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Abstract 

The analysis of systemic credit risk is one of the most important concerns within the 

financial system. Its complexity lies in adequately measuring how the transmission of 

systemic default spreads through assets or financial markets. The transmission structure 

of systemic credit risk across several European sectoral CDS is studied by dynamic 

Bayesian networks. The new approach allows for a more advanced analysis of systemic 

risk transmission, including long-term and more complex relationships. The modelling 

reveals as relevant only relationships between the original series and one- and two-

lagged series. Network structure learning displays a robust and stationary underlying 

risk transmission structure, pointing to a consolidated transmission mechanism of 

systemic credit risk between CDSs. Between 5% and 40% of sectoral CDS series 

variances are explained by the network relationships. The modelling allows us to 

ascertain which relationships between the CDS series show positive (amplifier) and 

negative (reducer) effects of systemic risk transmission.  
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1. Introduction 

Systemic risk is inherent to the financial system and consists of the transmission of 

shocks that can affect financial markets or institutions, which are nowadays highly 

interconnected due to international financial globalisation. Shocks occurring in the 

credit market are especially important, as the default of one company or sector could 

spill over to the entire financial system. This is particularly relevant and accentuated in 

periods of financial or economic crisis. The study of the transmission of systemic credit 

risk is increasingly on the radar of regulators, policymakers and the academic 

community in order to prevent and attempt to mitigate the devastating effects that the 

spread of this risk could have on the financial system. The transmission of systemic 

credit risk is a complex problem, difficult to study given the large number of factors 

involved and the diversity of possible dynamics. Because of the non-triviality of the 

challenge, the goal of analysing this transmission is of particular interest. 

In a Bayesian statistics context, we propose the use of Dynamic Bayesian Networks 

(DBNs) to address this problem. This opens up a new approach in the study of systemic 

credit risk interconnections. These networks, DBNs, are defined by two fundamental 

elements: Network Structure Learning (NSL) and Parameter Learning (PL), which 

make up the entire statistical learning process, from model construction and selection to 

model estimation and diagnosis. In our case, the structure of the DBN is built, after 

inducing stationarity, using ARMA (Autoregressive Moving Average) Models, which 

determine the dynamic relationships present in the network. NSL is performed using 

unconditional independence tests, conditional independence tests and network scores, 

combining exhaustive and heuristic exploration methods. PL is carried out through 

simulation methods based on Markov Chain Monte Carlo (MCMC), using both 

maximum likelihood and penalised regression approaches. The proposed modelling 

allows for a more advanced analysis of the transmission of systemic credit risk. 

This study is the result of combining the financial literature that analyses the 

transmission of systemic credit risk and the statistical literature on Bayesian networks 

with dynamic models. These lines of research overlap in the area related to the analysis 

of interconnections computed via networks. Within the line of research that analyses 

connections in credit risk, we focus on credit derivative contracts, specifically Credit 
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Default Swaps (CDS). The most widely used measures of systemic risk are based on 

information on CDS spreads, which are forward-looking and reflect the market’s 

perception of the credit risk of a particular issuer (Chamizo and Novales, 2020). 

The first studies focused on systemic risk using the CDS market emerged in the wake of 

the global financial crisis. These papers deal with the analysis of the decomposition of 

systemic risk using US and European sovereign CDSs (Bhansali et al., 2008; Ang and 

Longstaff, 2013), sectoral CDS (Novales and Chamizo, 2019) or using data from 

financial institutions (Suh et al., 2013). Another line of credit risk research includes the 

study of the transmission of credit risk using networks based on the methodology of 

Diebold and Yilmaz (2015). However, few recent studies refer to the analysis of 

systemic credit risk based on the transmission between various nodes in a network. In 

this regard, Kanno (2020), Brownlees et al. (2021) and Naifar and Shahzad (2021) 

focus on network analysis using different techniques for the CDSs of international 

financial institutions. The literature on Bayesian networks is less extensive, though 

increasingly frequent in recent years (Scutari and Denis, 2021). Following this line, the 

literature has begun to be interested in the study of financial series (Fortunato et al., 

2017). However, to the best of our knowledge, there has been no application of 

Dynamic Bayesian Networks to the analysis of credit risk and, more specifically, to the 

systemic credit risk component. 

The literature related to the application of networks to analyse the transmission of 

systemic credit risk in the context of Bayesian statistics is still to be explored, and this 

study is presented as the beginning of a fresh line of research. The limitations still 

present in the study of credit risk transmission mean that the adoption of a new 

approach, such as that offered by DBNs, should be welcomed in view of the potential 

innovations it can provide. Thus, the novel contribution of this paper is to analyse the 

transmission of credit risk through networks in the context of Bayesian statistics. 

The aim of this research is to unravel the structure of systemic credit risk transmission 

across European sectoral CDSs during the COVID-19 crisis. The recent pandemic has 

not only had devastating consequences for public health, but also an unprecedented 

economic impact, destabilising development and the global economy.  

We organise the research into several objectives. Our first goal is to understand the 

structure of risk transmission underlying European sectoral CDSs. The second is to 

determine the overall dynamics of systemic credit risk transmission and to understand 
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how credit risk is transmitted across sectors. Our third aim is to determine the 

proportion of new systemic credit risk that results from risk transmission between 

sectors, as well as from new market innovations. In addition, we would like to provide 

an alternative to the classical transmission analyses in which available expert 

information on the transmission of systemic risk could be introduced. It should be made 

clear that the focus of the paper is on the results relating to the procedure for obtaining 

the transmission structure and not on the interpretation of the results of the credit risk 

transmission itself, which will be the subject of future research. 

Our initial approach to modelling the problem explores a DBN in which the 

relationships between the contemporaneous sectoral CDS series and the delayed series 

consider lags between one and five. This analysis leads to three important results. First, 

of all the relationships considered for our Bayesian network, only a few, namely a part 

of those between the original series and the series delayed with one or two lags, are 

found to be relevant. Second, there is an underlying systemic credit risk transmission 

structure among European CDSs and this is robust and stationary over time. By 

performing network structure learning following the various strategies proposed, we 

have been able to show how systemic credit risk spreads across the different European 

CDS, thereby obtaining the risk transmission structure corresponding to the DBN. This 

structure has been verified by checking that the relationships are robust and consistent 

with the complete data series. Third, between 5% and 40% of the new systemic credit 

risk is explained by the transmission among the different CDS series. This is a high but 

reasonable proportion that quantifies the importance of risk transmission. By analysing 

the posterior distributions of all the parameters, we have come to understand how risk is 

transmitted along the DBN, as well as learning what proportion of the new risk is a 

consequence of the transmission of risk from earlier time points. The effects of lagged 

series on sectoral CDS are either positive, as a direct propagation of systemic risk, or 

negative, as a correction of the propagated risk. The proposed modelling allows for a 

more advanced analysis of the transmission of systemic risk among European sectoral 

CDS series. 

The rest of the paper is organised as follows. Section 2 includes the literature review 

that summarises the lines of research followed and explains where exactly this research 

fits in. Section 3 presents the European sectoral CDS data, including a brief descriptive 

analysis. Section 4 explains the methodology used. Section 5 provides the results for 
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network structure learning (NSL) and parameter learning (PL). Finally, section 6 

concludes and summarises the most significant results and suggests some lines of future 

research. 

