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Abstract: One of the most widely used strategies for metabolite annotation in untargeted LCMS
is based on the analysis of MSn spectra acquired using data-dependent acquisition (DDA), where
precursor ions are sequentially selected from MS scans based on user-selected criteria. However,
the number of MSn spectra that can be acquired during a chromatogram is limited and a trade-off

between analytical speed, sensitivity and coverage must be ensured. In this research, we compare
four different strategies for automated MS2 DDA, which can be easily implemented in the frame
of standard QA/QC workflows for untargeted LC–MS. These strategies consist of (i) DDA in the
MS working range; (ii) iterated DDA split into several m/z intervals; (iii) dynamic iterated DDA
of (pre)selected potentially informative features; and (iv) dynamic iterated DDA of (pre)annotated
metabolic features using a reference database. Their performance was assessed using the analysis of
human milk samples as model example by comparing the percentage of LC–MS features selected as
the precursor ion for MS2, the number, and class of annotated features, the speed and confidence of
feature annotation, and the number of LC runs required.

Keywords: liquid chromatography–mass spectrometry; peak annotation; data dependent acquisition;
human milk

1. Introduction

Metabolomics is a rapidly evolving field in biomedical research that targets the analysis of the
low molecular weight metabolites within a biological system. Hyphenated high resolution liquid
chromatography mass spectrometry (LC–MS) is among the most sensitive and selective techniques
for the simultaneous analysis of metabolites comprising a wide range of physicochemical properties
and concentrations. However, the analysis of untargeted LC–MS data requires the identification
or annotation of the metabolites prior to further analysis such as pathway, metabolite enrichment
or overrepresentation analysis [1]. An accurate metabolite annotation is key to transform spectral
information, first into structural and then into meaningful and consistent biochemical information.
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The putative identification of a metabolic feature for which the assignment of its structure is highly
likely, but not validated through chemical-reference standards, is defined as ‘annotation’ [2]. As the
accessibility and analysis of the complete set of potential metabolites is not always feasible, annotation
based on MS and MSn information is widely used as a suboptimal alternative. In practice, the
comparison of experimentally acquired MS data of a given metabolic feature against a spectral database
such as the HMDB (www.hmdb.ca), METLIN (metlin.scripps.edu) or the Kyoto Encyclopedia of Genes
and Genomes (KEGG, www.genome.jp) can be used for metabolite annotation. However, MS-based
approaches typically lead to multiple molecular formulae for each feature and hence, multiple hits
in spectral databases may be obtained. Therefore, standard annotation approaches typically exploit
MSn information to refine the number of matches. Nonetheless, the amount of MSn spectra that can be
acquired during a chromatogram is limited and a trade-off between analytical speed, sensitivity and
coverage must be ensured. One of the most widely used strategies for the acquisition of MS2 spectra
is data dependent acquisition (DDA), where precursor ions are sequentially selected from full scans
based on user-selected criteria such as intensity or charge state during the injection of representative
samples, typically at the beginning or end of the analytical batch [1]. The quality and number of
acquired MS2 spectra depends on additional instrumental parameters such as the spectral acquisition
rate, number of precursor candidates selected for fragmentation in each survey MS scan, collision
energy, m/z tolerance, precursor widths, and the exclusion time to skip already fragmented ions.
A frequently used strategy for metabolite annotation is based on the re-analysis of samples for targeted
DDA using a list of precursor ions and retention times selected from the statistical analysis of the data.
This strategy limits the reuse of data sets as it requires access to the samples and additional technical
bias might also be introduced during sample re-analysis in a separate experiment. So, different DDA
MS2 experiments have been proposed to increase the coverage of metabolites for which MS2 data is
acquired. The identification of artefactual features from background contamination and isotopes has
been used to generate a preferred ion list to guide precursor selection, thus increasing its efficiency
and the MS2 coverage [2,3]. Furthermore, the use of time-staggered precursor ion lists for DDA has
been proposed to improve the MS2 coverage of metabolomes [4]. The use of the integrated application
of both collision-induced dissociation (CID) and higher-energy collisional dissociation ion activation
methods, multiple different activation energies and narrow precursor ion m/z ranges of 100 or 300 for
acquisition of MS2 spectra has also been used to provide complementary information and increase the
number of unique metabolites for which MS2 data is acquired [3].

