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b ITACA Institute, Universitat Politècnica de València, Valencia, Spain 
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A B S T R A C T   

Background and objective: The prevalence of atrial fibrillation (AF) has tripled in the last 50 years due to popu-
lation aging. High-frequency (DFdriver) activated atrial regions lead the activation of the rest of the atria, dis-
rupting the propagation wavefront. Fourier based spectral analysis of body surface potential maps have been 
proposed for DFdriver identification, although these approaches present serious drawbacks due to their limited 
spectral resolution for short AF epochs and the blurring effect of the volume conductor. Laplacian signals (BC- 
ECG) from bipolar concentric ring electrodes (CRE) have been shown to outperform the spatial resolution 
achieved with conventional unipolar recordings. Our aimed was to determine the best DFdriver estimator in 
endocardial electrograms and to assess the BC-ECG capacity of CRE to quantify AF activity non-invasively. 
Methods: 31 AF episodes were simulated using realistic tridimensional models of the atria electrical activity and 
torso. Periodogram and autoregressive (AR) spectral estimators were computed and the percentile (P90th, P95th 

and P98th) to impose on the dominant frequencies (DFs) across whole atria to define the best DFdriver estimator 
evaluated. The identification of DFdriver on DFs from BC-ECG and unipolar surface signals with conventional 
disc electrodes was compared. 
Results: The best DFdriver estimator was P95th and AR order 100. BC-ECG signals allowed better detection of AF 
activity than unipolar signals, with a significantly greater percentage of electrode locations in which DFdriver 
was identified (p-value 0.0095). 
Conclusions: The use of BC-ECG signals for body surface Laplacian potential mapping with CRE could be helpful 
for better AF diagnosis, prognosis and ablation procedures than those with conventional disk electrodes.   

1. Introduction 

Atrial fibrillation (AF) is the most common cardiac arrhythmia and is 
associated with increased morbidity and mortality and a large economic 
burden [1] estimated to account for up to 2% of the total healthcare 
expenditure in European countries [2] and affecting about 46.3 million 
people worlwide in 2016 [3]. An aging population is a risk factor for AF, 
which can be explained on the one hand by the fact that structural and 
electrical remodeling of the atrial myocardium occurs with age: struc-
turally aged atrial bundles increase the fibrous tissue spread between 
myocytes in is an age-dependent cardiomyocyte loss process [4]. On the 
other hand, age-related electrical changes due to ionic current 

alterations have been observed, including modifications in the cellular 
action potential shape and duration as well as a higher dispersion of 
cardiac repolarization [5,6]. Ederly people also present other comor-
bilities such as arterial stiffness, diastolic dysfunction, diabetes mellitus, 
coronary artery disease or valvular disease [7,8]. Moreover literature 
also stated that a progression of AF from paroxysmal to persistent is 
quicker in geriatric patients and those with underlying heart disease [9]. 
Therefore, an increase in the prevalence of this disease, which has 
already tripled in the last 50 years, can be expected [3]. 

The presence of high-frequency (6–12 Hz) regions driving the 
fibrillatory process in the rest of the atria has been observed in both 
animal models and human intracardiac recordings [10,11]. In these 
cases, rapidly activated atrial regions lead the activation of the rest of 
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the atria, activated at lower frequencies due to the disruption of the 
propagation wavefront. These high frequency sources can be located 
either in the pulmonary vein area or elsewhere and their isolation by 
catheter ablation can terminate the arrhythmia. Identification of these 
high frequency sources prior to the ablation procedure would help 
therapy planning by allowing the prediction of the region maintaning AF 
that needs to be ablated [12,13]. 

The identification of high frequency sources in endocardial electro-
grams (EGM) during invasive electrophysiological procedures has been 
accomplished by applying Fourier Transform-based approaches [12,13]. 
However, Fourier based spectral analysis has the disadvanteg of poor 
resolution for time varying spectra computed in short analysis windows 
[14]. In some works autoregressive spectral analyses were used as an 
alternative to Fourier Transform with good spectral resolution in short 
electrograms segments [15] but so far no available method can identify 
unambigously the dominant frequency of the AF driver (DFdriver). 

Non-invasive electrocardiogram (ECG) recording systems with high 
spatial resolution would be helpful in non-invasive AF diagnosis. To this 
end, body surface potential maps (BSPM) have been proposed in the 
literature; these consists of placing ECG signals from disc electrodes in 
tens or even a hundred positions on the torso. BSPM offer additional 
diagnostic information to that in 12-lead standard systems [16–18]. 
Nevertheless, the smearing effect caused by the torso volume conductor 
still limits the spatial resolution obtained by simply increasing the 
number of recording electrodes on the torso [19]. 