2. Review of the Literature 

This research merges two important strands of literature, one analysing the transmission 

of systemic credit risk through the CDS market and the other dealing with Bayesian 

statistics. The intersection between these lines of financial and mathematics research 

lies in network modelling.  

The study of systemic risk using the CDS market arose in the aftermath of the global 

financial crisis. The large amount of credit exposure that occurred during 2007 and 2008 

raised concerns about how systemic credit risk is decomposed and transmitted. Bhansali 

et al. (2008) use a linearized three-jump model for the US and employ European indices 

CDS data to conclude that systemic risk has become the most important source of total 

credit risk, with levels of idiosyncratic and sectoral credit risk remaining relatively 

constant. Using US and Eurozone sovereign CDS data, Ang and Longstaff (2013) 

estimate a multifactor credit model in order to decompose the systemic credit risk. Their 

results show that in both areas it is highly correlated, with eurozone countries 

accounting for a larger fraction of total credit risk compared to the US. They also find 

systemic risk to be closely linked to financial market variables, especially equity 

returns. Novales and Chamizo (2019) use an international sample of sectoral CDSs to 

split the credit risk of individual firms into its components. Systemic and sectorial 

components explain around 65% of credit risk in European industrial and financial 

sectors and 50% in North American sectors, while 35% and 50% of risk, respectively, is 

of an idiosyncratic nature.  

Another line of research has looked exclusively at the financial sector. Focusing on 

CDSs of large US financial institutions, Suh et al. (2013) propose a structural credit risk 

model to measure systemic risk. Contributions to systemic risk arising from the default 

risk of an individual institution vary over time, increase during the crisis period 

compared to the pre-crisis period, and are related to the risk inherent in equity returns 

during the crisis period. The components of systemic risk for European sovereign and 

bank CDSs are addressed by Farina et al. (2019) following a probability of default 

approach. In peripheral countries the risk is concentrated in a joint country-banking 

shock at various levels, while in the Euro-core countries the risk is characterised by a 
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systemic European shock at the country level, with an idiosyncratic component at the 

banking system level and at the individual bank level. 

Within the analysis of systemic credit risk transmission, the network approach has 

become popular. The first studies using CDS data are based on the Diebold and Yilmaz 

(2015) methodology and where focused on computing the network structure via the 

Generalised VAR model. These researchers address the transmission of credit risk in the 

CDS market, but not specifically the study of systemic risk. Greenwood-Nimmo et al. 

(2019) and Chen et al. (2020) analyse credit risk transmission between European 

sovereign CDSs. Bostanci and Yilmaz (2020) extend the sample to an international 

CDS sovereign sample and Sun et al. (2020) analyse the transmission between the CDS 

market and other markets. None of these studies approach the topic using sectoral CDS 

data. 

Strictly speaking, the network approach, which analyses how credit risk is transmitted 

between the different nodes of a network, has become popular. The network approach 

has important advantages over alternative analyses due to the good performance of these 

models and their interpretability. In this regard, the literature has centred on the CDS 

financial sector. Focusing on CDSs of US financial institutions, Kanno (2020) studies 

systemic risk using different measures of network centrality. The findings suggest that 

three of six main banks played a key role in the network in the past. In addition, the 

theoretical analysis of contagion defaults reveals that one contagious default was 

triggered by many stand-alone defaults during the global financial crisis. Brownlees et 

al. (2021) apply a new approach to estimating interconnectedness for large eurozone 

financial institutions by extending the standard reduced form credit risk model. The 

results show that the network captures systematic factors and other interdependence 

relationships. The larger the financial entity, the more interconnected it is. Moreover, 

time evolution analysis reveals that stressed financial institutions become hubs in the 

credit risk network during the crisis. Naifar and Shahzad (2021) construct a CDS 

financial network consisting of sovereign credit risk spillover effects across the most 

COVID-19 affected countries through a tail-event driven network risk technique. Their 

findings show that the connectedness between CDS spreads was higher during the 

COVID-19 crisis and changed over time. China, Russia and Brazil are the countries that 

most transmitted-received credit risk during the pandemic period. 
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The Bayesian approach, based on Bayes theorem, combines the construction of complex 

models with the inclusion of known prior information about the parameters in the 

models (Gelman et al., 2014). Bayesian statistics allows for a new approach to 

frequentist statistics, both in conceptual and practical terms. In the Bayesian context, the 

parameters can be considered as random variables, which provides a more realistic 

approach in many cases where the parameter is of interest in itself (Lindley and Smith, 

1972). In addition, the Bayesian approach to analysis not only uses the data, but the 

results are also based on a priori sources of information known prior to data sampling. 

Modern Bayesian inference is based on simulation methods, which allow one to 

calculate the a posteriori distribution of the parameters when direct sampling is not 

possible (Gilks et al., 1995). The literature on Bayesian statistics is very extensive due 

to its myriad fields of application and some advantages that the Bayesian approach 

provides compared to frequentist statistics (Bauwens et al., 2000). Within the diverse 

literature on Bayesian statistics, in this study we focus on the literature associated with 

dynamic models, due to the nature of the problem studied (West and Harrison, 2006). 

Bayesian networks are a class of probabilistic models under the umbrella of Bayesian 

statistics. Bayesian belief networks are very useful and powerful models that combine 

probabilistic reasoning and graphical modelling (Spiegelhalter et al., 1993) and can 

successfully manage the different elements of uncertainty and causality in complex 

problems (Cowell et al., 2007; Jensen and Nielsen, 2007). These models are composed 

of a combination of random variables and the relationships between them, defined from 

a directed acyclic graph (Quigley et al., 2013). The nature of these models is clearly 

dynamic, due to the possibility of introducing series as the nodes of the network itself. 

The literature on Bayesian networks is less extensive, though increasingly frequent in 

recent years (Scutari and Denis, 2021). The fields of application of Bayesian networks 

are also very diverse, as they are compatible with most contexts in which the goal is to 

analyse the relationship between time series (Nagarajan et al., 2013; Heckerman, 2008). 

Bayesian networks are compatible with multiple models that define the structure, such 

as Vector Autoregressive Moving Average Models (Neapolitan, 2004). In the case of 

introducing an autoregressive structure into Bayesian networks, there are dynamic 

Bayesian networks (DBNs), which are of special interest for studying the relationships 

among financial time series (Neil et al., 2005; Fortunato et al., 2017). DBNs take into 

account the temporal nature of the data and consider the possible relationships between 
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the series over time, which is essential for analysing the transmission of systemic risk. 

Thus, the novel contribution of this paper is that it analyses the transmission of 

systematic credit risk through networks in the context of Bayesian statistics. 

Combining the network approach to perform the analysis of systemic credit risk 

transmission on CDS data with the possibility of working with DBNs, we arrive at our 

proposed line of research, which, despite the limited literature, arises naturally from the 

two topics raised. Thus, this study makes important contributions in the different areas 

that comprise it. On the one hand, our data refer to European sectoral CDSs, which is a 

novel contribution since the literature on sectoral CDS is very scarce and the little that 

does exist does not employ a network approach. On the other hand, the DBN approach 

introduces a new methodology, not previously considered in this literature and with 

great potential. Finally, this work analyses data associated with the current COVID-19 

crisis, a period for which few risk transmission studies have been conducted. For all 

these reasons, this study represents a novel contribution to the literature.  

