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Abstract
Fermi problems are real-context estimation tasks that are suitable for introducing open-
ended problems in primary school education. To ensure their effective introduction in the 
classroom, teachers must have adequate proficiency to deal with them. One of the key 
aspects of problem-solving proficiency is flexibility, but there are few studies on flexibility 
in solving real-context problems. This study, based on an analysis of the errors made by 
224 prospective teachers when solving a Fermi problem sequence, establishes performance 
levels. In addition, we define levels of flexibility in using multiple solutions across the 
sequence, which allows us to address the main objective: to study the relationship between 
performance and flexibility. We found that there are significant relationships between flex-
ibility levels and the number and severity of errors made. Encouraging flexibility in pro-
spective teachers may be an efficient way to improve their performance in solving real-
context problems.

Keywords Estimation · Real-context · Flexibility · Problem-solving · Errors · Pre-service 
primary teachers · Fermi problems

The flexible use of multiple strategies is an important aspect that could enable differentiat-
ing levels of problem-solving performance. However, studies addressing the relationship 
between flexibility and performance in the framework of real-context problems are scarce 
and qualitative in nature (Govender, 2020; Schukajlow et al., 2015). Fermi problems are 
real-context problems that require solvers to make assumptions about a situation and to 
estimate relevant quantities before engaging in often simple calculations (Ärlebäck, 2009). 
These tasks are particularly suitable to introduce real-context open-ended problem-solving 
in primary school education (Albarracín & Gorgorió, 2019) because they require relatively 
simple arithmetic procedures and they are therefore accessible. Ferrando et al. (2020) found 
that, when solving Fermi problems, pre-service teachers provide different solution strate-
gies to similar problems depending on features of the problems. This is what Elia et  al. 
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(2009) call flexibility in problem-solving. Heinze et al. (2009) highlighted that the flexible 
use of strategies enables individuals to solve problems quickly and accurately; indeed, it is 
a characteristic of teachers’ problem-solving proficiency (Chapman, 2015). Actually, Sch-
oenfeld (1982) stressed that successful performance in problem-solving depends on select-
ing suitable strategies and discarding inappropriate approaches. The present study explores 
the relationship between pre-service teachers’ performance and flexibility when solving 
Fermi problems. This is an important issue that can contribute to providing insight into 
real-context problem-solving proficiency.

1  Theoretical framework

In order to study the relationship between flexibility and performance in real-context prob-
lem-solving, we use Fermi problems. We begin with a description of the characteristics of 
these open-ended problems and we outline the previous studies that lead us to identify and 
classify the multiple strategies used to solve them. Characterising Fermi problems as mul-
tiple solution tasks allows us to address flexibility in problem-solving, which we explain 
in the second subsection. Finally, in the third subsection, we address the notion of perfor-
mance in problem-solving and, in particular, we focus on its analysis for Fermi problems 
through the study of errors. The theoretical framework will allow us to pose the research 
questions on the relationship between flexibility and performance for Fermi problems.

1.1  Fermi problems

Fermi problems are non-numerical problems, in which the only information provided is 
the element whose number we want to estimate and the real context in which these ele-
ments are located. In order to solve Fermi problems, it is necessary to make an argument 
that explains an estimation based on a real situation (Ärlebäck, 2009). According to Srira-
man and Knott (2009), Fermi problems foster solvers to make educated guesses. The physi-
cist Enrico Fermi gave a classic example of this type of problem. He asked his students, 
“How many piano tuners are there in the city of Chicago?” (Efthimiou & Llewellyn, 2007). 
To answer this question, it is first necessary to clearly identify the relevant variables of 
the problem (inhabitants of the city of Chicago, proportion of families who own a piano, 
etc.) based on an interpretation of the real context in which it is formulated. Next, a solver 
should establish a mathematical strategy to obtain a numerical solution. Finally, the solver 
should interpret and validate that solution in order to, if needed, tackle a more complex 
resolution to obtain a more accurate estimate.

Fermi problems are open-ended problems, enabling different approaches that can lead 
to different solutions. Achmetli et al. (2019) identified three ways to differentiate the solu-
tions of a real-context problem: the first is to establish different hypotheses that usually 
lead to different outcomes; the second is to apply different mathematical strategies, which 
usually led to the same mathematical outcome; and the third is the combination of the pre-
vious two. Relying on the third perspective, Albarracín et al. (2021) studied the solution 
of activities such as those used in the present work, obtaining the solution spaces (Leikin 
& Levav-Waynberg, 2008) that allow classifying different solution strategies. The solution 
strategy categorisation presented by Albarracín et al. (2021), based on the productions of 
secondary school students, was extended for pre-service teachers (Ferrando et al., 2021). 
A categorisation of all possible solution strategies of these Fermi problems allows us to 
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consider them as multiple solution tasks (Levav-Waynberg & Leikin, 2012), which makes 
it possible to monitor which solutions are suitable for a particular task and to measure 
whether the problem solvers know and use more than one solution strategy when they face 
a sequence of Fermi problems.

Our research employs sequences of Fermi problems, following Ärlebäck and Doerr’s 
(2015) idea of using them to facilitate the development of problem-solving proficiency. 
In order to study flexibility, the design of the sequence promotes changes in the solution 
strategies across four problems. The activities included in the sequence of Fermi problems 
require an argued estimate of the number of elements in a bounded enclosure. To design 
the sequence, and following the theory of variation (Ko & Marton, 2004), we rely on the 
contrast between relevant contextual features that had been studied in previous works. In 
prior work, Ferrando et al. (2020) found that some characteristics of the context in which 
the problem is formulated (namely the size of the enclosure, the size of the elements, and 
their distribution in the enclosure) influence the solution strategies proposed by prospec-
tive teachers.

