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ORIGINAL ARTICLE

Machine Learning–Enabled Multimodal Fusion 
of Intra-Atrial and Body Surface Signals in 
Prediction of Atrial Fibrillation Ablation Outcomes
Siyi Tang , MS; Orod Razeghi , PhD; Ridhima Kapoor , MD; Mahmood I. Alhusseini, MS; Muhammad Fazal, MD;  
Albert J. Rogers , MD, MBA; Miguel Rodrigo Bort, PhD; Paul Clopton , MS; Paul J. Wang , MD; Daniel L. Rubin , MD;  
Sanjiv M. Narayan , MD, PhD; Tina Baykaner , MD, MPH

BACKGROUND: Machine learning is a promising approach to personalize atrial fibrillation management strategies for 
patients after catheter ablation. Prior atrial fibrillation ablation outcome prediction studies applied classical machine 
learning methods to hand-crafted clinical scores, and none have leveraged intracardiac electrograms or 12-lead surface 
electrocardiograms for outcome prediction. We hypothesized that (1) machine learning models trained on electrograms 
or electrocardiogram (ECG) signals can perform better at predicting patient outcomes after atrial fibrillation ablation 
than existing clinical scores and (2) multimodal fusion of electrogram, ECG, and clinical features can further improve the 
prediction of patient outcomes.

METHODS: Consecutive patients who underwent catheter ablation between 2015 and 2017 with panoramic left atrial 
electrogram before ablation and clinical follow-up for at least 1 year following ablation were included. Convolutional neural 
network and a novel multimodal fusion framework were developed for predicting 1-year atrial fibrillation recurrence after 
catheter ablation from electrogram, ECG signals, and clinical features. The models were trained and validated using 10-fold 
cross-validation on patient-level splits.

RESULTS: One hundred fifty-six patients (64.5±10.5 years, 74% male, 42% paroxysmal) were analyzed. Using electrogram 
signals alone, the convolutional neural network achieved an area under the receiver operating characteristics curve (AUROC) 
of 0.731, outperforming the existing APPLE scores (AUROC=0.644) and CHA2DS2-VASc scores (AUROC=0.650). 
Similarly using 12-lead ECG alone, the convolutional neural network achieved an AUROC of 0.767. Combining electrogram, 
ECG, and clinical features, the fusion model achieved an AUROC of 0.859, outperforming single and dual modality models.

CONCLUSIONS: Deep neural networks trained on electrogram or ECG signals improved the prediction of catheter ablation outcome 
compared with existing clinical scores, and fusion of electrogram, ECG, and clinical features further improved the prediction. This 
suggests the promise of using machine learning to help treatment planning for patients after catheter ablation.

GRAPHIC ABSTRACT: A graphic abstract is available for this article.
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Atrial fibrillation (AF) ablation is the cornerstone of 
therapy for symptomatic AF, and it helps improve 
quality of life and prolongs survival in several pop-

ulations.1,2 Improved tools for predicting the success 

of AF catheter ablation are needed to guide clinicians 
in better patient selection for this procedure, as well 
as setting realistic patient expectations following the 
procedure.
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Clinical scores have been developed to predict suc-
cess after catheter ablation of AF with area under 
the receiver operating characteristics curve (AUROC) 
of 0.55 to 0.65 for majority of the models, with rare 
models reaching an AUROC of 0.75.3–5 However, none 
of these previous predictive scores have incorporated 
electrophysiological data, which may place specific AF 
mechanisms within the clinical context to improve pre-
dictive accuracy.

We hypothesized that (1) machine learning (ML) 
models trained on intracardiac electrograms or surface 
electrocardiograms (ECG) signals can perform better 
at predicting patient outcomes after AF ablation (ie, 
1-year AF recurrence) compared with existing clinical 
scores and (2) multimodal fusion of electrogram, ECG, 
and clinical features can further improve the prediction 
of patient outcomes.

