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“Scientific research is still an adventure.” 

                                                                             Louis De Broglie 
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ABSTRACT 

Background: obesity in adults is defined as an abnormal or 

excessive fat accumulation that presents a significant risk factor for health 

and contributes to increased morbidity and mortality. Although underlying 

health conditions and genetics could be in some cases the principal causes 

of obesity, it is predominantly the result of long-term unhealthy lifestyles. 

In its clinically most severe form (or Class III obesity) adipose tissue 

becomes the largest metabolic endocrine organ that strongly interacts with 

the endocrine system and contributes to the development of metabolic 

syndrome (MetS). MetS is considered the most common metabolic health 

problem related to obesity nowadays and it involves signs (central obesity, 

low high-density lipoprotein cholesterol (HDL), hypertriglyceridemia, 

hypertension, hyperglycemia) that could be related to the presence of 

abnormal metabolism and metabolome alterations. The metabolome is 

directly influenced by the diet and is the output of genes-environment 

interaction, of which epigenetics regulations represent their linker. So, a 

possible interconnection between metabolomics and epigenetics is 

reasonable, with repercussions on the epigenetic age, the functional state 

of the whole organism and its lifespan. Although MetS affects both men 

and women indistinctly, the prevalence of each MetS risk factor is reported 

to be sex- and age-dependent and it is affected by hormonal and endocrine 

processes. In particular, MetS is a significant health problem in 

postmenopausal women. This could be related to sex hormone levels and 

adipose tissue's disposition, metabolism and endocrine action that cause 

cardiovascular complications and accelerated ageing of multiple organs 

and their malfunction, especially in the elderly. 

Aims: 1) to investigate the influence of sex and age on the metabolic 
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profile of subject with clinically severe obesity and metabolically healthy 

status (MHO) and patients with MetS through the study of differences in 

their metabolome and epigenome under the hormonal and endocrine 

influence in conjunction to sex and age; 2) to investigate the metabolome-

epigenome-MetS interaction, its effects and the potential role of adipose 

tissue metabolism in the pathology; 3) to analyse specifically the metabolic 

profile of women of fertile age and postmenopausal and their comparison 

with men of the same age groups, focusing on extreme MetS (MetS.5); 4) 

to investigate the interactions between metabolome and epigenome in 

subjects over 54 years with MHO or MetS.5 to obtain a pathophysiological 

characterization patients at greater risk; 5) to use a high-fat diet (HFD) rat 

experimental model as a source of adipocytes for the in vitro validation of 

the hypotheses derived from the studies on the human cohort and to 

investigate the effect of a HFD diet on the metabolome of adipose tissue 

and adipocytes in MetS in severe obesity; 6) to evaluate by in vitro 

experiments the potential role of metabolomic and epigenetic modification 

induced by metabolites most significantly changed in subjects with MetS. 

Design and methods: a case-control study was conducted with 

1350 subjects of the Piancavallo cohort (women 65 %, men 35 %; age 19-

85) with extreme obesity (body mass index (BMI) ≥ 40 kg/m2 or between 

35.0 and 39.9 kg/m² with one or more obesity-related comorbid conditions) 

was extensively characterized for clinical and anthropometrical profiles. 

The subjects were then divided into a total of four big subgroups for age 

and sex (women < 46 years, women > 54 years, men < 46 years and men 

> 54 years) and classified into controls MHO and cases MetS. Cases were 

further classified into MetS subgroups (MetS.3, MetS.4 and MetS.5) 

according to the International Diabetes Federation (IDF) Criteria (2005). 

Serum global metabolomic profiles were measured using nuclear magnetic 
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resonance (NMR). Ninety-six subjects (48 cases MetS.5, 48 controls 

MHO; aged between 55-85 years for both groups) were selected for the 

epigenetic analysis and global methylation levels were measured in serum 

using the Infinium MethylationEPIC BeadChip kit. Perigonadal fat pads 

were obtained from male and female Wistar rats fed with a modified HFD 

(45 % of fat) or fed with a control diet (4% fat) and sacrificed after 20 

weeks of treatment. Cultures of adipocytes and adipose tissues were 

performed to collect metabolized culture media. Global metabolomic 

profiles of culture media were measured using NMR. Specific statistical 

analyses were developed.   

Results: according to the anthropometric and clinical 

characterization, the global metabolic profile of MetS resulted uniformly 

different from MHO in the entire cohort, with a visible, constant and 

progressive change of the metabolites' levels according to the worsening 

of MetS gravity.  MetS.5 showed the most significant difference in the 

metabolic profile and altered metabolic pathways. Moreover, PLS-DA 

scores plots revealed specific metabolic changes in control and MetS.5 

groups of men and women related to sex and age. The differential profiles 

differed in the variety and the number of significant metabolites, especially 

between fertile and postmenopausal ages. Acetone was the preeminent 

metabolite in MetS.5 women’s group of fertile age. Instead, 

postmenopausal women showed a raise in carbonyls in fatty acid 2 

(FACO2) and low-density lipoprotein 2 (LDL2) cholesterol signals, which 

were the metabolites most significantly related to MetS.5. On the contrary, 

in men, leucine and choline-containing compounds (CCC) showed the 

main involvement in MetS.5 until 45 and after 55 years, respectively. 

Therefore, the metabolic pathways involved in MetS and MetS.5 were 

different between men and women of different ages, even though the 
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disease had a common basis regardless of sex. At the epigenetic level, the 

global methylation levels were comparable between cases and controls. 

However, differential methylation analysis identified two statistically 

significant probes belonging to TXNIP (thioredoxin interacting protein) 

and MYLIP (myosin regulatory light chain interacting protein) genes 

related to hyperglycemia and hypercholesterolemia. The epigenetic drift 

revealed in MetS.5 the decrease in the average number of stochastic 

epigenetic mutations (SEMs), which appeared more pronounced in the 

cohort of males. The biological age, reflected by the predictor of lifespan 

(DNAm GrimAge), resulted significantly higher in MetS.5 cohort. The 

GrimAge also appeared to be higher, on average, in men than in women of 

similar chronological age, regardless of disease status, although the 

diagnosis of MetS was related to a worse epigenetic scenario. Finally, the 

metabolomic analysis of the adipocytes' growth medium extracted from the 

perigonadal fat pads of control and HFD rats also showed significant 

differences related to the diet and sex of the animals. Nevertheless, the 

causes and contributors were non-identical between our human cohort and 

the rat model under study. Methionine/isoleucine, jointly, constituted the 

metabolites primarily associated with HFD in adipocyte cell cultures and 

the most significant metabolites in female HFD rats. Differently, 

3methyl2oxovalerate was the most significant metabolite in males. 

Glutamine showed the highest VIP score value in adipose tissue organ 

cultures probably because of the presence of macrophages that play a 

critical role in initiating, maintaining, and resolving inflammation caused 

by the hypertrophy of adipocytes. 

Conclusions: the study of clinically severe obesity both at the 

clinical, anthropometric and above all at the metabolomic-epigenetic level 

represents an aid to the discovery of risk biomarkers for the development 
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of metabolically unhealthy obese status (MUHO) and MetS. Combined 

with the epigenetics data, the metabolomic results may provide new 

insights into the pathophysiological mechanisms in severe healthy or 

unhealthy obesity and MetS, with a particular focus on the reciprocal 

relationship between the epigenome and the metabolome under the 

influence of sex, age and endocrine function of adipose tissue. MUHO 

women and men have a different age-related risk factor that is highlighted 

and reflected between metabolic and epigenetic profiles, manifested by the 

difference between chronological and biological (epigenetic) age between 

men and women. The latter may have some protection provided by 

estrogens until menopause which allows them to remain "metabolically 

and physiologically younger" even when the influence of estrogens 

decreases. Studying these biomarkers involved in the development and 

characterization of the disease in different stages of life and sex could help 

to provide new targets for preventive and therapeutic strategies and 

therapies. Moreover, cell models could be used to provide further evidence 

in vitro on the results of the studies on human samples. Based on patients' 

specific biological and clinical characteristics, this evidence could provide 

new insight for pharmacological, behavioural and nutritional strategies on 

host/microbiota co-metabolism and metabolic pathways, and progress 

towards personalized medicine. 

Keywords: Metabolic syndrome, age, sex, hormonal and endocrine 

influence, metabolomic and methylation profile, epigenetic drift, 

biomarkers, animal models, adipocyte cell culture.  
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RESUMEN  

Antecedentes: la obesidad en adultos se define como una 

acumulación anormal o excesiva de grasa que representa un importante 

factor de riesgo para la salud, contribuyendo a aumentar la morbilidad y la 

mortalidad. Aunque las condiciones de salud subyacentes y la genética 

podrían ser en algunos casos las principales causas de la obesidad, en la 

mayoría de los casos es el resultado de estilos de vida poco saludables a 

largo plazo. En su forma más severa clínicamente (obesidad de Clase III), 

el tejido adiposo se convierte en el órgano endocrino metabólico más 

grande que interactúa fuertemente con el sistema endocrino y contribuye 

al desarrollo del síndrome metabólico (MetS). El MetS es considerado el 

problema de salud metabólico más comunemente relacionado con la 

obesidad en la actualidad y presenta signos (obesidad central, colesterol 

unido a lipoproteínas de alta densidad (HDL) bajo, hipertrigliceridemia, 

hipertensión, hiperglucemia) que podrían estar relacionados con la 

presencia de un metabolismo anormal y alteraciones del metaboloma. El 

metaboloma está directamente influenciado por la dieta y es el resultado 

de la interacción genes-ambiente, de la que las regulaciones epigenéticas 

representan su nexo de unión. Por tanto, es lógico pensar que exista una 

posible interconexión entre la metabolómica y la epigenética, que 

repercuta en la edad epigenética, el estado funcional de todo el organismo 

y su esperanza de vida. Aunque MetS afecte tanto a hombres como a 

mujeres indistintamente, la prevalencia de cada factor de riesgo de MetS 

aparece depender del sexo y la edad y se ve afectada por procesos 

hormonales y endocrinos. En particular, MetS es un problema de salud 

importante en mujeres posmenopáusicas. Esto podría estar relacionado con 

los niveles de hormonas sexuales y la disposición, metabolismo y acción 

endocrina del tejido adiposo que provocan complicaciones 



 

xx 
 

cardiovasculares y el envejecimiento acelerado de múltiples órganos y su 

mal funcionamiento, especialmente en los ancianos. 

Objetivos: 1) investigar la influencia del sexo y la edad en el perfil 

metabólico de sujetos con obesidad clínicamente severa y estado 

metabólicamente saludable (MHO) y pacientes con MetS a través del 

estudio de las diferencias en su metaboloma y epigenoma bajo la influencia 

hormonal y endocrina en relación con el sexo y años; 2) investigar la 

interacción metaboloma-epigenoma-MetS, sus efectos y el papel potencial 

del metabolismo del tejido adiposo en la patología; 3) analizar 

específicamente el perfil metabólico de las mujeres en edad fértil y 

posmenopáusicas y su comparación con los hombres de los mismos grupos 

de edad, centrándose en el MetS extremo (MetS.5); 4) investigar las 

interacciones entre metaboloma y epigenoma en sujetos mayores de 54 

años con MHO o MetS.5 para obtener una caracterización fisiopatológica 

de los pacientes de mayor riesgo; 5) utilizar un modelo experimental de 

rata con dieta alta en grasas (HFD) como fuente de adipocitos para la 

validación in vitro de las hipótesis derivadas de los estudios en la cohorte 

humana y la investigación dirigida al efecto de la dieta en el metaboloma 

del tejido adiposo y adipocitos en MetS en obesidad severa; 6) evaluar 

mediante experimentos in vitro el papel potencial de la modificación 

metabolómica y epigenética inducida por los metabolitos más 

significativamente modificados en sujetos con MetS. 

Diseño y métodos: se realizó un estudio caso-control con 1350 

sujetos de la cohorte de Piancavallo (mujeres 65 %, hombres 35 %; edad 

19-85) con obesidad extrema (índice de masa corporal (IMC) ≥ 40 kg/m2 

o entre 35,0 y 39,9 kg/m² con una o más condiciones comórbidas 

relacionadas con la obesidad) fueron ampliamente caracterizados por 
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perfiles clínicos y antropométricos. A continuación, los sujetos se 

dividieron en un total de cuatro grandes subgrupos por edad y sexo 

(mujeres < 46 años, mujeres > 54 años, hombres < 46 años y hombres > 54 

años) y clasificados en controles MHO y casos MetS. Los casos se 

clasificaron además en subgrupos de MetS (MetS.3, MetS.4 y MetS.5) de 

acuerdo con los Criterios de la Federación Internacional de Diabetes (IDF) 

(2005). Los perfiles metabolómicos globales séricos se midieron mediante 

resonancia magnética nuclear (RMN). Se seleccionaron 96 sujetos (48 

casos MetS.5, 48 controles MHO; con edades comprendidas entre 55 y 85 

años para ambos grupos) para el análisis epigenético y los niveles de 

metilación global se midieron en suero utilizando el kit Infinium 

MethylationEPIC BeadChip. Los acúmulos de grasa perigonadal se 

obtuvieron de ratas Wistar machos y hembras alimentadas con una dieta 

modificada enriquecida en grasas HFD (45 % de grasa) o alimentadas con 

una dieta de control (4 % de grasa) y sacrificadas después de 20 semanas 

de tratamiento. Se realizaron cultivos de adipocitos y tejidos adiposos para 

recoger los medios de cultivo metabolizados. Los perfiles metabolómicos 

globales de los medios de cultivo se midieron mediante RMN. Se 

desarrollaron análisis estadísticos específicos. 

Resultados: en línea con la caracterización antropométrica y 

clínica, el perfil metabólico global de MetS resultó uniformemente 

diferente de MHO en toda la cohorte, con un cambio visible, constante y 

progresivo de los niveles de metabolitos de acuerdo con el empeoramiento 

de la gravedad de MetS. MetS.5 mostró la diferencia más significativa en 

el perfil metabólico y rutas metabólicas alteradas. Además, los diagramas 

de dispersión tipo PLS-DA a partir de los espectros de RMN revelaron 

cambios metabólicos específicos en grupos de control y MetS.5 de 

hombres y mujeres relacionados con el sexo y la edad. Los perfiles 
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diferenciales diferían en la variedad y el número de metabolitos 

significativos, especialmente entre la edad fértil y la posmenopáusica. La 

acetona fue el metabolito preeminente en el grupo de mujeres MetS.5 en 

edad fértil. En cambio, las mujeres posmenopáusicas mostraron un 

aumento en las señales de carbonilos en ácidos grasos 2 (FACO2) y de 

colesterol de lipoproteínas de baja densidad 2 (LDL2), que fueron los 

metabolitos más significativamente relacionados con MetS.5. Por el 

contrario, en los hombres, la leucina y los compuestos que contienen colina 

(CCC) mostraron una mayor repercussion en el MetS.5 hasta los 45 y 

después de los 55 años, respectivamente. Por lo tanto, aunque la 

enfermedad tenga una base común independientemente del sexo, las vías 

metabólicas involucradas en MetS y MetS.5 fueron diferentes entre 

hombres y mujeres de diferentes edades. El análisis epigenético mostró 

niveles globales de metilación fueron comparables entre casos y controles. 

Sin embargo, el análisis de metilación diferencial identificó dos sondas 

estadísticamente significativas pertenecientes a los genes TXNIP (proteína 

que interactúa con tiorredoxina) y MYLIP (proteína que interactúa con la 

cadena ligera reguladora de miosina) relacionados con la hiperglucemia y 

la hipercolesterolemia. La deriva epigenética reveló en MetS.5 la 

disminución, en el número promedio de mutaciones epigenéticas 

estocásticas (SEMs), que apareció más pronunciada en la cohorte de 

hombres. La edad biológica, reflejada por el predictor de esperanza de vida 

(DNAm GrimAge), resultó significativamente mayor en la cohorte MetS.5. 

El GrimAge también pareció ser mayor, en promedio, en hombres que 

mujeres de edad cronológica similar, independientemente del estado 

patologico, aunque el diagnóstico de MetS se relacionó con un peor 

escenario epigenético. Finalmente, el análisis metabolómico del medio de 

crecimiento de adipocitos extraídos de los acúmulos de grasa perigonadal 
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de ratas control y HFD también mostró diferencias significativas 

relacionadas con la dieta y el sexo de los animales. Sin embargo, las causas 

y los factores que contribuyen al syndrome metabólico no fueron idénticos 

entre nuestra cohorte humana y el modelo de studio en rata. La 

metionina/isoleucina, combinadas, constituyeron los metabolitos 

principalmente asociados con HFD en cultivos celulares de adipocitos y 

los metabolitos más significativos en ratas HFD hembras. Por el contrario, 

el 3metil2oxovalerato fue el metabolito más significativo en los machos. 

La glutamina mostró el VIP score más alto en cultivos de tejido adiposo, 

probablemente por la presencia de macrófagos que juegan un papel 

fundamental en el inicio, mantenimiento y resolución de la inflamación 

causada por la hipertrofia de los adipocitos.  

Conclusiones: el estudio de la obesidad clínicamente severa tanto a 

nivel clínico y antropométrico como sobre todo a nivel metabolómico-

epigenético representa una ayuda para el descubrimiento de biomarcadores 

de riesgo para el desarrollo del estado de obesidad metabólicamente no 

saludable (MUHO) y el MetS. Combinados con los datos epigenéticos, los 

resultados metabolómicos pueden proporcionar nuevos conocimientos 

sobre los mecanismos fisiopatológicos en la obesidad grave saludable o no 

saludable y MetS, con un enfoque particular en la relación recíproca entre 

el epigenoma y el metaboloma bajo la influencia del sexo, la edad y la 

función endocrina del tejido adiposo. Las mujeres y los hombres de 

MUHO tienen diferentes factores de riesgo relacionados con la edad que 

se destacan y reflejan entre los perfiles metabólicos y epigenéticos, puestos 

de manifiesto por la diferencia entre la edad cronológica y la edad biológica 

(epigenética) entre hombres y mujeres. Estas últimas pueden tener cierta 

protección proporcionada por los estrógenos hasta la menopausia, lo que 

les permite permanecer "metabólica y fisiológicamente más jóvenes" 
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incluso cuando la influencia de los estrógenos disminuye. El estudio de 

estos biomarcadores implicados en el desarrollo y caracterización de la 

enfermedad en diferentes etapas de la vida y el sexo podría ayudar a 

proporcionar nuevas dianas para estrategias y terapias preventivas y 

terapéuticas. Además, los modelos celulares podrían utilizarse para 

proporcionar más pruebas in vitro sobre los resultados de los estudios en 

muestras humanas. En función de las características biológicas y clínicas 

específicas de los pacientes, esta evidencia podría proporcionar nuevos 

conocimientos para las estrategias farmacológicas, conductuales y 

nutricionales sobre el cometabolismo huésped/microbiota y las vías 

metabólicas, y el progreso hacia la medicina personalizada. 

Palabras clave: síndrome metabólico, edad, sexo, influencia 

hormonal y endocrina, perfil metabolómico y de metilación, deriva 

epigenética, biomarcadores, modelos animales, cultivos celulares de 

adipocitos. 
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 INTRODUCTION 

1.  INTRODUCTION 

1.1.  Adult overweight and obesity. 

Obesity is a medical condition in which excess body fat has 

accumulated to an extent that it may negatively affect health [1]. The term 

derives from the Latin “obesitas”, which indicates the condition of 

someone who is “fat, big or chubby”, in turn, derived from “esum”, past 

participle of “ĕdere” (“to eat”), with the addition of prefix “ob” (“for, due 

to”).  

Rates of overweight and obesity continue to grow in adults and 

children, and most of the world's population lives in countries where 

overweight and obesity cause more deaths than underweight. Worldwide 

obesity has nearly tripled since 1975: 39 % (more than 1.9 billion) of adults 

aged 18 years and over were overweight in 2016, and 13 % (over 650 

million) were obese (Figure I1). An estimated 38.2 million children under 

the age of 5 years were overweight or obese in 2019. Due to the severity 

of the problem, already in 1997, the World Health Organization (WHO) 

recognized obesity as a global epidemic [2] and estimates that by 2025, 

approximately 167 million people, including children, will become less 

healthy because they will be overweight or obese [3]. On current trends, 

by 2050, 60 % of man and 50 % of women will be obese.  

Obesity is one difficult aspect of malnutrition and, even if it should 

be more easily preventable than undernourishment, today more people are 

obese than underweight in every region except sub-Saharan Africa and 

Asia. 
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Figure I1. Overweight and obesity global distribution in 2016 (WHO). 

 

Nowadays, overweight and obesity are dramatically on the rise in 

high-income and low- and middle-income countries, particularly in urban 

settings. The vast majority of overweight or obese children live in 
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developing countries, where the rate of increase has been more than 30 % 

higher than that of developed countries [4, 5]. Obesity is the leading cause 

of preventable death worldwide and is considered one of the most severe 

public health problems of the 21st century [6].  

To support practical nutritional education actions and stimulate 

people to achieve and maintain a healthy weight and reverse the global 

obesity crisis, World Obesity Day was established in 2015 as an annual 

campaign that each year is based on a specific theme to increase awareness, 

encourage advocacy, improve policies, and share experiences. Figure I2 

shows the summary panel created for the World Obesity Day of 2021. 

 

 

Figure I2. “World Obesity Day: March 4, 2021”: an informative panel of 

matters to take home (Global Public Research Foundation). 
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1.1.1.  Obesity measurement and classification. 

Body mass index (BMI) is the most widespread and used medical 

screening to establish the presence of adult obesity and to classify its type, 

for its simplicity, immediacy and non-invasiveness. To obtain the BMI, 

there is no need for other body parameters than the measurement of weight 

in kilograms divided by height in meters squared (kg/m2). Due to the 

increasing doubts about the functionality of this method for defining 

abdominal obesity [7, 8], indirect measures such as waist circumference 

(WC) and body fat percentage estimated from skinfold thickness (ST) or 

waist-to-hip ratio (WHR) have been widely accepted and more used in 

recent years. Although body fat can be measured directly by methods such 

as dual-energy X-ray absorptiometry (DEXA) [9], currently this method 

still appears to be underutilized compared with indirect methods. 

Nevertheless, since the 1990s, the BMI remains the most widely used and 

universally recognized instrument, suggested as an ideal measure of 

adiposity and closely associated with obesity-related health risks. 

The diseases of overweight and obesity are classified into gradually 

rising BMI levels that have increasingly higher levels of health 

consequences.  

The following BMI ranges classify different weight types: 

•     Underweight: BMI ≤ 18.5 kg/m² 

•     Optimum range: BMI 18.5-24.9 kg/m² 

•     Overweight: BMI 25.0-29.9 kg/m² 

•     Class I Obesity: BMI 30.0-34.9 kg/m² 

•     Class II Obesity: BMI 35.0-39.9 kg/m² 

•     Severe (Class III) Obesity: BMI ≥ 40.0 kg/m² 
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The higher the level of excess weight, the higher the risk of serious health 

problems, disability and risk of early death for the patients. 

1.1.1a. Clinically severe (Class III) obesity. 

Clinically severe (Class III) obesity is considered a disease 

associated with other chronic health conditions and, in common scientific 

language, was defined and known for years as morbid obesity. The Oxford 

English Dictionary defines “morbid” as “an abnormal and unhealthy 

interest in disturbing and unpleasant subjects”. In a medical setting, 

“morbidity” means illness or disease. Healthcare professionals also often 

use the term “comorbidity,” meaning that an individual has more than one 

co-occurring illness. Although the medical meaning of “morbid” is 

appropriate in describing this type of obesity, in the last years, according 

to the WHO, the term preferably usable in the interaction with the patient 

as psychologically more accepted is no longer morbid obesity but either 

class III obesity or clinically severe obesity. This precaution is part of the 

"People-first language" policy, the standard for respectfully addressing 

people with a chronic disease rather than labelling them by their illnesses, 

and the change is also spreading to scientific research.  

The actual medical definition by the National Institutes of Health 

(NIH) of severe obesity is “a serious health condition that results from an 

abnormally high body mass” that is diagnosed by one of the following 

conditions: 

    •     BMI of 40 or greater; 

    •.....or having a BMI of 35 or greater and one or more obesity-related 

comorbid conditions; 

    •.....or having a total body weight greater than 20 % or more than the 
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ideal body weight (IBW). 

 

IBW is calculated as: 

 

 
 

Clinically severe obesity is a common condition. Approximately 

11.5 % of women have severe obesity compared to 6.9 % of men. Age and 

sex seem to have an important role in its onset [10]. Severe obesity affects 

11.5 % of adults aged 40 to 59, 9.1 % of adults aged 20 to 39 and 5.8 % of 

adults aged 60 and over. Following the current trends, severe obesity will 

become about as common in 2030 as regular obesity was in the 1990s [11]. 

1.1.2.  Metabolism in clinically severe obesity. 

Adult severe obesity is predominantly the result of long-term 

unhealthy lifestyles. Many studies have attributed the increase in people 

affected by overweight and obesity to the rich lifestyle and the sedentary 

job, with excess consumption of highly processed, energy-dense food that 

has poor nutritional value. A lack of exercise and physical activity due to 

greater dependence on cars and mechanized production also concurs [12, 

13]. Nevertheless, excess fat is not explained by these two variables alone. 

Today it seems clear that people who suffer from obesity have mainly 

imbalances in the cerebral hypothalamic mechanisms that regulate hunger 

and satiety, mainly due to genetics, health reasons or psychiatric illnesses 

[14, 15]. Polymorphisms in the different genes that control appetite and 

metabolism predispose to obesity; since 2006, over 41 of these genes have 
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been linked to the development of obesity when inserted in a supportive 

environment [16]. For example, people with two copies of the FTO gene 

(fat mass and obesity-associated protein) weigh 3-4 kilos more and have a 

1.67 times greater risk of obesity than those without the risk allele [17]. 

Depending on the population examined, the differences in BMI between 

people due to genetics vary from 6 % to 85 % [18]. Hence, it is now clear 

that, as with many other medical conditions, obesity is the result of 

interactions between genetic and environmental factors. Therefore, studies 

on physiological, metabolic and hormonal processes are necessary. 

Obesity is strongly associated with significant abnormalities in 

endocrine function since hormones are chemical messengers that regulate 

metabolic processes in our body and are one of the main factors in the cause 

of obesity. The hormones ghrelin and leptin, sex hormones, cortisol, 

insulin and growth hormone influence body composition, metabolism and 

distribution of body fat. Ghrelin and leptin are hormones that play key roles 

in regulating appetite, food intake, and energy metabolism [19]. The 

changes that occur with age in the levels of sex hormones in men and 

women are associated with changes in the distribution of body fat. Obesity 

is also associated with an increased cortisol production rate, which is 

compensated by increased clearance of cortisol, resulting in plasma-free 

cortisol levels that do not change with increased body weight [20]. Plasma 

insulin levels are positively correlated with body weight and adipose tissue. 

Finally, growth hormone, whose secretion decreases in obesity, has an 

important impact on body composition and fat distribution, due to its effect 

on energy metabolism, lipolytic and energy saving [21]. 

Other studies affirmed that obese and overweight people have a 

metabolism that cannot respond adequately during and after meals. 
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According to these studies, the defect affects the thermogenic function of 

the metabolism that, through the dissipation of energy introduced with food 

as heat, keeps body weight constant [18, 22]. The metabolic response 

following food intake or exposure to cold would be less important in the 

obese than in people of normal weight. This does not mean that obese 

individuals have an inherently low basal metabolic rate, even if the 

opposite is commonly believed. It has been repeatedly shown that the 

obese have a higher energy requirement under standard conditions than 

thin people, due to the greater mass of metabolically active tissues [23]. 

This happens because weight gain is borne by both fat and lean mass; the 

latter must adapt to support the greater body weight in the various daily 

activities. However, this increase is not linear, since the more weight is 

gained, the more the weight gain is mainly due to the fat component. 

Therefore, since the metabolic rate of adipose tissue is much lower than 

that of muscle, the basal metabolism increase is not proportional to the rise 

in body weight. This leads to a disequilibrium in energy requirement and 

consumption and the consequent appearance of diseases related to 

metabolism. 

1.1.2a.  Metabolic healthy and unhealthy obesity. 

Most of the individuals affected by obesity present a condition of 

metabolically unhealthy obesity (MUHO). Nevertheless, a less common 

phenotype of obesity, the metabolically healthy obese status (MHO), is 

characterized by a favourable and protective metabolic profile, favoured 

by a lower inflammation state than MUHO. This condition is characterized 

by significantly lower levels of visceral fat, fasting insulin, plasma 

triglycerides, high-sensitivity C-reactive protein, and alpha-1 antitrypsin 
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levels and higher levels of high-density lipoprotein cholesterol (HDL) that 

may be associated metabolically with a lower risk for cardiovascular 

disease [24]. The prevalence fluctuates considerably from 6 % to 40 % in 

the obese population depending on the design of the study and the criteria 

used for its definition. The metabolic characteristics of these people are 

still largely unknown and related reports are often controversial. To date, 

MHO does not yet have a unique definition that garners consensus [25]. 

These subjects, despite obesity, are recognized to have normal metabolic 

clinical parameters, not presenting the typical bariatric complications 

(hypertension, hyperglycemia, dyslipidemia, hypertriglyceridemia). For 

this reason, some refer to MHO as patients without metabolic syndrome 

(MetS), the most common health problem related to MUHO.  

 
Although the mechanisms that determine this "healthy" condition 

are not fully understood, previous studies have shown a reduced abdominal 

fat mass and a more peripheral fat distribution [26], if compared with 

MUHOs, as the biological mechanisms possibly associated with the MHO 

[27, 28]. The fat tends to remain subcutaneous just under the skin, where 

it appears to be fairly innocuous. A particular genetic predisposition, with 

socio-demographic (age, sex, ethnicity, etc) and environmental factors 

(physical activity, smoking, alcohol intake, etc) result also contributors 

[29]: the prevalence of MHO appeared higher in women and younger 

individuals, and in Asian populations compared to Caucasian or multi-

ethnic origin ones. Although postmenopausal women are more exposed to 

develop MUHO, studies conducted on small selected samples of MHO 

postmenopausal obese women suggested more favourable inflammatory 

profiles, reduced visceral fat, and probably less hepatic fat than same-aged 

women with insulin resistance and other metabolic anomalies [30, 31]. 
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Even if fat tissue is nowadays recognised as a complex, essential, and 

highly active metabolic and endocrine organ with a fundamental influence 

on metabolism, it remains to test how much genetics, exercise and 

environment determine MHO. 

It is important to underline that, relying on the definitions of 

"overweight and obesity" and "health" provided by the WHO, the concept 

of MHO can be an example of "metabolically healthy" but does not 

necessarily mean "healthy" obese and that for one-third of these subjects 

MHO condition is not stable over time [32]. Despite this, obese MHO 

patients constitute a very interesting model of virtuous adaptability to 

obesity and the ability to develop less related cardiovascular 

complications. MHO subjects seem to be resistant to manifest the bad 

metabolic effects of small increases in body mass thanks to the capacity of 

adipose tissue to increase lipid synthesis, generating new cells to share fat 

as it accumulates.  

As counterparts, MUHOs have impaired mitochondria, with reduced 

activity and production of adenosine triphosphate (ATP). This 

compromises their ability of stimuli to generate new fat cells and it could 

explain why the MUHOs have a limited number of fat cells. Without a 

renewal that allows the breakdown and mobilization of their fat stores, the 

existent adipocytes must store new fat, becoming larger and more swollen 

than those of MHOs. They are then surrounded by white blood cells, to 

their death. This malfunction is accompanied by inflammation and it leads 

to ectopic fat accumulation in organs like the heart, liver, and skeletal 

muscle, affecting them. A fatty liver frequently coincides with metabolic 

abnormalities, and studies suggest that it may be one of the causes of 

insulin resistance, the fundamental defect in type 2 diabetes (DM2). 
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1.1.2b.  Metabolic alterations: the role of adipose tissue. 

Regardless of the nature of the triggering factors, the resulting 

metabolic alterations reveal a disequilibrium in the energy balance, due to 

an excess in energy intake concerning energy expended. Consequently, this 

excess of nutrients and calories is stored in adipose tissue and cells, leading 

to hypertrophy (increase in size) and/or hyperplasia (increase in number) 

and finally, metabolic alterations. 

Commonly named body fat, adipose tissue is a loose connective 

tissue derived from preadipocytes. It contains adipocytes, the principal 

component, and a stromal vascular fraction of fibroblasts, vascular 

endothelial cells, preadipocytes and immune cells, especially adipose 

tissue macrophages (ATMs). Although in the past adipose tissue was 

considered only for its main function as a reserve of lipids, today it appears 

as an important, complex, essential, and highly active metabolic and 

endocrine organ with a homeostatic role in maintaining health [33]. Mature 

adipocytes secrete numerous factors and hormones such as leptin, resistin, 

estrogens and cytokines (especially tumour necrosis factor α (TNFα)) 

involved in the regulation of energy balance, insulin sensitivity and 

cardiovascular disease (CVD).  