In this work, we analyze the applicability of two untargeted and two targeted, automated MS2

DDA spectra acquisition in the frame of standard quality control/assurance (QC/QA) workflows for
untargeted LC–MS metabolomics. These strategies include: (i) untargeted DDA in the MS working
range; (ii) untargeted iterated-DDA split into several m/z intervals; (iii) targeted dynamic iterated DDA
using an inclusion list of potentially informative LC–MS features; and (iv) targeted dynamic iterated
DDA of (pre)annotated features. For (iii) and (iv), LC–MS features were extracted from the injection
of two blanks and three QCs acquired during the initial system conditioning included in standard
QA/QC protocols. The different DDA acquisition approaches were applied to the annotation of LC–MS
data obtained during the analysis of human milk (HM) samples and their performance was assessed
by comparing the percentage of LC–MS features selected as precursor ions for MS2, the number and
class of annotated features, and the number of LC runs required.

2. Results and Discussion

2.1. Data Overview

Initial XCMS data pre-processing of data acquired from the ‘initial batch’ comprising the analysis
of two blanks and three QCs described in the sample analysis in Section 3.4, identified 8971 LC–MS
features. Among them, 4949 (56% of the total) were detected in blanks and classified as uninformative
noise. Then, the ‘sample batch’—including 42 milk samples, 13 QCs (one QC every six samples)

www.hmdb.ca
www.genome.jp
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and three blanks—was analyzed. Peak table generation of data acquired from the analysis of the
sample batch identified 18,401 features, of which 11,914 (65%) were classified as noise, leaving a total
of 6487 features for further analysis. Figure 1 shows the distribution of detected and retained features
(Figure 1A,B), the distribution of features commonly selected (Figure 1C) and the number of unique and
commonly detected features (Figure 1D) in the initial and sample batches. The alignment of the retained
LC–MS features in both subsets with 7.5 mDa and 0.1 min as m/z and RT tolerances, respectively,
showed 4211 features that were commonly detected. Histograms depicted in Figure 1E also shows a
very high similarity in both m/z and RT for those features commonly detected in both data sets, with
97% of the features showing differences in m/z and RT lower than 1 mDa and 0.05 min, respectively.
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Figure 1. Distribution of background or noise features (grey dots) and informative (color dots, where
the color represents the median log(intensity) in QCs) LC–MS features in the initial (A) and sample
batches (B); (C) Distribution of features commonly detected in both data sets; (D) Number of unique
and commonly detected features in the initial and sample batches; (E) Histograms of the differences in
m/z (top) and RT (bottom) between features detected in both data sets.

2.2. MS2 Data Dependent Acquisition Strategies

Figure 2 shows the distribution of MS2 spectra acquired using the four considered strategies
for data acquisition (DDA, i-DDA, xcms-DDA and hmdb-DDA) described in Section 3.5. MS2 Data
Dependent Acquisition methods. A total of 3115 MS2 spectra were acquired using untargeted DDA in
a single injection of a QC replicate. The use of seven QC injections in the i-DDA approach increased
the number of acquired MS2 spectra up to 21,522. However, 16981 MS2 spectra (79% of the total) were
assigned to noise or background features, a similar percentage to that observed in the case of DDA,
where 2246 MS2 spectra (72% of the total) were assigned to uninformative features. After six QC
injections, xcms-DDA lead to the acquisition of 3338 MS2 spectra (1736, 974, 331, 145, 92 and 60 MS2