1.2  Flexibility in problem‑solving

Researchers on problem-solving strategies use the term “flexible” with different meanings 
(Heinze et al., 2009, p. 536). Taking the broadest definition, flexible strategy use refers to 
individuals being able to choose between different solution strategies when dealing with a 
mathematical activity. Flexibility is an important mathematical skill; indeed, it is necessary 
for students to acquire the ability to adapt their solution strategies to the characteristics of 
the task or context (Heinze et al., 2009). In the problem-solving framework, studies on the 
flexible use of multiple solution strategies found it essential for building deep and con-
nected knowledge (Levav-Waynberg & Leikin, 2012; Star & Rittle-Johnson, 2008). Most 
studies on the influence of the development of multiple solution strategies and their flexible 
use have focused on intra-mathematical tasks (Levav-Waynberg & Leikin, 2012; Star & 
Rittle-Johnson, 2008; Threlfall, 2002). Elia et al. (2009) developed a study about flexibil-
ity with primary school students who solved a sequence of three non-routine intra-mathe-
matical problems. In their work, these authors defined two types of flexibility: inter-task 
flexibility (strategy switching between tasks) and intra-task flexibility (strategy switching 
within a task). These authors found that students who demonstrated inter-task flexibility 
were more successful than those who persevered with the same strategy. However, these 
authors did not find  relationship between intra-task flexibility and success. Subsequent 
studies confirmed these findings (Arslan & Yazgan, 2015; Keleş & Yazgan, 2021).

 In contrast, there are few empirical studies linking the development of multiple solution 
strategies and performance in real-context problem-solving (Achmetli et al., 2019; Schu-
kajlow & Krug, 2014; Schukajlow et al., 2015). There is also little research on pre-service 
or in-service teachers’ flexibility (Berk et al., 2009; Ferrando & Segura, 2020; Lee, 2017; 
Leikin & Levav-Waynberg, 2007). It is important to learn more about prospective teachers’ 
flexibility because it could provide information about their proficiency in problem-solving. 
Following Elia et al.’s (2009) definition of inter-task flexibility, in this paper, we consider 
that a solver shows flexibility across a Fermi problem sequence when switching strategies 
in any of them (Elia et al., 2009). As we will explain in the methodology section, the num-
ber of strategy changes throughout the sequence allows us to define flexibility levels. We 
will study the relationship between this type of flexibility and prospective teachers’ perfor-
mance in problem solving.
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1.3  Teachers’ problem‑solving performance

From a systematic review of the literature on problem-solving, Chapman (2015) high-
lighted the importance of teacher knowledge of problem-solving. Some researchers 
suggest that teachers should experience problem-solving from the problem solver’s per-
spective before they can adequately approach teaching it (Thompson, 1985). In many 
educational programmes, the importance of teaching mathematics through real-context 
problems is emphasised (Borromeo Ferri, 2018; Cevikbas et al., 2022; Kaiser & Srira-
man, 2006; MEFP, 2022; Schukajlow et al., 2021). It is therefore essential to study pro-
spective teachers’ competence as real-context problem solvers in order to assess their 
specialised content knowledge about these kinds of tasks (Ball et al., 2008).

Schoenfeld (1982) indicated that successful problem-solving performance relies on 
two conditions. On the one hand, it is necessary to have a knowledge of the basic tech-
niques of problem-solving; in addition, it is necessary for the solver to have a “manage-
ment strategy” for selecting appropriate approaches and discarding unsuccessful ones. 
In their study with in-service teachers, Copur-Gencturk and Doleck (2021a) analysed 
performance in solving verbal problems. In order to measure problem-solving perfor-
mance (which they refer to as “strategic competence for word problems”), these authors 
defined three levels based on the ability to devise a valid strategy and to execute this 
strategy without mathematical errors in order to obtain a correct answer.

In contrast to verbal problems, Fermi problems are open-ended tasks and their solu-
tion depends on the assumptions and simplifications made in developing a model of 
the situation. Consequently, it is not easy to define the solver’s performance based on 
the accuracy of the estimation because, in contrast to the verbal problems analysed by 
Copur-Gencturk and Doleck (2021a), there is no correct answer for Fermi problems. In 
the framework of real-context problems, Moreno et al. (2021) developed a qualitative 
study of performance. In their work, these authors did not carry out the analysis by 
comparing the productions with a given solution, but by analysing their internal coher-
ence, and identifying errors in the solution strategy. Studying errors made by pre-ser-
vice teachers when solving real-context problems can be useful to measure their per-
formance level (Klock & Siller, 2020). Based on a review of previous studies (Klock & 
Siller, 2020; Moreno et al., 2021), Segura and Ferrando (2021) established a system of 
errors specific to Fermi problems that is the basis for the categorisation of errors used 
in this study. Thus, within this system of errors, it is possible to differentiate between 
errors that impede devising a valid strategy (strategic errors) and mathematical errors. 
Following Copur-Gencturk and Doleck’s (2021a) approach, the analysis of the errors 
made throughout a sequence of Fermi problems will allow us to define three levels of 
performance.

Drawing on the aspects discussed in the theoretical framework, we focus on studying 
the relationship between flexibility and performance in solving Fermi problems. Specifi-
cally, we aim to address four research questions related to pre-service teachers’ behav-
iour when solving a sequence of four Fermi problems:

Research question 1. What is the level of performance (according to whether or not 
they make strategic or mathematical errors) of prospective teachers in solving Fermi 
problems?
Research question 2. What level of flexibility do future teachers show when faced 
with a sequence of Fermi problems?
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Research question 3. Is there a significant correlation between prospective teachers’ 
flexibility and performance across a sequence of Fermi problems?
Research question 4. Focusing on those prospective teachers who do not make strategic 
errors across the sequence, do those who demonstrate flexibility make fewer mathemati-
cal errors?

This is an exploratory study. The answers to the first two questions are a descriptive 
analysis, while we will approach the last two from an inferential analysis that will allow 
us to identify the associations between flexibility and performance and between flexibility 
and number of errors.