Until reaching adulthood, adipose tissue growth is due to the 

combinate increase in both size and the number of fat cells. In adults with 

stable body weight, an elevated process of cell turnover maintains fat cell 

numbers almost constant over time and allows tissue's correct 

functionality. A decrease in body weight reduces fat cell size, whereas an 

increase in body weight causes a rise in fat cell size and number but 

decreases cell turnover [34]. In individuals who suffer from obesity, 
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adipose tissue constitutes almost half the body weight, taking the role of 

the largest endocrine organ [35]. Adipocytes develop intrinsic 

inflammatory properties and this takes the health problems related to 

impaired turnover to the extreme. Low fat cell lipid turnover is associated 

with the most common metabolic problems such as insulin resistance, 

CVD, dyslipidemia and DM2, characteristic conditions observed in 

MUHO. 

Fat mass (FM) reaches a peak by middle age or early old age, 

followed by a functional decline and a substantial change of fat deposition 

in advanced oldness. Ageing causes loss of subcutaneous fat (peripherally 

first and then centrally), accumulation of visceral fat, and ectopic fat 

deposition (in the liver, muscle, bone marrow, and elsewhere). 

Furthermore, the fats’ metabolites lead to an increase in insulin resistance 

and therefore to DM2, but also affect muscle and cardio-circulatory 

function, causing hypertension, hypercholesterolemia and 

hypertriglyceridemia. These are all pro-thrombotic factors, which affect 

cardiovascular risk, elevating it. The accumulation of toxins within the 

inter-cellular exchange tissues, that the excretory organs (especially the 

liver and kidneys) struggle to dispose of, plumps, in turn, low-grade 

inflammation and, consequently, the risk factors for the development of the 

MetS and disorders rise, triggering a vicious circuit that feeds itself. 

The number of adipose tissue macrophages increases in obesity with 

age due to factors derived from adipocytes that induce macrophage 

activation and infiltration. In turn, activated macrophages secrete cytokines 

that can stimulate further activation and infiltration of peripheral 

monocytes and macrophages into fat. Moreover, it was reported that 

preadipocytes could be converted to macrophages under certain conditions 
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[36]. The inflammatory pathways that are so activated in adipose tissue 

trigger the adipose tissue dysfunction characteristic of obesity [37]. This 

condition leads to chronic low-grade inflammation that rise the global 

inflammation level and induces insulin resistance through various 

molecular mechanisms. This state promotes oxidative stress, related to 

CVD and significant risk factor for the appearance of metabolic disease 

and DM2, which define the pathological state. Even cancer and other 

chronic diseases, including musculoskeletal disorders (especially 

osteoarthritis), liver and kidney disease, sleep apnea, and depression have 

been strongly related to obesity [38]. Considering all above, obesity causes 

a reduction in life expectancy [39]. 

1.1.3.  The Metabolic Syndrome. 

MetS is the most common health problem related to obesity and the 

accumulation of abdominal fat and it is a strong contributor to the 

exacerbation of morbidity and mortality [40].  

Professor Gerald Reaven (USA, 1928–2018) mentioned the 

important role of insulin resistance and metabolic diseases for the first time 

in 1988, in his Banting conference of the American Diabetes Association. 

He showed the intimate relationships that existed between insulin 

resistance, hyperinsulinemia, glucose intolerance, hypertriglyceridemia, 

low levels of HDL, arterial hypertension and a variety of hormones and 

cytokines derived from adipocytes. He defined this group of factors 

“syndrome X”, a syndrome that would later be renamed MetS [41]. MetS 

is part of chronic non-communicable diseases (NCDs) and nowadays it can 

be considered a 21st-century epidemic, affecting both quality and life 

expectancy.  
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1.1.3a...MetS clinical definition: characteristics and 

implications.  

The first definitions of MetS were developed by WHO and the 

European Group for the Study of Insulin Resistance (EGIR) in 1998 and 

1999, respectively. Subsequently, in 2001, the National Cholesterol 

Education Program (NCEP) developed Adult Treatment Panel III (ATP 

III) for the detection, evaluation, and treatment of high blood cholesterol 

in adults. ATP III recognizes MetS as a secondary target of risk-reduction 

therapy targeted at LDL cholesterol levels. Finally, in 2005, the 

International Diabetes Foundation (IDF) published new criteria for MetS 

Worldwide’s definition [42, 43], considering that different populations, 

ethnicities and nationalities have different distributions of norms for body 

weight and waist circumference. It also recognizes that the relationship 

between these values and the risk for DM2 or CVD differs in different 

populations. On these bases, IDF states that MetS includes the combination 

of central obesity (defined as WC with ethnicity-specific values: white 

women ≥ 80 cm, white men ≥ 94 cm, or BMI ≥ 40 kg/m²) plus at least any 

two of the following four factors: 

1. Raised blood pressure: systolic blood pressure (SBP) ≥ 130 mmHg 

or diastolic blood pressure (DBP) ≥ 85 mmHg or treatment of 

previously diagnosed hypertension;  

2. Raised concentration of serum triglycerides: ≥ 150 mg/dl (1.7 

mmol/l) or specific treatment for this lipid abnormality; 

3. Raised fasting plasma glucose concentration ≥ 100 mg/dl (5.6 

mmol/l) or previously diagnosed DM2; 

4. Low levels of serum HDL: < 40 mg/dl (1.03 mmol/l) in men and < 

50 mg/dl (1.29 mmol/l) in women or specific treatment for this lipid 

abnormality.  
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For the diagnostic procedure, the use of WC is preferable to the BMI 

because visceral obesity is a crucial component of MetS and is the most 

frequently observed as involved in the pathological state [44]. In fact, in 

most cases, the typology of the adipose tissue and its body’s fat distribution 

appears to be more important than the percentage of FM [45].  

1.1.3b.  Synergistic effects of MetS components. 

The clinical consequences of MetS seem to reflect not the simple 

sum of the metabolic alteration involved, but their synergistic effects that 

aggravate the outcome [46]. Synergistic effects are the combined effects of 

at least two physiological processes, biological structures or chemical 

substances that jointly make a more significant impact than both could 

have obtained by themselves. The pathological threshold of MetS is 

between two and three parameters, and the disease can include all five 

(Figure I3). 

 
 

 

 

Figure I3. Synergistic effects of MetS parameters. Figure modified from Bonora 

et al., 2015.  

Moreover, their association occurs more often than might be 

expected if it were due by chance and it is suggested that insulin resistance 
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is the hallmark of these metabolic clusters, representing their common 

background. Therefore, the number of their combinations increases 

exponentially, generating as many different clinical conditions and causing 

pathological outcomes of different severity.  

The knowledge of this feature is very important to define the clinical 

implication and severity of a diagnosis of MetS. Above all, it helps in 

identifying patients at high risk for CVD and DM2. It is known that some 

combinations of MetS components are associated with a significant 

synergic increase in the homeostasis model assessment-estimated insulin 

resistance (HOMA-IR) index, and some combinations of two MetS 

components entailed a synergistic risk of developing the pathology [47].  

The possible interrelationship linking causal mechanisms of MetS 

are described below and depicted in Figure I4. 

 

 

Figure I4. Possible interrelationships between the features of MetS (TG, 

triglycerides; HDL, high-density lipoprotein cholesterol; VLDL, very-low-density 

lipoprotein; FFA, free fatty acids) from Povel, 2012. 
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Adipose tissue dysfunction appears to play an essential role in 

grouping the characteristics of MetS. The balance between lipolysis and 

lipogenesis determines free fatty acid (FFA) efflux from the adipose tissue 

[48]. In clinically severely obese or insulin-resistant individuals, this 

balance is often disturbed. Endogenous lipolysis is higher because of 

defects in hormone-sensitive lipase (HSL) and adipose tissue triglyceride 

lipase (ATGL). FFA absorption by adipose tissue is reduced due to the 

defective regulation of lipoprotein lipase (LPL) in response to insulin. 

This, along with insufficient lipogenesis, leads to reduced absorption of 

chylomicrons in adipose tissue and an increased release of fatty acids (FAs) 

into the plasma FFA pool, whose levels are increased [49]. The adipose 

tissue's inability to trap FFA leads to an increased accumulation of lipids 

in the liver, muscle and β cells, resulting in metabolic abnormalities and 

specific organ dysfunctions. An increased flow of FFA to the liver can 

increase triglyceride levels and very low-density lipoprotein (VLDL) 

production. It can also stimulate insulin resistance in the liver, which can 

further exacerbate and worsen the overproduction of VLDL. Their 

increased hydrolysis can lead to higher FFA concentrations, increased 

LDL cholesterol levels, and reduced HDL cholesterol levels in the 

bloodstream, resulting in dyslipidemia. In addition, it can mediate 

vasoconstriction, thus causing hypertension. High absorption of FFA into 

muscle increases the content of intra-myocyte triglyceride with 

simultaneous insulin resistance. In β-cells, a chronic increase in the flow 

of FFA from adipose tissue decreases glucose-stimulated insulin secretion, 

resulting in insulin resistance. Insulin resistance may also explain the 

clustering and synergistic effect of MetS characteristics, regardless of 

plasma FFA levels.  

The reduced insulin response can lead to diminishing some of its 
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metabolic consequences. First, hyperinsulinemia can increase sympathetic 

nervous system activity and sodium reabsorption, which contribute to 

hypertension development. Second, glucose uptake by the tissues 

decreases, resulting in hyperglycemia. Third, insulin resistance reduces 

endothelial nitric oxide (NO) production, leading to endothelial 

dysfunction and atherosclerosis [50]. Furthermore, obesity can lead to the 

activation of the renin-angiotensin system, resulting in the possible 

development of insulin resistance and hypertension. Finally, the 

production of adipokines, such as IL-6, TNF-α or leptin, increased in obese 

people due to the increased size of adipose tissue. Elevated levels of these 

adipokines can have various metabolic effects [51] including increased 

FFA levels and triglycerides, insulin resistance and blood pressure [52]. 

 

1.1.3c.  The relationship between sex and age and the role 

of sex hormones. 

Although the prevalence of obesity does not seem to be sex-related 

and MetS occurs at all ages, in the last years, sex-specific differences in its 

pathophysiology, diagnosis and treatment have received special attention. 

The numerous sex-specific differences of MetS are related especially to its 

components [53] and they have been attributed to variations in body fat 

metabolic patterns and endocrine profiles. In particular, sex hormones 

appear to play a predominant role. So, the diagnosis and treatment of MetS 

have aroused great interest in the development of sex-specific personalized 

medical strategies [54, 55]. 

It has been reported that the prevalence of each MetS individual risk 

factor is sex- [56] and age-dependent [57], representing an important health 

problem, especially in men and postmenopausal women. This is due to 
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significant differences in the distribution of body adipose tissue, clearly 

represented by android (or apple body shape) and gynoid (or pear body 

shape) phenotypes (Figure I5).  

 

Figure I5. Fat distribution by sex, age and hormone interactions. Android 

versus gynoid fat deposition and its consequences. 

Women have an overall and physiologically higher body fat content 

than men, but they also have different adipose tissue distribution and 

different energy metabolism. During exercise, for example, women burn a 

mixture in which the fat/glucose ratio is higher. Women have lower plasma 

levels of insulin, FFA and triglycerides that correlate with a lower visceral 

fat percentage and a lower presence of hepatic steatosis. Especially before 

menopause, in female subjects, the fat tends to be present mainly at the 

subcutaneous level, manifesting mostly gynoid fat deposition. On the 

contrary, fat tissue in males tends to accumulate more viscerally, especially 

in the android or abdominal region. Android fat cells are larger and have 
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high metabolic activity and they secrete hormones with direct access to the 

liver.  

It is known that increased visceral adipose tissue deposition with age 

is particularly significant among men and postmenopausal women who, on 

average, have up to twice the amount of visceral adipose tissue compared 

with premenopausal women [58].  

The formation of a lot of visceral fat and a protruding abdomen is 

surely partly caused by hormonal fluctuations or disorders, both in men 

and women [59]. Lower sex hormone levels might be particularly 

associated with insulin levels, insulin sensitivity, and obesity, which in turn 

are strongly related to MetS [60]. This result in different combination of 

risk factors and MetS component clusters in men and women of different 

ages [61]. In men, testosterone plays a key role in carbohydrate, fat and 

protein metabolism and significantly influences body fat composition and 

muscle mass [62]. In women, estrogens act on the energetic metabolism 

and influence the transition from a gynoid to an android phenotype, with 

an increase in cortisol, the so-called stress hormone. It tends to favour 

hyperglycemia, a greater release of sugar in the blood, and consequently, 

there is a greater propensity to metabolic diseases. This is because an 

excess of visceral fat, which lines the internal organs and is different from 

subcutaneous fat, increases the release of pro-inflammatory substances, 

adipocytokines. Adipocytokines, in turn, interact with sexual hormones 

and both have been implicated in the central control of appetite, energy 

homeostasis, maintenance of FM, and inflammation [63, 64].  

Although women seem safer from strokes and heart attacks, they are, 

in fact, more predisposed to silent inflammation, due to estrogens that have 
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pro-inflammatory activity. In women who are overweight or suffer from 

obesity that increases the waistline, visceral fat acts on the aromatase 

enzyme, which can convert testosterone into estrogens, raising 

inflammation levels. In menopause, then, the physiological decline in 

estriol, a type of estrogen with cardio-protective activity, contributes 

directly to the onset of CV risk factors. Understanding these differences 

and correlations may have important implications for interpreting the 

association between MetS and mortality risk.  

1.1.4...Multifactorial causation of obesity and 

metabolic disorders: genetics, epigenetics and lifestyle.  

The genetics of most diseases is complex and can range from rare 

monogenic forms to the more common polygenic and multifactorial forms. 

For obesity and its consequent metabolic disorders, including MetS, it is 

well known that in addition to the individual genetic load and ageing that 

predispose to their development, also environmental factors, behavioural 

habits and lifestyle contribute to defining the clinical outcome [65, 66]. 

Among them stand out food and diet, physical activity, health care, 

education and socioeconomic status, among others (Figure I6).  

Both metabolic pathways and epigenetic processes are characterized 

by their ability to respond dynamically to intracellular and extracellular 

stimuli, suggesting that their changes are variable and reversible [67]. 

Several pieces of evidence suggest that epigenetics affects the organism's 

homeostatic metabolism and pathological conditions [68].  Consequently, 

the alteration of the metabolic pathways and the epigenetic modifications 

may assume important roles, potentially contributing to health and disease. 
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Figure I6. Multidimensional perspective illustrating the complex 

interaction of diverse factors and networks underlying the development of 

obesity. CVD, cardiovascular disease; NAFLD, non-alcoholic fatty liver disease; OSA, 

obstructive sleep apnoea from Frühbeck et al., 2018.  

 

This evidence strengthens the idea that metabolic pathways 

deregulation and epigenetic modifications can be used as clinical 

biomarkers for diseases such as metabolic disorders. Epigenetic 

modifications, in particular, participate in the regulation of gene expression 

and are relevant to the health of the individual from conception to 

adulthood, and their offspring. 
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1.2...The metabolome and its metabolic pathways. 

Oliver and colleagues first coined the term ‘metabolome’ in 1998 in 

analogy with transcriptomics and proteomics [69]. The metabolome is 

defined as the entire set of metabolites, that is, of all the small molecules 

that can participate in the processes of an organism and that can be found 

in a biological sample.  

Concerning the human metabolome, although the individual 

variations make it difficult to obtain the complete metabolic profiling of a 

population, in the past decade estimation suggests that in humans more 

than 106 metabolites are present  [70, 71]. Metabolites have a molecular 

weight ranging from 50 to 1500 kilodaltons (kDa) and include molecules 

such as glucose, organic acids, cholesterol, lipids, amine neurotransmitters, 

ATP, amino acids, and steroids that are synthesized during metabolism and 

act both as metabolic intermediates (substrates necessary for biochemical 

reactions and products derived from them), as well as hormones and other 

signal molecules, and secondary metabolites.  

The concentrations of metabolites, which define the metabolome at any 

given time point, strictly depend on metabolic reactions driven by 

endogenous factors. Exogenous chemicals arising from organism-

environmental interactions and dietary resources can also considerably 

participate and influence the metabolome composition and the 

concentrations of metabolites [72]. The metabolites are active participants 

in metabolic reactions that are essential for normal physiological functions 

and compose the metabolic network. It is substantially the complete set of 

metabolic pathways and includes processes for cell growth, reproduction, 

environmental responses, survival mechanisms, sustenance, and 



 

26 
 

 INTRODUCTION 

maintenance of the cell structure and integrity. Metabolic pathways are 

essentially series of chemical reactions, catalysed by enzymes, whereby 

the product of one reaction becomes the substrate for the next reaction. 

These reactions can be divided into anabolism (production of new cell 

components, usually through processes that require energy) and catabolism 

(production of energy and reducing power breaking down molecules and 

nutrients).  

There is a very large number of metabolic pathways. In humans, as shown 

in Figure I7, the most important metabolic pathways are: 

 •.....glycolysis: glucose oxidation to obtain ATP; 

 •.....citric acid cycle (Krebs' cycle): acetyl-CoA oxidation to obtain GTP 

and valuable intermediates; 

 •.....oxidative phosphorylation: disposal of the electrons released by 

glycolysis and citric acid cycle. Much of the energy released in this 

process can be stored as ATP; 

 •.....pentose phosphate pathway: synthesis of pentoses and release of the 

reducing power needed for anabolic reactions; 

 •.....urea cycle: disposal of NH4+ in less toxic forms; 

 •.....fatty acid biosynthesis: from acetyl-CoA and NADPH through the 

action of enzymes called fatty acid synthases; 

 •.....fatty acid β-oxidation: FAs break down into acetyl-CoA, to be used 

by the Krebs' cycle; 

 •.....gluconeogenesis: glucose synthesis from smaller precursors used by 

the brain. 
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Figure I7. The metabolic pathway: metabolism and catabolism. 

(www.metabolicpathways.teithe.gr) 

1.2.1...Regulation and deregulation of metabolic 

pathways.  

Metabolic reactions and pathways must be finely regulated to 

maintain cellular homeostasis, a constant set of conditions that allows the 

correct function of the organisms. Particularly, the control of metabolic 

pathways allows organisms to respond to internal and external signals and 

interact actively with their environments. 
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Regulation of metabolic pathways includes regulation of one or 

more enzymes in a pathway by increasing or decreasing its response to 

signals, with effects on the overall rate of the pathway. Metabolic pathways 

interact in a complex way to allow adequate regulation. Thus, both the 

tissue and the microenvironment will determine the metabolic phenotype 

of the cells and influence how regulatory events affect normal and 

pathological states [73]. While the main metabolic pathways used to adapt 

to these conditions are fairly constant, how cells detect and respond to 

endogenous and exogenous signals is different. Therefore, alterations in 

cellular metabolism must be considered in relevant contexts. 

Metabolic deregulation is an emergent hallmark of many 

homeostasis alterations and pathological conditions. Altered patterns of 

metabolic pathways result in the intensified synthesis of macromolecules, 

increased proliferation, and resistance to treatment [74]. Alterations in 

endogenous metabolite levels may result from disease processes, incorrect 

nutrient intake, addictions and unhealthy lifestyles, drug toxicity, or gene 

function and epigenetic modifications. This huge fluctuation in molecular 

metabolism represents a source of diagnostic and prognostic challenges 

and an opportunity for novel care options and therapeutic interventions 

[75].  

1.3.  The epigenetic landscape and concept. 

The term epigenetic (from the Greek, epì = “above” and genetikòs = 

“relating to family inheritance”) indicates the dynamic actions that lead 

from the genotype to the phenotype as “a gradual coming into being of 

organs and tissues on a newly formed mass initially undifferentiated” 

(Figure I8). The epigenetic landscape underlies the organism’s 
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development thanks to a complex network of genetic feedback and feed-

forward interactions between DNA, proteins and other endogenous and 

exogenous biochemical compounds [76].  

 

Figure I8. The developmental potential and epigenetic states of cells at 

different stages of development. Figure modified from Helai et al., 2010. 

 

The epigenetic processes include any activity of regulating gene 

expression through chemical processes that do not involve modifications 

in the DNA code but that affect its functionality [77], involving heritable 

and “de novo” stable changes in the genome that may modify the 

phenotype of the individual or progeny. This occurs by adding chemical 

groups covalently linked to the DNA or the proteins around which the 

DNA is wrapped [78] the chromatin fibre together. These stable but 

potentially reversible structural changes in DNA can modify the 

transcriptional potential of the cell. It is important to emphasize that 

epigenetics represents a fundamental process for the survival of every 
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individual and is precisely the basis of cellular variability. The alteration 

of the physical accessibility to the genome of molecular complexes 

responsible for gene expression allows the activation of different genes. 

The result is the consequent regulation of cell differentiation in hundreds 

of types and tissues with characteristics and functions that are also very 

different, despite having the same genetic code.  

1.3.1...The chromatin fibre and main epigenetic 

mechanisms. 

The chromatin fibre is constituted by nucleosomes, its fundamental 

units, which follow each other to form a sort of string of pearls linked using 

a DNA linker strand about ten nucleotides long. Each nucleosome consists 

of a DNA segment of 146 pairs of nucleotides wrapped around a histone 

core composed of 4 types of histone proteins, basic proteins (pH> 7 as they 

are rich in Arginine and Lysine) with a net positive charge that facilitates 

their binding to DNA. A globular domain and an N-terminal tail that 

extends outside the globular domains compose each histone.  

Nucleosomal histones (H2A - H2B - H3 - H4) are linked in dimers 

and heterotetramers to form a histone octamer called histone core; H1 

histones bind the DNA linker and the sequence wrapped around the histone 

core to allow further stabilization and compaction of the chromatin fibre. 

These histones are larger than the nucleosomal ones and are found in a 1:1 

ratio with the nucleosomes. Each histone H1 has a central body and two 

tails that adhere to both the octamer and the incoming and outgoing DNA 

strands. Its interaction with the DNA linker allows and contributes to 

solenoid folding. However, the functions of H1 in the supercoiling of 

chromatin are not fully known.  
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The chromatin fibre represents the DNA morphology normally 

present in cells with different levels of organization depending on the 

cellular state. In fact, in addition to a “packaging” function, it is intimately 

linked to cellular processes such as DNA replication, repair, 

recombination, chromosomal segregation and transcription regulation.  

Chromatin-mediated regulation of transcription involves several 

mechanisms such as positioning of nucleosomes and chromatin 

remodelling due to DNA methylation and post-transcriptional 

modification of histones [79], and RNA-based mechanisms (Figure I9). 

Following these mechanisms is possible to distinguish the active 

chromatin, or euchromatin, with a more relaxed and open conformation, 

from the inactive chromatin, or heterochromatin, more condensed. The 

remodelling of chromatin in the two different forms respectively 

determines the activation or repression, temporary or permanent, of the 

transcription and it is largely due to epigenetic modifications. 

Specific enzymatic chemical signals indicate whether the 

corresponding genes need to be transcribed and how much chromatin 

needs to be thickened, allowing the creation of epigenetic markings. 

Physiological and pathological conditions and the environment can affect 

gene activity by regulating the behaviour of that enzymes. The ensuing 

marking and restructuring of chromatin can last for a short time, for 

example, to allow the cell to respond quickly to intense stimulation, but 

most of the time, these chemical signals remain linked for months, years, 

or even for the entire life of the organism. 
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Figure I9. The three basic mechanisms of epigenetic gene regulation 

acting on chromatin fibre (American Society of Hematology). 

Chemical modifications of histones proteins and DNA methylation, 

along with RNA-based mechanisms, are the most important types of 

epigenetic mechanisms. These processes act separately and in close 

correlation to remodel chromatin, altering the physical accessibility to the 

regions of the genome on which bound proteins and enzymes are 

responsible for regulating gene expression. 

1.3.1a.  The modification of histones. 

Some of the histones’ modifications occur immediately after their 

synthesis, before their assembly into nucleosomes. However, the 

modifications of main interest (methylation, acetylation, phosphorylation, 

ubiquitination, glycosylation, butyration, sumoylation, ADP-ribosylation, 

proline isomerization, citrullination, propionylation, biotinylation) take 
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place after the nucleosome assemblage and appear on at least 30 sites of 

N-terminal tails of the histones. These post-translational modifications of 

histones were intensively studied to propose a model for the complex 

relationships that bind them to DNA metabolism. In fact, in response to 

environmental signals, the different modifying enzymes can work 

sequentially or conditionally to create specific combinations that constitute 

the so-called “histone code” [80]. This code is directly involved in the 

modulation of cellular processes because it is read and interpreted by 

different cellular factors that lead to transcriptional activation or repression 

[81].  

The main manipulators of the histone code are 

acetylation/deacetylation and methylation: 

 
•.....In acetylation, the Histone Acetyltransferases (HAT) provide an acetyl 

group to the amino acid residues of Lysine and Arginine on the tails and 

central residues of all the histones of the nucleosome. The reversible and 

dynamic reduction in the positive charge leads to a lower affinity of the 

histone for DNA. Consequently, the DNA chain has a more relaxed and 

accessible conformation, allowing the activation of transcription. On the 

contrary, in deacetylation, the Histone Deacetylase (HDAC) leads the 

chromatin to be more condensed and transcriptionally inactive. 

•.....Methylation consists of the transfer of one or more methyl groups to a 

lysine or arginine of nucleosomal histones H3 and H4. Their (mono, di, tri) 

methylation, incompatible with their acetylation, is performed by a series 

of three Histone Methyltransferases (HMTs). Depending on the number of 

methyl groups transferred, the histone and the position of the lysine in the 

tails, the methylation can be associated with both activation and repression 
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of gene expression and specific histone methylation patterns are related to 

an increase or decrease in the expression of the associated gene. 

Nevertheless, this modification mainly causes a transcriptional block in the 

heterochromatin regions. 

1.3.1b.  DNA methylation. 

DNA methylation consists of the covalent addition of a methyl 

group to specific cytosines with the formation of 5-methylcytosine (Figure 

I10).  

 

Figure I10. Cytosine methylation in position 5’. 

The process is carried out by a family of enzymes, the DNA 

methyltransferases (DNMTs) and it is controlled at different levels in the 

cells. S-adenosylmethionine (SAM), involved in the methionine and folate 

cycle, is the main donor of methyl groups in DNA and histone methylation 

reactions [82]. DNA methylation allows fixing and transmitting a specific 

and localized chromatin state from cell to cell, which involves gene 

inactivation and consequent transcriptional repression. Generally, the 

target of methylation is the cytosine of the CpG site, a dimer of cytosine 

(C) followed by guanine (G). Methylation of these sites can suppress 



 

35 
 

 INTRODUCTION 

transcription and regulate gene expression directly, by preventing the 

binding of transcription factors to the gene, and indirectly, by modifying 

the chromatin conformation more extensively. Interestingly, only 3% of 

the cytosines of the human genome are methylated. 

Four specific DNA methyltransferases are: 

 •.....DNMT1, with the role of maintaining the methylation state of DNA. 

At every cell replication cycle, the enzyme can recognize the newly 

synthesized helix and copy the methylation pattern present on the template 

helix. This is the main mechanism of epigenetic memory; it allows the 

methylation pattern of CpGs to remain intact through DNA replication and 

transmitted to daughter cells through mitosis. 

•.....DNMT3A1,2 and DNMT3B1,2 are particularly important in the early 

stages of embryonic development. They act de novo, establishing the 

specific methylation pattern for the various tissues. 

•.....DNMT3L, without enzymatic activity. It binds to a specific position of 

the unmethylated cytosine and increases the affinity of other DNMTs for 

DNA, stimulating their activity in the de novo methylation process [83]. 

 •....DNMTs are expressed differentially in embryonic stem cells and 

somatic cells, as resumed in Figure I11. Consequently, the isoforms 

involved in the processes of de novo DNA methylation or its maintenance 

are specifically active or not [84]. 
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Figure I11. The differential activation of human DNMTs isoforms in 

embryonic stem cells and somatic cells. Modified figure from Gujar et al., 2019. 

 

1.3.1c.  RNA-based mechanisms. 

 A non-coding RNA (ncRNA)-associated gene silencing is a 

functional RNA molecule that is transcribed but not translated into 

proteins. The most significant ncRNA molecules include microRNAs 

(miRNAs) and short interfering RNAs (siRNAs), with less than 30 

nucleotides, and long non-coding RNAs (lncRNAs), with 200 nucleotides 

or longer.  Despite the full extent of their role in epigenetics is still being 

determined, recently ncRNA molecules' crucial role in epigenetic gene 

expression has been suggested [85]. There is evidence suggesting that 

ncRNAs participate in DNA methylation and histone modifications in 

addition to gene silencing. Moreover, siRNAs and lncRNAs regulate both 

gene expressions by the formation of heterochromatin [86]. 
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1.3.2.  The CpG islands. 

CpG sites are theoretically expected to make up about 4 % of the 

genome but their experimentally determined frequency is only about 1 %. 

This phenomenon of “suppression of CpG” prevents and reduces the 

spontaneous deamination of the methylated Cs, which tends to convert 

them into thymine, generating a hotspot for pathological mutation in the 

human genome [87]. The suppression of CG dimers causes these 

dinucleotides to be quite rare in the genome, symmetrical concerning the 

two DNA strands and usually methylated on both sides of the double helix. 

They are concentrated within highly repeated DNA regions upstream of 

the gene promoters, generally defined as CpG repeats or islands. These 

regions can be further classified, based on the specific localization and 

methylation levels. About 40-70 % of the genes are estimated to have CpG 

islands in proximity to the promoter. Typically, these islands are long 

between 300 and 3,000 base pairs and, according to the criteria set by Takai 

and Jones [88, 89], have a CG content of at least 55 % and an observed 

CpG / expected CpG ratio of at least 65 %. The CpG island regions are 

generally demethylated, with methylation levels around 10-15 %. 

However, an increase in methyl groups’ percentage plays an important role 

in the control of gene transcription. CpG islands are among the main 

regulatory regions in humans, with functional roles in normal and disease-

related gene expression [90]. 

Besides the CpG islands, other types of CpG repeats, commonly 

classified as “non-CpG islands”, comprise an extremely heterogeneous set 

of sequences, including the long and short interspersed nuclear elements 

(LINEs and SINEs, respectively), and the satellite DNA, characteristic of 

the telomeric and centromeric regions [91, 92]. Contrary to the previous 
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ones, the non-CpG islands are in a state of extensive methylation and the 

levels can reach 40-60 % [93] allowing the maintenance of the 

heterochromatin state of numerous regions of the genome. It indirectly 

contributed to the regulation of the genes found within these territories, 

blocking the transposition ability of numerous transposable elements [94]. 

The result is fundamentally the stability of the genome over time. 

1.3.3...Stochastic epigenetic mutations and epigenetic 

drift. 

Epigenetic drift, defined by stochastic patterns of gene expression 

not dependent on dynamic changes in coding DNA, is a genome-wide 

mechanism, suggesting global dysregulation of DNA methylation patterns 

with age [95], even if the biological, evolutionary, functional and clinical 

significance remains unclear. Substantially, stochastic DNA methylation 

drift reflects imperfect maintenance of epigenetic marks. Two critical 

aspects of epigenetic drift are chromatin deterioration during ageing and 

genomic instability, which lead to stochastic epigenetic mutations (SEMs) 

accumulation. SEMs have been encoded as CpG methylation sites with 

extremely aberrant methylation states if compared with the reference 

values and remain as such also after the enrichment analysis. This aberrant 

process leads to changes in gene activity not involving DNA mutations but 

rather the gain or loss of DNA methyl groups, which are conserved in cells 

during mitosis. SEMs are stochastic due to their rare and inconsistent 

incidences, as they tend to be different from one individual to another [96]. 

Their study is interesting because SEMs have been recently defined as a 

potential measure of the accumulation of DNA damage due to exposure to 

a pathological state or altered physiological state, in this case, represented 
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by MetS. However, they can be influenced by genetic factors and can find 

a common basis in environmental or pathological factors. Moreover, SEMs 

seem to be strongly correlated with age. The number of SEMs is low in 

childhood and increases exponentially during ageing, even if they remain 

very variable among individuals. Two main components of the drift have 

been identified. One is tissue-specific and allows for the construction of 

extraordinarily accurate predictive models of age. The other is tissue 

independent and affects stem cells by targeting their differentiation 

pathways, which may explain the decline in stem cell function with age 

(Figure I12). Epigenetic drift is conserved across species, and the drift rate 

correlates with lifespan when comparing mice, rhesus monkeys, and 

humans [97]. The drift rate appears inversely proportional to longevity and 

the greater the degree of epigenetic drift, and the faster it occurs, the shorter 

the species' lifespan. The increase in DNA methylation associated with age 

affects developmental genes, adding to the effects on genes associated with 

environmental risk factors and the disease itself. A clear example is cancer 

precursor lesions and tumours showing signs of aggravated age-related 

DNA methylation. Moreover, obesity, ageing, fitness, diet, addictions and 

smoking habits are examples of environmental factors that have been 

proposed to have a long-term influence on epigenetic changes [98].   

