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A B S T R A C T   

Background: Automatic detection of atrial fibrillation (AF) by cardiac devices is increasingly common yet sub-
optimally groups AF, flutter or tachycardia (AT) together as ‘high rate events’. This may delay or misdirect 
therapy. 
Objective: We hypothesized that deep learning (DL) can accurately classify AF from AT by revealing electrogram 
(EGM) signatures. 
Methods: We studied 86 patients in whom the diagnosis of AF or AT was established at electrophysiological study 
(25 female, 65 ± 11 years). Custom DL architectures were trained to identify AF using N = 29,340 unipolar and 
N = 23,760 bipolar EGM segments. We compared DL to traditional classifiers based on rate or regularity. We 
explained DL using computer models to assess the impact of controlled variations in shape, rate and timing on 
AF/AT classification in 246,067 EGMs reconstructed from clinical data. 
Results: DL identified AF with AUC of 0.97 ± 0.04 (unipolar) and 0.92 ± 0.09 (bipolar). Rule-based classifiers 
misclassified ~10–12% of cases. DL classification was explained by regularity in EGM shape (13%) or timing 
(26%), and rate (60%; p < 0.001), and also by a set of unipolar EGM shapes that classified as AF independent of 
rate or regularity. Overall, the optimal AF ‘fingerprint’ comprised these specific EGM shapes, >15% timing 
variation, <0.48 correlation in beat-to-beat EGM shapes and CL < 190 ms (p < 0.001). 
Conclusions: Deep learning of intracardiac EGMs can identify AF or AT via signatures of rate, regularity in timing 
or shape, and specific EGM shapes. Future work should examine if these signatures differ between different 
clinical subpopulations with AF.   
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1. Introduction 

Accurately identifying Atrial Fibrillation (AF) in tracings from 
wearable or cardiac implanted electronic devices (CIEDs) is increasingly 
central to patient care, and may guide ablation, choice of medications or 
anticoagulation therapy [1]. Nevertheless, automatic device detection 
of AF is suboptimal. Wearable devices [2,3] and CIEDs including pace-
makers and defibrillators [1] typically detect AF, atrial flutter or 
tachycardia (AT) by rate or regularity. This often classifies organized 
tachycardias or even premature atrial ectopic beats as AF [4], leading to 
diagnostic errors or delay of definitive therapy [5,6]. 

We hypothesized that deep machine learning (DL) can integrate 
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features from atrial electrogram (EGMs) to detect AF better than tradi-
tional approaches. DL is a provocative and rapidly developing branch of 
computer science which can reveal unrecognized structures in complex 
data [7,8], without the limitations of detailed expert rules. While DL has 
been applied to the ECG to identify AF [9,10], it has rarely been applied 
to separate AF from AT from intracardiac data. We set out to develop DL 
to distinguish AF from organized AT in intracardiac EGMs, uniquely 
validated at electrophysiological study, and compared DL analysis to 
expert rules. 

Notably, we also set out to address the ‘black box’ limitation of DL, 
because uncertainty in how DL achieves classification [7,8] reduces 
confidence in its clinical use. We further hypothesized that explain-
ability analyses could identify which clinically meaningful features such 
as EGM waveform shape are used by DL to classify AF. We reasoned that 
such ‘AF signatures’ may indicate clinical or physiological features that 
could ultimately be used to personalize therapy. 

2. Materials and methods 

2.1. Patient population 

We studied patients in the COMPARE registry (NCT02997254) of AF 
patients who were enrolled prospectively at ablation for symptomatic 
AF, refractory to at least 1 anti-arrhythmic medication. Each patient in 
this registry had intracardiac EGMs recorded by multipolar 64 pole 
basket catheters. The registry was reviewed by a panel of 3 cardiac 
electrophysiologists who classified each tracing as AF or AT. For the 
present study, we selected consecutive patients from this registry to 
construct a balanced dataset of intracardiac recordings with AF (N = 43) 
or AT (N = 43). Each patient provided written informed consent under 
protocols approved by the Human Research Protection Program. 