2  Methodology

2.1  Description of the participants

The study was carried out at the Faculty of Education of the University of Valencia (Spain); 
all the participants were pre-service teachers in the Bachelor’s in Primary Education. In 
Spain, teacher training is a four-year university degree during which students receive theo-
retical and practical training that enable them to work as primary school teachers (with stu-
dents between the ages of 6 and 12) after graduation. During the first three academic years 
of the program, pre-service teachers learn mathematics in a 90 hour course that includes 
content in arithmetic, geometry, statistics, probability, and algebra. In addition, they com-
plete a 60 hour course on the teaching of arithmetic and problem-solving. At the time of 
data collection, all the participants had completed these two components and were starting 
the last component related to the didactic-mathematical content. Participation was com-
pulsory, because the activity was part of a mandatory course. The sample consisted of 224 
students in their last year of their program; their average age was 23.9 years and 72% were 
female. This sample represents 25% of the students in this course at the university where 
we carried out the research. While this is a convenience sample drawn from six different 
groups of students in the program, it is representative of the population of future teachers 
who are about to complete their studies in this program because the groups of students in 
this faculty are heterogeneous in terms of gender, social origin, or academic level.

2.2  Data collection

This is an observational study (Lodico et al., 2010). The two authors were also the teach-
ers of the participating pre-service teachers, and were responsible for data collection. Data 
were collected in two consecutive years (113 participants in 2017 and 111 in 2018), rep-
licating each time the same data collection with different groups of students. All partici-
pants in the study have the same background even though they belong to different groups, 
because the design of initial teacher training in Spain requires that all future teachers 
receive the same training in subjects with didactic-mathematical content.

2.2.1  Design of Fermi problem sequence

The instrument used in the study for data collection was a sequence of Fermi problems. 
The sequence consisted of four tasks requiring the estimation of a large number of elements 
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in a rectangular area, large enough for the solver not to obtain the estimate directly. The 
problems posed in the sequence were set in real locations in the Faculty of Education. 
Although the context of the problems was familiar to all participants, a picture accompa-
nied each problem statement. To design the sequence, we followed the theory of variation 
(Ko & Marton, 2004) and the contrast between the contextual variables had been studied 
with similar problems in previous works (Ferrando et al., 2020, 2021). The contrast in a 
sequence of problems helps the solver to discern a new aspect of the real situation a prob-
lem poses through comparison with another problem that has not changed.

In these problems, students were asked to estimate the number of people (P1), the num-
ber of tiles (P2), the number of blades of grass (P3), and the number of cars (P4), in rectan-
gular enclosures with different dimensions (see Fig. 1). The problems differed in the size of 
the elements (people, tiles, blades of grass, and cars), the total space, the regularity or not 
of the elements’ shape (people and tiles are considered regular), and the order or disorder 
in the arrangement of the elements (tiles and cars are ordered in rows and columns). Fer-
rando et al. (2020) justified the value of these variables (dimensions, regularity, and shape) 
for the Fermi problems used in this sequence. Figure 1 outlines the methodological design 
of the study. In the following sections, we provide details about the procedure for data col-
lection and analysis of the solutions, and the criteria and categorization of the participants 
according to their flexibility and performance across the Fermi problem sequence.

2.2.2  Data collection procedure

We conducted data collection during a class session in the last week of September (at the 
beginning of the academic semester). We presented the sequence of activities to the stu-
dents as an activity in  the Didactics of Geometry and Measurement course. Because the 
data collection took place at the beginning of the semester, it ensured that the participants 
were not familiar with estimation strategies in a real context. However, we asked them to 

Fig. 1  Description of methodological design of the study
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indicate whether they had previously solved similar problems. None of the participants in 
the study reported prior knowledge of Fermi problems.

During a 90  minute class session, we provided each participant with the written state-
ments of the four problems. During the first ten minutes, we explained to the participants that 
they were going to face a sequence of four tasks, emphasising that (a) in each problem, they 
should propose a solution, clearly indicating their strategy and the measures they would need 
to obtain the estimation; (b) that they should work individually using only paper and pencil to 
explain their procedures in written form and may use drawings or diagrams; and (c) that they 
did not need to obtain a numerical solution but rather to explain how to obtain the requested 
estimate. Once the data collection from the 224 participants was completed, we reviewed the 
solutions to verify that all students had given an answer to the four problems in the sequence. 
We collected 896 solutions and scanned them to facilitate the analysis (see Fig. 1).

2.3  Analysis of solutions

The analysis of the 896 solutions was done in two phases. For each problem, we first ana-
lyzed and categorized the errors made by the participants. Second, we analyzed and cat-
egorized the strategies proposed by the participants.

2.3.1  Error analysis

We relied on Segura and Ferrando’s (2021) error system to code each of the solutions. We 
coded two categories of errors: errors that impeded the devising of a valid strategy, and math-
ematical errors. To understand the error analysis, we relied on participants’ descriptions of the 
strategies and measurements needed to obtain an estimate, which we requested of students. That 
is, we did not expect a numerical solution, but rather their explicit reasoning. Thus, in identify-
ing errors, we limited ourselves to analysing the internal consistency of the solution written 
by each participant and did not attempt to assess the quality of their thinking. Table 1 presents 
the description of the two categories of error used in the analysis of the collected solutions. To 
ensure consistency in the analysis and to avoid missing errors, the two authors independently 
coded the errors in 224 solutions. After pooling the results, the two authors discussed the dis-
crepancies and reached a consensus and, finally, aggregated the results of the analysis. 

2.3.2  Analysis of solution strategies

Following the categorisation of strategies set out in Albarracín et al. (2021), we established 
four categories: linearisation, base unit, density, and incomplete. Table 2 describes the cat-
egories and illustrates them with an example.