Associations between an epigenetic score for BMI and variables 

related to poor physical health and MetS have been observed and 

replicated, indicating independent and additive effects of epigenetic and 

phenotypic BMI scores. This suggests that alterations in DNA methylation 

are a downstream effect of obesity [99]. The relationship between obesity 

and adverse "epigenetic health" appears well established and the DNA 

methylation sites associated with obesity seem to predict future risk of 

DM2 [100]. Nevertheless, it is not yet well known what all the clinical 



 

40 
 

 INTRODUCTION 

consequences of accumulated SEMs are and whether clinically severely 

obese individuals with a high burden of SEMs are more prone to develop 

pathological conditions. 

 
 

 

Figure I12. The conventional schematic representation of epigenetic drift 

effects: causes and consequences. Teschendoff et al., 2018. 

 

1.3.4.  The epigenetic clock. 

Organisms' biological (epigenetic) and chronological ages (chAge) 

do not always correspond. The biological age, strictly linked to the 

methylation of DNA (DNAm), can undergo acceleration in association 

with various conditions, endogenous or environmental, related to it. On 

this basis, by tracing how DNA methylation levels changes with age 

throughout life, scientists have developed a scientific tool called the 

"epigenetic clock" to explore the acceleration of age, that is, how biological 

clocks can be accelerated by disease [101] or by the environment and even 

how this could be related to the risk of death. 
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The epigenetic clock could be defined as a predictor of DNAm age 

since it tries to inform about organisms' lifespan and how much they are 

prone to old age diseases, with a special focus on humans. Epigenetic 

markers control the extent to which genes are turned on and off across the 

different types of blood cells and tissues that make up a human body and 

DNAm has emerged as one of the most efficient biomarkers for predicting 

biological age. Changes in specific epigenetic signs over time can be used 

to accurately predict biological age from a DNA sample. In detail, the 

epigenetic clock refers to specific CpG sites at which DNA methylation 

levels steadily increase or decrease with age and thus can be used to predict 

chronologic age with high accuracy [102]. The most commonly used 

version is the multi-tissue epigenetic clock hypothesized and developed by 

Horvath in 2013 [103]. The Horvath's clock and its deviation Intrinsic 

Epigenetic Age Acceleration (IEAA) are based on 353 CpGs and the 

cellular composition of the blood, respectively. Their basic approach is to 

form a weighted average of the 353 clocks CpGs, which is then 

transformed to DNAm age using a calibration function. This property 

allows one to compare the ages of different human body areas using the 

same ageing clock. 

In addition to Horvath's clock, "new generation clocks" have 

improved in age estimation focusing not only on epigenetic variants but 

also on a complex set of biomarkers and environmental components which 

in turn are associated with individual health, diseases and mortality [104]. 

The objective is a better characterization of the predisposing aspects to 

accelerated biological ageing. Among the newest clocks, the 

DNAmGrimAge [105] stands out. It is a biomarker composed of DNAm-

based risk factors estimators of plasma proteins including those of 

plasminogen activator inhibitor 1 (PAI-1) and growth differentiation factor 
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15 and a DNAm-based estimator of smoking pack-years. Adjusting DNAm 

GrimAge for chronological age generated a novel measure of epigenetic 

age acceleration, AgeAccelGrim. Taking a huge and variant pool of risk 

factors into account allows GrimAge to outperform any other epigenetic 

clock in the "prediction of death". The variation in epigenetic ageing rates 

varies greatly according to sex and ethnic origin and its acceleration is also 

linked to physical and cognitive fitness. Patients with obesity, Huntington's 

disease, Down syndrome, and Werner and Sotos syndromes tend to show 

a greater acceleration of age.  

Focusing on obesity, very strong associations have been proposed 

between higher WC, BMI and WHR with accelerated epigenetic clocks 

[106]. With regards to MetS components, a weak but statistically 

significant correlation (r = 0.09) has been observed between BMI and 

intrinsic age acceleration of blood, reaching a greater significant 

correlation (r = 0.42) in the liver [107]. Also, various biomarkers of MetS 

(WHR, triglyceride, insulin and glucose levels, C-reactive protein) were 

found associated with epigenetic age acceleration in blood, whether high 

levels of the good cholesterol HDL were associated with a lower epigenetic 

ageing rate of blood [108]. 

1.3.5.  Biological role in MetS. 

The combined action of DNA methylation and histone modifications 

affects the organism's homeostatic metabolism and pathological 

conditions. Besides the constant control of gene expression, both 

epigenetic processes are involved in important and complex biological 

phenomena such as imprinting, X chromosome inactivation, cell 

differentiation and embryonic development. They regulate the immune 
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system and ageing processes. Recent evidence indicates the importance of 

epigenetic regulation in the differentiation and function of adipocytes  

[109], due to the association between specific methylation sites measured 

in blood and adipose tissue. Moreover, several fundamental aspects of 

adipose tissue biology, including the regulation of different transcription 

factors, are directed by epigenetic events [110]. Studies about the 

association between BMI and DNA methylation levels seem to confirm 

this theory [111, 112]. On these bases, the effects of epigenetic markers 

and modifications have been proposed as an underlying factor in the 

development of obesity and the evolution of MetS [113]. They play also 

an important role in the predisposition to certain pathological symptoms 

related to MetS [114], especially DM2 and CVD. Consequently, the 

identification of epigenetic alterations in adipose-type disorders should 

allow the development of new therapies for metabolic diseases. 

 

1.4...Metabolomics and epigenomics: “-omic” 

sciences in comparison. 

Metabolomics and epigenomics are part of the "-omics" sciences 

along with genomics, transcriptomics and proteomics. The term "-omics" 

identifies the disciplines that study the characterization and quantification 

of pools of biological molecules to delineate an organism's structure, 

functions and dynamics [115]. On the contrary, traditional biological 

sciences deal with studying biological processes individually. Moreover, if 

combined, omics sciences allow studying the interaction networks created 

between the components that mainly characterize the physiology of 

everyone: DNA, RNA, proteins, and metabolites.  

Genomics, transcriptomics and proteomics, which study DNA, 
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RNA, and proteins respectively, can only tell us what may happen in 

organisms. Transcriptomics and proteomics are very inadequate to monitor 

cell function because there is no simple relationship between mRNA or 

protein level and metabolism due to RNA splicing or post-translation. On 

the contrary, metabolomics, studying the metabolites, can directly and 

accurately reflect the current status of organisms and tell us what has 

precisely happened in the organisms. Moreover, the metabolome is much 

smaller than the proteome and the genome, making it relatively simple for 

data analysis. As illustrated in Figure I13, there are only about 3000 

commonly used metabolites in the key metabolic pathways, while more 

than 40,000 genes are in the genome [116].  

 

Furthermore, because environmental influences, such as diet, habits 

and exposure to pollutants, can affect not only the metabolites pool but all 

these networks, knowledge is further expanded by epigenomics which 

studies the outside's effects on internal processes of DNA modifications 

and their consequences. The final aim is to have an "all-around vision" of 

the body's functional condition and allow increasingly targeted and specific 

interventions.  

One of the goals of the omics sciences is to provide the basis for 

increasingly personalized therapy. The omics sciences allow us to move 

from a generalized approach to an individualized approach, responding 

specifically to the needs of the patient. For this purpose, metabolomics and 

epigenomics appear to be one of the best tools to study metabolism and 

metabolic alterations, like Mets [117]. Metabolism is the general term used 

to describe all biochemical reactions that occurred in the body under the 

regulation of genes and proteins by epigenetic actions. Metabolites are 

important in maintaining the normal physiological function of cells and 
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organs and are the key components for intercellular signal transduction. 

Epigenetic regulation of metabolic processes via DNA methylation and 

gene expression may play a major role in this system [118]. So, 

methylome-metabolome associations could provide an all-around vision of 

the causes and consequences of obesity and MetS on the biological 

processes implicated and allow a better understanding of their 

pathophysiology. 

 

Figure I13.  The advantages of metabolomics over other omics. Yu et al., 

Oncotarget. 2017. 

1.4.1.  The metabolomics. 

Metabolomics (or metabonomics) systematically studies the unique 

chemical footprints represented by small-molecule metabolic profiles left 

by specific cellular processes. The origin of the word is from the Greek 



 

46 
 

 INTRODUCTION 

μεταβολή which means change and nomos which means set of rules or laws 

[119]. In detail, metabonomics has been defined as "the quantitative 

measurement of the dynamic and multiparametric metabolic response of 

living systems to pathophysiological stimuli or genetic modification" 

[120].  

Metabolomics is focused on the metabolome (the total number of 

metabolites present in an organism) that is the output of gene-environment 

interaction and reflects the environmental influence [121]. So, it reveals 

directly the current status of organisms and their alterations. The purpose 

of metabolomics is to determine all small molecule metabolites in 

organisms. The idea that each individual is characterized by a metabolic 

fingerprint was first introduced by Roger Williams in 1940, who 

hypothesized the existence of a metabolic signature in schizophrenia, 

following the chromatographic analysis of saliva and urine samples. 

However, only in 1971 the concepts of metabolomics and metabolic profile 

were introduced by Horning and colleagues, who began to apply methods 

of diagnosing metabolic diseases and their causes in the general population 

[122].  In the same years, Seeley and collaborators [123] demonstrated the 

use of the nuclear magnetic resonance (NMR) technique for the 

identification of metabolites present in untreated biological samples. The 

increased sensitivity of this technique, combined with high-resolution mass 

spectrometry (HRMS), makes it one of the most used to identify a 

metabolomic signature in a huge variety of biological samples [124].  

Figure I14 summarizes the analytical approaches mainly used for 

metabolomics studies and their specific applications for a more accurate 

metabolite measurement. 
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Figure I14. Schematic overview of the analytical approaches mainly used 

for metabolomics studies. 

Thanks to NMR and HRMS techniques, in 2007 the Human 

Metabolome Project (HMP) created the Human Metabolome Database 

(HMDB) [125] to complete the first draft of the human metabolome. The 

HMDB contains approximately 11422 metabolites in all. Consequently, 

metabolomics allows for detailed characterization of metabolic phenotypes 

and can enable precision medicine at different levels, including the 

characterization of the metabolic alterations underlying the disease, the 

discovery of new therapeutic targets, and the discovery of biomarkers that 

can be used to diagnose a disease or monitor therapeutic activity [126].  
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Metabolomics based on NMR spectroscopy, if compared with Mass 

spectrometry, is a rapid and low-cost metabolic profiling technique for 

high throughput analysis of the complement of low-molecular-weight 

metabolites and their intermediates. They reflect the dynamic response to 

genetic modification and physiological and pathophysiological stimuli, 

helping to explore and investigate pathological metabolic processes and to 

identify their alterations [127].  

1.4.2.  The epigenomics. 

Epigenomics is based on epigenetics and is the study of all the 

epigenetic changes and modifications that occur throughout an individual’s 

entire genome, thanks to the exploration of heritable and reversible 

modifications of DNA and chromatin that do not change primary 

nucleotide sequences. Epigenomics joined with epigenetics has greatly 

contributed to elucidate the molecular mechanisms that give rise to the 

development of many illnesses, analysing and describing epigenetic 

changes across many genes in a cell or throughout an entire organism, as 

well as the processes that regulate how and when specific genes are turned 

on and turned off. 

Epigenetics was defined as “the branch of biology that studies the 

causal interactions between genes and their cellular product and puts in 

place the phenotype” by Conrad Waddington in 1942 [128]. 

The study of epigenetics on a global level has only recently been 

made possible through the adaptation of high-throughput genomic assays. 

The high-yield data obtained thus allowed the discovery of the abundance 

of epigenetic modifications and their relationship with the functioning of 
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chromatin. On this basis, the Human Epigenome Project (HEP) [129] was 

developed as a multinational scientific project that aimed to identify, 

catalogue and interpret the DNA methylation patterns of the entire genome 

of all human genes in all major tissues. This has motivated the build-up of 

new theoretical models for the appearance, maintenance and modification 

of these patterns. Epigenetic modifications and variants including DNA 

methylation, chromatin architecture, histone modifications and non-coding 

RNA can be investigated using multi-skilled detection methods. These 

methods are specific to each modification, such as antibody-based affinity 

methods in detecting DNA methylation or histone modification. However, 

these methods’ results are often analysed and processed with routine 

analysis technologies: sequencing, PCR and microarray [130] (Figure I15). 

 

 

Figure I15. Tools for studying epigenomics. Turunen et al., 2018. 

Next-generation sequencing platforms (NGS) and microarray-based 

technologies, producing a huge amount of data, make epigenomics studies 

as fundamental as metabolomics. The latest computational tools are 
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necessary to reveal any biological significance present in their 

experimental result. 

Epigenomics, like metabolomics, contributes to explore and 

investigate a huge variety of pathological processes, including metabolic 

ones. DNA methylation analysis supplies valuable insight into gene 

regulation and helps in the identification of potential biomarkers. Until 

today, it has also been proved that aberrant DNA methylation is implicated 

in many disease processes, including obesity, cancer, and addiction. Thus, 

EWAS offer new ways to understand the significance of DNA methylation, 

providing novel insights into the functional consequences of genes’ 

functional variations, with the hope that epigenetic risk may be modifiable 

or even reversible [131]. 

1.5. The need for MetS better understanding and 

the unsolved problems about the lack of common 

diagnostic criteria and biomarkers, sex and gender 

difference and social and scientific perception. 

In the last decade, MetS has been recognized as a specific pathology 

and the scientific community has increased awareness of its extension in 

the population and severity. Nevertheless, its global definition is still 

unsettled because not all the disorders associated with MetS have obvious 

signs or symptoms and many biomarkers remain uncertain. Moreover, its 

knowledge, perception and acceptance by society are still low, as well as 

the implementation of preventive and protective lifestyles and health 

behaviours. For this reason, health screening campaigns to identify 

potential risk groups and the development of educational and therapeutic 

programs for lifestyle modification, focused on those metabolic 
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biomarkers strongly linked to education [132], are seen to be more and 

more necessary to prevent future increases in cardiovascular complications 

and to decrease health care costs. Various international studies have shown 

that the association of this disorder with the onset of CVD, DM2 and 

cancer, as well as the occurrence of death from heart disease and all-cause 

mortality, represented one of the major health challenges of the century 

that has attracted the attention of many scientists. Nevertheless, MetS’ 

complex nature, characterized by the number and variability of the factors, 

makes its study and treatment difficult globally.  

For years the concept of MetS as a distinct disease in itself 

characterized by a unifying pathophysiological factor had been questioned 

since several studies demonstrated that the diagnosis of MetS by traditional 

criteria did not provide additional prediction on the pathological gravity 

beyond that highlighted already by its components individually [133]. It 

could be a weakly associated cluster of components and risk factors for 

metabolic diseases. Among the components of the MetS, dyslipidemia 

appeared to have been the major contributor to the natural development of 

MetS. Furthermore, in the succession of metabolic alterations, people's 

future pathological status appeared to be most likely determined by the 

combination of dyslipidemia with obesity or hyperglycemia. So, most 

scientific studies and medicine continue to focus more on researching and 

treating the individual components. On the one hand, deepening their 

investigation separately and implementing increasingly effective 

treatments is certainly positive and allows for better patient health and 

living conditions. On the other hand, there is a lack of in-depth knowledge 

of the interrelationships generated between various metabolic components 

and the metabolic and epigenetic biomarkers that characterize the Mets. If 

MetS is a clinical entity, characterized by a unifying pathophysiological 
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factor, the characterizing symptoms are most likely highly correlated and 

represent a statistical entity. This may explain the clustering of its features 

and the fact that two distinct pathophysiological factors cause a similar 

disease symptom.  

Not only the clinical definition but also the diagnosis criteria and 

parameters of MetS are debated issues and several changes to the current 

diagnosis parameters of MetS have been suggested in the scientific 

literature. First, besides the different criteria for diagnosing MetS that are 

mainly based on having at least several components of central obesity, 

hypertension, hyperglycemia, high triglyceride, and low HDL cholesterol 

concurrently, it has been proposed to add more parameters to the diagnosis 

of MetS. These include FFA, increased apolipoprotein B (ApoB), albumin 

and C-reactive protein (CRP) altered levels, as well as fatty liver [134]. 

They are flanked by proinflammatory adipocytokines such as tumour 

necrosis factor (TNF), leptin, circulating adiponectin, plasminogen 

activator inhibitor (PAI), and resistin, bioactive substances produced and 

released in a dysregulated form by the enlarged adipose tissue [135]. Given 

that a crux of the development of MetS is the buildup of adipose tissue and 

tissue dysfunction that in turn leads to insulin resistance, the list of these 

dysregulated adipokines and cytokines is constantly growing and reflects 

the heterogeneity of adipose tissue due to the number of resident cell types, 

the diet, the lack of physical activity and the genetic predisposition. This 

would allow a better characterization and classification of the 

developmental stages of the disease depending on the greatest number and 

combinations of components a person manifests at each point in time 

[136]. However, it is unclear whether MetS remains a statistical entity after 

adding one or more of these characteristics. A continuous characterisation 

has been proposed as even more distant from the current bivariate MetS 
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characterization, resulting in the loss of some pathological information due 

to the presence of a cut-off value of each component [137]. A small change 

in the levels of any of the components of the MetS near the cutoff level 

could result in the misclassification of an individual as having or not having 

MetS. Although, these changes would only have a minor effect on his 

metabolic profile and clinical risk. Furthermore, when compared with the 

number of positive characteristics, the cardiovascular risk increases 

continuously, with no suggestion of a threshold effect. However, there is 

still little information for a possible continuous definition of MetS. 

Besides the paucity of globally recognized diagnostic criteria and 

biomarkers resulting in limited and incomplete specific approaches to 

MetS, the lack of information increases by focusing on sex and gender 

differences [138, 139], and their relation to age. These differences are both 

biological and social and interconnected to each other. In detail, if gender 

heterogeneity may be influenced by environment and/or behavioural 

habits, biological sex differences are surely more remarkably affected by 

age differences and environmental effects during ageing [140]. 

Consequently, sex differences in MetS prevalence are due to physiological 

differences such as hormones, differences in social and psychological 

stressors, and differences in lifestyle. In some studies, for example, alcohol 

drinking was identified as the leading risk factor associated with MetS and 

hypertension in men. In women, the main risk factors were household 

income and education level, showing different patterns in different age 

groups and indicating that the vulnerable groups at high risk of MetS are 

middle-aged men and women, with strong repercussions in old age, 

especially for the latter [141]. Unfortunately, even if it is well known that 

women have physiological and metabolism differences from men, they 

have always suffered from reduced consideration and inclusion in clinical 
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studies. 

Nevertheless, the increasing evidence that in a complex pathology 

such as MetS, in which the sex hormone interactions appear crucial, an 

individual’s sex is one the most important modulators of disease risk and 

response to treatment, is inverting this tendency. In the last decades, 

women have been included more and more in clinical trials, even if there 

is still a substantial discrepancy with men.  

In this landscape, in which further factors such as the different 

racial/ethnic characteristics may come into play [142], additional research 

is needed and compulsory on various aspects of MetS to better define its 

underlying causes, its development and its clinical importance to identify 

treatments specific to the syndrome itself as a cluster of joint causative 

elements rather than treat its distinct components. This could also provide 

a better and more complete understanding of factors already considered to 

be involved, or possibly involved, in the cause or pathogenesis of 

atherosclerosis such as inflammation, insulin resistance, or central obesity. 

The growing awareness that overweight and obesity are important 

precursors of CVD and implicated in many metabolic alterations must 

therefore be accompanied by greater attention to prevention and treatment 

interventions customized for sex, gender and age. This result is possible 

only by promoting research on the pathophysiology of obesity and MetS 

to give a useful answer to the questions which have still to be solved. 
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2.  HYPOTHESIS AND AIMS OF THE STUDY 

2.1. Hypothesis. 

Adult severe obesity is mainly the result of long-term unhealthy 

lifestyles and represents a significant risk factor that increases morbidity 

and mortality. The connection between diet, metabolism and epigenetics is 

rather complex. Diet modulates metabolism and metabolome composition. 

On the one hand, metabolites are the substrates used to generate chromatin 

modifications. On the other hand, changes in metabolism and metabolic 

pathways can induce changes in gene expression programs and therefore 

impact epigenetics profiles. As epigenetics may represent the link between 

environmental and genetic factors, changes in epigenetics profiles can have 

a feedback effect on gene expression and protein production, modifying 

metabolic pathways with loop effects on the metabolome and the body's 

metabolism, wich can be detected by NMR. In addition, hormones have 

also an important regulatory function. For this reason, the different 

hormone profiles between men and women and their changes during the 

various stages of life are important factors to consider for interaction with 

metabolism and epigenetic changes. The alterations of the epigenetic 

profile influence and modify disease predisposition during all life and may 

help to understand human metabolic diseases and obesity.  

The hypothesis of this thesis is that the identification of metabolic 

biomarkers by NMR of the MetS and epigenetic signatures involved in the 

development of the disease and for the different clinical conditions related 

to MetS considering sex specificities could be useful for identifying people 

at risk. Moreover, adipocyte cell culture experiments should allow us to 



 

58 
 

 HYPOTHESIS AND AIMS OF THE STUDY 

 

better understand the role of adipose tissue in MetS' pathophysiology by 

determining potential cause-effect relationships between the products of 

adipose tissue metabolism and the metabolome alteration in severe obesity 

and MetS. 

2.2. Aims of the study. 

The general objective of the project is twofold, firstly, to investigate 

the influence of sex and age on the metabolic profile of subjects MHO and 

patients with MetS in a contest of clinically severe obesity by studying 

differences in their metabolome and epigenome under the hormonal and 

endocrine influence in different sexes and ages. Secondly, better 

characterization of MetS patients by the analysis of the potential role of 

adipose tissue metabolism in the pathology using a rat model with a high-

fat diet (HFD) as a source of adipocytes for in vitro validation of the 

hypotheses arising from the studies on the human cohort. 

The specific objectives are the following: 

     Human samples analysis-related objectives: 

1. Evaluation of the influence of sex and age on anthropometric 

parameters through analysing the prevalence of MetS and its 

components, their interactions and clinical consequences. 

2. Definition of the metabolic parameters of the MetS and its 

pathological stages in the context of MHO and MUHO. 

3. Examination of the differences between men and women with 

extreme MetS in metabolomic traits and adipose tissue metabolism 

in clinically severe obesity at different ages. 

4. Identification of epigenetic differences in DNA methylation and 
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epigenetic drift in severely obese elder adults with and without 

Mets and the effects on epigenetic age.  

5. Understanding the role of methylated metabolites and epigenetic 

modifications in the mutual regulation between epigenome and 

metabolome and the impact on metabolic risk and disease. 

6. Identification of specific and early biomarkers in metabolic 

diseases, with a particular focus on patterns by sex and age based 

on statistical models and data mining. 

.....Cell culture experiments-related objectives: 

1. Analysis of the influence of a HFD on the metabolism of rat 

adipocytes and adipose tissue. 

2. Determine the sex-related changes in the metabolome and in the 

adipose tissue induced by HFD. 

3. Study the mannose’s effect on rat adipocytes and adipose tissue 

metabolism.  

4. Detection of the metabolic profile induced by HFD in highly 

controlled models of MetS based on experimental cell cultures of 

adipocytes and adipose tissue to be validated in the Piancavallo 

cohort. 
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3.  EXPERIMENTAL DESIGN 

3.1.  Study design and experimental workflow. 

This retrospective and observational study was schemed (figure 

ED1) to compare and analyse clinical, metabolomics and methylation data 

of a cohort composed of adult individuals MUHO, affected by MetS, and 

MHO to investigate their differences in the development of MetS and its 

effects in terms of the interplay among metabolome, epigenome and the 

endocrine role of adipose tissue under the influences of sex and age and 

environmental aspects as diet.  

After an extended anthropometric measurement and complete 

metabolic characterization, all the MHO and MUHO subjects and all the 

MetS case subgroups were statistically analysed. The study focused on 

comparing the extreme MetS.5 case subgroup and MHO. Furthermore, 

according to the literature and due to a lack of the age at which women 

went through menopause, we divided women into three big subgroups and 

applied the same criteria for men: fertile age, from 19 to 45 years, 

menopausal transitional age, from 46 to 54 years, and postmenopausal age, 

from 55 to 85 years. We focused our analyses on the study of the effects of 

sex, age and hormonal interactions on MetS.5 comparing men and women 

at fertile and postmenopausal ages.  

According to the results obtained in the metabolomics analysis and 

considering the elderlies as the most affected by MetS and by its 

consequences also on the epigenome, we conducted a pilot epigenetics 

analysis focused on the comparison of methylation changes of a 

representative sample of 96 subjects (48 cases MetS.5 and 48 controls 

MHO; age range 55-85 years). Men and women samples were carefully 
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selected using integrated quality control procedures, respecting their 

percentage proportion over the entire cohort and matching the subjects of 

two groups MetS.5 and MHO as much as possible for age and sex.  

Finally, an experimental model of obesity and metabolic alterations 

represented by HFD and control Wistar rats was used to investigate the 

influence of the diet on the metabolome of adipose tissue and adipocytes 

in controlled conditions. We performed a cellular study to analyse the 

metabolomics profile and morphological and functional characteristics of 

adipose tissue and adipocytes obtained from the animal model. Moreover, 

we conducted specific treatments on the tissue and cell cultures based on 

the results obtained by analysing the Piancavallo human cohort. This 

mechanistic and functional approach was applied to test the potential 

correspondence with the human condition of MetS in severe obesity and to 

investigate the biological processes related the diet to severe obesity and 

MetS. 
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Figure ED1.Experimental workflow of the thesis. 
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3.2...Characterization of the Piancavallo cohort. 

This cohort was composed of 1463 (resulting in the final effective 

number of 1350 samples after the quality control of clinical and 

experimental data) adult subjects. All of them were between the ages of 19 

and 85 and had clinically severe (Class III) obesity: BMI ≥ 40 kg/m2 or 

between 35.0 and 39.9 kg/m² with one or more obesity-related comorbid 

conditions, WC ≥ 80 cm in women and ≥ 94 cm in men, and moderate to 

high WHR. According to the IDF MetS Worldwide definition (2005), the 

cohort was divided into people with MHO, as controls, and people with 

MUHO, as cases affected by MetS. The MUHO group was divided into 

subgroups based on the numbers of MetS parameters, from 3 to 5 (MetS.3, 

MetS.4, MetS.5), where MetS.5 represented the extreme case of the 

disease. 

3.2.1...Recruitment of the Piancavallo cohort. 

All the voluntary participants in the study were recruited for 

diagnostic or therapeutic characteristics related to clinically severe obesity 

or its morbidity problems among the patients who attended the Division of 

General Medicine of the obesity clinical centre of Istituto Auxologico 

Italiano (Ospedale San Giuseppe, Piancavallo) between years 2006-2017. 

During this period, all adult patients who presented the parameters of 

inclusion (see section 3.2.1a.) in the study received an informed consent 

document with all the detailed information about the study's aims and the 

procedure of sample collection and data management before taking part in 

it. Of these, all those who gave their written informed consent to participate 

and to sample their blood samples to be used for research studies became 

members of the Piancavallo cohort. The Italian Ministry of Health funded 
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the study which was conducted by the Declaration of Helsinki and was 

approved by the Ethics Review Committee of Istituto Auxologico Italiano 

(Milano) in the session on 10 December 2008 (document attached in 

Annex I). Regulations were Decreto Legislativo 24 Giugno 2003, n. 211 

"Attuazione della direttiva 2001/20/CE relativa all'applicazione della 

buona pratica clínica nell'esecuzione delle sperimentazioni cliniche di 

medicinali per uso clinico". Treatment of personal data (decreto legislativo 

30 giugno 2003, n. 196), and following integrations, and deliberazione del 

24 Luglio 2008 (Linee guida per i trattamenti di dati personali nell’ambito 

delle sperimentazioni cliniche di medicinali. Deliberazione n. 52).  

3.2.1a...Inclusion/exclusion parameters collection and 

measurement. 

The anthropometric variables collected and measured included: age, 

sex, height, body weight, and waist and hip circumference. Body 

composition, in terms of the percentage of FM and fat-free mass (FFM), 

was determined using a bioelectrical impedance analysis (BIA101/S 

model; Akern, Florence, Italy) in the morning following an overnight fast 

and less than 2 days later the execution of the indirect calorimetry. The 

presence of hypertension, hyperglycemia and DM2, dyslipidemia 

(hypertriglyceridemia and low HDL) were evaluated using routine 

laboratory measurements. Resting oxygen uptake and resting carbon 

dioxide production were measured from a ventilated canopy at 1-minute 

intervals for 30 minutes and expressed as a 24-hour value. Resting energy 

expenditure (REE) (kcal / 24 h) was measured between 8 and 9 a.m. after 

a fasting period and physical inactivity of 12 h in a thermoneutral 

conditions room (22–24 °C) using indirect computerized calorimetry 

(Vmax 29, Sensor Medics, Yorba Linda, CA, USA) by an open-circuit and 
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was calculated using the Weir equation, as published previously [143]. 

Subjects were awake and supine with the head placed in a rigid, transparent 

ventilated canopy. Average daily caloric intake was assessed using a 

standardized 7-day booster technique. Diet and weight histories were 

assessed according to standardized methodologies during interviews 

carried out by two trained dieticians. 

After the data collection, patients who did not achieve waist 

circumference ≥ 80 cm in women and ≥ 94 cm in men and fluid overload 

patients, according to vector analysis, were excluded to minimize errors in 

estimating FM and FFM in severe obesity. All obese patients who showed 

a negative difference between reported food intake and REE multiplied by 

1.2 (as a conservative estimate of total energy expenditure) were also 

excluded as considered underestimated. Therefore, their medical history 

has been classified as unreliable. MetS severe concomitant disease, type 1 

diabetes (DM1) or psychiatric disorders, illnesses unrelated to the MetS or 

an unreliable medical history were also considered exclusion criteria. 

Finally, the failure to fill in a Data Collection Form and/or the informed 

consent document resulted in the exclusion. 

3.3...Mechanistic hints in experimental animal 

models fed with High Fat Diet.   

The use of animal models to obtain tissues and cells for specific 

analyses and controlled cultures is very useful for testing the results from 

integrated analyses of multiple omics data and environmental response 

phenotypes. These experimental models represent a sort of mechanistic 

and functional validation study to understand the structural and functional 

relationships of cells and tissues by monitoring conditions and key 
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components such as cell viability and proliferation, cell signalling 

pathways and complex biological interaction networks, cell cycle and cell 

structure analysis. Various diet-induced-obesity animal models have been 

proposed to better understand the physiopathology of abnormalities 

associated with obesity. For example, overconsumption of a high-energy 

diet has been proposed to promote a positive energy balance and can 

reproduce many features of human overweight and obesity [144]. The use 

of HFD-fed rats is particularly indicated because both humans and rodents 

tend to gain weight with high caloric intake. Moreover, while humans have 

large abdominal viscera including omental, perirenal and retroperitoneal 

fat pads in addition to mesenteric, gonadal and epicardial fat tissues, mice 

and rats have large perigonadal fat pads [145], which, besides perirenal and 

retroperitoneal fat, can be considered comparable with humans’ visceral 

adipose tissue as shown in figure ED2. 
 

 

Figure ED2. Distribution of fat tissues in humans and rodents. Modified 

figure from Cheong et al., 2021. 
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3.3.1.  Cell assay on adipose tissue obtained from an 

HFD-fed rats model. 

Perigonadal fat pads were supplied by a laboratory colleague after 

an HFD feed experimental protocol on 36 Wistar rats (18 males and 18 

females, 39 weeks of age, weighing 600-860 g (males) and 290-350 g 

(females)). The rats were part of the project “Longitudinal study of the 

development of non-alcoholic fatty liver disease (NAFLD). Interaction of 

diet - intestinal microbiota - adipose tissue - liver". The project protocol 

was subjected to the Ethics Committee of the University of Valencia with 

the following code: A1538561308126, evaluated and approved (approved 

proceeding number: 2019/VSC/PEA/0129) and the experimentation on the 

animals was performed in our laboratory simultaneously with the 

development of this thesis. Both male and female rats were randomly 

separated into the control (CTL) groups (8 animals per sex), fed with an 

ordinary chow diet Teklad Global 2014 (diet sheet attached in Annex II, 

Figure A1), and the HFD groups (10 animals per sex), fed with Teklad 

Custom Diet TD.08811 (45 % kcal Fat Diet) from Harlan (diet sheet 

attached in Annex II, Figure A2). The access to water and food was ad 

libitum and all the animals were sacrificed after 20 weeks of treatment. 

Perigonadal fat tissues were extracted just after the sacrifice procedure. 

Specifically, epididymal fat pads were obtained from male rats. 

Periovarian fat bodies were obtained from female rats. 
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4.  MATERIAL AND METHODS 

 This thesis's general methodology involved applying omic 

technologies such as metabolomics and epigenetics for the analysis of 

serum samples from the study cohort and all the cell culture media samples 

from rat adipose cells and tissue cultures. The correct collection, quality 

control and processing of biometric and anthropometric data and biological 

samples, as well as cell culture techniques, represented a critical step to 

optimize high-throughput technologies. The development of adequate 

statistical analyses constituted a fundamental point for the correct 

visualization, validation and biological interpretation of the results. All 

procedures and analyses listed are extensively described and detailed 

below.  