 

3. Data and exploratory analysis 

We analyse the transmission structure of systemic credit risk across ten European 

industrial sectors using CDS spreads
1
 obtained from Refinitiv Eikon. We focus on the 

movements of the data themselves to understand the underlying risk, as CDS spreads 

are themselves a measure of credit risk. We also consider CDS contracts maturing in 

five years, as they are the most liquid and traded credit risk derivatives (Norden and 

Weber, 2009; Ballester et al., 2016). Daily frequencies are used in order to analyse how 

systemic credit risk is transmitted across different sectors in Europe.  

Specifically, we have taken the daily data from December 2007 to April 2021 (3,690 

observations) and have focused on the period from December 2019 to April 2021 (370 

observations), a span that includes the recent COVID-19 crisis. We are interested in the 

estimation of the model itself, so we have used the entire data set to assess the model 

                                                            
1 We define a CDS as a financial derivative contract that exchanges the credit risk of a product for a 

premium. CDSs are financial swap agreements in which the seller of the CDS will compensate the buyer 

in the event of a debt default. In this way, a CDS allows the buyer to insure himself in the event of default 

of the reference asset. CDS are mainly used for two purposes: to hedge risk and to speculate. CDSs are 

defined by the credit risk being exchanged and by the term over which it is exchanged. CDS spreads are 

quoted on the market in basis points. 
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fit.
2
 The sectoral CDSs analysed include the following sectors: banking, consumer 

goods, electricity, energy, manufacturing, other financial firms, services, sovereigns, 

telephony, and transport.  

Figure 1 displays the time evolution of CDS spreads for each of the ten sectors 

considered and Table A1 in the supplementary material shows their main summary 

statistics. Initially, horizontal movements are observed in the CDS spreads of the 

different sectors, from December 2019 to the beginning of March 2020, when COVID-

19 expanded globally and became pandemic. During the month of March, it can be seen 

how the CDS spread increased considerably, hitting levels much higher than those 

observed in the previous months, reaching the maximums of the entire sample. The 

highest default risk observed in the period under analysis corresponds to Services 

(303.03 bp) and Transport (447.1 bp), the sectors most affected by the COVID-19 crisis. 

The most stable sectors, with the lower CDS spreads (on average), are Sovereign and 

Consumer goods. Subsequently, at the beginning of June 2020, there was a sharp 

decline in sectoral CDSs. This coincides with the timing of a number of institutional 

announcements in Europe about the possibility of summer foreign travel. These notices 

were very well received by the market, which ensured that the risk of default in the 

various sectors would be significantly lower. Lastly, a final marked decline is observed 

during November 2020, at the time when news of the discovery of the first effective 

vaccines against COVID-19 began. In short, the three events described above, strongly 

associated with the COVID-19 crisis, are the ones that have driven the largest 

movements during the sample period. 

In order to analyse how the movements between the different CDSs are related and to 

ensure the stationarity of the data, we calculate the log returns of the CDS series:  

  ( )     (
  ( )

  (   )
) 

where   ( ) denotes the CDS spread of sector   at time   and   ( ) refers to the log 

returns of such sectoral CDSs. The results show that the returns follow a non-Gaussian 

                                                            
2 There is an important risk associated with selecting the whole set as a training sample, namely 

overfitting. This potential problem will not be a risk for our model in practice, as the construction of the 

model penalises overfitting significantly. In short, it makes sense to use the entire data set for model 

fitting, so we select all 3,690 observations for the model construction assessment. 
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distribution, with a higher kurtosis.
3
 However, this will not contradict the Gaussian 

distribution assumptions made in section 4, as we will assume a Gaussian distribution 

for the model residuals, and not for the CDS returns.  

Figure 2 shows the relationships between the different sectors measured by the 

contemporaneous correlations between the different series. Note that this figure shows 

only part of the structure of relationships that can be captured by our network, as we fit 

a model in which for each series the covariates are the log returns of spreads of the rest 

of the CDS series, as well as all the autoregressive terms (of the other series and of the 

series itself). That is, we will consider both partial and conditional correlations. All 

correlations between any pair of sectoral CDSs are positive, which is actually intuitive, 

a consequence of the fact that all industrial sectors are part of the same economy and 

spreads are measures of risk. Obviously, not all correlations are equal and some CDS 

sectors are more related than others. The sovereign sector stands out, showing the 

lowest correlations with the rest of the sectors. This analysis is extended later, when 

after modelling we perform a formal analysis of the correlations, as well as an analysis 

of the correlations between lagged time points, seeing that a multivariate autoregressive 

structure should be introduced. 

 

4. Methods 

This section presents the methods we have used to analyse the transmission of systemic 

risk across industrial sectors in Europe after considering each sector as a node within a 

network composed of all sectors. Our objective is to analyse how systemic risk spreads 

from one node to the rest. We frame our analysis within the Bayesian statistics approach 

and use dynamic Bayesian networks (DBNs) to take into account the temporal nature of 

the data. Within this framework, we use autoregressive and moving average models to 

capture temporal relationships and perform the so-called network structure learning 

(NSL) and parameter learning (PL) (Koski and Noble, 2011) to analyse the structure of 

the network and understand the relationships between the nodes. The approach offers 

the possibility of introducing expert information to improve the analysis. 

4.1. The Bayesian approach 

                                                            
3 Histograms of European sectoral CDS spread returns and their main shape statistics (standard deviation, 

skewness and kurtosis) are available in the supplementary material, in Figure A1 and Table A2, 

respectively. 
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Bayesian inference is a process of fitting a probabilistic model to a data set and of 

summarising the results using probability distributions over model parameters and 

unobserved data, such as predictions for new observations (Gelman et al., 2014). 

Inference from the known values of a variable   is performed using a property on the 

conditional probability, known as Bayes Rule: 

 ( | )  
 (   )

 ( )
 
 ( ) ( | )

 ( )
 

where  ( )  ∑  ( ) ( | )  if the set for   is discrete or  ( )  ∫ ( ) ( | )   if 

it is continuous. From this formula we could summarise that the a posterior information, 

 ( | ), is obtained after updating the prior information,  ( ), with the sample 

information,  ( | ).  

The prior distributions can be considered according to two interpretations. On the one 

hand, they can be interpreted as representing a population of possible values of the 

parameter vector   . On the other hand, in the more subjective sense, they can be seen 

as the place to express our knowledge and uncertainty about the parameter vector. The 

process of Bayesian inference involves moving from a prior distribution,  ( ), to a 

posterior distribution,  ( | ). 

Many statistical applications involve multiple parameters that are related to each other 

in some way through the structure of the problem, with the joint probability model 

reflecting their structure of dependencies. We denote the parameters    as a random 

sample with a given distribution. A key element is to see that the observed data can be 

used to estimate the distribution of the    parameters, even though the parameter values 

are themselves unobserved. The idea of positing a hierarchical model arises naturally; 

with the observed data we will conditionally model some parameters, which in turn are 

given by a certain probability function in terms of other parameters, known as 

hyperparameters.  

Working with complex Bayesian hierarchical models, it can be complicated to obtain 

the posterior distribution analytically. To obtain the posterior distribution, one of the 

most commonly used possibilities is simulation. We rely on simulation methods based 

on Markov Chain Monte Carlo (MCMC). Different simulation techniques have been 

developed to carry out this process, Gibbs Sampling being one of the most widely used. 
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In this study we have used the implementation of this method through the program 

“WinBUGS” (Lunn et al., 2009), called directly from R (R Core Team, 2021). 