2.2. Electrogram collection and export 

Electrophysiology study was performed after discontinuing antiar-
rhythmic medications for 5 half-lives. A 64-pole basket catheter (Abbott, 
Menlo Park, CA; electrode size 2 mm, inter-electrode spacing 5 mm 
along spline) was advanced to map the right and left atria. Catheters 
were maneuvered by experienced operators to optimize contact [11]. 
We exported 60 s of unipolar electrograms from the electrophysiological 
recorder (Prucka, GE Marquette, Milwaukee, WI; Bard Electrophysi-
ology, Billerica, MA), filtered at 0.05–500 Hz. Unipolar electrograms 
were analyzed for durations of 4000 ms which provide ~20 cycles of AF 
or AT. This is a common duration for EGM sequences analyzed in the 
frequency domain, and longer durations may not improve rhythm 
identification. Original EGMs had sample Frequency (Fs) of 1 kHz (Bard) 
or 977 Hz (Prucka), and were resampled to compare analyses between 
datasets. To reduce dimensionality and, since the physiological content 
of AF and AT EGMs is < 200 Hz [12], we downsampled EGMs to 400 Hz 
with a 200 Hz anti-aliasing filter. Our results should thus be applicable 
to any system with Fs > 400 Hz. Ventricular artifacts were eliminated by 
subtracting a mean QRS complex, obtained by identifying each QRS in 3 
orthogonal ECG leads by a voltage threshold and averaging them across 
1 min [13]. Bipolar EGMs were constructed by subtracting unipolar 
signals at adjacent electrodes across each catheter spline. Examples of 
unipolar and bipolar EGMs are presented in Fig. 1A. 

Stratified Monte Carlo cross-validation was accomplished by 
randomly assigning 20% (8 or 9 patients from each group) to the vali-
dation sample and the remainder to the training sample. The corre-
sponding datasets of 29,340 unipolar and 23,760 bipolar EGM signals 
(4-s length) were evaluated in the validation set. This process was 
repeated 10 times and the results averaged across validation sets. This 
approach has been used by Feeny et al. to predict response to cardiac 
resynchronization and by ourselves to predict sudden death from 

Fig. 1. Atrial Electrograms and feature extraction. A. Unipolar and bipolar EGMs from the Atrial Tachycardia (AT) and Atrial Fibrillation (AF) groups. B. Ex-
amples of traditional features extracted from atrial EGMs. 
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intracardiac ventricular signals [14,15]. 

2.3. Traditional features to identify AF 

Clinicians use several EGM rules to identify AF from other arrhyth-
mias, primarily a higher rate in AF which can be measured as the 
number of beats per second, the dominant frequency (DF) or its inverse 
(cycle length, CL). AF typically has CL < 200 ms (DF > 5 Hz), while AT 
has CL ≥ 200 ms. AF also exhibits a higher beat-to-beat variation in rate 
(Fig. 1B), which can be quantified by the standard deviation of maxima 
in unit time. AF exhibits beat-to-beat variations in EGM shape, unlike 
AT, although this is rarely quantified. Moreover, AF cases arise with 
rapid activation but similar EGM shapes. We quantified consistency of 
EGM shape using autocorrelation of successive electrograms (Fig. 1B). In 
total, we extracted 45 EGM features of morphology, amplitude, timing, 
frequency and autocorrelation to separate AF from AT (Supplementary 
Table 1), and compared different configurations of feature-extraction 
algorithms to reduce dependence of results on any one algorithm. 

2.4. Statistical and classic machine learning of traditional AF features 

Feature-based classification of AF versus AT was performed using 
well-reported techniques widely used for detecting AF from the ECG 
[16]. First, we used individual features, and optimized a binary 
threshold to predict AF for each. We then combined multiple features. 
Four feature-based, trainable and well-known classifiers were used 
(Supplementary Figure 1A and Supplementary Methods):  

• Linear Regression. This was constructed by combining all parameters 
into one linear function (y = g(a0 + a1f1 + a2f2 + … + aNfN)), ai 
representing the coefficient, fi each feature and g(⋅) the canonical 
function (binomial). The linear model was trained using Poisson 
regression using function fitglm from Matlab® (Mathworks, Natick, 
MA).  

• Bagged Trees (Forest). In this approach, the averaged output of N 
decision trees is provided, based on binary thresholding of individual 
parameters. An ensemble of 200 decision trees were trained using 
function TreeBagger from Matlab®.  

• K-Nearest Neighbor (KNN). The predicted output is calculated 
through the K nearest neighbors in the domain of size N, where N is 
the number of features. Neighbors are points/features combinations 
used for training. K = 20 neighbors were considered in our analysis 
using function fitcknn from Matlab®.  