spectra in each one of the consecutive LC runs) and hmdb-DDA allowed to the acquisition of 2993 MS2

spectra (1684, 777, 239, 99, 117 and 77 MS2 spectra, in each one of the consecutive LC runs).
Targeted DDA reduced the number of precursors corresponding to uninformative features down

to 31 and 30 in xcms-DDA and hmdb-DDA, respectively. In MS2 the precursor ions are sequentially
selected from full scans and so, the number of spectra that can be acquired during a chromatogram
is limited. Thus, the efficiency of MS2 acquisition depends not only on chromatographic (e.g., peak
resolution, width, and symmetry) and sample parameters (e.g., distribution and intensity of features in
the chromatogram), but also on instrumental parameters (e.g., scanning speed, MS2 acquisition time,
sensitivity, isolation width), and on the strategy used for precursor selection.

Figure 3A depicts results obtained from the analysis of the overlap among the fragmented features
selected using DDA, i-DDA, xcms-DDA or hmdb-DDA using m/z and RT tolerances of 20 ppm and
0.1 min, respectively. Results showed an expected very poor performance of using a single LC-MS run
with DDA and selection of precursors in the 70–1500 Da range. This method enabled the acquisition
of MS2 spectra of 492 LC–MS features retained in the peak table obtained from the analysis of the
milk samples and QCs (58 LC–MS runs, 6487 features), and no LC–MS feature was fragmented only
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by DDA. Results also showed a significant number of LC–MS features that were only fragmented
using either xcms-DDA (452), hmdb-DDA (261) or i-DDA (388). 96% of the features fragmented by
hmdb-DDA were also fragmented by xcms-DDA.Metabolites 2020, 10, x FOR PEER REVIEW 4 of 12 
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Figure 2. Distribution MS2 spectra acquired by DDA (A), i-DDA (B), xcms-DDA (C) and hmdb-DDA
(D) assigned to informative (blue) and noise (grey) LC–MS features. Note: DDA: untargeted selection
of precursors in the 70–1500 Da range; i-DDA: untargeted iterated DDA, in which MS2 spectra were
acquired in seven QC replicates using DDA in the [70–200], [200–400], [40–600], [600–800], [800–1000],
[1000–1250], and [1250–1500] Da ranges; xcms-DDA: targeted dynamic iterated DDA, in which precursor
ions were selected using an inclusion list generated from the cleaned-up peak table obtained after the
injection of two blanks and three QCs during system conditioning; hmdb-DDA: targeted dynamic
iterated DDA using an inclusion list of (pre)annotated features in the cleaned-up peak table obtained
after the injection of two blanks and three QCs during system conditioning.Metabolites 2020, 10, x FOR PEER REVIEW 5 of 12 
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spectra acquisition using DDA, i-DDA, xcms-DDA or hmdb-DDA. (A-Bottom) Distribution of the
452, 388 and 261 features exclusively selected as precursors by xcms-DDA, i-DDA and hmdb-DDA,
respectively. (B) Distribution of the median intensity values in the sample batch of the fragmented
features selected using DDA, i-DDA, xcms-DDA and hmdb-DDA (color dots) and of features that were
not fragmented (grey dots).
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Figure 3B displays the association between the number of co-eluting ions and the intensity of
each feature in the sample batch. Data show that precursor selection in unsupervised DDA is biased
towards the selection of high intensity ions with low number of co-eluting ions. This is a drawback
because co-eluting, structurally similar compounds are frequently present in biological samples and
one of the main advantages of using LC–MS based approaches is the ability of detecting low-abundant
metabolites. Hence, the implementation of targeted DDA helped to circumvent this drawback notably.