 
Methodological approaches applied to the Piancavallo cohort: 

•.....Collection and quality control analysis of phenotypic data; 

•.....Collection and specific preparation of serum samples for 

7processing; 

•.....Metabolomic analysis through NMR spectroscopy; 

•.....Epigenetic analyses through DNA methylation quantification and 

7related assays; 

•.....Statistical analyses and biological interpretation. 

 
Methodological approaches applied to the HFD animal model: 

•.....Collection of rat body measurements; 

•.....Rat perigonadal fat tissue collection and preparation for processing;  

•.....Cell and organ cultures maintenance and treatment; 

     •.....Collection and processing of adipocytes and adipose tissues culture 
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.media samples, .organ culture fragments and adherent differentiated 

.freezing .adipocytes; 

•.....Metabolomic analysis through NMR spectroscopy; 

•.....Statistical analyses and biological interpretation. 

4.1...Methodological approaches applied to the 

Piancavallo cohort. 

4.1.1.  Collection of phenotypic data. 

The patients enrolled in the study were asked to fill in a Data 

Collection Form. Together with the biometric characteristics and clinical 

data, information related to habits and lifestyle was reported to identify any 

risk factors related to MetS or influencing the DNA methylation status. The 

compilation of this questionnaire took place at the same hospital. In 

particular: 

Clinical and biometric and anthropometric data: 

•.....Sex and age 

•.....Weight and height 

•.....Waist and hip circumference 

•.....BMI and WHR 

•.....Hyperglycemia 

•.....DM2 

•.....Low HDL 

•.....Hypercholesterolemia 

•.....Hypertriglyceridemia 

     •.....HOMA-IR  
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•.....SatO2, oxygen saturation  

•.....REE 

•.....Altered levels of thyroxine (T4) and thyroid stimulating 

hormone (TSH); Thyroids disorders  

•.....Other disorders or complications  

•.....Pharmacological treatments 

Habits and lifestyle:  

•.....Consumption of alcohol and smoking  

•.....Consumption of coffee 

•.....Diet 

•.....Physical activity 

4.1.1a...Phenotypic data processing and quality control. 

The quality control of phenotypic and clinical data was a 

fundamental process for correctly carrying out the experimental part of the 

study and subsequent statistical analyses. The human Piancavallo cohort 

data collected during clinical analysis and provided by the patients (1463 

subjects) were verified. First, the correspondence between the biological 

samples collected and the information obtained through the Data 

Collection Form was checked. In case of uncertainty or mismatch between 

these data, the samples were excluded from the experiment. This led to the 

exclusion of 59 samples. Even in the case of correct correspondence, 

further screening was carried out to exclude from the analysis samples that 

could not be compared with the others due to the lack or incompleteness 

of clinical, biometric and/or anthropometric data information (33 samples). 

Lamentably, it was deemed necessary not to consider the data relating to 

habits and lifestyle due to the impossibility of verifying their reliability and 
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the lack of information for many patients. Hence, the final number of serum 

samples suitable for the experimental part of the study and subsequent 

statistical analyses was 1371. 

4.1.2...Collection and storage of blood samples.  

Blood samples were obtained in the early morning after eight to twelve 

hours of fasting before their drawing. During the sampling, the blood 

samples were collected in different tubes to allow their subsequent specific 

use: in a covered test tube to obtain serum samples or in an 

ethylenediaminetetraacetic acid (EDTA)-treated tube that prevents the 

coagulation of whole blood samples for the further extraction of genomic 

DNA. 

The covered test tube was left undisturbed at room temperature from 30 

minutes to 1 hour to allow the blood to clot. The serum was then separated 

from the clot by centrifuging at 1,000-2,000 x g for 10 minutes and 

immediately transferred with a pipette into a sterile 1.5 mL Eppendorf tube 

and was frozen immediately at -80 °C until the experimental measurements 

were made.  

4.1.3...NMR spectroscopy and serum metabolomics 

analysis. 

The metabolomic approach on serum samples of the Piancavallo 

cohort and culture medium samples was done by the use of 1H-NMR to 

study the metabolic features of the MetS and obesity. NMR provides 

precise and useful information on the structure and composition of low-

molecular-mass metabolites in biological fluids thanks to its unbiased 
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metabolite detection, quantitative nature, and high reproducibility [146]. 

The metabolomic analysis routine is summarized in Figure MM1. 

 

Figure MM1. Summary of spectral processing and post-processing steps 

on NMR data (TSP, trimethylsilyl propionate; D2O, deuterium oxide). 
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4.1.3a.  Serum samples preparation for NMR measurement 

and pre-analytical quality control. 

All samples were thawed at room temperature before metabolites 

were measured by NMR spectrometry. The sample handling was 

performed in the Molecular and Metabolomic Imaging Laboratory (UCIM-

University of Valencia, Spain) following the NMR technician’s directions 

and support. The manual sample handling is detailed below.  

A volume of 470 μL of serum was mixed with 30 μL of deuterium oxide 

(D2O) with internal reference to trimethylsilyl propionate (TSP) 2.5 mM 

(final concentration) and placed in a 5 mm high-resolution NMR tube for 

SampleJet. Pre-analytical quality control was performed to verify the 

quantity and quality of the serum samples. A total of 21 samples with a 

serum volume of less than 200 µl were excluded. 

4.1.3b.. Serum spectra acquisition.  

A final number of 1350 of human serum spectra from the 

Piancavallo cohort were processed individually. NMR spectra were 

acquired using a standard one-dimensional pulse sequence 1H ZGPR with 

water suppression (pre-saturation) using a Bruker Avance III DRX 600 

MHz spectrometer (Bruker GmbH, Rheinstetten, Germany) operating at a 

1H frequency of 600.13 MHz. The instrument was equipped with a QXI 5 

mm quadruple resonance 1H/13C/15N/31P probe and a SampleJet 

automated sample changer thermostatted at 277 K. For each serum sample, 

a volume of 500 μL was measured using a 5 mm probe. Pre-saturation were 

acquired using a 3.95 s acquisition time, 32 transients, 14 parts per million 

(ppm) (8417 Hz) spectral width, and a relaxation delay of 2 s. Water pre-
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saturation was used for 1 second throughout the recycle time for solvent 

signal suppression. The total acquisition time was 4 min 47 sec per sample 

and the experiments were recorded at 310 K. The measurement was carried 

out randomly between the samples of the different sample groups. 

4.1.3c. .NMR spectra processing and quality control.  

The raw data obtained were initially manipulated by the technician 

and Fourier-transformed to allow the following analysis. Then, all spectra 

were processed using MestReNova 14.1.1 software (Mestrelab Research 

S.L., Santiago de Compostela, Spain). Each spectrum was phased and 

baseline corrected, focalizing on the chemical shift region including 

resonances between 0.50-4.50 ppm and 5.00-9.50 ppm of spectrometer 

frequency. The two intervals of ppm include the aliphatic region and the 

aromatic region, respectively. The spectral region of water (4.50-5.00 ppm) 

was excluded. The spectra were referenced using the chemical shift of the 

second peak of the Alanine’s doublet at 1.478 ppm and were normalized 

to the aliphatic area (0.50-4.50 ppm) of the spectra. The reproducibility of 

NMR spectroscopy was verified by the superposition of normalized 

spectra. No samples were removed after having performed the quality 

control of the processed spectra samples. Quality control on experimental 

data was necessary to verify the success of the manual and automatic parts 

of the experiment (protocol, reagents, instruments and equipment 

calibration, internal bias). 

4.1.3d.  Metabolites and spectral regions assignment. 

Metabolite spin systems and resonances were identified by literature 

data, 1H,1H-TOCSY NMR spectra, and the Chenomx resonances database 
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(Chenomx NRM Suite 8.1, Chenomx Inc. Edmonton, Canada). In addition, 

when the software was not able to identify a metabolite, specialized NMR 

databases such as HMDB were consulted together with the currently 

available literature on NMR-based metabolomics. This strategy allowed us 

to obtain a more complete list of identified metabolites.  

Our metabolic profiling approach provided information on 55 well-defined 

spectral metabolic characteristics, listed in Table MM1 and illustrated in 

the spectra in Figure MM2. All of the metabolites were assigned to unique 

metabolic components, although five of them, namely proline, glycolate, 

2-oxosuccinate, creatinine and threonine were not confirmed by the spectra 

due to the low signal-to-noise in the 2D spectra. 

 

Table MM1..List of the 55 metabolites’ spectral regions detected in 

Piancavallo cohort serum samples. 

 
                  PIANCAVALLO METABOLIC SYNDROME SAMPLES 
 SERUM METABOLITES REGIONS ppm 

1 Cholesterol 0,6 - 0,72 
2 FA1 0,78 - 0,9 
3 Leucine 0,945 - 0,97 
4 Isoleucine 0,992 - 1,015 
5 Valine 1,022 - 1,075 
6 2oxobutyrate  1,055 - 1,075 
7 Ethanol 1,155 - 1,17 
8 3hydroxybutyrate 1,18 - 1,21 
9 FA2 1,21 - 1,24 

10 VLDL2 1,24 - 1,28 
11 LDL2 1,28 - 1,31 
12 Alanine 1,46 - 1,485 
13 FACO1 1,49 - 1,6 
14 Acetate 1,905 - 1,925 
15 UFA1 1,93 - 2,02 
16 NAC1 2,02 - 2,06 
17 NAC2 2,06 - 2,09 
18 Proline 2,092 - 2,113 
19 FACO2 2,2 - 2,215 
20 Acetone 2,215 - 2,23 
21 Glutamate 2,33 - 2,358 
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                  PIANCAVALLO METABOLIC SYNDROME SAMPLES 
 SERUM METABOLITES REGIONS ppm 

22 Pyruvate 2,358 - 2,37 
23 Succinate 2,392 - 2,405 
24 Glutamine 2,417 - 2,5 
25 Citrate 2,507 - 2,56 
26 Methionine 2,635 - 2,645 
27 Dimethylamine 2,7 - 2,723 
28 Sarcosine 2,728 - 2,733 
29 Trimethylamine 2,885 - 2,888 
30 Dimethylglycine 2,9 - 2,92 
31 PUFAs 2,94 - 2,99 
32 Lysine 3,01 - 3,02 
33 Creatine  3,03 - 3,052 
34 Choline 3,185 - 3,195 
35 CCC 3,195 - 3,225 
36 Arginine (+ Glucose) 3,225 - 3,238 
37 TMAO (+ Glucose) 3,238 - 3,252 
38 2oxosuccinate 3,34 - 3,352 
39 Methanol 3,352 - 3,37 
40 Glucose 3,38 - 3,5 
41 Glycine (+ Glucose) 3,545 - 3,559 
42 Threonine (+ o-Phosphocholine) 3,574 - 3,59 
43 myoInositol 3,608 - 3,62 
44 Methylhistidine 3,68 - 3,69 
45 Glycolate 3,92 - 3,935 
46 Serine 3,957 - 3,985 
47 Creatinine 4,038 - 4,085 
48 Lactate 4,085 - 4,135 
49 Threonine 4,24 - 4,29 
50 Mannose (+ Glycogen fragments) 5,17 - 5,21 
51 a-Glucose 5,22 - 5,25 
52 UFA2 5,25 - 5,37 
53 Tyrosine 6,88 - 6,905 
54 Phenylalanine 7,39 - 7,44 
55 Formate 8,445 - 8,455 

List of detected metabolites and chemical shift assignment in the NMR spectra of serum. 

The resonance’s relative position in the NMR spectrum is indicated by its ppm values. Key 

for NMR moieties: FA: fatty acids; FA1: CH3-; FA2: -CH2-; FACO1: -CH2CO; FACO2: 

-CH2CH2CO; UFA1: =CHCH2CH2-; UFA2 =CHCH2-; PUFAs: =CHCH2CH=; CCC: 

choline-containing compounds; TMAO: trimethylamine oxide; NAC1: acetyls in 

glycoproteins 1; NAC2: acetyls in glycoproteins 2.    
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4.1.3e.  Metabolites and spectral regions quantification.  

The quantification of every listed metabolite per sample was 

obtained as the area under the metabolite or spectral region curve. 

Chenomx NRM Suite 8.1 profiler (Chenomx Inc. Edmonton, Canada) was 

used to perform the assignment. The data were then imported into the semi-

automated in-house Matlab R2019b software (The MathWorks Inc., 

Natick, MA, USA) for additional processing and routine laboratory 

analysis, like integration and peak-fitting procedures. The final metabolite 

relative spectral abundance was calculated in arbitrary units as the peak 

area was normalized to the total aliphatic spectral area, lipid excluded, to 

eliminate any differences in the metabolite total concentration. Good 

quality of the sample and its management, the NMR setup and processing 

parameters can have a significant impact on the quality of NMR spectra 

and their subsequent interpretation. The choice of an appropriate number 

of acquisitions also significantly impacts the quality of NMR spectra and 

the presence of peak distortions or anomalies in pulse sequence for data 

acquisition. In parallel, also spectral processing choices including the 

accuracy of the phasing, and the quality of baseline correction, affect the 

results [147, 148]. 

4.1.4.  DNA methylation. Epigenetics. 

Genome-wide methylation assay is part of epigenome-wide 

association studies (EWAS) and consists of quantitative interrogation of 

selected methylation sites across the genome, offering high-throughput 

research capabilities at a minimal cost per sample.  
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4.1.4a...Whole blood samples preparation for methylation 

assay. 

 
All the 96 selected samples (48 controls MHO and 48 cases MetS.5) (see 

section 3.1. for details) were thawed at room temperature before starting 

the process to measure the methylation levels. The samples handling was 

performed in the Molecular Biology Laboratory of the Department of 

Molecular Genetics (I.R.C.C.S. Istituto Auxologico Italiano, Cusano 

Milanino, Italy) thanks to the supervision of Prof. Davide Gentilini and the 

directions and support of his unit of research. The manual sample handling 

is detailed below. 

•.....DNA extraction: genomic DNA was obtained using an automated 

system and a commercial kit capable of extracting DNA from whole blood 

samples using magnetic beads for separation; some samples, due to their 

small quantities or the presence of blood clots, required manual DNA 

extraction using the Wizard genomic DNA purification kit (PROMEGA, 

Madison WI, USA). In this case, a volume equal to 3-5 ml of blood was 

treated with a lysis solution provided in the kit and then digested at 37 ° C 

for 1 hour with Protease K in a buffer containing sodium dodecyl sulfate 

(SDS). The DNA was subsequently extracted by salting-out method and 

resuspended in a buffer containing Tris-EDTA (TE).  

•.....DNA quality control and dilution after extraction: for each sample, a 

volume of 1.5 μl of total genomic DNA was quantized using an N60 

NANOPhotometer PEARL IMPLEN (NanoDrop Products Thermo 

Scientific Wilmington, DE) to verify its concentration and quality. DNA 

was then diluted with a TE buffer at pH 8.0 to obtain a normalization to a 

theoretical concentration of 20 ng/µl and re-quantified to ensure the correct 
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sample concentration. No samples showed aberrant protein (260 / 280) as 

well as organic compounds (230 / 260) ratio that would have entailed 

discarding or purification.  

•.....Conversion with bisulphite: for each sample, 900 ng of DNA were 

treated with sodium-bisulfite to convert the unmethylated cytosines (C) 

presented in the genome into uracils (U), replaced by thymines (T) after 

amplification, leaving 5-methylcytosine residues unaffected, to make them 

identifiable and quantifiable. The addition of sodium-bisulfite makes 

unmethylated cytosine susceptible to hydrolytic deamination. The 

deaminated cytosines were then converted to U in an alkaline pH and 

replicated as T during PCR. The procedure was performed using the 

commercial EZ DNA Methylation Kit (Ref: D5001, Zymo Research 

Corporation, Orange, CA), following the manufacturer’s directions. The 

basic steps are summarized in Figure MM3. Specific incubation conditions 

(Illumina Protocol) were applied to improve conversion efficiency.  

 

 

Figure MM3. Outline of the EZ DNA Methylation™Kit procedure. 

•.....DNA quality control after conversion: for each sample, the single-

strand DNA quantity after conversion (bsDNA) was verified for the 

subsequent phase of the experiment as previously reported for total 
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genomic DNA. The quality was assessed by direct visualization after an 

electrophoretic run in 1 % agarose gel. All ssDNAs, following bisulfite 

conversion, were found to be non-fragmented and with a concentration 

greater than 50 ng/μl. So, no DNA samples were discarded or reprocessed 

for resulting fragmented or diluted, and all 96 samples were subsequently 

processed. 

4.1.4b.  Epigenome-wide methylation assay. 

Epigenome-wide methylation profile analysis of the samples was 

directed to the quantitative measurement of over 850,000 methylation sites 

at single-nucleotide resolution using the Infinium MethylationEPIC 

BeadChip kit (Illumina San Diego, CA). The samples were processed 

according to the manufacturer's protocols and using reagents and 

conditions provided by Illumina in a semi-automatic procedure. 

Specifically, 250 µg of converted DNA was suitably treated through a 

whole genome amplification phase (WGA) followed by enzymatic 

fragmentation, precipitation and resuspension. The resuspended samples 

were then hybridized on the chips at 48° C for 16 h. During hybridization, 

the DNA-WGA molecules were bound to locus-specific DNA oligomers, 

differentiated in the terminal part as they were designed to be 

complementary to the methylated or non-methylated site, and linked to 

individual beads. Non-specifically hybridized DNA was eliminated. After 

hybridization, an allele-specific single base extension phase provided an 

additional level of specificity by inserting a sort of label for analysis. The 

incorporated nucleotides were labelled with biotin (ddCTP and ddGTP) 

and 2,4-dinitrophenol (DNP) (ddATP and ddTTP). After the extension, a 

staining phase with different fluorophores was followed. Finally, the 
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BeadChips were washed and protected for scanning through the Illumina 

iScan scanner. It is a two-colour fluorescent laser scanner (532 nm / 660 

nm) with a spatial resolution of 0.375 microns able to excite the 

fluorophores introduced during the staining step of the protocol. The 

methylation levels were determined for each locus thanks to the intensity 

level of the two possible fluorescent signals, specific for the methylated or 

non-methylated allele. The methylation level for each CpG site was 

represented by beta (β) values obtained from the ratio of fluorescence 

intensity between methylated and unmethylated probes, according to the 

formula: β = (methylated fluorescence intensity) / (fluorescence intensity 

(methylated + unmethylated)). The β values can range between 0 

(unmethylated) and 1 (fully methylated). This method ensured a wide 

coverage of CpG sites at the level of the gene regions: transcription start 

site (TSS), 5’UTR, first exon, gene (gene body), 3’UTR, as well as at the 

level of the CpG islands including regions flanking (shelves and shores). 

The fluorescence intensities were stored as intensity data files (*.idat) 

which can be used as input for most of the available software packages. 

Quality control steps were carried out to identify and correct technical 

biases typical of this type of method, including batch effect, sampling 

errors and technical analysis errors. 

4.1.4c.  Post-array quality control and data pre-processing. 

Post-array quality control of the raw data obtained after scanning the 

methylation chips was carried out using the RnBeads [149, 150] software 

package to identify and correct both biological and technical biases typical 

of this type of method, including batch effect, sampling errors and 

technical analysis errors. Figure MM4 presents the different points to 
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check during processing to ensure accurate analysis and correct 

interpretation of the data.  

 

 

Figure MM4. Schematic overview of the methylation essay’s data pre-

processing and quality control steps. 

Specifically, data pre-processing included two quality control steps: 

filtering and normalization.  

Filtering: 

•.....For each sample, a further check of the conversion efficiency index 

with bisulfite was carried out for the possible rejection of samples with a 

low index. This parameter is indicated by the presence of internal control 

on the chip which must necessarily have a fluorescence intensity greater 

than 4000. No sample was rejected in this step. 

•.....Probes with too high or too low fluorescence (n = 4217) were removed 
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from the dataset using the Greedycut algorithm. This algorithm allowed 

the evaluation of the specificity (false positive rate) and the sensitivity 

considering the measurements as predictive of each other.  

•.....All β values corresponding to a p-value that exceeded the T threshold 

of 0.05 (p ≥ T = 0.05) were considered non-measurable. Furthermore, from 

all the CpG sites analysed, only the significant ones in at least 95 % of the 

samples were used for the subsequent analyses. Only the samples reaching 

99.5 % of CpG sites determined successfully were included. A total 

number of 823446 CpG Sites, including 253821 Tiling, 34997 Genes, 

44902 Promoters and 26529 CpG Islands (n = 21861 probes removed). 

•.....All sites containing SNPs, and natural C / T polymorphisms (n = 

17371) were filtered and removed from the analysis; their presence can 

significantly influence subsequent methylation analyses as it reflects the 

genotype and is not an actual measurement of the level of methylation. 

•.....Probes that hybridized at the sex chromosome level (n = 18924) were 

eliminated. The methylation differences associated with the X and Y 

chromosomes are not comparable in the entire population because it is 

composed of individuals of both sexes and would require specific analyses. 

•.....Finally, the correspondence between phenotypic and genotypic sex 

was checked and, if present, the samples classified incorrectly at the time 

of collection were excluded. Genotypic sex was obtained by calculating 

the methylation levels of the sex chromosomes. In women, following the 

inactivation process of one of the two X chromosomes, higher methylation 

levels are measured than in males. Therefore, it is possible to classify 

individuals based on their sex. 
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Normalization: 

The data were normalized following different strategies to minimize the 

variability due to methodological factors. The Beta MIxture Quantile 

(BMIQ) normalization method [151] let normalize the signal intensities. 

•.....Background correction: it is exclusively a procedure for removing the 

background noise introduced by the different measurements of the red and 

green probes [152]. The background signal was subtracted from the 

analysed samples from the raw fluorescence data measured during the 

experiment. For this correction was used the “noob” (normal-exponential 

convolution using out-of-band probes) method of the methylumi package. 

•.....Quantile normalization: assuming that the identifying fluorescence 

signals of methylated and unmethylated DNA should not be globally 

different between the samples analysed, it represents a more sophisticated 

and robust data normalization technique. The values were divided based 

on percentiles and a scaling factor was calculated for each percentile. This 

normalization technique, carried out using the SWAN (Subset-quantile 

Within Array Normalization) method present in the RnBeads minfi 

package, took better account of the fact that the different samples might 

have not only global differences in the measured fluorescence but also a 

different trend [153].  

No samples were excluded after the quality control step by filtering and 

normalization because all satisfied the quality requirements. It was thus 

possible to define the number of subjects and probes to carry out the 

statistical analysis to identify possible differences in methylation 

(differences between β values) between subjects and among enrolled 

groups. 
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4.1.4d...Estimation of lymphocyte subpopulations and 

biological (epigenetic) age. 

Lymphocyte cellular composition was inferred from methylation 

data through the presence of some specific epigenetic markers. Using the 

method developed by Houseman et al. [154] and the 

AdvancedAnalysisBlood option of DNA Methylation Age Calculator 

analysis software (https://dnamage.genetics.ucla.edu/) [103] was, 

therefore, possible to obtain estimates of the proportions of CD8 cells 

(naive and differentiated into CD8T), CD4 cells (naive and differentiated 

into CD4T), natural killer (NK) cells, B cells, monocytes and granulocytes. 

Subtypes’ estimates were conveniently evaluated as PCs in the differential 

methylation analysis. Using the same software, DNA methylation 

measurements were also used to predict biological (epigenetic) age using 

several approaches developed by Horvath including the pan tissue 

DNAmAge epigenetic clock and the DNAm-based mortality biomarker 

"DNAm GrimAge" [105] (see section 1.3.4.). Positive high values of 

accelerated DNAmAge and accelerated GrimAge indicated faster 

biological ageing, based on chronological age, while lower or negative 

values indicated decelerated ageing. 

4.1.4e...Analysis of stochastic epigenetic mutations. 

SEMs have been recently defined as a potential measure of the 

accumulation of DNA damage due to exposure to a pathological condition 

or altered physiological state [155]. The complementary methylation 

analysis strategy developed by Prof. Gentilini and his team [156, 157] was 

applied to single (individual) methylation profiles to pick out aberrant beta 

values (extreme outliers) according to a reference methylation range 
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(obtained from the same reference subjects), through a non-parametric 

statistical approach. We specifically defined SEMs as extreme outliers 

within a population. Extreme outliers do not fall within a reference 

methylation range obtained from the methylation profiles of a reference 

population and calculated as follows: upper value = Q3 + (k * IQR); lower 

value = Q1- (k * IQR); where Q1 is the first quartile, Q3 the third quartile, 

IQR (interquartile range) = Q3-Q1 and k = 3. For each case, the extreme 

outliers of the individual methylation profiles were noted and classified as 

hypomethylated or hypermethylated concerning the median values of the 

relative probe of the controls. To estimate epigenetic drift, SEM analysis 

at a single individual level was employed as a correlative approach and the 

number of SEMs was compared between the two groups to identify 

potential differences in epigenetic drift. In addition, potential relationships 

between SEMs and clinical outcomes of MetS were investigated. 

Overrepresentation analysis of all identified SEMs was conducted to detect 

the SEM-enriched regions, for each individual without any cut-off on 

methylation differences. We evaluated the enrichment of SEMs in a 

window of a predefined size (eg 11 CpG sites) and generated a p-value 

associated with the window, using a sliding window algorithm based on a 

cumulative hypergeometric test on the annotated genome, as extensively 

explained previously [158]. Quality control, pre-processing and generation 

of β values dataset were performed using the Chip Analysis Methylation 

Pipeline (ChAMP) R package  [159], a BMIQ normalization method. Sites 

with a detection p-value greater than 0.01 (6803 probes) and a bead count 

less than 3 in at least 5 % of the samples (10521 probes), non-CpG probes 

(2933 probes), and probes potentially affected by SNP (95584 probes), 

aligned to multiple positions (11 probes) and related to sex chromosomes 

(16587 probes) have been removed from the analysis. After doing all 
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filterings, 733479 probes and 96 samples resulted suitable for the following 

steps of analysis. SEMs were therefore annotated using wANNOVAR 

software [160] obtaining the lists of epilesions’ related genes for each 

group. Finally, the development and application of specific statistical 

analyses (see section 4.3.) were aimed at allowing their possible and useful 

biological interpretation. 

 

4.2...Methodological approaches applied to the 

HFD-fed animal model. 

4.2.1.  Collection of rat body measurements. 

The measures of the body weight of every rat were taken 

individually before the HFD treatment and before the sacrifice (Figure 

MM5 A) to obtain the initial and final body weights. The measure of 

weight of every perigonadal fad pad was taken individually just after the 

extraction from the animal (Figure MM5 B). 

 

Figure MM5. Measuring of rat body weight and perigonadal fat pad 

weight. 
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4.2.2...Rat perigonadal fat tissue collection and 

processing for cell or organ cultures. 

The veterinary staff obtained the tissues under aseptic conditions 

from euthanized animals (HFD-fed Wistar rats model, see section 3.3 for 

more information) using isoflurane overdose. The following procedure was 

applied both to male (18 animals) and female (18 animals) rats. Both 

perigonadal fad pads (epididymal for males, periovarian for females) for 

each animal were removed. One pad of each animal was then frozen at -80 

º C in an unaltered state or a solid matrix constituted of Tissue-Tek resin 

(O.C.T. compound. Labtech International Ltd Mytogen House, Heathfield, 

East Sussex), for subsequent cryo-sectioning for histological and 

immunohistochemical processing (experimental part not included in this 

thesis). The other pad was collected in a Petri dish and quickly moved to 

the laboratory for further processing. Every perigonadal fad pad was 

weighted and properly processed for extraction of adipocytes (9 samples, 

4 CTL and 5 HFD) or organ culture (9 samples, 4 CTL and 5 HFD) as 

shown in Figure MM6.  

•..Adult adipose cell extraction: perigonadal fat pads were washed with 

Wash buffer and adequately minced with sterile scissors after the removal 

of blood vessels. Every tissue sample was transferred immediately in a 15-

ml falcon tube and an adequate volume of Digestion buffer (2-3 ml per 1 g 

of tissue) was added for the digestion process. The tissues were digested at 

37 ºC for 30-60 minutes in a shaking bath until a smooth and uniform 

consistency was obtained. Then, smoothed tissues were filtered using a 

sterile nylon mesh and transferred to a new 15-ml falcon tube. A double 

volume of wash buffer was added to stop the digestion and cells could float 

to the surface for 5 minutes. Then, cells were separated via centrifugation 
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(500 x g, 3 minutes). The fat cells floated to the surface whereas the 

stromal-vascular cells were sedimented and removed by aspiration. The 

floating infranatant was washed 3 times with Phosphate-buffered saline 

(PBS) and, finally, was aspirated and transferred to an Eppendorf tube to 

quantify the volume. Four cell culture replicates were obtained from every 

Eppendorf containing perigonadal mature adipose cells from one animal. 

An adequate volume of Standard Medium or D-mannose Treatment 

Medium was added to every plate and cells were plated in 6-well cell 

culture plates with a surface of 9.5 cm2 (see section 4.4. for buffers and cell 

media composition details). 

•..Organ culture procedure: immediately after weighing, the tissue was 

divided into four equal parts and minced finely into 5-10 mg fragments 

with sterile scissors into Petri dishes. Minced tissues were accurately 

transferred into 6-well cell culture plates with a surface of 9.5 cm2 and 

filled with Standard Medium or D-mannose Treatment Medium.  

From each sample were obtained four replicates. The total number 

was 72 wells for cell culture: 8 from CTL rats (4 females and 4 males), and 

10 from HFD rats (5 females and 5 males). The same procedure was 

applied to organ culture. All the solutions necessary for the experiment 

were prepared before the animals’ sacrifice 
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Figure MM6. Illustrative scheme of the tissue preparation process for 

primary cultures of adult rat adipocytes and adipose tissue. For organ culture, 

the fragmented perigonadal adipose tissue is grown in an artificial environment (green 

arrows). For cell culture, adipocytes are enzymatically isolated from the shredded 

perigonadal adipose tissue and cultured in an artificial environment (purple arrows) ♀, 

females; ♂, males; N, samples number. 

4.2.3...Cell and tissue culture techniques. 

4.2.3a...Maintenance of cells and organ crops and D-

mannose treatment. 

The cultures of adipose cells and tissues were routinely maintained 

under stable physiologic conditions in the incubator in 6-well cell culture 

plates with a surface of 9.5 cm2 and filled with 1,5 ml of Standard Medium 
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or D-mannose Treatment Medium. The procedure was the same for 

samples obtained from both male and female rats.  D-mannose treatment 

was performed on a total number of 18 wells of adipocytes (10 from HFD 

rats, 8 from CTL rats, 2 replicates per rat) and 18 wells of organ culture 

fragment (10 from HFD rats, 8 from CTL rats, 2 replicates per rat). After 

seeding, samples were cultured in 1,5 ml of D-mannose Treatment 

Medium (Standard Medium supplemented with 25 nM D-mannose; see 

section 4.4. for solution composition details and D-mannose reference) to 

investigate if mannose took part in adipocytes and adipose tissue 

metabolism in our experimental rats. The first replacement culture media 

was done after 72 h for adipocytes cell culture and after 48 h for adipose 

tissue fragments culture, simultaneously with the collection and storage of 

metabolized Standard Medium or Treatment Medium. The cultures' 

maintenance involved a partial change or replacement of culture medium 

2-3 times a week for the following steps of collection and freezing of organ 

culture fragments and adherent differentiated adipocytes. 

4.2.3b...Collection and storage of samples of blank culture 

medium and culture medium after cell incubation. 

Before the culture, aliquots of 1 mL of blank Standard Medium and 

D-mannose Treatment Medium were collected in Eppendorf, immediately 

frozen and stored at -80º C until NMR measurement to obtain the 

“reference” values of analytes contained in the culture media.  

After culture, aliquots of 1 mL of cell incubation Standard Medium 

and D-mannose Treatment Medium were collected from all the wells (after 

48 h of culture from adipose tissue wells; after 72 h of culture from 

adipocytes wells). All cultured medium samples were immediately frozen 
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and stored in Eppendorf at -80º C until NMR measurement.  

4.2.3c...Collection and freezing of organ culture fragments 

and adherent differentiated adipocytes. 

After 9 days from seeding, all fragments of adipose tissue CTL and 

HFD (treated with D-mannose or not) were collected and stored frozen at 

-80º C in different ways for further experiments. In detail, in three different 

ways: 

.•.....Included in Tissue-Tek O.C.T. solid matrix on specific holders for 

further cryosectioning. 

.•.....In Eppendorf tubes, immersed in RNAlaterTM Solution (AM7020, 

Invitrogen by Thermo Fisher Scientific, Waltham, Massachusetts, 

US) for the subsequent RNA extraction. 

.•.....In Eppendorf tubes, dried for the following extraction of the 

proteins. 

4.2.4...NMR spectroscopy and metabolic profile of 

culture media obtained from adipocytes and adipose 

tissue organ cultures. 