• Support Vector Machine (SVM). The output is predicted in a low- or 
moderate-dimensional predictor data set by identifying a subset of 
inputs, termed support vectors, that form a decision boundary whose 
separation increases in training. The function fitcsvm from Matlab® 
was used. 

The predictive value of each feature was calculated by its Area Under 
the Curve (AUC) to classify AF. Features were combined by sequential 
inclusion from highest AUC, in descending order until classification 
accuracy in the validation cohort reached a plateau. Because some 
features are correlated, we excluded those with correlation >0.9 against 
any feature already included in the model. 

2.5. Deep learning 

We applied two customized DL architectures, Convolutional Neural 
Networks (CNN) and Recurrent Neural Networks (RNN), to raw EGM 
signals in an end-to-end fashion. The CNN comprised two 1-dimensional 
convolutional layers, of 32 and 8 elements-length each, and 2 fully 
connected dense layers. All layers comprised 256 filters and had dropout 
values of 0.3, 0.2, 0.1 and 0.0, respectively (Supplemental Fig. 1B). The 
RNN comprised by one Long-Short Term Bidirectional Memory layer 
(size 256, dropout 0.3) and a fully connected layer (2 filters, dropout 

0.3). These designs are similar to models we have reported [15,16], 
although all models were trained from scratch (transfer-learning was not 
used). Details of Deep Learning models and training can be found in the 
Supplemental Material. 

2.6. Explainability analysis of DL to identify electrogram signatures 

To study the rationale for DL classification, we created a database of 
atrial EGMs in which we systematically modified each clinically- 
intuitive EGM feature one at a time, leaving others fixed. EGM se-
quences were reconstructed from actual patient-EGMs in the validation 
cohort. This enabled us to dissect the impact of separate features of atrial 
EGMs on classification [17]. 

Fig. 2 summarizes generation of this reconstructed database. We first 
randomly selected 415 unipolar signals of AF and AT (N = 207 and N =
208 respectively) from all 10 validation cohorts. Activation times were 
assigned at the maximum absolute first derivative of the EGM. Fiducial 
points f1 and f2 were defined at 35% and 65% of the cycle length be-
tween EGM activations respectively. 

To introduce EGM shape variations (Fig. 2A), the trace of a randomly 
identified beat was copied onto different randomly identified beats (red 
trace, 2.A). This allowed us to change the shape of a range of beats, from 
one to all. To evaluate the effect of shape irregularity, the average cross 
correlation between the final beats was reported. 

To introduce EGM timing variations (Fig. 2B), the EGM between f2 
and the next f1 fiducials were shifted by a random percentage of cycle 
length from –p to + p, p ranging from 0% to 35%. The EGM was 
reconstructed by fitting a ramp function. Timing irregularity was 
quantified as the deviation of beat-to-beat cycle length (CL) from overall 
cycle length, as a percentage of the signal CL. 

Finally, EGM rate shift was generated by adding or removing atrial 
beats and linearly redistributing remaining activations (Fig. 2C). The 
EGM was then reconstructed by fitting ramp functions. Atrial beats were 
added to a shortest CL 100 ms, and removal was performed to CL 350 ms 
that represents the slowest rate during AT. Rate of the reconstructed 
signal was quantified as its average CL. 

N = 246,067 EGM sequences were reconstructed. First, EGM se-
quences were generated by varying each of rate, shape and timing 
individually, fixing the other two (N = 8611). Second, EGM signals were 
generated by varying shape and timing irregularity while keeping rate 
fixed (N = 29,190), and varying rate and timing irregularity while 
keeping EGM shape fixed (N = 75,166). A final database was recon-
structed in which signals had combined variations of the 3 parameters 
(N = 133,100). Reconstructed EGMs were used as inputs to DL to 
evaluate the impact of altering each parameter on AF classification in 
validation sets not used for DL training. 

Finally, to explain DL models, we compared the relative weights 
(impact) of EGM variations to DL classification. We used as inputs to a 
logistic regression model the variations in reconstructed EGM sequences 
(normalized from 0 to 1). We then fitted the regression model output to 
previous DL predictions, and report the relative weight of controlled 
variations in rate, timing and shape to the DL decision in the regression 
model. 