Then, the impact of the precursor selection strategy pact on the metabolite annotation was
evaluated. Figure 4 shows the number of acquired MS2 spectra and metabolites annotated as a
function of the number of QC replicates used for data acquisition. Results indicate, in agreement with
previous results, that even though DDA only requires the injection of one single QC sample, it is a
highly inefficient approach that only enabled the annotation of 165 features (see Figure 4A). The set of
21522 MS2 spectra acquired by i-DDA was used for the identification of 331 metabolites after seven QC
replicate injections. Results showed similar efficiencies of xcms-DDA and hmdb-DDA, in terms of the
number of injections needed to reach a plateau in the number of annotated metabolites. In comparison
to DDA and i-DDA, these approaches allowed to annotate a higher number of metabolites. In total,
xcms-DDA and hmdb-DDA increased the number of annotated features up to 325 and 338, respectively,
after four QC replicates, and 335 and 347, respectively, after six QC replicates. Similarly, using the
LipidBlast library, i-DDA, xcms-DDA and hmdb-DDA outperformed DDA. The best results were
obtained using hmdb-DDA and six QC injections, which allowed the annotation of 211 metabolites
using the LipidBlast spectral library and a minimum spectral purity of 50, significantly larger than the
88, 111 and 130 annotations using DDA, i-DDA and xcms-DDA, respectively. Hmdb-DDA specifically
targets for metabolites included in the database and so, it seems reasonable to find more annotated
metabolites with more sampling. With xcms-DDA, on the other hand, more sampling does not
guarantee a better coverage of HMDB metabolites but it may still improve coverage of the detected
features to enable providing molecular structure identification of compounds not included in the
database by using complementary tools, e.g., Sirius [5].

Metabolites 2020, 10, x FOR PEER REVIEW 5 of 12 

 

 

Figure 3. (A-Top) UpSet plot to visualize the intersecting sets of features selected as precursor for MS2 
spectra acquisition using DDA, i-DDA, xcms-DDA or hmdb-DDA. (A-Bottom) Distribution of the 
452, 388 and 261 features exclusively selected as precursors by xcms-DDA, i-DDA and hmdb-DDA, 
respectively. (B) Distribution of the median intensity values in the sample batch of the fragmented 
features selected using DDA, i-DDA, xcms-DDA and hmdb-DDA (color dots) and of features that 
were not fragmented (grey dots). 

Figure 3B displays the association between the number of co-eluting ions and the intensity of 
each feature in the sample batch. Data show that precursor selection in unsupervised DDA is biased 
towards the selection of high intensity ions with low number of co-eluting ions. This is a drawback 
because co-eluting, structurally similar compounds are frequently present in biological samples and 
one of the main advantages of using LC–MS based approaches is the ability of detecting low-
abundant metabolites. Hence, the implementation of targeted DDA helped to circumvent this 
drawback notably. 

 

Figure 4. Number of annotated features in the sample batch using the HMDB (A) or LipidBlast (B) 
spectral libraries and MS2 spectra acquisition using DDA, i-DDA, xcms-DDA or hmdb-DDA. 

Then, the impact of the precursor selection strategy pact on the metabolite annotation was 
evaluated. Figure 4 shows the number of acquired MS2 spectra and metabolites annotated as a 
function of the number of QC replicates used for data acquisition. Results indicate, in agreement with 

Figure 4. Number of annotated features in the sample batch using the HMDB (A) or LipidBlast (B)
spectral libraries and MS2 spectra acquisition using DDA, i-DDA, xcms-DDA or hmdb-DDA.

Figure 5 shows the distributions of classes of the annotated features using the HMDB/METLIN
and LipidBlast spectral databases. Using the HMDB/METLIN as spectral library, the main classes of
annotated metabolites were triacylglycerols, diacylglycerols, monoacylglycerols, glycerophosphocholines,
lineolic acids and derivatives and fatty alcohols. Conversely, carbohydrates and carbohydrates
conjugates, fatty acids and conjugates, and monoterpenoids were not annotated using untargeted DDA.
Flavonoid glycosides were only annotated using targeted xcms-DDA or hmdb-DDA. Using LipidBlast,
the main classes of detected metabolites were triacylglycerols, diacylglycerols and alkenyl-diacylglycerols.
Ceramides were not annotated using DDA and phosphatidic acids were only annotated by hmdb-DDA.
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2.3. MS2 Data Dependent Acquisition Strategies in QA/QC Pipelines