Once we fixed the categories, three researchers conducted the coding of solutions by 
strategy. In order to avoid discrepancies and to warrant a reliable analysis, we follow the 
procedure described by Denzin (2009): two researchers independently coded the solutions 
of the 224 participants. To analyse the reliability, we made a concordance table and cal-
culated Cohen’s kappa (Landis & Koch, 1977), obtaining κ = 0.81. This is a good value. 
To clarify the coding criteria in cases of discordance between the two researchers, we dis-
cussed each case with a third researcher expert in this topic. Discussions during the writing 
of this paper led us to revise our initial coding, leading us to code as incomplete those solu-
tions based on exhaustive counting strategy (Albarracín & Gorgorió, 2014).
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Table 1  Description of types of errors used in solution analysis

Type of error Example Description

Errors that impede 
devising a valid 
strategy (strategic 

The strategy 

described does not 

allow obtaining an 

errors) can appear

during simplification 

or the structuring 

phase of the real 

situation. That is, they 

appear when the 

solver does not 

identify all the 

variables or all the 

relevant aspects of the 
real situation that are 

necessaries for 

obtaining a valid 

strategy. We also 

include in this 

category those 

solutions that only 

propose counting 

because this is not a 

valid strategy since it 

cannot lead to a 
solution.

Solution proposed by a participant to problem P1 –
People. Translation: “We need to know the total size 

of the porch. We would need to measure the width and 

length to get the total m
2.”

estimate of the 

number of people 

that can fit in the 

porch. The

participant only 

proposes to 

calculate the area 

of the enclosure.

Solution proposed by a participant to problem P2 –
Tiles. Translation: “First, we would measure the width 

and length of one of the tiles, and once we knew this, 

we would measure the distance between the faculty of 

education building and the gymnasium.”

The solver has 

identified the two 

variables needed to 

develop a strategy 

to solve the 

problem, but has 

not indicated that 

to obtain the 

estimate it is 
necessary to make 

a measurement 

division, so the 

strategy has not 

been fully 

developed in the 

written solution. 

Errors during 
mathematical work
(mathematical errors) 

can relate to 

deficiencies in 

measurement skills: an 
error of perception of 

the quantity involved, 

for instance, confusing 

length and area. We 

identify these errors 

by the improper use of 

measurement units, 

such as centimetres 

instead of square 

centimetres. Errors 

related to lack of skill 
in calculation

procedures also occur 

during mathematical 

work.

Solution proposed by a participant to problem P3 –
Grass. Transcription: “To obtain an estimate, we 

would calculate the area, in this case of the rectangle, 

= × , to know the total surface metres. Next, 

this result would be turned into a cm, as we assume 

that 1 blade of grass measures 25 cm. Following that, a 

rule of three would be applied, in which if we assume 
that the total metres are 

1500 cm 25 cm, 

1 blade x. This would give us the total number of 

blades.

The solver makes 

an error in 

reasoning from the 

measurement of the 

space occupied by 

a blade of grass 
using centimetres.

Solution proposed by a participant to problem P1 –
People. Transcription: “- Measure, in m2, the porch. 

- Measure, in m2, the space of a person. 

- Make a multiplication. E.g., 30 m2, 1pers: 0.2 m2 > 

30 x 0.2”

In this solution, the 

participant 

confuses 

multiplication and 

division. 
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Table 2  Description of solution strategies

Coded strategy Example Description

Linearisation P2—Tiles solution: “First of all I would need to count 
the number of tiles on one side of the area occupied 
by these tiles [of the rectangular area between the 
gymnasium and the teacher training college] and 
then those on the other perpendicular side, and 
finally multiply them”. [En primer lugar, tendría 
que contar el número de baldosas de un lado del 
área ocupada por estas baldosas y luego las del 
lado perpendicular, y finalmente multiplicarlas.]

The solver establishes a model of 
the elements organised in rows, 
following a grid distribution 
model (Albarracín & Gorgorió, 
2014). Once the solver obtains 
the linear estimate of the ele-
ments that fit in a row/column, 
Cartesian product (rows by 
columns) leads to the estimate of 
the total number

Base unit P4—Cars solution: “First we would calculate the 
surface area of the car park by multiplying the 
width by the length. Then we would calculate how 
much space a car occupies. Finally, knowing the 
area occupied by one car, we would divide the 
total area by the area occupied by one car”. [Prim-
ero calcularíamos la superficie del aparcamiento 
multiplicando ancho por largo. Luego calcularía-
mos el espacio que ocupa un coche. Por último, 
conociendo la superficie que ocupa un coche, 
dividiríamos la superficie total por la superficie de 
un coche.]

The process behind this solution 
strategy is how to cover the total 
surface area using the area of the 
element as the unit of measure-
ment: to do this, the solver has 
to divide the measurement of the 
total area by the measurement of 
the area occupied by the element

Density P3—Grass: “Firstly, I would measure one cm long 
and one cm wide and mark it out, so that we can 
count how many blades are in one square centi-
metre. Secondly, I would measure the width and 
length of the whole lawn to find out the total area 
in square centimetres. Finally, I would multiply the 
number of blades in 1  cm2 by the total area”. [En 
primer lugar, mediría un centímetro de largo y uno 
de ancho y lo marcaría, así contaré cuántas hojas 
hay en un centímetro cuadrado. En segundo lugar, 
mediría la anchura y la longitud de todo el césped 
para averiguar la superficie total en centímetros 
cuadrados. Por último, multiplicaría el número de 
hojas en 1 cm2 por la superficie total.]