2.7. Classification metrics and statistics 

We trained all EGM classifiers the same way, and validated their 
efficacy using the same metrics on the same datasets. A 10-set stratified 
Monte Carlo cross validation scheme with a patient-wise division was 
used, in which each cross validation set had 80% of patients for training 
(69 patients) and 20% for validation (17 patients). From multiple 
random divisions, 10 sets with stratified class distribution were selected: 
34 AF + 35 AT or 35 AF + 34 AT patients for training and 8 AF + 9 AT or 
9 AF + 8 AT patients for validation (detailed in Supplementary Table 2). 

Performance was measured in the remaining 17 validation patients, 
and reported as mean ± standard deviation across the 10 validation sets 
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patient-wise. The AUC was measured for each validation set by con-
structing the Receiver Operating Characteristics Curves. We report ac-
curacy, sensitivity, specificity, Positive Predictive Value (PPV) and F-1 
score using the optimal threshold for each classifier, selected as the 
threshold on the validation set that minimized (1-sensitivity)2 + (1- 
specificity)2. 

Statistical differences between continuous variables were assessed 
using paired or unpaired student T-test, and differences between cate-
gorical variables using the Chi-square test (χ2). These statistical tests 
were used to compare patient demographics, outcome metrics of the 
classifiers or arrhythmia predictions in different signal subsets, but not 
for feature selection. We used a two-tailed alpha of 0.05 to indicate 
significance. 

3. Results 

Table 1 shows patient demographics. Patients presenting in AF had 

similar characteristics to those presenting in AT, except for a less 
frequent history of non-paroxysmal AF in patients presenting with AT (p 
< 0.02). 

3.1. Identifying AF by traditional features 

Table 2 shows the top 15 features of unipolar EGMs that distin-
guished AF from AT based on a single feature threshold. Overall, single 
features provided modest accuracy for AF. Rate features of cycle length 
or DF provided AUC of 0.75 and 0.67, respectively. Autocorrelation 
provided AUC of 0.83. EGM amplitude was the least accurate with AUC 
of 0.58. ROC curves are presented in Supplementary Fig. 2. 

Optimal features for bipolar electrograms were similar but had lower 
predictive value. For bipolar signals, CL provided AUC for separating AF 
from AT of 0.76, DF provided AUC of 0.76, and EGM amplitude had AUC 
0.65. (Supplementary Table 3). 

Fig. 2. AF Reconstructed EGMs. A. Shape shift. B. Timing shift. C. Rate shift.  

Table 1 
Patient demographics.   

All 
Patients 

Patients with 
AF 

Patients with 
AT 

p- 
value 

Number of Patients 86 43 43 – 
Age (years) 60.7 ±

11.2 
61.3 ± 11.6 59.8 ± 10.7 0.59 

Female 16 (19%) 8 (19%) 8 (19%) 1 
Weight (kg) 94.2 ±

19.3 
93.5 ± 20.0 95.4 ± 18.6 0.69 

CHA2DS2-VASc Score 2.0 ± 1.6 2.2 ± 1.7 1.7 ± 1.3 0.13 
Time since diagnosis 

(months) 
53.7 ±
60.1 

51.3 ± 61.9 57.5 ± 58.2 0.68 

LA volume (ml) 67 ± 22 69 ± 22 63 ± 23 0.43 
Number with prior AF 

ablation 
28 (33%) 15 (35%) 13 (30%) 0.65 

Number with non- 
paroxysmal AF 

26 (30%) 18 (42%) 8 (19%) 0.02  

Table 2 
Top 15 Unipolar Electrogram features that identified AF.  

Feature AUC Sens. Spec. 

Autocorrelation: Peak max amplitude 0.83 0.75 0.78 
Autocorrelation: Median 0.76 0.73 0.70 
Cycle Length (Bott filt.) 0.75 0.70 0.73 
Autocorrelation: Standard Deviation 0.71 0.65 0.67 
Dominant Frequency 0–10 Hz (filt. Bott.) 0.67 0.63 0.64 
Number of local maxima, 90–150 Hz filtered 0.66 0.57 0.69 
Autocorrelation: Peak mean amplitude 0.65 0.58 0.61 
Cycle Length (1–15 Hz filt.) 0.60 0.57 0.57 
Dominant Frequency 2–8 Hz (filt. 1–15 Hz) 0.59 0.53 0.64 
Absolute amplitude: 75% percentile 0.58 0.64 0.52 
Absolute amplitude: 95% percentile 0.58 0.49 0.67 
Peak number (120–150 Hz filt.) 0.58 0.61 0.53 
Absolute amplitude: median 0.56 0.62 0.51 
Absolute 1st derivative amplitude: 25% percentile 0.56 0.57 0.54 
Absolute 1st derivative amplitude: 10% percentile 0.56 0.58 0.52  
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3.2. Combining traditional features to identify AF 