Atrial electrical activity is projected onto the torso surface and thus 
noticeable on the ECG, although generally masked by the ventricular 
content, which appears with a larger amplitude [20]. Atrial sources can 
thus be better observed on the ECG after cancellation of the QRST 
complex or when the ventricular activity is interrupted by administra-
tion of drugs, such as adenosine. In this context, we have previously 
shown that high frequency sources appear localized on the most prox-
imal torso regions [21]. However, even in surface signals selected on the 
torso close to these sources, such activity can be masked by the activity 
of more distant but larger atrial regions due to poor spatial resolution in 
cardiac signal sensing [22,23]. 

In this regard, surface Laplacian, as the second spatial derivative of 
the surface potentials [24], could enhance the high spatial frequency 
components improving the spatial resolution in locating high rate 
sources. Laplacian electrodes can be interpreted as a filter that allocates 
more weight to the bioelectrical dipoles adjacent to the recording points 
and provide more detail in differentiating multiple concurrent dipole 

sources [25]. Initially, Hjorth proposed a five-point method numerical 
approximation technique to analyze and apply the surface Laplacian in 
electroencephalographic (EEG) studies, after which He and Cohen [26] 
developed a bipolar concentric ring electrode (CRE) to directly obtain an 
approximation to the body surface cardiac Laplacian potential. A CRE 
consists of an inner disk and at least one outer ring recording pole [27] 
and has the advantage over conventional unipolar electrodes that it can 
diminish far-field activity [28] and therefore the contribution of distant 
atrial sources, thus enhancing local electrical components. This reduc-
tion of the volume conductor effect may ultimately better localize the 
atrial electrical components reaching the torso surface and identify these 
high frequency components for better plannning of ablation therapies. 
In fact, studies in the literature have shown that CREs are able to discern 
between the P1 and P2 waves associated with each atrium, which usu-
ally manifest together in a single P wave in the precordial recordings 
[29]. 

The present work aims to overcome the limitations of the afore-
mentioned previous studies: A) to determine the best spectral estimator 
of the DFdriver in endocardial electrograms. Our intention was to 
compare non parametric (periodogram, PD) and parametric (autore-
gressive, AR) spectral estimation techniques and identify the percentiles 
(90th, 95th or 98th) to be imposed on the DFs estimated across whole 
atria to define the highest dominant frequency, quantifying the esti-
mation errors with respect to annotations made by experts; B) To assess 
the capcity of BC-ECG signals from CRE to improve the spatial resolution 
associated with the use of unipolar recordings by disc electrodes, 
enhancing the ability to non-invasively characterize atrial fibrillation 
activity. In this regard, we used realistic tridimensional electrophysio-
logical models of the atria to compute electrical potentials on the torso, 
on which unipolar and CREs were placed during different simulated AF 
episodes. 

2. Materials and methods 

2.1. Modeling 

2.1.1. Epicardial activation models 
Previously validated and published 3D realistic models of the atrial 

anatomy composed of 284,578 nodes (673 ± 130 μm inter-node) and 
1353.783 tetrahedra were used to simulate atrial electrical activity 
during AF episodes [24–26]. Each node was simulated as a single atrial 
cell using the cellular model described by Koivumaki et al. [30]. Het-
erogeneity in the electrophysiological properties of the atrial myocar-
dium was introduced in the form of changes in ion currents (up to 
+110% IK1, -59% ICaL, +100% INa) and distribution of fibrosis (0–60% 
of disconnected nodes) to generate AF episodes maintained by reentrant 
activity with non-uniform propagation patterns and different shapes and 
extents of the dominant region [31]. 31 different models of AF episodes 
of 10 s-lengths driven by a single and spatially-stable reentrant driver in 
different locations were used in this work. The last 4 s of each episode 
was studied when AF simulation was stabilised. For each simulation, a 
uniform mesh of 2048 nodes (5.3 ± 3.2 mm inter-node) of unipolar 
electrograms (EGM) was calculated at 1 mm from the surface of the 
epicardium under the assumption of a homogeneous, unlimited and 
quasi-static conductive medium adding all effective dipole contributions 
over the entire model. The computed electrograms were stored for 
processing at a sampling frequency of 500 Hz [31] to identity AF driver 
sources, thus reducing the computational cost associated with higher 
sampling rates (above 1 kHz), used in epicardial ECG recordings or 
simulations and being especially advisable when analysing abnormal 
ventricular electrical conduction. 