The metabolomic approach on culture medium samples followed the 

same steps and parameters previously described for human serum samples 

(see section 4.1.3. for details and metabolomic analysis routine 

summarized in Figure MM1). At the end of this experimental procedure, 

the metabolomic data obtained were subjected to the same statistical 

analyses as the human samples (see section 4.3.) for the biological 

interpretation and the validation of the results obtained on the cohort. 
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The specific steps for processing the culture media samples obtained from 

adipocytes and adipose tissue organ culture are explained below. 

4.2.4a...Adipocytes and adipose tissues culture media 

samples preparation for NMR measurement and pre-

analytical quality control. 

A volume of 480 μL of culture medium was mixed with 20 μL of 

buffer mix. The tampon mix contained Phosphate buffer solution pH 7.4 

(see section 4.4. for buffer composition details) with internal reference to 

TSP 1.1 mM (final concentration) This buffer was added because pH 

variations can influence metabolomic spectra in culture medium samples. 

The final mix (sample + tampon mix) was placed in a 5 mm high-resolution 

NMR tube for SampleJet. No samples were excluded following the pre-

analytical quality control 

4.2.4b...Adipocytes and adipose tissues culture media 

spectra acquisition and processing for calculation of uptake 

or excretion. 

A total number of 144 samples of culture media obtained from 

adipocytes (72 samples: 8 from CTL rats (4 females and 4 males), and 10 

from HFD rats (5 females and 5 males); 4 replicates per rat of which 2 

treated with D-mannose) and adipose tissue organ cultures  (72 samples: 8 

from CTL rats (4 females and 4 males), and 10 from HFD rats (5 females 

and 5 males); 4 replicates per rat of which 2 treated with D-mannose) were 

processed individually. Different from the usual metabolite assay in cell 

lysates, the spectra profiling results of the cell culture medium need to be 

recalculated. So, blank Standard Medium and D-mannose Treatment 
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Medium samples were also measured and processed to obtain the 

"standard" spectral area values of the analyte component. These were used 

to obtain the net values of cellular metabolism, accordingly to the target 

approach [161]. This metabolic profiling approach provided information 

on 15 well-defined spectral metabolic characteristics (Table MM2).  

Table MM2. List of the 15 spectral regions detected in the culture samples 

in which adipocytes or adipose tissue were grown. 
 

 ADIPOCYTES AND ADIPOSE TISSUES CULTURE MEDIUM SAMPLES 
 SPECTRAL REGIONS ppm 

1 Ile/Leu/Val 0,9 - 1,02 
2 Methyl-succinate/2-oxobutyrate  1,05 - 1,10 
3 3-methyl-2-oxovalerate 1,10 - 1,12 
4 Ethanol 1,15 - 1,19 
5 Lactate/Threonine 1,31 - 1,33 
6 Alanine 1,46 - 1,48 
7 Arginine 1,64 - 1,66 
8 Acetate 1,905 - 1,915 
9 Glutathione 2,10 - 2,15 

10 Pyruvate 2,36 - 2,37 
11 Glutamine 2,42 - 2,44 
12 2-oxo-isocaproate 2,59 - 2,61 
13 o-phosphocholine 3,56 - 3,58 
14 Methionine/Ile 3,63 - 3,66 
15 Lactate 4,08 - 4,12 

List of detected spectra regions and chemical shift assignment in the NMR spectra of 

metabolized culture medium. The resonance’s relative position in the NMR spectrum is 

indicated by its ppm values. Ile, isoleucine; Leu, leucine; Val, valine. 

 

Only the regions of most significant interest were selected for the 

study. The selection was made based on the main differences between the 

spectrum profiles of blank and culture media after the incubation of CTL 

and HFD adipose cell or tissue cultures, by subtracting the area under the 

metabolite or spectral region curve of the components of the culture 

medium collected after the incubation from the blank one. To observe the 

uptake or excretion of the metabolite’s derivatives by the cultured 

adipocytes cells or adipose tissue organ culture, their mean residual 
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concentrations were further recalculated, considering the individual values 

of the medium samples from the cells/organ culture medium minus the 

mean value of the blank medium samples. A parametric method (t-test) 

was used to check if the concentration of a particular metabolite 

significantly differed between the investigated groups and a multiple 

testing adjustment was considered to control false positive results. The 

final data of uptake or excretion were given in positive values representing 

excretion and negative for uptake. 

4.3...Statistical analysis. 

The statistical analysis was developed and conducted at multiple 

levels with several package software, including R version 3.5.0 with 

RnBeads package, Genome Studio, MetaboAnalyst 5.0, Matlab R2019b 

with the PLS Toolbox 8.8 (Eigenvector Research, Inc., Wenatchee, WA, 

USA), IBM SPSS Statistics 19, and Excel Office 2019. The clinical 

parameters (physiological and biochemical) and inflammation analysis 

were checked with different statistical tests including Agglomerative 

Hierarchical Clustering (AHC), according to the necessity of the groups 

and the values obtained. R, SPSS and Excel were used to perform these 

statistical analyses. AHC is a clustering method that aims to build a cluster 

hierarchy with a “bottom-up” approach, in which we start by inserting each 

element in a different cluster and proceed then to the gradual unification of 

clusters two by two to obtain a representative dendrogram of the result 

[162, 163].  

The evaluation of groups’ normality was calculated with Shapiro-Wilk and 

Kolmogorov-Smirnov tests, according to the sample size. Moreover, the 

evaluation of groups’ homogeneity was calculated with the Levene test. 
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Data groups were presented as the mean ± standard deviation (SD). All 

data results from tests were regarded as statistically significant when the p-

value < 0.05. 

The differences in measured variables between groups were analysed with 

the t-Student test or One-way Analysis of Variance (ANOVA) followed by 

the post hoc analysis based on the Bonferroni multiple comparison tests, 

according to the group analyses. When the groups’ distribution was not 

normal, the non-parametric Kruskal-Wallis test or Mann–Whitney U-test 

was used.  

Multivariate analyses of metabolome and methylation levels were 

performed with multidimensional scaling (MDS), and its particular case of 

Principal Component Analysis (PCA), and Partial Least-Squares 

Discriminant Analysis (PLS-DA) using Matlab R2019b (The MathWorks 

Inc., Natick, Massachusetts) and R version 3.5.0 [164].  MDS and PCA are 

unsupervised multivariate analyses for low-dimensional visualization of 

multivariate data, which optimally conserves the organization of the data. 

This technique aims to capture common information and summarize it with 

good approximation into a small number of dimensions or principal 

components (PCs) orthogonal (independent) between them, each of which 

expresses a linear combination of the original variables. Hence, MDS is a 

means of visualizing the level of similarity of individual cases of a dataset 

and PCA produces a conversion of the variables in a data set into new latent 

variables. Their purpose is to detect outliers and to evaluate samples’ 

aggrupation spontaneously. PLS-DA is a supervised method of 

classification, with the discrimination power of discriminant analysis 

[165], that uses multivariate regression techniques to decide a linear 

connection between a data matrix (metabolomic and methylation data) and 

a response matrix (pathological status: case-control). PLS-DA produces a 

https://en.wikipedia.org/wiki/Similarity_measure
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conversion of the variables in a data set into new latent variables (LVs) and 

it is commonly used to build a statistical model that adjusts the separation 

between two or more groups of interest. The main advantage of these 

multivariate models is allowing the visualization and understanding of 

different patterns and relations in the data, through the associated scores 

and loadings.  

Receiver operating characteristic (ROC) curve analyses were performed to 

evaluate the model's accuracy and to discriminate between the case and 

control groups, and the case subgroups when present. Each point on the 

ROC curve represents a sensitivity/specificity pair corresponding to a 

particular decision threshold. ROC is a probability curve and the value of 

the “area under the curve” (AUC) ROC represents the degree or measure 

of separability. The higher the AUC, the better the model is [166]. 

Variable Importance in the Projection (VIP) scores were useful to detect 

the variables considered relevant for the discrimination between groups. 

The variables with values VIP > 1 were considered good markers of 

discrimination.  

Relative Fold Change measure reflected how much a variable changed in 

quantity between two measurements, one in the control and one in the case 

group. The ratio of the changes of every variable has been calculated as 

(variable mean concentration of case group - variable mean concentration 

of control group) / variable mean concentration of control group.  

ANOVA or multiple t-tests enabled us to carry out the determination of the 

statistical significance between the metabolites or methylation levels of the 

different groups.  

Bonferroni and False Discovery Rate (FDR) methods were used as an 

adjustment for the multiplicity of tests often necessary to restrict the total 

number of false discoveries. FDR, formally described by Benjamini and 
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Hochberg in 1995, is a statistical approach used in multiple hypothesis 

testing to correct for multiple comparisons. It is generally used in high-

throughput experiments to correct for random events that falsely appear 

significant. The FDR must correspond to a maximum of 10 %. This 

correction reduces the probability of incurring a first-type error without 

losing small, potentially significant differences between cases and 

controls. Logistic Regression is a specific case of a generalized linear 

model (glm) having the logit function as a link function. This is a 

regression model applied in cases in which the dependent variable y is of 

a dichotomous type (es case-control) attributable to the values 0 and 1. 

Correlation Heatmaps were used to study pattern discovery and pattern 

recognition, to visualize in a graphical form the data association 

representation of different variables.  

Finally, Logistic Regression Analysis and multivariable analyses based on 

multiple t-tests were applied, using R and SPSS, to visualize the changes 

in the general variables related to case-control status under the influence of 

sex and age among different groups.  

4.3.1.  Analysis of phenotypic variables. 

To characterize the study population through phenotypic variables 

(clinical, biometric and anthropometrics, demographic and lifestyle 

characteristics, and lymphocyte subpopulations) these were analysed 

individually for cases and controls. In particular, the mean and SD were 

calculated for the continuous variables while the percentage of subjects 

showing the phenotype of interest was calculated for the dichotomous 

variables. A non-parametric hypothesis was applied to test the hypothesis 

that two samples were drawn from the same distribution. This allowed us 
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to evaluate whether the observed differences between case and control 

groups were compatible with the null hypothesis H0 (difference due to 

chance) or whether the observed difference was real. Once the statistical 

test was applied, a p-value < 0.05 indicated the significance of the result, 

with the consequent rejection of the null hypothesis. The Wilcoxon test and 

the Fisher test were used for variables with continuous distribution and 

dichotomous variables, respectively. Then, two clustering techniques were 

used to group the subjects under study according to similar relations 

between individual subjects and between case/control groups: 

•.....Agglomerative hierarchical clustering (AHC): The metric distance of 

the samples was evaluated using Average-Linkage for the case/control 

status and the clinical and phenotypic variables related. It is used to check 

the presence or absence of clustering due to these factors, i.e. to verify 

whether one or more variables could be responsible for a clear distinction 

between the two investigated groups from an epigenetic point of view.  

•.....Analysis of the main components and analysis of the multiple 

correspondences (MDS and PCA): considering the number of phenotypic 

traits analysed and the presence of collinearity, MDS, and its particular 

case PCA, are used to reduce the complexity of the variables analysed. The 

data examined were: weight, height, age and sex, WHR, WC, BMI, 

hypertension, hypertriglyceridemia, hyperglycaemia, DM2 and thyroid 

problems, etc. To obtain a better classification of the samples, 

anthropometric and clinical variables were complemented with the 

estimation of white blood cell proportions (CD8.naive, CD4.naive, CD8T, 

CD4T, NK, Bcell, Monocytes, Granulocytes, Plasmablasts) obtained using 

Horvath’s DNA-methylation-based online calculator (see section 4.1.4d). 
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4.3.2.  Metabolomics statistical analysis. 

Metabolite levels obtained from the NMR spectra raw (untransformed) 

data, computed and normalized to the SD in all the samples to obtain z-

scores (see section 4.3.1.), were used for the following statistical analysis. 

4.3.2a...NMR data processing and multivariate analysis.  

Chemometric statistical analyses were developed using in-house Matlab 

scripts, the PLS Toolbox 8.8, R and MetaboAnalyst, and the statistical 

associations were adjusted for relevant variables and potential covariates. 

The categorical variables were analysed by percentages. The analysis 

routine included previous mean-centring and auto-scaling of the data. PLS-

DAs were applied to the NMR metabolomic vectors of each sample. The 

results of the cross-validation were evaluated by the RMSECV, R2 and the 

AUC; FDR filtered the endpoint predictive biomarkers. Permutation tests 

were used for evaluating the significance of the models. All calculated 

models were significant at the 95 % confidence level. The 

accomplishments of PLS-DA analyses were useful to visualize the 

metabolic variations between groups in a multivariate analysis, showing 

the group classification and the main metabolites involved. The analyses 

were performed separately for human serum and rat adipocytes and 

adipose tissues culture media samples. In detail: 

Human serum samples data: the purpose of PLS-DA models was to 

identify class, age and sex differences from a multivariate dataset where 

each class was referred to as a specific MetS component number group. 

Results were cross-validated by performing a 10-fold Venetian blind 

technical replication to evaluate the accuracy of each classification model. 
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Then, VIP scores and respective Relative Fold Changes between MetS and 

its subclass MetS.5, and MHO were calculated for each variable 

(metabolite). These values specify the impact of each variable on the group 

classification (see section 4.3 for details). Post hoc multivariable analyses 

based on multiple t-tests corrected by the Bonferroni method were 

performed to estimate the statistically significant differences between case-

control status and the extreme case MetS.5 and age categories based on the 

main metabolites acquired from VIP scores. A chi-squared was used for 

relative and comparative proportions. Finally, the same analysis method 

was adopted to determine the statistical significance of means differences 

between MetS.5 cases and control groups in the women and men groups, 

separately. The significance levels were (∗) p < 0.05; (∗∗) p < 0.01; (∗∗∗) 

p < 0.001. Corresponding adjusted p-values (Student's t-test corrected by 

Bonferroni method) were (∗) p < 0.00091; (∗∗) p < 0.00018; (∗∗∗) p < 

0.000018. 

Cell culture media of rat adipocytes or adipose tissue growth: PLS-DA 

models were done to identify HFD- and sex-induced metabolomic 

differences. A cross-validation model was applied as quality control to 

validate the experimental procedure and protocol and evaluate the 

correspondence between experimental data and metabolomic profiles. 

Then, VIP scores and respective Relative Fold Changes between HFDs and 

controls were calculated for each variable (metabolite). Post hoc 

multivariable analyses based on multiple t-tests corrected by the 

Bonferroni method were performed to estimate the statistically significant 

differences between case-control status for all the animals and for female 

and male groups separately based on VIP scores. A chi-squared test was 

used for relative and comparative proportions. The significance levels were 

(∗) p < 0.05; (∗∗) p < 0.01; (∗∗∗) p < 0.001. Corresponding adjusted p-
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values (Student's t-test corrected by Bonferroni method) were (∗) p < 

0.003; (∗∗) p < 0.00067; (∗∗∗) p < 0.000067. 

4.3.2b.  Metabolites pathways enrichment analysis. 

Pathway analysis helps to understand which biological pathways, 

representing collections of molecules performing a particular function, 

may be involved in response to MetS. The construction, interaction, and 

pathway analyses of metabolic networks that involved selected metabolites 

(VIP score > 1) were performed with MetaboAnalyst 5.0 [167] and 

Cytoscape [168]. The result of the Metabolomic Pathway Analysis 

(MetPA) and Pathway Topology Analysis based on the Kyoto 

Encyclopedia of Genes and Genomes (KEGG) database 

(http://www.genome.jp/kegg/) were properly validated using standard 

validation protocols. The KEGG database helped to identify pathways that 

were the most significantly altered. 

4.3.3.  Epigenetics statistical analysis. 

The proper detection and processing of specific probes within 

promoters, genes, CpG islands and tiling (regions of 5,000 base pairs 

consecutively selected along the genome) through the EWAS procedure 

(see section 4.3.2.) allowed obtaining the data for statistical analysis of the 

differences in methylation. 

4.3.3a.  Logistic regression analysis. 

To evaluate a correlation between epigenetic and phenotypic 

differences characterizing MetS status, multivariate regression was 
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performed using the previously calculated phenotypic dimensions (PCs) as 

independent variables x (or predictors). The phenotypic dimensions that 

were significantly associated with the case/control status were then used as 

covariates in the differential analysis of methylation levels. The last was 

particularly suitable because one of the assumptions of this type of analysis 

is that the predictive variables must be linearly independent, i.e. it must not 

be possible to express any predictor as a linear combination of the others. 

The PCs fully satisfy this assumption. The glm or the "wilcox.test" 

function provided in the R "class" package was used to evaluate the 

differences in variables between cases and controls. The evaluation of 

groups’ normality was calculated with the Shapiro-Wilk test according to 

the sample size. 

4.3.3b...Analysis of the epigenetic differences between 

MHO and MetS.5 subgroups of subjects over 54 years. 

An average methylation value and a relative SD were generated for 

each locus analysed (~ 850,000).  The exploratory analysis of the raw data 

allowed us to avoid potential confounding factors (e.g. age, sex, cellular 

composition and lot). Using MDS and correlation analysis, the associations 

of these factors with dependent (degree of disease severity) and 

independent (methylation values) variables were evaluated; the 

associations were then used as covariates in the differential methylation 

module. Differential methylation analyses were conducted based on the 

paired sample groups both at the site level, with the calculation of p-values 

by the limma method, and at the level of predefined regions (genes, 

promoters, CpG island, tiling), where a combined p-value was calculated 

from the p-values of the individual sites. Finally, an evaluation of the 

differential methylation between the group of cases and controls was 
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carried out; the values obtained were corrected using the FDR approach 

and the respective q-values were produced (analysis conducted using the 

RnBeads package in R), considered significant for values p < 0.05.  

4.3.3c.  Prioritization analysis and gene ontology. 

Gene ontology (GO) enrichment analysis was performed to identify 

significantly enriched or depleted classes of genes or proteins. All data 

resulting from tests were regarded as statistically significant when the p-

value < 0.05 unless otherwise indicated. Firstly, we linked the huge 

differentially methylated gene lists to biological functions using RnBeads 

(GOstats) [169], an algorithm based on a hypergeometric test that uses the 

hierarchical structure relationships among GO terms. This allows for 

recovering the functional profile of that set of genes, understanding the 

underlying biological processes better and identifying a possible 

association with the pathological event. Once the differently methylated 

between case and control groups were selected, they were prioritized using 

the online tool Phenolyzer (phenotype-based gene analyzer) which uses 

input phenotype description terms to prioritize complex disease genes 

according to the combined rank score until reaching the cut-off established 

with the previously described method. The genes that passed this further 

selection were used for the GO analysis using DAVID [170] and 

summarised, clusterized as tree maps and classified into macro-categories 

using the ReviGO (Reduce + Visualize Gene Ontology) tool [171]. The 

tree maps contained significant GO terms based on the methylation scores 

for the combined rank among the 100 best-ranking sites based on variance 

across samples. To understand the cellular processes involved in the MetS 

condition and its consequences groups of genes linked and correlated with 
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each other in certain biological pathways were therefore searched. As a 

biological pathway reproduces the biological relationships between the 

macromolecules of a cell, the KEGG database, which contains the 

pathways of genes with known regulatory and metabolic functions, was 

used to deepen their knowledge. 

 

4.4.  Solutions composition.  

 
Cell and Organ culture: 

•..Phosphate buffer: 1X PBS (Sigma-Aldrich, St.Louis, MO, USA), 

containing 137 mM NaCl, 2.7 mM KCl, 10 mM Na2HPO4, and 1.8 mM 

KH2PO4. 

•..Wash buffer: PBS (Sigma-Aldrich, St.Louis, MO, USA), supplemented 

with 1% Bovine serum albumin (BSA). 

•..Digestion buffer: Wash buffer containing Collagenase type II (Sigma-

Aldrich, St.Louis, MO, USA), 1 mM final concentration. 

•..Standard Medium: DMEM 1X (4,5 g/L D-Glucose, L-Glutamine, 25 

mM HEPES; Gibco by life technology) supplemented with all the 

substances necessary for mature adipocyte cell growth and maintenance. 

Specifically: 5 % Fetal bovine serum (FBS), 2,5 μg/ml of Amphotericin-B 

and antibiotics Penicillin / Streptomycin at concentrations 100 U/ml and 

100 μg/ml respectively, 50 nM of Adenosine (it seems to help cells to 

survive longer, break less, and release fewer lipids into the medium (Fried, 

S.K.)). 

•..D-mannose solution: D-mannose powder (3458-28-4, TCI Europe NV) 

in Standard Medium, concentration 1 M. Sterilized by filtration with 0,22 

μm membrane filter. 
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•..D-mannose Treatment Medium: Standard Medium supplemented with 

D-mannose solution at a final concentration of 25 mM. 

NMR sample preparation: 

•..Phosphate buffer solution pH 7,4: sodium hydrogen phosphate 

((NaH2PO4) • H2O (1,5 M)), potassium dihydrogen phosphate (K2HPO4 

(1,5 M)), 27,47 mM TSP, 10 % of D2O. 
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5.  RESULTS 

5.1...Characterization of MetS in clinically severe 

obesity. 

5.1.1...Anthropometric characterization of the 

Piancavallo cohort and analysis of MetS prevalence.  

Our study population included 1350 individuals. All of them had 

extreme obesity: BMI ≥ 40 kg/m2, WC ≥ 80 cm in women and ≥ 94 cm in 

men, and moderate to high WHR. The cohort was composed of 65.5 % of 

women and 34.5 % of men with ages between 19 and 85 years. The mean 

age was 53 ± 14 years with a significantly higher mean for females (55 ± 

13 years) and lower in men (50 ± 14 years). The anthropometric parameters 

of weight, WC, WHR and DBP also showed statistically significant 

differences between men and women. As expected, body composition 

(FM, FFM and correlated parameters) and RRE parameters significantly 

differed statistically. Finally, clinical biochemistry also indicated sexual 

dimorphism in cholesterol, triglycerides, and insulin metabolisms (Table 

R1). 
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Table R1..Anthropometric characteristics of the Piancavallo cohort in 

total and separated by sex. 

 

Variables 
All cohort 
(n = 1350) 

Males 
(n = 465) 

Females 
(n = 885) 

P-
value 

 Age (years) 53 ± 14 50 ± 14 55 ± 13 ∗∗∗ 

 Height (cm) 162,5 ± 10,5 173 ± 7,7 157,1 ± 7,1 ∗∗∗ 

 Weight (kg) 126,5 ± 23,9 142,9 ± 24,1 118 ± 18,7 ∗∗∗ 

 BMI (kg/m2) 47,7 ± 6,54 47,63 ± 6,6 47,7 ± 6,5  

 WC (cm) 133,3 ± 14,6 142,8 ± 13,1 128,3 ± 12,7 ∗∗∗ 

 Hip Circ (cm) 140,7 ± 14,4 139,3 ± 15,5 141,4 ± 13,8  

 WHR (cm/cm) 0,95 ± 0,1 1,03 ± 0,07 0,91 ± 0,08 ∗∗∗ 

 SBP (mm Hg) 139 ± 18 141 ± 17 137 ± 18  

 DBP (mm Hg) 83 ± 9 84 ± 9 82 ± 9 ∗∗∗ 

 SatO2 93,5 ± 2,8 93,2 ± 2,5 93,7 ± 3  

 HOMA-IR 4,4 ± 3,3 4,9 ± 2,9 4,1 ± 3,4  

 s-Glucose (mg/dL) 112,3 ± 35,7 112,9 ± 34 112 ± 36,6  

 s-LDL Chol (mg/dL) 120,2 ± 34,9 119,5 ± 35,9 120,5 ± 34,3  

 s-HDL Chol (mg/dL) 42,7 ± 12,4 36,9 ± 9,7 45,7 ± 12,6 ∗∗∗ 

 s-TGL (mg/dL) 144,1 ± 62,1 157 ± 60,9 137,3 ± 61,7 ∗∗∗ 

 s-Insulin (mU/L) 15,8 ± 9,4 17,9 ± 9 14,6 ± 9,4 ∗∗∗ 

 cc_H2O tot 39,1 ± 15,7 43,6 ± 4,4 36,8 ± 18,8 ∗∗∗ 

 cc_FM 49,5 ± 19,8 41,52 ± 5,7 53,7 ± 23 ∗∗∗ 

 cc_FFM 51,6 ± 18,1 58,21 ± 6 48,2 ± 21,1 ∗∗∗ 

 cc_muscular mass 29,6 ± 11,5 33,6 ± 6,5 27,59 ± 12,9 ∗∗∗ 

 Basal metabolic rate 1995,8 ± 460,2 2376,7 ± 439,6 1777,4 ± 302,6 ∗∗∗ 

 REE x day 2074,9 ± 457,1 2540,6 ± 395,5 1807,6 ± 207,8 ∗∗∗ 

 REE % 96,5 ± 11,1 93,7 ± 10,7 98,2 ± 11,1 ∗∗∗ 

Comparison and analysis to assess MetS in people who suffer from severe obesity. Numbers data are 

reported as means ± SD. p-values are given for the difference in values between the sexes: (∗∗∗) p < 

0.001. Abbreviations: BMI, body mass index; WC, waist circumference, WHR, waist-to-hip ratio; SBP, 

systolic blood pressure; DBP, diastolic blood pressure; SatO2, oxygen saturation; HOMA-IR, 

homeostasis model of assessment for insulin resistance; s-, serum; TGL, triglyceride; cc_, calorimetric 

calculation; FM, fat mass; FFM, fat-free mass; REE, resting energy expenditure. 
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5.1.1a...Comparison of the anthropometric measures used 

to assess weight-related risk between MHO and MetS 

subjects by sex and age ranges.  

WC and WHR indicated a strong relationship between fat tissue and 

its distribution and MUHO related to MetS. WC and WHR were raised in 

the MUHO group, showing higher significance in the Total population and 

the Women subgroup, regardless of age. Whereas maintained its statistical 

significance in young Men until 45 years old but not in the elderly 

subgroup over 54 years old. On the contrary, BMI lacked significance or 

appeared only slightly related to MUHO in both men and women (Table 

R2). 

 

5.1.1b.  Comparison of metabolic characteristics. 

The anthropometric and clinical characterization of our cohort 

showed a prevalence of MetS of 80.5 % (Table R3). We also analysed the 

prevalence of MetS.5 to explore extreme effects and better differentiate 

between MHO and the disease of obesity in the context of extreme BMI. 

MetS.5 was observed in 23.6 % of the entire cohort with an increasing 

prevalence with age in both women and men. The analysis of the different 

components of MetS was stratified by sex and age. This, along with the 

prevalence of Mets.5 and MHO, demonstrated a higher prevalence of MetS 

after 54 years in both sexes. However, the increase in prevalence with age 

was much sharper in women, whereas it was almost neglectable in men. 

This increase in the prevalence of MetS after the age of 54 was parallel to 

changes in anthropometric parameters such as WC, WHR, and BMI (Table 

R2). 
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Table R2..Characterization of the Piancavallo cohort by anthropometric 

measures for weight-related risk prediction. 

                       
 

                 A percentage of 69.4 % of women in the younger group 

(18–45 y) and 79.6 % of women in the older group (55–85 y) displayed 

MetS, corresponding to an odds ratio of 1.72. Men belonging to the same 
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ages displayed MetS with a prevalence of 79.6 % and 89.7 %, respectively, 

with an odds ratio of 2.22. Conversely, focusing on MetS.5 was possible 

to appreciate a difference more related to sex than to age. Whereas in men 

the prevalence of MetS.5 was similar in both age groups with values 

around 25 %, in women, the older age group showed more than double the 

prevalence of the younger age group, rising from 11 % to 23.2 % (Table 

R3). 

The analysis of individual metabolic components also showed 

changes in their contribution to the MetS pathological state strongly related 

to sex and age ranges. In detail, the percentage of individuals with 

hypertension and hyperglycemia and/or DM2 changed significantly 

between age groups. These differences also proved to be statistically 

relevant when comparing men and women. The percentage of individuals 

with low HDL was significantly different by age but its prevalence was 

comparable in both sexes. On the contrary, hypertriglyceridemia 

percentage did not change relevantly between the two age ranges, but it did 

change notably with sex, indicating a strong influence of sex but not of age 

on the prevalence of this metabolic component (Table R3). Notably, older 

women showed an increasing tendency to have raised SBP and/or DBP 

compared with women in the younger age group; instead, the percentage 

of men with hypertension was high and stable for both ages. Interestingly, 

the prevalence of low HDL parameters decreases with age in both sexes, 

showing differences strongly related to sex and age ranges in their 

contribution to the MetS pathological state. 
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Table.R3..Cardiometabolic characterization and composition of the 

Piancavallo cohort. 
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5.1.2...Metabolomics characterization of MetS in 

severe obesity: general view of metabolic profile in 

Piancavallo cohort. 

Exploratory PLS-DA analyses between MHO and MetS in the entire 

Piancavallo cohort of 1350 subjects revealed that the global metabolic 

profiles differed in healthy and pathological conditions in the entire 

population (Figure R1 A). Moreover, combined criteria of VIP scores and 

Relative Fold Change in the entire population (Figure R1 B) identified 

differential profiles that contrasted in variety and number of significant 

metabolites (VIP scores values ≥ 1). As shown, choline-containing 

compounds (CCC) constituted the metabolite most significantly associated 

with MetS in the entire population. Whereas, mannose with glycogen 

fragments showed the highest fold change value, resulting in the metabolite 

whose concentration changes more between MHO and MetS. 

 

The significant metabolites were analysed using MetPA in 

MetaboAnalyst (Figure R2) to counteract the problem of multiple 

comparisons due to large-scale data analysis and to obtain information 

about the metabolic mechanism of MetS. Eight metabolic pathways were 

statistically significant for the 16 metabolites that differentiate MetS from 

MHO, including alanine, aspartate and glutamate metabolism; pyruvate 

metabolism; glycolysis/gluconeogenesis; cysteine and methionine 

metabolism; glycerolipid metabolism; fatty acid degradation; biotin 

metabolism; glycerophospholipid metabolism. 
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Figure R1. PLS-DA model for discrimination between MHO and MetS. The 

model was built using 2 LVs. Cross-validation parameters: RMSECV 0.365, R2CV: 0.155; 

ROC Curve AUC: 0.82. (A) The score plot shows MetS samples in red and MHO samples 

in green with a 95% confidence ellipse in the same colours. (B) VIP score and Relative 

Fold Change bar plots show the metabolites with VIP ≥ 1 as black thick lines (scale on the 

top) and Relative Fold Change values represented by grey bars (scale on the bottom). 

Significant alterations are indicated by ∗. Adjusted p-values (Student's t-test corrected by 

Bonferroni method) to 0.000018 (∗∗∗).  
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Figure R2. Metabolic pathways altered in MetS. In the scatterplot, the x-axis 

indicates the impact on the route, while the y-axis indicates significant changes to a route. 

The pathways are represented as circles: the colour indicates the significance level, from 

highest (red) to lowest (white) in MetPA; the size is proportional to the impact value of 

each road from the topology analysis. Metabolic pathways whose name is indicated are 

significant (p-value < 0.05 after the adjustment using the Holm-Bonferroni method and 

FDR) and have a pathway impact value over 0. 

After the global comparison between MHO and MUHO, as patients 

affected by MetS, we focused our attention on a deeper characterisation of 

MetS based on the clinical severity of MetS. The aim was to study the 

effects of the rising number of MetS criteria from 3 to 5 on the metabolic 

profile of patients. A cross-validation model was applied to validate the 

classification model and evaluate the correspondence between clinical data 

and metabolomic profiles as shown in Figure R3. The results showed a 

better fit of the model for MHO (RMSECV: 0.366, R2CV: 0.150; ROC 

Curve AUC: 0.81) and MetS.5 (RMSECV: 0.339, R2CV: 0.258; ROC 

Curve AUC: 0.87) subgroups. This corresponds to a better ability in the 
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metabolomic characterization of the two clinical extreme conditions if 

compared to the intermediate conditions, represented by MetS.3 

(RMSECV: 0.446, R2CV: 0.065; ROC Curve AUC: 0.66) and MetS.4 

(RMSECV: 0.456, R2CV: 0.025; ROC Curve AUC: 0.63) subgroups. 

 

 

Figure R3. Cross-validation analysis of the PLS-DA model including the 

control subgroup (MHO) and the three pathological subgroups (Mets.3, 

MetS.4 and MetS.5). Estimated and cross-validated ROC are represented by blue and 

green lines, respectively. The value of AUC is indicated for each subgroup. 

The results of the PLS-DA (Figure R4) between the control 

subgroup (MHO) and the three pathological subgroups (Mets.3, MetS.4 

and MetS.5) showed the distribution of MHO, MetS.3, MetS.4 and MetS.5 

in order along the LV1, which summarizes the highest percentage of 

variability. This indicated a progressive and constant change in the 

metabolic profile from the MHO condition to the extreme pathological 

case. This evidence seemed to be confirmed by the representation of the 26 

metabolites with correlation scores (VIP scores) higher than 1, of which 
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LDL2 was the metabolite with a higher VIP score value in MetS (Figure 

R5 A). The mean intensities of all of them followed a progression from 

higher to lower or lower to higher with the same order MHO, MetS.3, 

MetS.4 and MetS.5 (Metaboanalyst, Figure R5 B). Concretely, the general 

tendency pushed to a reduction of most of the 26 metabolites from MHO 

to MetS.5. Only 5 of them (LDL2, acetone, carbonyls in fatty acids 2 

(FACO2), very-low-density lipoprotein 2 (VLDL2) and mannose + 

glycogen fragments) showed the opposite trend. Interestingly, the 

metabolites appearing in the plot included all the metabolites that described 

the MetS in the general picture except glucose and TMAO which did not 

show a statistical significance in the subgroups’ characterization. 