We tested classifiers that combined the traditional features in 
Table 2. Supplemental Figure 3A presents the results of AUC to classify 
unipolar EGM by 4 classifiers (Linear Regression, Bagged Tree, K- 
Nearest Neighbor and Support Vector Machine), as a function of varying 
numbers of presented features. AUC reached a plateau of ~0.95 after 5 
features, and dropped when >18 features were included. 

Supplemental Figure 4B shows similar results for classifying bipolar 
electrograms, with plateau AUC 0.93 also achieved after ~5 features 
which fell after >18 features. Figure S4.C-D shows the classification 
accuracy for AF of the 4 feature-based classifiers, as the average of cross 
validation sets. Unipolar EGM classifiers were similar to bipolar EGM 
classifiers. 

Linear Regression and SVM were the best multi-feature classifiers, 
respectively. Performance of the best feature-based classifiers for uni-
polar and bipolar EGM classification are included in Table 3. In general, 
classifiers combining different features showed better performance than 
individual features alone. 

Because feature selection was conducted on the whole dataset this 
could over-estimate performance. We therefore compared feature se-
lection computed only on the training data of each cross-validation set 
(Supplemental Fig. 4). Performance was similar. 

3.3. Deep learning to identify AF 

Supplemental Fig. 5 shows CNN and RNN classification metrics for 
raw unipolar and bipolar EGMs without the feature extraction used 
above. For unipolar EGMs, RNN and CNN had similar performance (AUC 
0.97 ± 0.04 vs 0.95 ± 0.05; p > 0.05) which approximated the best 
feature-based classifier. Fig. 3B shows similar results for CNN and RNN 
on bipolar EGMs. 

Supplemental Figure 5C-D shows ROC curves for detecting AF by 
pooling the 10-cross validation cohorts for all classifiers. For both uni-
polar and bipolar signals, DL thus was able to classify AF from AT 
without traditional rules yet with similar accuracy. Results of all feature- 
based and DL classifiers are summarized in Table 3. 

We assessed the impact of controlled variations in EGM features on 
DL performance. Fig. 3A shows the impact of variations in EGM shape, 
calibrated by controlled changes in correlation coefficient (CC) across 
4270 individual EGMs. Fig. 3B shows the impact of variations in acti-
vation timing, calibrated as the standard deviation of CL in 2250 EGMs. 
Fig. 3C shows the impact of varying EGM shape. EGMs with CC > 0.9 
were classified as AT. With falling correlation coefficients of EGM shape 
(CC), classification as AF increased to 62.2% (CC = 0.4) and to 83.4% 
(CC = 0.1). 

Fig. 3D shows the impact of CL irregularity. EGM signals with timing 
variability <10% were classified as AT 94% of the time, while EGMs 
with variability >20% CL were classified as AF >85% of the time. 

Overall, AF was optimally identified by shape CC < 0.48 and timing 
variability >15% of CL (p < 0.001, χ2). We probed feature-based clas-
sifiers using this approach (Supplemental Fig. 5). We found a similar 
trend for SVM, for which AF was optimally identified by shape CC <
0.37 and timing variability >18% of CL. 

3.4. Probing DL for composite signatures of AF 

We assessed the impact of concurrent shape and timing changes in N 
= 29,190 reconstructed EGM sequences. Fig. 4A illustrates simultaneous 
controlled variation in both shape and timing. Fig. 4B shows their 
impact on DL classification, and Fig. 4C shows their impact on the best 
feature-based classifiers. In each, classification is color-coded by the 
percentage of EGMs classified as 100% AT (blue) to 100% AF (red). 