A number of projects and initiatives to establish minimum reporting guidelines and QC/QA
procedures such as the ‘metabolomics standards initiative’ (Metabolomics Society), ‘COSMOS’ (FP7),
MetExplore or PhenoMenal have been carried out in the last years to make metabolomic research
more reproducible and generalizable. However, these guidelines are rarely adopted [6], contributing
to the reproducibility crisis in science that affects metabolomics likely as much as any other area of
research. Results presented here show that the use of straightforward iterative strategies—based on
xcms-DDA or database guided-DDA (using HMDB as a model example), within standard QA/QC
protocols—facilitates metabolite annotation by improving the MS2 coverage of informative features.
Besides, these methods can be easily performed using standard open source software (e.g., R, matlab),
facilitating the standardization of MS2 acquisition and, therefore, data comparison and reusability.
Finally, from a practitioner’s perspective, a higher efficiency in the precursors selection will facilitate
the adaptation of iterated DDA to include additional parameters to assess the quality of the acquired
MS2 spectra. This way, instrumental parameters could be modified if required for a given LC–MS
feature, to improve the spectral quality in subsequent LC–MS runs (e.g., by increasing the number of
cumulated scans, modifying the collision energy set, or the MS isolation window).

3. Materials and Methods

3.1. Standards and Reagents

LC–MS grade acetonitrile (ACN), isopropanol (IPA), methanol (MeOH), and methyl tert-butyl
ether (MTBE) were obtained from Scharlau (Barcelona, Spain) and formic acid (≥95%), and ammonium
acetate (≥98%) from Sigma-Aldrich Química SL (Madrid, Spain). Ultra-pure water was generated
employing a Milli-Q Integral Water Purification System from Merck Millipore (Darmstadt, Germany).

3.2. Research Ethics

All subjects gave their informed consent for inclusion before they participated in the study.
The study was conducted in accordance with the Declaration of Helsinki, and the protocol was
approved by the Ethics Committee for Biomedical Research of the Health Research Institute La Fe
(Valencia, Spain) with approval number 2014/0247.



Metabolites 2020, 10, 126 7 of 11

3.3. Sample Preparation

HM samples were provided by healthy volunteers admitted after the routine screening at the HM
bank (Banco de Leche Materna de la Generalitat Valenciana, Valencia, Spain). Milk aliquots were collected
directly before (N = 14) and after (N = 13) Holder pasteurization. In addition, HM samples from
mothers of preterm infants (N = 15) were collected during their stay at the neonatal intensive care unit.
HM samples were stored at -80 ◦C until their analysis. HM samples were thawed at room temperature
followed by heating in a water bath at 33 ◦C for 10 min. Then, 5 µL of an internal standard (IS) solution
containing oleic acid-D9 (80 µM) and prostaglandin F2α-D4 (39 µM) in H2O was added to 45 µL HM
and then 175 µL MeOH followed by 175 µL MTBE was added to each sample [7]. The mixture was
thoroughly shaken (1400 rpm) on a thermoblock mixer (20 ◦C, 1 min) and centrifuged at 4000 x g and
15 ◦C for 15 min. An amount of 20 µL of supernatant was added to 80 µL of a MeOH:MTBE (1:1, v/v)
solution and then analyzed by UPLC–MS. A blank extract was prepared following the same procedure
as described for HM samples, but replacing HM with water and a pooled QC sample was prepared by
mixing 20 µL of each HM sample extract.