This solution strategy bases on 
delimiting a unit area in order 
to estimate easily the number of 
elements per unit area, and then 
reasoning from proportionality

Incomplete P3—Grass solution: “I could do the same, but here 
I cannot calculate the area of a blade because 
they have very different shapes and sizes.”[Podría 
hacer lo mismo, pero aquí no puedo calcular el 
área de una brizna porque tienen formas y tama-
ños muy distintos]

There are those solutions that are 
in one of two cases: they do not 
answer the problem question; or 
they do not develop a valid solu-
tion strategy. In the latter case, 
this solution necessarily includes 
an error that impedes devising a 
valid strategy. In the solution of 
the example we observe that the 
participant attempts to apply the 
Base unit strategy used in prob-
lems P1 and P2, but the irregular 
size and shape of the elements 
prevents completing a strategy 
that involves estimating their area
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2.4  Categorization of performance and flexibility across the Fermi problem 
sequence

The analysis of the solutions described previously allowed us to categorize participants’ 
performance and flexibility across the sequence.

2.4.1  Analysis of performance across the sequence

Error analysis of participants’ solutions made it possible to define performance across the 
Fermi problem sequence. Following Copur-Gencturk and Doleck (2021a), we first consid-
ered whether the participants devised a valid solution strategy, and then we evaluated the 
mathematical work, which generated three levels of performance for coding the partici-
pants’ performance across this sequence.

– Performance across the sequence is low when the participant proposes at least one solu-
tion with an error that impedes devising a valid strategy, that is, an incomplete solution. 
In this case, participant’s performance level is coded as 0.

– Performance across the sequence is basic when the participant does not make errors that 
impede devising a valid strategy in any of the solutions, but there is at least one solution 
containing a mathematical error. This participant’s performance level is coded as 1.

– Performance across the sequence is high when the participant makes no errors in any of 
the solutions to the four tasks. This participant’s performance level is coded as 2.

2.4.2  Analysis of flexibility across the sequence

After the classification of solution strategies (linearisation, base unit, and density), to analyse 
flexibility across the sequence of Fermi problems, we used the number of strategy changes 
throughout the sequence. Based on the qualitative analysis of the solutions of each of the 224 
participants, we assigned each solution a code of up to four digits according to the proposed 
solution strategy: incomplete = 1, linearisation = 10, base unit = 100, and density = 1000. By 
adding the codes of the four solutions of each participant, we obtained a four-digit number 
that identified the different strategies used by each participant and quantified their strategy 
changes. Thus, we established the following levels of flexibility across the sequence:

• Non-flexible. Includes prospective teachers who proposed the same solution strategy in 
all completed tasks

• Moderately flexible. Includes those who proposed two different valid solution strate-
gies, but switched solution strategy only on one problem

• Very flexible. Includes those who proposed two or more different valid solution strate-
gies and switched solution strategy in two or more problems

2.5  Variables involved in the study and statistical analyses performed

In this study, we first analysed each participant’s solutions to the four problems in the sequence. 
This categorisation led to two nominal variables that refer to the solutions: types of errors and 
types of solution strategies. In addition, from this analysis of errors in the solutions, we also 
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obtained a quantitative variable, the number of errors made by each participant throughout the 
sequence. Using these nominal variables, we categorised participant’s performance and flexibil-
ity across the sequence by constructing two ordinal variables: performance (coded as 0, 1, or 2) 
and flexibility (coded as non-flexible, moderately flexible, and very flexible). To answer the first 
two research questions, we conducted a descriptive analysis. To study performance, we relied 
on the results relating to performance level as these depend directly on the error analysis. To 
study flexibility across the sequence, we relied on the ordinal variable flexibility.

To answer to the other two questions, we used inferential analysis. We used a Chi-
square test and measured its strength with the Spearman’s rank correlation coeffi-
cient  because we wanted  to identify whether there is a significant relationship between 
two ordinal variables levels of flexibility and performance. Finally, to answer the fourth 
question, we conducted two parallel analyses, one based on the data from participants 
with low performance (those who did not complete the sequence) and the other with the 
data from the rest of the participants. In both cases, we compared whether the distribution 
of mathematical errors made by participants was different according to their flexibility 
level. Because the distribution is not normal, we used the non-parametric Kruskal–Wallis 
test and Dunn’s multiple comparison test to determine which specific means were signifi-
cant with respect to the others.

Figure 2 shows an outline of the variables analysed and the research questions posed in 
this study.

3  Results

The results are organised into four sections to respond to each of the research questions.

3.1  Pre‑service teachers’ performance across the sequence

To study performance, we analysed the solutions and identified for each one the type of 
errors made and their frequency. When analysing the solutions, we counted and coded 
each and every error made; so we were  not actually quantifying wrong solutions, but 

Fig. 2  Description of variables and research questions addressed in this study
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rather overall errors. From this analysis, we identified 461 errors across all the solu-
tions, 155 (34%) of which were errors that impeded devising a valid strategy (strategic 
errors) and 306 (66%) were errors during the mathematical work (mathematical errors). 
Within the strategic errors, we found 68 out of 155 (44%) errors related to not identi-
fying some relevant variable of the real situation. The other 87 (56%) strategic errors 
corresponded to solutions not including neither quantifying the relationships between 
variables (see Table 1). Regarding mathematical errors, we found that most, 67% (204 
out of 306), corresponded to deficiencies in measurement procedures. In particular, 177 
of these 204 errors were related to shortcomings in the perception of quantities (e.g., 
confusing area and length), and 25 were related to an inadequate use of measurement 
units. The remaining 102 out of 306 (33%) were related to incorrect calculation proce-
dures (e.g., confusing multiplication and division). Table 3 shows the results of the error 
analysis for each of the four problems.

In terms of prospective teachers’ performance across the Fermi problem sequence, we 
found that 90 out of 224 (40%) participants demonstrated low performance level, as they 
had solutions with errors that impeded devising a valid strategy. We found that 77 out of 
224 (35%) prospective teachers demonstrated basic performance level, as they only made 
mathematical errors but managed to develop their strategies. Finally, 57 out of 224 (25%) 
participants did not make any errors; that is, they demonstrated high performance level.