 

 

Figure R4. PLS-DA model for discrimination between MHO and MetS 

criteria subgroups. The model of discrimination and comparison between the group 

control MHO and the 3 MetS subgroups in metabolic terms was built using 2 LVs on MHO 

and MetS.5 groups and including the other two groups as projection. The score plot shows 

MHO samples in green, MetS.3 samples in yellow, MetS.5 samples in orange and MetS.5 

samples in dark red with 95a % confidence ellipse in the same colours.  
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Figure R5. Significant metabolites in PLS-DA model for discrimination 

between MHO and MetS criteria subgroups. Representation of metabolites based 

on VIP scores (A) and correlation scores intensity (B) resulting from PLS-DA for the MHO 

group and all MetS groups (3, 4 and 5 parameters). The coloured boxes show the mean 

intensity of the variable in the respective group after the comparison with the other three 

groups. Blue and red boxes indicate metabolite levels that are lower or higher, respectively, 

between the four groups, whereas orange and light blue indicate intermediary levels. 

Significant alterations are indicated by ∗. Adjusted p-values (one-way ANOVA by using 

Fisher’s Least Significant Difference (LSD) test method) to 0.000018 (∗∗∗). 
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5.2...Piancavallo cohort metabolomic analysis: 

focus on MetS extreme case. 

Based on the results obtained from the metabolomic characterization 

of the MetS by groups, it would seem that MetS.3 and Mets.4 can be 

considered intermediate and probably temporary situations leading to 

MetS.5. By the evidence that MetS.5 represents the worst clinical picture 

of MUHO patients and based on the results obtained from the metabolomic 

characterization of the MetS for groups and the relative quality control of 

the study model, we decided to focus our attention on the extreme 

conditions of MHO and MetS.5 for a better characterization of both 

conditions. PLS-DA analyses emphasised the specific global metabolic 

profile changes in MetS.5, most of them already predicted by the analysis 

by subgroups (Figure R6). The VIP score plot appeared similar to that 

obtained from the analysis of MetS criteria in the number of significant 

metabolites with slight changes in the order of statistical importance of the 

metabolite, indicating that the MetS.5 condition was already prevalently 

represented (Figure R7). In detail, MetS.5 showed a rise in FACO2 signal, 

which became, with LDL2 in the first position, the second most significant 

metabolite. Acetone and acetate followed them, remaining among the most 

involved components. Interestingly, the CCC climbed up in order, 

returning to the top positions. As expected, also the Relative Fold Change 

value of each metabolite remained similar, indicating a shared metabolic 

trait of MetS. Among them, the mannose joint with glycogen fragments 

maintains the highest value, resulting in the metabolite whose 

concentration changes more between MHO and MetS extreme case. 

The significant metabolites were analysed using MetPA 

(MetaboAnalyst, Figure R8) to counteract the problem of multiple 
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comparisons due to large-scale data analysis and to obtain information 

about the metabolic mechanism of the extreme MetS.  

Thirteen metabolic pathways were statistically significant for the 26 

MetS.5 metabolites, including alanine, aspartate and glutamate 

metabolism; pyruvate metabolism; glycolysis/gluconeogenesis; cysteine 

and methionine metabolism; glycerolipid metabolism; fatty acid 

degradation; biotin metabolism; glycerophospholipid metabolism; glycine, 

serine and threonine metabolism; inositol phosphate metabolism; 

aminoacyl-tRNA biosynthesis; arginine and proline metabolism and citrate 

cycle (TCA cycle). 

 

 

Figure R6. PLS-DA model for discrimination between MetS.5 and MHO. 

The model was built using 2 LVs. The score plot shows MetS.5 samples in red and MHO 

samples in green with a 95% confidence ellipse in the same colours. Cross-validation 

parameters: RMSECV 0.305, R2CV: 0.628; ROC Curve AUC: 0.97.  
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Figure R7. Significant metabolites in PLS-DA model for discrimination 

between MHO and MetS.5. VIP score and Relative Fold Change bar plots show the 

metabolites with VIP ≥ 1 represented in decreasing order as black thick lines (scale on the 

top) and Relative Fold Change values represented by grey bars (scale on the bottom). 

Significant alterations are indicated by ∗. Adjusted p-values (Student's t-test corrected by 

Bonferroni method) to 0.000018 (∗∗∗).  

 

 

 



 

130 
 

 RESULTS 

 

Figure R8. Metabolic pathways involved and affected in the extreme case 

of MetS. In the scatterplot, the x-axis indicates the impact on the route, while the y-axis 

indicates significant changes to a route. The pathways are represented as circles: the 

colour indicates the significance level, from highest (red) to lowest (white) in the 

enrichment analysis; the size is proportional to the impact value of each road from the 

topology analysis. Metabolic pathways whose name is indicated are significant (p-value 

lower than 0.05 after the adjustment using the Holm-Bonferroni method and FDR) and 

have a pathway impact value over 0. 

5.2.1...The influence of age on metabolomic features in 

the extreme case of MetS.  

We detected that MetS prevalence increases with age in our cohort. 

To maximize the differences associated with age and to further select 

relevant metabolic components, we calculated PLS-DA models to 

discriminate between MHO and MetS.5 conditions for both the age range 

19–45 y and the age range 55–85 y. The analyses revealed specific 
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metabolic changes in MetS.5. The global metabolic profiles showed 

differences between MHO and MetS.5 at both age ranges (Figure R9 A 

and B). Moreover, the combined criteria of VIP scores and Relative Fold 

Change (Figure R10 A, B) revealed common trends regardless of age in 

the impact of MetS.5, including FACO2, LDL particles, acetone, acetate 

and derivatives. Although most of the metabolites were selected as relevant 

for MetS.5 in both age groups and the number of metabolites with a VIP 

greater than one were comparable, their scores revealed different 

contributions to the models. Acetone, a dicarboxylic molecule, along with 

FACO2, was the metabolite most significantly associated with MetS.5 in 

younger ages in the entire population (Figure R10 A), whereas in older 

ages FACO2 showed the most important contribution to the model (Figure 

R10 B). Interestingly, polyunsaturated FAs (PUFAs) only contributed 

significantly to the model in the younger age group, whereas pyruvate and 

succinate, involved in the Krebs cycle, were only selected in the older age 

group. Mannose joint with glycogen fragments was the metabolite with a 

higher Relative Fold Change value in both age ranges resulting in the 

metabolite whose concentration changes more between MHO and extreme 

MetS, regardless of age. 

Based on the results obtained, the metabolites significantly altered 

in MetS.5 as compared to MHO independently of age were studied using 

MetPA (MetaboAnalyst, Figure R11) to obtain information about the 

metabolic mechanisms of the extreme MetS that was not related to age and 

were not influenced by it. From the 17 common metabolites, ten metabolic 

pathways statistically significant were detected.  These include glyoxylate 

and dicarboxylate metabolism; alanine, aspartate and glutamate 

metabolism; fatty acid degradation; pyruvate metabolism; inositol 

phosphate metabolism; glycolysis/gluconeogenesis; arginine and proline 
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metabolism; phosphatidylinositol signalling system; glycerolipid 

metabolism and glycerophospholipid metabolism.  

 

 

Figure R9. PLS-DA model for discrimination between MHO and MetS.5 

by age range. All models were built using 2 LVs. The scores plots show MetS.5 samples 

in red and MHO samples in green with a 95% confidence ellipse in the same colours. (A) 

Scores plot for the age range 19 to 45 years model. Cross-validation parameters: RMSECV 

0.304, R2CV: 0.582; ROC Curve AUC: 0.96. (B) Scores plot for the age range 55 to 85 

years model. Cross-validation parameters: RMSECV 0.300, R2CV: 0.640; ROC Curve 

AUC: 0.97 
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Figure R10. Significant metabolites in PLS-DA model for discrimination 

between MHO and MetS.5 by age range. VIP score and Relative Fold Change bar 

plots show the metabolites with VIP ≥ 1 represented in decreasing order as black thick lines 

(scale on the top) and Relative Fold Change values represented by grey bars (scale on the 

bottom). Significant alterations are indicated by ∗. Adjusted p-values (Student's t-test 

corrected by Bonferroni method) to 0.000018 (∗∗∗). (A) VIP score and Relative Fold 

Change bar plot for the age range 19 to 45 years model. (B) VIP score and Relative Fold 

Change bar plot for the age range 55 to 85 years model. 
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Figure R11. Metabolic pathways affected in MetS.5 independently of age. 
Two dimensions Venn diagram of the metabolites significantly altered in MetS.5 as 

compared to MHO in the two different age groups, and MetPA of groups’ intersections. 

For the subgroups (represented by circles of different colours) is shown the number of the 

metabolites that are common (overlapping zone) or those that are exclusive to the group 

(outer circles). Metabolic pathways whose name is indicated are significant (p-value < 0.05 

after the adjustment using the Holm-Bonferroni method and FDR) and have a pathway 

impact value, calculated from pathway topology analysis, over 0. In the scatterplots, the x-

axis indicates the impact on the route, while the y-axis indicates significant changes to a 

route. The pathways are represented as circles. The circle colour indicates the significance 

level, from highest (red) to lowest (white) in the enrichment analysis. The circle size is 

proportional to the impact value of each road from the topology analysis.     
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5.3...Age-related sexual dimorphism of metabolic 

traits in extreme MetS in severe obesity. 

We analysed the metabolic differences associated with MetS in 

different sex and age groups to identify sex-specific mechanistic clues and 

the impact of age on them. We evaluated the association of MetS with all 

55 metabolic components. Figure R12 shows the mean difference and 

confidence intervals between MetS and MHO for the four different groups, 

based on sex and age. Sixteen metabolic components showed a statistically 

significant association with MetS in all four groups.  

Overall, men in both age groups showed increasingly intense 

metabolomic differences between MHO and MetS. Women in the older 

group showed different and more intense changes closer to men's changes 

than the younger group. Since most of the clinical parameters of MetS 

showed statistically significant differences between men and women in 

both age groups, we applied the same strategy for analyzing the 

metabolomic profiles in the four sex and age subgroups (Figures R13, R14, 

R15 and R16). The comparison of the global metabolomes at younger and 

older ages for women (Figures R13 and R14) and men (Figures R15 and 

R16) showed discrimination and global differences (scores plots in Figure 

R13 A and B for women and Figure R15 A and B for men). The MetS.5 

metabolomic impact at younger ages was different between women 

(Figures R14 A) and men (Figure R16 A).  

Moreover, the combined criteria of VIP scores and Relative Fold 

Change refined even more the associations identified by the mean 

differences (Figure R12) since the number of metabolites with a VIP 

greater than one differed in the sex-stratified analysis. Women showed 

fewer metabolites with a VIP greater than one in the older group and men 
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show the opposite trend. Acetone and acetate, both dicarboxylic molecules, 

were the metabolites most significantly associated with MetS.5 only in 

younger women, whereas appeared less important in the other subgroups. 

Although in all the comparisons FACO2 were among the top four VIP 

scores, the change in this metabolic component contribution with age was 

much sharper in women (from the fourth to the first position) than in men 

(from the second to the third position). Host-microbiota co-metabolites 

also showed different trends between men and women with CCC as the top 

contributor in the model for older men but as a medium contributor (fourth 

and fifth position for younger and older ages respectively) in the women 

models.  

Although changes in the contributions to the models showed 

interesting age-related trends and MetS.5 differences between men and 

women, most of the Relative Fold Change of each metabolite remained 

similar in all the MetS.5 analyses for the different groups, indicating a 

common metabolic impact of MetS. Among them, mannose showed the 

highest fold change and was statistically significant in all the comparisons. 

Other metabolites that also showed a VIP greater than one and statistically 

significant differences between MHO and MetS.5 in severe obesity 

included alanine, LDL2, VLDL2, mannose, serine, proline, lysine, and 

glycolate. Interestingly, the Relative Fold Change value of each metabolite 

remained similar in all the analyses between the different groups, 

indicating a shared metabolic trait of MetS. Among them, the mannose 

joint with glycogen fragments showed the highest value, resulting in the 

metabolite whose concentration changes more between MHO and MetS.5. 
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Figure R13. PLS-DA model for discrimination between MHO and MetS.5 

by age range in women. All models were built using 2 LVs. All scores plots show 

MetS.5 samples in red and MHO samples in green with a 95% confidence ellipse in the 

same colours. (A) Scores plot for the age range 19 to 45 years model. Cross-validation 

parameters: RMSECV 0.273, R2CV: 0.534; ROC Curve AUC: 0.97. (B) Scores plot for the 

age range 55 to 85 years model. Cross-validation parameters: RMSECV 0.298 R2CV: 

0.642; ROC Curve AUC: 0.98.  
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Figure R14. Significant metabolites in PLS-DA model for discrimination 

between MHO and MetS.5 by age range in women. VIP score and Relative Fold 

Change bar plots show the metabolites with VIP ≥ 1 as black thick lines (scale on the top) 

and Relative Fold Change values represented by pink bars (scale on the bottom). 

Significant alterations are indicated by ∗. Adjusted p-values (Student's t-test corrected by 

Bonferroni method) to 0.00091 (∗), 0.00018 (∗∗), 0.000018 (∗∗∗). (A) VIP score and 

Relative Fold Change bar plot for the age range 19 to 45 years model. (B) VIP score and 

Relative Fold Change bar plot for the age range 55 to 85 years model. 
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Figure R15. PLS-DA model for discrimination between MHO and MetS.5 

by age range in men.  All models were built using 2 LVs. All scores plots show MetS.5 

samples in red and MHO samples in green with a 95% confidence ellipse in the same 

colours. (A) Scores plot for the age range 19 to 45 years model. Cross-validation 

parameters: RMSECV 0.341, R2CV: 0.534; ROC Curve AUC: 0.95. (B) Scores plot for the 

age range 55 to 85 years model. Cross-validation parameters: RMSECV 0.304, R2CV: 

0.566; ROC Curve AUC: 0.95. 
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Figure R16. Significant metabolites in PLS-DA model for discrimination 

between MHO and MetS.5 by age range in men. VIP score and Relative Fold 

Change bar plots show the metabolites with VIP ≥ 1 as black thick lines (scale on the top) 

and Relative Fold Change values represented by light blue bars (scale on the bottom). 

Significant alterations are indicated by ∗. Adjusted p-values (Student's t-test corrected by 

Bonferroni method) to 0.00091 (∗), 0.00018 (∗∗), 0.000018 (∗∗∗). (A) VIP score and 

Relative Fold Change bar plot for the age range 19 to 45 years model. (B) VIP score and 

Relative Fold Change bar plot for the age range 55 to 85 years model. 
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The comparison of the specific profiles of MetS.5 in each age and 

sex subgroup by the Venn diagram (Figure R17) revealed minor 

differences concerning age and sex, with variations in only up to two 

metabolites, except for men over 54 years where the variations included 

more metabolites. Twelve metabolites (35.3 % of the total) resulted in 

common among all the subgroups and eleven metabolites (32.4 % of the 

total) appeared specific for the subgroup of men over 54 years old (Figure 

R17). The impact of MetS.5 in this subgroup specifically affected up to 11 

metabolites, including pyruvate, succinate, glutamate, acetyls in 

glycoproteins (NAC2), trimethylamine, citrate, unsaturated FA (UFA1), 2-

oxosuccinate, methylhistidine, and methanol.  

To gain insights into the metabolic mechanism of MetS in the 

context of severe obesity and the specific pathways affected differentially 

in older men, these selected metabolites were analysed using MetPA 

(MetaboAnalyst, Figure R17). Seven metabolic pathways were statistically 

significant for the MetS.5 metabolites common to all group comparisons, 

including pyruvate metabolism; glycolysis/gluconeogenesis; 

glycerophospholipid metabolism; glycerolipid metabolism; fatty acid 

degradation, biotin metabolism and aminoacyl-tRNA biosynthesis. MetPA 

of the 11 metabolites (exclusively for the comparisons in men older than 

54) included four additional pathways, namely, citrate cycle (TCA cycle), 

cysteine and methionine metabolism, alanine, aspartate and glutamate 

metabolism and glyoxylate and dicarboxylate metabolism, and it further 

confirmed the pathways identified in the common metabolomic profile. 
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Figure R17. Metabolic pathways affected in MetS.5 in all age and sex 

groups. Four dimensions Venn diagram of the metabolites significantly altered in MetS.5 

as compared to MHO in the different age and sex groups, and MetPA of all groups’ 

intersections and the metabolic specific for men older than 54. For each subgroup 

(represented by ovals of different colours) is shown the number of the metabolites that are 

common to two, three or all the four groups (where ovals overlap) or those that are 

exclusive to each group (outer ovals). MetPA for metabolites common to all groups (left, 

grey background) and exclusive for men over 54 years old (right, pink background) are 

also represented. Metabolic pathways whose name is indicated are significant (p-value < 

0.05 after the adjustment using the Holm-Bonferroni method and FDR) and have a pathway 

impact value, calculated from pathway topology analysis, over 0. In the scatterplots, the x-

axis indicates the impact on the route, while the y-axis indicates significant changes to a 

route. The pathways are represented as circles. The circle colour indicates the significance 

level, from highest (red) to lowest (white) in the enrichment analysis. The circle size is 

proportional to the impact value of each road from the topology analysis.  
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5.4...Metabolomic-epigenetic interplay on MetS in 

severe obesity: the epigenetic study. 

The results of the applied multi-approach made it possible to obtain 

an exhaustive epigenetic characterization of the subjects studied both at the 

group level, through differential methylation analysis to measure global 

average methylation levels, and at single-case on individual methylation 

profiles for the analysis of SEMs. 

5.4.1.  Group level: differential methylation analysis. 

MDS was used to evaluate variations in the methylation profiles, 

reduce data complexity and visually inspect the dataset for strong signals 

in the methylation values. Differential methylation analysis was computed 

at the group level both at the sites and at specific regions (genes, promoters 

and CpG islands). After FDR adjustment of the p-values considering 

multiple testing, the results obtained failed to detect significant 

methylation differences between MetS.5 and MHO groups since no 

separation was observed along the first and the second dimensions, 

revealing that global average methylation levels were comparable (Figure 

R18 A). Nevertheless, two sites, belonging to TXNIP (thioredoxin 

interacting protein) and MYLIP (myosin regulatory light chain interacting 

protein) genes, turn out to be significantly differently methylated (Figure 

R18 B). At the site level, we found two statistically significant deregulated 

positions (cg19693031 and cg10474793 probes), belonging to TXNIP and 

MYLIP genes, respectively (Figure R19). The cg19693031 probe appeared 

hypomethylated in the MetS.5 group with a mean methylation value 7 % 

lower than the MHO control group (Figure R19 A). On the contrary, the 

cg10474793 probe appeared hypermethylated in the MetS.5 group with a 
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mean methylation value 3 % higher than the MHO control group (Figure 

R19 B). 

 

Figure R18. RnBeads differential methylation analysis of CpG sites. (A) 

The scatter plot shows the samples’ coordinates on MDS dimensions based on methylation 

scores of CpG sites in cases MetS.5 (green) and controls MHO (orange). (B) Volcano plot 

of pairwise comparison for differential methylation. The colour range quantifies the mean 

methylation score difference between whole blood (x-axis) and the combined adjusted p-

value of a given site (y-axis). Red arrows indicate the significantly differently methylated 

sites. The analysis was performed using the R package RnBeads.  
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Figure R19. Boxplots of beta-values of methylation in cg19693031 in 

TXNIP locus (A) and cg10474793 in MYLIP locus (B) in MHO and MetS.5 

patients. cg19693031 site p-value = 0.0013 **; cg10474793 site p-value = 0.0016 **. 

The p-value was adjusted for FDR correction. 

At the regional level (genes, promoters and CpG islands), according 

to our previous findings, no significant enriched regions emerged (data not 

shown).  

A gene ontology analysis was performed on the 100 best-ranked 

genes. The result of the gene ontology analysis was presented as TreeMaps 

(Figure R20) which summarize and represent the significant enrichment in 

the biological processes mainly involved. GO-terms resulted enriched for 

hypermethylated gene regions, that are subject to no of or reduced activity, 

had been clustered semantically and divided into few main categories such 

as the telomeric D-loop disassembly, positive regulation of t-circle 

formation, lactate biosynthetic process from pyruvate, cartilage 

homeostasis and negative regulation of interleukin-6-methylated signalling 

pathway. On the contrary, the clustering of enriched GO-terms for 

hypomethylated genes, potentially more active, revealed a very 

heterogeneous pattern of biological processes and metabolic processes, 

highlighting pathways related to hydrogen peroxide, vesicular transport 

and oxidative stress 
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Figure R20. REVIGO tree map of GO Enrichment Analysis. The treemap 

shows biological processes enriched related to differential hypermethylated and 

hypomethylated sites in the MetS.5 case group. Only the best-ranked enriched terms are 

reported due to space constraints. 
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5.4.2...Single case level: SEM analysis and hyper- and 

hypomethylation levels of SEMs. 

As described in the Methods section we carried out a single case 

analysis for the identification of SEMs. The calculated burden of SEMs in 

the MetS.5 group was compared to that observed in controls MHO and 

reported on a logarithmic scale. SEMs analysis highlighted, in MetS.5, a 

significant decrease in the median number of total log (SEMs) when 

compared to MHO controls (Figure R21 A) revealing that 

hypomethylations (p = 0.0185*), rather than hypermethylations (p = 

0.0388*), mainly contribute to the epigenetic drift (Figure R21 B and C).  

 

5.4.2a...Association between SEMs and metabolomic, 

clinical and pathological characteristics.  

We wanted to test the association between SEMs and MetS clinical 

and pathological characteristics. After the annotation of SEMs to obtain 

the epilesions’ related genes using wANNOVAR software, we identified 

the unique lists of these genes for MHO (n = 142) and MetS.5 (n = 121). 

We then carried out a literature-based prioritization of genes through the 

computational tool Phenolyzer. As shown in Figure R22, the prioritization 

analysis using terms related to MetS and its pathological characteristics of 

MetS such as abdominal obesity, diabetes mellitus type 2, hyperglycemia, 

hypertension and hypertriglyceridemia showed no statistically significant 

association between SEMs and clinical and pathological characteristics. 
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Figure R21. SEM analysis and hyper- and hypomethylation levels of 

SEMs. In (A) boxplots describe the quantity of total SEMs in MHO and MetS.5 patient 

groups. SEMs were expressed as log (SEMs). P-value of the difference = 0.01 *. (B, C) 

Boxplot of β values of the means of total differential hypermethylation (B) and 

hypomethylation (C) levels of SEMS in MHO and MetS.5 patients. Hypermethylation means 

levels showed a p-value = 0.0388 *; hypomethylation means levels showed a p-value = 

0.0185 *. The analysis was conducted by separating the SEMs by direction of deregulation 

and correcting for sex and age.  
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Figure R22. Boxplot graphical representations of the total scores obtained 

from the prioritization analysis of the unique lists of the epilesions’ related 

genes in MHO and MetS.5 patient groups.  

To investigate the interplay between epigenetic and metabolomic 

alterations we carried out a correlation analysis. The aim was to identify 

candidate variables to be implicated in this cause-effect interplay. We 

tested the possible association between the decrease in epimutations in 

cases, represented by the variable EpimutTot (SEMs) and the 22 metabolic 

variables significant resulting from the metabolomic analysis of MetS.5 in 

the elderly. Statistically significant associations with the metabolites such 

as mannose, VLDL2, LDL2, FACO2, myoinositol and creatinine were 

identified, although very weak in some cases (Figure R23). Since there is 

a decrease in SEMs in cases, a significant variation of these variables 

concerning case/control will also be associated with this decrease 

(negatively if it increases in cases, positively if it decreases in cases). 
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Figure R23. Correlation analysis between log (SEMs) and metabolic 

variables in MHO and MetS.5. Boxplots describe the association levels of total SEMs 

and metabolites in MHO and MetS.5 patient groups. SEMs were expressed as log (SEMs). 

In the figure are represented only the statistically significant correlations. The p-value 

(adjusted for FDR correction): (*) p< 0.5; (**) p< 0.1. Abbreviations and keys for NMR 

moieties: VLDL2, very-low-density lipoprotein; LDL2, LDL cholesterol; FA: fatty acids; 

FACO2: -CH2CH2CO.   

5.4.2b...Sex influence on the burden of SEMs.  

We also investigated the relationship between sex and SEMs 

through a single case analysis aimed at evaluating the rate of decreased 

stochastic SEMs in MetS.5 case groups in men and women, separately. 

Unexpectedly, the decrease in SEMs in MetS.5 groups seemed to be much 

more pronounced in the cohort of men only, while in women, the trend 

remained even if not significant (Figure R24 A and B). 
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Figure R24. Analysis of SEMs in men and women subgroups. Boxplots 

describe the quantity of total SEMs in MHO and MetS.5 patients in the men (A) and women 

(B) subgroups, respectively. SEMs were expressed as log (SEMs). p-value of the difference 

in men = 0.02 *; p-value of the difference in women = 0.17. 

5.4.3...Biological age estimation in healthy and 

pathological severe obesity. 

To verify the presence of a correlation between the corrected 

biological age and chronological age and to individuate differences in the 

rate of ageing and susceptibility to MetS not accounted for by 

chronological age alone, we applied the DNA methylation measurements 

to predict biological age using several epigenetic clocks. Neither 

differences in chronological age nor differences in the ratio between 

chronological age and Horvath’s DNAmAge were noticed neither in the 

case nor in control groups (Figure R25 A and B). By considering another 

age estimate (Grimage Acceleration - AgeAccelGrim) (Figure R25 C), 

able to predict the expected lifespan of individuals concerning the presence 

of diseases or pathological conditions, a significant variation (Mann 

Whitney p = 0.025) was observed. MetS.5 cohort showed increased values, 

indicating higher biological ageing than MHO. 
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Figure R25. Analysis of chronological and epigenetic ages in MHO and 

MetS.5 patients. Boxplots describe the differences, and their Mann Whitney p-value, 

between MHO and MetS.5 patient groups in terms of Chronological Age (A), 

ChronAge/DNAmAge Difference (B) and Grimage Acceleration (C), respectively. P-value 

of the difference (A) = 0.6; p-value of the difference in (B) = 0.3; p-value of the difference 

in (C) = 0.025*  

We also studied the Grimage Acceleration related to sex between 

MHO and MetS.5 groups in men and women, separately. Interestingly, the 

increased values of Grimage Acceleration in MetS.5 groups seemed to be 

much more pronounced and statistically significant (Mann-Whitney p = 

0.009) in the cohort of women only, while in males, the trend remained 

even if not significant (Mann-Whitney p = 0.982) (Figure R26 A and B). 
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Figure R26. Analysis of Grimage Acceleration in men and women 

subgroups. Boxplots describe the differences, and their Mann-Whitney p-value, between 

MHO and MetS.5 patient groups in terms of Grimage Acceleration. Men (A) and women 

(B)were analysed separately. P-value of the difference in men = 0.982; p-value of the 

difference in women = 0.009*. 

5.5...Metabolic characterization of the HFD-fed 

Wistar rats animal model. 

HFD obese and thin Wistar rats represented a good experimental 

model for the metabolic characterization of MetS, allowing the 

development of a mechanistic and functional approach to analyse the 

effects of HFD on adipose tissue. A special focus was put on its body 

distribution, composition, and metabolism to study and validate the 

potential role of adipose tissue and adipocyte metabolomes in the MetS 

observed in severe obesity in the Piancavallo cohort. 

5.5.1...The effect of diet on the body weight:  

comparison of CTL and HFD rats by sex. 

The body weight of the rats and the weight of their perigonadal fat 

pads (epididymal for males, periovarian for females) were affected by 20 
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weeks of HFD intake. Body weight increased in both CTL and HFD 

groups, but the rise was higher in the latter. However, BMI did not show 

statistical significance in diet and body weight change. As in humans, HFD 

induced an increase in weight both in male and female rats, being this 

increase statistically greater in male than in female rats. The difference in 

body weight was more significant considering male and female rats 

separately. On the contrary, perigonadal fat pad weight at sacrifice between 

CTL and HFD lacked statistical relevance in the males’ subgroup, whereas 

a slight significance was present in the females’ subgroup. It is interesting 

to note that, in the control situation, the females already appeared to have 

much more perigonadal fat than the males (3.02 vs. 1.82) and the fat diet 

brought a similar fat gain (1.30) in both groups. (Table R4). 

5.5.2...CTL vs HFD rats’ perigonadal fat pads: 

differences in morphology, structure and metabolism. 

The perigonadal fat pads showed differences related to their 

provenance: CTL or HFD rats (Figure R27). On average, the pads obtained 

from HFD animals had bigger dimensions, a more compact consistency 

and a lighter colour due to increased cell hypertrophy and a lower density 

of the blood capillaries (Figure R27 A). After their isolation and seeding 

in cell culture wells, the fat cells of CTL rats, fed with a standard diet, 

appeared in general smaller and morphologically more uniform in size and 

aspect than swollen cells of HFD rats when observed through the optic 

microscope as shown in Figure R27 B. In fact, among the HFD adipocytes, 

it was possible to note the presence of cells with a surface that was not 

smooth, or "curled" at many points, probably due to lymphocytic 

infiltration by macrophages, suggesting more inflammation status. 

Moreover, also the naked-eye observation of adipocyte cultures found diet-
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induced differences between CTL and HFD related to the different types 

of cellular contents released in the culture medium during cellular lysis 

(Figure R27 C). The constant accumulation of lipids makes the wall of 

mature adipocytes fragile and in hypertrophic HFD cells, the increased 

instability led to a greater probability of rupture, especially in culture. 

 
Table R4. Anthropometric characterization of Wistar rats’ animal model. 
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Figure R27. CTL and HFD perigonadal fat pad's visual aspect from 

extraction to cell culture. (A) Perigonadal fat pad samples before processing.  On the 

left side, a perigonadal fat pad extracted from a CTL rat; on the right side, a perigonadal 

fat pad extracted from an HFD rat. (B) Optic Microscopy Image of mature adipocyte 

culture after 72 h from seeding. CTL mature adipocytes on the left; HFD mature adipocytes 

on the right. Scale bar, 200 μm. (C) Top view of 6-well cell culture plates after 72 h from 

seeding. The plate containing CTL mature adipocytes is on the left; the plate containing 

HFD mature adipocytes is on the right. 
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5.5.3...The potential role of the metabolome of 

adipocytes and adipose tissue on MetS in severe 

obesity. 

The Scores plot in Figure R28 showed the probability that a sample 

belonged to its group of cases HFD or controls analysing the relationship 

among the samples. The result indicated that the metabolomic profiles of 

two female HFD rats did not correspond to their experimental profile, on 

the contrary matching better with the experimental profile of the controls. 

For this reason, despite the small number of samples, to avoid analytical 

errors, the two outlier samples were excluded from the metabolomic PLS-

DA analysis models. 

 

Figure R28. Wistar rats group prediction: CTL vs HFD. Wistar rats group 

prediction: CTL vs HFD. The scores plot shows the binary classification of predicted y 

values for "CTL" versus "HFD" listed along the axis as "Y CV Predicted 1 (CTL)", plotted 

against "Sample", distributed along the X axis. Red triangles indicate HFD rats, green 

triangles indicate CTL rats. Samples of both sexes are included. The dashed red line 

represents the discriminant threshold value for Y1, corresponding to 0,5. To be well 

classified, CTL samples must remain above the threshold line, while HFD samples must 

remain below. The black circles highlight the outlier samples. 
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5.5.3a...The influence of diet on the metabolism of rat 

adipocytes and adipose tissue. 

Exploratory PLS-DA analyses between CTL and HFD Wistar rats 

revealed differences in the global metabolic profiles of culture media both 

in adipocyte cell cultures and adipose tissue organ cultures (Figures R29 A 

and R30 A).  

Moreover, combined criteria of VIP scores in both adipocytes cell 

cultures and adipose tissue organ cultures (Figures R29 B and R30 B) 

identified differential profiles that contrasted in variety and number of 

significant metabolites (VIP scores ≥ 1). As shown, Methionine/Isoleucine 

constitute the metabolomic spectral area most significantly associated with 

HFD in adipocyte cell cultures. Whereas, in adipose tissue culture media, 

Glutamine showed the highest value in adipose tissue organ cultures, 

resulting in the metabolite whose concentration changes more between 

CTL and HFD. However, none of the metabolites was statistically 

significant after correction for multiple tests. 