3.4. Sample Analysis

The experiment was designed to reproduce typical conditions for untargeted metabolomic
experiments [1]. Accordingly, two blanks and a set of QCs were injected at the beginning of the
sequence for system conditioning and MS2 data acquisition. Then, the sample batch including 42 milk
samples, 13 QCs (1 QC every 6 samples) and 3 blanks were analyzed (Figure 6A). QCs were used to
monitor the instrument performance, correct within-batch effects, and identify unreliable, background,
and carry-over features as described elsewhere [8–10]. Untargeted metabolomic analysis was carried
out employing a 1290 Infinity HPLC system from Agilent Technologies (CA, USA) equipped with
a UPLC BEH C18 column (50 × 2.1 mm, 1.7 µm) from Waters (Wexford, Ireland). The flow rate
was set to 400 µL min−1 running a binary mobile phase gradient starting at 98% of mobile phase A
(5:1:4 IPA:MeOH:water, (5 mM ammonium acetate, 0.1% v/v formic acid)) for 0.5 min followed by a
linear gradient from 2% to 20% of mobile phase B (99:1 IPA:water, (5 mM ammonium acetate, 0.1%
v/v formic acid)) for 3.5 min and from 20% to 95% v/v of mobile phase B at 4 min; 95% v/v of mobile
phase B was maintained for 1 min; the return to initial conditions was achieved after 0.25 min and
was maintained for a total run time of 14 min. The column and autosampler were kept at 55 and 4 ◦C,
respectively, and the injection volume was 2 µL.
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3.5. MS2 Data Dependent Acquisition Methods

Two untargeted and two targeted DDA strategies for automated MS2 data acquisition based
on the algorithm depicted in Figure 6B were employed: (i) untargeted selection of precursors in
the 70–1500 Da range (DDA); (ii) untargeted iterated DDA, in which MS2 spectra were acquired in
consecutive QC replicates using untargeted DDA in the [70–200], [200–400], [400–600], [600–800],
[800–1000], [1000–1250], and [1250–1500] Da ranges (i-DDA); (iii) targeted dynamic iterated DDA,
in which MS2 spectra were acquired by automated selection of precursor ions using an inclusion list
generated after the injection of two blanks and three QCs during system conditioning (xcms-DDA).
Here, LCMS features were classified as ‘informative’ and added to the inclusion list if the ratio
between the minimum values in QCs and the maximum value in blanks was higher than 6; and
(iv) targeted dynamic iterated DDA, where MS2 spectra were acquired using an inclusion list of
(pre)annotated features after the injection of two blanks and three QCs during system conditioning
(hmdb-DDA). In this case, LC–MS features were added to the inclusion list if they were not detected
in blanks and could be (pre)annotated as a [M+H]+, [M+Na]+, [M+NH4]+, [M+H+Na]+2, [M+K]+,
[M+H+K]+2, [M+H+CH3CN]+, [M+H+2CH3CN]+, [M+Na+CH3CN]+, [M+2Na-H]+, [2M+H]+,
[2M+Na]+, [2M+K]+, [2M+NH4]+, [2M+H+CH3CN]+, [2M+Na+CH3CN]+, or [M+H-H2O]+ adduct
of, at least, one of the 95688 metabolites included in the HMDB with a m/z accuracy error <20 ppm.
Precursor and fragment ion tolerance should be selected depending on the mass accuracy of the MS,
and wider ion tolerances (25–50 ppm) can be used for high abundant precursor ions [11]. In this study,
20 ppm m/z tolerances were selected in this study to limit false-positive peak detections.

Centroid mode at a rate of 5 Hz in the extended dynamic range mode (2 GHz), a collision energy
set to 20 V, medium isolation window (~4 amu), MS2 fragmentation with automated selection of five
precursor ions per cycle, and an exclusion window of 0.15 min after two consecutive selections of the
same precursor were used in all cases.