Although there are no prior ML-based studies that 
directly take signals as inputs to predict AF ablation out-
comes, recent advances in the use of ML in signal analysis 
of human rhythm disorders have led to promising prelimi-
nary results. For example, ML models were able to pre-
dict future ventricular arrhythmia from ventricular signals.6 
Prior works using ML to predict success of AF ablation 
includes estimation of recurrence by predicting shape 
descriptors directly from magnetic resonance imaging7 
and combining imaging and clinical biomarkers to predict 
cryoballoon pulmonary vein isolation (PVI) outcomes.8 ML 
methods and personalized computational modeling have 
also been used together to predict recurrence following 
PVI.9 In addition, handcrafted features derived from com-
puterized tomography (CT) scans have been shown to be 
associated with likelihood of postablation AF recurrence.10

Deep neural networks are the state-of-the-art ML 
models that are able to learn complex features directly 
from large amounts of data without the need of feature 
engineering.11 Deep neural networks have shown promis-
ing empirical successes across a wide variety of medi-
cal domains.12 Unlike previous works using classical ML 
models,8–10 we aim to develop and validate (1) a deep 
neural network for post-ablation AF recurrence prediction 
from signals (electrogram and ECG) and (2) a multimodal 
fusion framework that leverages the three modalities––
electrogram, ECG, and patients’ clinical features––to fur-
ther improve the model performance (Figure 1A).

METHODS
The data that support the findings of this study are available 
from the corresponding author upon reasonable request.

Subject Recruitment
This is a retrospective analysis of consecutive adult patients 
with paroxysmal or persistent AF who underwent catheter 
ablation between 2015 and 2017 at a tertiary referral center 
by 5 providers. To be included, patients were required to have 
panoramic left atrial electrograms recorded before ablation 
and clinical follow-up for at least 12 months following abla-
tion for accurate assessment of their AF ablation procedure 
outcomes. All patients had pulmonary vein isolation as a part 
of the AF ablation procedure; additional ablation lesions per 
the operating physicians’ discretion were allowed. This com-
prised of ablation of localized AF sources via focal impulse and 
rotor mapping (FIRM, in 100% of patients), ablation of left atrial 
linear lesions (in 24% of patients) and cavotricuspid isthmus 
ablation (in 27% of patients).

Nonstandard Abbreviations and Acronyms

AAD antiarrhythmic drug
AF atrial fibrillation
AUROC  area under the receiver operating char-

acteristics curve
CAD coronary artery disease
CatBoost categorical boosting classifier
CKD chronic kidney disease
CNN convolutional neural network
CT computerized tomography
LA left atrium
Lad left atrial diameter
ML machine learning
PVI pulmonary vein isolation

WHAT IS KNOWN?
• Atrial fibrillation ablation is the cornerstone of ther-

apy for symptomatic atrial fibrillation, with increas-
ing evidence on its safety and efficacy.

• Clinical scores have been developed to predict 
success of catheter ablation, to guide better patient 
selection, with most clinical scores reaching an area 
under the receiver operating characteristics curve 
(AUROC) of 0.55 to 0.65 in accurately predicting 
atrial fibrillation ablation success.

WHAT THE STUDY ADDS
• Deep neural networks trained on intracardiac sig-

nals and 12-lead electrocardiogram signals, in addi-
tion to clinical features, can improve the prediction 
accuracy of catheter ablation outcomes compared 
with existing clinical scores.

• A convolutional neural network using intracardiac 
signals in atrial fibrillation achieves an AUROC 
of 0.731, similarly a convolutional neural network 
using 12-lead electrocardiogram alone achieves an 
AUROC of 0.767. Fusion of electrogram, electrocar-
diogram, and clinical features further improves the 
prediction (AUROC=0.859) compared with models 
with a single modality.

• Machine learning models can help treatment plan-
ning for patients after catheter ablation of atrial 
fibrillation through more accurate prediction of 
treatment outcomes.
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Clinical and demographic data were obtained from elec-
tronic medical records. Twelve-lead ECGs in sinus rhythm 
obtained within 1 year of the ablation procedure were included. 
Patients with no 12-lead ECG available (n=3) were excluded 
from the ECG-only model and were imputed with the means 
of the other patients’ ECG features in the fusion models. This 
study protocol was approved by the Institutional Review Board 
of Stanford University. Due to the retrospective nature of the 
study, no informed consent was required. The corresponding 
author had full access to all the data in the study and took 
responsibility for its integrity and the data analysis.