4.2. Dynamic Bayesian Networks 

Bayesian networks (BNs) are a class of probabilistic graphical models used to easily 

represent the probabilistic structure of multivariate data. BNs are composed of a 

combination of random variables,   *          +, and the relationship between 

them stated by a directed acyclic graph (DAG), denoted by   (   ).   denotes the 

set of nodes, with each node     associated to a variable     .   denotes the 

directed arcs that connect the nodes, and each     is a directed arc. If no arc connects 

two nodes, the related variables are either independent or conditionally independent 

depending on the rest of the variables. There is an extensive theory on how it is possible 

to map the nodes of a BN and its connections (Scutari and Denis, 2021). Similarly, a 

theoretical mathematical basis underlies the conditional independence between nodes.
4
 

Given a probability distribution   over a set of variables  , a BN is a DAG,   (   ), 

such that it is a minimal independency map (I-map) of   in which none of the arcs can 

be eliminated without destroying the independence structure. The BN is denoted 

  (   ). 

Assuming that a DAG is an I-map leads us to the general formulation of the joint 

probability decomposition, associated with the so-called global distribution:  

 ( )   ∏  (  |   )
 

   
                                                         ( ) 

where     is the set of parent nodes of   . 

From equation (1) we can deduce that the so-called local Markov property is verified. 

The local Markov property tells us that each node    is conditionally independent, given 

its parents, of any node that is not one of its descendants. In other words, each node    

is conditionally independent of node   , so that there is no path from    to   . The result 

of this property being verified is that several BNs with different sets of arcs may be 

encoding the same conditional independence relation and represent the same global 

distribution. As a consequence, the construction of equivalence classes between the 

                                                            
4 Regarding how to represent the dependency or independence relationships between nodes, the interested 

reader can consult Holmes and Jain (2008). 
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different DAGs is immediate. A large number of graph theory results have been applied 

to BNs.
5
 

A dynamic Bayesian network (DBN) is a BN in which the temporal nature of the 

variables studied is taken into account. A DBN is represented by different nodes over 

time and is obtained by expanding, under certain conditions, the interaction network 

defined in a BN over time. In particular, we will not have problems with possible loops, 

guaranteeing the acyclicity of the graph by considering that only the nodes 

corresponding to the past can be parents of a node at time  . A DBN with a directed 

acyclic graph   describes a discrete stochastic process   *  ( )        + that 

takes values in    at   points in time. 

In the implementation of a DBN there are certain underlying assumptions. The first 

assumption is that the stochastic process that follows   is  -order Markovian. This 

assumption is fundamental for it to make sense to work with a DBN. The second 

assumption we make is that for all time points     the random variables  ( )  

*  ( )   ( )     ( )+, observed at time  , are conditionally independent given the 

random variables at the previous time points  (   )  (   )    (   ). This 

assumption allows for a simpler modelling of conditional data. It should be tested 

carefully, as it has important implications. The third assumption is that the variables are 

temporally independent of each other. Thus, in no case can the time profile of a variable 

   (  ( )   ( )     ( )) be written as a linear combination of the rest of the 

profiles (  ( )   ( )     ( ))     . This assumption is made so that the proposed 

modelling does not have problems in inference by taking a higher dimensionality in the 

parameter set than the data allow. When the   variables are linearly independent, i.e. 

none of the profiles can be written as a linear combination of the others, the uniqueness 

of   is guaranteed. As a result, the first and second assumptions permit the existence of 

a DBN with graph   that contains only arcs pointing out from a variable observed at 

earlier times *             + toward a variable observed at time  , with no arcs 

between concurrently observed variables. 

We also assume a constant time delay for all interactions, known as time point 

sampling, which is characterised by the interval between successive time points in order 

to limit the number of parameters in the network. Allowing the presence of arcs 

                                                            
5 Further details on the equivalence between DAGs and on the definitions of the different types of 

structures are available in Koller and Friedman (2009). 

Jo
ur

na
l P

re
-p

ro
of



14 
 

between variables observed either at the same time or at different times can definitely 

serve to incorporate simultaneous interactions. However, we must be careful when 

adding new time points, as the number of model parameters increases exponentially 

with the number of time points. Under the assumptions made, the probability 

distribution of   can be represented as a DBN with a DAG   whose arcs describe 

exactly the conditional dependence of the current values with respect to the variables on 

past values. 

DBN models depend on the number of time delays selected. Extending the number of 

time delays can lead to spurious conclusions about the network structure. Therefore, in 

order to carry out the model estimation we will make one last assumption: that the 

process is homogeneous over time, i.e. that all network arcs and their directions are 

invariant over time. In other words, we assume that the network under consideration is 

stationary, maintaining the relationships over time. The result of making this 

assumption is that we now have a total of (   ) repeated measures observed for each 

of the variables. Thus, it will be possible to make a representation of the model 

parameters. Each of the past time moments is represented by a matrix of coefficients of 

size    . 

The homogeneity assumption allows us to perform the estimation without any problem. 

However, it is a strong assumption that needs to be verified. In the event that this 

property is not true, other strategies can be used (Scutari and Denis, 2021). Under the 

proposed assumptions, the compatible models are autoregressive models where, in 

addition, a diagonal variance-covariance matrix is considered. 

4.3. Vector Autoregressive Moving Average Models 

ARMA models consist of two parts, an autoregressive (AR) part and a moving average 

(MA) part (Box et al., 2015) The notation     (   ) refers to the model with   

autoregressive terms and   moving average terms. The generalisation of ARMA models 

to the multivariate case is given by Vector ARMA (VARMA) models, where the 

temporal relationships are captured through multivariate models in which the 

coefficients are stacked in matrices. 

VARMA models can be also considered in a Bayesian context. The main difference in 

the modelling is that the various parameters (coefficients) present in the model are no 

longer considered as constants but as random variables. Therefore, Bayesian modelling 

Jo
ur

na
l P

re
-p

ro
of



15 
 

of VARMA models must include a distribution for each and every parameter of the 

VARMA model in question. Specifically, a distribution must be proposed for each of 

the parameter matrices of the ARMA structure, as well as for the other parameters of the 

proposed data distribution. VARMA models can be expressed as the following 

Bayesian hierarchical model given by equation (2): 

         ∑        
 

   
  ∑        

 

   
             (   )                ( ) 

where    (           )
  is a multivariate time series;    *         + is the set of 

all information up to time  ;    is the vector of means of the Normal distribution 

associated with time point  ;   is the covariance matrix of the Normal distributions; 

  |    (    ),     (  ),     (  ) for         ,     (  ) for   

      ,    ( ) and     (  )       (   ), where   ,    and    are the matrix 

of parameters of the ARMA structure;  (  ),  (  ) and  (  ) are the prior 

distributions of the parameters;  ( ) are the prior distributions of  ; and  (  ) are the 

structures we give to the parameters    for the first temporal moments, those for which 

we cannot give the ARMA structure due to the lack of prior information. 

The particular case we deal with is that of considering vague prior distributions. 

Moreover, after performing a pre-treatment to contrast the importance of the different 

elements of the modelling using VARMA models, the final model chosen was 

simplified. We have implemented an autoregressive VAR model without MA 

components, whose covariance matrix is diagonal. The data used for the returns are 

stationary in mean and variance, so these VARMA models are reasonable. 