For MS detection, an Agilent 6550 Spectrometer iFunnel quadrupole time-of-flight (QTOF) MS
system working in the ESI+ mode was used. Full scan MS data in the range between 70 and 1500 m/z
were acquired at a scan frequency of 5 Hz using the following parameters: gas T, 200 ◦C; drying gas,
14 L/min; nebulizer, 37 psi; sheath gas T, 350 ◦C; sheath gas flow, 11 L min-1. Mass reference standards
were introduced into the source for automatic MS spectra recalibration during analysis via a reference
sprayer valve using the 149.02332 (background contaminant), 121.050873 (purine), and 922.009798
(HP-0921) m/z as references.

3.6. Peak Table Generation and Metabolite Annotation

Peak table generation was carried out using XCMS software [12]. The centWave method was
used for peak detection with the following parameters: mass accuracy, 20 ppm; peak width, (5,25);
snthresh, 12; prefilter, (5,3000). A minimum difference in m/z of 7.5 mDa was selected for overlapping
peaks. Intensity weighted m/z values of each feature were calculated using the wMean function. Peak
limits used for integration were found through descent on the Mexican hat filtered data. Grouping
before and after RT correction was carried out using the nearest method and 9 s as rtCheck argument.
Finally, missing data points were filled by reintegrating the raw data files in the regions of the missing
peaks using the fillPeaks method. The XCMS CAMERA [13] package was used for the identification
of pseudospectra based on peak shape analysis, isotopic information and intensity correlation across
samples. Each dataset was processed with CAMERA functions in the following order: xsAnnotate,
groupFWHM, findIsotopes, groupCorr and findAdducts using standard parameters.

Identification and elimination of uninformative features was carried for each sample
set independently.

Metabolite annotation was carried out by matching experimentally acquired MS2 spectra with two
MS2 databases: (i) a set of 241,952 experimental and predicted MS2 spectra of metabolites included in
the HMDB without any pre-selection of MS resolution or collision energy and 25,653 MS2 spectra of 8945
metabolites from the METLIN database; and (ii) LipidBlast [11], a collection of in-silico ESI MS2 spectral
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libraries for the identification of neutral and polar lipid species developed from known theoretical
fragmentations and experimental fragmentations and abundance information from MS2 spectra.

Two algorithms were used for annotation. Briefly, the first algorithm uses the HMDB/METLIN
database first to determine for each fragmented feature whether the precursor ion can be (pre)annotated
(m/z accuracy error<20 ppm) as the [M+H]+, [M+Na]+, [M+NH4]+, [M+H+Na]+2, [M+K]+, [M+H+K]+2,
[M+H+ACN]+, [M+H+2ACN]+, [M+Na+ACN]+, [M+2Na-H]+, [2M+H]+, [2M+Na]+, [2M+K]+,
[2M+NH4]+, [2M+H+ACN]+, [2M+Na+ACN]+ or [M+H-H2O]+ adduct of, at least, one metabolite
included in the database. Then, the experimental MS2 spectrum is matched against the spectral
database, after excluding 13C isotopologues. For each potential match, a spectral dot product (dp) and
a reverse dot product (rdp) are calculated as similarity metrics representing the cosine of the angle
between the experimental and reference spectral vectors as described elsewhere [14]. The calculation of
the rdp only included ions present in both the experimental and reference spectra. Then, the geometric
mean was calculated and the identity of the metabolites with the top n (n = 1 in this work) mean dot
products are stored. The geometric mean provides slightly lower values than the arithmetic mean,
except when both values are equal, in which case both means are equal. Figure 7 shows, as an example,
surface plots of the arithmetic and geometric means (top) and the distribution of experimental dp, rdp
and mean values (bottom) obtained using the complete set of 30,980 MS2 spectra acquired in this study.
In situations when the dp is unusually low, the arithmetic mean can compensate a low score by a good
score and so, the geometric mean can be used to reduce false positive annotations.
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Figure 7. (Top) Surface plots of the arithmetic (left) and geometric (middle) means and the difference
between the arithmetic and geometric means (right) of dot and reverse dot products in the 0–1 range.
Bottom) Distribution of experimental dp and rdp values obtained in this study for LC–MS features
annotated based on MS2 data acquired using hmdb-DDA. The color indicates the arithmetic (left) and
geometric (middle) means, as well as the difference between the arithmetic and geometric means (right).