Ablation Procedure and Clinical Follow-Up

All procedures were performed under general anesthesia. Various 
ablation catheters were used to achieve PVI, which included point-
by-point radiofrequency ablation with a contact force sensing 3.5 
mm tip irrigated catheter (Biosense Webster; Abbott) or cryobal-
loon (Arctic Front, Medtronic). Unipolar panoramic intracardiac 
signals used for ML analysis were obtained before any ablation 
with a 64-pole basket catheter (FIRMap catheter, Abbott) during 
AF. If patients presented to the electrophysiology laboratory in 
normal sinus rhythm, AF was induced with burst pacing.

Figure 1. Overview of our methods and multimodal fusion framework.
A, Overview of our methods. The inputs come from 3 modalities: patient electrogram (EGM) signals, electrocardiogram (ECG) signals, and 
clinical features. A multimodal machine learning model fuses the inputs from the 3 modalities and outputs prediction of atrial fibrillation (AF) 
recurrence. B, Details of our multimodal fusion framework. We first trained a model on EGM signals only for AF recurrence prediction, and 
a separate model on ECG signals only for AF recurrence prediction. We then extracted EGM and ECG features from the respective trained 
models. Finally, the EGM and ECG features were concatenated with the clinical features and were subsequently passed to a multimodal fusion 
model to predict AF recurrence.
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Patients were followed up routinely in the outpatient set-
ting, and all had 3-month evaluations for at least 1 year, which 
included rhythm assessment with 12-lead ECGs at 3 and 6 
months and a 14-day event monitor at 1 year. AF recur-
rence was defined as >30 second duration episodes on ECG 
monitoring, or >1% AF burden on device interrogation for the 
patients with implantable monitors. In this study, we focus on 
the outcome of whether a patient has recurrent AF within 1 
year after catheter ablation.

Demographic and Clinical Features
The demographic variables extracted from electronic health 
records included patients’ age at the time of ablation, sex, height, 
weight, body mass index, race, and ethnicity. Clinical comorbidi-
ties such as presence of hypertension, hyperlipidemia, transient 
ischemic attack, stroke (CVA), coronary artery disease, diabe-
tes (DM), chronic kidney disease, congestive heart failure, and 
obstructive sleep apnea were collected. Arrhythmia character-
istics such as type of AF (paroxysmal, persistent or long stand-
ing persistent), and history of prior AF ablation were recorded. 
Structural features extracted from imaging studies included 
left ventricular ejection fraction and left atrial diameter from 
transthoracic echocardiograms; and left atrial volume, surface 
area and sphericity index from CT scans that were routinely 
obtained within 1 year before AF ablation. These variables were 
selected based on the literature on known factors which could 
impact AF ablation outcomes.3–5,8,13–16 A complete list of clini-
cal features and number of missing values is shown in Table 
S1. Missing values were imputed with the most frequent value 
of the feature. Table S2 shows model performance with differ-
ent missing value imputation techniques, and Table S3 shows 
model performance in patients without missing values.

Modeling Clinical Features for AF Recurrence 
Prediction
As a baseline method, we built a classifier for predicting 1-year 
AF recurrence from demographic and clinical features. For each 
patient, a multi-dimensional feature vector was constructed 
from the clinical and demographic features, where continuous 
variables were normalized to have zero mean and unit variance 
and categorical variables were one-hot encoded. We used the 
categorical boosting (CatBoost) classifier,17 a state-of-the-art, 
gradient boosted decision tree-based ML algorithm, for AF 
recurrence prediction. Briefly, CatBoost sequentially builds 
many weak learners (ie, decision trees) and creates a strong 
predictive model by greedy search and ensembling. We chose 
CatBoost because it has been shown to outperform other gra-
dient boosted decision tree-based algorithms and naturally 
handles both continuous and categorical variables.17

Preprocessing of Electrogram and ECG Signals
In each patient, unipolar left atrial intracardiac electrograms 
were recorded during AF. Unipolar signals were recorded from 
a 64-pole basket catheter positioned in the mid left atrium (LA) 
before any ablation were exported. Preprocessing of electro-
gram signals included QRS subtraction and resampling to 200 
Hz. See Supplemental Methods for details.

Preprocessing of ECG signals included a bandpass fil-
tering of 0.05 to 100 Hz and resampling to 200 Hz. Eight 

independent ECG channels were used (channels I, II, and 
V1-6) as any linear dependency can be naturally learned by 
deep neural networks (ie, channel III can be derived vectorially 
from channels I and II).