2.1.2. Torso modeling and surface electrocardiograms 
To simulate the surface electrocardiographic activity of an AF patient 

we used a realistic 3D torso model on which we projected atrial activity. 
Our torso model was a non-homogeneous mesh to account for the higher 

Glossary 

AF Atrial fibrillation 
BC-ECG Bipolar signals from concentric ring electrodes 
CRE Concentric ring electrodes 
AR Autoregressive spectral estimators 
PD Periodogram 
DF Dominant frequency 
FEM Finite element method 
BEM Boundary element method 
EGC Electrical activity recording of the cardiac cells 

recorded on the chest and the electrograms 
EGM Electrical activity on the heart surface 
DFdriver Dominant frequency of the atrial fibrillation driver 
BSPM Body surface potential maps 
HDF High dominant frequency associated to atrial 

fibrillation 
MSE Mean squared error 
LA Left atrium 
RA Right atrium  
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spatial resolution in the position of the unipolar (disc) and concentric 
ring electrodes (16412 nodes). The distance between vertices was 
0.3421 ± 0.1283 cm (mean ± deviation) in the refined region (where 
surface electrodes were simulated) and 2.5857 ± 0.3522 cm elsewhere. 
In Fig. 1 it can be seen how denser meshing was used in the different 
regions where the electrodes were simulated. Fig. 1 also shows the 
placement of the atria in the refined torso model. The ECG potentials on 
the torso surface were calculated by solving the Boundary Elements 
Method (BEM) in the proposed torso mesh [32,33]. 

27 electrodes were simulated to be placed on the front, back and 
sides of the torso, similar to previous works with conventional disk 
electrodes [34], see Fig. 2. 

Two types of electrode, disc and concentric, were simulated. To that 
commercial bipolar concentric (BC) electrodes with an outer and inner 
ring diameter of 42 mm and 28 mm, and a central disk diameter of 16 
mm (CODE501526, Spes Medica, Italy) were considered. Simulated disc 
electrodes coincide with the inner pole of BC electrodes. Disc and ring 
BC electrodes were represented on the mesh determined by the number 
of nodes that belonged to each pole (see Fig. 2). 

Firstly, the averaged potential of the nodes on the torso surface 
covered by the conductive area of each pole (disk or ring) of the elec-
trode was determined to obtain the ECG in each electrode. To do this, 
nodes belonging to the different electrodes were identified from a file 
that contained their central location in the mesh and considering the 
electrode area and configuration. 

Secondly, the ‘conventional’ ECG recordings from the disc electrodes 
were referenced to the Wilson Central Terminal (from now on referred to 
as ‘unipolar recordings’), which was also simulated as the average of the 
potentials of the nodes in disc recordings at the right shoulder, left 
shoulder and the farthest point in the torso on the left side (S1, S2 and 
S5). The recordings with concentric electrodes were bipolar, obtaining 
the bipolar concentric ECG signals (BC-ECG) as the difference between 
the potential captured by the peripheral ring and the central disc. 

2.2. Signal processing 

2.2.1. Preprocessing 
The pre-processing of the epicardial EGMs for the identification of 

the atrial depolarization rate consisted of the standard approach with a 
bandpass filtering between 40 Hz and 250 Hz (zero-phase, Butterworth 
order 8), a signal rectification and then a low-pass filtering with a cut-off 
frequency of 20 Hz (zero-phase, Butterworth order 8) [35]. These pre-
processing steps enhance the fundamental frequency of the signal while 
diminishing the power of its harmonics. 

Since the bandwidth requirement for dominant frequency identifi-
cation in human atrial fibrillation is in the range from 3 to 13 Hz [21, 
36], our preprocessing of simulated surface ECG signals consisted of 

subtracting their mean value and subsequent 5-order high pass zero 
phase Butterworth filter, with a cut-off frequency of 1 Hz and 5-order 
low pass zero phase Butterworth filter with a cut-off frequency of 15 
Hz. These cutoff frequencies were chosen considering the physiological 
range of the atrial activation [21]. It must be taken into account that 
simulated signals only contain information of atrial activity but no 
ventricular information (without QRS and T waves). Despite the fact 
that surface ECG distributes its energy between 0.05 and 150 Hz, we 
would like to emphasise that we did not attempt to preserve the signal 
morphology of the physiological P wave. Previous studies that attemp-
ted to determine the DFdriver from real-world ECG data usually set a 
high-pass filter with a cut-off frequency at 3 Hz, which is more restric-
tive than the one used in the present study. 

2.2.2. Identification of atrial fibrillation driver frequency 
In order to obtain a gold standard for the dominant frequency of the 

AF driver (DFdriver), firstly the transmembrane potential signal from 
the raw simulation was manually checked on the position of the reen-
trant driver for every AF model, defined by the S1–S2 pacing pattern. 
The number of action potentials were measured as the number of acti-
vations per second. This value was used as DFdriver to compare with 
that extracted from the EGMs and ECGs. To further characterize each AF 
model, the percentage of atrial nodes at that frequency, DFdriver ±0.25 
Hz, were computed to estimate the size of the DFdriver region [31]. 