4.4. Bayesian Network Learning 

Model selection and estimation are known in the field of BNs as learning, as they are in 

the domain of machine learning and artificial intelligence. In the case of a BN, these 

elements are consolidated in a two-step process. First, model selection is done by 

Structure Learning. This first step is based on learning the structure of the DAG, in 

which the arcs and their directions must be contrasted (Darwiche, 2008). The second 

step, once the DAG structure has been defined, consists of Parameter Learning. It is 

based on learning about the local distributions implied by the DAG structure. This 

estimation process can be performed either by unsupervised learning, using only the 

information provided by the data set, or by supervised learning, using expert 
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information that informs about the structure of the parameter values at a specific time 

(Scutari and Denis, 2021). 

4.4.1. Network Structure Learning 

Network Structure Learning (NSL) is the first step to be used in BN modelling, and is 

equivalent to model selection. The structure specification of the DAG of a BN is usually 

done using two different statistical approaches: hypothesis testing and information 

criteria.  

Determining the DAG is a very complex task. On the one hand, the space of possible 

DAGs is very large, and its cardinality grows exponentially with the number of nodes. 

On the other hand, this space is complex due to the dichotomous nature of the 

connections. The algorithms used to perform NSL are very diverse and, in many cases, 

specific to the problem being addressed (Scanagatta et al., 2019). However, in addition 

to the assumptions underlying the definition of the BN itself (see subsection 4.2), there 

are some fundamentals on which these algorithms are based. Regardless of which NSL 

approach we employ, any combination of possible values of the variables must 

represent a valid observable event. This property must be verified for it to make sense to 

consider the problem in probabilistic terms. Similarly, to form a DBN we need to 

consider the VARMA temporal structure and both the contrasts performed to analyse 

the conditional independence between the variables and the information criteria used to 

calculate the performance (score) of the network need to be assessed in the context of 

the selected distribution, in our case the multivariate normality framework. 

Conditional independence tests focus on the presence of individual arcs. Each arc 

indicates a probabilistic dependence. Conditional independence tests can be used to 

decide whether such probabilistic dependence is compatible with the data. If the null 

hypothesis of conditional independence is rejected, the inclusion of the arch in the DAG 

can be considered. The null hypothesis is that two of the variables are probabilistically 

independent conditional on past values. 

The most common way to decide is to work with the exact test for partial correlations. 

This test can only express the marginal linear dependencies between two variables. 

Using conditional partial correlation, the null hypothesis is rejected if and only if 

    | (   )    (   ) is significantly different from zero. Conditional partial correlations 

must be estimated numerically, as no closed form exists (Scutari and Denis, 2021). In 
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particular, once an unbiased and efficient numerical estimate of the partial correlation 

conditional on past moments is available, the test can be solved using either a  -

transformation of the conditional partial correlation or the Fisher's Z test (Scutari et al., 

2019).
6
 By considering the different tests, we achieve a complete NSL. 

We can use network scores as an alternative to conditional independence tests (De 

Campos and Friedman, 2006). Network scores approach the construction of the DAG 

structure as a whole, measuring the performance of the DAG on the observed data. 

Network scores are goodness-of-fit statistics that measure how well the DAG captures 

the dependence structure of the data. There are many network scores that are commonly 

used to measure the performance of a DAG, including the Bayesian Information 

Criterion (BIC) and the Bayesian Dirichlet equivalent uniform (BDeu or BDeu), which 

depend, respectively, on the conditional likelihood and on posterior probabilities, the 

latter considering a uniform prior distribution over the space of DAGs and parameters 

(Rios et al., 2015).  

Both BIC and BDeu assign a higher score to those DAGs that best fit the data.
7
 Using 

this criterion, network scores are useful for completing NSL. Unfortunately, network 

scores generally have a high computational cost. Computing a network score for each 

DAG involves the calculation of a likelihood function and its optimisation, which is not 

immediate. As the number of possible DAGs increases exponentially with the number 

of nodes, it is impossible to obtain the network score for all of them. Therefore, to 

overcome this drawback, network scores are combined with heuristic methods.
8
 

4.4.2. Parameter Learning 

Once the structure of the BN has been learned (i.e., once NSL has been performed), we 

can move on to learning about the parameters and perform Parameter Learning (PL). 

Although the strategy we have used to perform NSL does not in any way determine the 

                                                            
6 In addition to these two tests, other tests could be also performed, such as those based on mutual 

information or mutual information shrinkage, both based on a Chi-square distribution of one degree of 

freedom. 
7 Note that in the BN literature, the BIC is usually defined in the opposite way to how it is usually defined 

in the classical statistical literature (see, e.g., Scutari, 2018). 
8 Greedy search proposes an initial random network structure and adds and removes arcs until it does not 

find a possible improvement. Genetic algorithms are based on exploring the space of DAGs by means of 

crossover (combination between networks) and mutation (random alterations). Finally, simulated 

annealing is an algorithm that allows changes to be made both to improve the network score and to 

worsen it, but associating different probabilities to these changes depending on the resulting score. 
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approach to be used in PL, it should be noted that there are some methods to perform a 

joint analysis, in which NSL is performed at the same time as PL (Faruqui et al., 2021). 

PL consists in estimating and updating the parameters of the global distribution. This 

can be done by either maximising the likelihood or using a penalised estimation. The 

simplest possibility is to perform a maximum likelihood estimation. This strategy is 

based on maximising the global likelihood function or, equivalently, maximising each 

and every local likelihood function. Under the assumptions made (whose suitability we 

verify in section 5), each of the local distributions can be expressed as a classical linear 

regression model, in which a node is explained by the past nodes. The contribution of 

past nodes is additive, and no interaction term is considered. Thus, the maximum 

likelihood maximisation strategy is trivial. Another possibility is to employ penalised 

regression methods, such as ridge, lasso or net elastic regression (Hastie et al., 2009). 

These methods focus on minimising the quadratic errors by controlling the parameter 

values. In this way, large quadratic errors and high parameter values are penalised. 

5. Results 

In this section we present the findings of performing a complete analysis of the 

transmission of systemic risk across industrial sectors in Europe, obtained after applying 

the methods described in section 4 on the data presented in section 3. We begin by 

learning the structure of the Bayesian network, subsection 5.1, and then move on to 

work on learning the parameters of the resulting model, subsection 5.2. The Bayesian 

network learned provides valuable information on how risk is transmitted across 

different industrial sectors in Europe. 

5.1. Network Structure Learning 

The first step in constructing a DBN is to learn its structure. A structure is determined 

by a Directed Acyclic Graph (DAG) between its nodes. In our case, we start with 60 

nodes: 10 nodes for the original series of CDS returns and another 10 for each of the 

five (initially) considered lagged series. The selection of lags from order one to order 

five responds to the need to explore possible workday/week interactions between the 

series. This entails        potential arcs
9
, a quantity that must be multiplied by the 

number of all possible combinations of instantaneous relationships between the series. 

                                                            
9 Remember that, as stated in the Methods section, we impose the constraint that arcs must be directional 

towards the 10 nodes of the original (non-lagged) series, as the rest of the relationships are marked by 

previous moments. 
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This results in an enormous number that prevents the NSL process from being 

performed by an exhaustive search in the set of all possible DAGs. 

5.1.1. Reducing the complexity of the search 

To reduce the number of potential DAGs, we begin by performing unconditional 

independence tests on each set of two series containing an original series (i.e. 

performing a total of 59 unconditional independence tests for each original series). This 

allows us to rule out some of the relationships in the full connected model. 