Each electrogram and ECG signal was augmented by divid-
ing into 5-sec windows with a 4-sec overlap between consecu-
tive windows, resulting in a 1000×64 matrix for each input 
electrogram data point and a 1000×8 matrix for each input 
ECG data point.

Modeling Electrogram and ECG Signals for AF 
Recurrence Prediction
We developed a convolutional neural network (CNN) for pre-
dicting 1-year AF recurrence from electrogram or ECG signals.

Similar to Attia et al,14 our CNN consisted of several lay-
ers of bottleneck blocks with 1-dimensional (1D) convolutions 
operating on the time dimension, followed by a 1D convolu-
tional layer operating on the channel dimension. Intuitively, 
the time-dimension convolutional layers capture the temporal 
dependency in the signal by extracting features from signals 
within one channel, whereas the final channel-dimension con-
volutional layer aggregates the features across channels to 
obtain a spatial representation of the signal. Details of the CNN 
can be found in Supplemental Methods and Figure S1.

Fusion Model for AF Recurrence Prediction
Finally, we developed a multimodal fusion framework that lever-
ages more than one modality to improve the prediction of AF 
recurrence (Figure 1B).

First, electrogram features were extracted from the CNN 
that was trained on electrogram signals only. All the features 
from the electrogram signals from the same patient were aver-
aged to obtain a single electrogram feature representation for 
each patient. ECG features for each patient were extracted 
in a similar way. Next, for each patient, the feature vectors of 
the fused modalities (ie, electrogram features, ECG features, 
and clinical features) were concatenated to form a multimodal 
feature vector. Last, a classifier was trained on the patients’ 
multimodal feature vectors for predicting 1-year AF recurrence. 
As a fair comparison to clinical feature-based models, we also 
applied the CatBoost17 classifier in the fusion framework.

As ablation experiments, we also validated fusion of 2 
modalities (ie, electrogram and clinical features, ECG and clini-
cal features, or electrogram and ECG features) and compared 
the results to fusion of 3 modalities (electrogram, ECG, and 
clinical features).

Model Training and Validation
Stratified 10-fold cross-validation (patient-wise split) was used 
to train and validate each of the models described above. 
Specifically, all patients were randomly divided into 10 groups (ie, 
folds) with the same proportion of AF recurrence in each fold (ie, 
stratified 10-fold). At the i-th cross-validation step, the i-th fold 
was used to test the model and the remaining 9 folds were used 
to train the model. This above process was repeated 10 times, 
such that each patient only appeared in one of the test folds.

To mitigate overfitting, data augmentation was applied dur-
ing training. We designed 5 data augmentation methods using 
electrophysiology domain knowledge: (1) randomly shift (forward 
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or backward in time) each 5-sec window by up to 2.5-sec, (2) 
randomly scale the raw signal by a factor within range 0.5 to 2, 
(3) randomly shift the DC value within range −10 to 10 micro-
volts, (4) randomly masking with zeros for up to 25% of the 5-sec 
window, (5) randomly add gaussian noise with zero mean and a 
SD<0.2. Importantly, these data augmentations did not result in 
invalid signals but naturally increased the variability of the training 
data, which could mitigate overfitting of deep neural networks.

Training for the CNNs on electrogram and ECG signals 
was accomplished using the Adam optimizer18 in PyTorch on 
a single NVIDIA P100 GPU. For CNNs, we followed the same 
model architecture configuration as that in Attia et al14 (except 
for reducing the number of bottleneck blocks from 9 to 6 in 
ECG-based CNN) and did not tune the model hyperparameters. 
Training for CatBoost was done using the CatBoost Python 
package,17 and CatBoost hyperparameters were tuned using 
grid search (see Supplemental Methods for details). All mod-
els were trained to optimize AUROC. We assessed the model’s 
ability to predict 1-year AF recurrence using AUROC, sensi-
tivity, specificity, accuracy, and F1-scores. To derive sensitivity, 
specificity, accuracy, and F1-scores, a probability threshold was 
selected based on the highest F1-score on the 10 fold test sets.