The performance of non-parametric (periodogram, Hamming win-
dow) and parametric (autoregressive AR model, covariance) spectral 
estimation methods for the identification of the driver activation fre-
quency of the atrial activity on 4s of EGM were analysed. Parametric AR 
models with order N consist of predicting the actual sample by taking 
into account the last N samples. Too high AR orders will produce 
spurious peaks in the power spectral density. In general, it is strongly 
recommended to have one signal cycle to realiably capture its frequency. 
Since DFdriver usually presents a dominant frequency around 5–8 Hz, 
we tested AR parametric models with orders of 60, 80, 100 and 120 
(equivalent to 120 ms, 160 ms, 200 ms and 240 ms with a sampling rate 
of 500 Hz). 

Dominant frequency (DF) was obtained by considering the frequency 
of the maximum peak of the spectral power and possible significant 
peaks with power >35% of maximum peak on the AF physiological band 
(1–15 Hz). Subsequently it was checked whether this maximum peak 
corresponds to a harmonic of a lower fundamental frequency; it was 
considered a harmonic if it was between 1.9 and 2.1 times the frequency 
of a lower frequency significant peak. 

The dominant frequency obtained from EGM at the 2048 atrial nodes 
reflects the activation frequency at different atrial sites and will include 
high and low frequency activities over the atria. The next step was to 
estimate the DFdriver from these measurements. For this, we defined 
(and computed) the high dominant frequency (HDF) as the frequency 
associated with the 90th, 95th and 98th percentiles of the DFs (P90th, 
P95th and P98th) in all atria nodes from periodogram and AR estima-
tions. These percentiles may allow us to determine a robust estimator of 
the HDF against outliers that can be associated with the maximum value 
of the dominant frequency. Then Bland-Altman plots and mean squared 
errors were obtained to select the best estimator of the DFdriver out of 
the nine versions of HDF (HDF90_PD, HDF90_AR100, HDF90_AR120, 
HDF95_PD, …, HDF98_AR120) as well as statistical differences analysed by 
the Wilcoxon signed rank (paired) test. 

Dominant frequencies from parametric (AR model, covariance) and 
nonparametric (periodogram) spectral estimation methods for surface 
ECG signals were calculated in the same way as for EGMs. The per-
centage of unipolar and BC electrodes at DFdriver ±0.25Hz [31] were 
computed for both PD and AR spectral estimators. Subsequently a Wil-
coxon signed rank (paired) test was worked out to determine whether 
the percentage corresponding to BC surface records was significantly 
higher than in simultaneous unipolar records. 

Finally, it was determined whether the location of the rotor in the left 
Fig. 1. Model representation of the refined torso (right) and model of the 
atrium (left). 
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(LA) or right (RA) atrium affected its identification for both unipolar and 
concentric bipolar surface recordings. To do so, the number of models in 
which at least one electrode captured the rotor frequency in the RA and 
LA was determined, as well as the average percentage of electrodes at 
the rotor frequency for both unipolar and BC-ECG signals. 

3. Results 

3.1. Intracardiac DFdriver estimation 

Fig. 3 shows an example of the distribution of the DFs in the atrial 
nodes when computed with the PD and AR100 together with the 
DFdriver for AF model 30. It can be seen that the distribution of DF 
values estimated by both non-parametric and parametric methods were 
very similar. When we also computed DF and HDF with AR orders 60, 80 
and 120 the Results were very similar but little worse than AR 100 and 
therefore are not reported here and there was practically no difference 
between dominant frequencies at the P95th and P98th percentiles. In the 
90th percentile, although in most cases similar values were obtained as 
for the 95th and 98th percentiles, in certain models such as 15, 28, 29 
and 30 (this last shown in Fig. 3), the 90th percentile of DF was not 
clearly related to the driver activation frequency. 

To assess the best DFdriver estimation for internal EGMs between 
those worked out, Bland-Altman plots and the mean squared errors 
between DFdriver and the HDFs for each model and spectral estimator 
were computed (see Fig. 4). It can be seen that the frequency differences 

between the HDFs and the DFdrivers are greater for P98th than for P95th 

for both AR and PD estimations. The best results were from the P95th and 
parametric AR100 estimator, (MSE of 0.005 Hz) followed by the P95th 

from PD (MSE of 0.010 Hz), with no significant differences between 
them (p < 0.001, Wilcoxon signed test), but with significantly different 
results from the P98th. 

3.2. Surface DFdriver estimation 

Parametric (AR 100 and 120) and non-parametric (periodogram, PD) 
methods were used to obtain the DF in the surface signals, as in EGMs. 
The results were very similar for PD and AR100 and slightly worse for 
AR120. In fact, using either PD or AR100 does not affect the number of 
models in which the DFdriver was detected in at least one electrode site. 
As there are no statistically significant differences (Wilcoxon Signed 
Rank) between the number of electrodes that capture DFdriver with 
both spectral estimators, either for BC-ECG or for unipolar recordings, 
the AR100 spectral estimator was used for surface signals as well as for 
the EGMs. 