For DL, Fig. 4B indicates that modifying EGM shape from CC 0.1 to 
0.9 and timing from 0 to 35% did not reclassify AF to AT or vice versa. 
DL classified >50% sequences as AF except a small population of EGM 
sequences with <20% timing variability and shape CC > 0.5 (Fig. 4B 
blue). Even in these sequences, 40% were classified as AF. Thus, DL 
classification either did not depend on linear combinations of EGM 
shape and timing, or used additional features. Conversely, AF diagnosis 
by SVM (Fig. 4C) ranged from 0% AF for regular EGMs (0.9 CC, 0% CL 
variation) to 100% AF in irregular EGMs (CC < 0.4, timing >15% CL) 
and thus could be explained by variations in timing and shape alone. 

We now examined N = 2091 reconstructed EGMs with varying rate 
yet constant shape and regularity (Fig. 5A). For DL, Fig. 5B shows that 
EGM rate moderately explained AF identification. In sequences with CL 
< 180 ms, 62–100% were classified as AF. In sequences with CL > 180 
ms, >70% were classified as AT. CL < 190 ms optimally separated AF 
from AT (AUC 0.83). Conversely, the optimal feature-based classifiers 
(SVM) did less well using a rate cut-point alone (Fig. 5C). 

Finally, we measured the relative importance of each controlled 
variation (rate, shape, timing) to DL in the dataset of N = 133,100 
reconstructed EGMs, using a logistic regression model. This model used 
as inputs the variations in timing, rate and shape of each reconstructed 
EGM, and as output the DL prediction. EGM shape consistency 
contributed 13.0% to DL classifications (95% CI [12.3%–13.7%], p <
0.001), timing regularity contributed 26.9% (95% CI [25.8%–28.0%], p 
< 0.001) and rate contributed 60.1% (95% CI [59.7%–60.5%], p <
0.001). The logistic regression model explained only ~70% of DL clas-
sification (AUC = 0.72). We concluded that DL may code relationships 
between rate, timing or shape in a non-linear fashion or, alternatively, 
that DL could be making classification from additional parameters. 

3.5. Probing DL to reveal specific EGM features for AF 

We studied if specific EGM shape morphologies may influence DL 
classification. We examined N = 75,166 EGM sequences with 100% 
consistency in shape that were classified as AF independent of rate or 

Table 3 
Summary of the performance of the different classifiers. (FB: Feature-Based; DL: Deep-Learning).    

Classifier Acc. Sens. Spec. AUC PPV F-1 

Unipolar EGMs FB Linear Regression (Linear) 0.88 0.95 0.93 0.95 0.95 0.95 
Bagged Trees (Forest) 0.88 0.93 0.93 0.94 0.93 0.93 
K-Nearest Neighbor (KNN) 0.88 0.93 0.93 0.94 0.93 0.93 
Support Vector Machine (SVM) 0.87 0.96 0.91 0.94 0.96 0.96 

DL Convolutional (CNN) 0.88 0.91 0.95 0.95 0.91 0.91 
Recurrent (RNN) 0.89 0.96 0.93 0.97 0.96 0.96 

Bipolar EGMs FB Linear Regression (Linear) 0.87 0.93 0.91 0.93 0.93 0.93 
Bagged Trees (Forest) 0.85 0.94 0.87 0.93 0.94 0.94 
K-Nearest Neighbor (KNN) 0.84 0.92 0.92 0.93 0.92 0.92 
Support Vector Machine (SVM) 0.83 0.91 0.93 0.93 0.91 0.91 

DL Convolutional (CNN) 0.87 0.95 0.88 0.93 0.95 0.95 
Recurrent (RNN) 0.81 0.92 0.88 0.92 0.92 0.92 

Explainability of DL to Identify AF Signatures. 
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timing (Fig. 6A). 
Of the N = 415 individual unipolar EGM shapes, 101 (24%) were 

classified by CNN as AF in >80% of experiments independent of varia-
tions in EGM shape or timing (Fig. 6B). For RNNs, 30/415 EGM shapes 
were classified as AF in >80% of experiments, independent of other 

parameters (Fig. 6C). From both experiments, 15 EGM traces were 
classified as AF in >80% of experiments by both RNN and CNNs, higher 
than expected (p = 0.03, χ2). Fig. 6D shows these 15 unipolar EGM 
morphologies, which were complex with multiple deflections and frac-
tionation. Similar results were found when examining classification of 

Fig. 3. Classification of Reconstructed EGM based on Shape and Timing Irregularity. Reconstructed EGM generation using shape shifting (A) and time shifting 
(B). Red boxes and EGM signals mark the variations on the reconstructed EGM respect to the departing EGMs. Classification of reconstructed EGMs by CNNs based on 
Shape Irregularity (C) and Timing Irregularity (D). Red: classified as AF; Blue: classified as AT. 