Statistical Analysis
For population characteristics, continuous data are reported as 
mean±SD, unless otherwise stated, and are tested for normal-
ity using the Shapiro-Wilk test (P>0.05). Independent samples 
t test and Mann-Whitney U test were run to determine if there 
were differences in mean values between cohorts for analy-
sis of continuous data. Categorical variables were compared 
using the Pearson χ2 test or Fisher exact test where expected 
frequencies were <5. For model evaluation, we report the 
mean and SD of AUROC, sensitivity, specificity, accuracy, and 
F1-scores of the 10-fold test results. In addition, we measure 
the calibration of the models using Brier score19 and expected 
calibration error (ECE).20 Briefly, the Brier score measures the 
mean squared difference between the predicted probability 
assigned to the possible label and the actual label. The ECE 
approximates the expectation between model confidence and 
accuracy by binning the predictions into equally-spaced bins 
and taking a weighted average of the bin’s accuracy and con-
fidence difference. For both Brier score and ECE, lower val-
ues indicate better calibrated models. A statistical significance 
threshold (α) of 0.05 was used for all the reported tests.

RESULTS
Overall Summary
Between 2015 and 2017, 226 consecutive AF ablations 
were done using a 64-pole basket catheter that recorded 
simultaneous panoramic unipolar electrograms from the 
left and the right atria. Of these, 161 had left atrial signals 
recorded before any ablation. Five were excluded due to 
poor signal quality, leaving 156 patients to be analyzed 
for this study. Baseline characteristics of these patients 
are shown in Table 1. PVI was done using radiofrequency 
in 118 patients (76%), cryoballoon in 38 patients (24%). 
Thirty-four patients (21.8%) were on an antiarrhythmic 

drugs (AADs) at the time of follow up (10.2% on class 
IC agents, 3.9% on class III agents [sotalol or dofetilide], 
8.3% on amiodarone and 1.9% on dronedarone). Addi-
tional ablation lesions beyond PVI and ablation of local-
ized sources are presented in Table 1.

Catheter Ablation Outcomes
On follow-up at 1 year, 112 (72%) patients remained 
free of AF. Patients with and without recurrence had 
a similar age, body mass index and comorbidities 
(Table 1). AAD use was not different among groups. 
28% of the patients had a prior history of AF ablation. 
Presence of hyperlipidemia and diabetes correlated 
with AF recurrence (P=0.04) in univariate analysis. 
Ablation of additional left atrial lines did not correlate 
with AF ablation outcomes.

Validation of Existing AF Ablation Outcome 
Prediction Scores: APPLE and CHA2DS2-VaSC
First, we validated 2 existing clinical feature-based pre-
diction scores, APPLE3 and CHA2DS2-VaSC,4 for 1-year 
AF recurrence prediction using CatBoost.17 Detailed for-
mulation of APPLE and CHA2DS2-VaSC scores can be 
found in Supplemental Methods.

The CatBoost classifier achieved an AUROC of 0.644 
(SD=0.129) on APPLE scores and an AUROC of 0.650 
(SD=0.133) on CHA2DS2-VASc scores (Table 2, first 
and second rows).

ML-Based AF Recurrence Prediction From 
Clinical Features
Using clinical features, the CatBoost classifier achieved 
an AUROC of 0.755 (SD=0.093; Table 2, third row), out-
performing the performance of the CatBoost classifier 
trained on APPLE and CHA2DS2-VASc scores. This 
performance improvement is expected given that mul-
tiple clinical features were used, whereas APPLE and 
CHA2DS2-VASc scores only accounted for 5 and 7 
clinical features, respectively.

Figure 2 shows the model interpretation of the clinical 
features that contribute the most to AF recurrence pre-
diction in our clinical feature-based model, where the 5 
most important features are left ventricular ejection frac-
tion, height, body mass index, weight, left atria volume 
from CT, and left atria surface area; which have previously 
been reported to correlate with development of incident 
AF15,21 or poorer outcomes following AF ablation.16,22

ML-Based AF Recurrence Prediction From 
Electrogram or ECG
Using electrogram signals only, the CNN achieved 
an AUROC of 0.731 (SD=0.105) for AF recurrence 
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prediction (Table 2, 4th row); using ECG signals only, 
the CNN achieved an AUROC of 0.767 (SD=0.122; 
Table 2, 5th row), both of which outperform APPLE and 
CHA2DS2-VASc scores.