Subsequently, we perform 'global' conditional independence tests to find out the true 

dependence relationships present in the data.
10

 

In total, we carry out 545 unconditional independence tests
11

 and obtain relevant 

learnings for both the original and the lagged series. On the one hand, we find 

contemporaneous unconditional dependence relationships between almost all the series. 

That is, simultaneous correlations seem to be relevant in most cases, with almost all of 

them positive. This result agrees with what is observed in Figures 1 and 2. On the other 

hand, we also observe significant unconditional dependence relationships with the series 

lagged one and two periods (with quite a few of them being non-relevant) and 

unconditional independence relationships with most of the series with three, four and 

five lags.
12

 In this case, the significant relationships are more diverse, with some of the 

correlations being positive, showing direct risk transmission, and others negative, 

showing market corrections. The intensity of the relationships obtained also varies 

across sectors. For example, the manufacturing and transport industrial sectors are 

characterised by having stronger unconditional relationships than the rest and the 

sovereign bond series by having less relevant unconditional relationships.  

In light of these results, we reduce the complexity of our initial models and, from now 

on, we just consider DAGs with 30 nodes by only including instantaneous and lagged 

one and two relationships in the model. Despite this, the cardinality of the space of 

DAGs still remains too large to carry out an exhaustive search, so we move on to 

                                                            
10 Unconditional independence tests only measure marginal relationships. Therefore, when considering 

models with more than one covariate, such as the dynamic Bayesian network we are constructing, the 

relationships we are interested in are not unconditional, but conditional on the information provided by 

the rest of the variables. 
11 We need to subtract 45 from 59×10 because of the symmetry of the tests between each pair of original 

series. 
12 While it is true that some of the relationships appear to be relevant, it is possible that this is due to 

spurious relationships. Generally speaking, the vast majority of these unconditional relationships are 

directly irrelevant. 
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performing global conditional independence tests, that is, tests in which we condition on 

the total set of series (original and delayed), excluding the two series for which the 

conditional independence relationship is being analysed. This calculation is quite 

manageable. It only requires the computation of 29 conditional independence tests for 

each of the original series, that is, a total of 245 different tests. The results of these new 

tests allow us to further restrict the structure of our model. On the one hand, the global 

conditional tests show very different relationship structures across sectors. On the other 

hand, and as a main result, they exhibit very weak conditional dependence relationships 

between the original series. The strength of the relationship between each pair of 

original series is significantly reduced when we condition on the previous values of the 

rest of the series, that is, we can further prune our structure, not allowing for 

contemporaneous interconnections. 

By eliminating the dependence relationships between the original series, we simplify 

the problem significantly. Considering the possible relationships between the original 

series means dealing with the whole structure when performing NSL. However, by 

forbidding contemporaneous relationships, we gain the ability to divide NSL into 

chunks. We can perform NSL for each of the ten original series separately, and then 

combine the conclusions obtained for each of the series. For each of the sectoral CDS 

we can analyse how the risk is transmitted between the different sectoral CDS with one 

or two lags, and then define the structure of the DAG as the union of all these individual 

DAGs. This not only reduces the complexity of the problem, but also lessens its 

computational burden by allowing the use of parallelisation computational techniques. 

At this point, we can now perform NSL using an exhaustive search strategy that takes 

into account all the different techniques discussed in section 4. 

5.1.2. Conditional Independence Tests 

The first of the strategies followed is based on performing an exhaustive search among 

all possible DAGs by means of sequential conditional independence tests. This strategy 

ensures that the best fitting structures are found among all the allowed DAGs.
13

 In our 

case, the process has led to a single structure, the DBN presented in Figure 3. This DAG 

is obtained after fully integrating all the relationships included in each of the individual 

structures.  

                                                            
13 It should be noted that this approach could lead to more than one feasible structure, so other criteria 

might be necessary to choose among them.  
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The above search method, however, still has a high computational cost
14

, which makes 

this approach unfeasible if a larger number of series and/or delays are involved. So, as is 

standard practice (Cowell, 2013), we have also carried out the strategy based on the 

global conditional independence tests discussed in the previous section. This proposal 

represents a significant simplification with respect to the exhaustive search, as we go 

from performing        conditional independence tests to only    tests for each of the 

series. Remarkably, although with this strategy there is no guarantee of arriving at the 

network structure that best fits the data
15

, in our case we do arrive at the same structure. 

In our view, this reinforces the validity of the idea of using global conditional 

independence tests to perform NSL.
16

 

As an alternative to the graphical representation of the identified DAG shown in Figure 

3, Table 1 presents by rows all the relevant relationships identified through the global 

conditional independence tests. Despite the great diversity of singular structures, we can 

observe that, as expected, the returns exhibit more relationships with one-lagged series 

than with two-lagged ones. We also observe that all the series have a significant 

relationship with themselves, the majority of them with their immediately previous 

value (lagged one series). Some of the series, however, have particularly complex 

structures, requiring the relationship given by both one and two lags. We also highlight 

the fact that the individual structure proposed for each of the original series clearly rules 

out overfitting. As the relevant relationships between the original series and the lagged 

series are so few, we arrive at a model with a low dimensionality for the parameter 

space, so we will not fall into problems associated with overfitting. This is verified in 

the next subsection. 

5.1.3. Network scores 

While NSL strategies based on conditional independence tests build DAGs in a 

piecewise fashion, methods based on network scores offer a completely different 

                                                            
14 To perform an exhaustive search, we needed to check a total of        possible DAGs for each 

original series. We needed to consider the     structures and to perform the 20 conditional independence 

tests associated with the lagged series. 
15 This procedure usually leads to a simplified structure that correctly fits the data. 
16 As an intermediate solution between the use of an exhaustive search and a strategy based on global 

conditional independence tests, a conditional independence heuristic algorithm could be employed. A 

heuristic strategy works in a similar fashion than an exhaustive search, the difference being that not all 

possible structures are considered. The idea is to start from a structure that includes all (any) of the 

possible arcs, and to perform sequential conditional independence tests on successive sets to remove/add 

arcs, until a structure is reached in which all relationships are relevant and no other arc can be added. 

Again, we also arrived at the same solution with this approach. 
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approach by gauging how structures as a whole fit the data. As advantages, network 

scores (i) assess DAGs once the models have been fitted, enabling comparisons in terms 

of both estimation and prediction, (ii) penalise model overfitting by decreasing the score 

as the number of parameters increases and (iii) allow structures to be ranked, saving 

several good candidates rather than a single structure. On the downside, network scores 

depend on the metric used and are not completely comparable, except in the case of 

nested networks, so it is possible to reach different solutions with different criteria.  

Applying network scores is quite straightforward. Once we have a candidate structure, 

we only have to fit and evaluate it. Depending on the complexity of the model and the 

number of nodes, this approach can be more or less computationally expensive. In our 

case, we have performed an exhaustive search
17

 and saved the five structures with the 

highest network scores in terms of BIC and BDeu. 

The results obtained are quite interesting and encouraging. Although the structures 

might had been markedly different from those obtained using conditional independence 

tests, we have found quite similar structures. On the one hand, for six of the ten original 

series, the structure with the best network score coincides with the structure identified 

by conditional independence tests. On the other hand, for the other four series, the 

structure identified using conditional independence tests coincides with either the 

second or the third best network score. Furthermore, the five best structures identified 

using network scores were in all cases quite similar to one another, differing only in one 

arc with the best-scoring network. For all these reasons, we consider the structure 

identified using conditional independence tests and shown graphically in Figure 3 to be 

a really good candidate to fit our data. 