Fig. 5 and Fig. 6 show detailed examples of the DF distributions in the 
epicardium and those from the abdominal surface. Specifically, Fig. 5 
depicts an example of an AF model (model 11) in which the activity of 
the atrial rotor is clearly picked up in several electrode positions on the 
surface in both BC and unipolar recordings. In this model the amount of 
atrial tissue with DF inside DFdriver range is quite extensive (about 
>28%). By contrast, Fig. 6 shows a model (model 5) in which the 
anomalous atrial electrical activity is quite localised (about 10% of in-
ternal nodes at DFdriver), this activity not being identified in the uni-
polar recordings but was identified in 15% of the BC-ECG signals. As can 
be seen in the right hand panels of this figure, in the unipolar recording 
the peak of highest frequency activity is masked by that at lower fre-
quencies from a greater atrial area. 

Fig. 7 summarizes the percentage of epicardial nodes and those of the 
surface unipolar and BC recording sites in which a DF, computed with 
AR100, was in the range of the DFdriver ± 0.25 Hz (DFdriver-range) for 
each of the 31 models. This figure has been arranged according to the 
possibility to identify DFdriver on body surface by means of BC and 
unipolar ECGs. In 18 out of the 31 models DFdriver could be identified 
(DF inside DFdriver range) from both ECG electrode configuration in at 
least one recording site. The percentage of sites where DFdriver was 
more frequently identified in BC or unipolar electrodes greatly varies for 
different models of this ‘category’. In 7 models the DFdriver could only 
be identified by means of BC electrodes, while detecting DFdriver by 
unipolar ECG only and not by BC was found in only 1 case (model 28). 
Failure to identify DFdriver by both unipolar and BC ECGs occurred in 5 
models. There was no apparent relationship between the size of the 
atrial region at DFdriver and its detectability on the body surface with 
the two different electrode configurations. While it was true that in all 

Fig. 2. Location and identification of the electrodes in the simulated torso.  

Fig. 3. Example (Model 30) of distribution of atrial nodes’ dominant fre-
quencies using periodogram (PD), and parametric AR estimation order 100 
(AR100). Green stars show the 90th percentile of the internal node frequency, 
blue diamonds show the 95th percentile and the red cross the 98th percentile. 
Horizontal dashed line is the driver dominant frequency (DFdriver). 

G. Prats-Boluda et al.                                                                                                                                                                                                                          



Computers in Biology and Medicine 148 (2022) 105957

5

models with more than 30% of atrial nodes in DFdriver range, the fre-
quency of the driver was detected by both configurations, in models with 
<30% of nodes it could be detected by both, only by BC or by none of the 
electrode configurations. For models with abnormally small atrial re-
gions (5–10%), activity at DFdriver was detected on the body surface by 
both, only one or no electrode configuration, which indicates the 
important role of the position of the driving region. However, it should 
be highlighted that the BC configuration succeeded in identifying 
DFdriver in 25 of the 31 models (80%), while unipolar only did so in 19 
(61%). Indeed, the Wilcoxon signed rank (paired) test indicated that the 
percentage of electrodes in which the DFdriver was identified in BC 
surface records was significantly higher than in simultaneous unipolar 
records (p-value 0.0095). 

We further investigated the influence of the location of the AF driver 
in the left (14 models, LA) or right atrium (17 models, RA) in identifying 
its frequency in unipolar and BC-ECG recordings. The results are sum-
marised in Table 1. When rotor activity was in the LA, surface rotor 
activity (DF at DFdriver ± 0.25 Hz) was identified in at least one torso 
position in 57% of the cases for unipolar electrodes and in 71% of those 
for BC electrodes, the average percentage of electrodes at the DFdriver 
being ± 0.25 Hz of 6.7% and 11.0% for unipolar and BC electrodes, 
respectively. For models with rotor activity in the right atrium (RA), 
surface rotor activity was identified in at least one torso position in 65% 
of the cases for unipolar electrodes and in 88% for BC, with an average 
percentage of electrodes at DFdriver of ±0.25 Hz of 17.9% and 25.6% 
for unipolar and BC electrodes. As expected therefore, BC electrodes 

Fig. 4. Bland-Altman plots corresponding to the HDF, estimated with the 95th and 98th percentiles of the periodogram (PD) and parametric (AR 100) estimators, 
when compared to DFdriver, and table with HDFs root mean squared errors (MSE) with respect to DFdriver. 