3.2  Pre‑service teachers’ flexibility across the sequence

In terms of the strategies proposed by pre-service teachers, we found that the most frequently 
used strategy was base unit with 45% (407 out of 896), closely followed by density and lin-
earisation, each at 19% (170 and 166 out of 896, respectively). In addition, 17% (153 out of 
896) of solutions were incomplete. Regarding flexibility, we found that 66 out of 224 (30%) 
of the participants demonstrated a very flexible use of strategies across the Fermi problem 
sequence and 89 out of 224 (40%) demonstrated a moderate flexible use of strategies. Thus, 
less than one-third of the participants (69, that represent 31%) showed a non-flexible use.

3.3  Relationship between flexibility and performance level across the sequence

Table  4 shows the distribution of the participants by their level of flexibility and 
their performance level exhibited in their solutions.  In the first row, we show the 

Table 3  Distribution of strategic and mathematical errors by problem

Problem Strategic errors Mathematical errors

Identification of variables Relation 
between vari-
ables

Measurement procedures Calculation 
procedures

P1-People 13 27 62 29
P2-Tiles 8 21 74 17
P3-Grass 36 22 44 28
P4-Cars 11 17 24 28
TOTAL 68 + 87 = 155 204 + 102 = 306
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number (and the percentage relative to flexibility level) of prospective teachers who 
made errors that impede devising a valid strategy and therefore had some incomplete 
solution (low performance) by flexibility level. In the second row, we show the num-
ber (and the percentage) of pre-service teachers who succeeded in completing all the 
tasks but made mathematical errors (basic performance) by the flexibility level. In 
the third row, we show the number (and the percentage) of prospective teachers who 
completed all the tasks without errors (high performance) by the flexibility level.

The relationship between flexibility and performance was statistically significant 
(χ2  (4,  224) = 58.86, p < 0.001) suggesting that both ordinal variables are related. The 
Spearman’s rank correlation coefficient (r(222) = 0.47,  p < 0.001) indicated that there 
was  a significant moderate positive relationship between flexibility and performance. 
That is, the deviation of the frequency of solvers who were very flexible with high per-
formance was much higher than expected (+ 90.5%), and the deviation of the frequency 
of very flexible solvers with basic performance was higher (+ 36.6%).

3.4  Flexibility and number of mathematical errors

Overall, we identified a total number of 461 errors; however, when we crosschecked 
these data with the results of the flexibility analysis, we found differences in the number 
and type of errors among the flexibility levels. In Table 5, we show the distribution of 
errors by type (strategic or mathematical) and by performance and flexibility levels.

Because errors that impede devising a valid strategy (strategic errors) determine low 
performance level, the significant and positive relationship between flexibility and perfor-
mance levels indicates that strategic errors are related to low levels of flexibility. However, 
errors during mathematical work (mathematical errors) give us more information about 

Table 4  Distribution of the 
N = 224 pre-service teachers 
according to flexibility and 
performance levels of their 
solutions

Note. Level 0. Low: student made errors that impeded devising a valid 
strategy (then, leading to at least one incomplete solutions). Level 1. 
Basic: student succeeded in completing all the tasks but made math-
ematical errors. Level 2. High: students completed all the tasks with-
out errors

Performance Level Flexibility Level

Non-flexible Moderately flexible Very flexible

Level 0. Low 45 (65%) 42 (47%) 3 (5%)
Level 1. Basic 15 (22%) 31 (35%) 31 (47%)
Level 2. High 9 (13%) 16 (18%) 32 (48%)

Table 5  Distribution of errors made by participants depending on their performance and flexibility levels 
(N = 461)

Non-flexible Moderately 
flexible

Very flexible

Level 0. Low Strategic errors 91 61 3
Mathematical errors 83 67 6

Level 1. Basic Mathematical errors 35 69 46
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how pre-service teachers solve the sequence of Fermi problems. Thus, a focus on those 
pre-service teachers who completed the sequence (i.e., their performance is basic or high; 
they have not made strategic errors) allows us to investigate whether flexibility is associ-
ated with a decrease in mathematical errors.

We found that, among these n = 134 solvers, the average error rate per solver according 
to flexibility level was 1.46 errors per non-flexible solver, 1.47 errors per moderately flex-
ible solver, and 0.73 errors per very flexible solver. The Kruskal–Wallis H test was signifi-
cant (H(2, n = 134) = 6.61, p = 0.037) and the post hoc Dunn’s test indicated that the mean 
rank was statistically significantly different between very flexible and non-flexible solvers 
(p < 0.05) and between very flexible and moderately flexible solvers (p < 0.05). There were 
no significant differences between non-flexible solvers and moderately flexible  solvers 
regarding the number of mathematical errors. Therefore, the distribution of mathematical 
errors among very flexible prospective teachers with performance level basic or high was 
significantly lower than in the case of moderately flexible and non-flexible ones. A similar 
analysis with the n = 90 prospective teachers with low performance level revealed no sig-
nificant differences (H (2, n = 90) = 0.58 and p = 0.75).

4  Discussion

We found that three-fourths of the pre-service teachers who participated in this study made 
errors when solving Fermi problems; that the solutions of more than two-thirds of the par-
ticipants suggested that they were moderately or very flexible in solving Fermi problems; 
that there was a significant relationship between flexibility and performance; and that when 
studying in detail the number of mathematical errors made, flexibility was associated with 
a reduction in such errors. We will now interpret these results according to each of the 
research questions.

4.1  Pre‑service teachers’ errors and performance across the sequence

Our analysis of participants’ solutions allowed us to categorise their performance level (see 
Fig. 1) using two types of errors, strategic errors and errors during mathematical work.