Figure 3 displays the complete structure of our DBN (see also Table 1), underlying the 

data. This graph depicts the full set of relevant conditional dependence relationships 

between our 30 nodes. Yellow arcs represent relationships between the original series 

and the single-lagged series, blue arcs capture relationships between the original series 

and the two-lagged series, and green arcs identify relationships between the original 

series and the one- and two-lagged series. We must emphasise that the relationships 

marked in the DAG are directed from the delayed series to the original series and that 

                                                            
17 We must note, however, that we obtained exactly the same results after implementing a heuristic 

search. 
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the structure represented is constructed from the union of the ten individual structures 

corresponding to each of the original series. 

5.1.4. Robustness analysis 

The identification of the structure described above was performed using the sub-dataset 

corresponding to the COVID-19 crisis period. Therefore, as a final validation we have 

repeated the previously implemented NSL process using the complete data series and 

have found that the identified DAG coincides, for the most part, with the one plotted in 

Figure 3. Only in two of the original series is there a change in the structure of its ten 

chucks, in one of them by adding a new arc and in the other by removing a relationship 

already present.  

5.2. Parameter Learning 

As explained in subsection 4.4, the estimation of a Bayesian network consists of two 

steps: model selection and model estimation. Parameter Learning (PL) performs model 

estimation, which in our application consists in estimating the model stated in equation 

(2) using the structure of relationships identified in subsection 5.1. In contrast to NSL, 

which was implemented from a frequentist approach, we perform PL from the Bayesian 

statistics framework.
18

 

Translating the identified DAG requires, firstly, that all the    matrices are null
19

 and 

that the only non-null coefficients in the matrices    are the entries (   ) corresponding 

to the arcs identified in subsection 5.1 and detailed in Table 1. Furthermore, the 

conditional independence found among the original series implies that the covariance 

matrix   must be a diagonal matrix. This means that we can define the priors for the 

covariance matrix by working separately with each of the diagonal elements, the 

variances. 

For the selection of prior distributions, we can consider three different situations, 

depending on the availability or not of prior information. On the one hand, we could set 

informative priors in two scenarios, whether we have expert information or prior 

experience
20

. On the other hand, we could take uninformative or vague prior 

                                                            
18 We want to note that we obtained similar results implementing PL using penalised regression methods 

in the frequentist context. 
19 We just work with VAR models of order 2 (i.e. with a maximum of two lags). 
20 For example, in the latter case, we could fit the model using the data prior to the COVID-19 financial 

crisis and use posterior distributions attained as priors. 

Jo
ur

na
l P

re
-p

ro
of



24 
 

distributions, leaving the model to learn only from the information enclosed in the data. 

This decision has the advantages of being simpler to implement and of avoiding the 

criticism of being subjective, but it has the disadvantage of not exploiting the full 

potential of the Bayesian approach.  

In our application we have selected particular vague priors that have the quality of 

stressing the identified model even more, leaving all the estimation effort on the 

information contained in the data. On the one hand, we have established standard 

Normal distributions as a priori for the autoregressive parameters.
21

 These distributions 

are sufficiently loose that (i) being centred at zero they leave the data to determine 

whether the corresponding variable has predictive power, (ii) being symmetric they 

allow for positive and negative effects, and (iii) being concentrated in small values in 

absolute terms they recognise that the effects of a shock tend to be dampened several 

time points later on. On the other hand, for the variances of the shocks (which must be 

non-negative) impacting the returns (which as we can observe in Figure A1 are indeed 

small), we consider a uniform distribution between zero and one. Without being totally 

uninformative, this distribution will be flexible enough for the posterior to be a faithful 

reflection of what the data report.  

Once the Bayesian hierarchical model has been completely defined, we have estimated 

the 78 a posteriori distributions of the parameters of our model (68 autoregressive 

coefficients and 10 variances) using simulation methods based on Markov Chain Monte 

Carlo (MCMC), through Gibbs Sampling. We have worked with five MCMC chains of 

50,100 simulations each, eliminating the first 100 as a burn-in period. In addition, we 

have thinned the simulations, keeping only one out of five values in order to avoid 

possible autocorrelations in the simulations. The results obtained positively surpassed 

all the checks
22

, ensuring that the estimates obtained are correct. 

At this point, a case-by-case analysis of the different parameters of the model is 

possible, as they explain the risk transmission relationships across the different CDS 

series. On the one hand, the posterior distributions of the 68 parameters corresponding 

to the autoregressive structure provide information on the specific transmission of 

                                                            
21 The parameters of the autoregressive structure measure the propagation of risk between the different 

CDS series. These parameters indicate how each movement in one CDS series, in the form of a return, 

affects another CDS series one or two periods later. 
22 We have checked (i) the convergence of the MCMC chains, (ii) the representativeness of a posteriori 

distributions, (iii) the independence from initial conditions, (iv) the non-existence of pathologies in the 

chains, and (v) the length of the effective sample sizes. 
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systemic risk between each of the lagged series and the original series.
23

 These 

parameters measure the amount of systemic risk transmitted by a given lagged series 

over one of the original CDS series, i.e. how shocks in the lagged series affect the 

sectoral CDS series. On the other hand, the posterior distributions of the 10 parameters 

corresponding to volatilities (variances) provide information on the residuals, that is, on 

the part of the sectoral CDS returns that is not explained by the returns of the different 

CDS series in previous periods. In other words, the estimated standard deviation for 

each CDS tells us the size of the unexplained risk. Therefore, by comparing the 

estimated standard deviations with the standard deviations of the original series, we can 

ascertain what proportion of the risk of each of the sectoral CDSs has been transmitted 

from other CDS series at earlier time points and what proportion of the risk is 

unexplained.  

To simplify the analysis, a summary of the estimation results of the identified DBN is 

presented in Table 2, in which the means of the posterior distribution of each 

autoregressive parameter and the percentage of explained variance for each of the CDS 

returns series are given. The interested reader can find in Tables A3 to A12 and in 

Figures A2 to A11 of the Supplementary Material statistical summaries of the 

distributions for the full parameter set and empirical graphical representations of the 

posterior distributions of parameters, respectively. 

By analysing the values that the posterior distributions of the parameters corresponding 

to the autoregressive structure (Table 2), we can get an idea of how specifically risk 

propagates from the lagged series to the original series. Taking into account the 

structure of the DBN, we could study how a shock in a given CDS series is transmitted 

over time in the different series or see how risk is transmitted over the long-term from 

one series to another, fixing the rest of the series. These two approaches, among others, 

can provide valuable information on the transmission of systemic risk in the European 

credit system. 

6. Conclusions 

This study lies at the intersection of two literature topics, namely systemic credit risk 

and Bayesian statistics, with network models being the nexus. Dynamic Bayesian 

                                                            
23 These coefficients indicate the transmission of risk at a given period, although obviously one could 

simply understand that the transmission of shocks is longer term, taking into account that this 

transmission is significantly dampened and becomes less and less strong over time. 
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Networks (DBNs) have been used to analyse the transmission of systemic credit risk 

across European sectoral CDS, and both Network Structure Learning (NSL) and 

Parameter Learning (PL) have been employed to understand how systemic risk is 

transmitted across them. After considering an initial DBN with a total of 60 nodes, we 

have performed NSL to learn the entire relationship structure. The final structure (see 

Figure 3) has been obtained using conditional independence tests and has been validated 

from both a heuristic search and a network score search. Furthermore, working with a 

data set that did not coincide with the COVID-19 financial crisis, and extending the 

period, we have arrived at an almost identical structure, confirming that the structure 

holds over time. Once the NSL was performed, we have carried out PL to estimate the 

parameters of the model. This phase has been entirely completed in the context of 

Bayesian statistics. To this end, an estimation was performed using simulation methods 

based on Markov Chain Monte Carlo. 