Fig. 4. Classification of Reconstructed EGM based on Shape and Timing Consistency. A. Reconstructed EGM signals generated using both shape and time 
shifting. Classification of reconstructed EGMs by CNNs (B) and SVM (C) based on both Shape and Timing consistency, color-coded according to the percentage of 
signals classified as AF. 
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AF in >75% to >95% of experiments. 

4. Discussion 

We show that deep learning can accurately identify AF from orga-
nized ATs even that overlap in rate or regularity. Probing DL to explain 
their classification revealed specific cutpoints of timing variability, 
variability in electrogram shape and fast rate used by DL to classify AF as 
opposed to AT. Notably, we also identified a set of unique EGM shapes 
that classified as AF by multiple DL architectures regardless of variations 
in EGM shape, timing, or high rate. Thus, deep learning approximated 
the performance of expert rules, yet uncovered non-linear variations in 
rate and regularity or additional features not revealed by logistical 
regression analysis. Our use of computer modeling to explain DL by 
controlled variations in clinically intuitive parameters could be useful in 
different physiological and clinical applications. Clinically, studies 
should explore if EGM fingerprints, and variations in rate or regularity 
differ between sub-types of AF patients such as paroxysmal versus 
persistent AF, patients with or without fibrotic atrial remodeling, or with 
differing response to therapy. 

4.1. Classification performance 

The use of machine or deep learning to classify intracardiac EGMs is 
relatively new, although DL has been extensively use to separate AF and 
other atrial arrhythmias from Sinus Rhythm (SR) on the ECG. A recent 
review by Fatma et al. [18], reported that accuracy for detecting AF vs 
sinus rhythm using deep learning methods ranged from 90% to 99.7%. 
However, the accuracy of DL on the ECG for the current problem of 
separating AF from AT falls to 89.7% [19]. 

Surprisingly, features based on single expert rules such as cycle 
length or DF had low predictive accuracy for AF. Combining multiple 
features improved classification and plateaued for <20 features 
(Fig. S3). This suggests that the N = 45 features included in this study 
(Supplementary Table 1) spanned key features that separate AF from 
other arrhythmias. Nevertheless, this approach may be vulnerable to 
patient differences or variations in the classification problem and so may 
not be scaleable. 

DL classification of raw EGMs were at least as effective as feature- 
based classifiers, but may be more scaleable as it did not require 
problem-specific features to be identified. Moreover, in our study, DL 
identified novel features that extend beyond those described by experts 
in the literature. 

Classification of bipolar EGMs showed lower performance than 

unipolar EGMs. Given that the same methods were used for both types of 
signals, this difference likely results from the maximal predictive value 
of individual features (0.83 AUC for unipolar vs. 0.76 AUC for bipolar) 
but could potentially also reflect differences in data size (29,340 uni-
polar vs. 23,760 bipolar EGMs). Whether different features should be 
used for bipolar EGMs, not included in this manuscript, will be further 
explored. 

4.2. Explaining DL to identify potential AF signatures 

We varied one feature at a time in reconstructed signals to quantify 
the contribution of each to AF identification. In this way, we defined a 
novel composite signature for AF comprising >15% timing variation, 
<0.48 correlation between successive EGMs, CL < 190 ms and also 
novel EGM shapes classified as AF regardless of rate and timing. Other 
features may also exist, such as fractionation or Shannon Entropy which 
are composites of shape, rate and timing and require further study. 

4.3. Probing and explaining DL 

DL shows excellent classification performance, yet its medical use 
has been limited by a lack of explainability for its decisions [7,8]. To 
address this limitation, our group has studied approaches to explain how 
DL can predict ventricular arrhythmias from cellular mechanisms [15] 
or how DL can interpret complex activation maps of AF [16]. 

The present study provides insights to explain how DL classifies 
fibrillatory rhythms from intracardiac EGMs, compared to traditional 
expert rules. The DL approach may provide a platform to identify AF 
from intracardiac devices or wearable devices by examining ECG-based 
features using transfer learning or de novo models. 