When an LC–MS feature is annotated, features included in the same pseudospectrum
(i.e., CAMERA pcgroup), also detected in the experimental and reference MS2 spectrum (with m/z
accuracy error<20 ppm, and an intensity above the absolute and/or relative threshold), are labelled as
fragments of the annotated metabolite. Parameters for metabolite annotation include: m/z accuracy
in both, precursor and fragment ions (20 ppm); the weight of m/z and intensity for the calculation of
the dp and rdp [15] (in this study, m = 1.2 and n = 0.9 for dp and rdp, respectively, see Equation (1);
the minimum number of matching ions in the experimental and reference spectra (in this study, 4)
detected above user selected absolute and relative intensity thresholds (0.01% of the base peak and
500 AU, respectively), and a minimum mean dp (0.25, in this study). Furthermore, to reduce the effect
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of co-fragmented features in the score, the intensities of peaks present in the experimental but not in
the reference MS2 spectrum were multiplied by 0.5 [16].

Equation (1): dot product between the reference and experimental spectra:

dp =
(
∑

Aexp·Are f )
2∑

A2
exp·
∑

A2
re f

, (1)

where A = (intensity)m(m/z)n.
Metabolite annotation using LipidBlast [11] was carried out using LipiDex as described

elsewhere [15] using 0.01 Da tolerances in both MS (precursor) and MS2 (fragment) data and the
‘LipidBlast Acetate’ library.

3.7. Software and Data

Data acquisition and manual integration was carried out employing MassHunter Workstation
(version B.07.00) from Agilent. Raw data (.D) was converted into mzXML format using ProteoWizard
(http://proteowizard.sourceforge.net/). Peak detection, integration, deconvolution, alignment and
pseudospectra identification, and inclusion lists generation were carried out using XCMS and CAMERA
in R 3.6.1. Data analysis was carried out in MATLAB 2018b (Mathworks Inc., Natick, MA, USA) using
in-house written scripts. Data and functions for annotation and data preprocessing scripts used in this
work are available from the authors. Peak tables and MS2 data are also accessible via the Mendeley
Data repository (https://data.mendeley.com/) under DOI:10.17632/fnzbxmkv83.1.

4. Conclusions

In this work, we developed and compared targeted and untargeted DDA methods for metabolite
annotation and compared results obtained in the frame of a QA/QC pipeline. The objective was to
bring some light to the discussion concerning the selection of appropriate MS2 spectral acquisition
methods providing a fast coverage at a low cost. Results obtained show that data acquired during the
initial system conditioning enables a fast discrimination of relevant metabolic features and a more
efficient selection of precursors. Furthermore, the iterative use of targeted DDA with inclusion lists of
(pre)annotated metabolites further refines the list of precursor ions, reducing the number of LC runs
required to achieve a given MS2 coverage of known metabolites. The improvement in the efficiency
of the precursor efficiency provided by both types of targeted DDA facilitates their implementation
within standard QA/QC pipelines, even during system conditioning.

Publicly available data repositories such as the HMDB, METLIN or KEGG are constantly expanding
and hence, the usefulness of the integration of such databases for automated DDA and peak annotation
within untargeted metabolomics workflows may gain importance. However, an important limitation
of using inclusion lists based on (pre)annotated metabolites for targeted DDA is that it excludes the
acquisition of MS2 data of metabolites not included in the database at the time of the analysis. Thus,
a routine application of targeted DDA methods such as xcms-DDA within standard metabolomic
LC–MS apipelines, would enable the future re-analysis of data sets to improve and assess metabolite
annotation, facilitating the reuse and joint analysis of multiple independent experiments, saving
significant resources and leading to a more effective use of open science and collaborative work.
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