The metabolites and metabolic areas with VIP scores ≥ 1 from the 

PLS-DA model for discrimination between adipocytes' culture media of 

HFD and control rats were analysed using MetPA (MetaboAnalyst, Figure 

R31) to obtain information about how HFD influences the metabolic 

pathways of fat cells. Seven metabolic pathways resulted statistically 

significant, including pyruvate metabolism; glycolysis/gluconeogenesis; 

alanine, aspartate and glutamate metabolism; cysteine and methionine 

metabolism; glycine, serine and threonine metabolism; citrate cycle (TCA 

cycle); and glutathione metabolism. 
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Figure R29. PLS-DA model for discrimination between adipocytes' culture 

media of HFD and control rats. (A) Score plot. The model was built using 2 LVs. 

The score plot shows HFD in red and CTL in green with a 95% confidence ellipse in the 

same colours. Cross-validation parameters: RMSECV 0.253, R2CV: 0.762; ROC Curve 

AUC: 1,000. (B) VIP score bar plot. Significant alterations are indicated by ∗. Adjusted p-

values (Student's t-test corrected by Bonferroni method) to 0.00067 (∗∗), 0.000067 (∗∗∗). 

On the right, the coloured boxes show the mean concentration of the metabolites in the 

respective group net of their baseline levels. Blue and red boxes indicate metabolite levels 

that are lower or higher, respectively, between the two groups. Down arrows indicate 

metabolites uptake compared to their baseline value in culture media; Up arrows indicate 

their excretion by cells. 
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Figure R30. PLS-DA model for discrimination between adipose tissues' 

culture media of HFD and control rats. (A) Score plot. The model was built using 

2 LVs. The score plot shows HFD in red and CTL in green with a 95% confidence ellipse 

in the same colours. Cross-validation parameters: RMSECV 0.584, R2CV: 0.487; ROC 

Curve AUC: 0.937. (B) VIP score bar plot. On the right, the coloured boxes show the mean 

concentration of the metabolites in the respective group net of their baseline levels. Blue 

and red boxes indicate metabolite levels that are lower or higher, respectively, between the 

two groups. Down arrows indicate metabolites uptake compared to their baseline value in 

culture media; Up arrows indicate their excretion by cells. 
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Figure R31. Metabolic pathways altered by HFD in fat cells. In the 

scatterplot, the x-axis indicates the impact on the route, while the y-axis indicates 

significant changes to a route. The pathways are represented as circles: the colour 

indicates the significance level, from highest (red) to lowest (white) in MetPA; the size is 

proportional to the impact value of each road from the topology analysis. Metabolic 

pathways whose names are indicated are statistically significant (p-value < 0.05 after the 

adjustment using the Holm-Bonferroni method and FDR) and have a pathway impact value 

over 0. 

5.5.3b...The influence of diet on metabolic sexual 

dimorphism in rat adipocytes. 

Since the metabolomic and epigenetic results on MetS in 

Piancavallo human cohort showed statistically significant differences 

between men and women groups, we evaluated HFD impact on adipose 

metabolism separately by sex (Figures R32, R33 and R34). This allowed 

us to further maximise the differences associated with sex and to find 

relevant metabolic components through the characterization of the cell 
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culture media. The results of the PLS-DA we performed exhibited clear 

discrimination between the medium samples of adipocytes culture 

obtained from control and HFD rats, in both female and male rats. 

Similarly to what was observed in humans, this separation was stronger in 

the female rats (as highlighted by VIP score plots in Figure R32 A for 

females and B for males).  

 

Figure R32. PLS-DA models for discrimination between HFD and control 

female and male rats, separately. All models were built using 2 LVs. All scores plots 

show HFD samples in red and control samples in green with a 95% confidence ellipse in 

the same colours. (A) Scores plot for female rats. Cross-validation parameters: RMSECV 

0.364, R2CV: 0.595; ROC Curve AUC: 1.000. (B) Scores plot for male rats. Cross-

validation parameters: RMSECV 0.355, R2CV: 0.670; ROC Curve AUC: 0.98. 
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The HFD metabolomic impact was different between the female and 

male rats (Figure R33 A and B). Eight analytes (methionine/ile, O-

phosphocholine, glutathione, ile/leu/val, pyruvate, lactate/threonine, 

methylsuccinate/2oxobutyrate, glutamine) of excretion or uptake were 

dysregulated (p < 0.05) in the culture media of adipocyte cells extracted 

from female rats fed with HFD, compared to the ones in the culture media 

of adipocyte cells from control diet-fed female rats, using the student's t-

test (Figure R33 A). In the culture media of adipocyte cells extracted from 

male rats, only BCAAs (ile/leu/val) were significantly dysregulated by the 

HFD, showing reduced uptake of these metabolites concerning the 

adipocytes from control rats (Figure R33 B). 

 

Figure R33. Significant metabolites in PLS-DA models for discrimination 

between HFD and control female and male rats, separately. VIP score bar 

plots for female rats (A) and male rats (B) show all the metabolites represented in 

decreasing order. Significant alterations are indicated by ∗. Adjusted p-values (Student's t-

test corrected by Bonferroni method) to 0.003 (∗), 0.00067 (∗∗), 0.000067 (∗∗∗). 
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In general, there is an overall alteration in the metabolism of 

adipocytes extracted from HFD rats compared with those extracted from 

CTL rats of both excretion and uptake of metabolites in the culture 

medium, as appreciable by observing the coloured boxes in Figure R34.  

 

 

Figure R34. Comparison of the mean concentration of metabolic regions 

between HFD and control female and male rats. The coloured boxes show the 

mean concentration of the metabolites in the respective group net of their baseline levels. 

Blue and red boxes indicate metabolite levels that are lower or higher, respectively, 

between the four groups, whereas orange and light blue indicate intermediary levels. Down 

arrows indicate metabolites uptake compared to their baseline value in culture media; Up 

arrows indicate their excretion by cells. Abbreviations: F, females; M, males. 
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Focusing on the individual metabolites, it was possible to note 

differences in uptake/excretion related to diet and sex-specific. Concretely, 

in females, oPhosphocholine, glutathione, pyruvate, glutamine and 

lactate/threonine were the metabolites whose uptake/excretion was shifted, 

with a significant uptake from the medium by the adipocytes of the rats fed 

with a HFD, which is in contrast to their increased excretion in CTL. 

Differently, in males, O-phosphocholine, pyruvate, lactate (higher uptake) 

and 2-oxoisocaproate (higher excretion) levels were shifted from the 

medium by the adipocytes of the rats fed with a HFD, although no 

statistical significance was observed. 

5.5.4...The effect of mannose on rat adipocytes and 

adipose tissue metabolism. 

Mannose was the metabolite whose metabolomic concentration 

showed the most consistent change and resulted significantly positively 

associated with SEMs epigenetics alteration in the pathological condition 

in the Piancavallo cohort. High levels were positively related to diabetes 

and insulin resistance and were particularly involved in the metabolic 

syndrome and its clinical complications, probably representing a MetS 

common ground in severe obesity.  

On this basis, we wanted to investigate if mannose could be related 

to the shift of the metabolism in adipose tissue and/or adipocytes in a well-

controlled experimental MetS induced by a HFD rat model. 

Supplementation of the culture medium with the D-mannose Treatment 

Medium did not alter the metabolism of adipocytes either in cells or in 

tissue culture. The comparison of the spectra of blank D-mannose 

Treatment Medium and after the appropriate period of adipocytes and 
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adipose tissues treatment highlighted the lack of use of the metabolite by 

the adipocytes since the mannose concentration peaks appeared unaltered 

(data not shown).  

Identifying the cell population capable of metabolizing and using 

mannose as occurs in human metabolism would be required different and 

more specific analytical strategies, showing that mannose may be probably 

metabolized by other cells than adipocytes. 
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6.  DISCUSSION 

6.1...The analysis of the metabolic profile of MHO 

and MUHO individuals can be supportive for a 

better and earlier classification of the MetS. 

 

MetS has been widely reported around the world as being mainly 

related to central obesity, which is on the steep rise, and a sedentary 

lifestyle [172], both of which are modifiable. MetS is also directly related 

to an increased risk of developing coronary artery disease and related 

conditions [173]. For these reasons, individuals with MetS should be 

identified early to implement lifestyle modification strategies to reduce 

their metabolic alterations and cardiovascular risk factors [174].  

In the Piancavallo population, we found a prevalence of MetS of 

80.5 % in severely obese patients (77.8 % in W and 85.4 % in M) with an 

average increase of 10 % with age. These values seem very high if 

compared with previous studies conducted in Italy, where the prevalence 

of MetS among Italian adults in a general population study defined by ATP 

III was 18 % in women and 15 % in men and increased from 3% among 

subjects aged 20-29 years to 25 % in subjects aged 70 years and older 

[175]. In our cohort, the prevalence of MetS is abnormally high due to the 

clinically severe obesity context but in line with other studies on the 

prevalence of MetS in overweighed and obese subjects. In a study on 

Palestinian refugees, MetS prevalence among obese and overweight was 

69.4 % according to IDF definition [176], whereas in Vietnam it was 41.6 

% among overweight adults [177]. This strong heterogeneity in prevalence 

could be due to the different criteria used for MetS, ethnic variations, 
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genetics, environmental and cultural differences, study settings, and other 

risk factors. For these reasons, due to the multifactoriality of MetS and the 

synergy among its components, it is fundamental to stratify MUHO in 

MetS subgroups based on the number of parameters for a better 

characterization of the pathological state and to better understand its 

effects. For example, in our study, most patients were diabetic and 

hypertensive, two of the diagnostic components of MetS. Interestingly, the 

relationship between MetS and DM2 appears to be very strong, as found 

by Ahmed et al. who reported a 91.9 % prevalence of MetS in DM2 

patients [178].  

Therefore, we have investigated associations between MHO and 

MUHO, characterized by the absence or presence of MetS, and their 

clinical and metabolic parameters. We have determined an association 

between the development and progression of the disease and differences in 

the anthropometric parameters WC, WHR and BMI indicating a 

proportional relationship between the increase of MetS criteria and the 

growth of abdominal adipose tissue, exacerbated in presence of severe 

obesity. Interestingly, WC and WHR appear to correlate more significantly 

with the increase and fluctuations of adiposity due to age and represent 

better the differences between MHO and MetS.5 groups than BMI. BMI, 

although considered a valid tool for assessing overweight and obesity, it 

does not directly measure body fat composition [7] and it is influenced by 

the component of FFM, especially bone and muscle which are denser than 

fat. Therefore, BMI cannot always assess individual risk for endocrine and 

metabolic complications. Our results corroborate the importance of WC as 

a commonly used parameter to define central obesity and its vital role in 

diagnosing MetS. When confounders such as temperature, interday 

variations, age and sex and also ethnicity, which may significantly 
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influence WC measurement, are avoided, this parameter can correctly 

estimate the amount of abdominal fat, providing both independent and 

additive information to BMI for morbidity and mortality prediction [179]. 

Moreover, normally, elder people suffer a decrease in FFM, losing muscle 

mass and having low bone density, which leads to sarcopenia and frailty 

[180, 181] with a consequent reduction of body weight. On this basis, 

changes in BMI are related to progressive variations in weight, fibre 

consumption, physical activity and the presence of chronic diseases and 

their number, but do not directly reflect a change in abdominal fat. In these 

cases, BMI can underestimate FM [182], which can constitute the most 

relevant physiological metabolic and endocrine component, and its 

importance in the pathological state.  

MetS is characterized as a progressive condition encompassing a 

wide range of disorders with specific metabolic abnormalities occurring at 

different times [183]. The relationships and mutual influences among the 

factors that characterize MetS are still not well known. In our cohort, the 

gradual, progressive, and steady change in the metabolic profile from the 

MHO condition to the extreme case of MetS.5 disease, and from youth to 

old age, evidenced by multivariate PLS-DA analyses, suggests that the 

metabolic status reflects the clinical progression. It thus helps to explain 

changes in the prevalence of clinical criteria identifying MetS and their 

involvement in the disease state of obesity, the condition generally most 

shared by MetS patients. MetS and its extreme case of MetS.5 disease 

appeared to primarily reflect variations in 13 metabolic pathways including 

aminoacyl-tRNA biosynthesis; fatty acid degradation; glycerolipid and 

glycerophospholipid metabolism; biotin metabolism; inositol phosphate 

metabolism and citrate cycle. Predictably, lipid metabolism prevails as a 

shared characteristic between MetS contributors in severe obesity. Besides 
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them, other studies have reported that the associations of MetS with 

BCAAs levels are the most biologically relevant [184]. This is because 

evidence suggests that BCAAs, aromatic amino acids and acylcarnitines 

may play an early role in insulin resistance, exposing defects in amino acid 

metabolism, the tricarboxylic acid cycle and β-oxidation [185]. In reality, 

in the context of severe obesity distinctive of our cohort, these amino acids 

maintain a solid statistical association with MetS but appear to be less 

significant than lipid markers and related metabolic pathways [186]. 

Interestingly, among the metabolites associated to extreme MetS, FACO, 

acetone and acetate, LDL, VLDL, leucine, alanine, proline, myo-inositol, 

glutamate, lysine, dimethylamine, glycolate, serine, 2-oxobutyrate, CCC 

and mannose have shown a significant or elevated VIP score in the model 

independently by age and constitute a common signature of MetS in severe 

obesity.  

High levels of mannose, the metabolite whose concentration shows 

the most consistent change in the disease condition in all the Piancavallo 

cohort analyzed subgroups, were positively correlated with DM2 and 

insulin resistance and were significantly involved in the syndrome and its 

clinical complications [187]. Plasma mannose levels have been reported to 

be elevated in subjects with insulin resistance, although they appear 

independent of obesity [188]. Thus, mannose is a biomarker of insulin 

resistance which may be useful for the early identification of diabetic 

individuals with insulin resistance and increased risk of its complications 

such as chronic diseases including DM2, CVD and albuminuria [188, 189].  

MetPA of age-independent extreme MetS’ metabolites showed that 

most of them belonged to 10 metabolic pathways statistically significant 

which include glyoxylate and dicarboxylate metabolism; alanine, aspartate 
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and glutamate metabolism; fatty acid degradation; pyruvate metabolism; 

inositol phosphate metabolism; arginine and proline metabolism; 

glycolysis/gluconeogenesis; phosphatidylinositol signalling system; 

glycerophospholipid metabolism and glycerolipid metabolism. Many of 

these are probably related to abnormal metabolism of the three major 

nutrients of carbohydrates, lipids and proteins [190] and the well-known 

effect of the diet on the gut microbiome variety and functionality that can 

modify the nutrient intake from the diet in terms of quality and quantity, 

altering the metabolic pathways and influencing the susceptibility to 

obesity [191].  

Pyruvate metabolism and glyoxylate and dicarboxylate metabolism 

are metabolic pathways related to carbohydrate metabolism; fatty acid 

degradation, glycerophospholipid metabolism, glycerolipid metabolism 

and phosphatidylinositol signalling system are metabolic pathways related 

to lipid metabolism; whereas alanine, aspartate, and glutamate metabolism 

is related to amino acid metabolism. Disruption of glyoxylate and 

dicarboxylate metabolism, strongly associated to altered gut microbiota 

and influenced by the metabolites glutamine, glutamate, and threonine, has 

been linked to mitochondrial dysfunction [192], which adversely affects 

the ability to detoxify reactive oxygen species (ROS), causing cellular 

damage and further leading to oxidative stress, strongly related to MetS 

and CVD [193]. Glycerophospholipid metabolism, along with primary bile 

acid biosynthesis, amino acid metabolism, and purine and pyrimidine 

metabolism, was found in a recent experimental study to be one of the 

targets of the treatment with Lactobacillus FRT10, being Lactobacillus 

plantarum a significant constituent of the health gut microbiota, to alleviate 

obesity in an obese mice animal model [194]. Moreover, in previous 

studies, decreased circulating levels of α-ketoglutarate and increased levels 
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of glutamate have suggested that glutamate accumulation increases the 

transamination of pyruvate into alanine, leading to the development of 

insulin resistance associated with obesity [195]. In fact, the increase in 

alanine, a highly gluconeogenic amino acid, contributes to the 

development of glucose intolerance in obesity, as circulating levels of 

alanine are elevated in obese subjects [196]. Finally, metabolites with a 

potential bacterial origin, specifically bile acids, short-chain fatty acids, 

branched-chain amino acids, trimethylamine N-oxide, tryptophan and 

indole derivatives are among the most significantly associated with 

metabolic disorders and MetS [197] and many studies suggest that 

metabolites that belong to the choline to trimethylamine pathways indicate 

the gut microbiome's state and the host/microbiota co-metabolism [198]. 

Our analysis revealed that the levels of choline- and methylamine-

containing compounds were significantly reduced in severely obese 

individuals with MetS.5, compared with MHO.  

On the other hand, although the issue continues to be debated, 

obesity itself would seem to have a "feedback effect" that alters the gut 

bacterial ecosystem and the corresponding host/microbiota co-metabolism 

[199]. The analyses of gut microbial pathways and gene families suggest 

that obesity is associated with a decreased capacity for transferring genetic 

material between bacteria through directional conjugation, important not 

only for bacterial evolution, but also for human health, and a reduction in 

superoxide reductase, potentially leading to intestinal oxidative stress 

[200], promoting low-grade inflammation, metabolic diseases and 

consequently CVD. The involvement of pathways such as metabolisms of 

pyruvate, metabolisms of arginine and proline, and metabolisms of 

methionine and cysteine in MetS in our analysis reflects this evidence. It 

is noteworthy that methionine, being an essential precursor of the primary 
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methyl donor SAM, is important for the methylation epigenetic processes 

[201], whereas cysteine is the limiting precursor of the major intracellular 

antioxidant glutathione [202].  

This generalized characterization allows us to understand the 

complexity of the factors involved in the pathological state due to the 

strong interrelation between the external environment and internal 

metabolism, in which epigenetics also participates, and it points out the 

most involved processes, to focus on for prevention and treatments. It also 

shows the strong implication of adipose tissue at the metabolic level and 

its different distribution with age between men and women, highlighting 

the necessity of a better description of the specific influences of age-related 

sexual dimorphism in the disease state. To understand its role and effects, 

the results of its analysis will be thoroughly discussed in section 6.2. 

6.2... The metabolome characterization may help to 

understand and manage the age-dependent sexual 

dimorphism on MetS prevalence in clinically severe 

human obesity. 

The anthropometric, cardiometabolic and metabolomic profiles of 

MetS in the entire obese cohort have shown highly consistent age and sex 

differential effect patterns between MHO individuals and individuals 

MetS.5, who met all five criteria for MetS as extreme cases of MetS. To 

our knowledge, there is no previous literature directly focused on the 

identification of sex and age influences and differences in MetS profile in 

a cohort entirely composed of clinically severe obesity subjects 

metabolically healthy and diseased.  
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So, to explore the sexual dimorphism in the prevalence and the 

metabolic impact of MetS and its components in severe obesity, we 

focused our attention on MHO and MetS.5 groups. Men and women were 

analyzed in two age subgroups, equivalent to pre- and post-menopause, 

separately. Overall, according to the results obtained, the prevalence of 

MetS in severe obesity seemed to increase after age 54 in both sexes.  

However, the proportion of women with MetS.5 increased sharply 

after this age, juxtaposing the modest increase seen in the same proportion 

of men. The increasing prevalence of hypertension in women with the age, 

reaching the men one, in which instead it is almost stable, shows the same 

prevalence profile of MetS.5. This may be associated with the reduction in 

sex hormone levels with menopause and ageing, facilitating alterations in 

blood pressure regulation and promoting hypertension and vascular ageing 

[203]. Women in fertile age are partially protected against vascular 

diseases as their ovaries produce sex hormones, principally estrogen that 

show direct effects on blood vessels inducing endothelium-dependent 

vascular relaxation [204] and maintaining a healthy cholesterol profile 

which counteracts the development of hypertension. Sex steroid receptors 

have been identified in vascular endothelium and smooth muscle. 

Moreover, recent literature suggests that LDL cholesterol, residual 

cholesterol, acetate and apolipoprotein B are positively associated with 

SBP change over time, whereas HDL particle size is negatively associated.  

Furthermore, serum lipids, particularly LDL- and VLDL-derived 

cholesterol as well as abnormalities in glucose metabolism are associated 

with the onset of hypertension [205].  

Variations in fat accumulation and metabolism, strongly related to 

sex and age ranges and influenced by hormonal changes, are probably the 
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common cause for both. The variations in abdominal adipose cells 

structure and quantity, which can double in the elderly, but especially the 

worsening of fat tissue metabolism due to the change in sexual hormones 

actions, seem to be directly correlated with the doubling of the prevalence 

of MetS.5 in postmenopausal women. While in men the accumulation of 

visceral adiposity does not show to be related to sex hormonal changes 

during their entire life, in women it is known that estrogens level changes 

have an impact on energy metabolism and are related to worsening clinical 

outcomes with age [206]. Their influence, when reduced, would result in 

the transition from a gynoid to an android phenotype, closer to men's and 

related to a higher risk of weight-related health problems, especially CVD.  

In particular, estradiol seems to prevent lipolysis in subcutaneous 

adipose tissue with subsequent reduction in visceral fat mass and 

accumulation of subcutaneous fat. It is unclear whether this effect on fat 

distribution is sufficiently supported and effective in severe obesity, 

especially due to the dangerous effects of a fat-enriched diet on metabolism 

and ‘hypothalamic pituitary ovarian axis’ perturbations [207]. However, 

also in this case, unequivocally, hormonal influences lead to a change in 

fat accumulation between fertile and postmenopausal ages. Whether in 

fertile age estrogens prevent the transformation of subcutaneous adipose 

tissue into visceral fat, this preventive role seems to be much less effective 

with menopause. Moreover, the age-related increase in visceral adiposity 

is an essential component of alterations in lipoprotein-lipid metabolism and 

plasma glucose homeostasis in middle-aged premenopausal women 

compared with young women [208]. These pathophysiological processes 

partly explain the changes in the prevalence of metabolic criteria and their 

contribution to the pathological state.  



 

180 
 

 DISCUSSION 

Remarkably, when the criteria were analysed one by one, we 

observed parallel rises with age for both sexes in all criteria except 

hyperglycemia. Men with severe obesity showed higher rates of 

hyperglycemia than women of equivalent age, with a sharp increase after 

age 54. The age-related decline in sex hormone function, in addition to a 

myriad of alterations, leads to changes in the quantity and structure of 

adipocytes, metabolism of adipose tissue and insulin sensitivity [209], 

which may be directly associated with the doubling of the prevalence of 

MetS.5 in postmenopausal women, reaching that of men, in whom it 

remains relatively constant. Interestingly, although some of these 

differences between men and women with MetS have been reported 

previously [210], this is the first time they have been observed in the 

context of severe obesity.  

Not only the anthropometric characteristics but also the 

metabolomic traits reveal the strong relationship between adipose tissue, 

hormones, sex and age showing a different regulation of the metabolism in 

MHO and MetS.5 conditions between men and women. The comparison 

between these differences, in divergent sexes and age groups, allows us to 

understand better how the disease develops in women and men. In fact, in 

this study, we observed variations in how MetS affects the metabolome of 

severely obese men and women, focusing on mean differences, 

multivariate PLS-DA patterns, VIP scores, and Relative Fold Change 

between MHO and MetS.5 individuals by separating the analyses for sex. 

Most metabolites with a significant association with MetS and with a high 

contribution to multivariate models persist in all comparisons, suggesting 

common ground for the development of extreme MetS regardless of sex 

and age. However, we noticed higher differences between controls and 

MetS in men in both age groups and older individuals of both sexes.  
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Overall, our discoveries agree with previous studies, in which the 

principal components of the MetS in women and men have been 

characterized in different populations, such as Chinese and Indian  [211, 

212], although we have identified interesting new trends related to sex and 

hormonal changes. For a better comprehension of the role of estrogens in 

the metabolic impact of MetS in severe obesity, we separately analyzed 

women and men in age groups associated with the passage to menopause 

status. Since changes associated with menopause can persist for several 

years after the last ovulation, menopause is not a well-defined event in 

terms of physiology and overall metabolism. The status of menopause 

should be examined using accurate and precise criteria that are not easily 

applied in some patient groups. For this motivation, we have delineated 

two age groups, excluding the grey zone between the ages of 45 and 54, to 

include the larger majority of pre-menopausal and post-menopausal 

women. We noticed a sharp increase in the prevalence of MetS in the 

postmenopausal group, probably due to body composition and associated 

structural changes including fat distribution and decreased protective 

effects of estrogens. Related to this increased prevalence of MetS, the 

changes in MetS-related metabolites also showed a stronger intensity.  

Interestingly, the lipid profiles of women and men with MetS 

showed similar elements but with different significance. We also observed 

that MetS affects acetone and acetate levels in premenopausal women, but 

not in postmenopausal, proposing that also the production of ketone bodies 

is affected by changes in fatty acid metabolism associated with menopause 

or MetS. It is known that FAs in the blood are transformed into ketone 

bodies when the concentration of FAs is high and insulin is low [213, 214]. 

The energy metabolism normally includes ketone bodies between its 

substrates both in the liver and in peripheral tissues. However, the 
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immoderate production of ketone bodies brings to their accumulation in 

the circulation and the acidosis of ketoacidosis and the development of 

ketosis, as it appears in diabetes. On the other side, women in the 

postmenopausal age group with MetS showed higher levels of carbonyls 

in FAs and low-density lipoprotein cholesterol, further supporting 

alterations in lipid metabolism and hormonal implications, and proposing 

the potential role of oxidative stress.  

During fertile age, estrogens, produced in the ovaries using LDL 

cholesterol as substrate, have antioxidant properties that protect 

mitochondrial integrity and function [215]. However, in postmenopause, 

when the ovaries no longer possess oocytes and reach their functional 

exhaustion, the demand for estrogen decreases, to the point of cessation. 

Circulatory LDL cholesterol did not long be utilized to synthesize 

estrogens with a consequent decrease in estrogens production [216]. 

Hence, postmenopause is associated both with a rise in blood LDL 

cholesterol levels that leads to the switch to a clinical picture more related 

to the rising risk of cardiovascular problems. The metabolomic profile of 

obese women in a probably postmenopausal age group seems to represent 

a sort of intermediate position between younger and older obese men. 

Altogether, these results suggest that the protection against MetS provided 

by estrogens, and prolonged after menopause, is also accompanied by less 

severe modifications in the metabolome.  

Our study establishes that the prevalence of MetS is higher in men 

than in women regardless of age and menopause. The impact on the distinct 

components of the MetS was different between men and women based on 

age. Young men (under 45 years) with MetS displayed similar but more 

intense metabolomic changes than those seen in women in both age groups, 
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which may likely be associated with different natures in individual MetS 

components. For instance, there was an increase in the percentage of men 

suffering from DM2 and/or hyperglycemia among the younger and older 

groups.  

Our MetPA determined that in this subgroup the TCA cycle appears 

to be specifically affected and emerges as the most significant pathway at 

the expense of other pathways relevant in the context of severe obesity, 

such as metabolism of glycerophospholipids or fatty acid metabolism. The 

TCA cycle is a set of biochemical reactions used by all aerobic organisms 

to produce energy and it is robustly associated with mitochondrial function. 

The results also indicate that the age-related decrease in muscle 

mitochondrial function correlated neither with adiposity nor with insulin 

sensitivity. Interestingly, it has been reported a greater capacity for 

mitochondrial ATP production in men, while women are more sensitive to 

insulin, demonstrating a further dissociation between insulin sensitivity 

and muscle mitochondrial function [217]. We also noticed in the 

discrimination models that, in this subgroup of elderly men, the 

comparison of MHO and MetS.5 disclosed CCC as the major contributor 

to the models, leading to a more severe unfavourable cardiometabolic 

pathological profile. This is in line with the PREDIMED study in which 

plasma metabolites from the choline pathway have been associated with an 

increased risk of CVD [218]. These compounds have been proposed as 

proatherogenic by altering sterol metabolism, affecting platelet activation 

and thrombosis risk [219] and inhibiting reverse cholesterol transport, 

which is also sustained by cholesterol profiles [198]. Finally, BCAAs, 

metabolites related to metabolic disease and MetS in several studies, result 

among the most contributing metabolites only in the model for younger 

men, suggesting an early predisposition to CVD and a more dramatic effect 
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of metabolic disease in severe obesity on the metabolic core [220] and 

other pathways.  

In summary, we analyzed the metabolome in well-phenotyped 

severely obese individuals and demonstrated that there is a strong sex-

dependent association between MetS and circulating metabolites. 

Importantly, we have shown that metabolic dysregulation in women and 

men with severe obesity and MetS is age-dependent. Estrogens have a 

significant influence on adipose tissue function and metabolism and may 

be closely involved in determining the sexual dimorphism in both body 

composition and body fat distribution during fertile age. This sexual 

dimorphism in energy metabolism results to be maintained also in 

menopause, even if the action of estrogens ends, giving a temporal 

advantage that delays and slows the course of MetS. Moreover, the 

metabolic profiles of our study showed age-dependent sex differences in 

the impact of MetS that are consistent with cardiometabolic 

characterization. Although there is a common landscape for MetS in the 

metabolome of severe obesity, men over the age of 54 have been affected 

more extensively and intensively. These findings strongly support the need 

for further studies aimed at unravelling the mechanisms underlying this 

sex-specific metabolic dysregulation in severe obesity.  

6.3...The role of metabolome-epigenome interaction 

in age- and sex-dependent incidence of MetS in 

clinically severe obesity. 

Genetic predisposition, ageing, and sex contribute to epigenetic 

variability, and several environmental factors, including exercise and diet, 

further interact with the human epigenome. Since epigenetics is one of the 
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mechanisms that explain the influence of environmental factors on gene 

activity, there has been a growing interest in the past decade in the possible 

role of epigenetic mechanisms as a link between nutritional imbalances and 

the development of NCDs [221]. Among these conditions, great interest 

has been aroused by the link between the rapid change in dietary habits and 

the observed obesity and MetS phenotypes, since the alteration of 

epigenetic mechanisms can result in oxidative stress, insulin resistance, 

DM2, and vascular dysfunction in animals and humans [222].  

Because DNA methylation is a key part of epigenome regulation, 

genome-wide (array-based) DNA methylation analysis is critical to better 

define the factors linking obesity to clinical MetS conditions and to 

characterize them. We have denoted the importance of the effect of old age 

in relation to sex on the interaction between the external environment and 

body metabolism, thus the epigenetic analysis could provide critical 

information for a complete view of the mechanism of action of the MetS. 

Methylation profiles and the epigenetic state of a sample of elder extreme 

MetS patients MetS.5, the most vulnerable to comorbidities, were 

compared through specific epigenetic analyses with those of MHO subjects 

matched for sex and age. The results suggested that the DNA global 

methylation levels between extreme cases MetS.5 and controls MHO are 

comparable. Although the differences at site levels were slight, the 

differential methylation analysis identified two statistically significant 

probes, hypomethylated cg19693031, belonging to the gene TXNIP, 

resulting in potential gene activation, and hypermethylated cg10474793 

belonging to the genes MYLIP, resulting in potential gene inactivation.  

The TXNIP gene has been associated with metabolic diseases such 

as hyperglycemia, hyperlipidemia, and diabetes in several studies [223-
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225]. Moreover, TXNIP methylation was inversely and intensely 

associated with glycosylated haemoglobin (HbA1c) levels, particularly in 

diabetic patients with poor glucose control, underlying an association 

between the gene TXNIP and DM2 through epigenetic mechanisms [226]. 

Interestingly, our highlighted site cg19693031 is the top diabetes-linked 

methylation site and its hypomethylation significantly increases the risk of 

DM2 development, as suggested in EWAS [227]. This site has also been 

related to fasting blood glucose regulation [228]. As a component of the 

family of α-arrestins implied in regulating oxidative stress-sensitive 

signalling pathways related to insulin resistance, hypomethylated TXNIP, 

upregulates the expression of its coding protein forbids insulin 

transcription activity and stimulates the apoptosis of beta-cell.  

On the other hand, MYLIP, the E3 ubiquitin-protein ligase also 

known as IDOL (inducible degrader of the LDL receptor) for its 

involvement in LDL cholesterol receptor regulation [229] and degradation, 

which in turn produces an elevation of plasma LDL-C and lead to 

hypercholesterolemia [230]. MYLIP correlates with familial 

hypercholesterolemia and the pathway of lipid metabolism and, although 

the hypermethylation of the cg10474793 probe has never been directly 

associated with them, MYLIP is reported among the genes that manifest a 

differential methylation profile associated with lipid traits in EWAS [231]. 

This gene seems to have also a clear biological and clinical importance in 

hypertriglyceridemia, plasma lipid metabolism regulation and alterations 

and atherosclerosis [232] being contained in one of at least ninety-five loci 

across the human genome that bear common variants associated with inter-

individual variation in serum lipid concentration [233, 234]. Elevated 

methylation of MYLIP could decrease its gene expression and 

consequently increase the availability of LDL receptors. The 
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downregulation of MYLIP has also been associated with an increased risk 

of DM2, thus suggesting that increased LDL receptor-mediated 

intracellular cholesterol accumulation could be one of the first epigenetic 

changes to contribute to the pathogenesis of DM2 [235]. Finally, in some 

GWAS, both TXNIP and MYLIP seem to have a clear biological and 

clinical concurrently importance in hypertriglyceridemia and lipid 

metabolism alterations since they harbour common variants associated 

with serum lipid levels, specifically increased levels of cholesterol LDL 

and triglycerides [236].  