Fig. 5. Lower panels: colour maps of DF (AR100) on the torso (BC-ECG signals) and on the atrium for Model 11. Right panels: power spectrum of signals at: one atrial 
(internal) node with DF inside DFdriver range, electrode location A3 (unipolar and BC-ECG). Top central panel: DF values of unipolar (crosses) and BC (diamonds) 
surface signals from electrode locations. Orange line shows the frequency of the DFdriver and the broken lines the margins of DFdriver-range (DFdriver ± 0.25 Hz). 
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presented significantly higher detectability of surface rotor activity than 
unipolar electrodes, regardless of whether the rotor was in LA or RA. The 
detectable percentage of atrial high-frequency activity is lower in those 
with the rotor in LA than those in RA, both for unipolar and BC 
recordings. 

4. Discussion 

The important features of AF drivers present on surface electrical 
recordings can be used to stratify and guide ablation procedures [32]. 
Spectral analysis provides information on the activation rate of the atria; 
areas with high frequency are suspected of driving the cardiac rhythm in 
patients with AF and these therefore are targets for catheter ablation 
[15]. This manuscript compares different estimators to identify these 
high frequency regions in the atria from EGM recordings. It also presents 
a new BSPM system using concentric ring electrodes, which enhanced 
the accuracy of DFdriver identification on the torso signals. 

4.1. DFdriver identification in EGM 

Fourier Transform-based estimations have been used to identify 
DFdriver in endocardial electrograms during invasive electrophysio-
logical procedures [37]. To avoid the poor resolution of time varying 
spectra computed in short analysis windows, autoregressive spectral 
analysis was proposed to estimate DF in short EGM segments [14,15]. In 
Salinet et al., AR and PD techniques were applied to EGM segments 
about 7s long, obtaining similar results for both techniques in DFdriver 
identification [15], which agrees with the present results [15]. How-
ever, although several techniques have been proposed for AF source 
identification as the highest dominant frequency, organisation and 
regularization indexes, phase singularities or fractionated atrial elec-
trograms, none of these has become a gold standard, resulting in 
controversial results across different clinical studies [38,39]. In the 
present work, we analysed not only the effect of the spectral estimator, 
but also the performance of harmonics removal and the use of the P90th, 
P95th and P98th percentiles of the DF distribution in the atrium to obtain 
a more robust spectral estimator of the high frequency atria activity, 
DFdriver (HDF), against possible outliers associated with the maximum 
dominant frequency. This approach is novel in the literature and the 
results indicate that the best DFdriver estimation was obtained with the 
AR method and the 95th percentile, HDF95_AR100, with no significant 
differences with HDF95_PD. (p < 0.001, Wilcoxon signed test), but with 
considerable differences regarding the use of the P90th and P98th 

Fig. 6. Lower panels: color maps of DF (AR100) on the torso (BC signals) and on the atrium for Model 5. Right panels: power spectrum of signals at: one atrial node 
(internal) with DF inside DFdriver range, electrode location D5 (unipolar and BC). Top central panel: DF values of unipolar (crosses) and BC (diamonds) surface 
signals from electrode locations. Orange line corresponds to the frequency of the DFdriver and the dashed lines the margins of DFdriver-range (DFdriver ± 0.25 Hz). 

Fig. 7. of epicardial nodes and surface ECG recording sites (BC: bipolar 
concentric, Unipolar: disc) at atrial fibrillation driver frequency per model. 

Table 1 
DFdriver identification according to the atrial side. LA: left atrium; RA: right 
atrium.   

% of Models % of Electrodes (mean) 

LA RA LA RA 

Unipolar 57% 65% 6.7% 17.9% 
BC 71% 88% 11.0% 25.6%  
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percentiles. 

4.2. AF surface mapping 

As for surface ECG recordings, in the arrhythmologic field body 
surface potential mapping (BSPM) has been devoted to detecting signs of 
susceptibility to arrhythmias and identifying their sites of origin [40], 
for which activation maps identifying fiducial ECG points from BSPM 
recordings from unipolar electrodes were traditionally obtained [41]. 
However, several studies have shown that in the case of AF, dominant 
frequency analysis is more stable than activation times in describing the 
AF electrical activity [31]. Moreover, DF maps obtained by FFT from the 
BSPM of unipolar electrodes identified the atrium harbouring the 
DFdriver site and the presence of a gradient in activation frequencies 
across the atria, not only the global activation rate of the whole atrial 
tissue [21]. They can also assess the effectiveness of ablation therapy in 
restoring sinus rhythm [21,42]. 