In our study, we found that 66% of the errors made were mathematical errors. Among 
the 306 mathematical errors committed, 204 were  errors related to measurement pro-
cedures. To solve Fermi problems, it is necessary to make arguments using estimations 
involving measurements of quantities (e.g., the area of the enclosure or the space occupied 
by an element). Andrews et al. (2021) pointed out that estimation could appear in four dif-
ferent ways in mathematics teaching and learning. The problems discussed here are in line 
with measurement estimation, although estimation of numbers is also involved. Indeed, 
although the aim of the activity is to obtain a quantity estimate, this necessarily requires 
estimating measurements of the enclosure and, in some cases, of the size of each element. 
Therefore, measurement and estimation procedures are relevant in the Fermi problem-
solving process as is the case in many real-context problems (Hagena, 2015). Prior work 
on estimation strategies developed by teachers, based on intra-mathematical tasks (Copur-
Gencturk, 2022) or verbal problems (Copur-Gencturk & Doleck, 2021b), shows that math-
ematical errors are due to shortcomings in calculation procedures. This explains why errors 
made during mathematical work when solving Fermi problems are related to difficulties in 
measurement or calculation procedures.
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If we look at the results at Table 3, which shows the distribution of errors in each prob-
lem, we see that problems People and Tiles have a higher number of mathematical errors. 
Going deeper into these data, we find that errors related to measurement were quite fre-
quent, especially in the Tiles problem, where some solvers estimated the number of tiles 
that fit in the distance separating the gymnasium and the education building, instead of 
estimating the number of tiles in the area between both buildings. Ferrando et al. (2021) 
found that the most frequent strategy in this problem was linearisation (see Table 2). This 
strategy involves working with distances (rows of tiles), and when solvers used linearisa-
tion, they frequently estimated the number of tiles in a row instead of doing an estimation 
for the whole area. Measurement errors also appeared in People and Grass, where, trying 
to apply a base unit strategy, some solvers reasoned using the width of a person or a blade 
of grass instead of reasoning using the area covered by these elements. For example, in the 
problem People, a solver proposed dividing the area of the porch by the width of a person. 
In some cases, solvers also referred to volume instead of area. Although these errors did 
not impede the development of a strategy, they revealed shortcomings in measurement pro-
cedures (Segura & Ferrando, 2021). These errors suggest weaknesses in future teachers’ 
ability to visualise and interpret spatial facts and relationships (Lester, 1994).

In the results showed at Table 3, we see that errors related to calculation procedures 
were considerably less frequent than measurement errors. These errors are mostly inver-
sion errors; this type of error appeared, for example, in some solutions based on Base 
unit strategy, in which the solver multiplied the total area by the area of the unit element 
instead of dividing. In other cases, we found reversal errors, for instance, when a solver 
proposed dividing a car’s area by the parking area. Reversal errors also appeared in some 
solutions based on density strategy, when solvers considered density as a ratio between 
a unit area and a number of elements. Inversion errors and reversal errors are related 
to density and base unit strategies, which explains why the number of errors related to 
mathematical procedures was lower in the Tiles problem. Indeed, in this case, the most 
common solution strategy was linearisation.

Among the solvers who proposed a valid solution strategy for all the problems of the 
sequence–performance level basic or high, more than one-half (77 out of 134, 57%) made, 
at least, one mathematical error across the sequence. If we focus on strategic errors lead-
ing to incomplete solutions, we find them in 153 out of 896 solutions (17%), which con-
firms that Fermi problems are accessible (Ärlebäck, 2009). The results on performance 
throughout the sequence showed that 90 out of 224 prospective teachers (40%) had at least 
one incomplete solution (low level). These results confirm Chapman’s (2015) findings that 
report problem-solving difficulties for pre-service teachers.

4.2  Pre‑service teachers’ flexibility across the sequence

The first step in analysing flexibility is to categorise the solution strategies. The results 
in Section  3.2 show that the most used strategy by prospective teachers throughout the 
sequence was the base unit. These results confirm the findings presented in Ferrando et al. 
(2021), which document that, although the context influences the choice of strategy, rea-
soning from the area occupied by an element and dividing the total area by this value is the 
most frequent strategy in general. Moreover, base unit strategy is mathematically simpler 
because it requires operation with quantities of the same type (area of an element and area 
of the enclosure), whereas the density strategy requires operations involving quantities of a 
different type (number of elements per unit area and area of the enclosure).
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Once we categorised the solutions to each problem in the sequence, we counted 
the number of valid strategies proposed by each participant and thus deduced their 
level of flexibility. We found that more than two-thirds of the solvers (155 out of 224) 
were flexible, as they were able to propose at least two different valid strategies across 
the sequence. Some previous studies (Chapman, 2015; Van Dooren et al., 2003) have 
noted that prospective teachers do not have flexibility in problem-solving; we believe 
that this discrepancy is due to the types of tasks that students are asked to solve. As 
explained in Ferrando and Segura (2020), the design of Fermi problem sequences 
based on variation theory (Ko & Marton, 2004) can elicit solvers’ flexibility. When 
looking at the solutions by solvers categorised as non-flexible, we think that that they 
proposed just one solution strategy, either because they were confident that it worked 
in all cases (regardless of the context of the problem) or because they did not know any 
other strategy. In the latter case, as in the last example in Table 2, knowing only one 
strategy can lead to errors because the solver is not able to adapt the strategy to the 
context of the problem.

4.3  Relationship between flexibility and performance across the sequence

We found a statistically significant moderately strong relationship between prospective 
teachers’ level of performance and their flexibility level. These results extend, for Fermi 
problems, those of Elia et  al. (2009), Arslan and Yazgan (2015), and Keleş and Yazgan 
(2021) for non-routine intra-mathematical problem-solving. As shown in Table 4, prospec-
tive teachers in our sample who demonstrated no flexibility and those who demonstrated 
moderate flexibility had similar behaviour in terms of their level of performance across the 
Fermi problem sequence. However, the behaviour was different for those participants with 
high flexibility. In particular, the proportion of prospective teachers who failed to com-
plete the sequence was very low in the case of solvers categorised as very flexible (3 out 
of 66 participants, 5%), while this proportion was higher for the other flexibility levels. In 
fact, the reason for changing strategy on a single problem may be that the solver did not 
know how to approach it. In contrast, solvers categorised as very flexible changed several 
times—indicating a certain fluency—and this could allow them to overcome difficulties, 
and then complete the Fermi problem sequence. For example, in Grass, the disorder and 
irregularity of the blades of grass, whose number must be estimated, may hinder strategies 
based on linearisation or base unit, whereas the choice of another strategy, such as density, 
would avoid them (Ferrando et al., 2021).