The most significant finding of this study is the way in which systemic risk is 

transmitted across European sectoral CDS. The various parameters of the model, both 

those associated with the autoregressive structure and those related to the variance and 

covariance matrix, provide information on the transmission of risk. By analysing the 

posterior distributions of all the parameters, we understand how risk is transmitted along 

the DBN, as well as what proportion of the new risk is a consequence of the 

transmission of risk from previous time points. By analysing the posterior distribution 

of the parameters associated with the standard deviation of the residuals, we have been 

able to understand what proportion of the risk is a consequence of risk transmission 

between the sectoral CDS series. Thus, we have found that the new systemic risk is 

explained between 5% and 40% by the transmission between the different CDS series. 

Furthermore, by analysing the posterior distribution of the parameters associated with 

the autoregressive structure of the returns (see Table 2) we can see exactly how risk is 

transmitted along the DBN. The posterior distributions have allowed us to understand 

the transmission of systemic risk across European sectoral CDS during the COVID-19 

financial crisis. 

Given the importance of risk transmission analysis, this study may be relevant from the 

perspective of policy implementation. DBNs are able to identify the sources of risk and 

the transmission paths resulting from exogenous shocks. This modelling should be of 

significant interest to regulators and to supervisory authorities as it provides them with 

Jo
ur

na
l P

re
-p

ro
of



27 
 

information on market fragility hotspots and allows them to anticipate potential 

increases in risk in different sectors. In addition, this methodology can be used by 

financial institutions to carry out internal systemic stress tests of contagion risk. 

Similarly, this study may be of interest to any financial market participant interested in 

analysing and understanding the transmission of systemic risk. 

Finally, the modelling of the transmission of systemic risk across CDS by means of 

DBNs presented in this paper opens various lines of research. The study conducted in 

this case considers that the variance of the residuals for each of the sectoral CDS series 

is constant over time; as this assumption need not be true, a dynamic model for 

volatility could be developed. On the other hand, we have rejected the instantaneous 

relationships given their lack of strength in the analysis with daily data; however, a 

model could be created that takes into account instantaneous relationships, especially if 

intraday data were used. Finally, the study of risk transmission in a broader network, 

including other series from other regions, in order to better understand how systemic 

risk is transmitted at the international level, remains to be done. 
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ANNEX. Tables and Figures 

 

Table 1. Lagged relationships identified as relevant for each original series 

  Delayed 

   series 

Original series 

(a) (b) (c) (d) (e) (f) (g) (h) (i) (j) 

(a): Banking 1st  2nd 2nd       

(b): Consumer  1st  1st 1st  1st  1st 1st 

(c): Electricity 1st 1st 1st/2nd 1st  2nd 1st/2nd 1st/2nd   

(d): Energy 2nd  1st 2nd 1st/2nd 2nd    1st/2nd 

(e): Manufacturing  1st/2nd 1st/2nd 1st 1st 1st 2nd 1st 1st 1st 

(f): Other Financial 1st  1st/2nd  1st 1st   1st  

(g): Services    1st 1st  1st   1st/2nd 

(h): Sovereign 1st 1st      1st/2nd   

(i): Telephony 1st 1st  1st 1st  1st  1st  

(j): Transport 1st 2nd 2nd 2nd   2nd 1st 1st 1st/2nd 

Total nodes 7 7 9 8 7 4 7 6 5 8 

Note: Each series represents a node in the network: contemporary sectoral CDS by columns and lagged 

series by row. 1st and 2nd indicate if the relationship between series corresponds to one and two delays, 

respectively. 

 

Table 2. A posteriori means of the parameters of the dynamic Bayesian network 

  Delayed 

   series 

 Original series 

Lag (a) (b) (c) (d) (e) (f) (g) (h) (i) (j) 

(a): Banking 
1 -0.387          

2   -0.065 0.328       

(b): Consumer 
1  -0.092  0.448 0.190  0.636  0.099 0.564 

2           

(c): Electricity 
1 0.373 -0.006 -0.776 0.253   -0.705 0.476   

2   -0.536   0.057 -0.731 0.613   

(d): Energy 
1   -0.148 0.200 0.114     0.356 

2 0.132    0.145 0.076    0.249 

(e): Manufacturing 
1  0.009 0.443 -0.238 -0.237 0.217  -0.642 0.270 -0.496 

2  0.009 0.351    0.685    

(f): Other Financial 
1 0.287  0.281  0.119 -0.042   0.254  

2   0.194        

(g): Services 
1    0.120 -0.027  -0.242   0.127 

2          0.144 

(h): Sovereign 
1 0.065 0.022      -0.304   

2        -0.124   

(i): Telephony 
1 0.204 0.045  0.247 0.192  0.531  -0.223  

2           

(j): Transport 
1 -0.143       0.402 -0.068 -0.178 

2  0.018 -0.154 -0.271   -0.490   -0.449 

% Explained*  32.7 31.1 39.0 24.7 22.0 5.5 5.5 13.3 10.1 41.5 

Note: The a posteriori means measure the direction and strength of the relationship defined between the 

nodes of the sectoral CDS Bayesian network. *’Explained’ denotes the percentage of total variance of the 

corresponding CDS series explained by the relationships in the network. 
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Figure 1. Time evolution of European CDS spreads by sectors during COVID-19 crisis 

 

Note: Each line shows the evolution of a series of European CDS spreads from 2 December 2019 to 30 

April 2021. Despite the large differences in levels of risk, co-movements between CDS sectoral series are 

clearly seen in the figure. The major changes in the series correspond to identifiable financial events, such 

as the outbreak of COVID-19 in March 2020 or the announcement of a vaccine in November 2020. 

 

Figure 2. European sectoral CDS spread correlations 

 

 
Note: The relationships have been measured using contemporaneous correlations between sectors series 

for the period from 2 December 2019 to 30 April 2021. 
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Figure 3. DAG selected by Structure Learning 

 

 

Note: Each node represents an original CDS series. A yellow arc indicates an identified relationship 

between the one-lagged series corresponding to the origin of the arrow and the original series 

corresponding to the destination of the arrow. Blue arcs and green arcs, on the other hand, identify 

relationships with two-lagged series and with both one- and two-lagged series, respectively. The sectoral 

CDS, together with their Datastream codes, correspond to the banking sector (DSEBK5E), the consumer 

goods sector (DSECG5E), the electricity sector (DSEEP5E), the energy sector (DSEEC5E), the 

manufacturing sector (DSEMF5E), the other financial firms sector (DSEOF5E), the services sector 

(DSESC5E), the sovereign sector (DSESV5E), the telephony sector (DSETL5E) and the transport sector 

(DSETR5E). 
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Highlights 

• This paper studies systemic credit risk transmissions among European sectoral 

CDS.  

• Dynamic Bayesian networks shows a robust and stationary underlying risk 

transmission structure.  

• Only relationships between original series and series delayed with one or two lags 

are relevant.  

• The network relationships explain between 5% and 40% of single systemic risks.  

• Amplifier and reducer effects of systemic risk transmission are identified. 
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