These data are consistent with the metabolomic changes observed in 

our patients, in which FACO and LDL were the MetS’ preeminent and 

distinctive metabolites and with either the clinical characteristics of Mets 

in our cohort, primarily represented by the presence of 

hypertriglyceridemia and hypercholesterolemia. All of these relationships 

with alterations in lipid metabolism and metabolic diseases seem very 

interesting, not only because they are closely associated with MetS, but 

more importantly because they emphasize that the results of metabolomics 

and epigenetics, combined, globally reflect the clinical outcome of our 

patients. However, in this study, we were no able to identify significantly 

enriched areas at the regional level (genes, promoters and CpG islands).  

It is now accepted that obesity can drive methylation change [237] 

with significant rearrangements in obese methylation profiles [238], also 

in MHO, and that each region has a specific meaning and task for gene 

activation and repression. With these assumptions, we could indeed 

hypothesize that the current result is due to the presence of severe obesity 

in all the subjects in the study that masks the subtler differences. This 

hypothesis seems to be supported by SEMs analysis that unexpectedly 
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highlighted in MHO controls a higher number of SEMs when compared to 

MetS.5, revealing that hypomethylation, rather than hypermethylation, 

mainly contributed to the epigenetic drift.  

This certainly interesting evidence seems to indicate that obesity not 

only alters the epigenetic landscape at the methylation level but is also the 

main cause of increased epigenetic drift. Extreme MetS does not seem to 

aggravate further in its totality the epigenome degeneration of people 

suffering from clinically severe obesity because this altered body condition 

already submits them to a higher number of SEMs and epigenetic drift. In 

reality, this result could be considered a sort of artifact explained by the 

fact that MetS patients, following the diagnosis of the disease, underwent 

previous behavioural, pharmacological or para-pharmacological 

treatments that have attenuated the existing epigenetic alterations and 

offset their effects, preventing the onset of new SEMs related to them. 

Despite this, thanks to the metabolomics characterization of MetS, was 

possible to identify which metabolic alterations of this pathological state 

influenced the epigenetic drift more, correlating with a higher number of 

SEMs, through the metabolome-epigenome interplay. It is about specific 

characteristics at the basis of MetS and closely related to adipose tissue 

typology and metabolism as alterations in lipid profile [239], oxidative 

stress [240, 241] and inflammatory state [242, 243]. Once again, sexual 

dimorphism analysis revealed significant differences between men and 

women, as the epigenetic drift between MetS.5 and MHO was significantly 

greater in men than in women. It is known that epigenetic drift affects most 

of the genome, prefiguring the onset of (epi)genomic instability [244] and 

suggesting global deregulation of DNAm patterns with age with potential 

implications for ageing, stem cell biology and disease risk prediction [95]. 

So, assuming that a reduced drift overall correlates with a protective or less 
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dangerous epigenetic status, we could speculate that in women of fertile 

age, estrogens act "preventing" the accumulation of SEMs [245] and 

delaying further the manifestation of MetS phenotype. It would explain the 

visible effects of the lower difference between women of MHO and MetS.5 

groups and men at the level of epigenetic deregulations. MHO women 

would also undergo preventive treatment against increased epigenetic drift, 

while MHO men would not. Estrogens have, in fact, a significant influence 

on adipose tissue function and metabolism.  

The epigenetic discrepancy between men and women could be 

justified by the different quantity and increase of abdominal fat at fertile 

age [58], which would lead men to develop severe abdominal obesity and 

related health problems at a younger age than women. If in young people 

fat accumulation is a risk factor for morbidity and mortality [246], an 

increase in a more advanced age would be less dangerous, if not nearly 

favourable as postulated by the “obesity paradox”. It suggests that, in a 

phase of life in which the ability to assimilate nutrients from food is 

physiologically reduced, elderly individuals who have a greater reserve of 

fat are more protected than those who do not. This would allow them to 

have less physiological body wasting and, in case of a debilitating disease, 

to have a more favourable clinical outcome.  

The evidence of a discrepancy in the age of onset of the disease 

between obese men and women and their different metabolomic profiles 

led us to evaluate the epigenetic markers to obtain an estimate of various 

biological age measures (DNAm) (Steve Horvath's epigenetic clock). No 

differences between chronological age and Horvath's DNAmAge were 

observed both in the case and control groups.  
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However, it is known that obese subjects have higher DNA damage 

and epigenetic drift compared to normal-weight subjects [238, 247, 248] 

and that the rate of drift appears inversely proportional to longevity. The 

greater the degree of epigenetic drift, and the faster it occurs the shorter the 

lifespan. This is because the altered physiological state of obesity, causing 

general malfunction of the organism with premature ageing of the organs 

[249] and a higher increase in epigenetic age [107], adds up and 

accentuates the physiological epigenetic age-related conditions like 

shortening of the telomeres [250].  

Metabolic alterations and related morbidities must be considered as 

further aggravating factors. The age estimator Grimage was strongly 

related to an excessive visceral fat and was associated with a range of age-

at-menopause-related conditions including comorbidity count [105], 

showed globally increased values in MetS.5 cohort, pointing out a 

significant variation in the expected lifespan. So, MetS appear to further 

accelerate the biological ageing already caused by obesity.  

Analysis of the genetic pathways most involved in and in turn 

affected by DNA methylation deregulation may explain these results. MetS 

patients showed hypermethylation in many pathways related to telomere 

maintenance and DNA repair, contributing potentially to worsening the 

epigenetic drift and hypomethylation in pathways involved in response to 

hydrogen peroxide and the defence against oxidative damage. These 

phenomena appear particularly interesting and interconnected since it was 

demonstrated that a reduction in the normal length of telomeres can be 

caused by factors like stress, inflammation and oxidative stress, which 

increase the amount of telomere loss during cell division [251, 252]. 

Moreover, many studies have found that a variety of lifestyle factors 
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including diet, smoking, alcohol abuse and exercise [253] can negatively 

or positively influence telomere length.  

These results further highlight the complexity in analyzing a 

multifactorial pathology such as the MetS, strongly influenced by sex and 

age, and which development and progression depend on the balance 

between all the internal and external contributors, modifiable or not, 

involved. Precisely about sex, we noticed a clear and highly interesting 

distinction in Grimage Acceleration. Men have shown, on average, values 

much higher than women of similar chronological age, especially in MHO 

conditions. Among MetS groups instead, the values remained different but 

more comparable.  

Synthesizing, men seemed to have a biological age, reflected by 

epigenetic age, higher, on average, than women of similar chronological 

age, regardless of the pathological state, even if extreme MetS worsened 

the outcome. Once again, the presence of sexual dimorphism is 

appreciated. The longer lifespan of women could be partly due to the 

"protective effect" of sex hormones of fertile age, which, also acting at the 

epigenetic level, would appear to allow obese women to reach menopause 

epigenetically younger, benefiting them from the negative effects of MetS 

on the epigenome. Because of this evidence, we might consider the 

Grimage Acceleration results as an additional epigenetic warning, 

especially for obese, albeit healthy, men about the negative effects of the 

altered interaction between metabolome and epigenome through the 

concomitant influence of gender and age. In light of these results, lifestyle 

changes are fundamental and the sooner these happen, the better the 

outcome.  
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6.4... Adipocytes from animals under different diets 

show metabolic changes similar to those observed 

in MetS in human severe obesity. 

Obesity and associated metabolic complications have been linked to 

inflammation of white adipose tissue [254], principally the visceral one. 

However, the causal factors and the diet relationship remain unclear. Due 

to adipose tissue’s function as an endocrine organ, inflamed adipocytes 

secrete, both local and systemically, proinflammatory cytokines, which in 

turn alter the body metabolism and the normal function of the adipose 

tissue itself [255]. It has been shown that an increase of visceral adipose 

tissue is strongly linked to MetS [256] and the results obtained in our 

retrospective study on the Piancavallo cohort confirm this evidence, 

pointing out a clear implication of increased visceral adipose tissue and its 

altered metabolism in the worsening clinical picture of MUHO and MetS.  

Given the impossibility to obtain visceral adipose tissue samples 

from the subjects of the study cohort and the invasiveness of the procedure, 

we designed a well-controlled experimental diet-induced obesity model in 

both male and female rats. Reproducing the gain of body weight and fat 

gain characteristic of human obesity with more reliability than with genetic 

models, the HFD model allows a better study of their development and 

their risk factors and components. In a general view, if global body weight 

is controlled nearly equally by genotype and environment, body fat 

percentage and distribution appear to be much more influenced by diet and 

sexual dimorphism, respectively, with repercussions on adipose tissue 

metabolism and its endocrine role in both humans and rats [257, 258].  

The analysis of rat fat tissue and the experiments on adipocytes 



 

193 
 

 DISCUSSION 

could be helpful to detect a sex-specific metabolic profile induced by the 

HFD of the adipose tissue to better characterize the metabolic disturbances 

of MetS caused by the diet on the adipose tissue of the obese Piancavallo 

cohort. The first important correspondence between experimental rats and 

the human cohort was observed in the presence of sexual dimorphism in 

the distribution and increase of adipose tissue. Overall greater body weight 

gain was seen in male rats in comparison to females, with a significantly 

greater difference between CTL and HFD.  

However, the mean weight difference of epididymal fat pads was 

not significant in male rats but weight differences between periovarian fat 

pads in rat females were statistically significant on average. As observed 

in humans, male rats tend to accumulate more visceral fat from a young 

age than females, regardless of the diet, although inevitably a high-calorie 

HFD exacerbates the process. Conversely, in female rats, the HFD appears 

to have a stronger effect on modifying fat distribution. The HFD would 

therefore seem to counteract and reduce the beneficial effect of estrogens 

in preventing the transformation of subcutaneous adipose tissue into 

visceral fat and protecting against the development of metabolic and 

cardiovascular diseases.  

If anthropometrically sexual dimorphism seems to play an almost 

primary role, the metabolism and metabolic profile of the adipocytes under 

examination appears to be primarily and strongly modified by the diet, 

regardless of sex, which assumes a secondary, although important, role. 

Methionine/isoleucine constituted the metabolomic spectral area most 

significantly different between CTLs and HFDs, indicating methionine and 

isoleucine metabolism as the most modified in HFD adipocyte cell 

cultures, with lower excretion in the culture medium. It is known that 
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altered methionine metabolism is associated with weight gain in obesity 

and that restriction of dietary methionine intake seems to ameliorate lipid 

profiles, reduce fat deposition and improve metabolic flexibility [259]. 

Instead, isoleucine prevents the accumulation of tissue triglycerides [260] 

and may help to develop lean body mass and to control blood sugar 

preventing diet-induced weight gain in rodents. Moreover, acute-

isoleucine administration reduces postprandial glucose levels [261].  

Glutamine was the metabolite whose metabolomic spectral area 

differed more between CTL and HFD in adipose tissue organ cultures, 

resulting to be less excreted in the culture medium of the HFD-fed rats than 

in the CTL group. Glutamine resulted to be downregulated in obesity and 

it has been reported possible linker between obesity and inflammation in 

human white visceral adipose tissue. It is, in fact, inversely associated with 

the inflammation of white adipose tissue and macrophage activation, larger 

fat cell size and higher body fat percentage independently of BMI [262].  

HFD animals had fat pads with bigger dimensions, a more compact 

consistency and a lighter colour due to increased cellular fatty acid storage 

and a lower density of the capillaries. This indicated a possible alteration 

in their metabolism probably related to a cell hypertrophy condition of the 

HFD adipocytes, hypoxia and inflammation. Evidence of hypoxia in white 

fat tissue has been previously determined in genetically obese mice and 

HFD-obese mice [263]. Hypoxia is also a stimulus for the inflammatory 

response of macrophages and inhibits the differentiation of adipocytes 

from preadipocytes through increased expression and secretion of several 

inflammation-related adipokines. Low oxygen tension also stimulates 

glucose utilisation by human adipocytes, suggesting that hypoxia has a 

pervasive effect on adipocyte metabolism and underlies the inflammatory 
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tissue response in obesity and the subsequent development of obesity-

associated diseases, particularly DM2 and MetS [264]. Petrus et al., 

combining studies on human and mouse cell cultures, observed that 

glutamine supplementation treatment counteracts insulin resistance and 

reduces macrophage infiltration and levels of pro-inflammatory genes and 

proteins in adipocytes and white adipose tissue [262]. This would recreate 

the physiological metabolism of adipose tissue cells and reduce low-grade 

inflammation of adipose tissue, thereby improving its function in obesity.  

Most of the metabolic pathways were found to be common to those 

identified as altered in the MetS in the Piancavallo cohort. This confirms 

the importance of adipose tissue metabolism related to Western diets in the 

development of altered and pathological metabolic status and suggests the 

transferability of the in vitro results to humans, validating our retrospective 

study on the MetS. Moreover, it is well established that the metabolic state 

of a cell affects its transcriptional activity through intermediate 

metabolites, including glucose and glutamine, that constitute substrates or 

co-substrates for chromatin-modifying enzymes. This supports the idea 

that visceral fat tissue metabolic micro-environment impacts the function 

of several cell types, indicating an important relationship also with MetS’ 

epigenetic aspects.  

Specifically, in vitro results confirm the important consequences of 

diet in the development of obesity and the metabolism of adipocytes and 

adipose tissue due to not only calorie overconsumption but especially its 

nutrient type and composition. Triglycerides are accumulated in the 

adipose tissue by adipocytes as far as constituting 65 % of the adipose 

tissue and about 90 % of the adipocyte mass. This overaccumulation, 

typical in HFD diets, causes adipocytes' hypertrophic morphology, as 
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shown and confirmed by the visual analysis of our CTL and HFD rat 

adipocyte cultures, and alters the correct functioning of the adipose tissue. 

This leads to an alteration in visceral fat composition and a complication 

in the vascularization of the adipose tissue, as the capillary density is not 

able to support its growth request. Reduced blood perfusion leads to 

hypoxic adipocytes and a macrophage response, leading to inflammation 

[265]. At an early stage, and probably more successfully and efficiently in 

MHO subjects, hypoxia can stimulate vascular remodelling and promote 

systemic energy expenditure in obesity [266]. However, in the later stages 

and in most of MUHO and MetS people, chronic inflammation is 

established with the activation of macrophages in the adipose tissue, 

production of pro-inflammatory cytokines, and induction of insulin 

sensitivity with consequently insulin resistance [267, 268]. Furthermore, 

hypertrophy and inflammation together contribute to impaired metabolism 

and impaired endocrine function with repercussions on the entire body’s 

metabolism.  

This facilitates all the digestive processes of sugars, which lead to 

the accumulation of fat. As a consequence, a positive feedback effect is 

generated with a significant synergic increase in the static index of insulin 

resistance up to the onset of DM2 and metabolic alterations typical of 

MetS. Mannose (D-mannose) is a six-carbon sugar widely distributed in 

the body as an oligosaccharide constituent of glycoproteins. Free mannose 

is a normal constituent in blood circulation and serum mannose 

concentration has been related to the increase in diabetic patients and 

correlates closely with blood glucose [269] and triglyceride concentrations 

[270]. In our Piancavallo cohort mannose was the metabolite most 

discriminant between MHO and pathological condition for the strong 

change of its concentration, higher in MetS. Elevated levels are positively 
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related to DM2 and insulin resistance and have been found particularly 

involved in MetS and its clinical complications [189], probably 

representing a syndromic common ground in severe obesity.  

Nevertheless, in our in vitro experiments on rat adipocyte cell 

cultures, mannose supplementation, at a dose mimicking that found in the 

disease group, did not modify the metabolism of adipocytes. This suggests 

that, at the tested dose, its effect does not come from adipocytes but other 

cell populations, such as macrophages, correlated with the lymphocyte 

response to chronic inflammation and that the process required different 

and more physiological conditions to activate and manifest. It was shown 

that mannose opposes the lipopolysaccharide (LPS) -induced macrophage 

activation effect because of the inhibition of glucose metabolism and 

suppression of succinate-mediated hypoxia-inducible factor 1-alpha (HIF-

1α) activation and that mannose supplementation, at safe 

supraphysiological doses, ameliorates some human disease states [271]. 

Moreover, the soluble mannose receptor (sMR), whose serum levels were 

observed to be increased in obese rodents and humans, seems directly 

correlated with body weight. It binds the transmembrane receptor CD45 on 

macrophages and inhibits its phosphatase activity, playing a direct 

functional role in both macrophage activation and meta-inflammation 

[272].  

Inflammatory infiltration of adipose tissue, due to macrophages, is 

one of the most frequent evidence of conditions in which obesity is 

associated with MetS [273]. Our results, therefore, do not exclude an 

involvement of mannose, but different and more specific analyses, such as 

immunohistochemistry, might be necessary to test and verify the 

mannose’s action and effects on our experimental animal model of obesity 
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and MetS.  

The metabolomic impact of HFD was different between female and 

male rats. Methionine/Ile was the most significant metabolic area in female 

HFD rats, whilst 3-methyl-2-oxovalerate was the most significant 

metabolite in male rats. Interestingly, these results are according with those 

of Merino et al. who in a study on asymptomatic subjects from a general 

human population, reported that 3-methyl-2-oxovalerate, joint with the 

BCAA metabolite 4-methyl-2-oxopentoate, showed a nominal significant 

interaction with visceral fat only in men [274]. Moreover, 3-methyl-2-

oxovalerate is considered a strong predictor of impaired fasting glycemia 

independent of glucose [274], highly related to the future risk of diabetes 

and CVD.  

Male rats’ samples showed fewer differences in metabolites and 

only BCAAs showed statistical significance. This result agrees with 

different studies in which BCAAs appeared among the most contributing 

metabolites to MetS only for younger men, indicating that the disease has 

a worse effect on the metabolic core and an early predisposition to CVD in 

severe obesity [275]. Leucine, isoleucine and valine homeostasis is 

determined largely by their catabolic activities in tissues [276]. BCAAs 

dysregulation, whose catabolism occurs predominantly in the 

mitochondria, could be both a cause and consequence of mitochondrial 

dysfunction. Increased catabolism of BCAAs, effecting an increase in their 

catabolic intermediates, can impair mitochondrial oxidation of glucose and 

lipids, leading to mitochondrial stress and impaired insulin secretion and 

action [277]. These led to insulin resistance and DM2 in obese animals, 

among which some rodent models, and humans.  
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These results support the presence of sexual dimorphism that refer 

from animals to humans and highlight the need for more studies on the 

diet's sex-related metabolic effects in clinically severe obesity. 

6.5...Our findings may be relevant in providing the 

basis for the introduction of specific preventive and 

therapeutic interventions to improve the prognosis 

and quality of life of severely obese patients. 

The relevance of this work lies above all in the innovative 

investigative opportunities of current interest offered by the cohort under 

study. A general population is commonly used for this type of research and 

normal-weight subjects are compared with subjects suffering from obesity. 

Here, however, the Piancavallo cohort is composed of well-phenotyped 

subjects with extreme obesity. This altered background condition in all the 

subjects represented a challenge for the discovery of specific differences 

and effects of MetS. As known, MHO subjects, although not affected by 

the health complications related to MetS, cannot be considered as normal 

weighted people and this changes the basic parameters of comparison of 

anthropometric, metabolic and epigenetic variations associated with MetS 

in our study.  

The study allows a better understanding of the factors that 

distinguish this pathological condition, regardless of extreme obesity 

presence, considering the sexual dimorphism of MetS impact in two age 

groups, equivalent to pre- and postmenopausal women, with a special 

focus on MetS' role in the interplay between metabolome and epigenome 

in elder ages.  
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One of the medical fields most interested in personalized medicine 

is about CVD and correlated pathology, such as extreme obesity. Globally 

they remain one of the leading causes of death in the world, affecting 

especially older adults, with a diagnosis that typically occurs seven to ten 

years earlier in men compared to women.  

The metabolomics characterization of the MetS and MHO shows a 

different metabolic profile between men and women and confirming the 

presence of anthropometric, cardiometabolic and metabolomic differential 

patterns of MetS in severe obesity highly consistent with sex and age. 

Moreover, at the epigenetic level, MetS resulted in methylation alterations 

strongly related to hyperglycemia, hypercholesterolemia, diabetes and 

atherosclerosis, as well as premature ageing.  

Our analysis enabled the identification of metabolic fingerprinting 

that may underlie the higher rates of cardiometabolic disease commonly 

observed among older men. It also highlighted that, although comparable 

in the clinical diagnosis by the number of pathological parameters and their 

correspondence, men and women are distinct at the metabolic and 

epigenetic level, responding certainly in a different way, and better for 

women, to the perturbations caused by obesity and MetS. Despite the 

prevalence of the disease rise strongly in postmenopausal women, their 

metabolomic profile and pathways involved in MetS appear to hold 

themselves in a sort of intermediate situation between men under 46 years 

and men of comparable age.  

Moreover, although MetS has a sex-independent common basis, 

related to the production of cytokines and FFA from part of abdominal 

adipose tissue with consequent insulin resistance, hypertension and 
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dyslipidemia, women seem to require a higher degree of adiposity to 

achieve the same metabolic disorders of men. This is because they show a 

more favourable fat distribution that seems to guarantee them a sort of 

protection beyond menopause which is reflected in the constant gap 

between men's and women's metabolism. The switch from MHO to 

MUHO, and the worsening of the severity of the MetS, appears associated 

with a change in the energetic metabolism and a delayed visceral fat 

accumulation due, in women, to the modulation of sexual hormones. 

Interacting and modifying the metabolomic profile of the MetS from youth 

to menopause, estrogens provide some sort of protection that allows 

women to remain “metabolically younger” even in oldness when their 

influence is reduced. This protective effect can become the object of 

clinical treatments to improve their outcome.  

This mechanism can be described as the Falconer threshold effect 

[278, 279], a liability threshold model often employed in medicine and 

genetics to model and intervene in risk factors that contribute to disease. 

The Falconer model, introducing the concept of the threshold effect, 

postulates the idea that each of us is capable of expressing a character and 

has its threshold value [280], which can be higher or lower, polygenic and 

Gaussian. People with MetS are exposed not only to genetics but also to an 

exposome, the set of internal and external "environmental factors" 

including epigenetic drift, body composition and fat distribution, diet and 

lifestyle, alteration of host/microbiota co-metabolism and metabolomic 

profile, endocrine action of adipose tissue, hormonal influence, sex and 

age, that would push toward the MetS development or counter it, with more 

or less strength, in a sort of "tug of war" similar effect. Subjects in which 

the susceptibility factors exceed a critical value will manifest the 

phenotype. In essence, when the threshold effect is exceeded, the MetS 
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occurs.  

Although rarely, even people of normal weight can be 

“metabolically unhealthy normal-weight” (MUH-NW) [281], developing 

metabolic diseases and MetS. In people suffering from obesity, this "push" 

towards the threshold is exacerbated by obesity itself.  For this reason, the 

risk assessment in severely obese patients with MetS must be considered 

separately from that of normal-weight patients and appropriately stratified, 

identifying at an early stage who has crossed the pathological threshold 

and the contributors or protectors involved. If these patients are subjected 

to proper treatment, one or more of the pushes that lead to the disease is 

reduced or cancelled and the clinical outcome is improved.  

Basically, by acting on external environmental factors thanks to the 

treatment, there is a direct action on the metabolic factors. Since the latter 

interconnects with the epigenetic factors, there is, therefore, a reflected 

action on the latter as well, reducing the alterations affecting the epigenome 

and consequently the dangerous epigenetic drift (Figure D1).  

 

 

Figure D1. Graphic representation of the Falconer threshold effect [279]  

applied on the epigenetic drift in obesity. 
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In this contest, a diagnosis of MetS seems to be a preventive if not 

"curative" factor against epigenetic drift and its consequences. Moreover, 

the higher the number of MetS criteria, leading to worse disease diagnosis, 

the stronger the interventional treatment. The results obtained bring to light 

the need for studying in-depth metabolic and epigenetic changes and their 

specific biomarkers involved in the development and characterization of 

the disease in different stages of life and sex, as a fundamental step for 

identifying and stratifying people at risk, rather than just using current 

clinical parameters. This constitutes the premise for new preventive and 

therapeutic strategies and therapies based on nutritional interventions on 

host/microbiota co-metabolism based on the sum of patients' specific 

biological and clinical characteristics to understand how to act on them in 

a personalized way.  

The well-controlled adipocyte cell culture from HFD or CTL diet 

can establish cause-and-effect relationships between diet and metabolic 

health, with a special focus on the impact of the HFD on the fat 

characteristics and metabolism which might be transferred to humans with 

MetS. Once again, diagnosis and treatment of MetS could have a beneficial 

effect, improving the quality and duration of life of the patients.  

Larger resources should be invested, moreover, to improve the study 

of the effects of the diet on the epigenetic landscape and the possibility 

offered by methylation levels of estimating the real biological age, 

comparing it with the chronological one. In particular, the reduction in 

caloric intake without malnutrition, defined as caloric restriction (CR), has 

been demonstrated to increase the lifespan of several organisms [282] and 

delay age-related methylation drift [283]. Nutrition plays a significant role 

in epigenome modulation, and an increasing amount of data indicates that 
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dietary modifications can alter the epigenetic signs associated with ageing 

[284]. The reduction of oxidized lipids as an effect of CR [285] is 

particularly important because they were found to be the first metabolite 

involved in the MetS at a metabolomic level and significantly correlated to 

epigenetic alterations. As strong indicators of oxidative stress, damage, and 

inflammation directly related to ageing, their reduction contributes to 

improving life expectancy. Moreover, CR has been shown to reduce 

adiposity and improve the metabolic profile in primates ameliorating their 

survival and their lifespan [286]. These results suggested that similar 

effects might be transposed to humans [287]. Last but not least, sexual 

dimorphism must also be considered in the context of treatments based on 

nutrition due to the interaction between diet and sex hormones. A sex-

specific diet, that also takes age into account, would lead to a greater 

reduction in metabolic ageing which would also be reflected in a "temporal 

advantage" on epigenetic ageing and would result in less risk of developing 

diseases related to ageing [288].  

Even if further studies are necessary to discover how to act 

practically against the contributors to the pathological metabolism 

represented by MetS and their interactions, the information obtained in this 

thesis appears interesting and promising, and with high clinical relevance 

to improving severely obese patients' prognosis and their quality of life.  

6.6.  Limitations of the study.  

 
This study has some structural and experimental limitations. Firstly, 

the subjects under study suffered all from clinically severe obesity. This 

condition, also in MHO subjects, already plays an important role in 
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epigenetic modifications, and correspondingly on the metabolomics 

landscape, that somehow could mask the effects of MetS. Moreover, all 

individuals were of Western European ancestry and it is difficult to 

extrapolate these data to other populations.  

Secondly, we used MetS as an indicator of cardiometabolic dysregulation. 

It is important to realize that there are various definitions of MetS and this 

syndrome is heterogeneous. To optimize external validation, we used the 

most widely used definition from IDF. 

Thirdly, our cohort included an unequal number of men and women. 

However, we stratified the analysis by sex and age to overcome potential 

bias, assuming that the age range chosen (as inclusion criteria) could make 

men and women comparable, as postmenopausal women are no longer 

subjected to the action of estrogens. We did not assess the actual 

menopause, but the age of the group relative to the menopause transition, 

which could add some bias to the results in terms of interpretation. 

Numerous potential lifestyle factors could still influence the sex 

differences found in this study beyond biological mechanisms, such as 

adverse eating patterns, smoking behaviour, or alcohol consumption.  

Fourthly, both metabolomics and epigenetics analyses of the human cohort 

were conducted only on the serum and the DNA of blood cells, 

respectively. On the contrary, in the HFD rat animal model, only the 

adipose tissue was analysed. So, even if the metabolomics analysis method 

was the same, the difference in the results obtained was probably caused 

by the tissue studied. Therefore, further studies of other tissues (eg adipose 

tissue in humans and serum samples in HFD rats) could be required to 

deepen and confirm these preliminary observations.  

Fifth, the cohort enrolled in the study is vast but the results of the 

epigenetics analysis represent only a subset of subjects. We must 
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emphasize that a larger sample size could better estimate the normal DNA 

methylation ranges for each locus. For example, to explore the possibility 

that sex diversity is an epigenetic confounding variable it could be 

interesting to split the entire cohort by analysing men and women 

separately. While being aware that the split could be detrimental to 

statistical power, the epigenetic results obtained seem to support the 

hypothesis of a "temporal advantage" related to metabolic ageing provided 

to women by estrogens.  Larger resources should be invested, moreover, to 

improve the study of the effects of the diet on the epigenetic landscape and 

the possibility offered by methylation levels of estimating the real 

biological age, comparing it with the chronological one. 

Finally, current methods to study mature fat cell biology using primary cell 

cultures have limitations related to the difficulties of good maintenance of 

their viability and function. Rodent adipocytes, especially if hypertrophic, 

are more fragile than human adipocytes and the procedures for their 

isolation and seeding are complex. Collagenase digestion could be also 

liable for phenotypic changes such as the decrease in adipocyte marker 

gene expression and the induction of pro-inflammatory factors. Moreover, 

the inter-individual variability and the diversity among adipocytes within 

a fat depot, due to the presence of several populations of white and beige 

adipocytes with unique metabolic and endocrine properties, could result in 

differential responses to exogenous stimuli and cell treatments. 
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7.  CONCLUSIONS 

 

1) The prevalence of MetS in the Piancavallo cohort is higher in men 

than in women regardless of age and menopause status. 

2) The metabolic profiles of the Piancavallo cohort showed age-

dependent sex differences in the impact of MetS on host/microbiota 

co-metabolism and metabolic pathways involved which are 

consistent with the cardiometabolic characterization. 

3) Although there is a common ground for MetS in the metabolome of 

severely obese individuals, the differences between women and men 

in the strong association between MetS and circulating metabolites 

indicate that their metabolic dysregulation is age- and sex-

dependent.  

4) Mannose and glycogen fragments could be potential novel 

biomarkers of MHO whereas the reduction of choline-containing 

compounds constituted the metabolite most significantly associated 

with MetS in the entire population.  

5) The global metabolic profiles showed differences between MHO 

and MetS.5 at both age ranges. Whereas acetone and acetate and 

polyunsaturated fatty acids (PUFAs) were the metabolites most 

significantly associated with MetS.5 in younger ages whereas in 

older ages FACO2, pyruvate and succinate showed the most 

important contribution in the older age group. Carbonyls in fatty 

acids (FACO2), LDL particles, and acetate and derivatives revealed 

common trends regardless of age in the impact of MetS.5 
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6) The metabolic and epigenetic profiles of the Piancavallo cohort were 

in line with the difference between chronological age and biological 

(epigenetic) age between MHO and MUHO men and women, 

indicating that men older than 54 were affected more extensively 

and intensively.  

7) The epigenetic analyses indicated that extreme MetS state and male 

sex correlate to accelerated ageing, whereas women seemed to be 

“metabolically/physiologically younger” thanks to estrogen's 

protective effect.  

8) Epigenetic DNA methylation analyses, revealing hypermethylation 

of MYLIP and hypomethylation of TXNIP, and metabolomic 

analysis indicated an association between levels of protein 

carbonylation, oxidized lipids and severe obesity, suggesting an 

important role in oxidative stress and the development of MetS.  

9) Severe obesity conditioned stochastic epigenetic mutations by 

enhancing hypomethylations rather than hypermethylations in 

MetS.5 compared to MHO. The decrease in epimutations in MetS.5 

was positively associated with myoinositol, but negatively 

associated mainly with mannose, VLDL2, LDL2, FACO2, and 

creatinine. The decrease in SEMs in MetS.5 groups seemed to be 

much more pronounced in men than in women. 

10) Experimental rat adipocyte models indicate that visceral adipose 

tissue metabolism appears to be influenced by diet and sexual 

dimorphism in a manner corresponding to humans and could clarify 

its endocrine role in the metabolic and metabolomic changes 

observed in severe human obesity and MetS. 
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11) HFD induced metabolic changes in cultured rat adipocytes that 

belonged to pathways that are shifted also in the differential profiles 

of MetS patients compared to MHO subjects, indicating the 

importance of diet in metabolic dysregulation.  

12) Rat adipocyte cell assays could be used as a translational in vitro 

model to corroborate the hypotheses derived from the study on the 

Piancavallo cohort about identifying metabolomic biomarkers 

induced by diet and sexual dimorphism.  

13) Metabolic profiling by NMR and epigenetic studies can be useful 

for the identification of new potential therapeutic targets through 

sex- and age-risk stratification and consequently retrieve on the 

clinically severe obese patient by the prevention, early detection, 

characterization of the disease, and the design of new therapies for 

a more personalized medicine 
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ANNEX II: Experimental rat's diets composition 

sheets 
 

 

 

Figure A1. Composition of the standard diet. Teklad 2014 (Harlan). 
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Figure A2. Composition of the HFD. Teklad Custom Diet TD08811 from 

Harlan. 

 

 

 