In addition, we visualize examples of electrogram and 
ECG learned by the CNNs using the Uniform Manifold 

Approximation and Projection23 (UMAP) dimensionality 
reduction technique. As shown in Figure S2, the same 
patient’s electrogram features are clustered together, 
whereas different patients’ electrogram features are 
further apart. Moreover, electrogram/ECG features 
of patients with AF recurrence are further away from 

Table 1. Baseline Characteristics of Population

 
All subjects 
(n=156) 

Free from AF 
(n=112) 

Recurrent AF 
(n=44) P Value 

Demographics

 Age, y (mean±SD) 64.5±10.5 64.5±9.9 64.5±11.9 0.988

 Male sex, n (%) 115 (74%) 87 (78%) 28 (64%) 0.073

 Height (m, mean±SD) 1.77±0.1 1.77±0.1 1.77±0.1 0.298

 Weight (kg, mean±SD) 96.6±24.4 98.1±24.3 92.6±24.4 0.205

 BMI (kg/m2, mean±SD) 30.6±6.8 31.2±7.1 29.3±5.8 0.117

Comorbidities

 CAD, n (%) 30 (19%) 25 (22%) 5 (11%) 0.118

 CHF, n (%) 32 (21%) 25 (22%) 7 (16%) 0.359

 Hypertension, n (%) 104 (67%) 76 (68%) 28 (64%) 0.615

 Hyperlipidemia, n (%) 88 (56%) 69 (62%) 19 (43%) 0.037

 TIA or CVA, n (%) 13 (8%) 11 (10%) 2 (5%) 0.352

 Diabetes, n (%) 30 (19%) 26 (23%) 4 (9%) 0.037

 OSA, n (%) 59 (38%) 43 (38%) 16 (36%) 0.784

 CKD, n (%) 24 (15%) 17 (15%) 7 (16%) 0.872

 Prior AF ablation, n (%) 43 (28%) 26 (23%) 17 (39%) 0.052

Type of AF 0.210

 Paroxysmal AF, n (%) 67 (43%) 47 (42%) 20 (46%)  

 Persistent AF, n (%) 66 (42%) 45 (40%) 21 (48%)  

 Long-standing persistent AF, n (%) 23 (15%) 20 (19%) 3 (7%)  

AF ablation type* 0.248

 Left atrial linear ablation 38 (24%) 30 (34%) 8 (18%)  

 CTI 42 (27%) 35 (31%) 7 (16%)  

 Antiarrhythmic drug use 34 (22%) 26 (23%) 8 (18%) 0.667

Values are n, mean±SD, or median (interquartile range). Categorical variables are compared using Fisher exact test; continuous 
variables using the t test or Mann-Whitney U test if data are not normally distributed. AF indicates atrial fibrillation; BMI, body mass 
index; CAD, coronary artery disease; CHF, congestive heart failure; CKD, chronic kidney disease; CTI, cavotricuspid isthmus ablation; 
OSA, obstructive sleep apnea; and TIA, transient ischemic attack.

*In addition to pulmonary vein isolation and ablation of localized rotational and focal sources by FIRM mapping. 

Table 2. Results of 1-Year AF Recurrence Prediction

 AUROC Sensitivity Specificity Accuracy F1-score 

APPLE score 0.644±0.129 0.915±0.138* 0.350±0.329 0.504±0.213 0.533±0.111

CHA2DS2-VASc score 0.650±0.133 0.905±0.162 0.427±0.355 0.560±0.226 0.568±0.124

Clinical Feature 0.755±0.093 0.875±0.137 0.680±0.198 0.728±0.121 0.656±0.102

EGM 0.731±0.105 0.885±0.116 0.627±0.131 0.701±0.098 0.630±0.092

ECG 0.767±0.122 0.812±0.176 0.770±0.183 0.781±0.112 0.682±0.108

Fusion of EGM and clinical data 0.788±0.110 0.905±0.117 0.706±0.144 0.764±0.107 0.691±0.117

Fusion of ECG and clinical data 0.836±0.063 0.865±0.112 0.812±0.124 0.827±0.070 0.747±0.075

Fusion of EGM and ECG 0.833±0.084 0.915±0.138* 0.793±0.124 0.826±0.083 0.753±0.096

Fusion of EGM, ECG and clinical feature 0.859±0.082* 0.870±0.200 0.867±0.121* 0.866±0.076* 0.784±0.106*

Values are mean±SD across 10-folds.
ECG indicates electrocardiogram; and EGM, electrogram.
*Best mean results for each metric.
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features of patients without AF recurrence, suggest-
ing that the CNNs are able to learn distinct patterns in 
patients with different outcomes.