Detecting the site(s) driving AF by BSPM could result in a rapid, 
noninvasive and personalized diagnosis and treatment of AF patients. 
However, surface frequency maps only provide an overall estimation of 
the location of the highest atrial DF site, but not those at the specific 
DFdriver location [21]. As previously mentioned, increasing spatial 
resolution to enhance detection of the arrhythmia origin not only de-
pends on increasing the number of electrodes on the torso surface, as 
unipolar ECG recordings are highly affected by the blurring effect of the 
torso volume conductor [29,43]. Electrocardiographic Imaging (ECGI) 
for mathematically reconstructing epicardial activity has been shown to 
be an effective tool for mapping DF during AF and has been validated 
against intracardiac panoramic electrograms [36]. Although this tech-
nique can increase DF mapping resolution at the expense of introducing 
a patient-specific anatomy, robust spectral and DF estimation methods 
are also required for the ECGI pipeline and further research should be 
conducted to study whether CREs can also help in ECGI solutions and the 
best spectral estimators for this non-invasive technique. 

4.3. Laplacian ECG recordings 

Surface Laplacian ECG recordings have emerged as an alternative 
that can overcome the limitations of BSPM spatial resolution [44]. Body 
surface Laplacian mapping estimated by the spline technique reveals 
high-resolution surface mapping of normal atrial depolarization 
compared to the smooth patterns of the BSPMs, which may possibly be 
associated with atrial activation wavefronts [19]. Instead of using dis-
cretization techniques and monopolar electrodes, surface Laplacian can 
be directly estimated by concentric ring electrodes [45,46]. This type of 
electrode has been used to estimate the Laplacian of the surface 
bioelectric potential in many applications such as electroencephalog-
raphy [47,48], skeletal electromyography [49] and gastroenterology 
[50,51].Several studies have assessed the capability of CRE electrodes to 
pick up high-local resolution ECG signals for electrocardiography. In this 
regard, local cardiac activity, as in the case of the P1 and P2 atrial waves, 
was identified in BC-ECG surface records, while they were difficult to 
distinguish in precordial leads, commonly used in out-patient clinics, 
since disc electrode recordings are more affected by the volume 
conductor effect, as previously mentioned [29,43]. In addition, BC-ECG 
signals recorded in a position comparable to the V1 precordial lead 
proved to be better at picking up atrial activity than standard 12-Lead 
ECG, providing the best combination of detectability and normalized 
amplitude of the P wave [27]. 

Considering the enhanced spatial sensitivity of CRE, body surface 
Laplacian potential maps have been used to obtain moment of activation 
(MOA) isochronal maps in healthy subjects, suggesting their potential 
use by clinicians in diagnosing arrhythmias and assessing the efficacy of 
therapies [52]. However, as far as we are concerned, this is the first 
study to assess the capacity of BC-ECG signals to identify the DFdriver in 
AF. In this regard, in the present work we found that in general the 

higher the percentage of internal nodes at the DFdriver, the higher the 
number of surface recordings in which DF in the DFdriver range were 
identified, but not always. The study of the atrial zones in the DFdriver 
for the 31 models analysed revealed that the capacity to identify these 
drivers depends on the proximity of the affected atrial area to the chest 
surface. For instance, in model 3 the percentage of internal electrodes at 
DFdriver is quite high (about 13%) but no surface electrode was able to 
detect this activity, which involves a deep atrial area facing into the 
chest cavity. Something similar occurs in models 21 and 22, which 
highlight that both proximity to the body surface and the orientation of 
the atrial tissue may influence the detection of AF foci. However, the 
results showed that BC-ECG recordings were better than unipolar re-
cordings in identifying the DFdriver in AF situations (80% of the cases 
vs. 61%, respectively). This is probably due to enhanced spatial reso-
lution and greater attenuation of far field CRE components, in com-
parison to disc electrodes. In this latter, the activity of the atrial region 
harbouring a DFdriver can be more easily masked by other more distant 
but larger atrial regions. This result agrees with theoretical studies of the 
two-dimensional spatial transfer function and supports CREs being more 
sensitive to vertical dipole sources closer to the electrode and less to 
distant dipoles than recordings with disk electrodes [53]. In the present 
work we also found that surface uptake of DFdriver-associated activities 
easier for the models in which the rotor is in the right atrium than those 
in which it is in the left. This could be attributed to the better reflection 
of right atrial activity on the torso, since the right atrium is closer to the 
anterior torso than the left atrium to the posterior torso. 

4.4. Limitations and future studies 

Dynamic torso models can simulate breathing in aspects such as (1) 
conduction conditions and (2) geometrical distances of the moving heart 
and moving torso surface. In this study we used a static torso model in 
which the effect of respiration and the variation in distance between 
heart and recording electrodes was not taken into account. Even though 
it would be advisable to consider these effects in future work, we did not 
think it necessary for the objectives of the present study, since it would 
not have had a great effect on the comparison between the different HDF 
estimation methods assessed, or the comparison of the capacity of uni-
polar and BC-ECG recordings to non-invasively pick up HDF activity. In 
the specific case of breathing, as its frequency is below 0.3 Hz, it does not 
significantly affect the proposed analysis. 