An advantage of DL is that it does not rely upon linear dependencies 
between input features and the classification (AF or AT), unlike logistic 
regression analysis, which may be more appropriate for complex phys-
iological problems. Classic feature-based models, such as logistic 
regression, are limited to the linear dependence of the features onto the 
classification which may be insufficient for an accurate electrophysio-
logical description. 

4.4. Clinical implications 

An immediate implication of this work is to better identify AF from 
cardiac implanted electronic devices such as pacemakers and ICDs. This 
approach also could be applied to other EGM signals such as ambulatory 
ECGs from wearable devices [9,10]. Notably, our results summarized in 

Fig. 5. Classification of Reconstructed EGM based on Cycle Length. A. Reconstructed EGM signals generated with timing and shape consistency and varying their 
Cycle Length. Classification of reconstructed EGMs by CNNs (B) and SVM (C) based on Cycle Length. Red: classified as AF; Blue: classified as AT. 
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Figs. S3 and S5 show that extracting a small number of specific EGM 
features to train a simple classifier provides diagnostic performance 
similar to more complex DL models. Indeed, we have previously shown 
that quantitative variations in the ECG f-wave can separate AF from 
atypical and them from typical AT [13,18]. More broadly, DL-based 
EGM signatures could be potentially applied to CIEDs, modified for 
use to the ECG, or applied during catheter ablation. 

The proposed methodology can be used to identify features for DL 
analysis of intracardiac EGM analysis based on explainability analysis. 
Our study identified AF fingerprints such as EGM features of multiple 
deflections and complex morphology which may reflect underlying 
disease or substrate conditions (presence of fibrotic tissue or tissue 
anisotropy). These may also be rate-dependent. These novel findings 
broaden the application of DL for rhythm classification, and reveal 
specific EGM features consistent with conditions such as fibrosis. This 
approach could thus form the basis for future hypotheses testing such as 
separating patient subtypes based on structural or electrical remodeling 
[20]. 

4.5. Limitations 

We designed our study using basket catheter signals instead of using 
data from implantable devices, because this provided the opportunity to 
sample multiple regions of both atria simultaneously, enabling spatial 
comparisons and providing unequivocal diagnosis of AF or AT at inva-
sive EP study. These tools must be extended to ICD or pacemaker re-
cordings. The need for a large database may limit the application of DL 
to smaller datasets, and the use of transfer learning or other approaches 
could be used to apply the current analyses more broadly. We cannot 
exclude that these DL models are catheter specific, and future work 
should examine other catheters including higher-resolution smaller 
electrode designs. This work is ongoing in our laboratory. It is not clear 
whether AF signatures are region-specific, and future work could 
examine EGM near the pulmonary veins, left atrial appendage and other 
regions to further enhance patient classification. Finally, while patients 
were free of anti-arrhythmic medications at the time of their electro-
physiological study, it is not clear whether their specific co-morbidities 
or medications may contribute to these results. 

This manuscript focuses on the relative performance of different 
architectures to classify atrial EGMs, and how ‘explainability’ analysis of 

Fig. 6. Classification of AF based on specific EGM 
shape, independent of beat-to-beat variations in 
timing or shape. A. Reconstructed EGM signals with 
unique activation shapes. (B) Histogram of CNN and 
(C) RNN classification of these EGM shapes as AF or 
AT. Orange represents EGM shapes classified >80% 
as AF, blue indicates EGM shapes classified <80%, 
and red indicates EGM shapes coinciding in orange 
regions. D. EGM shapes classified >80% as AF inde-
pendently of their time, shape or CL irregularity by 
both CNN and RNN.   
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classifier decisions can guide interpretation. Our goal was to allow a 
foundation to construct future classification models for AF with deeper 
knowledge of architectures and how these reflect biological and clinical 
features. This manuscript was therefore focused on model comparison 
without exhaustive fine-tuning of each model, using a cross-validation 
scheme allowing comparison across patients. Ultimately, fully general-
izable models should be tested with several independent datasets for 
clinical practice. 

5. Conclusions 

Deep learning was developed to identify AF from AT, and revealed 
classification features including novel EGM shapes, >15% timing vari-
ation, <0.48 correlation between EGMs and CL < 190 ms. This inte-
grated computer modeling and machine learning approach could be 
applied to reveal sub-types of AF patients (‘computational signatures’) 
with differing underlying substrate, mechanisms or response to therapy. 
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