseen data.

Our work has shown that a slightly modified version of the ConvMixer model can
yield very promising results in a semantic segmentation problem. Nevertheless, further
work can be done in this direction to deepen the advantages of this hybrid architecture.
A first step may be to extend and test this model to other datasets and benchmarks in
image segmentation, even beyond the medical context and also in multi-class problems. In
this regard, a retraining approach may be complemented with a generalization test that
can be performed by applying the already trained models [36–38] to other similar vessel
segmentation datasets. On the other side, in addition to the generalization analysis, an
ablation study over the model hyperparameters can provide a better understanding of the
strengths of the ConvMixer architecture and its performance. In this work, a first insight
was drawn when we found that reducing the depth and the embedding dimensions does
not critically affect the model performance (by reducing the model parameters by a factor
of 10 the results became slightly worse).
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Abbreviations

The following abbreviations are used in this manuscript:

CNNs Convolutional Neural Networks
ViT Vision Transformer
DRIVE dataset Digital Retinal Images for Vessel Extraction dataset
STARE dataset STructured Analysis of the Retina dataset
CHASE dataset Child Heart and Health Study in England dataset
TP True Positive
FP False Positive
FN False Negative
IoU Intersection over Union
BCE Binary Cross-Entropy
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