ML-Based AF Recurrence Prediction From 
Fusion of Electrogram, ECG, and Clinical 
Features
Our final fusion model that combines electrogram, ECG, 
and clinical features achieved an AUROC of 0.859 
(SD=0.082; Table 2, last row), outperforming the APPLE 
scores, CHA2DS2-VASc scores, and ECG or electro-
gram signals alone, suggesting the effectiveness of our 
fusion framework.

Figure 3 shows the ROC curves of the clinical fea-
ture-based models, the signal-based CNN models, and 
the fusion model. At a low false positive rate, such as 
20% false positive rate, our fusion model had a true 
positive rate (TPR) of 80%, which translates clinically to 
missing 20% recurrent AF patients with 20% of the pre-
dicted recurrent AF being false positives. In contrast, the 
CHA2DS2-VASc score-based classifier and the clinical 
feature-based classifier only achieved a TPR of 40% and 
58%, respectively, which translates to missing 60% and 
42% recurrent AF patients, respectively, with the same 
number of false positives.

Moreover, combining 2 modalities performed better 
than single modalities (Table 2, 6th–8th rows), which 
is intuitive given that 2 modalities encode additional 

features than a single modality. Model performance in 
various subgroups are provided in Supplemental Results 
and Tables S4 through S6.

In addition to discriminative measures (eg, AUROC, 
sensitivity, and specificity), we evaluate the calibration 
of the models using Brier score19 and expected cali-
bration error.20 See Supplemental Results and Table 
S7 for details.

DISCUSSION
In this study, we developed a deep convolutional neural 
network that encodes the spatiotemporal dependencies 
in electrogram and ECG signals, as well as a multimodal 
fusion framework that leverages clinical features, elec-
trogram, and ECG for predicting 1-year AF recurrence 
after catheter ablation. Our study was based on a cohort 
of 156 patients.

To our knowledge, compared with the existing AF 
recurrence prediction scores to date, this provides the 
highest performance in predicting which patients would 
be free from AF 1 year following ablation.

Other studies evaluating prediction of AF ablation 
outcomes using machine learning include Shade et al9 
that utilized ML and personalized computational model-
ing in 32 patients to predict AF recurrence following PVI 
with either cryoballoon or radiofrequency approach. In 
their machine learning model, their sources of informa-
tion (imaging, clinical data) were combined equally.9 Late 

Figure 2. Clinical feature-based 
model interpretation.
Importance of clinical features in 
predicting atrial fibrillation (AF) recurrence 
using the CatBoost classifier (averaged 
across 10 folds). The 5 most important 
features are: left ventricular ejection 
fraction (LVEF), height, body mass index 
(BMI), weight, left atria volume from 
computed tomography (CT), and left atria 
surface area from CT.
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gadolinium enhanced magnetic resonance imaging scans 
were used for imaging data. AUROC of 0.82 was reported 
when clinical variables were included in the model. Firouz-
nia et al10 extracted data from chest CT scans to establish 
their association with likelihood of postablation AF recur-
rence in 203 patients using a random forest classifier. 
Certain derived imaging features such as left atrial surface 
area, volume, and sphericity index used in their study were 
also included in our model as a part of clinical features.10 
PVI in this study was completed with either cryoballoon 
or radiofrequency catheters. Moreover, posterior wall, sep-
tal, superior vena cava, and cavotricuspid isthmus ablation 
were performed according to operator choice, although 
further details of extra-PVI ablation were not discussed in 
the study or included in the models.

In our study, all patients underwent PVI with cryobal-
loon or radiofrequency approach. Similar to Firouznia et 
al,10 patients undergoing various ablation strategies were 
included, including ablation of localized sources detected 
by FIRM mapping strategy in 100% of patients, left atrial 
linear lesions in 24%, and cavotricuspid isthmus ablation 
in 27% of patients. FIRM strategy was used in all patients 
as it allowed simultaneous recording of unipolar signals 
in the left atrium before any ablation in this cohort, which 
was a prerequisite in our analysis. Our models were able to 
predict long-term (1 year) freedom from arrhythmias inde-
pendent of the ablation strategy. Clinical benefit of lesions 
beyond PVI in patients with persistent AF has been a sub-
ject of debate, with multiple studies showing no additional 
benefit of extra PV lesions in long term freedom from 

AF,24,25 with some demonstrating incremental benefit,26,27 
and larger multicenter studies underway to evaluate this 
further.28 Furthermore, incorporation of intracardiac elec-
trograms indeed improved prediction of AF ablation out-
comes, suggesting that an AF mechanism might be at 
play that could be delineated further by feature interpreta-
tion of these signals. Given the wide variety of ablation 
approaches used in the training and testing cohorts for 
our machine learning model, and limited representation of 
subgroups such as women, generalizability of our findings 
to the broader population could be limited.