These results highlighted the theoretical importance of the three-level categori-
sation of flexibility, as they allowed us to differentiate performance between those 
who switched strategy at least twice and those who switched strategy only once. Sch-
oenfeld (1982) defined successful performance in problem-solving as the ability to 
choose and manage a strategy to obtain a solution. Our results expand this description 
in the context of Fermi problems: we observed that the level of flexibility related to 
the ability to complete the sequence. This may be because knowing several strategies 
and switching flexibly from one to another facilitated the choice of a valid strategy, 
for a given problem. However, our study is correlational, so it could also be that the 
ability not to make errors that impede devising a valid strategy influenced the level of 
flexibility shown by the solver. This possibility seems to us to be a more challenging 
hypothesis to explain.
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4.4  Relationship between flexibility and number of mathematical errors

We found that flexibility was associated with mathematical errors made. When we focused 
on solvers who completed the Fermi problem sequence (that is, without making strategic 
errors), we found that prospective teachers categorised as very flexible had significantly 
fewer mathematical errors than those categorised as non-flexible or moderately flexible. 
Furthermore, we did not find differences between the number of mathematical errors made 
by solvers categorised as moderately flexible and non-flexible. This result agrees with the 
findings from studies that use non-routine intra-mathematical problems (Arslan & Yazgan, 
2015; Elia et al., 2009; Keleş & Yazgan, 2021). By differentiating between two types of 
errors—strategic and mathematical—we were able to refine the findings on the prospective 
teachers’ problem-solving performance and its relation to flexibility in the context of Fermi 
problems. The interpretation we have used earlier applies here as well: flexibility, which 
involves strategy management skills (knowing several strategies and switching between 
them), relates to not making errors that prevent devising a valid strategy. However, when 
we consider the number of mathematical errors made and their relationship to flexibility, 
the result is more surprising, as it indicates that high flexibility also relates to the skills—
measurement and calculation procedures—needed to correctly implement the strategy.

Further research is needed to determine  the possible effects of flexibility on the inci-
dence of mathematical errors, or the possible influence of proficiency in measurement 
and calculation procedures on the level of flexibility. Newton et al. (2020) highlighted the 
importance of prior knowledge of concepts and procedures used in problem solving in the 
development of flexibility. Other authors (e.g., Heinze et al., 2009) related flexibility and 
adaptive expertise, that is, the ability to effectively apply the most appropriate solution in a 
given context, which avoids mathematical errors.

Our findings showed that, among the solvers demonstrating low performance level, 
there was no relationship between flexibility and the number of mathematical errors made. 
It seems reasonable to assume that if a solver makes strategic errors, even if he or she 
knows several strategies, he or she does not manage their development. Therefore, it is 
possible that the solver makes as many mathematical errors as those who know a smaller 
number of strategies and do not manage them either.

4.5  Limitations

This work is an exploratory study on the relationship between flexibility and perfor-
mance in solving Fermi problems. This is a correlational study, so its main limitation is 
that we cannot determine causality between variables. A path analysis (e.g., Schukajlow 
et al., 2015) could be used to determine whether a solver’s level of flexibility influences 
specific aspects related to performance (e.g., strategic errors, mathematical errors), or 
whether it is the aspects related to performance that influence solver’s level of flexibil-
ity. The results of this exploratory study derive from the analysis of the solutions of a 
sequence of four very specific Fermi problems, all of them contextualised in settings 
very close to the solvers’ reality. This is a limitation of the work, both due to the number 
of problems and their characteristics. Moreover, in order to analyse the performance and 
the errors made, we have relied exclusively on the analysis of written productions. A 
complementary qualitative analysis based on collecting information from observation of 
the students while they are solving the problems or from subsequent interviews would 
undoubtedly allow us to better understand and complete the results presented here.
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5  Conclusions

Given that studies focused on the use of multiple solving strategies for real-context 
problems are scarce (Achmetli et al., 2019; Schukajlow et al., 2015), this work contrib-
utes a novel approach, using sequences of Fermi problems to study flexibility. Another 
relevant contribution of this study is extending the notion of inter-task flexibility of Elia 
et al. (2009), distinguishing between levels of flexibility along a sequence of problems. 
Furthermore, based on error analysis (Segura & Ferrando, 2021) and drawing on the 
approach of Copur-Gencturk and Doleck (2021a), we defined performance levels, which 
allowed us to find that pre-service teachers who demonstrated high flexibility (switch-
ing strategy two or more times) performed better: they made fewer errors that impeded 
developing a valid strategy, and fewer errors in calculation or measurement procedures. 
These results allowed us to conclude that flexibility is not only a component of problem-
solving proficiency (Heinze et  al., 2009; Star & Rittle-Johnson, 2008), but it is also 
directly related to problem-solving performance in terms of errors.

On the other hand, Lu and Kaiser (2022) have recently enriched real-context prob-
lem-solving proficiency to include creativity. Flexibility, together with fluency and orig-
inality, is one of the criteria for assessing creativity (Levav-Waynberg & Leikin, 2012). 
A future line of research could deepen and extend this study to investigate the rela-
tionship between flexibility, fluency, originality, and performance. This would help to 
better understand creativity in solving real-context problems, such as Fermi problems. 
Expanding the study of flexibility to include creativity of prospective teachers when 
solving real-context problems will contribute to designing training programs for pre-
service teachers that reinforce their problem-solving proficiency and ensure the effective 
introduction of real-context open-ended problems in the classroom.
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