BC-ECG captures the bioelectric activity focused on the central 
recording point of the CRE and reduces the volume conductor effect 
more than conventional unipolar electrodes and seems to precisely 
locate the sources attributable to the DFdriver of atrial fibrillation and 
thus the ablation target area by non-invasive recording (inverse prob-
lem). Even using realistic multi-layer BEM models or FEM models that 
consider the individualized anatomy of the patient’s torso obtained from 
images, differences in terms of the arrangement and features of the 
different layers of tissue now provide different volume conductor effects 
[23,54] and solving the inverse problem from conventional ECG re-
cordings remains a challenge for the scientific-technical community, so 
that invasive methods are still necessary to determine the injured area 
origin of the DFdriver of atrial fibrillation. Experimental recordings will 
confirm the present results by simulations, analysing their robustness to 
factors such as the blurring effect of the volume conductor or the 
signal-to-noise ratio of the recordings. However, there is still further to 
go before we can determine whether the combination of body surface 
Laplacian ECG mapping with CRE and cardiac images will provide a 
non-invasive tool for diagnosis, prognosis and ablation targeting of 
cardiac arrhythmias [55]. 

5. Conclusions 

Parametric and non-parametric techniques were assessed for 
epicardial DFdriver identification, obtaining very similar results when 
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using the P95 of the DFs worked out using a periodogram and an order 
100 autoregressive parametric model (AR100), this last being the one 
with the best coincidence with the DFdriver (MSE 0.005Hz) but without 
a significant difference. We assessed the capacity to identify the 
DFdriver non-invasively by means of BSPM with unipolar and CREs. In 
general, the higher the epicardial nodes at the DFdriver, the higher the 
number of surface recordings in which the DFdriver is detected. How-
ever, the orientation of the atrial region in which the DFdriver is located 
seems to be another important factor that influences the identification of 
this activity on surface recordings, especially when the affected atrial 
area is small. In any case, the results revealed that BC-ECG signals from 
CRE can detect atrial fibrillation activity on the surface better than 
unipolar signals from disc electrodes in the same positions: the BC 
configuration succeeded in identifying the DFdriver in 25 out of the 31 
models (80%), while unipolar only did so in 19 (61%). BC-ECG signals 
from BSPM with CRE could therefore be helpful for better AF diagnosis, 
prognosis and in planning ablation procedures. 

Summary 

The prevalence of atrial fibrillation (AF) has tripled in the last 50 
years due to population aging and survival with chronic diseases turning 
into an epidemic. High-frequency activated atrial regions (DFdriver) 
lead the activation of the rest of the atria, disrupting of the propagation 
wavefront. The identification of DFdriver sources would help diagnose 
AF and plan ablation procedures. Fourier based spectral analysis of body 
surface potential maps (BSPM) has been proposed for non-invasively 
dealing with DFdriver identification. However, these approaches pre-
sent serious drawbacks due to the limited temporal resolution of the 
Fourier Transform for short AF epochs and the blurring effect of the 
volume conductor associated with unipolar ECG recordings in BSPM. In 
this work we aimed: to determine the best estimator of the DFdriver 
frequency in endocardial electrograms by the non-parametric (perio-
dogram, PD) and parametric (autoregressive, AR) spectral estimators to 
determine the percentiles (P90th, P95th or P98th) to be imposed on the 
DFs estimated across the whole atria to define the highest dominant 
frequency (HDF); and -to assess the capability of surface unipolar and 
bipolar concentric ECG signals (BC-ECG) from concentric ring electrodes 
(CRE) to identify atrial fibrillation activity. Realistic tridimensional 
models of the atria electrical activity and the torso, on which unipolar 
and CRE were placed, were simulated during different AF episodes. The 
results revealed that the best DFdriver estimator (HDF) was better rep-
resented by P95th and parametric AR order 100 estimator, (HDF95_AR100, 
MSE 0.005 Hz), followed by percentile P95th from PD (HDF95_PD, MSE 
0.010 Hz). The greater the epicardial area at DFdriver, the higher the 
number of surface recordings in which the DFdriver is detected. How-
ever, the location and orientation of the atrial fibrillation region influ-
ence its identification on the torso surface. Nevertheless, BC-ECG signals 
allowed better detection than unipolar signals, and the percentage of 
electrode locations for BC-ECG records in which DFdriver was identified 
was significantly higher than in simultaneous unipolar records (p-value 
0.0095, Wilcoxon paired test). The use of BC-ECG signals for body sur-
face Laplacian potential mapping with CRE could thus be helpful for 
better AF diagnosis, prognosis and in ablation procedures than those 
with conventional disc electrodes. 
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