Limitations
This study was performed at a single center, involves a 
small cohort with underrepresentation of women, and 
results have not been validated externally. Heterogene-
ity in ablation approaches may limit generalizability of 
the findings to specific ablation strategies. Despite this 
limitation, all the patients underwent PVI, and evidence 
of benefit of further ablation beyond PVI, including lin-
ear ablation and ablation of sites of organized rotational 
or focal activation, has not been proven consistently in 
multicenter randomized studies.24,29,30 All patients in this 
study underwent FIRM mapping and ablation that formed 
the basis of the unipolar EGMs used in the model. The 
necessity of the use of FIRM mapping is a limitation to 
this study, as this is not a widely used catheter or map-
ping strategy in the community.

Freedom from AF appears higher for a mixed cohort 
of patients but is consistent with other studies that used 
intermittent monitoring rather than implanted loop record-
ers. Intermittent monitoring of AF recurrence with 12-lead 
ECGs and 14-day event monitors likely underrepresents 
true AF recurrence, which could affect the accuracy of our 
predictive model. The retrospective nature of the data lim-
ited strict guidelines over AAD use in follow up, that is, for 
certain patients, preprocedure AADs were continued pos-
tablation due to patient or provider preference regardless 
of procedure outcome. Twenty-eight percent of patients 
had prior AF ablation, which may have impacted intra-
cardiac signal characteristics. Twelve-lead ECGs in sinus 
rhythm before ablation were not available in all patients. 
When a patient’s 12-lead ECGs in sinus rhythm before 
ablation was not available, a 12-lead ECG in sinus rhythm 
immediately after ablation was used for analysis, which 
could result in bias in analyses. While we show that when 
evaluating the trained models on patients whose preabla-
tion 12-lead ECGs are available, the model performance 
did not differ significantly from our original analysis (ie, 
post-ablation 12-lead ECGs are used for patients whose 
preablation ECGs are not available), we did not re-train the 
models on preablation ECGs only due to the limited size of 
our cohort (n=107 patients with preablation ECGs). Major-
ity of these patients had a 12-lead ECG in sinus rhythm 
before ablation that was not performed at our center in 

Figure 3. Receiver operating characteristics (ROC) curves of 
the clinical feature-based models, signal-based models, and 
the fusion model.
The x-axis shows the false positive rate averaged across 10 folds 
for each model, and the y-axis shows the true positive rate averaged 
across 10 folds for each model. AUROC indicates area under the 
receiver operating characteristics curve.
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an electronic format that could be exported for analysis, 
due to the tertiary referral center status where the study 
was conducted. Some of the data that were used in the 
models to predict ablation success, including intracardiac 
signals, are obtained at the time of ablation, and may not 
help in patient selection for ablation procedure, but can 
rather guide medical management and expectations fol-
lowing the procedure. Furthermore, while we show that 
most of the trained models perform similarly on patient 
subgroups (patients with paroxysmal versus nonparoxys-
mal AF; patients with cryoablation versus radiofrequency 
ablation), future study with a larger cohort that trains mod-
els on these subgroups independently is needed to fur-
ther compare these subgroups. Last, while we show that 
our CNNs and fusion model are better calibrated than the 
existing APPLE and CHASDS2-VASc scores (Table S7), 
the Brier scores and expected calibration errors are still 
relatively high; advanced calibration techniques31 for deep 
neural networks need to be incorporated in the future to 
produce better calibrated models.

Conclusions
Our machine learning approach provides an automatic 
technique to predict freedom from atrial arrhythmias in 
patients undergoing AF ablation, outperforming tradi-
tional scoring systems. Larger datasets are needed in 
the future to train and validate this approach even fur-
ther to help develop personalized ablation strategies for 
patients with AF.
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